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Abstract: 

This paper addresses the energy absorption behaviour and crashworthiness 

optimisation of short length circular tubes under quasi-static lateral loading. Finite 

element (FE) models were developed using implicit FE code ANSYS to simulate the 

deformation behaviour and energy absorption of circular tube under lateral loading. 

These FE models were validated using experimental techniques to ensure that they 

can predict the responses of circular tube with sufficient accuracy. Response Surface 

Methodology (RSM) for design of experiments (DOE) was used in conjunction with 

finite element modelling to evaluate systematically the effects of geometrical 

parameters on the energy absorption responses of laterally crushed circular tubes. 

Statistical software package, Design-Expert, was used to apply the response surface 

methodology (RSM). The energy absorbing responses (specific energy absorbing 

capacity (SEA) and collapse load (F)) were modelled as functions of geometrical 

factors (tube diameter, tube thickness, and tube width). These developed functions 

allow predictions of the energy absorption response of laterally crushed tubes, based 

on their geometry parameters. Based on DOE results, parametric studies were 

conducted to generate design information on using the laterally crushed tubes in 

energy absorbing systems. Finally, the approach of multi-objective optimization 
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design (MOD) was employed to find the optimal configuration of the proposed 

energy absorption structures.  Design-Expert software, which employs the 

desirability approach as optimization algorithm, was used for solving the MOD 

problem.  

Keywords: Thin-walled circular tube, Energy absorbing systems, lateral collapse, 

ANSYS, Quasi-static loading, Design of experiment, multi-objective optimisation 

design. 

1 Introduction:  

In general, crashworthiness is the ability of a structure to protect itself and its 

occupants from serious injury or death when it is subjected to an impact load. 

In the last few decades, there has been a continuous focus on crashworthiness as a 

primary requirement in the design of occupant-carrying structures. 

Thin walled tubes have been extensively employed in crashworthiness applications, 

to absorb kinetic energy through plastic deformation and thus enhance the 

crashworthiness of the structure. The widespread use of thin walled tubes as energy 

absorbers is due to their good performance under dynamic loading, availability, low 

manufacturing cost, and efficiency. Many applications employ thin walled tubes to 

enhance the crashworthiness of structure such as energy absorption devices at the 

front of cars and trains [1], Aircraft sub floor structures [2], Rollover Protective 

Structures (ROPS) of heavy vehicles, such as bulldozers and tractors [3].  

A significant amount of research has been conducted on the energy dissipated by 

thin-walled tubes. The main findings were outlined and presented in a review article 

by Olabi et al. [4] and Alghamdi [5]. General information and discussion about 

energy absorption structures and materials can be found in book by Lu and Yu [6].  



Thin-walled tubes can absorb kinetic energy as a result of many types of 

deformation, leading to various energy absorption responses. The principle ways of 

destroying tubes include lateral compression [7-11], lateral indentation [12-13], axial 

crushing [14-16], tube inversion [17], and tube splitting [18].  

The axially loaded tubes have widely used as energy absorbing structures and have 

received considerable attention by the researchers due to the fact that axial crushing 

of tubes have comparatively high energy absorbing capacity. This behaviour is due to 

the fact that under axial loading most of the tube’s material deforms plastically and 

participates in the absorption of energy. However, these structures have certain 

drawbacks such as the very large fluctuations of the collapse load about a mean load 

and the unstable deformation mode (global bending mode). The energy absorbing 

capacity of laterally flattened tubes was found to be greater than that of lateral 

indentation, but not as much as for axial crushing. The main advantage of the laterally 

loaded tubes is that bending collapse mode generated from lateral loading results in a 

smooth force-deflection response. Also, the laterally loaded tubes do not undergo 

any kind of unstable deformation mode even under the off-axis loading. In spite of 

these advantages of the laterally loaded structures, these energy absorbers have 

received relatively limited research attention in the literature. 

In the past, the study and analysis of energy absorbing devices was performed by 

several methods such as experimental, empirical, and analytical techniques. In recent 

times, traditional techniques have been complemented with the finite element 

method (FEM), which is very powerful tool particularly for performing parametric 

studies. In addition to FEM, the factorial method is now employed by the researchers 

to conduct parametric studies. Factorial analysis is an alternative approach to 

investigate the responses of energy absorbing systems. It is considered as a very 



powerful tool for evaluating the main and interaction effects of the various 

parameters on the energy absorption responses. It is also used for conducting 

parametric studies, particularly if statistical approach such as design of experiments 

(DOE) is employed. The surrogate model method, such as response surface (RS) 

model, is considered as a common technique for performing factorial analysis of 

energy absorbing structures. Employing surrogate model method in the field of 

energy absorbing systems provides the ability to analysis and to perform multi-

objective optimization design (MOD) of the energy absorbing structure. The 

optimization design can be achieved by using the surrogate models in the 

optimization algorithm, such as the multi-objective particle swarm optimization 

(MOPSO) algorithm and desirability approach. Many studies have used RSM with 

the optimization algorithm to seek an optimal design for the thin-walled tubes under 

pure axial [19-21], bending [22], and oblique loads [23]. 

