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Abstract

The objective of this thesis was to identify Scottish Blackface lambs that differed in their

resistance to gastrointestinal nematode (GIN) infection, characterise the host responses to

infection in resistant and susceptible lambs, and identify genes and biological processes

important for the difference in resistance status.

An animal selection model was developed that reliably identified Scottish Blackface lambs

that differed in resistance to GIN. After a controlled challenge with Teladorsagia circumcincta,

resistant (low faecal egg count; FEC) animals displayed consistently lower FEC throughout

the course of infection. This was largely a result of worm fecundity differences, with

resistant animals containing shorter, less fecund adult females. There was also a significant

correlation between the number of adult worms and FEC at slaughter. The anti-nematode

response was mediated, at least in part, by IgA, with resistant animals having significantly

higher levels of serum anti-nematode IgA throughout the infection. Taken together, these

results indicate lower FEC in resistant Scottish Blackface lambs is primarily a result of

reduced worm fecundity, although lower adult worm burden may also play a role.

Gene expression in the abomasal lymph node was examined at 7 and 14 days post infection.

A total of 194 and 144 genes were differentially expressed between resistant and susceptible

lambs at 7 and 14 dpi respectively. At 7 dpi resistant animals appear to be generating a

more effective immune response, whereas in susceptible animals this response is delayed

until ~14 days post infection.

The genes differentially expressed between resistant and susceptible animals were examined

for evidence of selective pressure. A number of genes showed evidence of Ovis lineage-

specific positive selection. Pathway analysis revealed that these genes were involved in

the inflammatory response, dermatological diseases and conditions, and connective tissue

disorders. This chapter represents the first large-scale comparative genomics study of

selective pressure placed on the sheep genome, in particular by gastrointestinal nematodes.

Association testing in the Scottish Blackface population was carried out using 57 markers

in 13 candidate genes and 1000 markers in 7 genomic regions. A number of suggestive

associations with FEC and weight traits were observed, however none were significant at

the genome-wide level. The results from this study support the use of a panel of SNPs

rather than individual SNPs for predicting nematode resistance, in agreement with the

complexity of this polygenic trait.
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Chapter 1

Gastrointestinal parasitism in sheep
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1.1 Overview

Infection with gastrointestinal nematodes (GIN), resulting in clinical disease and loss of

productivity, is one of the major constraints of ruminant production worldwide (Sutherland

and Scott, 2009). Current control strategies in both sheep and cattle rely heavily on the use

of anthelmintic treatment; in 2009 Irish farmers spent C24 million on internal parasite control

(www.apha.ie/about_markets.asp), while worldwide the annual expenditure on anthelmintic

treatment was over 3 billion $US (Jackson et al., 2009).

The increasing prevalence of anthelmintic resistance in sheep nematodes throughout the

world (Sargison, 2012), including Ireland (McMahon et al., 2013b; Good et al., 2012; Patten

et al., 2007), suggests that reliance on chemotherapy is unsustainable. Selective breeding

for host resistance is an alternative, sustainable method of nematode control. The most

commonly used indicator of host resistance is faecal egg count (FEC), which is moderately

heritable (h2 ~ 0.3), with a wide variability between individuals (Bishop and Morris, 2007;

Safari et al., 2005). Rapid genetic progress has been demonstrated in selective breeding

programmes using both experimental and commercial flocks (Morris et al., 2000, 2005;

Woolaston et al., 1991; Windon, 1990; Cummins et al., 1991; Greeff and Karlsson, 2006;

Morris et al., 1997). However, selection on FEC requires detailed trait measurement, which

is time-consuming, expensive and unappealing. Selecting resistant animals would be

simplified if animals could be selected by genotype; this could also accelerate genetic gain.

A detailed understanding of the genes and mechanisms involved in protective immunity

and the factors that regulate this response would aid future breeding strategies as well as

the development of other effective and sustainable nematode control methods, such as

immunomodulatory anthelmintics.

In Ireland, two lowland sheep breeds have been extensively studied with respect to

nematode resistance and it has been demonstrated that the Texel breed is more resistant

to nematode infection than the Suffolk breed (Hanrahan and Crowley, 1999; Sayers et al.,

2005a; Good et al., 2006; Sayers et al., 2008; Hassan et al., 2011a). However, there have

been no studies to date in Ireland on breeds that occupy hill and marginal land. Extensive

studies in Scotland have shown substantial genetic variation among Scottish Blackface

lambs in both FEC and in worm length (Stear et al., 1999b). This breed is commonly

found on hill country in Ireland, and is also an important source of crossbred ewes for the

lowland sheep sector. For these reasons the Scottish Blackface breed was the focus of this

study. The aim of work reported in this thesis was to identify genes and biological process

mediating the response to gastrointestinal nematodes, primarily Teladorsagia circumcincta,

in Scottish Blackface lambs.
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1.2 Gastrointestinal nematode control

1.2.1 Teladorsagia (Ostertagia) circumcincta

In temperate climates, such as Ireland, the economically important species of GIN in sheep

are Teladorsagia (Ostertagia), Trichostrongylus, Nematodirus and increasingly Haemonchus

contortus (Good et al., 2006; Burgess et al., 2012). In Ireland Teladorsagia circumcincta

and Nematodirus are the predominant species of GIN in sheep (Good et al., 2001), with

T. circumcincta impacting most negatively on sheep production (Good et al., 2006; Patten

et al., 2011). As such, T. circumcincta was the focus of this thesis and therefore this review.

1.2.1.1 Life cycle

The life cycle of T. circumcincta is similar to other GIN, such as Trichostrongylus and H.

contortus, and consists of both a free-living and a parasitic stage (Figure 1.1).

Figure 1.1: The typical life cycle of a sheep gastrointestinal nematode. Details may vary
between species. Figure used with kind permission from www.WormBoss.com.au
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In brief, under optimal conditions mature female worms in the gastrointestinal tract lay eggs,

which are passed out in the faeces and develop into infective third stage (L3) larvae on

pasture within two weeks. Free-living L3 are ingested by grazing sheep, and exsheath in the

rumen before entering the gastric glands of the abomasum and undergoing two subsequent

moults (Figure 1.2). Fifth stage (L5) larvae leave the abomasal gland approximately 10 days

post-infection and become sexually mature on the mucosal surface. Females produce eggs,

which are passed out in faeces, completing the life cycle (McNeilly et al., 2009). The entire

life cycle usually takes approximately 4 to 5 weeks, although this dependant on temperature

and immune status of the host. Eggs can be produced as quickly as 14 days after larval

ingestion in naïve animals, but resistant hosts are able to delay larval maturation for at least

a further 8 weeks (Stear et al., 1995c).

The optimal temperature range for the development of T. circumcincta eggs through to the

infective L3 stage ranges between 16 °C and 30 °C (O’Connor et al., 2006). Development

can occur at temperatures as low as 4 °C (Crofton, 1965), although it is greatly reduced

when daily air temperature falls below 10 °C (Reynecke et al., 2011). Once at the L3

stage the larvae can over-winter on pasture and still remain infective (Vlassoff, 1973;

Kerboeuf, 1985; O’Connor et al., 2006; Southcott et al., 1976). Once ingested, if conditions

are unfavourable, early L4 can enter the abomasal mucosa (Figure 1.2) and undergo

arrested development for up to 6 months in a process known as hypobiosis (Taylor et al.,

2007). Hypobiosis primarily occurs when there is insufficient water in the environment or

temperatures are too cold for larval development and survival (Miller and Horohov, 2006).

    Incoming          Developing            Emerging          Mature adults
    3rd stage           4th stage        4th or 5th stage         on surface

0-2 days            3-7 days      7-10 days         18-80 days approx.

Figure 1.2: The parasitic phases of Teladorsagia circumcincta in the mucosa of the
abomasum. Hypobiosis (arrested development) can occur at the early 4th stage sometime after
the moult. Figure used with kind permission from Smith (1988).
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1.2.1.2 Pathogenesis

Pathogenesis in young susceptible lambs following infection with T. circumcincta is reasonably

well understood (Armour et al., 1966; Coop et al., 1982, 1985; Stear et al., 2003). Under

normal conditions, pepsinogen is secreted into the lumen of the abomasum by chief cells,

and is activated to pepsin by hydrochloric acid (HCl), which is released from parietal cells in

the stomach lining. However, as mature parasites emerge from the gastric glands there

is considerable damage to the abomasal mucosa. The parasites also release molecules

that trigger mast cell degranulation, which results in the destruction of junctions between

epithelial cells (McKellar, 1993). Therefore, infective GIN larvae damage the parietal cells,

leading to a decline in HCl production and a subsequent failure of pepsinogen to convert to

pepsin, resulting in increased pepsinogen passing into the circulatory system, and reduced

protein digestion (Lawton et al., 1996; McKellar, 1993). Plasma pepsinogen levels can

therefore be used as an indicator of the severity of infection (Lawton et al., 1996; Stear

et al., 1999a).

After natural or experimental T. circumcincta infection there is a parasite-induced protein

deficiency in the host which has multiple causes; a decrease in digestive efficiency, as

outlined above, a reduction in voluntary feed intake (Coop et al., 1982; Sykes and Poppi,

1986; Coop and Kyriazakis, 1999), protein leakage through abomasal damage, and the

utilisation of proteins for the immune response (Stear et al., 1997). Consequently, infection

with T. circumcincta reduces growth rate in young lambs (Coop et al., 1982; Bishop et al.,

1996; Bouix et al., 1998; Bishop and Stear, 2000a, 2001). The consequences of a high worm

burden can be long-lasting, as mucosal damage can result in reduced growth rates despite

clearance of infection through anthelmintic treatment (Coop et al., 1982, 1985). It has

also been observed that the nutritional status of the host during infection is important, with

the provision of additional protein to growing sheep during infection resulting in enhanced

immunity to GIN (Brunsdon, 1964; Coop et al., 1995; Van Houtert and Sykes, 1996).

Resistance to GIN is acquired, with a significant protective immune capability developed

by 10 to 12 months of age (Abbott et al., 2009; Vlassoff et al., 2001; Brunsdon, 1970).

However a relaxation in host immunity to GIN is observed in ewes during the periparturient

period in spring, from ~2 weeks before lambing to ~6 weeks post lambing (Taylor et al.,

2007). The subsequent increase in faecal egg count (FEC) is known as the periparturient

rise (PPR), and the adult nematodes that develop from hypobiotic larvae in the ewes are

an important cause of pasture contamination (Abbott et al., 2009). This, combined with

eggs from lambs that have ingested overwintered larvae, results in the number of L3 on

pasture increasing markedly from mid-summer onwards. In temperate regions such as

Europe, clinical outbreaks analogous to type I bovine ostertagiosis can occur from August

to October (Taylor et al., 2007). If L3 are ingested prior to October the majority of larvae will

mature; thereafter larvae may undergo hypobiosis, and resumption of development in the

spring can cause clinical disease similar to type II bovine ostertagiosis in yearling sheep
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(Taylor et al., 2007).

1.2.2 Anthelmintic drenches

Since the development of the benzimidazoles (1-BZ) in the 1960s (Brown et al., 1961)

gastrointestinal nematode control in intensive grazing systems has relied heavily on the use

of such broad spectrum anthelmintic treatments (Kettle et al., 1981, 1982; McMahon et al.,

2013a; Morgan et al., 2012; Patten et al., 2011). With the recent introduction of amino-

acetonitrile derivatives (4-AD) and spiroindoles (5-SI) to the market, there are now five

classes of anthelmintic available for gastrointestinal nematode control in sheep (Table 1.1).

Table 1.1: Broad spectrum anthelmintic classes used in the control of gastrointestinal
nematodes in sheep. 1 Year released may vary from country to country. 2 First documented case
of resistance - there may be earlier published reports of suspected resistance and/or unpublished
reports of resistance. Adapted from Kaplan, 2004.

Name Reference Release 1 Resistance first reported 2

Benzimidazoles (BZ) Brown et al. (1961) 1961 Conway (1964)

Imidazothiazoles (LV) Kates et al. (1971) 1970 Sangster et al. (1979)

Macrocyclic lactones (ML) Chabala et al. (1980) 1981 Malan (1988)

Amino acetonitrile derivatives (AD) Kaminsky et al. (2008) 2009 Scott et al. (2013)

Spiroindoles (SI) Little et al. (2010) 2010 -

Since the initial detection of resistance to BZ in 1964, anthelmintic resistance (AR) has been

reported worldwide for most chemical classes of anthelmintic (Table 1.1). Most recently a

lack of efficacy of monepantel (4-AD) has been reported, only 4 years after the product

was released to market in New Zealand, and less than 2 years after the product was first

used on the farm in question (Scott et al., 2013). The only spiroindole currently on the

market is Startect® (Zoetis), which combines derquantel (5-SI) and abamectin (3-ML). The

combination of two classes of anthelmintic was required as derquantel alone was less than

95% effective against T. circumcincta adults and larvae, and H. contortus L4 (Little et al.,

2010).

Combination anthelmintics are widely used in New Zealand and Australia (Bartram et al.,

2012). Their use, however, is contentious (Coles and Roush, 1992; van, 2001), and has

been restricted in the European Union until the release of Startect® (Zoetis) to the market

in 2012 (Irish Medicines Board licence number: 10019/191/001). Proponents of the use

of combination anthelmintics cite two main justifications: (1) to control gastrointestinal

nematodes that have developed resistance to one or more classes of anthelmintics, and (2)

to slow the development of resistance (Leathwick et al., 2009). Modelling studies support

the use of combination anthelmintics to slow the development of resistance (Smith, 1990;

Barnes et al., 1995; Dobson et al., 2011; Leathwick, 2012). This is supported by evidence

from study by Leathwick et al. (2012), in which the development of anthelmintic resistance

was slowed through the use of a combination anthelmintic on 90% of lambs, while leaving
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10% of lambs untreated (to maintain refugia). Combination anthelmintics have also been

shown to be effective against single-class AR populations of gastrointestinal nematodes

(McKenna, 1990; Anderson et al., 1991b,a). Concerns over the use of combinations include

the potential to select for resistance to multiple classes at the same time, and indeed

resistance to dual- and triple-combination anthelmintics has been reported in New Zealand

(Sargison et al., 2007; Waghorn et al., 2006; Wrigley et al., 2006; Sutherland et al., 2008).

While anthelmintic combinations can play an important role in resistance management, they

must be used in conjunction with other strategies, such as those set out in the Sustainable

Control of Parasites in Sheep (SCOPS) manual (Abbott et al., 2009), to reduce anthelmintic

use and delay the development of resistance (Bartram et al., 2012).

1.2.3 Alternative methods for GIN control

In the face of increasing anthelmintic resistance, new strategies for GIN control are called

for (Vlassoff and McKenna, 1994). Alternatives to anthelmintic treatment are reviewed

in Sayers and Sweeney (2005) and include bioactive forages, nutritional boost, grazing

management, vaccines, micro-predacious fungi, and selection of resistant animals. These

are briefly reviewed below.

Bioactive forages

Plant-based options of GIN control include the use of bioactive forages such as chicory

(reviewed in Sutherland and Scott, 2009). Studies have shown that the use of chicory

can result in reduced worm burden, increased weight gain, and reduced faecal egg count

(FEC) (reviewed in Rattray, 2003). Bioactive forages such as chicory contain anti-parasitic

condensed tannins (CT). These tannins protect dietary protein from rumen degradation,

and have been shown to affect both free-living larval and adult gastrointestinal nematodes

in vitro (Athanasiadou et al., 2001; Molan et al., 2002; Paolini et al., 2004). The observed

anthelmintic activity of tannins has been hypothesised to be attributable to the capacity of

tannins to bind protein (Athanasiadou et al., 2001). Aside from binding free protein and

thus reducing larval nutrient availability, condensed tannins ingested by larvae may bind to

the intestinal mucosa and cause autolysis. Alternatively, condensed tannins may bind the

cuticle of the larvae, resulting in their death. The advantage of bioactive forages may also

be in their high nutritive value and palatability, with an increase in protein ingestion resulting

in increased immunity to GIN (Sutherland and Scott, 2009).

Nutritional boost

The link between the nutritional status of the host and GIN parasitism in sheep is well

established (Sutherland and Scott, 2009). Protein loss due to gut damage leads to
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a reduction in live weight gain, wool growth and milk production (Rattray, 2003). The

Sustainable Control of Parasites in Sheep (SCOPS) manual (Abbott et al., 2009) suggests

that using body condition scoring to determine the need to administer anthelmintics to

mature ewes should be an integral part of a strategy to manage anthelmintic resistance. The

provision of additional protein improves the development and maintenance of the immune

response in both young lambs and in lactating ewes (Sykes and Coop, 2001).

Grazing management

Alternative grazing of pasture by sheep and cattle has been shown to be an effective method

of parasite control, as there are very few species of parasite that infect both sheep and

cattle (Bisset & Vlassoff, 1991). Once a pasture has been contaminated by sheep parasites,

subsequent grazing by cattle results in both the ingestion of infective larvae and the opening

up of the sward, which leads to desiccation of larvae (Rattray, 2003). Additionally, the delay

in returning sheep to the paddock results in increased natural larval mortality and lower

pasture burdens. This method of reducing GIN pasture contamination is only practical

however in mixed farming systems.

Vaccines

Vaccination has been an effective method for control of many diseases of sheep, however

there are currently no vaccines conferring protection against GIN on the market. Ideally a

vaccine would be effective against multiple species of GIN, however there are a diverse

range of effector mechanisms which operate against individual GIN species and their

developmental stages (Shaw et al., 2013; Kemper et al., 2010; Li et al., 2012).

Recent trials at the Moredun Research Institute in Scotland have shown it is possible to

successfully immunise sheep against H. contortus (Smith, 2014). “Barbervax” is currently

being licensed in Australia, where trials indicate a reduction of FEC by 80% although

repeated vaccination was required for sustained protective immunity (Smith, 2014).

Micro-predacious fungi

A number of organisms have been identified that use the free-living stages of parasites as a

food source, including microarthropods, protozoa, viruses, bacteria and fungi. While there

is great interest in nematode-destroying fungi, at present the biggest challenge is survival

of spores through the gastrointestinal tract (Waller and Faedo, 1996). Nematophagous

fungi can be divided into two groups; predacious and endoparasitic. Predacious fungi

trap and kill the larvae, whereas endoparasitic fungi infect larvae by producing spore that

either attach to the outside of the nematode or are ingested by the larvae (Larsen, 2000).

Permanent sheep pasture is a good source of nematophagous fungi, and nematophagous
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fungi including Duddingtonia flagrans have been detected in fresh faecal samples from Irish

sheep, indicating they may have survived the gastrointestinal tract and therefore a viable

option as a biological control agent (Kelly et al., 2009).

1.2.4 Selection of resistant animals

Breeding animals that are less reliant on anthelmintic drenches for control of GIN infection

is a viable alternative method of disease management (Vlassoff and McKenna, 1994),

particularly with the growing need to reduce drug usage in livestock (Morris, 2002). Selecting

animals for increased resistance to GIN results in the host having fewer worms. Aside from

the obvious health benefits of a lower worm burden, this also has the follow-on effect of

reduced GIN egg output and therefore reduced pasture contamination. The combination of

reduced pasture contamination and enhanced genetic resistance lowers the requirement

for anthelmintic use (Bishop and Stear, 1999). Additionally, the GIN population in a flock

is usually overdispersed, with a few animals harbouring the majority of the worms (Stear

et al., 2009). If the few heavily infected hosts can be identified and removed from the flock,

this would have a large effect on pasture contamination.

The remainder of this literature review will discuss the complexity of the host immune

response, and thus the challenge of breeding sheep for resistance to GIN (primarily

Trichostrongyles). The various phenotypic and genotypic markers currently available will

also be discussed, along with the current efforts to identify genes associated with GIN

resistance.
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1.3 The host immune response

Manifestations of immunity

The development of immunity to GIN is complex and highly variable. Sheep are born naïve,

and immune competence is not acquired until at least 4 months of age. Onset of immunity

varies depending on the breed of sheep and the nematode species to which they are

exposed (Sutherland and Scott, 2009). While lambs rapidly develop the ability to control

GIN such as Nematodirus battus (Taylor et al., 2007), resistance to other species, such as

T. circumcincta, is much slower to develop. Lambs start to demonstrate immunity from 4 to

5 months of age, with regular exposure to larval challenge allowing the immune response to

develop until a significant protective immune capability is developed by 10 to 12 months of

age (Abbott et al., 2009; Vlassoff et al., 2001; Brunsdon, 1970). Immune competence can

be observed through suppressed parasite growth (and therefore fecundity), the expulsion of

adult worm burden, the prevention of establishment of most incoming infective larvae, or

a mixture of the three (Seaton et al., 1989; Stear et al., 1995b, 1996; Abbott et al., 2009).

Adult sheep tend to remain relatively resistant to infection, harbouring only a few adult

worms (Taylor et al., 2007), although regular exposure to some level of infection is required

to retain immunity (Vlassoff et al., 2001). Nutritional stress, ill-health and pregnancy can all

also influence an individual’s immune status (Miller and Horohov, 2006).

1.3.1 The innate immune response

The immune system in vertebrates is made up of two parts, the innate (or non-specific)

immune response and the adaptive (specific) response, the various cellular and chemical

components of which work together to protect vertebrates from a range of threats. The first

line of defence against parasites is the innate immune system, which plays a role in sensing

parasites, then initiating and driving the acquired immune response (Anthony et al., 2007).

Of particular relevance to GIN are innate physical barriers to the establishment and survival

of parasites, and subsequently the process by which the host recognises the presence of

GIN and activates a response.

1.3.1.1 Physical barriers to the establishment and survival of parasites

The surface of the gastrointestinal tract is covered with a layer of mucus, primarily produced

by epithelial goblet cells (Anthony et al., 2007). This the front line of the innate defence

against ingested food and pathogens in the gastrointestinal tract. The primary component

of mucus is mucin, however it also contains an array of bioactive molecules. Many of these

bioactive molecules have been shown to be anti-microbial, or to stimulate inflammation

(Sutherland and Scott, 2009). Both increased mucus production and the presence of
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inhibitory substances in the mucus have consistently been observed during the development

of immunity to GIN (Balic et al., 2000b)

Smooth muscle function has also been shown to play an important role in mediating parasite

resistance in mice (Vallance et al., 1997), yet its role in GIN expulsion in sheep is not clear.

An up-regulation of genes related to the structure and function of the enteric smooth muscle

was observed in lambs selected for resistance to GIN when compared to their susceptible

counterparts (Diez-Tascon et al., 2005), however contradictory results were observed in

sheep duodenal smooth muscle in response to T. circumcincta infection (Hassan et al.,

2011a), with the susceptible lambs showing greater duodenal contractile force compared to

resistant lambs.

1.3.1.2 Pattern recognition receptors (PRRs)

Among the earliest systems for the detection of pathogens are pattern recognition receptors

(PRRs) such as C-type lectin receptors (CLRs) and toll-like receptors (TLRs). CLRs

and TLRs are expressed by most cell types, including the cells of mucosal surfaces and

immune cells such as antigen presenting cells (APCs), macrophages and dendritic cells

(Geijtenbeek and Gringhuis, 2009; Glass, 2012). PRR proteins identify both pathogen-

associated molecular patterns (PAMPs; pathogen molecular structures not found in the host),

and damage associated molecular patterns (DAMPs; molecules released from damaged or

stressed cells). Both PAMPs and DAMPs can result in the initiation and perpetuation of the

inflammatory response. As well as being the first line of defence, PRRs play an important

role in activating and manipulating the adaptive immune system (Hansen et al., 2011).

While viruses, bacteria and fungi are known to contain potent PAMPs, less is known about

the role of PRRs in the response to nematode infection (de Veer et al., 2007). There is

contrasting data on the importance of TLRs in nematode resistance, however CLRs are

prime candidates for innate recognition of surface carbohydrate present on nematodes

(reviewed in de Veer et al., 2007). The mannose receptor (a CLR) has been shown to

bind to excretory/secretory proteins of the mouse nematode Trichuris muris, but was not

essential for protective immunity (deSchoolmeester et al., 2009). In sheep, PRRs that

detect non-host carbohydrates from the various moult stages of GIN, in addition to other

signals such as tissue damage, are prime candidates for altering the host innate immune

system to parasite invasion.

1.3.1.3 Innate effector cells

The mechanisms involved in innate and acquired immunity are not mutually exclusive,

however innate immune defences are not pathogen-specific, and thus respond to different

species in a generic way. In particular, an increase in the numbers of both eosinophils and

mast cells are characteristic of infection with nematode parasites (de Veer et al., 2007).
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Eosinophils

Eosinophils develop in the bone marrow from haematopoietic stem cells (Mori et al., 2009),

and following infection proliferate in the blood in a process known as eosinophilia. In

response to certain leukotrienes and CC family chemokines mature eosinophils migrate

to the site of infection, where they are activated by TH2 cytokines (Figure 1.5). Unlike

mast cells, which appear uniformly scattered in tissue, eosinophils can show directional

migration toward a parasite target (Balic et al., 2000b). Following activation, the effector

functions of eosinophils include healing damaged tissue, immune regulation and resistance

to parasitic invasion through degranulation and the release of eosinophil secondary granule

proteins (EPGPs). This results in the damage and killing of infective larval stages of most

helminth parasites (Meeusen and Balic, 2000; Balic et al., 2006; Rainbird et al., 1998).

Along with mast cells, eosinophils also control mechanisms associated with allergy and

asthma (Murphy et al., 2008).

Eosinophils have been shown to play a significant role in resistance to multiple species of

GIN in sheep (Buddle et al., 1992; Henderson and Stear, 2006; Kanobana et al., 2002;

Smith et al., 1983; Balic et al., 2006). A reduction in peripheral blood eosinophilia has been

observed during primary infection with T. circumcincta (Sutherland et al., 1999), which was

hypothesised by Sutherland and Scott (2009) to be a result of recruitment of cells into the

intestinal epithelium. However the relationship between peripheral blood eosinophilia and

tissue eosinophilia is reasonably weak, with only a proportion of eosinophils moving into

the abomasal mucosa (Henderson and Stear, 2006). Increases in tissue eosinophils have

been observed during Haemonchus contortus infection of both naïve (Balic et al., 2000a)

and previously sensitised (Balic et al., 2002, 2006) sheep, along with resistance in Romney

selection line animals with a naturally acquired mixed infection (Bisset et al., 1996).

Mast cells

Although best known for their role in the allergic response, increased numbers of mast

cells are often observed during helminth infection (Anthony et al., 2007). Mast cells are

connective tissue-based inflammatory cells (Murphy et al., 2008) that can both respond

directly to pathogens and send signals to other tissues to modulate both the innate and

adaptive immune responses (Urb and Sheppard, 2012). Two subsets of mast cells have

been described based on their location: connective tissue mast cells (CTMCs) and mucosal

mast cells (MMCs) (Voehringer, 2013). Activation of mast cells occurs primarily through

antigen induced stimulation of the high-affinity immunoglobulin E (IgE) receptor (FcεRIs)

expressed at the mast-cell surface (reviewed in Gilfillan and Tkaczyk, 2006). Mast cells

can also be activated by directly interacting with pathogen-associated molecular patterns

(PAMPs) through pattern recognition receptors (PRRs), including the Toll-like receptors

(TLRs) (Urb and Sheppard, 2012). Mast cells store a number of inflammatory mediators

(including histamine, leukotrienes and cytokines) that are released upon degranulation into
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the surrounding tissues (reviewed in Abraham and St John, 2010; Dawicki and Marshall,

2007). The effects of these chemical mediators are characteristic of type 1 hypersensitivity,

and include smooth muscle contraction, increased vascular permeability and local blood

flow, and enhanced mucus secretion (reviewed in Balic et al., 2000b). Finally, chemotactic

factors produced by mast cells can contribute to the recruitment of multiple inflammatory

cells including eosinophils, natural killer (NK) cells, and neutrophils (Urb and Sheppard,

2012).

In sheep, nematode-induced activation of mast cells primarily associated with the acquired

immune response (Balic et al., 2000b). The major mechanism controlling the number of

adult T. circumcincta in previously sensitised animals appears to be IgE-dependent mast cell

degranulation (Stear et al., 1995b)), with sheep mast cell proteinase systemically released

during nematode infections (Huntley et al., 1987). Mast cell activation and degranulation

can also be triggered by non-specific stimuli as part of the innate immune response through

products of complement activation (Balic et al., 2000b).

Macrophages

Macrophages play a critical role in innate immunity, but also help initiate acquired immunity

through the recruitment of other cells, such as lymphocytes (Murphy et al., 2008). M1

(classically activated) macrophages are activated through TLRs and interferon-γ, whereas

M2 (alternatively activated) macrophages are stimulated by interleukin-4 (IL-4) or IL-13.

Some of the molecular M2 macrophage signatures have been shown to differ between

mice and humans (Martinez et al., 2013), however to date no studies have looked at the

markers of macrophage subsets in sheep. M2 macrophages have three main functions

during helminth infection: regulation of the immune response, healing of damaged tissue,

and resistance to parasite invasion (Anthony et al., 2007). During a TH2-type response

M2 macrophages express Chitinase and FIZZ family member proteins (ChaFFs) (reviewed

in Anthony et al., 2007). Chitinases degrade chitin, a molecule present in the exoskeletal

elements of some animals, including helminth larvae (Fuhrman and Piessens, 1985). These

proteins are therefore prime candidates for mediating host resistance to gastrointestinal

nematodes (Nair et al., 2005).