Much of the research on the crashworthiness optimization of energy absorption 

structures has focused on those axially crushed devices. However, the 

crashworthiness optimization of circular tubes under lateral loading has received no 

attention in the literature. 

This paper aims at addressing the design and optimization issues for the laterally 

crushed thin-walled circular tubes as energy absorption devices. An integration of 

finite element modelling (FEM) with the Response Surface Method (RSM) for 

design of experiments (DOE) was employed for generating the design guidelines for 

such circular tube as energy absorbing devices. The FE model was developed using 

commercial finite element code (ANSYS) and validated using experimental 

techniques. The specific energy absorption (SEA) and the collapse load (F) of the 

oblong tube were modelled as functions of geometrical parameters such as thickness 



(t), diameter (D), and width (W). Parametric study was performed to investigate the 

primary and interaction effects of geometric parameters on the SEA and F. 

Furthermore, multi-objective optimization design (MOD) of the circular tube system 

is carried out by adopting a desirability approach to achieve maximum SEA capacity 

and minimum F.  

2 Material and methods 

2.1 Material properties 

Mild steel tubes were used for manufacturing the empty and nested samples. The 

steel was cold finished, manufactured according to the DIN standards, DIN 2393 ST 

37.2 and contain around 0.15% carbon. Tensile tests were carried out in order to 

determine the mechanical properties of the tubes. The dog bones samples (tensile 

samples) were prepared by flattening the tube and cut the specimens. Figure 1 

displays the procedure of tensile test along with the true stress-strain curve obtained. 

Upon examination of this figure, it can be seen that the stress-strain curve displays 

unusual behaviour in which strain softening occurred almost immediately after 

yielding with no evidence of strain hardening. This phenomenon is due to sample 

necking which takes place immediately after yielding. This behaviour is termed as 

tension instability and the cold rolling process might be the reason for this. Table 1 

shows the mechanical properties of the mild steel material derived from the true 

stress-strain curve and used in the FE modelling. The yield stress is validated 

according to DIN standards, which state that the yield stress of this material is within 

the range of 450–525MPa [10, 11].  



2.2 Finite element modelling 

2.2.1 FE model  

An implicit finite element code, ANSYS [24], was employed for creating the FE 

models of thin-walled circular tubes under quasi-static lateral loading. Since the 

loading type was quasi-static where the loading rate was slow and there were no 

dynamic effects, the implicit code (ANSYS) was considered appropriate choice to 

model both material and geometric non-linearities of the circular tube under quasi-

static lateral loading. Many researchers [10, 11] used ANSYS software packages to 

predict the quasi-static response of the energy absorption systems. A 3D-structural 

solid element (solid 45) that had eight nodes with large strain, large deflection, and 

plasticity capabilities was used to model the tubes. The moving mass were modelled 

as rigid body and constrained to move vertically along the y-axis. The base was also 

modelled as a rigid body with all rotations and translations being fixed. A bilinear 

isotropic hardening material model was employed to define the material behaviour of 

the samples. The Young modulus, Poisson’s ratio, and yield stress were determined 

depending on the results of tensile test as shown in Table 1. A non-zero value of 

1500 MPa was employed to represent the hardening modulus of this material. This 

value was selected due to limitation of ANSYS software in defining the softening 

stage in the bilinear material model, so the value was selected to be as low as 

possible. The same value of hardening modulus was used by [10, 11] to define the 

softening stage of the same material. An augmented Lagrangian penalty option with 

a friction coefficient value of 0.2 was employed for all contact pairs. This contact 

algorithm employs a non-linear surface to surface formulation to define contact 

between various interacting surfaces. All models were subjected to symmetry 



boundary conditions in order to reduce simulation solving times. Large strain 

deformation was included in the finite element model due to the test specimen 

experiencing significantly high displacement. The loads were defined by applying 

the predefined displacement on the pilot node, which was also used to gather the 

reaction force from each node. A mesh convergence study was performed to 

determine the mesh density. It was found that element size of 2 mm was able to 

produce a converged solution within a reasonable time. Figure 3 shows the finite 

element mesh of the half model of the circular tube. 

2.2.2 Validation of FE model 

The numerical results for the circular tubes were validated against the results of the 

experiments carried out by using Instron machine. The validation was performed by 

comparing the load-displacement response, energy-displacement response, crush 

load, specific energy absorbing capacity, and the collapse modes. A prescribed 

velocity of 10 mm/min was applied to the moving crosshead of the instrument during 

the experiment to ensure that there were no dynamic effects. Many researchers [10, 

11] used velocities between 0.5 and 15 mm/min in the quasi-static lateral 

compression tests. 

Figure 3 shows the comparison of the experimental and numerical force-deflection and 

energy-deflection responses for circular tube with an outer diameter of 101.6 mm, a 

thickness of 3.25 mm, and a width of 40 mm under quasi-static lateral loading. It can 

clearly be seen that the FE results were in reasonable agreement with the collapse 

load, followed by a slight over prediction in final stages of the collapse. This over-

prediction is due to the material stress-strain curve used in this study exhibiting an 

unusual ‘material’ strain softening phenomenon that is characterised by a negative 

slope. This material behaviour cannot be accounted for in the bilinear material 



prediction model since it requires that the data points generate a slope greater than 

zero. Therefore, it is possible that the finite element model’s ability to capture the 

‘material’ strain softening phenomenon with sufficient accuracy is limited. Table 2 

shows the comparison of experimental and predicted values of SEA and F. It can be 

seen that the percentage errors are within acceptable tolerances. From Table 2 and 

Figure 3, it is evident that a good correlation was achieved between the FE and 

experimental results. 

The deformation modes of a circular tube under quasi-static lateral loading predicted 

by the FE code was in close correlation with that from the experimental testing, as 

shown in Figure 4. In general, the collapse mode of thin-walled tube under quasi-

static lateral loading is plastic bending around plastic hinges.  

3 Response surface models  

In this section, Response surface methodology (RSM) for design of experiments 

(DOE) was used in parallel with the finite element modelling (FEM) to construct the 

response surface (RS) models. These models relate the energy absorption responses 

to the geometrical parameters. The RS models are useful formulation which can 

provide an initial prediction of the energy absorption responses for the thin walled 

tubes of given dimensions and also can be used to indicate which parameter has the 

most influence on the energy absorption responses. Furthermore, the RS models can 

be used for structural optimization after verifying their accuracy as will be shown in 

section  5. Figure 5 displays the flow chart which explains the steps for constructing 

the RS models. 



3.1 Sampling design points  

An experimental design was created based on a three level Box–Behnken design 

with full replication. The independent variables used in this design were as follows: 

tube width (W) ranged between 10 and 60 mm, tube outer diameter (D) between 80 

and 130 mm, and tube thickness (t) between 2.5 and 6 mm. Table 3 shows the 

geometrical variables and experimental design values used. The dimensions were 

chosen to cover the typical range of tube sizes commonly used in crashworthiness 

applications. The specific energy absorbed (SEA) and collapse load (F) were 

selected as the design responses. Detailed FE models were created for the circular 

tubes representing the sampling design points. Numerical simulations were 

performed for the different combinations of independent variables determined 

through design of experiment (DOE). The energy absorption responses (SEA and F) 

were measured for each combination of geometrical factors. The SEA responses for 

all models have been calculated up to 70% of the circular tube diameter. The 

different combinations of design variables with corresponding design responses are 

tabulated in Table 4. 

3.2 Development of Response Surface (RS) models 

Statistical software, Design-Expert V8 [25], was used to apply Response Surface 

Methodology (RSM) on the results of the numerical model described and validated 

earlier in section 2.2. A step-wise regression method was used to fit the polynomial 

equation (RS model) to the numerical results and to identify the relevant model 

terms. This method (step-wise regression method) is recommended due to it 

eliminates the insignificant model terms automatically from the polynomial equation. 

The statistical significance of the developed models and each term in the regression 



equation were inspected using statistical measure to achieve the best fit. From 

analysing the measured responses by the Design-expert software, the summary 

output of best fit indicates that linear and quadratic models are statistically 

recommended for the specific energy absorption (SEA) and collapse load (F) 

respectively. The Analysis of variance (ANOVA) methodology was employed by the 

software to check the adequacy of the developed models. The ANOVA table 

summarise the analysis of variance for response, and show the significant model 

terms and the adequacy measures. The adequacy measures are the probability 

(Model P-value), coefficient of determination R2, Adjusted R2, Predicted R2, and 

Adequate precision. Table 5 displays the analysis of variance (ANOVA) results 

generated by the Reduced Linear Model of the SEA response. The model F value of 

36.59 indicated that the model was significant.  A p-value of 0.0001 suggested that 

there was a low chance that the F value could occur due to noise in this model. The 

predicted R2 of 0.7463 is in reasonable agreement with the adjusted R2 of 0.8165. It 

can be seen that the predicted R-squared and the adjusted R-squared are within 0.20 

of each other, which harmonizes with what it is reported in [25]. The Adeq Precision 

value measures the signal to noise ratio and it should be greater than 4 as stated by [25]. 