1.3.2 The adaptive immune response

The major cellular components of the adaptive immune response are T and B cells

(lymphocytes). T cells are involved in cell-mediated immunity, whereas B cells are involved

in the humoral (antibody-mediated) immune response. The principal function of B cells is

to make antibodies (immunoglobulins) against antigens (Murphy et al., 2008). Once the

antigen has bound to the B-cell receptor, the lymphocyte will proliferate and differentiate

into plasma cells, that secrete large amounts of antibodies.
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Antigen processing and presentation

Thymus-derived T cells play a central role in the cell-mediated immune response. T cells

are differentiated from other lymphocytes by the presence of a T cell receptor (TCR) on the

cell surface. There are several types of T cell, including cytotoxic, helper and regulatory

T cells. Cytotoxic T (TC) cells kill cells that are infected with viruses or other intracellular

pathogens. They are also known as CD8+ T cells as they express the CD8 glycoprotein at

their surface. Helper T (TH) cells express the surface protein CD4, and provide essential

additional signals to activate maturation of B cells, TC cells, and macrophages. Regulatory

T (Treg) cells suppress the activity of other lymphocytes, and are critical for the maintenance

of immunological tolerance.

Parasite antigens are trapped and processed by antigen presenting cells (APC), which

present the antigen to their cognate TCR via MHC class I or II carrier molecules. APCs

include dendritic cells, macrophages, and B cells, although most cells in the body can

present antigen via MHC class I molecules (Murphy et al., 2008). CD8+ and CD4+ T cells

bind MHC class I and MHC class II molecules respectively. The activation of the naïve TH

cell results in the release of cytokines, leading to T cell differentiation. The effector cells

described below are regulated by the cytokine environment, generated by antigen activated

T cells (Figure 1.3).
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Figure 1.3: T helper and regulatory cells. Naive CD4+ T cells can differentiate into several types
of effector and regulatory cells during nematode infection. Specific cytokines and transcription
factors contribute to differentiation, which plays a major role in determining whether the associated
immune response will contribute to host protection or pathological inflammation. Figure used with
kind permission from Anthony et al. (2007).

A significant number of activated antigen-specific B cells and T cells persist after an antigen

has been eliminated, and these are known as memory cells. These cells form the basis of

immunological memory and can be reactivated much more quickly than naïve lymphocytes,

and usually provide lasting protective immunity (Murphy et al., 2008)

The TH1 response

The TH1 response has been traditionally associated with the immune response to intracellular

bacteria and protozoa. The TH1 cascade is triggered by the production of IL-12. It is primarily

characterised by the expression of the inflammatory cytokine interferon-gamma (IFN-γ),

which stimulates the production of IL-12 via a positive feedback loop. IFN-γ also inhibits the

production of IL-4, while stimulating production of lymphotoxin (LT)-α (previously known as

TNFß). The effector molecules of the TH1 response are specialised to stimulate proliferation

of CD8+ (cytotoxic/killer) T cells and activate macrophages.
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The TH2-type response

The protective T helper 2 (TH2)-type response, elicited by helminth parasites as well as

many allergic reactions, includes both innate and adaptive components (Anthony et al.,

2007). Common features include expression of TH2-type cytokines (IL-4, IL-5 and IL-13),

eosinophils, basophils, mast cells (all of which can produce several types of TH2-type

cytokines) and IgE production (Figure 1.4).

Figure 1.4: TH2-cell functions during helminth infection. TH2-cells orchestrate the immune
response primarily through the production of cytokines. Figure used with kind permission from
Anthony et al. (2007).

Interleukin-4 (IL-4) induces differentiation of naïve TH cells to TH2 cells, while suppressing

differentiation into TH1 cells. Upon activation, TH2 cells produce additional IL-4 in a positive

feedback loop, along with other TH2 cytokines including IL-5, IL-9, IL-13 and IL-21 (Anthony

et al., 2007). IL-4, along with the closely related IL-13, induces class switching in activated

B cells, leading to production of IgE (Figure 1.4). The antibody IgE primes the IgE-mediated

type 1 hypersensitivity response by binding to Fc (FcεRI and II) receptors on the surface

of mast cells and basophils. When helminth antigen binds to cell bound IgE it leads to

mast cell degranulation, and further production of IL-4 and IL-13 by basophils. Together

the two cytokines also promote increased contractility of smooth muscle cells, increased

permeability of epithelial cells, and elevated goblet-cell mucous secretion (Figure 1.4). The

presence of IL-4 in extravascular tissue induces alternative activation of resident tissue

macrophages, which function in wound healing and tissue repair, as mentioned above.
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The TH2 cytokine IL-13 induces epithelial cell repair and mucus production, and together

with IL-9 recruits and activates mucosal mast cells (MMC). IL-5, aside from triggering

eosinophilia, enhances secretion of IgA by B cells (Harriman et al., 1988). IgA, as discussed

below, plays an important role in control of GIN in sheep (Lee et al., 2011b).

The TH17 response

TH17 cells promote acute inflammation through the recruitment of neutrophils to the site

of infection. Early in infection IL-6, produced by dendritic cells, acts with TGF-β (also

required for the differentiation of Treg cells) to produce the TH17 response (Murphy et al.,

2008). This results in the production of IL-17 family members and IL-21, a subset of

cytokines particularly important in clearing pathogens during host defence responses and

in inducing tissue inflammation in autoimmune disease (Korn et al., 2009). Later, dendritic

cells along with other antigen-presenting cells produce cytokines to promote either TH1 or

TH2 development, and suppress TH17 development.

The Treg response

In the absence of pathogens, the lack of IL-6, IL-12 and IFN-γ, combined with the relative

abundance of TGF-β favours the development of regulatory T cells (Treg). Treg are a

subpopulation of CD4+T cells that modulate the immune system through production of

the immunosuppressive cytokines IL-10 and TGF-β. They are an important “self-check” in

the immune system, and have been shown to be induced and expanded during helminth

infection (Allen and Maizels, 2011).

The adaptive immune response to GIN infection in sheep

There is not a clean TH1/TH2 dichotomy in sheep (Sutherland and Scott, 2009). Susceptibility

to GIN infection is, however, usually associated with a primarily TH1 response, while a

primarily TH2 response is associated with resistance (Figure 1.5). Resistance is associated

with a proliferation of globular leukocytes, mucosal mast cells and eosinophils, and production

of parasite-specific immunoglobulin A (IgA), IgG1 and IgE. Protection against T. circumcincta

is most strongly associated with IgE activity against L3, and IgA activity against L4. Mast

cell degranulation prevents larvae from establishing (Stear et al., 1995b), while eosinophils

potentially interact with IgA to regulate growth and fecundity (Henderson and Stear, 2006).

Susceptibility, on the other hand, is associated with low IgA, low globular leukocytes and

few mast cells and eosinophils.
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Figure 1.5: Differential activation of CD4+ T cell subsets associated with the adaptive
immune response to T. circumcincta in sheep. Protective immunity (resistance) largely involves
a TH2-type response, whereas susceptibility is generally associated with a TH1 response. The TH17
response is a proposed pathway by which susceptibility is also favoured. Figure used with kind
permission from Venturina et al. (2013).

Recent research has challenged the view that resistance to GIN is primarily a TH2 response

(Venturina et al., 2013). Gene expression studies using artificial infection of resistant and

susceptible animals have indicated that the differential interplay between TH1/TH2 and Treg

genes may control the immune response to GIN rather than a straightforward TH1 or TH2

pathway (Hassan et al., 2011b; Ahmed, 2013).
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1.4 Breeding sheep for gastrointestinal nematode

resistance

1.4.1 Evidence for natural resistance to GIN infection

It is well established that there are between-breed differences in the ability of sheep to resist

GIN infection (Table 1.2). There is also evidence for within-breed differences; variation in

FEC has been observed within Scottish Blackface (Stear et al., 1995a), Merino (Sréter

et al., 1994; Woolaston et al., 1996; Kahn, L. P. et al., 2003), and Soay (Coltman et al.,

2001) animals, among others.

Table 1.2: Breed differences in resistance to GIN infection. ’Resistance’ or ’susceptiblity’ is
relative to the other breeds in the study.

Relatively resistant breed Relatively susceptible breed Study

Border Leicester × Merino Merino Donald et al., 1982

Red Maasai Dorper, Blackheaded Somali &

Romney Marsh

Mugambi et al., 1996, 1997

Gulf Coast Native Suffolk Miller et al., 1998

Horro Menz Haile et al., 2002

Barbados Blackbelly INRA 401 Gruner et al., 2003

Sabi Dorper Matika et al., 2003

Polish long-wool Blackfaces Nowosad et al., 2003

Santa Ines Suffolk & Ile de France Amarante et al., 2004

Dorper X, Katahdin & St. Croix Hampshire Burke and Miller, 2004

Katahdin & St. Croix ×
Barbados Blackbelly

Dorset X & Dorper X Vanimisetti et al., 2004

Texel Suffolk Hanrahan and Crowley, 1999;

Good et al., 2006

This comprehensive evidence for variation in natural resistance to GIN suggests breeding

animals that are less reliant on anthelmintic drenches is a viable method of nematode

control (Hunt et al., 2008).
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1.4.2 Resistance versus resilience

Resistant animals are generally defined as those with an enhanced ability to acquire and

mount an effective immune response to GIN, which results in reduced worm establishment

(Douch et al., 1996). Animals can also be bred to have a high tolerance (‘resilience’) to

internal parasites, where they are productive despite their worm burden (Bisset et al., 2001;

Albers et al., 1987; Bisset et al., 1994; Riffkin and Dobson, 1979). Selection purely for

resistance alone has been reported to result in lower live weight gain, increased breech

soiling (dags) and a reduction in fleece weight (Sutherland and Scott, 2009). This can

be counteracted however by using both resistance and production traits in an appropriate

selection policy (Beef + Lamb New Zealand, 2008; McEwan et al., 1995). The main benefit

of resistance in comparison to resilience is reduced pasture contamination. As there is no

reduction in FEC when breeding for resilience, pasture contamination levels stay the same,

and non-resilient animals in a flock do not benefit from reduced GIN challenge. Resistant

sheep, on the other hand, have fewer adult nematodes, which leads to reduced egg output

and lower pasture contamination.
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1.4.3 Phenotypic markers

There are several potential manifestations of resistance to GIN (Balic et al., 2000b; Lee

et al., 2011b):

• Reduced number of adult nematodes

• Reduced size of adult nematodes (resulting in reduced fecundity of females)

• Increased number of inhibited larvae

These traits do not develop at the same rate however, and all three are not observed in all

resistant animals. Measurement of these traits also all require the slaughter of the animal,

and therefore cannot be used in selection programmes. Correlated traits (Table 1.3) such as

faecal egg count (FEC) are commonly used as secondary indicators of resistance (Sayers

and Sweeney, 2005; Saddiqi et al., 2012).

Table 1.3: Parasitological, immunological and pathological phenotypic markers used to
evaluate resistance to Trichostrongyles in sheep. Modified from Dominik (2005).

Parasitological Immunological Pathological

Worm burden Antibody response (e.g. IgA, IgE, IgG1) Plasma pepsinogen

Faecal egg count (FEC) Blood eosinophils Live weight

Fecundity and worm length Dag score

1.4.3.1 Faecal egg count (FEC)

FEC is the most widely used phenotypic indicator of resistance to GIN. The trait is reliable,

relatively easy to measure, and provides a direct estimate of pasture contamination. The

current gold standard for measuring individual animal FEC is the modified McMaster method,

with a sensitivity of 50 eggs per gram of faeces (Ministry of Agriculture Fisheries and Food,

1986). The correlation between FEC and worm burden has been reported to be good to high

(r ~ 0.7), although this can vary depending on the species of GIN and host breed studied,

as discussed below (Amarante et al., 1999, 2004; Beasley et al., 2010; Beraldi et al., 2008;

Bisset et al., 1996; Good et al., 2006; Grenfell et al., 1995; Stear et al., 1995b; McKenna,

1981). Differences in FEC between animals can, however, also be due to inhibition of

infective larvae, suppression of worm fecundity (discussed below) or differences in the ratio

of males to females (Bricarello et al., 2004). Selection using FEC requires animals to have

a relatively high GIN challenge to reliably estimate their phenotype, which can result in loss

of productivity while drench is withheld (Douch et al., 1996). It is also costly to measure

in a commercial farming situation and may fail to represent all of the pathways involved

in internal nematode resistance due to physiological complexity (Dominik, 2005; Morris,

2009).
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Despite these drawbacks, a moderate proportion of the variance in FEC has been shown

to be due to host genotype, which makes it viable as a selection tool (Stear et al., 1997,

2009). The heritability of FEC as a measure of resistance varies considerably depending

on both nematode species and breed surveyed. Estimates are generally moderate, ranging

between 0.2 and 0.4 (Bishop and Morris, 2007; Baker et al., 1991); Safari et al. (2005)

estimated from 16 published estimates a weighted mean (±S.E.) heritability of 0.27±0.02.

More recently an analysis of more than 2 million pedigree-recorded animals in New Zealand

by Pickering (2013) revealed that the heritability estimates for the internal parasite traits of

summer FEC (FEC1 and NEM1) and autumn FEC (FEC2 and NEM2) cluster between 0.18

± 0.01 to 0.21 ± 0.01. Selection based on low FEC has also been shown to be sustainable

in the medium to long-term, with GIN shown to be slow to adapt to resistant hosts (Kemper

et al., 2009).

    Wean and drench      Sample and drench       Sample and drench

Summer challenge                                    Autumn challenge

WWT    FEC1    FEC2

Figure 1.6: Faecal egg count (FEC) breeding value (BV) sampling method. Guidelines for the
standard sampling method for the collection of faecal samples from lambs for FEC breeding value
analysis. WWT = weaning weight.

Breeding programmes in both Australia (Woolaston et al., 1991; Windon, 1990; Cummins

et al., 1991; Greeff and Karlsson, 2006) and New Zealand (Morris et al., 2000, 2005) have

utilised FEC to select animals that are either resistant or susceptible to GIN. Both nematode

species and host breed vary between studies. While these are primarily experimental

flocks, this approach (Figure 1.6) has also been utilised in a commercial setting through

performance recording and genetic evaluation services such a Sheep Improvement Limited

(www.sil.co.nz) and Sheep Genetics (www.sheepgenetics.org.au).

1.4.3.2 Fecundity and worm length

Reduced FEC can be achieved by reducing the number of mature females and/or reducing

the fecundity of the resident female population (reviewed in Balic et al., 2000b). The length

of adult T. circumcincta females is strongly associated with both the number of eggs in utero

(Stear et al., 1995b) and the number of eggs laid per worm per day (Stear and Bishop, 1999).
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As nematode fecundity can be difficult to measure, length of adult females is therefore often

used as a proxy for fecundity.

In Scottish Blackface lambs the variation in FEC following natural (primarily T. circumcincta)

infection is reported to be primarily due to variation in worm fecundity rather than worm

burden (Stear et al., 1996, 1997, 1999b). Despite this the relationship between FEC, worm

burden, and worm fecundity is not clear-cut.

Differences in FEC within both Merino selection line (Kemper et al., 2010) and Scottish

Blackface (Davies et al., 2005) animals showed low FEC animals regulate T. circumcincta

burden through both reduced fecundity and reduced adult worm burden. Kemper et al.

(2010) observed suppression of the development of T. circumcincta, with a skew towards

more immature life stages. In divergent lines of Romney sheep, selected on the basis of

high or low FEC, both the number and fecundity (eggs in utero) of adult Trichostrongylus

spp. were reduced in the resistant (low FEC) animals following a natural challenge (Bisset

et al., 1996). Not only were low FEC lambs limiting the number of adults establishing in the

abomasum, but they were also suppressing fecundity of those worms which did manage to

establish.

Reduced FEC is not always the result of reduced fecundity however. Breed differences

observed in FEC of co-grazing Suffolk and Texel lambs following a natural infection were

due to worm burden rather than differences in T. circumcincta fecundity (Good et al., 2006).

In 6-month-old Scottish Blackface ewe lambs infected with T. circumcincta neither worm

length nor egg count in utero showed a significant correlation with either worm burden or

FEC (Beraldi et al., 2008). FEC did however explain approximately 60% of the variation in

post-mortem adult burden. Seaton et al. (1989) demonstrated that sheep regulate worm

development before they regulate worm burden in T. circumcincta infections, which may

explain some of the differences between studies.

Fecundity can also be influenced by density-dependence, declining as worm burden

increases (Bishop and Stear, 2000b). It is currently unclear whether this decline is due to

competition, the immune response of the host, or a combination of both (Balic et al., 2000b;

Stear et al., 2009).

While differences in both adult GIN burden and GIN fecundity can only be measured

at necropsy, it is nonetheless helpful in understanding the mechanisms underpinning

resistance in experimental settings, which can lead to the development of effective control

strategies (Saddiqi et al., 2012).

1.4.3.3 Antibody response

A number of antibodies have been shown to be correlated with GIN resistance in sheep,

including IgA, IgE and IgG1. Increased levels of the immunoglobulin IgA, the isotype closely

associated with intestinal mucosal immune responses, has been positively associated
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with resistance to T. circumcincta, regulating both worm length and fecundity (Smith et al.,

1985; Stear et al., 2004; Strain et al., 2002; Stear et al., 1995b, 1999b,c; Strain and Stear,

1999; Halliday et al., 2007). This resistance is regulated through suppressed parasite

growth, development and fecundity, and mediated by IgA activity against 4th-stage larvae.

In Scottish Blackface lambs the presence of arrested L4 larvae has been shown to be

positively associated with both worm burden and the size of the local IgA immune response

(Stear et al., 1995b). The association between serum anti-T. circumcincta IgA antibody

levels and indicators of infection such as FEC and worm burden suggests that IgA levels

can be used to complement selection for resistant animals based on FEC (Beraldi et al.,

2008; Stear et al., 1999b; Davies et al., 2005).

A test for anti-nematode IgA antibody levels is already on the market as the CarLA Saliva

Test® (www.carlasalivatest.com). The carbohydrate larval surface antigen (CarLA) is found

on the epicuticle of infective-stage larvae (L3) of ruminant nematode species, and is shed

during the moult to L4 (Harrison et al., 2003b). Research has shown that sheep under GIN

challenge produce an IgA response against CarLA, which reduces larval establishment in

the gut, and results in rapid GIN expulsion (Harrison et al., 2003a, 2008). This response has

been shown to be heritable (h2 = 0.3) and negatively correlated with FEC (r = -0.5) (Shaw

et al., 2012). The CarLA Saliva Test® was subsequently developed to measure the IgA

antibody response to CarLA using saliva from animals under parasite challenge. Animals

with high levels of anti-CarLA IgA have lower FEC, improved growth rate post-weaning, and

no tendency for increased dags (Shaw et al., 2012, 2013).

The saliva assay has several practical advantages over FEC for selection purposes: as

the saliva IgA antibody response is driven by larval challenge, the test can be performed

irrespective of anthelmintic drench treatment, and collection of saliva samples is rapid and

relatively non-invasive. As with faecal samples, saliva samples must be kept cold or frozen,

as the antibody is likely to be heat labile. Genetic gain is, however, slower than selection

on FEC, providing only 17-43% of the value of two FEC measurements for increasing host

resistance to gastrointestinal nematodes (McEwan and Dodds, 2009).

Increased levels of IgG1, IgE and IgM have been correlated with reduced FEC in Romney

selection line sheep in New Zealand (Shaw et al., 1999; Bisset et al., 1996; Douch et al.,

1994), although increased IgE was also negatively correlated with breech soiling. Elevated

levels of IgG1and IgA were observed in T. colubriformis-challenged sheep (Cardia et al.,

2011). Elevation of total and/or parasite-specific IgE serum antibodies have been reported

during infection with H. contortus (Kooyman et al., 2000), T. colubriformis (Shaw et al.,

1998c) and T. circumcincta (Pettit et al., 2005; Huntley et al., 2001). In addition, an

association between a polymorphism at the 5’ end of the sheep IgE gene and resistance to

T. colubriformis has been reported (Clarke et al., 2001), although attempts to confirm this

finding in other flocks failed.
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1.4.3.4 Blood eosinophils

Infection with GIN can also lead to a rise in blood eosinophils. Both local and peripheral

eosinophilia have been associated with resistance to infection among sheep deliberately

infected with T. circumcincta (Stear et al., 1995b; Henderson and Stear, 2006) and H.

contortus (Amarante et al., 1999). When measurements were taken continually during

a controlled challenge, both peripheral blood eosinophilia and IgA levels peaked 8-10

days post infection, then subsequently declined (Henderson and Stear, 2006). A negative

correlation has been reported between FEC and blood eosinophil values during mixed

infections in some breeds (Amarante et al., 2009; Doligalska et al., 1999; Buddle et al.,

1992) but not others (Woolaston et al., 1996).

Animals with high peripheral blood eosinophil levels appear to have shorter, less fecund

worms (Davies et al., 2005; Terefe et al., 2007) or a reduced worm burden (Beraldi et al.,

2008). It appears that eosinophilia and IgA may interact in regulating the growth of T.

circumcincta (Henderson and Stear, 2006). Stear et al. (2002) concluded that eosinophil

concentrations may be a useful indicator of resistance to GIN infection, but only in older (≥
3 months) lambs that have been continually exposed to infection.

1.4.3.5 Pepsinogen

Plasma pepsinogen level is of value in diagnosing abomasal damage, particularly during

infection with GIN such as H. contortus and T. circumcincta, which damage the stomach

lining, resulting in reduced protein digestion (Roeber et al., 2013). Plasma pepsinogen

levels can therefore be used as an indicator of the severity of infection (Lawton et al., 1996;

Stear et al., 1999a). Pepsinogen levels in sheep with heavy infections are above the normal

of approximately 0.8 IU tyrosine and usually exceed 2.0 IU (Taylor et al., 2007).

Pepsinogen is routinely used as a diagnostic tool for ostertagiosis in cattle (Eysker and

Ploeger, 2000; Berghen et al., 1993), with an increase in plasma pepsinogen observed

after infection with Ostertagia (Ploeger et al., 1990a,b,c, 1994; Shaw et al., 1998a,b; Dorny

et al., 1999; Charlier et al., 2011). In sheep, pepsinogen levels have been shown to be

more strongly associated with variation in length and fecundity of female T. circumcincta

than with variation in the number of nematodes present (Stear et al., 1999a; Davies et al.,

2005). A negative correlation has also been observed between pepsinogen and FEC in

Spanish Churra ewes (Gutierrez-Gil et al., 2009b).
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1.5 Variation in the sheep genome controlling resistance

to gastrointestinal nematodes

The identification of genes or linked markers that have a significant association with parasite

resistance would accelerate the genetic improvement of resistance to internal nematodes;

marker assisted selection would allow animals to be selected without the need for parasite

challenge. Additionally a detailed understanding of the genes and mechanisms involved in

protective immunity and the factors that regulate this response would also aid in informing

future breeding strategies as well as the development of effective and sustainable nematode

control methods, such as immunomodulatory anthelmintics.

There are four general approaches to identifying variation in the genome contributing to

GIN resistance: i) association analysis, ii) positive selection analysis, iii) gene or protein

expression studies and iiii) the candidate gene approach (Brown et al., 2013). These

approaches are used to either compare naïve and infected animals, or resistant and

susceptible individuals/breeds.

Gene/locus mapping

The first studies identifying regions of the genome associated with GIN resistance used

quantitative trait locus (QTL) mapping. Identification of QTL involves whole or partial

genome scans using a known pedigree and markers such as microsatellites or single

nucleotide polymorphisms (SNPs) to identify regions of the genome containing loci affecting

the trait of interest (Crawford et al., 2000). Once the region has been identified, it can be

fine mapped using further markers to identify either the casual mutation, or a marker in

close linkage disequilibrium (LD) that can be used for selection.

Studies using microsatellite-based linkage analysis (LA) identified multiple regions of the

genome associated with GIN resistance (e.g. Beh et al., 2002; Crawford et al., 2006;

Davies et al., 2006). The identification of candidate genes through QTL mapping has

proven difficult however, as QTL often span millions of base pairs and contain hundreds

of potential candidate genes. With the advent of the Illumina® OvineSNP50 BeadChip

(www.sheephapmap.org) microsatellite-based linkage studies have largely been replaced

with SNP-based genome-wide association studies (GWAS) (e.g. Kemper et al., 2011; Sallé

et al., 2012; Riggio et al., 2013, 2014).
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Genome-wide association studies utilise the information provided by the large number of

markers spread evenly throughout the genome to detect variants associated with a trait.

These variants are unlikely to be responsible for the observed phenotype, but more likely to

be in linkage disequilibrium (LD) with a causative mutation and consequently be used for

selection.

While genome-wide association studies have identified hundreds of common genetic

variants associated with complex disease so far, most confer relatively small increments in

risk, in contrast with the initial ‘common disease, common variant’ hypothesis (Reich and

Lander, 2001). One of the most likely explanation for this so called ‘missing’ heritability

(Maher, 2008) is that for quantitative traits effect sizes at individual SNPs are so small that

they do not reach genome-wide significance (Goddard et al., 2009; Manolio et al., 2009;

Yang et al., 2010; Visscher et al., 2010).

Despite the problems with GWAS, the information provided by the Illumina® OvineSNP50

BeadChip has been used to map both QTL (Riggio et al., 2013, 2014; Sallé, 2012) and

Mendelian traits (Becker et al., 2010; Johnston et al., 2011; Mömke et al., 2011; Zhao

et al., 2011; Shariflou et al., 2013), and investigate patterns of LD (Kijas et al., 2009, 2012;

Moradi et al., 2012). It has also been shown that sheep can be selected for low FEC using

genomic selection even though there appear to be many loci of small effect controlling the

trait (Kemper et al., 2011).

Detecting selection in the genome

Sheep domestication led to increased exposure to nematodes due to an increase in stocking

density. Infection results in selective pressure on individuals, with the most resistant animals

having increased fitness. The will result in selection for adaptive polymorphisms that

increase fitness, which will potentially leave signatures in the genome associated with

immunity to GIN. Evidence for positive selection can be identified by analysing allelic

diversity of populations to identify genomic domains under selection. Evidence for selective

sweeps in the genome can be found by comparing polymorphisms such as SNPs between

populations (Kijas et al., 2012; Moradi et al., 2012; McEwan et al., 2014). Also at the

population level tests such as the McDonald-Kreitman test (McDonald and Kreitman,

1991) can be used, which examine within species variation compared to between species

divergence.

Alternatively, evidence for positive selection on a protein can be sought at the comparative

genomic level, in the context of the evolution of the Bovidae or Ovis lineage. Genes that are

involved in immunity in cattle and have undergone adaptive evolution have been identified

in a number of studies (Lynn et al., 2005; Larson et al., 2006; Babiuk et al., 2007; Freeman

et al., 2008; Jann et al., 2008; Takeshima et al., 2009), and as such are candidate genes

for immune related traits in cattle. Studies of adaptive evolution in the sheep genome have
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previously been limited by a lack of sheep coding sequence data and lack of an assembled

sheep genome.

Candidate gene approach

Information from other studies can be used to focus on candidate genes chosen for their

link with a trait, or their known or suspected function. Single locus association (SLA) studies

search for markers such as microsatellites, SNPs or other polymorphisms in and around the

gene of interest that may explain the observed phenotypic variance. Quantitative real-time

PCR (qRT-PCR) has also been used to examine differential gene expression in specific

genes of interest associated with trait variation. This approach has also often been used to

validate differentially expressed genes discovered using microarray and RNA sequencing

(RNA-Seq) approaches.

The candidate gene approach, by definition, is limited by prior knowledge of the genes

involved in defence against GIN. Quantitative traits such as FEC are often under the control

of many genes, indeed host resistance to GIN appears to be mediated by many genes,

each with relatively small effect (Kemper et al., 2009; Crawford et al., 2006). The candidate

gene approach is therefore unlikely to capture all of the variation leading to the observed

phenotypic differences.

Gene expression studies

Transcriptome and proteome analysis is a powerful method for the identification and

quantitation of genes and proteins expressed during GIN infection. These tools have

led to a greater understanding of the molecular basis of phenotypic variation in resistance

to GIN. During the past decade both bovine and ovine specific microarrays have been used

in sheep to provide expression information on tens of thousands of genes at once. These

studies have identified hundreds of genes differentially expressed between known resistant

and susceptible animals (Table 1.4).

Recently high-throughput sequencing of cDNA (RNA-seq) has allowed researchers to

look at RNA expression on an even larger scale. While microarray technology relies on

prior knowledge of genomic sequence, RNA-seq allows the detection of unknown genes,

alternative splice sites and novel isoforms. One advantage that is particularly relevant

to sheep is the ability to re-analyse the data once more information becomes available

(e.g. the release of an updated genome or transcriptome). Despite these advantages,

sequencing still remains relatively costly, and computationally intensive. Microarrays on the

other hand are relatively inexpensive and widely available, meaning studies of the ovine

transcriptome continue to utilise both resources (Gossner et al., 2013).

Recently transcriptome analysis in sheep has been aided by the release of version 3.1

of the ovine genome (Kijas et al., 2012) and the subsequent release of the Ensembl
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annotation in December 2013 (Flicek et al., 2014). To date GIN resistance using RNASeq

methods has been used in only two separate studies (Pemberton et al., 2011; Gossner

et al., 2013; Ahmed, 2013). Pemberton et al. (2011), and subsequently Gossner et al.

(2013) examined gene expression in the abomasal lymph node of Scottish Blackface lambs

resistant or susceptible to T. circumcincta. The number of unique, differentially expressed

genes increased from 144 when reads were aligned to the bovine genome (Pemberton

et al., 2011) to 379 when reads were aligned to the ovine genome (Gossner et al., 2013).

Ahmed (2013) also aligned ovine reads to the bovine genome, comparing expression in

the abomasal lymph node of Suffolk (relatively susceptible) and Texel (relatively resistant)

lambs artificially infected with T. circumcincta. Other studies in sheep have examined the

transcriptome in the foetal heart (Cox et al., 2012), skin (Fan et al., 2013), bone healing

models (Jager et al., 2011), and high and low fecundity animals (Miao and Luo, 2013).
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1.5.1 Previously identified genetic markers of GIN resistance

Studies to detect QTL for GIN resistance or detect associations with candidate genes have

been based on diverse experimental approaches, sheep breeds and nematode species; it is

therefore not surprising that different chromosomal regions of interest have been identified

among these studies. While results are not always available in the public domain, the sheep

QTL database (SheepQTLdb; www.animalgenome.org/QTLdb/sheep) contains all curated

sheep QTL and associated data in the public domain (Hu et al., 2013).