In this model, the adequate precision was found to be 45.12 indicating an adequate 

signal. This means that this model can be used to navigate the design space. The 

analysis of variance indicated that the following terms are the most significant ones 

that were associated with the specific energy absorbed: 

The first order effect of thickness (t) and diameter (D).  

The final mathematical models in terms of actual factors as determined by the design 

expert software are shown in Table 5. The F values of the design variables shown in 



the ANOVA table (Table 5) can be used to indicate the order of the influence of the 

factors on the resultant SEA. It can be seen that the thickness (t) was the most 

influential factor with the highest F- value of 61.8. 

The resulting ANOVA table (Table 6) for the Quadratic Model of response F was 

constructed. The model F value of 7096.57 indicates that this model is significant. 

The p-value of 0.0001 suggests that there is only 0.01% chance that the F value 

could occur due to noise.  The "Pred R-Squared" of 0.9982 is in excellent agreement 

with the "Adj R-Squared" of 0.9997. High R
2
 values suggest that there is a 

statistically significance correlation between the factors and the response. The 

adequate precision ratio was found to be 311.457, which is significantly higher that 

the significance threshold level of 4. This means that the model had very little noise; 

therefore it can be used to navigate the design space. The ANOVA table shows p-

values less than 0.05 for all model terms. Such low p-values highlight the 

significance of these factors and their interactions. The most significant terms 

associated with collapse load (F) were as follow: 

1. The first order effect of tube diameter (D), tube thickness (t) and tube width (W). 

2. The second order effect of tube thickness (t), tube width (W), and tube diameter 

(D). 

3. The two level of interaction effects between the tube thickness and the tube width 

(t-w), the diameter and t (D-t), the diameter and width (D-W). Resulting F can be 

modelled by the final equation produced by the model given in Table 6. 

Order of factor influence on collapse load (F) can be established through comparing 

the F-values magnitudes (Table 6) as follows: B>A>C>BC>C
2
>AB>AC>A

2
>B

2
. 



3.3 Validation of RS models 

Figure 6 and Figure 7 show the relationship between the actual and predicted values 

of the specific energy absorbed and the collapse force, respectively. These figures 

indicate that the developed RS models are adequate, as the residuals in the prediction 

for each response are small since the residuals tend to be close to the diagonal line.  

Furthermore, to verify the adequacy of the RS models, a comparison between the 

numerical, experimental, and predicted responses has been performed. Using the 

point prediction option in the DOE software, the specific energy absorbed and the 

collapse load of the validation experiments were predicted using the previously 

developed models. Table 7 summarises the experimental condition, actual values, 

numerical values, predicted values, and the percentage error. It can be seen that all 

the percentage errors are within acceptable tolerances, thus indicating that the RS 

models were valid. 

4 Parametric study 

The essential design information for thin-walled tubes used as energy absorbing 

structures can be obtained through performing parametric study. To this end, the 

DOE results were employed to study the effects of geometrical parameters on the 

energy absorption responses of circular tubes. 

4.1 Effect of geometrical factors on SEA response  

The analysis of variance (ANOVA) (section 3.2) indicated that SEA depended 

mainly on the thickness and the diameter of the tube. The insignificant effect of the 

width on the SEA has been eliminated by the software package. 



 

Figure 8 shows the variation of the SEA with diameter and thickness. It is seen that 

the SEA decreases as the tube diameter increase. In spite of increasing the 

displacement stroke in the larger tubes, the SEA decreased in these tubes. This 

behaviour is probably due to the deformation mode of circular tube under lateral 

loading, which is plastic bending around plastic hinges. Because of the strain 

localization around the plastic hinges, the larger tubes have a smaller relative volume 

of material subjected to plastic deformation. In addition, the weight of larger tubes is 

more than that of smaller tubes. Consequently, the energy absorbed per unit mass 

(SEA) was less in the larger tubes. A similar effect of the tube diameter on the SEA 

of circular tubes was noticed by Gupta et al [8].  

Regarding the effect of tube thickness on the SEA, It can be seen from  

Figure 8 that the thickness had a significant effect on the SEA and the latter 

increased as the thickness increased. This trend is due to thicker tubes having more 

material available for plastic deformation. 

Finally, as it can be seen from  

Figure 8, the maximum SEA that could be obtained was with a tube with minimum 

diameter and maximum thickness. 

4.2 Effect of geometrical factors on F response  

The effect of tube diameter on crush force is shown in Figure 9 and Figure 10. It can 

be seen that the crush force decreased as the tube diameter increased. Increasing the 

tube diameter leads to a decrease in the stiffness of the tube structure, so larger tubes 

have lower reaction forces. This behaviour is due to smaller tubes have shorter 

moment arm from the point of load application to the horizontal hinge points. 



Therefore a greater magnitude of force was required to initiate the collapse in the 

smaller tubes. A similar phenomenon was observed by [7, 8]. It is clear from Figure 

9 and Figure 10 that the thinner and shorter tubes were less influenced by tube 

diameter as the crush force remained reasonably constant. From the same figures, it 

can be seen that the crush force increased with increasing thickness and width. The 

rate of increase of crush load with thickness and width, decreased with increasing 

tube diameter.  

Figure 11 presents the interaction effects of thickness and width on the crush force. 

The interaction effect occurs when the response is affected by the settings of two 

factors. It is obvious that the wall thickness had more influence on the crush force as 

the width increased. Therefore, the wall thickness was more effective for controlling 

the crush force of wider tubes. In general, the increase in the collapse load with 

increasing tube thickness and width is due to the greater amount of material across 

the section of the tube, which effectively increased the lateral stiffness of the tube 

and hence it required a greater load to initiate the collapse. Figure 12 shows the 

variation of F with thickness and width, indicating that a minimum crush force was 

obtained in the tubes that had a minimum width and thickness. 

5 Multi-objective optimization design (MOD)  

While the effect of various parameters on crashworthiness behaviour has been 

addressed in the previous section, it is still unknown how to design specific best 

designs for thin-walled circular tubes under the lateral loading. In general, as part of 

the analysis of energy absorbing components, the various responses being 

investigated need to be optimized. The single objective optimization approach which 

considers only one objective was used in lots of studies [26, 27]. This approach is 



not suitable for most of real-life applications which need to consider several 

objectives simultaneously [28]. So, it is more meaningful to address the design 

optimization of the energy absorbing structures within multiobjective optimization 

framework, which could provide more information on the interaction of the different 

crashworthiness criteria [29]. 

5.1 Description of the optimization problem 

As a general rule for the design of energy absorption structures, the structure should 

absorb as much energy as possible so the SEA was selected as the first objective and 

maximized. Meanwhile,theenergyabsorptionstructureshouldn’ttransmittoomuch

forcetotheotherpartsofthestructureandshouldn’tcausehighdecelerationsofthe

occupants in the structure, particularly at the beginning of the impact event where 

the velocity is too high. To this end, the collapse load (F) was taken as another 

objective and was minimized during the optimization study.  

Therefore, the MOD problem of circular tube under lateral loading can be 

formulated as follow: 

 {
𝑀𝑎𝑥𝑚𝑖𝑧𝑒 
𝑀𝑖𝑛𝑚𝑖𝑧𝑒
𝑠. 𝑡

𝑓1 = 𝑆𝐸𝐴(𝑥)
𝑓2 = 𝐹(𝑥)

𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢
 (1 5) 

 

Where x= (x1,x2 · · · xk) are the vector of k design variables of the cross-sectional 

geometry, x
L
=(x

L
1 , x

L
2 , · · · , x

L
k ) and x

U
=(x

U
1 , x

U
2 , · · · , x

U
k ) are respectively 

the lower and upper bounds of the design variables. 

Since the crash simulation requires high computational cost, the FE modelling 

cannot be used directly to solve the MOD problem which requires hundreds of 



performance evaluations. The surrogate models such as RS models are widely used 

in lieu of nonlinear FEA to solve the MOD problem for fast iteration.  

5.2 Desirability approach: 

Typically, multi-objective optimization problem as formulated in equation 1 can be 

solved by two methods. One is to investigate all the objectives independently and 

seeks for a set of optimal solutions (Generally known as the Pareto optimal solution).  

As an alternative, the second method incorporates the different objective functions 

into a single cost objective function in terms of a relative performance measure, for 

example, by using desirability approach (Geometrical average method), and results 

in a single solution for the optimization problem [20,30,32, and 33]. The second 

method (desirability approach) was employed in this study due to its simplicity, 

availability in the design-expert software, relatively low computational cost and fast 

convergence, and because it offers flexibility in weighting and can assign different 

importance values for individual responses.  