Full or partial genome scans have identified QTL for FEC on almost every chromosome.

QTL have also been identified for worm burden, worm length, number of eggs per worm,

eosinophil counts and immunoglobulin IgA, IgG and IgE levels (SheepQTLdb). The two

most consistent regions identified have been the region of the Major Histocompatibility

Complex (MHC) on chromosome 20, and the region containing the interferon gamma (IFNγ)

gene on chromosome 3 (Bishop and Morris, 2007), with a notable exception being the

WormSTAR™ marker on chromosome 3p (McEwan et al., 2008). It must be noted, however,

that the importance of these genes in mediating parasite resistance may be overstated, as

many studies have specifically targeted these regions (Table 1.4).

The Major Histocompatibility Complex (MHC) locus

The Major Histocompatibility Complex (MHC) of sheep, also designated ovine Lymphocyte

Antigen (OLA), is a multi-gene complex critical to immunity. In the mammalian genome the

MHC is the most gene-dense and polymorphic region, and is associated with resistance

to infectious diseases, autoimmunity, and reproductive success (The MHC Sequencing

Consortium, 1999). In sheep the basic structure of the MHC region is similar to other

mammals, comprising of the class I, IIa, IIb and III regions (Figure 1.7). Using shotgun

sequencing, a complete ovine MHC sequence map revealed 177 genes, along with 18

predicted micro-RNA coding sequences (Gao et al., 2010).

Figure 1.7: The ovine Major Histocompatibility Complex (MHC) region. Schematic presentation
of the structure of the ovine MHC region on chromosome 20. Figure used with kind permission from
Dukkipati et al. (2006).
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The primary function of MHC genes is to code for antigen-presenting receptor glycoproteins,

known as MHC molecules. The membrane-anchored MHC molecules bind to processed

peptide antigens and present them to T lymphocytes, initiating the adaptive immune

response (Dukkipati et al., 2006). The MHC class I molecules are expressed on the

surface of all nucleated cells, and consist of a heavy α-chain and a ß-chain. The class I

molecules are chiefly involved in presentation of cytosol-derived peptides to cytotoxic T

lymphocytes (CD8+) (Amills et al., 1998; Kumánovics et al., 2003). The MHC class II genes

encode glycoproteins, which are also heterodimers consisting of two chains, α and ß. The

class II molecules bind and present processed pathogen peptides to helper T cells bearing

the CD4+ differentiation marker (Amills et al., 1998; Kumánovics et al., 2003). Relative to

the other regions of the MHC, the class III region is historically the least characterised. The

genes at this locus have immunological and other functions, such as heat shock protein 70

(HSP70), complement cascade genes (C4, C2 and BF ) and tumour necrosis factor alpha

(TNF ) (Amills et al., 1998; Kumánovics et al., 2003).

Multiple studies have found an association between parasite resistance and regions on

ovine chromosome 20, where the MHC is located (Schwaiger et al., 1995; Buitkamp et al.,

1996; Paterson et al., 1998; Diez-Tascon et al., 2005; Sayers and Sweeney, 2005; Stear

et al., 2005; Davies et al., 2006; Keane et al., 2007; Hassan et al., 2011a). These studies

by no means provide unanimous results. Other studies using genetic marker approaches

on various flocks have found no evidence for an effect of genes in the MHC on either mixed

(Benavides et al., 2009), H. contortus (Blattman et al., 1993) or T. colubriformis resistance in

sheep (Nicholas et al., 1993). This may be explained by the alleles themselves not causing

resistance or susceptibility per se, but being in linkage disequilibrium (LD) with additional

polymorphisms in the region (Keane et al., 2007); a combination of these polymorphisms

may then contribute to resistance or susceptibility in some populations. As the extent of

LD is likely to vary between breeds and populations, the MHC alleles previously implicated

may not show up as being significant.

The interferon gamma (IFNγ) locus

Interferon gamma (IFNγ) locus, located on chromosome 3 in sheep, is a potential candidate

for nematode resistance as it is associated with the host response following an immune

challenge. The IFNγ gene codes for a cytokine secreted by TH1 lymphocytes that plays

a critical role in regulating the TH1 versus TH2 immune responses in vertebrates. IFNγ

activates macrophages, which phagocytose intracellular pathogens (Wakelin, 1996).

A QTL for parasite resistance in Romney divergent selection lines after multi-species

challenge was fine mapped to a region near the IFNγ gene (Paterson et al., 2001).

Subsequently, a polymorphism in the region near IFNγ was linked to reduced FEC and

increased parasite specific IgA in a wild population of Soay sheep on the island of Hirta in

the St Kilda archipelago in the Outer Hebrides (Coltman et al., 2001). Sayers et al. (2005b)
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also observed an association between an IFNγ haplotype and genetic resistance to GIN in

Texel, but not Suffolk, sheep.

A partial genome scan of 139 microsatellite markers across eight chromosomes in Scottish

blackface sheep identified a QTL on chromosome 3 associated with IgA activity that was

very close to the interferon gamma locus (Davies et al., 2006). Likewise, using 133 markers

across the genome, a QTL encompassing the IFNγ region was also observed in Merino

divergent selection lines after challenge with T. colubriformis (Beh et al., 2002). Several

other regions on chromosome 3 have also been found to have linkage to parasite resistance,

although they are not found near IFNγ (Beraldi et al., 2007; Marshall et al., 2009).

Ingham et al. (2008) discovered that expression of IFNγ transcripts were increased in the

gut mucosa of T. colubriformis and H. contortus resistant animals during the innate immune

response (after primary challenge), and subsequently downregulated during the acquired

immune response (after tertiary challenge).

Cytokines and Ig coding genes

The association between IgE and the response to GIN has previously been discussed. A

significant association was found between an IgE allele and resistance to T. colubriformis in

a Merino selection flock by Clarke et al. (2001), however attempts to validate the association

in two other flocks assessed for resistance to either T. colubriformis or H. contortus failed

to find any significant association.

Cytokines play a pivotal role in the immunity to GIN, defining the orientation and strength of

the immune response (section 1.3.2). A partial association scan in Corriedale and Polwarth

animals using seven markers on chromosome 5 (where IL3, IL4 and IL5 are located)

showed three of the five markers were significantly associated with FEC in Corriedale

animals, two of which were also associated with FEC in a Polwarth flock (Benavides et al.,

2002). In a following study Benavides et al. (2009) showed polymorphisms within IL4 was

significantly associated with (primarily H. contortus) FEC in weaned Corriedale, but not

Polwarth, ewe lambs.

Conclusions

Many other regions of the ovine genome have also been linked to parasite resistance; as

the number of whole-genome scans increase, so do the number of suggestive regions,

with most chromosomes being implicated in one or several studies. It can be concluded

that the search for QTL or linked genes for GIN resistance in sheep is a difficult area of

research. This primarily due to the physiological and phenotypic complexity of the trait,

although analysis has proven to also be an issue, as most of the reported studies derive

from initial low-resolution genome screens, often resulting in very wide confidence intervals.

More consistency in experimental protocols, materials and analysis approaches would allow

36



a more precise comparison of results; the studies have differed in the breed of sheep and

their immune status, nematode species used in the experiments, measurement of internal

nematode resistance and the challenge regime. Comparisons between breeds of sheep,

such as Soay and domestic, are also problematic for many reasons including differences in

environment, age structure, treatment history, and parasitological methods.

Considering the complexity of nematode resistance, it is unsurprising that previous studies

have not necessarily yielded the same results. The information gained from QTL studies

can, however, be used alongside information from gene expression studies to gain a greater

understanding of nematode resistance in sheep. As noted by multiple studies (Kemper

et al., 2011; Riggio et al., 2014; Crawford et al., 2006), GIN resistance is a complex trait for

which many genes of relatively small effect contribute.

37



1.6 Aims and Objectives

The objective of this study was to identify Scottish Blackface lambs that differed in their

resistance to GIN infection and characterise the host responses to infection and identify

genes and biological processes important for the difference in resistance. The identification

of genes and alleles associated with nematode resistance would have a two-fold benefit:

firstly it would aid in the implementation of a selective breeding programme in Ireland with

measurable economic benefit, and secondly it will advance our fundamental understanding

of the mammalian immune system and resistance to infection.

In Ireland, two sheep breeds have been extensively studied with respect to GIN resistance,

and it has been demonstrated that the Texel breed is more resistant to nematode infection

than the Suffolk breed. To date no studies have examined the resistance among Scottish

Blackface sheep in Ireland.

The specific objectives of this study were:

i) to identify lambs that show variation in resistance to experimental nematode

challenge within an Irish Scottish Blackface population,

ii) to examine gene expression in the gut lymphoid tissue of these animals using

next generation sequence technology,

iii) to identify any proteins that show evidence of positive selection,

iv) to assess the role of these genes using association testing, and validate SNP

associated with GIN resistance discovered in other populations,

The identification of genes or linked markers that have a significant association to host

resistance to internal parasites would greatly accelerate genetic improvement. Recent

advances in genome sequencing and genomic technologies provide new opportunities to

understand the infection process of internal parasites in sheep at the genetic level. The aim

of this project is to use these new technologies to help understand GIN resistance in sheep,

and subsequently use this understanding to control parasite infection.

38



Chapter 2

Characterising gastrointestinal nematode

resistance in Scottish Blackface lambs

39



2.1 Introduction

Gastrointestinal nematodes (GIN) are the most serious cause of disease in domestic sheep

worldwide with symptoms ranging from cclinical disease to ill thrift. In temperate climates,

such as in Ireland, the most common infective species are Teladorsagia circumcincta,

Trichostrongylus spp. and Nematodirus spp. (Good et al., 2006; Burgess et al., 2012).

There is a sizeable body of evidence for both within- and between-breed variation in the

ability of sheep to resist gastrointestinal nematode infection (Table 1.2). This suggests that

breeding for host resistance is a viable strategy to minimise the effects of GIN parasitism.

A number of traits can be used to identify animals that exhibit increased resistance to

GIN infection, including faecal egg count (FEC), worm burden, anti-nematode antibody

level and plasma pepsinogen concentration (as reviewed in Saddiqi et al., 2012). Of these

the most practical and widely used indicator is FEC, which is moderately heritable and

shows wide variability among individuals (Bishop and Morris, 2007; Safari et al., 2005).

Resistance to GIN infection, as defined by a relatively low FEC, can manifest as a lower

number of nematodes, reduced size of adult nematodes, reduced fecundity of females,

increased proportion of inhibited larvae, or a combination of the foregoing elements (Balic

et al., 2000b; Lee et al., 2011b). A reduction in either the number of fecund adult females

or in female fecundity would have the beneficial effect of reducing worm contamination on

pasture (Good et al., 2006).

In Ireland, two sheep breeds have been extensively studied with respect to nematode

resistance and it has been demonstrated that the Texel breed is more resistant to nematode

infection than the Suffolk breed (Hanrahan and Crowley, 1999; Sayers et al., 2005a; Good

et al., 2006; Sayers et al., 2008; Hassan et al., 2011a). Previous studies have shown that

there is substantial genetic variation among Scottish Blackface lambs in both FEC and

worm length (Stear et al., 2009). Resistance to GIN is most likely based on the ability to

develop a timely and protective immune response. To date there have been no studies of

the resistance among Scottish Blackface sheep in Ireland. Therefore, the objective of the

present study was to develop a robust method to identify resistant and susceptible Scottish

Blackface lambs, and characterise their response to an experimental nematode challenge.
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2.2 Materials and methods

2.2.1 Ethical approval

All animal procedures described in this study were conducted under experimental license

from the Irish Department of Health in accordance with the Cruelty to Animals Act 1876 and

the European Communities (Amendments of the Cruelty to Animals Act 1976) Regulations,

1994.

2.2.2 Animals

All lambs were sourced from the purebred Scottish Blackface flock at the Teagasc Hill

Sheep Farm in Leenane, Co. Mayo over a 2 year period (2010 - 2011). The flock consisted

of approximately 350 ewes and is divided between two production systems: a pure-breeding

system involving about 200 ewes and a crossbreeding system in which ~150 purebred

ewes are used for crossbred lamb production. Replacement ewes enter the pure-breeding

system and usually remain in that system for 3 seasons after which they are moved to the

crossbreeding system. The farm has both hill and lowland pasture; the unimproved hill

pastures range in altitude from 15 to 275 m above sea level (Nolan et al., 2003). The pure-

breeding system is based mainly on the unimproved hill pasture while the crossbreeding

system is based mainly on the improved lowland grassland portion of the farm.

Two separate grazing groups of purebred lambs were run on the farm each year. Single

wethers (castrated males) and all twin-born lambs grazed on improved lowland pasture

(Lowland grazing group), while single-born ewe lambs grazed on the unimproved hill pasture

(Hill grazing group). Three of the four grazing groups, Lowland10, Lowland11 and Hill11,

were used in this study (Table 2.1). In 2011 the single-born ewe lambs were moved to

lowland pasture post-weaning (14 weeks) to acquire a natural GIN infection. All lambs

received an anthelmintic dose at five weeks of age for Nematodirus. With the closure of

the Teagasc Hill Sheep Farm in September 2011 all lambs were removed to the Athenry

campus in Co. Galway.

2.2.2.1 Faecal sampling

In both 2010 and 2011 flock FEC was monitored weekly from early June, when lambs were

approximately 8 weeks of age, using the FECPAK system (www.fecpak.co.nz). At least

ten fresh faecal samples were collected from pasture, with each sample collected from a

different faecal deposit. Cold H2O was added to the sample at a ratio of three times the

weight of the samples, and homogenised to ensure an even suspension before a 30 mL

aliquot was taken and added to 200 mL saturated NaCl. The solution containing the sample

41



and NaCl was mixed by inversion, and then passed through a 0.15 mm aperture sieve. The

strained fluid was mixed, and random aliquots taken to fill both chambers of a FECPAK

slide. A stereo microscope (10 x magnification) was used to count the number of eggs

within the grids of both chambers. Each egg counted represented 30 eggs per gram of

faeces (epg); the sensitivity of the test was therefore 30 epg.

Once flock FEC reached approximately 600 epg lambs were individually sampled twice

(FEC1A and FEC1B), with samples taken one week apart. Samples were collected from the

rectum of each animal, and stored in an airtight bag at 4 °C until processing (within 3 days).

GIN burden was assessed for each animal using the modified McMaster method (Ministry of

Agriculture Fisheries and Food, 1986). From each sample 3 g of faeces were homogenised

with 42 mL cold H2O, before being passed through a sieve (0.15 mm aperture). The strained

fluid was agitated, and a 15 mL aliquot taken and centrifuged at 432 x g for 3 min at 4 °C.

The supernatant was removed, and the pellet resuspended in a saturated NaCl solution.

Aliquots were taken from the resuspended sample to fill both chambers of a McMaster

slide, and the number of eggs within the marked grids in both chambers counted using a

stereo microscope (10 x magnification). Each egg counted represented 50 eggs per gram

of faeces; the sensitivity of the test was therefore 50 epg.

Following FEC1B sampling, lambs were dosed with a macrocyclic lactone (ML; Oramec,

Merial Animal Health Ltd) in accordance with manufacturer’s recommendations. Flock FEC

was monitored weekly (FECPAK), and once flock FEC again reached approximately 600

epg FEC2A and FEC2B of individual FEC counts were completed.

2.2.2.2 Blood sampling

At the last faecal sampling (FEC2B) two blood samples from each lamb were collected

by jugular venipuncture into aseptic vacutainers for DNA extraction (green vacutainer;

lithium heparin) and haematology analysis (purple vacutainer; EDTA). Blood samples

were analysed for haematology measurements within 6 h of sampling using an ADVIA®
2120 haematology system (Siemens Healthcare Diagnostics Inc.) as per manufacturer’s

recommendations. Haemoglobin, red blood cells, mean corpuscular volume, platelets,

haematocrit, white blood cell count, neutrophils, lymphocytes, monocytes, eosinophils,

large unstained cells and basophils were measured.

2.2.3 Controlled challenge of selected HighFEC and LowFEC animals

Ten susceptible (subsequently known as “HighFEC”) and 10 resistant (subsequently known

as “LowFEC”) lambs were selected from each of three groups: 1) 2010 born wethers, 2)

2011 born wethers and 3) 2011 born ewe lambs (from both Lowland11 and Hill11 grazing

groups; Table 2.1). The selected animals from the 2011-born ewe lambs (2011E cohort;

Table 2.1) were used to monitor the response to infections in HighFEC and LowFEC animals
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over time (71 days after challenge). Resistant and susceptible wethers selected from the

2010 and 2011 Lowland grazing groups (2010W and 2011W cohorts; Table 2.1) were used

to define the acute responses to infection; these lambs were slaughtered at either 7 or 14

days post infection (Figure 2.1).

Table 2.1: Animals selected from each grazing group for a controlled challenge with T.
circumcincta. Lambs and their dams were managed from birth to weaning on either improved
lowland pasture (Lowland group) or unimproved hill pasture (Hill group). Resistant (LowFEC) and
susceptible (HighFEC) lambs were selected from within-sex (ewe or wether) groups for a controlled
challenge with T. circumcincta.

Year Grazing group Sex Selection group Challenge cohort Phenotype No.

2010 Lowland10 Male 2010-born wethers 2010W HighFEC 10

(n=92) (n=20) LowFEC 10

2011 Lowland11 Male 2011-born wethers 2011W HighFEC 10

(n=76) (n=20) LowFEC 10

Female HighFEC 5

(n=34) 2011-born ewe lambs 2011E LowFEC 3

Hill11 Female (n=20) HighFEC 5

(n=56) LowFEC 7

2.2.3.1 Selection of resistant and susceptible animals

Individual animal values for ln(FEC+25) were used to identify the most resistant and

susceptible individuals from each selection group (Table 2.1), estimated using mixed model

procedures in SAS® (v9.1). Due to differences in variance estimates (among animals and

residual; Table 2.2), samples from each natural infection (FEC1 and FEC2) were analysed

separately.

Table 2.2: Summary of variance components for each sub analysis of ln(FEC+25). Due to
differences in variance estimates, samples from each natural infection (FEC1 and FEC2) were
analysed separately. 1The Lowland11 group includes both male (n=76) and female (n=34) lambs.

Grazing group Round Animal Residual Repeatability

Lowland10 FEC1 0.3094 0.4970 0.58

(n=92) FEC2 0.2611 0.3342 0.43

Lowland11 FEC1 1.6045 0.4917 0.77

(n=1101) FEC2 0.3739 0.1790 0.68

Hill11 FEC1 0.2882 0.1166 0.71

(n=56) FEC2 0.5017 0.2696 0.65
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The data for each round (FEC1 and FEC2) were analysed separately by grazing group

using a model that included sex (male or female), rearing type (single or twin) and sample

date (A or B sample of round) as fixed effects where appropriate (Table 2.3). To get the

selection differential for each animal the estimated animal effect for each round was scaled

by the standard error of prediction and averaged.

Table 2.3: Fixed and random effects used for selection of resistant and susceptible animals.
Fixed effects include sample date, rearing type (single or twin) and sex (male or female).

Grazing group Fixed effects Random effects

Lowland10 Sample date, rearing type Animal(round)

Lowland11 Sample date, rearing type, sex Animal(round)

Hill11 Sample date Animal(round)

Selection differentials were used to select 10 HighFEC and 10 LowFEC animals from each

group (Figure 2.1). As the 2011-born ewe lambs were raised in two separate grazing groups,

selection involved combining the animal effects from two sets of analyses.

2.2.3.2 T. circumcincta larval culture

Naïve male lambs sourced from the Athenry campus in Co. Galway received an oral

challenge of approximately 15,000 infective (L3) T. circumcincta larvae obtained from the

Moredun Research Institute. Faeces were collected daily using bags strapped to the animal

(Figure 2.2).
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Figure 2.2: Collection of faeces for larval culture. Faeces were collected by attaching a collection
bag via a harness to the rump of naïve male lambs infected with T. circumcincta L3.

Upon collection faeces were weighed, then mixed with vermiculite and a small quantity

of water until the mixture was moist and crumbly. The mixture was placed in a container

lined with plastic and the lid was replaced lightly before incubation at 27 °C for 14 days.

To reduce mould the mixture was stirred once a day during the first 3 days. Larvae (L3)

were extracted from the mixture using the Baermann technique (Hendrix, 1998) and stored

in tap water in the fridge at approximately 4 °C. Larvae were cleaned using the sucrose

interface technique (Eysker and Kooyman, 1993). Using a syringe 10 mL of freshly made

sucrose solution (2 g sucrose to 5 mL MilliQ H2O) was slowly placed below up to 15 mL of

a suspension of larvae in a 50 mL Falcon tube. The Falcon tube was centrifuged at 769 x g

for 4 minutes, after which the larvae were removed from the interface with a Pasteur pipette

and stored in tap water at 4 °C.
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A

B

Figure 2.3: Sheathed and exsheathed Teladorsagia circumcincta L3 larvae. Normal larvae
with tail sheath (A), and exsheathed larvae (B).

Prior to infection of the selected animals from the 2011W cohort it was observed that a

substantial proportion (43%) of the cultured L3 appeared to have exsheathed, for unknown

reasons. As the infectivity of these larvae could not be guaranteed selected animals from

both the 2011W and 2011E cohorts were infected with L3 that had been cultured in 2010

and stored in tap water at 4 °C.

2.2.3.3 Infection with T. circumcincta larvae

The selected Scottish Blackface lambs (section 2.2.3.1) were cleared of residual helminth

infection with ML (Oramec, Merial Animal Health Ltd) or AD (Zolvix, Novartis), and housed

on straw bedding until slaughter, with free access to water and 600 g commercial lamb

ration per day. At 15 (ML) or 11 (AD) days post treatment all lambs were faecal sampled for

three consecutive days to establish the absence of GIN infection. The 2011E cohort were

additionally dosed with ML (Oramec, Merial Animal Health Ltd) to eliminate S. papillosus, a

flukicide (Duotech, Norbrook Laboratories Ltd; closantel and oxfendazole combination) to

clear any Fasciola hepatica obtained while grazing at Leenane; these lambs were faecal

sampled at 19 days post treatment to establish absence of fluke infection using the fluke

sedimentation test as described in Mooney et al. (2009). All chemicals were administrated

in accordance with manufacturer’s recommendations.

On day 0 lambs (n=60) received an oral challenge of approximately 30,000 T. circumcincta

larvae (L3). Lambs were moved to Teagasc Ashtown, Co. Dublin to acclimatise for 2 days

prior to slaughter. For the 2011E cohort response to infection was monitored by measuring

FEC (3 times per week), along with plasma pepsinogen, serum anti-nematode IgA and

IgG and haematology parameters (weekly) over the course of infection. Abomasal mucosa

anti-nematode IgA and IgG, worm burden, and worm fecundity were determined from

samples collected at slaughter. For the 2010W and 2011W cohorts plasma pepsinogen,
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serum and mucosa anti-nematode IgA and IgG, and worm burden were determined at

slaughter.

2.2.3.4 Necropsy

On the day of slaughter, 4 blood samples were collected from each lamb by jugular

venipuncture into aseptic vacutainers for DNA extraction (green vacutainer; lithium heparin),

pepsinogen (green vacutainer; lithium heparin), haematology analysis (purple vacutainer;

EDTA) and ELISA (gold SST II vacutainer). Animals were slaughtered by electrical stunning

followed immediately by exsanguination. Abomasal lymph node, abomasum, small intestinal

lymph node and submandibular lymph node tissue were collected. Tissue was cut into

pieces approximately 0.5 cm3 and submerged in 10 volumes of RNAlater® (Ambion).

This was stored at room temperature overnight followed by long-term storage at -80 °C.

Abomasum and small intestine muscoal scrapings were collected, snap frozen in liquid

nitrogen, and stored at -80 °C.

2.2.3.5 Nematode burden enumeration

The abomasum was removed at slaughter, and its contents recovered; the abomasum was

then opened along the greater curvature, and digested in 1 L physiological saline for 4 h

at 37 °C to recover nematodes from the tissue wall (Eysker and Kooyman, 1993). Both

contents and digest were washed through a 75 μm sieve followed by a 38 μm sieve, before

being preserved in 5% formalin. Adult and larval nematodes were counted from both the

abomasal contents and the abomasal digest as previously described (McKenna, 2008).

Total nematode burden was calculated by extrapolating from 2% (75 μm sieve samples) or

5% (38 μm sieve samples) aliquot counts.

Ten abomasa from the 2011W animals slaughtered at 7 dpi were digested further using

a pepsin digest. Abomasa were digested in 500 mL of 1% pepsin (Sigma Porcine Pepsin

P7125)/1% HCl solution at 38 °C for 7 h (Jackson et al., 2004). After digestion the contents

were made up to 800 mL with H2O and fixed with 20 mL iodine. Nematode burden was

calculated by extrapolating from 10% aliquot counts.

2.2.3.6 Fecundity

All mature female worms (vulva and uterine structure present) recovered whilst enumerating

worm burden were mounted on slides with lactophenol, and the number of eggs in utero

recorded. Whenever possible, measurements on at least 30 individual worms were taken

per animal. Where 30 worms had not been obtained from the worm burden aliquots,

samples were taken at random from the abomasal digest (75 μm sieve) sample until 30

female worms in total had been obtained. Females were photographed with a digital camera
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under the dissecting microscope, and length determined using the public domain software

ImageJ 1.37 (http://rsb.info.nih.gov/ij) after calibration with a stage micrometer slide.

2.2.3.7 FEC

Individual faecal samples were taken, and coccidia, Nematodirus and other Trichostrongyles

counts established using the modified McMaster method (Ministry of Agriculture Fisheries

and Food, 1986), described previously (section 2.2.2.1). Samples with a FEC of 0 epg were

subjected to an additional floatation step using the method of Kelly et al. (2009).

2.2.3.8 Pepsinogen

On the day of sampling, vacutainers containing blood samples were spun in a bench top

centrifuge at 1,000 x g for 15 min at 8 °C. Plasma was removed and stored at -20 °C until

assayed.

Pepsinogen concentration was determined using the Ross et al. (1967) modification of

the method of Hirschowitz (1955). The principle of the test is that the inactive zymogen,

pepsinogen, is converted by dilute hydrochloric acid (HCl) into the enzyme pepsin, which

then degrades the serum proteins into peptides possessing tyrosine end-groups which are

soluble in trichloroacetic acid (TCA). Non-hydrolysed proteins are precipitated and removed.

The tyrosine end-groups react colourimetrically with Folin-Ciocalteu reagent in alkaline

conditions; the colour produced is proportional to the concentration of pepsinogen in the

samples.

Plasma samples were removed from storage and thawed to room temperature, at which

point 0.5 mL of sample was acidified with 1.5 mL of 0.1 N HCl and 1 mL H2O, and incubated

for 3 hours at 37 °C. Post incubation 2.0 mL 10% TCA was added, and after ten minutes

at room temperature the mixture was centrifuged at 1910 x g for 15 min before 2 mL of

supernatant was taken. Control samples were prepared as above, however TCA was

added to the sample containing plasma, HCl and H2O immediately, with no incubation step.

A standard, containing 0.2 μm/mL tyrosine, was prepared using 1 mL working standard

solution (tyrosine stock standard solution (2 μm/mL) prepared by dissolving 181.2 mg

tyrosine in 0.1 N HCl and diluted to 500 ml, diluted 1 in 10) added to 0.2 mL H2O and 0.8 mL

10% TCA. Blanks were prepared using 2 mL of H2O. To all of the above samples 4 mL 0.5

N NaOH and 1 mL Folin-Ciocalteau reagent (diluted 1 in 3) were added. Absorbance of the

standard, samples and controls were measured against the blank at 560 nm. Concentration

of tyrosine (U/l) was calculated by

ATest −AControl

AStandard
x 5.55
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The enzyme concentration is measured in international units U/L (μmol tyrosine released

per 1 L plasma per minute).

2.2.3.9 ELISA

Antibody recovery

Blood for anitbody recovery was collected by jugular venipuncture into aseptic vacutainers

containing no anticoagulant. To allow for clot formation vacutainers were left in a horizontal

position at room temperature for 4 h after sampling, before being refrigerated at 4 °C

overnight. The day following collection samples were centrifuged at 1,000 x g for 15 min at

8 °C, before the serum was removed and stored at -20 °C until assayed.

Mucosal samples (Table 2.2.3.4) were prepared for antibody recovery using a modified

version of the method of Sinski et al. (1995). Approximately 50 mg of tissue was homogenised

in 1 mL of phosphate buffered saline (PBS) and 40 uL protease inhibitor cocktail (Sigma-

Aldrich). After centrifugation of the homogenate at 14,000 x g for 15 min the supernatant

was removed, and protein concentration determined using a Qubit® protein assay kit

(Invitrogen) before storage at -20 °C.

CarLA-specific IgA analysis

The CarLA-specific IgA analysis was carried out by AgResearch (New Zealand). To assay

specific anti–CarLA IgA antibody, EIA/RIA plates (Costar 9017, medium binding, Corning

Inc, USA) were incubated overnight at 4 °C with 100 μL/well of purified CarLA (1.25 μg/mL)

in phosphate buffered saline (PBS). CarLA was prepared from a hot water extract of the

larval surface antigens of exsheathed T. colubriformis L3s by gel filtration on Sephadex

G-100 (Harrison et al., 2008). The plates were washed twice with reverse osmosis (RO)

purified water containing 0.1% (w/v) Tween 20 (RO-T20) then blocked for 30 min at room

temperature with 5% skim milk powder in 10 mM phosphate buffer, 0.65 M saline, pH 7.2

containing 0.5% Tween 20. Plates were washed twice with RO-T20 then used immediately.