Solving multi-objective optimization problems using the desirability approach 

consists of a technique that combines multiple responses into a dimension-less 

measure of performance, called an overall desirability function. In particular, the 

desirability approach indicates the transforming of each estimated response, Yi, into 

a unit-less utility bounded by (0 < di < 1) called individual desirability, where a 

greater di value indicates that response value Yi is more desirable, i.e.: if di = 0 this 

means that the response is completely undesired, while di = 1 indicates a fully 

desired response [31]. 

The shape of the desirability function can be changed for each goal by the weight field 

“wti”. Weights are used to give added emphasis to the upper/lower bounds or to 



emphasize the target value. Weights could be ranged between 0.1 and 10; a weight 

greater than one gives more emphasis to the goal, while a weight less than one gives less 

emphasis to the goal. With a weight value of one, the values of di will vary between zero 

and one in a linear mode.  

The individual desirability function (di) for an objective function to be maximized can 

be written in a general form as: 

 

𝑑𝑖 =

{
 

 
0 , 𝑌𝑖 ≤ 𝐿𝑜𝑤𝑖

(
𝑌𝑖 − 𝐿𝑜𝑤𝑖

𝐻𝑖𝑔ℎ𝑖 − 𝐿𝑜𝑤𝑖
)
𝑤𝑡𝑖

, 𝐿𝑜𝑤𝑖 < 𝑌𝑖 < 𝐻𝑖𝑔ℎ𝑖

1 , 𝑌𝑖 ≥ 𝐻𝑖𝑔ℎ𝑖

    (2) 

 
For a minimum value as the required goal, the individual desirability can be defined by  

 

𝑑𝑖 =

{
 

 
1 , 𝑌𝐼 ≤ 𝐿𝑜𝑤𝑖

(
𝐻𝑖𝑔ℎ𝑖 − 𝑌𝑖
𝐻𝑖𝑔ℎ𝑖 − 𝐿𝑜𝑤𝑖

)
𝑤𝑡𝑖

, 𝐿𝑜𝑤𝑖 < 𝑌𝑖 < 𝐻𝑖𝑔ℎ𝑖

0 , 𝑌𝑖 ≥ 𝐻𝑖𝑔ℎ𝑖

 (3) 

Where Lowi represents the lower tolerance limit of the response, the Highi represents the 

upper tolerance limit of the response and the super index wti represents the weight 

factor. 

Once these individual di values are determined, they are combined into an overall 

desirability function D which is calculated as the geometric mean of the di values. In the 

overall desirability objective function (D), each response can be assigned an importance 

(r) relative to the other responses. Importance varies from the least important value of 

1(+), to the most important value of 5(+++++). 

 D = (∏𝑑𝑖
𝑟𝑖

𝑛

𝑖=1

)
1
𝑛 (4) 

 



Where n denotes the number of responses. 

In fact, the desirability approach changes multi-objective problem to a single 

objective problem by formulating a special objective function called as overall 

desirability function (D).  

5.3 Design optimization Results: 

In this paper, A multi-objective design was drawn up based on the RS models 

constructed in section Error! Reference source not found.. The multi-objectives 

design is aimed at achieving the maximum SEA and to minimize the value of the 

collapse load (F). 

Using the desirability approach, The MOD problem of the laterally crushed thin-

walled tubes can be formulated as 

{

𝑀𝑎𝑥𝑚𝑖𝑎𝑧𝑒 D = √dSEA × dF
𝑠. 𝑡. 80 mm ≤ D ≤ 130 mm

 
10 mm ≤ W ≤ 60 mm
2.5 mm ≤ t ≤ 6 mm

 (5) 

Where  

𝑑𝑆𝐸𝐴 = (
𝑆𝐸𝐴(𝐷,𝑊, 𝑡) − 𝑆𝐸𝐴𝐿

𝑆𝐸𝐴𝑈 − 𝑆𝐸𝐴𝐿
)𝑊1 (6) 

 

𝑑𝐹 = (1 −
𝐹(𝐷,𝑊, 𝑡) − 𝐹𝐿

𝐹𝑈 − 𝐹𝐿
)𝑊2 (7) 

Where 



SEA
U
, SEA

L
 and F

U
, F

L
 represent the upper and lower bounds on SEA and F 

respectively.  

W1, W2 are the weight factors for SEA and F respectively. 

Design-Expert software, which employs the desirability approach as an optimization 

algorithm, was used for solving the MOD problems. 

The values of diameter D, thickness t, and width W were set to vary in order to seek 

the optimal configuration of the tube. Equal importance was assigned for both 

objectives but a more emphasis was given to the SEA objective by specifying the 

maximum weight for it.  

The numerical optimization feature in the Design expert V8 software package 

searches for one or more points in the factors domain that will maximize the 

desirability function. 

The desirability objective function (D) vs design variables D and t is shown in Figure 

13. It can be seen that the overall desirability increases as the tube thickness increases 

and the tube diameter decreases. 

Table 8 shows the geometrical values which led to a maximum specific energy 

absorbing capacity while minimizing the crush force. It can be seen that the greatest 

desirability was offered by the tube with D=80 mm, t=6 mm, and W=10mm. 

Therefore, a multi-objective optimization tube design can be obtained if the tube has 

a minimum width, a minimum diameter, and a maximum thickness. In general, 

smaller, shorter, and thicker circular tubes are preferred for use as energy absorbing 

components. 

A numerical FE simulation was carried out to validate the optimized results obtained 

by the DOE. The comparisons between the predicted and the numerical results are 

presented in Table 9. It can be seen that the percentage error is within the acceptable 



range, therefore the optimized results are valid. The responses and with the various 

stages of deformation of the optimal configuration are displayed in Figure 14.  

6  Conclusion 

The Response Surface Method (RSM) for design of experiments (DOE) was used 

along with the finite element modelling (FEM) to explore the effects of the 

geometrical factors such as thickness (t), diameter (D), and width (W) on the energy 

absorption responses of laterally crushed circular tube. The specific energy 

absorption (SEA) and the collapse load (F) of the circular tube were modelled as 

functions of geometrical parameters. Based on the developed models of the SEA and 

F, the approach of multi-objective optimization design was applied to find the 

optimal configuration of the circular tube. As a practical implication, the main 

outcomes from the parametric and optimization studies for design purposes are 

drawn as follows. 

 The SEA of circular tubes under lateral loading increased with increasing 

thickness and decreasing diameter. The effect of tube width on SEA was 

found to be insignificant.  

 The crush force was found to be greater in the smaller tubes. Thinner and 

shorter circular tubes were less influenced by changing the tube diameter 

compared to longer and thicker tubes.   

 The tubes with smaller width (W) and diameter (D), and higher thickness are 

more suitable for use as energy absorbing components. The optimum 

configuration of the tubes was found to be those that have a minimum width 

and diameter, and maximum thickness. 
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Figure 1: (a) - The tensile test procedure, (b) - True stress–strain curves obtained 

from tensile tests. 

Figure 2: FE model of circular tube under quasi-static lateral loading. 

Figure 3: Comparison of FE & experimental results for a circular tube. 

Figure 4: Comparison of (a) the experimental and (b) the numerical deformation 

mode of circular tube under quasi-static lateral loading. 

Figure 5: Flow chart showing the steps of creating the RS models 

Figure 6: Scatter diagram of SEA. 

Figure 7: Scatter diagram of F. 

Figure 8: Variation of SEA with D & t. 

Figure 9: Interaction effects of D and t on F. 

Figure 10: Interaction effect D and W on F. 

Figure 11: Interaction effect of t and W on F. 

Figure 12: Variation of F with W and t. 

Figure 13: Surface of desirability objective function (D) vs. design variables. 

Figure 14: Responses and deformation history of the optimal configuration. 
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Figure 1: (a) - The tensile test procedure, (b) - True stress–strain curves obtained 

from tensile tests. 

 

 

  



Figure 2: FE model of circular tube under quasi-static lateral loading. 

 

 

 

  



Figure 3: Comparison of FE & experimental results for a circular tube. 
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Figure 4: Comparison of (a) the experimental and (b) the numerical deformation 

mode of circular tube under quasi-static lateral loading. 

 

 

  



 

Figure 5: Flow chart showing the steps of creating the RS models 
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Figure 6: Scatter diagram of SEA. 

 

 

  



Figure 7: Scatter diagram of F. 

 

  



 

Figure 8: Variation of SEA with D & t. 

 

 

  



Figure 9: Interaction effects of D and t on F. 

 

 

 

  



Figure 10: Interaction effect D and W on F. 

 

 

 

  



Figure 11: Interaction effect of t and W on F. 

 

 

 

  



 

Figure 12: Variation of F with W and t. 

 

 

 

  



Figure 13: Surface of desirability objective function (D) vs. design variables. 