Serum or mucosa samples were initially diluted 1/50 in sample dilution buffer (10 mM

phosphate buffer, 0.25 M NaCl, pH 7.2 containing 1.0% Tween 20 and 0.25% bovine serum

albumin), then stored at -20 °C until assayed. Diluted serum samples were added to plate

wells at two dilutions, 50 μL and 20 μL and made to 100 μL final volume with sample

dilution buffer (final dilutions of 1/100 and 1/250). Mucosa samples were assayed at three

dilutions (1/50, 1/100 and 1/200). Samples were then incubated for 2 h at 37 °C. Plates

were then washed 6 times with RO-T20. Rabbit anti-sheep IgA conjugated with horseradish

peroxidase (Bethyl Laboratories Inc, USA), diluted 1/2000 with ELISA buffer, was added

to each well (100 μL) and incubated for 2 h at 37 °C. Plates were then washed 6 times as

above, and 100 μL/well of freshly prepared substrate [0.001% (w/v) tetramethyl benzidine
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(AppliChem, Germany) containing 0.003% (v/v) hydrogen peroxide in 0.1 M citrate-acetate

buffer pH 5.2] added. The reaction was allowed to develop for 30 min at room temperature,

and then stopped with 50 μL/well of 2 N sulphuric acid. The absorbance was measured at

a wavelength of 450 nm (Versamax, Molecular Devices, USA).

A reference standard method was used to obtain concentration values for CarLA-specific

IgA (Peterman and Butler, 1989). To prepare the reference standard a pool of sera with

high CarLA-specific IgA levels was diluted 1/1,250 with sample dilution buffer and this was

given a nominal value of 0.8 units/mL. A six-fold dilution series of the standard (1/1,250 to

1/80,000) was then prepared and loaded onto each plate in duplicate (100 μL/well). The

standard curve generated was transformed by taking the natural logarithm of unit values

and a logit (Peterman and Butler, 1989) of the reference standard absorbance. A linear

regression was fitted to the linear region of the logit-log standard curve and the equation

for this straight line remodelled to calculate sample concentration. Individual well results

were multiplied by each sample dilution and the average of this calculated. To determine

the minimal detectable value for the assay, the mean absorbance value plus three standard

deviations was calculated for wells consisting of sample dilution buffer multiplied by 100

(serum sample dilution). This was approximately 1.6 units/mL. Samples above the standard

curve were diluted further and re-assayed. Internal controls were made by spiking saliva

collected from parasite-free sheep with three different amounts of standard serum. The

coefficient of variation (CV) for replicates of the standards at each dilution point were ≤7%

within assays and ≤10% between assays; the CV for internal controls (high, medium and

low anti-CarLA IgA) were ≤12% within assays and ≤23% between assays.

Enzyme-linked immunosorbent assay (ELISA) for IgA & IgG

ELISA was used to determine T. circumcincta-specific IgA and IgG in serum and mucosa

samples. Antigen from T. circumcincta L3 was freshly prepared as previously described

(Sinski et al., 1995). The wells of a 96-well polystyrene ELISA plate (Thermo Fisher

Scientific, USA) were coated with 100 μL of L3 antigen (2 μg/mL) in carbonate-bicarbonate

buffer (Sigma-Aldrich, UK) at pH 9.6 and left overnight at 4 °C.

Plates were run on the DSX® ELISA processing system (Dynex Technologies, USA). The

plate was washed four times using PBS-T (PBS + 1% Tween 20; Sigma-Aldrich, UK). An

aliquot of 100 μL of either serum sample (diluted in PBS-T + 3% BSA; Thermo Fisher

Scientific, USA) or mucosal sample (diluted in PBS-T + 3% BSA) (Figure 2.4) was added to

each of 3 wells and incubated at 37 °C for 30 min, before another 4 washes in PBS–T.
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Figure 2.4: Serial dilutions for optimisation of nematode-specific ELISAs. Serial dilutions
used to determine optimum serum dilution (A, B) and mucosal protein concentration (C, D) for
Teladorsagia circumcincta-specific IgA and IgG ELISAs.

Samples were then incubated for 30 min at 37 °C with 100 μL of the primary antibody

(diluted in PBS-T + 3% BSA), followed by 100 μL of the secondary antibody linked to horse

radish peroxidase (HRP) conjugate (diluted in PBS-T + 3% BSA) (Table 2.4). Between

primary and secondary antibody incubations plates were washed four times with PBS-T.

Table 2.4: Primary and secondary antibodies used for nematode-specific ELISAs. Description
of antibodies used for Teladorsagia circumcincta-specific IgA and IgG ELISAs, along with
recommended dilution factor.

Antibody Dilution

IgA Primary Mouse anti Bovine/Ovine IgA (AbD Serotec, UK) 1:1,000

Secondary Goat anti Mouse Ig:HRP (Dako, UK) 1:2,000

IgG Primary Rabbit anti Sheep IgG (AbD Serotec, UK) 1:20,000

Secondary Goat anti Rabbit IgG:HRP (AbD Serotec, UK) 1:2,000

After four final washes with PBS-T, 100 μL of chromogen tetramethylbenzidine (TMB)

(Novex, UK) was added to each well and incubated for 15 min at room temperature. The

reaction was stopped using 100 μL of 10% 1 N HCl and the optical density (OD) read at

450 nm. Each plate included a blank (PBS-T + 3% BSA) as a negative control as well as a

pooled plasma or mucosa sample from a subset of infected animals as a positive control.

All samples were assayed in triplicate.
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2.2.4 Statistical Analysis

Log transformations were performed on worm burden (ln(X+1)), eggs per worm (ln(X+25)),

and faecal egg counts (ln(X+25)) to stabilise the variance. Flock data were used to assess

each haematology variable for normality of distribution; variables were log transformed

(ln(X)) where appropriate.

All statistical analyses were performed using SAS® (v9.3) procedures. Flock haematology

data from all animals (n=261) was used to determine if there was a relationship between

FEC2 and the haematology variables from blood taken at the same time. A general linear

model was used, with variables transformed where appropriate, and a model was fitted that

had effects for rearing type, group by sex interaction, and FEC2. The interaction between

group and the regression on FEC2 was examined, but was not significant. As 2011 was the

only year in which data were available for both males and females within the same group,

the 110 animals from the Lowland11 group (Figure 2.1) were used to estimate the effect of

sex on the haematology parameters.

For the 2010W and 2011W cohorts a general linear model (GLM) was fitted with effects for

phenotype (HighFEC or LowFEC), year, day post infection (7 or 14 dpi) and the interaction

between year and phenotype. To account for repeated measures, the MIXED procedure

was used to assess haematological and pepsinogen data in the 2011E cohort, with a

model fitted with effects for dpi, phenotype, and their interaction. Only data from day 7 post

infection onwards was used as this was when the animals were infected. Post-infection

FEC data were classified by week, with data prior to day 26 excluded as FEC did not rise

above zero. Due to extreme differences in worm burden the 2010W and 2011W cohorts

were analysed separately.
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2.3 Results

2.3.1 Flock-wide data

Animals were on average 19 weeks old by the time flock FEC reached 600 epg, when the

first individual FEC measurements were taken (Table 2.5). Initially flock FEC was slower to

rise in 2011 compared to 2010, with the Lowland11 lambs on average 41 days older than in

the previous year at the time of the first individual FEC measurement. As the single-born

ewe lambs (Hill11) had to be bought down from the hill, these animals were 20 days older

than their Lowland11 contemporaries at the time of the initial FEC measurement.

Table 2.5: Number of days between significant events during the selection and controlled
challenge of the Scottish Blackface lambs. Animals are grouped by grazing group (lowland
pasture or hill pasture) and challenge cohort (wethers or ewe lambs in 2010 and 2011). Lambing
is the date on which the first lamb was born, all subsequent numbers are the days from that point.
Individual faecal egg counts (FEC) were taken after two natural infections (FEC1 and FEC2). These
values were used to select animals from each challenge cohort (n=20), who were subsequently
cleared of infection with an anthelmintic and given a controlled challenge of 30,000 Teladorsagia
circumcincta L3. Animals were slaughtered at either 7, 14 or 71 days post infection (dpi).

Grazing group No. Challenge cohort No. Lambing FEC1 FEC2 Cleared Challenge Slaughter

Lowland10 92 2010W 20 0 105 163 178
219 226 (7 dpi)

213 227 (14 dpi)

Lowland11

76 2011W 20

0 144 201

216
245 252 (7 dpi)

239 253 (14 dpi)

34

2011E

8

253 279

350 (71 dpi)

351 (72 dpi)

Hill11 56 12 0 165 249
350 (71 dpi)

351 (72 dpi)

There was no significant relationship between FEC2 and any of the haematology parameters

on the same day. There was also no effect of sex on haematology parameters, although

females tended towards a higher absolute number of circulating basophils (P = 0.053).

2.3.1.1 Selection of resistant and susceptible animals

The average selection differentials for HighFEC and LowFEC animals in the 2010W and

2011W cohorts were -2.2 and 1.8 respectively (Appendix 2.1); this corresponds to selecting

the most extreme ~5% from each tail of the distribution. The difference between the average

selection differentials for the HighFEC and LowFEC animals was larger for the 2011E cohort

(2.7 and -3.1), with the most extreme ~1% of animals selected. As expected, the average

FEC over the two natural infections (FEC1 and FEC2) of the HighFEC and LowFEC animals

was markedly different (P < 0.001; Figure 2.5).
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Figure 2.5: Mean faecal egg count (FEC) of selected animals over two natural nematode
infections. Average FEC (± s.e.) over two natural nematode infections (FEC1 and FEC2) of
HighFEC (n=10) and LowFEC (n=10) animals in the 2010W, 2011W and 2011E cohorts. (***)
Indicates means differ (P < 0.001).

2.3.2 Controlled challenge

2.3.2.1 FEC over the course of infection

FEC was monitored weekly in the 2011E cohort after challenge with 30,000 T. circumcincta

L3. Eggs were not observed in faeces until 28 days post infection (Table 2.6). Following this,

egg counts rose to a maximum of 1,600 epg in the HighFEC group and 950 in the LowFEC

group. Eggs were not observed at all in one of the LowFEC animals (1124975) throughout

the course of infection, and in a further six animals (1 HighFEC and 5 LowFEC) egg counts

did not rise above 50 epg. The difference in FEC between HighFEC and LowFEC animals

was significant (P < 0.05), with a highly significant phenotype by week quadratic effect (P <

0.01; Figure 2.6) .
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Figure 2.6: Mean faecal egg count (FEC) over the course of a controlled challenge. FEC
(mean ± s.e.) in HighFEC (dashed line) and LowFEC (solid line) animals from the 2011E cohort
following infection with 3x104 Teladorsagia circumcincta L3 larvae. The mean FEC over the course
of the infection was significantly different between the two groups (P < 0.05).
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2.3.2.2 Nematode burden enumeration

There was no significant difference between HighFEC and LowFEC animals in worm burden,

either at 7, 14 or 71 days post infection. A significantly lower number of worms was obtained

from the 2011W (Figure 2.7B) and 2011E (Figure 2.7C) cohorts when compared to 2010

results (Figure 2.7A), and all data were therefore subsequently analysed separately by

cohort. In the 2011E cohort the difference in adult worms as a proportion of total worms

approached significance (99.7% for HighFEC and 84.6% for LowFEC; Kruskal-Wallis test;

P = 0.066). No additional worms were found after re-digestion of a subset of abomasa

using the pepsin digest technique, and therefore all nematode burden results presented

below were those determined using the saline digestion technique.
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Figure 2.7: Total worm burdens. Total worm burden (mean ± s.e.) in the abomasum of HighFEC
(white bars) and LowFEC (grey bars) animals following infection with 3x104 T. circumcincta L3 larvae.
Animals were slaughtered at 7 or 14 days post infection in the 2010W (A) and 2011W (B) cohorts,
or at the end of a 71-day infection in the 2011E cohort (C). There were no statistically significant
differences between HighFEC and LowFEC animals.

2.3.2.3 Fecundity

Adult T. circumcincta females were recovered from the abomasum of 13 of the 20 lambs in

the 2011E cohort. The mean number of gravid female worms examined per animal was

27 (range 13–73). The within-phenotype correlation between the total number of adult

T. circumcincta and FEC on the day of slaughter was 0.88 (P < 0.001). The mean (s.e.)

length of female T. circumcincta in HighFEC and LowFEC animals was 11.3 (0.33) mm and

9.8 (0.49) mm, respectively (Figure 2.8A; P = 0.03). Back-transformed mean values for

the number of eggs per gravid female were 30 and 15 for HighFEC and LowFEC animals,

respectively (Figure 2.8B; P = 0.03). For gravid females, the correlation between length and

number of eggs in utero on a within-animal basis was 0.33 (P < 0.01); the corresponding

correlation for animal effects on a within-phenotype basis was 0.63 (P < 0.01).
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Figure 2.8: Worm fecundity traits. Mean (±s.e.) length of gravid females (A) and eggs per
worm (B) from HighFEC (white bars) and LowFEC (grey bars) lambs following infection with 3x104

Teladorsagia circumcincta L3 larvae. (*) Indicates means differ (P < 0.05).

2.3.2.4 Pepsinogen

An increase in plasma pepsinogen levels was observed between day 7 and day 14 post

infection in both 2010W and 2011W cohorts (Figure 2.9A), however the difference was only

significant in 2010 (P < 0.01). In the 2011E cohort an increase was observed between 0

and 7 days post infection, with a subsequent decrease (Figure 2.9B).
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Figure 2.9: Plasma pepsinogen values. Plasma pepsinogen (mean ± s.e.) in HighFEC and
LowFEC lambs following infection with 3x104 Teladorsagia circumcincta L3 larvae. Animals were
slaughtered at 7 or 14 days post infection in the 2010W and 2011W (A) cohorts, or at the end of a
71-day infection in the 2011E cohort (B). There were no statistically significant differences between
HighFEC and LowFEC animals.

2.3.2.5 Haematology

The mean circulating numbers of basophils, eosinophils, large unstained cells, lymphocytes,

monocytes and neutrophils from both the 2010W and 2011W cohorts and the 2011E cohort
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are presented in Figure 2.10 and Figure 2.11, respectively. For animals killed at 7 or 14

dpi the number of circulating basophils was significantly lower in HighFEC animals in 2010

(Figure 2.10A; P = 0.03). Day post infection was a significant source of variation for the

number of circulating monocytes in both 2010 (Figure 2.10E; P < 0.01) and 2011 (P = 0.04),

and large unstained cells in 2011 (Figure 2.10C; P < 0.01).
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Figure 2.10: Haematological measurements at slaughter for 2010W and 2011W cohort lambs.
Haematological measurements at slaughter (mean ± s.e.) for the 2010W and 2011W HighFEC and
LowFEC lambs following infection with 3x104 Teladorsagia circumcincta L3 larvae. Phenotype was
a significant source of variation in the number of circulating basophils (A; P = 0.03).

For the 2011E cohort animals, slaughtered at 71 dpi, there was no effect of phenotype on any

of the haematology parameters, although basophils approached significance (Figure 2.11A;

P = 0.07). Day post infection was significant for all variables (P < 0.01), however there was

no significant interaction with phenotype.
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Figure 2.11: Haematological measurements at slaughter for 2010E cohort
lambs.Haematological measurements (mean ± s.e.) over the course of infection in 2011E
cohort HighFEC and LowFEC lambs following infection with 3x104 Teladorsagia circumcincta L3
larvae. There were no statistically significant differences between HighFEC and LowFEC animals.
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2.3.2.6 ELISA

The levels of anti-CarLA IgA was measured in HighFEC and LowFEC lambs. Day post

infection was a significant source of variation of CarLA-specific IgA in the serum of the

2011E (Figure 2.12C; P < 0.0001) and 2010W (Figure 2.12A; P = 0.04) cohorts. The

selected 2011E LowFEC animals had significantly higher CarLA-specific IgA levels in both

serum over the course of infection (Figure 2.12C; P = 0.04), and mucosa at slaughter

(Figure 2.12D; P = 0.04), than their HighFEC counterparts.
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Figure 2.12: CarLA-specific IgA levels in serum and mucosa. CarLA-specific IgA levels (mean
± s.e.) in serum and abomasal mucosa of HighFEC and LowFEC lambs following infection with
3x104 Teladorsagia circumcincta L3 larvae. Animals were slaughtered at 7 or 14 days post infection
in the 2010W and 2011W (A, B) cohorts, or at the end of a 71-day infection in the 2011E cohort (C,
D). Phenotype was a significant source of variation in the serum of 2011E animals over the course
of infection (P = 0.04), and in mucosa at slaughter (P = 0.04).

In addition to CarLA, anti T. circumcincta L3 IgA levels were also determined. In the 2010W

challenge cohort T. circumcincta-specific IgA levels were significantly higher at 7 days post

infection in both serum (Figure 2.13A; P < 0.01) and mucosa (Figure 2.13B; P < 0.01). In

the 2011E challenge cohort LowFEC animals had significantly higher IgA levels in serum

over the course of infection (P = 0.02), with a spike at 7 days post infection (Figure 2.13C).
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Figure 2.13: Teladorsagia circumcincta-specific IgA levels in serum and mucosa. T.
circumcincta-specific IgA levels (mean ± s.e.) in serum and abomasal mucosa of HighFEC and
LowFEC lambs following infection with 3x104 T. circumcincta L3 larvae. Animals were slaughtered
at 7 or 14 days post infection in the 2010W and 2011W (A, B) cohorts, or at the end of a 71-day
infection in the 2011E cohort (C, D). Phenotype was a significant source of variation in the serum of
2011E cohort animals (P = 0.02).
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There were no significant differences in T. circumcincta-specific IgG levels between HighFEC

and LowFEC animals in any of the challenge cohorts (Figure 2.14). Day post infection was

a significant source of variation for in the serum of the 2011E challenge cohort (P < 0.0001),

with levels increasing from challenge until 21 days post infection, after which they declined.
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Figure 2.14: Teladorsagia circumcincta-specific IgG levels in serum and mucosa. T.
circumcincta-specific IgG levels (mean ± s.e.) in serum and abomasal mucosa of HighFEC and
LowFEC lambs following infection with 3x104 T. circumcincta L3 larvae. Animals were slaughtered
at 7 or 14 days post infection in the 2010W and 2011W (A, B) cohorts, or at the end of a 71-day
infection in the 2011E cohort (C, D). There were no statistically significant differences between
HighFEC and LowFEC animals.
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2.4 Discussion

2.4.1 Validation of selection model

This is the first study in Ireland to confirm within-breed differences in the ability of Scottish

Blackface lambs to resist gastrointestinal nematode infection. In the 2011E cohort, selected

LowFEC animals achieved lower FEC throughout the course of infection, validating our

model of selection.

Variation among hosts in nematode egg output can be a result of variation in the adult worm

burden, variation in the average fecundity of each worm, or a combination of both (Stear

et al., 1996). Results of Good et al. (2006) with Texel and Suffolk animals showed that

differences in FEC are a result of differences in worm burden rather than in average worm

fecundity. Evidence from Scottish Blackface animals however indicates that variability in

FEC is largely due to differences in average worm fecundity (Stear et al., 1996), although

adult worm burden is also a contributing factor (Stear et al., 1995b).

At the time of slaughter worm burden was not significantly different between the HighFEC

and LowFEC animals, although it was numerically lower in the LowFEC lambs. However

total worm numbers in both groups were low as animals were not reinfected during the

study. From the FEC data it appears that the infection was beginning to tail off, and therefore

slaughter at 70 days post infection may have been too late to capture the strongest variation

in the number of adult worms.

Worm fecundity was significantly lower in the LowFEC (resistant) animals, with shorter,

less fecund adult females. The correlation between worm length and eggs in utero is also

indicative of the length of infection, and is in agreement with the observation from FEC data

that the infection was beginning to wane. While there were no significant differences in

worm burden between the HighFEC and LowFEC animals, there was a correlation between

number of mature adults and FEC on day of slaughter. This indicates that adult worm

burden may play a role in reduced FEC in Scottish Blackface animals, however as discussed

above, the reduction in variability in FEC by the time the animals were slaughtered indicates

that the peak worm burdens in these animals had passed.

While there were differences in parasitological parameters between the HighFEC and

LowFEC groups, neither plasma pepsinogen nor any of the haematology variables could

differentiate the two groups. Pepsinogen levels have previously been shown to be an

indicator of ostertagiosis (Lawton et al., 1996; Balic et al., 2000b; Davies et al., 2005),

however other studies of within-breed differences have found that it is not significant (Stear

et al., 1995a). Therefore, plasma pepsinogen concentration alone may be an unreliable

method of differentiating resistant or susceptible individuals (Lawton et al., 1996).

While there was no effect of phenotype on any of the haematology variables, an increase

was observed in the number of large unstained cells, monocytes and neutrophils on the day
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of slaughter. This could potentially be a result of stress from the animals being moved to the

site of slaughter. Neutrophils have been shown to increase as a response to weaning stress

in calves, however major changes in monocyte number were not observed (O’Loughlin

et al., 2011).

Levels of serum anti-nematode IgA peaked at 7 days post infection. There was a significant

difference between phenotypes, with resistant animals having higher levels of both anti-T.

circumcincta and anti-CarLA serum IgA throughout the course of infection. IgA has been

widely reported as mediating suppression of gastrointestinal nematode growth and fecundity

during infection with T. circumcincta (Strain et al., 2002; Martínez-Valladares et al., 2005;

Beraldi et al., 2008), with a strong IgA response often observed against 4th-stage larvae in

previously exposed animals (Stear et al., 1995b).

IgA is active at the site of infection, the abomasal mucosa; however plasma and mucosal

IgA are correlated (Martínez-Valladares et al., 2005). In sheep, unlike in humans, plasma

IgA is drawn from mucosal surfaces, and binds nematodes and the excretory-secretory

molecules they release. A proportion of the unbound IgA is then transferred to the blood via

the lymphatic system (Prada Jiménez de Cisneros et al., 2014). The relationship between

the two parameters is strong but nonlinear, with the major determinants of plasma IgA being

both worm mass (burden and size) and mucosal IgA activity (Prada Jiménez de Cisneros

et al., 2014). This must therefore be taken into account when interpreting our results.

Resistant animals had significantly higher levels of serum anti-T. circumcincta IgA throughout

the infection. While mucosal levels of anti-T. circumcincta IgA were numerically higher in

resistant animals on the day of slaughter, this was not significant. The resistant animals

therefore have larger quantities of unbound IgA entering the bloodstream, particularly at

day 7. This could potentially be due to excess IgA production, or a result of more free IgA

due to low worm numbers or reduced worm length.

The carbohydrate larval antigen (CarLA) is purified from Trichostrongylus colubriformis L3

larvae, however there is an epitope on the CarLA molecule that is common to CarLA from a

wide range of gastrointestinal nematode species (Harrison et al., 2003b,a). This epitope is

hidden when CarLA is present on the L3 but is available for detection by the immune system

once CarLA is released as L3 larvae moult to become L4 stage larvae. The response

detected in the serum and mucosa samples is most likely to this epitope. Indeed, challenge

of T. circumcincta-immune sheep has been shown to induce a local antibody response to a

molecule with very similar properties to CarLA (Balic et al., 2003). Animals identified as

having ‘high levels’ of salivary anti-CarLA IgA have been shown to have 20–30% lower FEC

during a mixed-species infection than animals with low or undetectable titres (Shaw et al.,

2012). While the anti-CarLA IgA assayed by Shaw et al. was from saliva rather than serum

and mucosa, these results are in agreement with our findings. The serum IgA response to

CarLA was found to mirror that of the response to L3 T. circumcincta antigen, indicating

that the CarLA test could potentially be used as a proxy if T. circumcincta antigen could not

be sourced.
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L4 larvae were observed in one animal, indicating that hypobiosis had occurred. This

animal (1124975) had the highest levels of both anti-T. circumcincta and anti-CarLA IgA

in the mucosal samples. Previous studies have shown that the number of inhibited larvae

is positively associated with the size of the local IgA response to 4th-stage larvae (Stear

et al., 1995b). The antigen used in both ELISA’s in this study was generated from L3 larvae,

however it has been reported that there is a correlation (r = 0.68; P < 0.001) between the

IgA response to both L3 and L4 antigen (Stear et al., 1995b). The presence of inhibited

larvae is not surprising, as at the time of infection the animals were over 9 months old, by

which time protective immunity is becoming established (Vlassoff et al., 2001; Abbott et al.,

2009). Female lambs also have a stronger immune response than their male counterparts,

who are less resistant to the establishment of infection (Smith et al., 1985; Gulland and Fox,

1992; Barger, 1993). This may also account for the animals in which there were very low

FEC over the course of infection.

2.4.2 The host response to the larval stages of infection

The 2010W and 2011W cohorts were used to define the host response to the larval stages

infection, with animals slaughtered at either 7 or 14 days post infection. While the plan

had been to combine results from the two cohorts, a significant difference in worm burden

was observed between years. The 2011W cohort were given L3 that had been stored in

H20 at 4 °C for 12 months, and this could have contributed to the reduced burden. There

was however a large range in the total worm burden among the 2011W cohort lambs, the

reason for which is unknown. To ensure that all worms were recovered from the abomasa,

an additional pepsin digestion was carried out on a subset of abomasa. This digest did

not result in any additional worms being detected however. Due to the differences in worm

burden between the two cohorts, all data were analysed separately. Worm burden was not

significantly different between the HighFEC and LowFEC groups in either cohort. This was

not surprising as variation previous studies in Scottish Blackface indicate that resistance

is expected to primarily manifest as reduced worm fecundity (Stear et al., 1995b, 1996),

which could not be recorded in these animals. For animals that manifest resistance as

a reduced worm burden it has been shown that while differences in immune response

between resistant and susceptible breeds are mounted earlier in infection, differences in

actual worm burden are not apparent until approximately 21 days post infection (Hassan

et al., 2011a).

While there was no significant difference in plasma pepsinogen between the HighFEC

and LowFEC animals, levels increased between day 7 and day 14 post infection, This is

indicative of increasing gastric mucosal damage as infection progresses. A higher number

of basophils were observed in the LowFEC compared to the HighFEC animals in 2010.

Induction of basophils is a feature of the anti-helmintic response and drives a Th2-type

immune response (Allen and Maizels, 2011). Therefore LowFEC animals may be generating
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a more effective immune response to infection. This may not have been apparent in the

2011W lambs due to the reduced challenge. The number of circulating eosinophils and

monocytes was significantly different between the two cohorts, which may be indicative of

the difference in response to a low and high worm burden. Eosinophils were higher in the

2011W cohort. An increase of eosinophils is characteristic of helminth infection (Meeusen

and Balic, 2000), however a reduction of peripheral eosinophilia has been observed during

the period of primary infection following challenge of lambs with T. circumcincta (Sutherland

et al., 1999). It was hypothesised that this may have resulted from the recruitment of cells

into the intestinal epithelium (Sutherland and Scott, 2009). The higher challenge in the

2010W group may therefore have resulted in an increased migration to the site of infection.

The number of circulating monocytes was higher in the 2010W cohort. Monocytes are

part of the innate immune system, and have multiple roles including differentiating into

macrophages and dendritic cells in response to inflammation (Murphy et al., 2008). Both

macrophages and dendritic cells are foremost among the cells that recognise, process and

present antigens in the gastrointestinal tract (Maizels and Yazdanbakhsh, 2003; Maizels

et al., 2009). The higher levels of monocytes in the 2010W lambs may reflect the increased

antigen challenge experienced by this cohort.

It has previously been reported that in 9 month old Scottish Blackface sheep infected with T.

circumcincta, the plasma IgA response against L3 peaks at 8-10 days post infection, and

subsequently declines (Henderson and Stear, 2006). This peak is despite evidence that

the majority of L3 mature into L4 by 4 days post ingestion (Armour et al., 1966), therefore

the observed peak may be due to cross-reactivity of anti-L3 antigen with other larval stages

(Prada Jiménez de Cisneros et al., 2014). While there is a clear difference between the

serum anti-nematode IgA levels in HighFEC and LowFEC animals at 7 days post infection

in the 2011E cohort, as described above, this is not the case in either the 2010W or 2011W

cohorts, although the LowFEC 2010W animals tend towards a higher anti-T. circumcincta

IgA at day 7. In the 2010W cohort anti-CarLA IgA levels for both phenotypes peak at 7

dpi, whereas in the 2011W cohort animals levels were higher at 14 dpi. This may be due

to these animals being sampled when IgA levels were either rising or falling, as both 7

and 14 days post infection sit just outside the range of the peak observed in the study by

Henderson and Stear (2006). This could be rectified in future studies by taking a baseline

blood sample at day 0, along with more regular blood samples from animals from both

time points. This could also be a result of sex, or the increased power due to the larger

number of animals in the 2011E cohort. When selected the 2011E cohort lambs were more

divergent, representing 1% of the tails of distribution. Additionally, the 2011E cohort lambs

were older at the time of slaughter, so could be mounting a more rapid immune response to

infection.
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2.4.3 Conclusions

In summary, this study was successful in identifying Scottish Blackface lambs with divergent

phenotypes for gastrointestinal nematode resistance. Resistant lambs, as identified by a

low faecal egg count (FEC) have reduced nematode fecundity, with shorter, less fecund

adult females. The reduction in worm fecundity observed in these animals may be a result

of anti-nematode IgA levels. There was some evidence that the HighFEC animals tended

towards a higher worm burden in both the 2010W cohort animals at 14 days post infection,

and the 2011E animals. The lowered FEC in these Scottish Blackface lambs may therefore

be a result of not only reduced worm fecundity but also reduced worm burden, as is seen

in other populations (Stear et al., 1996). Anti-CarLA IgA levels were found to mirror those

of anti-T. circumcincta IgA, and therefore the test has the potential to be used when T.

circumcincta antigen cannot not be sourced.
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Chapter 3

Transcriptome profiling of the abomasal

lymph node of Scottish Blackface lambs

with divergent phenotypes for resistance to

gastrointestinal nematodes
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3.1 Introduction

Resistance to GIN is moderately heritable (h2 ~ 0.3) (Safari et al., 2005; Bishop and Morris,

2007), therefore one sustainable method of nematode control is to select for genetically

resistant individuals (Kemper et al., 2009). Selection using phenotypic traits such as faecal

egg count (FEC) requires prior exposure to GIN, whereas selection could be simplified

through the identification of molecular markers. However, any such strategy would benefit

from a detailed understanding of the genes and mechanisms involved in expressing a

resistant phenotype and the factors that regulate this response. The molecular mechanism

of resistance may vary between breeds and populations (Brown et al., 2013; Sayre and

Harris, 2012) and so investigations of the host response must be tailored to the population

in question.