 

  



Figure 14: Responses and deformation history of the optimal configuration. 
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Table 1: Material properties of empty and nested tubes 

 

Density 

(kg/m3) 

Young’s 

modulus (GPa) 

Poisson’s 

ratio 

Yield strength 

Rp0.2 (MPa) 

DIN 2393- ST 37.2 7861 200 0.3 470 

 

  



Table 2: Comparison of the FEA results with the Experimental results for a circular 

tube 

 SEA[J/kg] F crush[kN] 

Experimental 1761.15 6.8 

Numerical 1791 6.3 

Error 1.7% 7% 

 

  



Table 3: Independent variables and experimental design levels that were used.  

Geometry 

 

Variable code -1 0 1 

Diameter(mm) A 80 105 130 

Width(mm) B 10 35 60 

Thickness(mm) C 2.5 4.25 6 

 

  



Table 4: The design matrix. 

Exp no D(mm) W(mm) t(mm) SEA (J/kg) F (kN) 

1 105 4.25 35 2479.676 9 

2 105 4.25 35 2479.676 9 

3 130 2.5 35 983.6662 2.6 

4 105 4.25 35 2479.676 9 

5 105 4.25 35 2479.676 9 

6 105 2.5 10 1192.236 0.82 

7 80 4.25 60 3567.553 21 

8 130 4.25 10 3606.76 1.9 

9 105 6 60 3944.481 33 

10 130 6 35 2885.621 14 

11 105 6 10 3558.28 5.2 

12 80 2.5 35 1819.339 4 

13 80 4.25 10 3345.156 3.4 

14 130 4.25 60 1945.13 12 

15 80 6 35 5591.202 24 

16 105 4.25 35 2479.676 9 

17 105 2.5 60 1277.148 5 

 

  



Table 5: Analysis of variance (ANOVA) table for SEA – Reduced Linear Model  

Source Sum of Squares 

Squares 

Mean Square F Value p-value 

Prob > F Model 1683.86 841.93 36.59 < 0.0001 

A-Diameter 261.67 261.67 11.37 0.0046 

C-Thickness 1422.19 1422.19 61.80 < 0.0001 

Residual 322.16 23.01 
  

Cor Total 2006.02 
   

  
Final equation obtained from the mode for 

SEA R-Squared 
0.8394 Sqrt(SEA) 

 =+42.57734-0.22877*Diameter 

+7.61897* Thickness 

Adj R-Squared 
0.8165 

Pred R-

Squared 

0.7463 
Adeq Precision 

18.909 

 

  



Table 6: Analysis of variance (ANOVA) table for F–Quadratic model  

Source Sum of Squares Mean Square F-value p-value 

Model 26.68 2.96 7096.57 < 0.0001 

A-Diameter 1.22 1.22 2928.97 < 0.0001 

B-Width 12.28 12.28 29391.60 < 0.0001 

C-Thickness 11.57 11.57 27683.08 < 0.0001 

AB 0.15 0.15 354.57 < 0.0001 

AC 0.11 0.11 255.13 < 0.0001 

BC 1.14 1.14 2724.17 0.0015 

A
2
 8.317E-003 8.317E-003 19.91 0.0029 

B
2
 1.492E-003 1.492E-003 3.57 0.1007 

C
2
 0.22 0.22 520.21 < 0.0001 

Residual 2.925E-003 4.178E-004 
 

Cor Total 26.69 
 

 
Final equation obtained from the 

model for F R-Squared 
0.9999 Sqrt(F)= -0.70896-2.74166E-003*Diameter+ 

0.049148*Width+0.69084*Thickness 

-4.39871E-003*Diameter*Thickness 

+0.012192*Width*Thickness 

-2.61188E-004Diameter*Width 

+7.11119E-005*Diameter2 

-3.63515E-004*Width2 +6.14765E-003* Thick2 

Adj R-Squared 
0.9997 

Pred R-Squared 
0.9982 

Adeq Precision 
311.457 

 

 

  



Table 7: Confirmation experiment. 

D(mm) t (mm) w(mm) 
 

SEA (J/kg) F (kN) 

101.6 3.25 40 Experimental 1761.15 6.8 

   
Numerical 

(FEM) 

1791 6.3 

   
Error (%) 1.7% 0.60% 

   
Predicted (RSM) 1944.5 6.31 

   
Error (%) 8.5% 0.15% 

 

 

  



Table 8: Optimal solution as obtained by Design-Expert. 

Number Diameter 

(mm) 

Thickness 

(mm) 

Width 

(mm) 

SEA 

(J/kg) 

F (kN) Desirability 

1 80 6.00 10.00 4899 7.6149 0.402117 

 

  



Table 9: Confirmation experiment of optimal solution. 

 

SEA[J/kg] F[kN] 

Numerical 5300 7.6 

Predicted 4899 7.61 

Error 8% 0% 

 