Transcriptome and proteome analyses are powerful methods for the identification and

quantification of genes and proteins expressed during a physiological perturbation. These

tools have led to a greater understanding of the molecular basis of phenotypic variation

in resistance to GIN (Pemberton et al., 2011; Nagaraj et al., 2012; Pemberton et al.,

2012; Ahmed, 2013; Gossner et al., 2013). During the past decade both bovine- and

ovine-specific microarrays have been used in sheep to provide global gene expression

information. A number of studies have used microarrays to identify genes associated with

the host response to GIN in the duodenum (Diez-Tascon et al., 2005; Keane et al., 2006,

2007), abomasal mucosa (Rowe et al., 2009; Knight et al., 2011) and lymph (MacKinnon

et al., 2009; Andronicos et al., 2010; Knight et al., 2010; Gossner et al., 2013) in a variety

of breeds. These studies have identified hundreds of genes that are differentially expressed

(DE) between known resistant and susceptible animals.

Recently high-throughput sequencing of cDNA (RNA-Seq) has allowed the examination of

RNA expression on an even larger scale (Wang et al., 2009). While microarray technology

relies on prior knowledge of genomic sequence, RNA-Seq allows the detection of unknown

genes, alternative splice sites and novel isoforms. Another advantage that is particularly

relevant to sheep is the ability to re-analyse the data once more genomic information

becomes available (e.g., the release of an updated genome or transcriptome). Transcriptome

analysis in sheep has been aided by the recent release of a ovine reference genome

(Kijas et al., 2012; Flicek et al., 2014). To date GIN resistance using RNA-Seq has been

investigated in only two separate studies (Pemberton et al., 2011; Ahmed, 2013; Gossner

et al., 2013). Pemberton et al. (2011) and, subsequently Gossner et al. (2013) examined

gene expression in the abomasal lymph node of resistant and susceptible Scottish Blackface

lambs trickle infected with T. circumcincta in comparison to sham infected controls. Many

of the genes with increased expression in resistant lambs were key regulators of a TH2

immune response, although the authors concluded that resistance/susceptibility is not

simply a matter of TH1/TH2 discrimination, as susceptible sheep also showed increased

expression of TH2-type genes (Gossner et al., 2013). A major part of the response in
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resistant lambs also appeared to include control and suppression of acute inflammation

(Gossner et al., 2013). Ahmed (2013) compared expression in the abomasal lymph node

of Suffolk (relatively susceptible) and Texel (relatively resistant) lambs artificially infected

with T. circumcincta. A differential polarisation of the immune response was found between

the breeds, with Texel lambs have increased expression of TH1, TH2 and Treg genes in a

synchronised manner post-infection while Suffolk reduced TH1 gene expression without

significant TH2 or Treg induction (Ahmed, 2013). The aim of this project was to sample the

transcriptome of Scottish Blackface lambs with divergent phenotypes for GIN resistance, in

order to identify genes and biological processes associated with the host response to GIN

in resistant and susceptible individuals.
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3.2 Materials and Methods

3.2.1 Ethical approval

All animal procedures described in this study were conducted under experimental license

from the Irish Department of Health in accordance with the Cruelty to Animals Act 1876 and

the European Communities (Amendments of the Cruelty to Animals Act 1976) Regulations,

1994.

3.2.2 Experimental design

The selection and challenge of the animals used in this experiment have been described

previously (section 2.2.3). Briefly, Scottish Blackface lambs, grazed together from birth,

were monitored for faecal egg count (FEC; 2 samples following each of 2 independent

natural infections). These observations were used to identify the most resistant (n=10,

LowFEC) and susceptible (n=10, HighFEC) individuals based on individual animal values

for ln(FEC+25) estimated using mixed model procedures. The selected lambs were given a

controlled challenge of 30,000 Teladorsagia circumcincta larvae (L3) at 39 (range 29 - 50)

weeks of age, and slaughtered at either 7 or 14 days post infection (dpi) to define the acute

responses to infection. This procedure was replicated across 2 years (2010 and 2011).

3.2.3 Tissue samples

Immediately post slaughter abomasal lymph nodes (ALN) were removed and collected. The

tissue was cut into pieces approximately 5 mm3 and immersed in 10 volumes of RNAlater®
solution (Ambion, USA). This was kept at room temperature for 24 h, before long-term

storage at -80 °C.

3.2.4 RNA extraction

Total RNA was extracted from abomasal lymph node stored in RNA later using Sigma TRI

Reagent® (Sigma Aldrich, UK). Approximately 0.1 g of tissue was homogenised in 3 ml

TRI Reagent®, and incubated at room temperature for 5 min before being transferred into

Eppendorf tubes (1 ml/tube), to each of which 200 μl chloroform was added. Tubes were

shaken vigorously, then incubated at room temperature for 2 to 3 min before centrifugation

at 12,000 x g for 15 min at 4 °C. The RNA was precipitated by transferring the resulting

colourless upper aqueous phase into a clean Eppendorf tube, adding isopropanol (0.6

times the volume of the aqueous phase), mixing and centrifuging at 12,000 x g for 10 min

at 4 °C. The supernatant was removed, and the RNA pellet washed by adding 1 ml 75%
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EtOH before centrifuging at 7,500 x g for 5 min at 4 °C. Excess ethanol was aspirated

before the pellet was allowed to air dry. RNA was resuspended in 50 μl nuclease free

water. Total RNA was cleaned up using the RNeasy Mini Kit (Qiagen, Germany) and

an in-solution DNase digestion (RNase-free DNase set; Qiagen, Germany) as per the

manufacturers’ recommendations. RNA quality was assessed using an Agilent® RNA

6000 Nano Assay on the 2100 Bioanalyzer, and total RNA quantified using the NanoDrop®
ND-1000 spectrophotometer (Thermo Fisher Scientific, UK). All RNA samples were stored

at -80 °C.

3.2.5 Library preparation and sequencing

Illumina TruSeq™ libraries were prepared following the TruSeq™RNA sample preparation

v2 guide (Part #15026495 Rev. B; Appendix 3.1; Figure 3.1), using total RNA from cleaned

abomasal lymph node samples.

Briefly, 3 μg of poly-A containing mRNA was captured and purified using poly-T oligo-

attached magnetic beads. The mRNA was subsequently randomly fragmented using

divalent cations under elevated temperature, which results in more uniform sequencing

coverage. The cleaved RNA fragments were primed with random hexamers and reverse

transcribed into cDNA. This was followed by second strand cDNA synthesis using RNase H

and DNA Polymerase I, creating double stranded (ds) cDNA.

During the end repair process any remaining overhangs from the DNA Polymerase I step

were fixed into blunt ends, and 5’ phosphates and 3’ hydroxyls added, as chemically

synthesised DNA does not have 5’ phosphate groups, which are needed for downstream

ligation. The 3’ ends of each cDNA read were then adenylated, creating an overhang,

to prevent them from ligating to one another during the adapter ligation process. Unique

sequencing adapters, which hybridise to the flow cell during sequencing, were ligated to the

ends of the ds cDNA using the 3’-A overhang, and these fragments were enriched using

PCR.

The standard protocol was followed aside from the following: in the PCR step the number

of PCR cycles was reduced to 10, and to avoid bead contamination the PCR products were

cleaned up using a Qiagen MinElute column rather than AMPure XP beads. Libraries were

visualised using an Agilent® DNA 1000 assay on the 2100 Bioanalyzer, and quantified using

the Qubit® dsDNA BR assay (Invitrogen, UK) as per the manufacturers’ recommendations.
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Figure 3.1: TruSeq™RNA sample preparation. Poly-A containing mRNA is captured and purified
using poly-T oligo-attached magnetic beads. The mRNA is subsequently randomly fragmented,
then primed with random hexamers before being reverse transcribed into cDNA. This is followed by
second strand cDNA synthesis, creating double stranded (ds) cDNA. During the end repair process
any remaining overhangs are fixed into blunt ends, and 5’ phosphates and 3’ hydroxyls added. The
3’ ends of each cDNA read are then adenylated, creating an overhang. Unique sequencing adapters,
which hybridise to the flow cell during sequencing, are ligated to the ends of the ds cDNA using the
3’-A overhang, and these fragments are enriched using PCR.
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The indexed cDNA libraries containing the specific Illumina TruSeq adapters from the 2010-

born animals were sent to GATC Biotech (Kontanz, Germany), where they were pooled

(Table 3.1). Each pool was sequenced on two lanes of an Illumina HiSeq2000 with 50 bp

paired-end reads. The libraries from the 2011-born animals were pooled (Table 3.1) and

sequenced at the Norwegian Sequencing Centre (NSC; Oslo, Norway) over four lanes of

an Illumina HiSeq2000 with 100 bp paired-end reads.
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Table 3.1: Illumina TruSeq™ adapter index and pooling strategy for abomasal lymph node
RNA libraries. Adapters were used from both TruSeq LT Kit Set A and Set B. The libraries from the
2010-born animals were split into two pools (n = 10), with each pool sequenced on two lanes of an
Illumina HiSeq2000. All (n = 20) libraries from the 2011-born animals were pooled and sequenced
over four lanes of an Illumina HiSeq2000.

Animal ID Year Phenotype Day post infection Adapter Kit Pool

1024566 2010 High FEC 7 AR013 A 1

1024690 2010 High FEC 7 AR006 A 1

1024704 2010 High FEC 7 AR007 A 1

1024619 2010 High FEC 7 AR006 A 2

1024644 2010 High FEC 7 AR016 A 2

1024647 2010 High FEC 14 AR012 A 1

1024689 2010 High FEC 14 AR005 A 1

1024649 2010 High FEC 14 AR014 A 2

1024626 2010 High FEC 14 AR004 A 2

1024613 2010 High FEC 14 AR002 A 2

1024551 2010 Low FEC 7 AR015 A 1

1024570 2010 Low FEC 7 AR014 A 1

1024624 2010 Low FEC 7 AR015 A 2

1024630 2010 Low FEC 7 AR007 A 2

1024572 2010 Low FEC 7 AR013 A 2

1024596 2010 Low FEC 14 AR004 A 1

1024580 2010 Low FEC 14 AR002 A 1

1024659 2010 Low FEC 14 AR016 A 1

1024558 2010 Low FEC 14 AR012 A 2

1024715 2010 Low FEC 14 AR005 A 2

1124962 2011 High FEC 7 AR015 A 3

1125034 2011 High FEC 7 AR010 B 3

1125098 2011 High FEC 7 AR008 B 3

1124951 2011 High FEC 7 AR011 B 3

1124929 2011 High FEC 7 AR001 B 3

1124986 2011 High FEC 14 AR002 A 3

1125036 2011 High FEC 14 AR016 A 3

1124984 2011 High FEC 14 AR007 A 3

1124932 2011 High FEC 14 AR003 B 3

1125031 2011 High FEC 14 AR020 B 3

1124995 2011 Low FEC 7 AR014 A 3

1124924 2011 Low FEC 7 AR005 A 3

1124956 2011 Low FEC 7 AR019 A 3

1124990 2011 Low FEC 7 AR006 A 3

1124942 2011 Low FEC 7 AR004 A 3

1124967 2011 Low FEC 14 AR012 A 3

1125044 2011 Low FEC 14 AR013 A 3

1125058 2011 Low FEC 14 AR018 A 3

1125040 2011 Low FEC 14 AR009 B 3

1124946 2011 Low FEC 14 AR021 B 3
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3.2.6 Data analysis

Workflow
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OARv3.1
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FastQC

STAR

HTSeq-count

QC check 
reads

IPA

Count reads
per gene

Differential gene
expression

Network &
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Figure 3.2: Flow diagram of the steps involved in the analysis of next generation sequencing
data. The version of software used is indicated in the text.

3.2.6.1 Download and quality assessment of reads

Reads that passed filter were downloaded in .fastq format from either GATC or NSC to

a Teagasc server (hcux323.teagasc.net) via file transfer protocol using either the mget

or wget command. The md5sum command was used to check that files had downloaded

correctly, after which the files were unzipped. The tools FastQC (v0.10.0) and Trim Galore

(v0.3.3) (http://www.bioinformatics.babraham.ac.uk/projects/) were used to visualise the

data and trim reads respectively. Trim Galore, which utilises Cutadapt (v1.2.1), was run

using the default settings for paired end data, resulting in base calls with a Phred score less

than 20 removed.

fastqc <input_file> > <output_file>
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trim_galore --paired -q 20 <left_reads> <right_reads>

3.2.6.2 Aligning reads to the ovine genome

Trimmed reads were mapped to the ovine genome (OARv3.1) (Kijas et al., 2012) using STAR

(Dobin et al., 2013), with the Ensembl (Ensembl 74) Ovis aries transcriptome annotation

supplied. Alignments were output only if the ratio of mismatches to mapped length per read

pair was less than 0.02. Only uniquely mapped reads were kept for read counts.

STAR --readFilesIn <trimmed_left_reads> <trimmed_right_reads> --runMode

alignReads --genomeDir <genome_dir> --runThreadN 12 00genomeLoad

NoSharedMemory --outFileNamePrefix --ouReadsUnmapped Fastx

--outFilterMismatchedNoverLmax 0.02 --outFilterMultimapNmax 1

--sjdbGTFfile <Ovis_aries_Ensembl_annotation.gtf>

samtools flagstat <accepted_hits.bam> > <flagstats.txt>

The resulting files were sorted by read name and converted from BAM to SAM using

SAMtools (v 0.1.18; Li et al., 2009).

samtools sort -n <accepted_hits.bam> <accepted_hits_sorted>

samtools view -h -o <accepted_hits_sorted.sam>

<accepted_hits_sorted.bam>

3.2.6.3 Counting reads per gene

The mapped reads, along with the Ensembl (Ensembl 74) Ovis aries transcriptome

annotation, were used to estimate raw counts per gene using the HTSeq (version 0.5.3p3;

http://www-huber.embl.de/users/anders.HTSeq) function htseq-count, with the union overlap

resolution mode. This is the recommended mode, where reads are only discarded if the

read overlaps more than one feature.

htseq-count -m union -i gene_id -s no <tophat_accepted_hits_sorted.sam>

<Ovis_aries_Ensembl_annotation.gtf> > <htseq_count_results.txt>

3.2.6.4 Gene expression analysis

Comparisons were made between HighFEC and LowFEC animals at either 7 or 14 dpi or

within groups over time between 7 and 14 dpi (Figure 3.3). The two years, 2010 and 2011,

were analysed separately due to differences in worm burden (Figure 2.7).
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  HighFEC              LowFEC

7 dpi                          n = 5                                                n = 5

14 dpi                        n = 5                                                n = 5

Figure 3.3: Comparisons made between groups in EdgeR analysis. Comparisons were made
between phenotypes (HighFEC and LowFEC) at each time point (7 or 14 days post infection), and
within phenotype (HighFEC or LowFEC) over time (7 and 14 days post infection) for both 2010- and
2011-born lambs.

The Bioconductor package edgeR (version 3.0.8) (Robinson et al., 2010) was run within R

software (version 3.0.2) to analyse differential expression of read counts.

require(EdgeR)

D <- as.matrix(read.table("<comparison>.txt", header=TRUE, row.names = 1))

head(D)

Firstly, low expression tags were filtered, keeping only genes that achieved at least one

count per million (CPM) in at least five samples.

keep <- rowSums(D)>1)>=5

D <- D[keep,]

table(keep)

Trimmed mean of M-values (TMM) (Robinson and Oshlack, 2010) normalisation was used

to account for differences in RNA composition between samples. TMM normalisation

methods are robust to the presence of different library sizes and widely different library

compositions, both of which are typical of real RNA-seq data (Dillies et al., 2013).

f <- calcNormFactors(D, method=c("TMM"))

g <- gsub("[0-9]", "", colnames(D))

g2 <- gsub("_", "", g)

d <- DGEList(counts = D, group = g2, lib.size = colSums(D) * f)
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Data were analysed using both common and moderated tagwise dispersions. Tagwise

dispersion ranks genes more highly when counts are consistent between replicates, as

opposed to those with highly variable read numbers.

dc <- estimateCommonDisp(d, verbose=T)

dtw <- estimateTagwiseDisp(dc)

MDS plots were created to show distances, in terms of leading log-fold-changes between

samples; the leading log-fold-change is the average of the largest absolute log-fold-change

between each pair of samples, and can be viewed as a type of unsupervised clustering.

plotMDS(dc/dtw)

Exact genewise tests for differential expression between groups were computed; to account

for multiple testing genes were filtered using a Benjamini & Hochberg false discovery rate

(FDR; Benjamini and Hochberg, 1995) of ≤ 0.1.

de.com <- exactTest(dc/dtw)

edgeR.results <- (topTags(de.com, n=row(de.com$table), adjust.method=”BH”,

sort.by=”p.value”)$table)

de.gene.nos <- summary(de<-decideTestsDGE(de.com, adjust.method=”BH”,

p.value=0.1))

Log-fold-changes, highlighting the DE genes, were visualised using a smear plot.

edgeR.results.sig <- subset(edgeR.results, FDR<0.1)

plotSmear(de.com,de.tags=edgeR.results.sig)

Heat maps of individual RNA-seq samples were created using moderated log-counts-per-

million of the DE genes in each group.

logCPM <- cpm(dc/dtw, prior.count=2, log=TRUE)

edgeR.results.sig$GeneID=rownames(edgeR.results.sig)

sig.genes=edgeR.results.sig$GeneID

myPalette <- colorRampPalette(c("dodgerblue4","white","darkgreen"))(n=299)

groups <- d$samples$group

colour.map <- function(groups) { if(groups=="HF") "lightgrey" else "darkgrey"

}

colour.bar <- unlist(lapply(groups,colour.map))

heatmap.2(logCPM[c(sig.genes), ],scale="none",trace="none", density.info="none",

offsetRow=0.5, offsetCol=0.5, col=myPalette, cexRow=0.8, cexCol=0.8, srtCol=0,

adjCol=0.5,margins=(c(4,9)), keysize=1)

heatmap.2(logCPM[c(sig.genes), ], Rowv=T, Colv=F, scale="none", trace="none",

density.info="none", offsetRow=0.5, offsetCol=0.5, col=myPalette, cexRow=0.8,

cexCol=0.8, srtCol=0, adjCol=0.5,margins=(c(5,9)), ColSideColors=colour.bar,

keysize=1)
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All genes differentially expressed (FDR ≤ 0.05) using common dispersion estimates were

included in downstream pathway analysis. For “novel protein coding genes” Bos taurus

orthologs were examined, and 1-to-1 orthologs were used to predict gene function.

3.2.7 Pathway analysis

Human Ensembl (version 74) 1-to-1 orthologs were obtained using Ensembl’s Biomart

tool (www.ensembl.org/biomart/martview/). Ingenuity® Systems Pathway Analysis (IPA;

Ingenuity Systems, Redwood City, CA, USA; www.ingenuity.com; v18030641) was used

to identify networks of interacting genes and other functional groups from DE genes. The

comparison analysis was used to identify the unique and common molecules across the

two years.

82



3.3 Results

3.3.1 RNA isolation & library preparation

High quality RNA (Table 3.2) was isolated from ALN for all animals; the average concentration

was of RNA 390 ng/μL. Bioanalyzer analysis of RNA showed an average RNA integrity

number (RIN) of 9.2 (range 8.5-9.5).

A secondary peak around 1500 bp was observed in the Bioanalyzer trace of some libraries

(Figure 3.4a). Possible explanations for this peak were 1) bead contamination or 2) over-

cycling of PCR leading to concatemers. To avoid bead contamination the PCR product was

cleaned up using a Qiagen MinElute column rather than AMPure XP beads, and a titration

of PCR cycles was performed. When the PCR was run with 10 cycles no additional peaks

were observed (Figure 3.4b), and subsequently all samples were prepared using 10 cycles

of PCR.

A         B

Figure 3.4: Titration of PCR cycles for TruSeq™RNA library sample preparation. Bioanalyzer
trace from sample amplified using 10 (A) or 13 (B) PCR cycles.
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Table 3.2: Extraction and quantification of RNA from abomasal lymph nodes. Animalas are
defined by year (2010 or 2011), Phenotype (HighFEC or LowFEC) and day post infection (dpi; 7 or
14). Weight of abomasal lymph node (ALN) sample used for RNA extraction is given, along with
concentration of extracted RNA, RIN value, and 28:18S ratio.

Animal ID Year Phenotype dpi Weight of ALN (g) RNA conc. (ng/uL) RIN 28S:18S

1024566 2010 HighFEC 7 0.1253 261 9.1 1.9

1024690 2010 HighFEC 7 0.1498 253 8.9 1.7

1024704 2010 HighFEC 7 0.0932 232 9.1 1.8

1024619 2010 HighFEC 7 0.1534 315 9.2 2.1

1024644 2010 HighFEC 7 0.1423 254 9.0 1.8

1024647 2010 HighFEC 14 0.1256 257 9.3 2.0

1024689 2010 HighFEC 14 0.0986 213 9.1 1.8

1024649 2010 HighFEC 14 0.1258 191 9.4 2.0

1024626 2010 HighFEC 14 0.0903 203 9.3 1.9

1024613 2010 HighFEC 14 0.1140 220 9.0 1.8

1024551 2010 LowFEC 7 0.1394 407 8.5 1.5

1024570 2010 LowFEC 7 0.1318 416 8.9 2.0

1024624 2010 LowFEC 7 0.1489 338 9.0 1.7

1024630 2010 LowFEC 7 0.1386 233 9.1 1.8

1024572 2010 LowFEC 7 0.1212 423 9.1 1.8

1024596 2010 LowFEC 14 0.1068 184 9.1 1.8

1024580 2010 LowFEC 14 0.1170 204 9.1 1.7

1024659 2010 LowFEC 14 0.1056 191 9.4 1.8

1024558 2010 LowFEC 14 0.1349 269 9.2 2.0

1024715 2010 LowFEC 14 0.1106 241 9.2 1.8

1124962 2011 HighFEC 7 0.1250 658 9.2 1.7

1125034 2011 HighFEC 7 0.1540 493 9.2 1.9

1125098 2011 HighFEC 7 0.1370 660 9.1 1.9

1124951 2011 HighFEC 7 0.1180 524 9.2 2.0

1124929 2011 HighFEC 7 0.1030 423 9.5 2.0

1124986 2011 HighFEC 14 0.1060 636 9.5 2.1

1125036 2011 HighFEC 14 0.1210 704 9.4 1.8

1124984 2011 HighFEC 14 0.1200 545 9.1 1.7

1124932 2011 HighFEC 14 0.1290 479 9.5 2.1

1125031 2011 HighFEC 14 0.1010 425 9.3 2.0

1124995 2011 LowFEC 7 0.1130 420 9.4 2.1

1124924 2011 LowFEC 7 0.1070 248 9.1 1.8

1124956 2011 LowFEC 7 0.1370 623 9.1 1.7

1124990 2011 LowFEC 7 0.1080 393 9.0 1.7

1124942 2011 LowFEC 7 0.1020 464 9.2 1.7

1124967 2011 LowFEC 14 0.1280 688 9.2 1.8

1125044 2011 LowFEC 14 0.1040 418 9.4 1.8

1125058 2011 LowFEC 14 0.1240 461 9.3 2.1

1125040 2011 LowFEC 14 0.1350 500 9.3 1.9

1124946 2011 LowFEC 14 0.1200 518 9.2 1.8
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3.3.2 Data analysis

High throughput sequencing of the ovine lymph node RNA resulted in 790,415,623 paired-

end reads (50bp) in 2010 and 645,282,528 paired-end reads (100bp) in 2011. Approximately

1% of reads were removed due to low-quality (Phred score <20; Table 3.3 & Table 3.4).

There was greater variability in the number of reads per animal for the libraries sequenced

at GATC Biotech (19,613,960 to 73,744,229) compared with those sequenced at the NSC

(26,090,324 to 36,640,772), indicating a more even pooling of libraries at the NSC.

Using the alignment software program STAR, an average of 30,050,657 (84%) reads per

sample mapped to a unique region of the ovine genome. STAR has been shown to compare

favourably to other software for short read alignment (Engstrom et al., 2013), and was

chosen primarily because of the speed of alignment combined with its accuracy. Of the

aligned reads per sample, an average of 13,090,566 (36% of sequenced reads) did not

align to a known gene, with 16,670,465 (46% of sequenced reads) aligning to a known

feature (Table 3.3 & Table 3.4). This is consistent with a study in cattle, where 46% of reads

aligned to a known feature (Foley, 2014).

The top 100 most expressed genes in each comparison (Figure 3.3) were examined

using log2CPM values from EdgeR, with genes ranked from most highly expressed to

least highly expressed. The top two most highly expressed gene in all comparisons

were ENSOARG00000009143, a novel protein coding gene orthologous to the human

immunoglobulin heavy constant gamma family of genes, and ENSOARG00000012585,

a novel protein coding gene orthologous to immunoglobulin lambda human genes. The

presence of these genes, alongside genes coding for known immunoglobulins (IGHM),

ribosomal proteins (RPLP0, RPS11 and RPL3), and MHC components (B2M and CD74)

in the top 20 most highly expressed genes in the abomasal lymph node over both years

acts as a quality control step, indicating that the RNA-Seq worked. The similarity between

the 2 years is of particular importance, due to the observed differences in worm burden

(Figure 2.7) between the years.
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3.3.3 Differential gene expression

Data were analysed using both common and moderated tagwise dispersions in EdgeR.

Genes detected as DE using tagwise dispersion and a FDR of <0.1 are reported. The

list of genes differentially expressed (FDR <0.05) using common dispersion were used for

pathway analysis, as this method is more robust to false positives.

3.3.3.1 HighFEC vs. LowFEC animals

Differences in the transcriptional profiles of HighFEC and LowFEC animals were examined

at both 7 and 14 days post infection (dpi). As animals born in 2010 and 2011 had different

worm burdens at slaughter (Figure 2.7) and separated on the MDS plot by year (Figure 3.19),

data from the two years could not be combined. In fact, when the data from both years

were combined no DE genes were detected (Table 3.5), most likely due to the substantial

gene expression variation between animals from 2010 and 2011.

When the data were analysed within year a total of 41 genes were identified as DE (tagwise

dispersion; FDR < 0.1) between HighFEC and LowFEC animals (Table 3.5). The highest

number of genes was at 7 dpi in 2011, while the lowest number of DE genes was at 7 dpi in

2010.

Table 3.5: Number of differentially expressed genes between HighFEC and LowFEC animals
using common and tagwise dispersion estimates in EdgeR. Differential expression was
examined at 7 and 14 days post infection (dpi). The false discovery rate (FDR) was set to 0.1
or 0.05. Genes with a FDR < 0.05 and a log fold change (logFC) of >±2 are reported in the third
column (logFC >±2).

Common dispersion Tagwise dispersion

FDR <0.1 FDR <0.05 logFC >±2 FDR <0.1 FDR <0.05 logFC >±2

2010 7 dpi 217 194 4 7 5 2

14 dpi 179 144 8 6 4 2

2011 7 dpi 245 196 2 16 10 1

14 dpi 245 190 5 12 8 2

Both 7 dpi 0 0 0 0 0 0

14 dpi 0 0 0 0 0 0

Multi-dimensional scaling (MDS) plots were produced, in which distances correspond to

leading log-fold-changes between each pair of RNA samples (Figure 3.5). This is the

average of the largest absolute log-fold-changes between each pair of samples, and can

be viewed as a type of unsupervised clustering showing the relative similarities between

samples. The low number of DE genes is reflected in the MDS plots, which fail to decisively

separate animals by phenotype (Figure 3.5) at any point, although in 2011 only one animal

(LF_3 ) did not group by phenotype (Figure 3.5c).
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Figure 3.5: Multi-dimensional scaling (MDS) plots comparing RNA-Seq results from
HighFEC and LowFEC animals. Animals were slaughtered at 7 (A & C) and 14 (B & D) days post
infection in 2010 and 2011 respectively. Distances correspond to leading log-fold-changes between
each pair of samples.

Of the 41 genes DE (tagwise dispersion; FDR <0.1) between HighFEC and LowFEC

animals, 15 (37%) were novel protein coding genes, and 11 (27%) had been identified in

previous studies (Table 3.6 & Table 3.7). These numbers are in line with those found in the

common dispersion analysis (FDR <0.05); of the 724 total DE genes, 265 (37%) were novel

protein coding genes and 203 (28%) had been identified in previous studies.
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Hierarchical clustering was performed on DE genes (tagwise dispersion; FDR <0.1) using

moderated log2 counts-per-million (logCPM) to observe the similarities between samples

(Figure 3.6). It is expected that normalisation removes variation that is not due to biological

differences (Rapaport et al., 2013). Dendrograms illustrate the similarities between both

samples and genes. In 2011, animals clustered on the basis of their phenotype. In 2010,

the majority of animals clustered according to their phenotype, however at each dpi one

animal did not group within phenotype in 2010; HF_4 at day 7 and LF_2 at day 14 post

infection.
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Figure 3.6: Heat map of hierarchical clustering of genes differentially expressed between
HighFEC and LowFEC animals. Differentially expressed genes were determined in EdgeR using
tagwise dispersion estimates, and a false discovery rate (FDR) of 0.1. Animals were slaughtered at
7 (A & C) and 14 (B & D) days post infection in 2010 and 2011 respectively. Animals that do not
group within phenotype are indicated with an asterisk (*).

Pathway analysis

Human 1-to-1 orthologs were found for approximately 60% of the DE genes (common

dispersion; FDR < 0.05) between HighFEC and LowFEC animals (Table 3.8).
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Table 3.8: Number of genes differentially expressed between HighFEC and LowFEC animals
for which 1-to-1 human orthologs could be found. Differentially expressed genes were
determined in EdgeR using common dispersion estimates, and a false discovery rate (FDR) of 0.05.
Orthologs were obtained from Ensembl release 74.

Comparison No. genes 1-to-1 ortholog No 1-to-1 ortholog

2010 7 dpi 194 118 61% 76 39%

14 dpi 144 84 58% 60 42%

2011 7 dpi 196 129 66% 67 34%

14 dpi 190 107 56% 83 44%

IPA analysis was carried out using the 1-to-1 orthologs. For each comparison the top

networks (Table 3.9), diseases, and biological functions (Table 3.10) were determined.

Functions associated with the top networks in each comparison included cell-to-cell

signalling and interaction, molecular transport, cellular movement and the hypersensitivity

response (Table 3.9). Diseases and disorders associated with the DE genes included

the hypersensitivity response, organismal injury and abnormalities, and metabolic disease

(Table 3.10). Significant physiological system development and function categories include

immune cell trafficking, tissue development, connective tissue development and function

and haematological system development and function (Table 3.10).
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Table 3.9: Top IPA networks at 7 or 14 days post infection (dpi) when comparing HighFEC
and LowFEC animals. Score represents the number of differentially expressed genes in the
network.

Year Time point Associated network functions Score

2010 7 dpi Cell-To-Cell Signalling and Interaction, Cellular Movement,

Immune Cell Trafficking

30

Cell Signalling, Molecular Transport, Vitamin and Mineral

Metabolism

30

Lipid Metabolism, Molecular Transport, Small Molecule

Biochemistry

26

Cell-To-Cell Signalling and Interaction, Cellular Function and

Maintenance, Inflammatory Response

21

Cell Cycle, Hair and Skin Development and Function, Cancer 21

14 dpi Cellular Assembly and Organisation, Lipid Metabolism, Small

Molecule Biochemistry

38

Gene Expression, Cell Death and Survival, Embryonic

Development

30

Molecular Transport, Small Molecule Biochemistry, Amino Acid

Metabolism

28

Cell-To-Cell Signalling and Interaction, Nervous System

Development and Function, Gene Expression

16

Cardiovascular System Development and Function, Organ

Morphology, Cellular Movement

15

2011 7 dpi Lipid Metabolism, Small Molecule Biochemistry, Metabolic

Disease

39

Cellular Movement, Haematological System Development and

Function, Hypersensitivity Response

37

Cellular Movement, Haematological System Development and

Function, Hypersensitivity Response

28

Cell-To-Cell Signalling and Interaction, Haematological System

Development and Function, Tissue Development

25

Lipid Metabolism, Nucleic Acid Metabolism, Small Molecule

Biochemistry

24

14 dpi Cellular Function and Maintenance, Hypersensitivity Response,

Haematological Disease

39

Connective Tissue Disorders, Hereditary Disorder, Immunological

Disease

30

Cell-To-Cell Signalling and Interaction, Cellular Movement,

Haematological System Development and Function

26

Developmental Disorder, Neurological Disease, Skeletal and

Muscular Disorders

24

Lipid Metabolism, Molecular Transport, Small Molecule

Biochemistry

24
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Table 3.10: IPA analysis of differentially expressed (DE) genes between HighFEC and
LowFEC animals. Listed are the top five diseases, biological functions and canonical pathways
that the DE genes affect. DE genes were determined in EdgeR using common dispersion estimates,
and a false discovery rate (FDR) of 0.05.

Year Time

point

Diseases and disorders p-value Molecules

2010 7 dpi Hypersensitivity Response 1.29E-06 9

Inflammatory Response 1.29E-06 20

Haematological Disease 3.18E-05 13

Metabolic Disease 3.18E-05 19

Organismal Injury and Abnormalities 3.74E-05 31

14 dpi Cancer 2.98E-07 55

Organismal Injury and Abnormalities 7.53E-07 28

Reproductive System Disease 7.53E-07 15

Neurological Disease 2.62E-06 19

Gastrointestinal Disease 3.22E-06 40

2011 7 dpi Dermatological Diseases and Conditions 8.77E-10 48

Hypersensitivity Response 2.93E-09 12

Endocrine System Disorders 1.56E-08 24

Metabolic Disease 1.56E-08 35

Cancer 4.82E-08 86

14 dpi Hypersensitivity Response 2.31E-05 10

Connective Tissue Disorders 2.82E-05 4

Hereditary Disorder 2.82E-05 25

Immunological Disease 2.82E-05 13

Inflammatory Disease 2.82E-05 18

Year Comparison Physiological system development and function p-value Molecules

2010 7 dpi Haematological System Development and Function 1.77E-07 19

Immune Cell Trafficking 1.77E-07 16

Tissue Development 1.29E-06 18

Organismal Survival 3.49E-06 13

Connective Tissue Development and Function 6.08E-06 6

14 dpi Nervous System Development and Function 2.75E-05 15

Organismal Development 1.84E-04 22

Organ Development 2.11E-04 10

Organismal Survival 2.25E-04 27

Connective Tissue Development and Function 2.94E-04 9

2011 7 dpi Haematological System Development and Function 6.29E-10 32

Tissue Development 6.36E-10 27

Immune Cell Trafficking 2.93E-09 22

Cell-mediated Immune Response 2.67E-07 8

Haematopoiesis 2.67E-07 3

14 dpi Haematological System Development and Function 2.09E-06 25

Tissue Morphology 2.09E-06 29

Haematopoiesis 7.84E-05 6

Tissue Development 8.42E-05 21

Embryonic Development 1.13E-04 12
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Year Time

point

Canonical pathways p-value Ratio

2010 7 dpi Pathogenesis of Multiple Sclerosis 1.2E-07 4/10 (0.4)

Hepatic Fibrosis / Hepatic Stellate Cell Activation 1.17E-03 5/155 (0.032)

Granulocyte Adhesion and Diapedesis 3.12E-03 5/182 (0.027)

Agranulocyte Adhesion and Diapedesis 4.05E-03 5/192 (0.026)

LXR/RXR Activation 4.97E-03 4/139 (0.029)

14 dpi GABA Receptor Signalling 1.37E-02 2/56 (0.036)

AMPK Signalling 1.47E-02 3/181 (0.017)

Protein Citrullination 1.88E-02 1/6 (0.167)

Agrin Interactions at Neuromuscular Junction 2.75E-02 2/70 (0.029)

PPARa/RXRa Activation 2.98E-02 3/200 (0.015)

2011 7 dpi Pathogenesis of Multiple Sclerosis 1.31E-09 5/10 (0.5)

LXR/RXR Activation 1.39E-05 7/139 (0.05)

Interferon Signalling 6.73E-05 4/36 (0.111)

Granulocyte Adhesion and Diapedesis 1.41E-04 7/182 (0.038)

Agranulocyte Adhesion and Diapedesis 2.06E-04 7/192 (0.036)

14 dpi Histamine Biosynthesis 5.34E-03 1/3 (0.333)

Triacylglycerol Degradation 8.42E-03 2/33 (0.061)

Interferon Signalling 1.41E-02 2/36 (0.056)

tRNA Splicing 1.5E-02 2/46 (0.043)

Uracil Degradation II (Reductive) 2.12E-02 1/11 (0.091)

A comparison analysis was undertaken using IPA to identify the unique and common

molecules across both years. Heat maps were generated of the 20 most significant diseases

and biological functions (Figure 3.7), canonical pathways (Figure 3.8) and upstream

regulators (Figure 3.9).
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Figure 3.7: Heat map of the top 20 IPA-derived diseases and biological functions affected by
genes differentially expressed between HighFEC and LowFEC animals. Heat map is sorted
by activation z-score. Red: predicted activation in LowFEC animals; Blue: predicted activation in
HighFEC animals.
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Figure 3.8: Heat map of the top 20 IPA-derived canonical pathways affected by genes
differentially expressed between HighFEC and LowFEC animals. Heat map is sorted by sorted
by -log(p-value). Expression of genes in each pathway may be increased in either HighFEC or
LowFEC animals.
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Figure 3.9: Heat map of the top 20 IPA-derived upstream regulators affected by genes
differentially expressed between HighFEC and LowFEC animals. Heat map is sorted by sorted
by activation z-score. Red: expression of downstream genes increased in LowFEC animals; Blue:
expression of downstream genes increased in HighFEC animals.

Genes in common between 2010 and 2011 analyses

Using common dispersion estimates, 5 genes (Table 3.5) were differentially expressed

(FDR <0.05) between HighFEC and LowFEC animals at both time points over both years

(Figure 3.10).
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Figure 3.10: Venn diagram comparing differentially expressed genes in HighFEC vs.
LowFEC analyses in 2010 and 2011. Venn diagram of genes in common between common
(A; FDR <0.05) and tagwise (B; FDR<0.1) dispersion analyses comparing gene expression in the
abomasal lymph node of HighFEC and LowFEC animals at 7 or 14 days post infection in 2010 and
2011 born animals.

A      B

Both adiponectin (ADIPOQ) and a novel protein coding gene, which was a 1-to-1 ortholog

of bovine carboxylesterase 1 (CES1), were upregulated in LowFEC animals at 7 dpi, and

HighFEC animals at 14 dpi. Interferon stimulated gene 17 (ISG17 ) and g-coupled protein

receptor associated sorting protein 1 (GPRASP1) did not follow a particular pattern - both

were upregulated in HighFEC animals at all time points apart from 7 dpi and 14 dpi in 2011

respectively. A novel gene (ENSOARG00000019179) orthologous to human chemokine

motifs CCL23 and CCL15 was upregulated in all LowFEC animals compared to their

HighFEC counterparts, albeit with an average logFC of 0.68.

Table 3.11: Genes differentially expressed between HighFEC and LowFEC animals at 7
and 14 days post infection (dpi) in both 2010 and 2011. Log fold changes (logFC) in genes
significantly (common dispersion; FDR <0.05) differentially expressed between HighFEC and
LowFEC animals at 7 and 14 days post infection in both 2010 and 2011. Positive logFC (bold)
indicates gene is upregulated in LowFEC animals, whereas negative logFC (regular) indicates gene
is upregulated in HighFEC group.

Gene ID Gene name
2010 2011

7 dpi 14 dpi 7 dpi 14 dpi

ENSOARG00000018232 - 1.07 -0.82 1.67 -1.17

ENSOARG00000020509 ADIPOQ 0.79 -0.57 1.43 -0.93

ENSOARG00000007233 ISG17 -0.68 -0.93 1.37 -0.83

ENSOARG00000002182 GPRASP1 -0.64 -0.85 -0.77 1.09

ENSOARG00000004774 - 0.58 0.59 0.70 0.86

Of the DE genes (common dispersion; FDR < 0.05) for which human 1-to-1 orthologs were

found, 3 remained in common between all comparisons (ADIPOQ, ISG17 and GPRASP1).
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Figure 3.11: Venn diagram comparing differentially expressed genes in HighFEC vs.
LowFEC analyses in 2010 and 2011 after conversion to 1-to-1 Human Ensembl orthologs.
Differentially expressed genes were determined in EdgeR using common dispersion estimates, and
a false discovery rate (FDR) of 0.05.

3.3.3.2 Day 7 vs. day 14 post infection

The immune response to gastrointestinal nematodes over time can be examined by looking

at the transcriptional profiles of animals slaughtered at 7 days post infection (dpi) compared

to those slaughtered at 14 dpi. As expected, combining the data from 2010 and 2011

resulted in a very low number of DE genes (Table 3.12). When the data was analysed within

year a total of 68 genes were identified as DE (tagwise dispersion; FDR <0.1) between 7

and 14 days post infection (Table 3.12).

Table 3.12: Number of differentially expressed genes between 7 and 14 days post infection
using common and tagwise dispersion estimates in EdgeR. Differential expression was
examined in HighFEC (HF) and LowFEC (LF) animals. The false discovery rate (FDR) was set to
0.1 or 0.05. Genes with a FDR < 0.05 and a log fold change (logFC) of >±2 are reported in the third
column (logFC >±2).

Common dispersion Tagwise dispersion

FDR <0.1 FDR <0.05 logFC >±2 FDR <0.1 FDR <0.05 logFC >±2

2010 HF 272 224 2 7 3 2

LF 213 163 6 14 12 2

2011 HF 326 247 5 26 10 2

LF 285 204 12 21 13 6

Both HF 1 0 0 1 0 0

LF 2 1 0 2 1 0

Multi-dimensional scaling (MDS) plots were produced, in which distances correspond to

leading log-fold-changes between each pair of RNA samples (Figure 3.12). This is the

average of the largest absolute log-fold-changes between each pair of samples, and can

be viewed as a type of unsupervised clustering showing the relative similarities between

samples. The low number of DE genes is reflected in the MDS plots, which fail to decisively

separate animals by day post infection (Figure 3.12), however in the 2010 HighFEC animals

there is only one animal (SEVEN_1) that does not cluster within day post infection.
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Figure 3.12: Multi-dimensional scaling (MDS) plots comparing RNA-Seq results from
animals slaughtered at 7 and 14 days post infection. Animals had a HighFEC (A & C) or
LowFEC (B & D) phenotype, and were born in 2010 or 2011 respectively. Distances correspond to
leading log-fold-changes between each pair of samples.

Of the 71 genes DE (tagwise dispersion; FDR <0.1) between 7 and 14 days post infection,

25 (35%) were novel protein coding genes, and 24 (34%) had been identified in previous

studies (Table 3.13 & Table 3.14). This is similar to the common dispersion analysis; of the

838 DE genes found, 278 (33%) were predicted genes of unknown function and 239 (29%)

had been identified in previous studies.
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Hierarchical clustering was performed on DE genes (tagwise dispersion; FDR <0.1) using

moderated log2 counts-per-million (logCPM) to observe the similarities between samples

(Figure 3.13). It is expected that normalisation removes variation that is not due to biological

differences (Rapaport et al., 2013). Dendrograms illustrate the similarities between both

samples and genes, with all animals grouping within day post infection.
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Figure 3.13: Heat map of hierarchical clustering of genes differentially expressed between
animals slaughtered at 7 and 14 days post infection (dpi). Differentially expressed genes were
determined in EdgeR using tagwise dispersion estimates, and a false discovery rate (FDR) of 0.1.
Animals had a HighFEC (A & C) or LowFEC (B & D) phenotype, and were born in 2010 or 2011
respectively. Animals that do not group within phenotype are indicated with an asterisk (*).

Pathway analysis

Human 1-to-1 orthologs were found for approximately 64% of the DE genes (common

dispersion; FDR < 0.05) between 7 and 14 days post infection (Table 3.15).
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Table 3.15: Number of genes differentially expressed between 7 and 14 days post infection
for which 1-to-1 human orthologs could be found. Differentially expressed genes were
determined in EdgeR using common dispersion estimates, and a false discovery rate (FDR) of 0.05.
Orthologs were obtained from Ensembl release 74.

Comparison No. genes 1-to-1 ortholog No 1-to-1 ortholog

2010 HF 224 139 62% 85 38%

LF 163 98 60% 65 40%

2011 HF 247 158 64% 89 36%

LF 204 139 68% 65 32%

IPA analysis was carried out using the 1-to-1 orthologs. For each comparison the top

networks (Table 3.16), diseases, and biological functions (Table 3.17) were analysed. None

of the associated network functions were in common between any of the comparisons

(Table 3.16). Associated diseases and disorders included infection, inflammatory and

immunological disease (Table 3.17). Significant physiological system development and

function categories included tissue development and haematological system development

and function (Table 3.17).
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Table 3.16: Top IPA networks in HighFEC or LowFEC animals when comparing 7 and 14 days
post infection. Score represents the number of differentially expressed genes in the network.

Year Phenotype Associated network functions Score

2010 HighFEC Connective Tissue Development and Function, Embryonic

Development, Organ Development

43

Carbohydrate Metabolism, Small Molecule Biochemistry,

Respiratory System Development and Function

35

Infectious Disease, Dermatological Diseases and Conditions,

Inflammatory Disease

31

Developmental Disorder, Drug Metabolism, Energy Production 29

Dermatological Diseases and Conditions, Developmental

Disorder, Hereditary Disorder

24

LowFEC Cardiovascular System Development and Function, Organismal

Development, Cell-To-Cell Signalling and Interaction

32

Cell-To-Cell Signalling and Interaction, Cellular Movement,

Immune Cell Trafficking

29

Connective Tissue Disorders, Hereditary Disorder, Metabolic

Disease

27

Cell Cycle, Cellular Growth and Proliferation, Embryonic

Development

24

Cellular Movement, Drug Metabolism, Lipid Metabolism 24

2011 HighFEC Cell Death and Survival, Cancer, Organismal Injury and

Abnormalities

43

Humoral Immune Response, Protein Synthesis, Cell-To-Cell

Signalling and Interaction

40

Connective Tissue Disorders, Hereditary Disorder, Immunological

Disease

26

Cell Morphology, Cellular Assembly and Organisation, Cellular

Function and Maintenance

26

Embryonic Development, Organismal Development,

Carbohydrate Metabolism

25

LowFEC Antimicrobial Response, Inflammatory Response, Dermatological

Diseases and Conditions

43

Lipid Metabolism, Small Molecule Biochemistry, Endocrine

System Disorders

41

Cell Morphology, Cell-To-Cell Signalling and Interaction, Nervous

System Development and Function

27

Organismal Development, Cellular Movement, Carbohydrate

Metabolism

26

Embryonic Development, Nervous System Development and

Function, Organ Development

25
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Table 3.17: IPA analysis of differentially expressed (DE) genes between 7 and 14 days post
infection. Listed are the top five diseases, biological functions and canonical pathways that the DE
genes affect. DE genes were determined in EdgeR using common dispersion estimates, and a false
discovery rate (FDR) of 0.05.

Year Phenotype Diseases and disorders p-value Molecules

2010 HighFEC Infectious Disease 1.33E-04 8

Inflammatory Disease 1.50E-04 7

Neurological Disease 1.50E-04 22

Skeletal and Muscular Disorders 1.50E-04 19

Gastrointestinal Disease 2.83E-04 52

LowFEC Inflammatory Response 9.86E-09 29

Immunological Disease 6.07E-07 28

Infectious Disease 1.56E-06 15

Antimicrobial Response 1.76E-06 8

Dermatological Diseases and Conditions 1.17E-05 25

2011 HighFEC Cancer 1.16E-05 99

Immunological Disease 2.83E-05 32

Hypersensitivity Response 4.26E-05 10

Connective Tissue Disorders 5.56E-05 25

Hereditary Disorder 5.56E-05 25

LowFEC Dermatological Diseases and Conditions 3.01E-08 32

Inflammatory Disease 3.20E-07 9

Neurological Disease 3.20E-07 32

Skeletal and Muscular Disorders 3.20E-07 19

Endocrine System Disorders 4.77E-07 29

Year Comparison Physiological system development and function p-value Molecules

2010 HighFEC Nervous System Development and Function 1.70E-04 26

Tissue Development 2.83E-04 26

Tumour Morphology 2.83E-04 2

Organismal Functions 3.96E-04 9

Digestive System Development and Function 4.70E-04 9

LowFEC Immune Cell Trafficking 3.89E-11 20

Haematological System Development and Function 9.86E-09 26

Cardiovascular System Development and Function 9.64E-07 21

Organismal Survival 1.88E-06 13

Cell-mediated Immune Response 3.29E-06 7

2011 HighFEC Humoral Immune Response 1.05E-04 11

Haematological System Development and Function 1.37E-04 30

Tissue Development 1.66E-04 37

Embryonic Development 3.08E-04 22

Organ Development 3.08E-04 16

LowFEC Organismal Development 5.30E-07 34

Endocrine System Development and Function 3.41E-06 17

Connective Tissue Development and Function 5.79E-06 19

Skeletal and Muscular System Development and

Function

5.79E-06 12

Respiratory System Development and Function 2.56E-05 13

108



Year Phenotype Canonical pathways p-value Ratio

2010 HighFEC Agranulocyte Adhesion and Diapedesis 9.38E-03 5/192 (0.026)

IL-17A Signalling in Gastric Cells 1.29E-02 2/28 (0.071)

Glutamine Degradation I 1.38E-02 1/5 (0.2)

STAT3 Pathway 1.42E-02 3/80 (0.038)

Glutathione-mediated Detoxification 1.6E-02 2/44 (0.045)

LowFEC Pathogenesis of Multiple Sclerosis 5.25E-08 4/10 (0.4)

IL-17A Signalling in Gastric Cells 2.03E-04 3/28 (0.107)

Tryptophan Degradation to

2-amino-3-carboxymuconate Semialdehyde

5.8E-04 2/18 (0.111)

Granulocyte Adhesion and Diapedesis 1.27E-03 5/182 (0.027)

Agranulocyte Adhesion and Diapedesis 1.67E-03 5/192 (0.026)

2011 HighFEC Histamine Biosynthesis 7.48E-03 1/3 (0.333)

Agranulocyte Adhesion and Diapedesis 1.28E-02 5/192 (0.026)

Glutamine Degradation I 1.49E-02 1/5 (0.2)

Bupropion Degradation 1.61E-02 2/33 (0.061)

Cellular Effects of Sildenafil (Viagra) 1.61E-02 4/155 (0.026)

LowFEC Role of Pattern Recognition Receptors in

Recognition of Bacteria and Viruses

6.52E-05 6/109 (0.055)

Interferon Signalling 9.8E-05 4/36 (0.111)

LXR/RXR Activation 1.77E-03 5/139 (0.036)

AMPK Signalling 2.86E-03 5/181 (0.028)

Nicotine Degradation II 9.51E-03 3/85 (0.035)

A comparison analysis was undertaken using IPA to identify the unique and common

molecules across the two years. Heat maps were generated of the 20 most significant

diseases and biological functions (Figure 3.14) , canonical pathways (Figure 3.15) and

upstream regulators (Figure 3.16).
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Figure 3.14: Heat map of the top 20 IPA-derived diseases and biological functions affected
by genes differentially expressed between animals killed at 7 or 14 days post infection (dpi).
Heat map is sorted by activation z-score. Red: predicted activation at 7 dpi; Blue: predicted activation
14 dpi.
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Figure 3.15: Heat map of the top 20 IPA-derived canonical pathways affected by genes
differentially expressed between animals killed at 7 or 14 days post infection (dpi). Heat
map is sorted by -log(p-value). Expression of genes in each pathway may be increased at either 7
or 14 dpi.
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Figure 3.16: Heat map of the top 20 IPA-derived upstream regulators affected by genes
differentially expressed between animals killed at 7 or 14 days post infection (dpi). Heat map
is sorted by activation z-score. Red: expression of downstream genes increased at 7 dpi; Blue:
expression of downstream genes increased at 14 dpi.

Genes in common between 2010 and 2011 analyses

Using common dispersion estimates, 6 genes (Table 3.12) were differentially expressed

(FDR <0.05) in all 4 comparisons (Table 3.18).
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Figure 3.17: Venn diagram comparing differentially expressed genes in 7 vs. 14 days post
infection (dpi) analyses in 2010 and 2011. Genes differentially expressed between 7 and 14 dpi
for each phenotype and year using common (A; FDR <0.05) and tagwise (B; FDR<0.1) dispersion.

A      B

Of these genes only one, TRYPTASE-1 was consistent across group, being upregulated

at 7 dpi in all comparisons. Four genes, GZMA, MMRN1, COL6A5 and a novel protein

pseudogene similar to GTPase IMAP family member 7, were up/downregulated according

to year.

Table 3.18: Genes differentially expressed between 7 and 14 days post infection (dpi) in
HighFEC and LowFEC animals in both 2010 and 2011. Log fold changes (logFC) in genes
significantly (common dispersion; FDR <0.05) differentially expressed between day 7 and 14 dpi in
HighFEC and LowFEC animals in both 2010 and 2011. Positive logFC indicates gene is upregulated
at 7 dpi, whereas negative logFC indicates gene is upregulated at 14 dpiß.

Gene ID Gene name
2010 2011

HighFEC LowFEC HighFEC LowFEC

ENSOARG00000007970 GZMA 1.05 0.85 -0.86 -0.90

ENSOARG00000018398 MMRN1 -0.92 -0.73 1.42 1.18

ENSOARG00000014842 COL6A5 -0.87 -0.59 1.83 1.67

ENSOARG00000013119 SNTG1 1.20 -1.49 -1.06 -1.19

ENSOARG00000014689 TRYPTASE-1 0.79 0.95 1.04 0.76

ENSOARG00000001424 - -0.58 -1.10 1.36 0.87

Of the DE genes (common dispersion; FDR < 0.05) for which human 1-to-1 orthologs

were found, 4 remained in common between all comparisons (GZMA, MMRN1, COL6A5 &

SNTG1) (Figure 3.18).

113



Figure 3.18: Venn diagram comparing differentially expressed genes in 7 vs. 14 days post
infection analyses in 2010 and 2011. Differentially expressed genes were determined in EdgeR
using common dispersion estimates, and a false discovery rate (FDR) of 0.05.

3.3.3.3 2010- vs. 2011-born animals

Overall variation in gene expression among all animals was examined using a multi-

dimensional scaling plot to determine if the data from both years could be combined.

An MDS plot (Figure 3.19) showed that the samples separated clearly by year. This most

likely represents the extreme differences in worm burden (Figure 2.7) observed between

animals challenged in 2010 and those challenged in 2011. Gene expression differences

between animals with a heavy infection (2010-born) and a light infection (2011-born) with T.

circumcincta were therefore examined.

−0.5 0.0 0.5

−0
.5

0.
0

0.
5

1.
0

Leading logFC dim 1

Le
ad

in
g 

lo
gF

C
 d

im
 2

2010

2010

2010

2010

2010

2010

2010

2010
2010

2010

2010

2010

2010

2010

2010

2010

2010

2010

2010

2010

2011
2011

2011

2011

2011

2011

2011 2011

2011

2011

20112011

20112011

2011

2011

2011

2011

2011

2011

Figure 3.19: Multi-dimensional scaling (MDS) plots comparing RNA-Seq results from both
2010- and 2011-born animals. Distances correspond to leading log-fold-changes between each
pair of samples.
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Using tagwise dispersion estimates 4,411 genes were identified as differentially expressed

(FDR < 0.1) between 2010- and 2011-born animals (Table 3.19). The high number of DE

genes is reflected in the MDS plots, which decisively separates animals by year on the first

dimension (Figure 3.19).

Table 3.19: Number of differentially expressed genes between 2010- and 2011-born animals
using common and tagwise dispersion estimates in EdgeR. The false discovery rate (FDR)
was set to 0.1 or 0.05. Genes with a FDR < 0.05 and a log fold change (logFC) of >±2 are reported
in the third column (logFC >±2).

Common dispersion Tagwise dispersion

Comparison FDR <0.1 FDR <0.05 logFC >±2 FDR <0.1 FDR <0.05 logFC >±2

2010v2011 3,386 2,776 68 4,411 3,328 68

Of the DE genes (tagwise dispersion; FDR <0.1), 869 (26%) were novel protein coding

genes. None of the remaining genes had been implicated in previous studies. Human

1-to-1 orthologs were found for 2,409 (72%) genes (Table 3.20), which were then used as

input for IPA analysis.

Table 3.20: Number of genes differentially expressed between 2010- and 2011-born animals
for which 1-to-1 human orthologs could be found. Differentially expressed genes were
determined in EdgeR using common dispersion estimates, and a false discovery rate (FDR) of 0.05.
Orthologs were obtained from Ensembl release 74.

Comparison No. genes 1-to-1 ortholog No 1-to-1 ortholog

2010v2011 3,328 2,409 72% 919 28%

For each comparison the top networks (Table 3.21), diseases and biological functions

(Table 3.22) and canonical pathways (Table 3.23) were analysed. The top network,

“Hereditary Disorder, Ophthalmic Disease, Molecular Transport”, is centred around the

expression of ubiquitin C (UBC). Expression of UBC was increased in the 2010-born

animals in comparison to those born in 2011.

Table 3.21: Top IPA networks when comparing 2010- and 2011-born animals. Score represents
the number of differentially expressed genes in the network.

Associated Network Functions Score

Hereditary Disorder, Ophthalmic Disease, Molecular Transport 42

DNA Replication, Recombination, and Repair, Gene Expression, Connective

Tissue Development and Function

39

RNA Post-Transcriptional Modification, Cardiovascular System Development and

Function, Embryonic Development

37

Amino Acid Metabolism, Small Molecule Biochemistry, Cell Cycle 34

RNA Post-Transcriptional Modification, Metabolic Disease, Neurological Disease 34

The top diseases and disorders from the IPA analysis include cancer (a subset of which was

gastrointestinal tract cancer), infectious disease and gastrointestinal disease (Table 3.22).

Under the Haematological System Development and Function category the most significant
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over-represented annotations include quantity of blood and haematopoietic cells, and

quantity and homing of haematopoietic progenitor cells.

Table 3.22: IPA analysis of differentially expressed (DE) genes between 2010- and 2011-born
animals. Listed are the top five diseases, molecular and cellular functions and physiological system
functions that the DE genes affect. DE genes were determined in EdgeR using common dispersion
estimates, and a false discovery rate (FDR) of 0.05.

Comparison Top diseases & bio functions p-value Molecules

Diseases & disorders Cancer 1.96E-12 1170

Developmental Disorder 4.67E-10 333

Infectious Disease 6.13E-10 306

Gastrointestinal Disease 7.18E-10 626

Organismal Injury and Abnormalities 7.39E-09 596

Molecular & cellular Cellular Growth and Proliferation 8.73E-27 689

functions Cell Death and Survival 6.45E-18 650

Cell Cycle 2.64E-12 270

Cell Morphology 1.34E-11 440

Gene Expression 6.67E-11 401

Physiological system Organismal Survival 1.02E-17 475

development & function Cardiovascular System Development and

Function

6.02E-12 275

Tissue Morphology 5.99E-11 417

Organismal Development 1.93E-10 582

Haematological System Development and

Function

2.19E-08 349

The most significant canonical pathway was the protein ubiquitination pathway (Table 3.23).

Table 3.23: Top IPA canonical pathways when comparing 2010- and 2011-born animals.
Listed are the top five canonical pathways that the DE genes affect. DE genes were determined in
EdgeR using common dispersion estimates, and a false discovery rate (FDR) of 0.05.

Canonical pathways p-value Ratio

Protein Ubiquitination Pathway 7.04E-08 55/270 (0.204)

Mitochondrial Dysfunction 1.08E-05 36/215 (0.167)

Epithelial Adherens Junction Signalling 6.55E-05 31/154 (0.201)

Oxidative Phosphorylation 7.54E-05 25/120 (0.208)

EIF2 Signalling 1.07E-04 36/201 (0.179)

A number of the genes involved in the protein ubiquitination pathway are part of the

proteasome and immunoproteasome (Figure 3.20).
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Figure 3.20: The protein ubiquitination pathway. Genes differentially expressed between 2010-
and 2011-born animals are highlighted in pink (figure from IPA).
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3.4 Discussion

3.4.1 Response to gastrointestinal nematode infection in Scottish

Blackface lambs with divergent phenotypes for resistance

3.4.1.1 Day 7 post infection

Significantly differentially expressed genes

In 2010 the only genes differentially expressed (tagwise dispersion; FDR < 0.1) at 7 dpi

were more highly expressed in HighFEC animals. Of particular interest is albumin (ALB),

which has been found to be associated with GIN infection in four separate studies. Serum

albumin, the main protein of plasma, is a carrier protein for steroids, fatty acids, and

thyroid hormones, and functions as a regulator of the colloidal osmotic pressure of blood.

ALB has been reported to be more highly expressed in the duodenum of helminth-naïve

genetically resistant animals compared to susceptible individuals (Keane et al., 2006),

and downregulated in the abomasum of sheep during the course of repeated truncated

immunising infections with T. colubriformis larvae (Knight et al., 2010). Protein albumin

levels were also increased in the abomasal mucosa of resistant selection-line animals

compared to their susceptible counterparts three days after experimental challenge with

Haemonchus contortus (Nagaraj et al., 2012). In a separate study on changes in abomasal

protein expression following trickle infection with T. circumcincta, ALB was relatively highly

expressed in the mucosa of helminth-naïve animals in comparison to both their immune and

immune-waning counterparts (Pemberton et al., 2012). Immunohistochemistry suggests

the site of expression may be mucus-producing epithelial cells. In the same study serum

albumin was also significantly decreased in GIN immune sheep compared to the naïve

controls. Pemberton et al. (2012) hypothesised that albumin may be constitutively released

into the gastric mucus, and may therefore play an innate protective role. In 2010 the

response to GIN infection in the HighFEC animals appears to be similar to that previously

observed in naïve animals, suggesting that the HighFEC animals may not be generating an

effective immune response to GIN infection.

In 2011 HighFEC animals had elevated expression of BTLA and FCRL1 at 7 dpi in

comparison to their LowFEC counterparts. B-and T-lymphocyte attenuator (BTLA) encodes

for a protein that relays inhibitory signals to suppress the immune response. BTLA is not

expressed by naive T cells, but it is induced during activation, and remains expressed on

TH1 but not TH2 cells (Watanabe et al., 2003), indicating the HighFEC animals had a more

TH1-type response to GIN infection. BTLA is a high affinity co-receptor for herpes virus

entry mediator (HVEM) (Sedy et al., 2005; Gonzalez et al., 2005), and the BTLA-HVEM

complex negatively regulates T-cell immune responses by inhibiting T-cell proliferation

(Gonzalez et al., 2005). The immunoglobulin receptor superfamily member Fc receptor-
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like 1 (FCRL1) is expressed primarily, although not exclusively, by B cells (Davis et al.,

2001). FCRL1 expression begins in pre-B cells, reaches peak levels on naive B cells, and

is down-regulated after B cells are activated (Leu et al., 2005). This could be a result

of the HighFEC animals having fewer activated B cells than their LowFEC counterparts.

FCRL1 is an intrinsic activation molecule, that acts as an activation co-receptor to augment

B-cell antigen receptor (BCR)-induced activation of B-cells. The ligand for this receptor is

currently unknown; unlike Fc receptors FCRL1 does not bind IgM, IgA, or IgGs (Leu et al.,

2005). FCRL1 expression has been shown to be significantly higher in peripheral blood

B lymphocytes of patients with certain autoimmune diseases including multiple sclerosis

(Baranov et al., 2012). In agreement with our study FCRL1 has been previously reported to

be more highly expressed in the abomasal lymph node of susceptible Scottish Blackface

lambs in comparison to their resistant counterparts (Gossner et al., 2013).

In 2011 LowFEC animals had increased expression of GIMAP8, GZMK, WARS, CCL4

and CXCL9 at 7 dpi. GTPase, IMAP family member 8 (GIMAP8) belongs to the immune-

associated nucleotide (IAN) subfamily of nucleotide-binding proteins, and is expressed in T

cells and thymocytes (Dion et al., 2005). In agreement with our study Keane et al. (2006)

found GIMAP8 expression to be increased in genetically resistant helminth naïve animals

compared to their susceptible counterparts. However, Ahmed (2013) found expression to

be higher in Suffolk (relatively susceptible) animals compared to Texel (relatively resistant)

during a controlled challenge with T. circumcincta. Granzyme K (GZMK ) is a trypsin-like

serine protease that highly expressed in peripheral blood leukocytes, spleen, thymus, and

lung tissues (Przetak et al., 1995). Extracellular GZMK is capable of activating Protease-

Activated Receptor 1 (PAR-1) and inducing fibroblast cytokine secretion and proliferation

(Cooper et al., 2011). The expression of tryptophan-tRNA synthetase (WARS, previously

known as TrpRS) has been shown to be stimulated by interferon gamma (IFN-γ) in humans

and mice (Bange et al., 1992; Rubin et al., 1991; Miyanokoshi et al., 2013). Despite being

associated with resistance in this study, WARS has previously been associated primarily

with susceptibility of lambs to GIN (Andronicos et al., 2010; Nagaraj et al., 2012; Ahmed,

2013). Thus, WARS protein levels were increased in the abomasal mucosa of susceptible

selection line animals compared to their resistant counterparts 3 days after experimental

challenge with Haemonchus contortus (Nagaraj et al., 2012). The expression of WARS was

increased in previously-challenged uninfected Suffolk lambs when compared to uninfected

Texel lambs (Ahmed, 2013). Expression of WARS has also been shown to be increased

in the jejunum of resistant compared to susceptible animals, from lines of a flock selected

on Haemonchus (HSF), after three infections with T. colubriformis, in agreement with

our study. However, it was also found to be upregulated in the jejunum of animals from

a flock selected for resistance to Trichostrongylus (TSF) animals after a single infection

(Andronicos et al., 2010). The chemotactic cytokines (chemokines) CCL4 and CXCL9 are

both part of the chemokine control of T cell migration in the lymph node during the immune

response (Bromley et al., 2008). The pro-inflammatory chemokine CCL4, previously
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known as macrophage inflammatory protein-1β (MIP-1β), can be induced in most mature

haematopoietic cells, particularly macrophages, dendritic cells, and lymphocytes (Menten

et al., 2002; Maurer and von Stebut, 2004). CCL4 binds to the T cell-chemoattractant

CCR5, and promotes beneficial leukocyte recruitment to infected tissues (Broxmeyer et al.,

1990). However, chronic expression of this chemokine contributes to inflammatory disease

(Menten et al., 2002). While expression of CCL4 was initially thought to be only associated

with a TH1 immune response (Schrum et al., 1996), it has subsequently been associated

both with Treg cells (Bystry et al., 2001) and a TH2 response (Meagher et al., 2007; Ashenafi

et al., 2014). The TH1 inflammatory chemokine CXCL9 binds to the chemokine receptor

CXCR3 and preferentially recruits IFN-y producing CD4+ T cells (Debes et al., 2006).

There is an overlap of the chemokine receptor expression profiles in Treg and T helper

subsets; the receptors for CCL4 and CXCL9, CCR5 and CXCR3, are expressed together

on both Treg and TH1 cells (Bromley et al., 2008). The source of the differentially expressed

chemokines is potentially dendritic cells (DCs); mature TH1-promoting DCs have been

shown to constitutively express both inflammatory (CCL4) and TH1-associated (CXCL9)

chemokines (Lebre et al., 2005).

Together these results indicate than in 2011 the HighFEC animals potentially have lower

T cell proliferation, along with an increased TH1-type response and an increased number

of naive B cells. The LowFEC animals however appear to be expressing cytokines and

chemokines that generate an inflammatory immune response to GIN infection, and this may

result in an influx of immune cells to the site of infection.

Pathway analysis

The list of genes differentially expressed using common dispersion (FDR <0.05) were used

for pathway analysis, as this method is more robust to false positives. Using this criterion

a number of chemokine (C-C and C-X-C motif) ligands (CCL and CXCL) and receptors

(CCR and CXCR) were significantly increased at 7 dpi in LowFEC animals in both 2010 and

2011. The main function of chemokines is to control leukocyte migration. It appears that, in

LowFEC animals, increased cytokine expression leads to an increase in the inflammatory

response, including migration of leukocytes and antigen presenting cells. These chemokine

ligands and receptors are also present in the pathogenesis of multiple sclerosis pathway,

which was the top canonical pathway in the comparison analysis.

Primarily as a result of the increase in the above chemokines, in both 2010 and 2011

IPA analysis showed an increase in molecules associated with haematological system

development and function, immune cell trafficking and tissue development. The top

physiological system development and function category in both years was haematological

system development and function; the majority of genes in this category in both 2010 (16/19

genes) and 2011 (28/32 genes) were upregulated in LowFEC animals. This is also true of

the disease and disorder category hypersensitivity response; 7/9 genes in 2010 and 11/12
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genes in 2011 were upregulated in LowFEC animals.

3.4.1.2 Day 14 post infection

Significantly differentially expressed genes

At 14 dpi, 18 genes were differentially expressed between HighFEC and LowFEC animals, 6

in 2010 and 12 in 2011. Of note is the epithelial cell transforming sequence 2 oncogene-like

(ECT2L), which was increased in LowFEC animals in 2010. Recurrent somatic mutations in

ECT2L have been associated with early T-cell precursor acute lymphoblastic leukaemia

(Zhang et al., 2012). However none of the other differentially expressed genes, in either

2010 or 2011, had a known immune system function. Despite this, 6 genes were in common

with the study by Ahmed (2013). This study compared Suffolk (relatively susceptible)

and Texel (relatively resistant) animals over the course of a controlled challenge with T.

circumcincta. Of the genes in common, 2 were consistent in their association with resistance

between the two studies (SCRN2, more highly expressed in resistant animals, and LPL,

more highly expressed in susceptible animals), while four were not (ECT2L, ZFR2, DNAH5

and MPPE1).

Pathway analysis

IPA analysis did not reveal any diseases or biological functions common to both years.

However, the network Lipid Metabolism, Molecular Transport, Small Molecule Biochemistry,

which was significant at 7 dpi in 2010, was significant at 14 dpi in 2011.

3.4.1.3 Comparison analysis of all HighFEC and LowFEC animals

While the differentially expressed genes may be different between the two years, examining

upstream regulators allows us to see what pathways and biological mechanisms may be

regulating the response to GIN in Scottish Blackface sheep. At 7 dpi genes downstream

from the regulators PPARG, IFNG and IL4 were activated in LowFEC animals, whereas by

day 14 genes downstream of these regulators were upregulated in HighFEC animals.

Peroxisome proliferator-activated receptor gamma (PPARG) is an important modulator

of the inflammatory response in various tissues, including the intestinal tract and colonic

mucosa (Mansén et al., 1996; Dubuquoy et al., 2002). PPARγ is strongly induced by the

TH2 cytokine IL-4 (Huang et al., 1999). It therefore appears that a major transcriptional

role of PPARγ is negative regulation of specific subsets of genes that are activated by LPS

(lipopolysaccharides) and IFNγ, supporting a physiologic role of PPARγ in regulating both

innate and acquired immune responses (Welch et al., 2003). Previous gene expression

profiling of naïve sheep representing groups genetically resistant and susceptible to

121



gastrointestinal nematodes revealed motifs for PPARG binding in the promoter regions of

the genes more highly expressed in susceptible animals (Keane et al., 2006). Interferon

gamma (IFNγ) is secreted by TH1 lymphocytes, and plays a critical role in regulating the

type 1 versus type 2 immune responses in vertebrates. IFNγ activates macrophages,

which can kill intracellular pathogens, and display increased ability to present antigens

(Wakelin, 1996). It also helps to determine whether a humoral or cell mediated response

predominates. Interleukin 4 (IL4) is typically associated with a TH2-type response. IL-4

induces differentiation of naïve TH cells to TH2 cells, while suppressing differentiation into

TH1 cells (Anthony et al., 2007).

While the development of resistance to GIN is associated with the development of a CD4+

TH2-type immune response, and susceptibility with a CD4+ TH2-type response, recent

research has challenged the view that it is simply a matter of TH2/TH1 dichotomy (Venturina

et al., 2013). Several studies have indicated that it appears to be the differential interplay

between TH1/TH2/Treg genes that control the response to gastrointestinal nematodes in

resistant compared to susceptible breeds (Hassan et al., 2011b; Ahmed, 2013). This

is supported by the recognition of new subsets of T cells, such as TH17 and Treg cells

(Zhu et al., 2010), and increased recognition of their plasticity (Nakayamada et al., 2012).

Through analysis of upstream regulators in IPA, it appears that in both 2010 and 2011

the LowFEC animals are generating an immune response to T. circumcincta that is a

combination of TH1 and TH2-related genes. In the HighFEC animals this response appears

to be delayed until 14 days post infection, so therefore the LowFEC (resistant) animals may

be generating an effective immune response more quickly.

3.4.2 Changes in gene expression over time in the abomasal lymph

node of Scottish Blackface lambs challenged with T. circumcincta

3.4.2.1 HighFEC animals

Significantly differentially expressed genes

Using tagwise dispersion estimates, expression of ALB and MX2 were significantly higher

at 7 dpi in the 2010 HighFEC animals. The increased expression of ALB was by far the

most significant change, with a log fold change of 7.3. Expression of myxovirus resistance

2 (MX2) is strongly induced by interferon-α (IFN-α) (Melén et al., 1996; Kane et al., 2013),

and shows antiviral activity (Sasaki et al., 2014). Despite the association between this gene

and viral infections, it has been shown to be upregulated at both the protein and mRNA

level in GIN susceptible animals (Nagaraj et al., 2012; Ahmed, 2013).

At 14 dpi, LYVE1 and CHI3L2 were upregulated. Lymphatic vessel endothelial hyaluronan

receptor 1 (LYVE1) is a major receptor for hyaluronan on the lymph vessel wall (Banerji et al.,

1999). Hyaluronan is an abundant component of skin and mesenchymal tissues, where it
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facilitates cell migration during wound healing, inflammation, and embryonic morphogenesis.

Chitinase-like proteins such as CHI3L2 have a role in inflammation, tissue remodelling,

and injury (Lee et al., 2011a). Upregulated expression of CHI3L2 has been observed in

the abomasum of 18 and 21 week old steers exposed to Ostertagia ostertagi, and the

abomasal lymph node of resistant and susceptible Scottish Blackface lambs infected with

T. circumcincta in comparison to sham-infected controls (Gossner et al., 2013). In human

macrophages CHI3L2 has been found to be upregulated by IL-4 and TGF-β (Gratchev

et al., 2008).

In 2011 upregulated genes at 7 dpi include GSDMA, MMRN1, LACC1, MCP-3 and STAB2.

Human gasdermin A (GDSMA) is preferentially expressed in the gastric epithelium (Saeki

et al., 2000). GDSMA is a component of TGF-β signalling, that induces of apoptosis in

the pit cells of human gastric epithelium (Saeki et al., 2007) and has been associated with

gastric cancer (Saeki et al., 2000). Asthma-associated polymorphisms have also been

shown to lead to increased GDSM expression (Lluis et al., 2011). Ahmed (2013) observed

increased expression of GSDMA in Texel animals compared with their Suffolk counterparts

throughout the course of infection with T. circumcincta. Multimerin 1 (MMRN1) is expressed

in megakaryocytes, platelets and endothelial cells (cells that lines the interior surface of

blood vessels and lymphatic vessels), and plays a role in the storage and stabilisation of

factor V in platelets (Jeimy et al., 2008). This gene has been shown to be more highly

expressed in Suffolk compared to Texel animals at the early stages of infection with T.

circumcincta (Ahmed, 2013), and downregulated in the mesenteric lymph nodes during the

preclinical stages of scrapie in sheep (Filali et al., 2014). Variants in laccase (multicopper

oxidoreductase) domain containing 1 (LACC1, formerly known as C13ORF31) have been

related to susceptibility to leprosy (Zhang et al., 2009), ulcerative colitis, and Crohn’s disease

(Barrett et al., 2008). However, the function of this gene in the innate immune response

remains unknown. Sheep mast cell proteinase-3 (MCP-3) is mast-cell-derived and may be

co-expressed with MCP-1 in abomasal mast cells of sheep infected with T. circumcincta

(McAleese et al., 1998). The scavenger receptor Stabilin-2 (STAB2) is primarily expressed

in organs with specialised endothelia such as liver, spleen and lymph node (Politz et al.,

2002). SATB2 plays an important role in lymphocyte recruitment in the hepatic vasculature

(Jung et al., 2007), and binds to and mediates endocytosis of hyaluronic acid (Politz et al.,

2002).

Expression of CCL4, CXCL9, and GIMAP8 was upregulated at 14 dpi in the 2011 HighFEC

animals. These three genes were also upregulated in LowFEC compared to HighFEC

animals at 7 dpi in the same year, indicating the HighFEC animals may be having a

similar response to their LowFEC counterparts, but delayed by seven days. Other genes

upregulated at 14 dpi include SCIMP, SLC9A4, PDCD1, CD83, DUSP4 and CNKSR2.

SCIMP is a lipid tetraspanin-associated transmembrane adapter/mediator involved in major

histocompatibility complex (MHC) class II signalling transduction (Draber et al., 2011).

SCIMP is expressed in B cells and other professional APCs, and serves as a regulator of
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antigen presentation and other APC functions. The Na+/H+ exchanger (NHE) isoform 4,

encoded by SLC9A4, is most abundant in the stomach of rats, followed by intermediate

levels in small intestine and colon (Orlowski et al., 1992). SLC9A4 knockout mice show

sharply reduced numbers of parietal cells, a loss of mature chief cells, increased numbers of

mucous and undifferentiated cells, and an increase in the number of necrotic and apoptotic

cells. These changes indicate that SLC9A4 is important for normal levels of gastric acid

secretion and gastric epithelial cell differentiation (Gawenis et al., 2005). Programmed cell

death-1 (PDCD1) is a surface receptor critical for the regulation of T cell function during

immunity and tolerance (Fife and Pauken, 2011). Upon ligand binding, PDCD1 inhibits

T-cell effector functions in an antigen-specific manner (Fife and Pauken, 2011). The type I Ig

superfamily glycoprotein CD83 is a well-known marker for mature dendritic cells (Zhou and

Tedder, 1995). The primary function of CD83 lies in the regulation of T- and B-lymphocyte

maturation and in the regulation of their peripheral responses (reviewed in Breloer and

Fleischer, 2008). Scholler et al. (2001) showed that CD83 bound to monocytes, but not

lymphocytes, and that the binding was enhanced by stress. The mitogen- and stress-

inducible DUSP4 belongs to a class of dual-specificity phosphatases (DUSPs), designated

MKPs, that negatively regulate members of the mitogen-activated protein kinase (MAPK)

superfamily (MAPK/ERK, SAPK/JNK, p38) (Caunt and Keyse, 2013). The p38MAPK and

ERK protein kinase pathways are contributors to intestinal hyper-contractility under TH2

mediated inflammatory events such as colitis and inflammatory bowel disease (IBD) (Ihara

et al., 2009). Lanigan et al. (2003) showed that CNKSR2 (connector enhancer of kinase

suppressor of Ras 2) mediates MAPK pathways downstream from Ras. The ability to

interact with both Ras effector proteins Raf and Rlf, suggesting that CNKSR2 may integrate

signals between MAPK and Ral pathways through a complex interplay of components

(Lanigan et al., 2003).

These results indicate that in both 2010 and 2011, HighFEC animals were developing a

more effective immune response against GIN infection at 14 days post infection, with an

increase in genes associated with immune cell function.

Pathway analysis

In both 2010 and 2011 the canonical pathways Agranulocyte Adhesion and Diapedesis

and Glutamine Degradation I were both significant in HighFEC animals. In both years

genes encoding for myosin and chemokines are differentially expressed between 7 and

14 dpi. These genes form part of the Agranulocyte Adhesion and Diapedesis pathway.

The migration of agranulocytes (lymphocytes and monocytes) from the vascular system to

sites of pathogenic exposure is a key event in the process of inflammation. The process

of Glutamine Degradation, known as glutaminolysis, is mediated by glutaminase. The

phosphate-activated mitochondrial protein glutaminase (GLS2) was upregulated at 7

dpi in both 2010 and 2011. It has been suggested that glutamate has a role as a key
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immunomodulator in the initiation and development of T-cell-mediated immunity in peripheral

tissues (Pacheco et al., 2007).

3.4.2.2 LowFEC animals

Significantly differentially expressed genes

Like their HighFEC counterparts, 2010-born LowFEC animals expressed higher levels of

MX2 at 7 days post infection than at 14 dpi. At 14 dpi LowFEC animals had increased

expression of the epidermal growth factor-7-transmembrane (EGF-TM7) family member

EMR3, which displays a predominantly leukocyte-restricted expression pattern, with highest

levels in neutrophils, monocytes, and macrophages (Stacey et al., 2001). The EMR3

ligand is present at the surface of both monocyte-derived macrophages and activated

human neutrophils, suggesting a potential role for EMR3 in myeloid-myeloid interactions

during immune and inflammatory responses (Stacey et al., 2001). EMR3 has been shown

to be differentially expressed in the abomasal lymph node in two separate studies, one

comparing Scottish Blackface lambs infected with T. circumcincta to sham-infected controls

(Gossner et al., 2013), and Texel animals in comparison to Suffolk (Ahmed, 2013). While

the rest of the DE genes 14 dpi are “novel protein coding” genes in Ensembl (Ensembl

Release 74), several are orthologous to Bos taurus major histocompatibility complex genes.

ENSOARG00000016098 and ENSOARG00000015866 are 1-to-1 orthologs of BOLA-DRB3

and BOLA-DQB respectively. ENSOARG00000002985 is a one-to-many ortholog of BOLA-

DQA1 and ENSOARG00000010572 is a many-to-many ortholog of BOLA.

Many of the genes upregulated at 7 dpi in 2011 are involved in lipid metabolism. Lipoprotein

lipase (LPL) is a key enzyme of lipid metabolism that acts to hydrolyse triglycerides,

providing free fatty acids for cells and affecting the maturation of circulating lipoproteins

(Wion et al., 1987). Apolipoprotein D (APOD) is a protein component of high density

lipoprotein (HDL) (Fielding and Fielding, 1980). Perilipin 1 (PLIN1) coats lipid droplets

in adipocytes, the fat-storing cells in adipose tissue, and is thus an important regulator

of lipid storage (Greenberg et al., 1991). The adipose-tissue specific protein adiponectin

(ADIPOQ) modulates a number of metabolic processes, including glucose regulation and

fatty acid oxidation, and has been shown to have anti-inflammatory properties (Diez and

Iglesias, 2003). The protein encoded by cell death-inducing DFFA-like effector C (CIDEC)

promotes lipid droplet formation in adipocytes (Puri et al., 2007; Keller et al., 2008). A

reduction in ADIPOQ expression is associated with obesity and insulin resistance in some

animal models (reviewed in Diez and Iglesias, 2003), whereas expression of CIDEC is

positively correlated with insulin sensitivity (Ito et al., 2010). Expression of both of these

genes indicates there is an increase in the sensitivity of cells in the abomasal lymph node

of LowFEC animals to insulin at 7 dpi compared to 14 dpi. Additional genes upregulated at

7 dpi include CCL26, LTBP1 and ISG17. The chemokine (C-C motif) ligand 26 (CCL26) is

expressed by several cell types, including endothelial cells that have been stimulated with
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IL-4 (Shinkai et al., 1999). CCL26 binds to the cell surface chemokine receptor CCR3, and

is chemotactic for both eosinophils and basophils (Kitaura et al., 1999), and has previously

been reported to be upregulated in the abomasal lymph node of resistant Scottish Blackface

lambs compared to control animals (Gossner et al., 2013). Latent transforming growth factor

beta binding protein 1 (LTBP1) belongs to the family of latent TGF-beta binding proteins

(LTBPs). LTBP1 forms a complex with latent TGF-β and targets it to the extracellular matrix,

where the latent cytokine is subsequently activated (Miyazono et al., 1988); TGF-β plays an

important role in controlling the immune system (Letterio and Roberts, 1998). The interferon-

stimulated gene 17 (ISG17 ) shares an 81% identity to human ISG15 (Nighswonger et al.,

2000), which is secreted from monocytes in response to type I interferons, leading to NK

proliferation and augmentation of non-MHC-restricted cytotoxicity (Meraro et al., 2002).

When the data from both 2010 and 2011 were analysed together, ISG17 was still more

highly expressed in LowFEC animals at 7 dpi compared to 14 dpi.

Secerin 1 (SCRN1) was upregulated at 14 dpi relative to 7 dpi. Secerin 1 regulates

exocytosis in mast cells (Way et al., 2002), and is frequently expressed in gastric cancer

and colon cancer tissues (Suda et al., 2006). SCRN1 has previously been reported to be

upregulated both in resistant compared to control animals (Pemberton et al., 2011) and

Suffolk compared with Texel animals at 7 and 14 days post infection (Ahmed, 2013).

Pathway analysis

There were no pathways in common between LowFEC animals in 2010 and 2011. In 2010

the top diseases and biological functions related to the inflammatory response, cell-to-

cell signalling and interaction, and immune cell trafficking. In 2011 this was replaced by

dermatological diseases and conditions, lipid metabolism and organismal development.

3.4.2.3 Comparison analysis from 7 to 14 days post infection in all animals

Of the DE genes (common dispersion) in common over the four comparisons, fold changes

were consistent within year rather than phenotype. When comparing the 7 vs 14 day

post infection IPA analyses of both phenotypes across the two years, it appears that the

2010 HighFEC and 2011 LowFEC animals are the most similar, with 25 genes uniquely in

common between the two groups. It is important to remember that despite the genes being

common between the two groups the fold changes can be in opposite directions; of the 52

total genes that are DE in both groups, only 22 are in the same direction.

When comparing all HighFEC and LowFEC animals, we hypothesised that the HighFEC

animals had a delayed immune response in comparison to their LowFEC counterparts. The

similarities between the 2010 HighFEC and 2011 LowFEC animals could be a result of the

reduced larval challenge given to the 2011 animals; the LowFEC animals in 2011 may have

mounted a delayed immune response compared to the 2010 animals as they received a
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much lower challenge. This is backed up by upstream analysis, where the 2010 (LowFEC

and HighFEC) and the 2011 LowFEC animals appear similar. In comparison, the 2011

HighFEC animals have a different set of upstream regulators.

3.4.3 Response to high and low T. circumcincta burden in Scottish

Blackface lambs

The number of genes differentially expressed between lambs with a high worm burden

(2010) and those with a low worm burden (2011) was large. Significant diseases and

biological functions in the comparison between 2010 and 2011 animals included Infectious

Disease, Gastrointestinal Disease, Organismal Injury and Abnormalities and Haematological

System Development. The top canonical pathway was Protein Ubiquitination Pathway. The

genes involved in this pathway included for heat shock proteins (expressed in both years),

proteosome genes (expressed in 2010) and ubiquitin genes (expressed in both years).

The primary function of the proteasome (PA700/20S) is the degradation of abnormal or

foreign proteins. This involves firstly the conjugation of multiple ubiquitin moieties (Ub)

to the target protein, then secondly degradation of the polyubiquitinated protein by the

26S proteasome complex (Lecker et al., 2006). Induction of the immunoproteasome

(PA28/20S) by IFN-γ has been associated classically with the processing of MHC class I

peptides. However, recent research has uncovered unanticipated functions for IP in innate

immunity and non-immune processes, including the regulation of protein homeostasis,

cell proliferation, and cytokine gene expression (Ebstein et al., 2012). Accelerated protein

turnover helps to prevent the accumulation of harmful protein aggregates during inflammation

(van Deventer and Neefjes, 2010). The increased expression of proteasome genes in 2010

compared to 2011 therefore fits with the lower larval challenge in 2011.

3.4.4 Conclusions

The number of genes differentially expressed for each comparison was reasonably low

when compared to other transcriptome studies of the same tissue (Pemberton et al., 2011;

Ahmed, 2013; Gossner et al., 2013). This could be a result of the within-breed basis of the

comparison. However, results from a study by Pemberton et al. (2011) (and subsequently

Gossner et al., 2013) on the variation in the abomasal lymph node transcriptome in related

Scottish Blackface animals, following a trickle infection with T. circumcincta, showed that

146 genes were found to be differentially expressed between resistant and susceptible

animals. An alternative suggestion is that there may be variation between animals in

how they manifest resistance. This between-animal variation within group is shown by

the increase in the number of significant genes found using the less stringent common

dispersion estimate in EdgeR. Additionally this study is hampered by lack of statistical
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power. While the plan had been to combine the analysis of 2010 and 2011, the difference

in worm burdens at slaughter and clear separation of the two groups on the MDS plot by

year meant that data from the two years could not be combined.

Despite this, some significantly differentially expressed genes were found. Many of these

genes were found to be in agreement with other studies of resistance to gastrointestinal

nematodes in sheep. The results were most similar to those of Ahmed (2013), Gossner

et al. (2013) and Nagaraj et al. (2012). Ahmed (2013) and Gossner et al. (2013) used

transcriptome analysis on the abomasal lymph node to quantify the response of Scottish

Blackface, and Suffolk and Texel, respectively, to T. circumcincta. As the same species of

gastrointestinal nematode was investigated, the similarities in results between the three

studies are not surprising. Nagaraj et al. (2012) looked at the proteome of the abomasal

mucosa following infection with H. contortus. Despite looking at a different GIN species,

there were still multiple genes in common with the present. This suggests that there may be

some pathways in common to GIN resistance over multiple breeds of sheep and species of

gastrointestinal nematode, which is in agreement with the systems genetics study reported

by Sayre and Harris (2012).

Additionally, gene expression was examined in the abomasal lymph node, the site from

which the immune response is generated, rather than the abomasal mucosa, the site of

interaction. It was shown in a study of Johne’s disease in calves that cytokine levels were

generally higher in the mesenteric lymph nodes than in the intestine, and that the cytokines

expressed had different profiles depending on the type of tissue examined and the time of

sampling following infection (Wu et al., 2007).

The differentially expressed genes, along with the results from the pathway analysis, indicate

that it appears to be the differential interplay between TH1/TH2 genes that controls the

response to gastrointestinal nematodes in resistant compared to susceptible animals. This

is in agreement with previous studies using Texel and Suffolk animals (Hassan et al., 2011b;

Ahmed, 2013). The LowFEC (resistant) Scottish Blackface lambs are generating an immune

response to T. circumcincta at 7 days post infection, whereas in their HighFEC counterparts

this response is delayed until ~14 days post infection. The immune response generated

by the LowFEC animals may therefore be influencing the larval stages of T. circumcincta,

which could result in shorter, less fecund adults, as reported in Chapter 2.
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Chapter 4

Detecting selective pressure variation in

the sheep genome
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4.1 Introduction

Domestication of livestock occurred during the Neolithic revolution, a defining step in human

history where the transition was made from the hunter-gatherer lifestyle to settled farming

communities. Archaeozoological evidence suggests that the domestication of sheep (Ovis

aries) occurred in the Near East approximately 8,000– 9,000 years ago (Legge, 1996),

second in history only to dogs (Vilà et al., 1997). The presence of multiple mitochondrial

lineages in the extant sheep species suggest that domestication occurred several times, in

the same way as for other livestock species such as cattle, goat and pig (Meadows et al.,

2007). Since domestication, sheep have been established in a wide geographic range due

to their adaptability to withstand nutrient poor diets and tolerate extreme climatic conditions

(Kijas et al., 2009). In addition their modest size has aided intensive husbandry, which

has resulted in diverse populations (Figure 4.1), with over 1,400 recorded breeds (Scherf,

2000).

Figure 3. Relationship between breeds based on divergence time. The divergence time between breeds (in generations) estimated using LD
was used to draw a NeighborNet graph. Reticulations towards the extremity of each graph indicate increasing genetic relatedness between
populations. The divergence times are visualised as a heatmap in Figure S10.
doi:10.1371/journal.pbio.1001258.g003

Figure 4. Relationship between breeds based on Reynolds distance. An allele frequency-dependent distance metric (Reynolds) was used to
construct a NeighborNet graph relating breeds. As for Figure 3, reticulations towards the extremity of each graph indicate increasing genetic
relatedness between populations.
doi:10.1371/journal.pbio.1001258.g004
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Figure 4.1: Relationship between sheep breeds based on divergence time. The divergence
time between breeds (in generations) estimated using LD was used to draw a NeighborNet graph.
Figure used with kind permission from Kijas et al. (2012).

Since domestication, sheep have been subject to increased exposure to infectious diseases

such as nematodes, due to increased population density and proximity to other domesticated

ruminants such as goats and cattle. Indeed, of all the infections of sheep, gastrointestinal
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nematode parasitism is considered the most ubiquitous and the most direct threat to their

health (Sutherland and Scott, 2009). The selective pressure placed on natural populations

by pathogenic infection can have measurable and detectable impact on the genome of a

species (Nielsen et al., 2005; Akey, 2009).

As a result of regular challenge by pathogens, positive selection can occur in key immune

genes; over time this can result in the appearance of alleles conferring a selective advantage

(Vallender and Lahn, 2004). The interplay, sometimes referred to as a ‘molecular arms race’

between host and pathogen, is caused by the selective pressure placed on the host by the

pathogen for continued recognition and clearance in the face of continued pressure on the

pathogen to evade detection (Van Valen, 1973).

Positive selection can either be directional or non-directional. The MHC multigene family for

example is known to be under non-directional positive selection (Hughes and Nei, 1988),

where the fitness advantage may be gained by constantly changing. Directional positive

selection on the other hand occurs where a change in an amino acid is beneficial and is

subsequently fixed in the population or retained at high frequency. This has been illustrated

in various systems previously (Obbard et al., 2009; Levi-Acobas et al., 2009; Little et al.,

2007; Flajnik and Kasahara, 2001). Searching the sheep genome for such molecular

signatures of positive selection can help to identify key genes, amino acid positions and

pathways important in resistance to gastrointestinal nematodes (Nielsen et al., 2005).

Evolutionary theory

Once a new mutation arises in a gene, it is subject to a number of evolutionary forces. The

neutral theory of molecular evolution argues that the majority of mutations are neutral or

nearly neutral and the rate of fixation of these mutations is based on the rate of random

genetic drift and the effective population size (Ohta, 1973; Kimura, 1984). Therefore, it is

assumed that only a small minority of mutations face selection, and these will have prevailed

over genetic drift by natural or artificial selection (Lynch and Conery, 2000).

While the neutral/nearly-neutral theory applies to molecular evolution, natural or artificial

selection will act on the molecular changes governing the phenotype of an organism. If

a mutant arises that causes a corresponding protein change, this can be considered to

have changed the phenotype of that individual. If the phenotypic effect of the mutation

is too small to affect the individual’s fitness, it will not be acted upon by natural selection,

and is selectively neutral. The neutral and nearly neutral theories state that the mutant

may however still be fixed at random (Ohta, 1973; Kimura, 1984). If the protein change

sufficiently affects the fitness of the individual, natural selection will then act to select for or

against the phenotype (Loughran et al., 2008, 2012). The primary difference between the

neutral and the nearly neutral theories is that the nearly neutral theory predicts a relationship

between evolutionary rate and species population size: in larger populations genetic drift
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is a weaker force, and therefore evolution occurs more slowly than in smaller populations

(Ohta, 1973; Lynch and Conery, 2000).

Mutations that impact the function of a gene, or the phenotype of an individual are

significantly affected by natural selection (Hurst, 2009). Natural selection can be subdivided

into three different types: (i) balancing selection, which favours diversity (such as the non-

directional positive selection seen in the MHC region (Hughes and Nei, 1988)), (ii) purifying

selection, which eliminates deleterious mutations (e.g. widespread constraint acting on

synonymous sites in Drosophila (Lawrie et al., 2013)), and, less commonly, (iii) positive

selection or adaptive evolution, where an advantageous allele spreads to fixation in the

population (for example the positive selection observed in mammalian reproductive proteins

(Morgan et al., 2010)).

Gene duplication

Homologous genes are defined as genes inherited from a common ancestor, and can be

further classified as either the product of a speciation event (ortholog), or the result of a

gene duplication event (paralog) (Figure 4.2).

B C

A

C C CB B B

Paralogs

Homologs

OrthologsOrthologs

Figure 4.2: Gene phylogeny depicting the relationships among homologs. Genes resulting
from a speciation event are orthologs (e.g. ’B’ or ’C’ genes in all species), while genes resulting from
a duplication event (star symbol) are paralogs (e.g. sheep ’B’ and ’C’ genes).

Gene duplication, the mechanism by which paralogs arise, is believed to be the main source

of new genes (Ohno, 1970), although new genes may also arise through recombination

(Long et al., 2003). Gene duplication (Figure 4.3) can result in either (i) functional

redundancy (pseudogene), (ii) neofunctionalisation, where one duplicate evolves a new

function, while the other copy retains the original function, or (iii) subfunctionalisation, the

ancestral function is partitioned between the two duplicates (summarised in Long et al.,
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2003). Duplication events can lead to the evolution of families of multiple genes with similar

functions, such as the vertebrate MHC family (The MHC Sequencing Consortium, 1999).

A

Subfunctionalisation

Gene duplication

NeofunctionalisationFunctional redunance

A A

A B A1 A2A -

Figure 4.3: Potential outcomes of a gene duplication event (star symbol). Gene duplication
can result in either (i) functional redundancy (pseudogene), (ii) neofunctionalisation, where
one duplicate evolves a new function, while the other copy retains the original function, or (iii)
subfunctionalisation, the ancestral function is partitioned between the two duplicates

Positive selection and protein functional shift

While positive selection is generally considered to be synonymous with a change in protein

function (functional shift), empirical evidence was slow to emerge, highlighting the need

for experimental validation of predicted positively selected sites. Yokoyama et al. (2008)

identified sites under positive selective pressure in vertebrate rhodopsin genes, however

repeated directed site mutagenesis of these sites revealed no significant influence on the

adaptation of rhodopsin sensitivity. More recent studies, employing maximum likelihood

methods of phylogenetic reconstruction and codon based models of evolution (such as

those employed in this chapter), have shown definitive links between positive selection

predicted in silico and protein functional shift, validated in vitro (Loughran et al., 2012;

Levasseur et al., 2006).

Methods for detecting selective pressure variation

By comparing orthologous genes between species, it is possible to determine the mode of

selection acting upon a particular species or gene. For a particular protein coding sequence,

the selective pressure can be estimated by comparing synonymous (unchanged amino

acid sequence) substitutions per synonymous site (Ds) to non-synonymous (resulting in

an amino acid change) substitutions per non-synonymous site (Dn; Figure 4.4). Most

synonymous mutations occur at the third position of a codon, whereas mutations in the first

two codons are typically non-synonymous (Erives, 2011).
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Met

ATG   TCT   GGA   AGA   GTT   TAG

ATG  TCT  GGA  AGG  GTT  TAG

A) Synonymous substitution   B) Non-synonymous substitution

Ser Gly Arg Val Trp

Met Ser Gly Arg Val Trp

Met

ATG   TCT   GGA   AGA   GTT   TAG

ATG  TCT  GGA  AAA  GTT  TAG

Ser Gly Arg Val Trp

Met Ser Gly Lys Val Trp

synonymous site        non-synonymous site

Figure 4.4: Consequences of mutations in the exon of a gene on the resulting amino acid
sequence. Diagrammatic representation of a synonymous substitution at a synonymous site (A)
and a non-synonymous substitution at a non-synonymous site, resulting in a protein change (B; Arg
> Lys).

The ratio between the two numbers (Dn/Ds = ω) can be used to identify the mode of

selection: (i) if ω = 1, this is indicative of neutral evolution, (ii) if ω < 1, this is indicative of

negative or purifying selection, (ii) if ω > 1, this is indicative of positive selection (Yang and

Bielawski, 2000).

The first methods for detecting positive selection were distance-based, assessing Dn/Ds

across a gene in a pairwise comparison (Li et al., 1985; Nei and Gojobori, 1986). These

methods were incapable of measuring lineage-specific selective pressure variation, whereas

subsequent methods incorporating phylogenetic trees can place selection in a phylogenetic

context (Yang, 1997, 2007). The McDonald-Kreitman test (McDonald and Kreitman, 1991)

uses population level data together with a closely related outgroup species to take into

account polymorphisms and divergence within and between species at synonymous and

non-synonymous sites. Signatures of adaptive evolution occur where there are more fixed

mutations than polymorphisms observed between species than within the study population

(McDonald and Kreitman, 1991).

A more sophisticated approach to detect adaptive evolution uses a maximum-likelihood (ML)

and Bayesian-based approach, which incorporates the data, the phylogenetic relationship

between species, and the complexity of evolutionary (codon) models (Goldman and Yang,

1994; Yang and Nielsen, 2002). CodeML, within the Phylogenetic Analysis by Maximum

Likelihood (PAML) package (Yang, 1997, 2007), incorporates a number of models to test

for selective pressure variation across branches of a phylogeny (lineage-specific models),

across specific codon positions (site-specific models), or both simultaneously (lineage-site

models).

For this chapter the aim was to detect evidence of sites that were only positively selected in

our lineages of interest (Bovidae, Ovis, and HighFEC or LowFEC animals). Two lineage-site

models have been developed in CodeML to detect positive selection at individual sites

along specified lineages (Yang and Nielsen, 2002; Yang et al., 2005). Model A and model

B each work on a phylogeny that has been separated into “foreground” and “background”
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lineages, and they permit ω to vary among sites and lineages. Using these nested codon

based models of evolution we can assess whether the foreground lineages have signatures

of positive selection that are unique in comparison to the background lineages.

The parameters estimated under Model A are summarised in Table 4.1. For the background

lineages, there are two classes of sites: conserved sites under purifying selection with

0 < ω0 < 1 and sites undergoing neutral or weak purifying selection with ω1 = 1. Along

the foreground lineages, a proportion (1 − p0 − p1) of sites are permitted to evolve under

positive selection with ω2 ≥ 1 (Yang, 2006). Model A fixes ω1, and estimates ω0 from the

data (Yang et al., 2005), whereas in model B the ω values are estimated from the data, and

are free to vary (Yang and Nielsen, 2002), thus making Model B the most parameter-rich

model.

Table 4.1: The ω ratios permitted in lineage-site model A. Model A involves four parameters:
p0, p1, ω0, ω2, with ω1fixed at 1. The 3 ω value estimates are across 4 site classes: are 0, 1, 2a
and 2b. The ω estimates for site classes 0 and 1 are respectively ω0 and ω1, in both foreground
and background lineages. For site class 2a, the background lineage is constrained to ω0, while the
foreground lineage is constrained to ω2. For site class 2b, the background lineage is constrained to
ω1, while the foreground lineage is again constrained to ω2.

Site class Proportion Background ω Foreground ω Foreground

0 p0 0 < ω0 < 1 0 < ω0 < 1 Purifying selection

1 p1 ω1 = 1 ω1= 1 Neutral/weak purifying selection

2a (1 − p0− p1)p0/(p0+ p1) 0 < ω0 < 1 ω2> 1 Positive selection

2b (1 − p0− p1)p1/(p0+ p1) ω1 = 1 ω2> 1 Positive selection

To prevent the CodeML models reporting results from a local minimum on the likelihood

plane, a variety of starting omega values (i.e., 0, 1, 2, 10) are employed, as in previous

publications (Loughran, 2010; Morgan et al., 2010). The models are analysed using a

likelihood ratio test (LRT; Table 4.2), which assess the significance of the more parameter-

rich models compared to their less parameter-rich counterparts (Nielsen and Yang, 1998;

Yang and Bielawski, 2000).

Table 4.2: Likelihood ratio tests used in CodeML analysis. The χ 2 critical value must be
exceeded by the LRT test statistic D in order for the null model to be rejected at a 5% significance
level.

Null model Alternative model d.f. χ 2 critical value

Model 1a Model A 2 5.99

Model A Null Model A 2 3.84

When CodeML infers that positive selection has occurred, as confirmed by LRT, Empirical

Bayesian (EB) methods are used to estimate the posterior probability (PP) that a given site

belongs to the positively selected site category. Two EB methods are employed, Naïve

Empirical Bayes (NEB; Yang and Nielsen, 1998) and Bayes Empirical Bayes (BEB; Yang

et al., 2005). NEB is particularly sensitive to errors in small datasets where ML estimates
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may have large sampling errors (Anisimova et al., 2002), and therefore BEB approaches

have been developed to account for these uncertainties, reducing the rate of false positive

detection (Yang et al., 2005). The BEB method has not however been implemented for all

models of codon evolution.

Detecting selective pressure variation in sheep

The selective pressure caused by gastrointestinal nematodes in ruminants may leave a

genetic footprint for directional positive selection, quantifiable by measures of sequence

change (as in Morgan et al., 2010). The aim of this study was to take a subset of genes,

identified as being differentially expressed in the abomasal lymph node of resistant and

susceptible Scottish Blackface lambs after infection with the gastrointestinal nematode

Teladorsagia circumcincta, and look for selective pressure variation that may be associated

with resistance or susceptibility to gastrointestinal nematodes.
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4.2 Materials and Methods

4.2.1 Genes of interest

Candidate genes were chosen if they were differentially expressed (tagwise dispersion;

FDR<0.1) in Scottish Blackface animals during a controlled challenge with the gastrointestinal

nematode Teladorsagia circumcincta (Chapter 3). In total 109 genes were differentially

expressed (DE); 41 genes between HighFEC and LowFEC animals, and 68 genes between

7 and 14 days post infection. Removing genes that were significant in multiple comparisons

resulted in 97 unique genes. Six MHC genes were removed from the analysis, as these

genes are highly polymorphic (Stear et al., 2005) and thought to be maintained by balancing

selection (Hughes and Yeager, 1998). One additional gene was removed as it was a miRNA

(Table 4.3), leaving 90 genes available for positive selection analysis.

Table 4.3: Genes differentially expressed between HighFEC and LowFEC animals removed
from analysis.

Ensembl Gene ID Gene Name Gene Set Reason for removal

ENSOARG00000002985 - RNA-Seq MHC family

ENSOARG00000010572 - RNA-Seq MHC family

ENSOARG00000015866 HLA-DQB2 RNA-Seq MHC family

ENSOARG00000016098 - RNA-Seq MHC family

ENSOARG00000000058 - RNA-Seq MHC family

ENSOARG00000001701 - RNA-Seq MHC family

ENSOARG00000024912 - RNA-Seq miRNA

4.2.2 Species of interest

The genomes of 20 species with over 6x genome coverage (Table 4.4) were selected,

from which gene family members were obtained through Ensembl Biomart (Smedley et al.,

2009). It has been shown that genes with less than 3x sequencing coverage result in higher

inferred rates of positive selection than those with more than 3x coverage (Schneider et al.,

2009), and selection of high quality genomes reduces the rate of potential false positives.

These species were chosen to represent taxa from a diverse range of clades in order to

ensure any selected sites were not a reversal to an ancestral state. Mammalian Orders

represented in this study are; the Cetartiodactyla (sheep, cow and pig), the Carnivora (dog

and cat), the Perissodactyla (horse), the Chiroptera (microbat), the Primates (gorilla and

human), the Proboscidea (elephant), the Didelphimorphia (opossum) and the Monotremata

(platypus). The outgroup species were from the Classes Aves, containing the Orders

Galliformes (turkey and chicken) and Passeriformes (zebra finch); Reptilia, containing the

Order Squamata (anole lizard), and Actinopterygii, containing the orders Cypriniformes
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(zebrafish) and Tetraodontiformes (fugu). The species tree used in this study (Figure 4.8)

was based on previous work by Morgan et al. (2013) with the addition of sheep, which was

placed next to cow (Jiang et al., 2014). Throughout this thesis, Ensembl data has been

obtained from Ensembl release 74 unless otherwise specified.

Table 4.4: Full list of species and Ensembl genome assemblies (release 74) used in this
analysis. Coverage is approximate.

Common name Scientific name Species code Genome build Coverage (x)

Anole lizard Anolis carolinensis ACA AnoCar2.0 6

Cat Felis catus FCA Felis_catus_6.2 6

Chicken Gallus gallus GAL Galgal4 6.6

Cow Bos taurus BTA UMD3.1 9.5

Dog Canis lupus familiaris CAF CanFam3.1 7.6

Elephant Loxodonta africana LAF loxAfr3 7

Fugu Takifugu rubripes TRU FUGU4 8.7

Gorilla Gorilla gorilla gorilla GGO gorGor3.1 35

Horse Equus caballus ECA EquCab2 6

Human Homo sapiens - GRCh37 High

Microbat Myotis lucifugus MLU Myoluc2.0 7

Mouse Mus musculus MUS GRCm38 High

Opossum Monodelphis domestica MOD BROADO5 7.3

Pig Sus scrofa SSC Sscrofa10.2 10

Platypus Ornithorhynchus anatinus OAN OANA5 6

Rat Rattus norvegicus RNA Rnor_5.0 7

Sheep Ovis aries OAR Oar_v3.1 75

Turkey Meleagris gallopavo MGA UMD2 30

Zebra Finch Taeniopygia guttata TGU taeGut3.2.4 7

Zebrafish Danio rerio DAR Zv9 Not available

4.2.3 Analysis of heterogeneous selective pressures

4.2.3.1 Overview of analysis

An overview of the entire analysis is given in Figure 4.5. All Python scripts used in

the analysis were coded by Andrew Webb (BME group, DCU), and have been provided

(Appendix 4.1) along with instructions for their use (Appendix 4.2).
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Figure 4.5: Overview of selective pressure heterogeneity analysis. Numbers refer to
methodology sections below.

4.2.3.2 Gene sequence download

Protein coding DNA sequences (CDS) for all genes (Ensembl Genes 74; Table 4.4)

were downloaded from Ensembl through BioMart (Smedley et al., 2009). Where multiple

transcripts were available for each gene, the longest transcript was selected. Any sequences

that were not divisible by three were discarded, and then all remaining sequences were

translated into their amino acid counterparts (Figure 4.5).
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4.2.3.3 Prediction of homologs

A reciprocal BLASTp approach (Altschul et al., 1997) was employed to predict homologs

(Figure 4.5). Sheep protein sequences were searched against protein sequences from

all other species (Table 4.4) using a cut-off threshold of E-11. Three other thresholds (E-5,

E-7and E-9) were also tested, but E-11 was chosen as it is stricter, and therefore reduced the

number of genes per species present in multigene families. A reciprocal BLASTp approach

was then used with the results from the initial BLASTp against the Ovis aries CDS. The

results from both BLASTp runs were concatenated, and used to form multigene families

containing putative orthologs.

Multigene families were split into three categories, according to size (Figure 4.5): ’single

gene orthologs’ (SGO group), groups with ≤60 genes (u60 group), and groups with

>60 genes. For the larger multigene families (>60 genes) the gene(s) of interest were

determined, and known orthologs downloaded using the Ensembl BioMart tool rather than

using the reciprocal BLAST results (Ensembl group).

4.2.3.4 Multiple sequence alignment

Alignment errors may lead to high false positive numbers in the lineage-site test (Fletcher

and Yang, 2010), and therefore it is important to use reliable alignment methods. PRANK

v.130820 (Loytynoja and Goldman, 2008) has been demonstrated to outperform other

alignment programs in the alignment of mammalian and vertebrate genes (Anisimova et al.,

2008; Fletcher and Yang, 2010), and was therefore used for multiple sequence alignment

(MSA) of amino acids (Figure 4.5). Multiple sequence alignments have been provided

(Appendix 4.3).

4.2.3.5 Reduction of large multigene families

The large multigene families (u60 and Ensembl groups) could not be analysed using

selective pressure analysis tools such as CodeML (Yang, 1997; Yang and Nielsen, 1998),

and therefore were reduced using the Maximum-likelihood based phylogenetic inference

tool RAxML (Stamatakis, 2014) (Figure 4.5).

Selecting model of protein evolution Each alignment file was converted to PHYLIP

format using readAl v1.2 (Capella-Gutierrez et al., 2009). ProtTest3 (Darriba et al., 2011)

was used to select the model of protein evolution that best fitted each given set of sequences,

which was then used to form gene trees using RAxML (Stamatakis, 2014).

Creation of subtrees A rapid Bootstrap analysis in RAxML (Stamatakis, 2014) was

used to search for the best-scoring maximum-likelihood (ML) gene tree, which could
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be subsequently pruned (Figure 4.5). RAxML was chosen for the highly optimised and

efficient likelihood functions, in addition to the low memory consumption. Each tree was

pruned manually using the create_subtrees function in the bmeTools software package (in

preparation for publication), and the genes in the resulting subtree were realigned using

PRANK. The subtrees were split into three groups (Figure 4.5), those that could be run

through positive selection software with a species tree (species_tree), those that could be

run with the -allow_in-paralogs option during the CodeML setup in bmeTools (allow_in-

paralogs), and those that needed to be re-run in RAxML (rerun_RAxML). A subset of trees

(n=36) were also re-run through the RAxML pipeline excluding sheep paralogs (Ensembl2).

The annotation of the sheep genome is very recent, and therefore some genes have a large

number (>20) of paralogs, which makes the gene tree difficult to interpret.

4.2.3.6 Obtaining consensus sequence for HighFEC and LowFEC Scottish Blackface

animals

Consensus sequence from the HighFEC (n=20) and LowFEC (n=20) Scottish Blackface

animals was obtained from the RNA-Seq reads (Chapter 2). RNA reads for each sample

were aligned to the CDS sequence for each gene in the sheep (OAR3.1) genome (Appendix

4.5). Following removal of duplicate reads, the alignments for all within group animals

(HighFEC and LowFEC) were merged and a read pileup at each base in the CDS was

generated using Samtools (v 0.1.18; Li et al., 2009). An in-house PERL script was used to

generate a consensus FASTA sequence for each gene in both the HighFEC and LowFEC

animals. Regions of genes for which no coverage was detected were substituted with “N”’s

to preserve reading frame integrity of the CDS. The consensus sequence for each group

was then added to each gene group MSA using the sheep gene as a reference (Figure 4.5).

4.2.3.7 Testing for lineage-site selective pressure

Selective pressure analyses were performed using CodeML (Yang, 1997; Yang and Nielsen,

1998), from the PAML package (version 4.4c Yang, 2007). Sensitivity to taxa number is

a known limitation when detecting positive selection, and therefore more than 6 taxa are

required to get statistically robust estimations of selective pressure (Anisimova et al., 2002).

Additionally, simulations have also shown that if sequence length is less that 50 codons,

prediction of positively selected sites is unreliable (Anisimova et al., 2001). Selective

pressure variation was tested in a lineage-site-specific manner across the dataset using

model A (Figure 4.5), and a site specific manner using model 8, although these results were

not analysed further for this thesis. Model 8 was used as this is the most reliable site specific

model (Yang et al., 2000). The multiple sequence alignments of inferred lineage-specific

positively selected sites were reviewed, and the Swiss-Prot (www.uniprot.org/) annotated

feature examined for possible functional shifts.
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It has been shown in humans that polygenic adaptation to pathogens has left signatures

in the genome that can be detected using gene set enrichment methods (Daub et al.,

2013). Gene set enrichment tests wether the distribution of statistics computed across all

genes of a given biological pathway statistically differs from genome-wide expectations

(Daub et al., 2013). This approach can be used with SNP data from GWAS studies

(Holden et al., 2008; Wang et al., 2007), as well as genes detected as being positively

selected using CodeML (Roux et al., 2014). To look at evidence of enrichment at the

biological pathway level genes with lineage-specific positive selection were examined using

Ingenuity® Systems Pathway Analysis (IPA; Ingenuity Systems, Redwood City, CA, USA;

www.ingenuity.com; v18030641). Human Ensembl (version 74) 1-to-1 orthologs for all

genes with lineage-specific positive selection were obtained using Ensembl’s Biomart tool

(www.ensembl.org/biomart/martview/). IPA was used to identify networks of interacting

genes and other functional groups.
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4.3 Results and discussion

4.3.1 Alignment

In total there were 90 alignments, with an average length of 1,392 aa (113 aa - 10,272 aa;

Table 4.5). To determine the quality of the sheep transcripts, the average length of each

gene of interest was compared to the background average for each alignment. Of the 90

multiple sequence alignments, 67 were within one standard deviation of the background

average, with the remaining 23 outside of this range. The full list of alignments are available

in Appendix 4.3.

4.3.2 Gene families

Of the 91 gene families, only 3 were single gene orthologs (SGOs). The remaining

88 families were split between i) multigene families with under 60 genes (u60, n=23),

ii) large groups for which Ensembl-defined orthologs and sheep paralogs were used

(Ensembl, n=29), and iii) large groups for which Ensembl-defined orthologs only were

selected (Ensembl2, n=35). During the first round of analysis, one group was removed as

there were under seven species represented in the multiple sequence alignments. A further

two were removed as there was an ancestral duplication present in the gene tree, which

made the MGF too complex for the scope of this analysis (Figure 4.6).
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Figure 4.6: An example of a tree removed from the analysis due to ancestral duplication
pattern in rat.
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In total 28 MSA’s were pruned (as demonstrated in Figure 4.7), with the reduced datasets

realigned and analysed in ProtTest3 and RAxML (Table 4.5).

AnoleLizard|ENSACAG00000011941

Turkey|ENSMGAG00000005355

Chicken|ENSGALG00000010316

ZebraFinch|ENSTGUG00000001743

Platypus|ENSOANG00000003565

Elephant|ENSLAFG00000007543

Gorilla|ENSGGOG00000003170

Human|ENSG00000138759

Mouse|ENSMUSG00000034687

Rat|ENSRNOG00000002053

Elephant|ENSLAFG00000028453

Horse|ENSECAG00000007044

Microbat|ENSMLUG00000012678

Sheep|ENSOARG00000018254#1
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Dog|ENSCAFG00000008752

Cat|ENSFCAG00000011279

Opossum|ENSMODG00000020811
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AnoleLizard|ENSACAG00000006104

Elephant|ENSLAFG00000007543

Rat|ENSRNOG00000002053

Mouse|ENSMUSG00000034687

Gorilla|ENSGGOG00000003170

Human|ENSG00000138759

Horse|ENSECAG00000007044

Microbat|ENSMLUG00000012678

Sheep|ENSOARG00000018254#1

Cow|ENSBTAG00000010716

Pig|ENSSSCG00000008991

Cat|ENSFCAG00000011279

Dog|ENSCAFG00000008752

Elephant|ENSLAFG00000028453

Opossum|ENSMODG00000020811

Platypus|ENSOANG00000003565

ZebraFinch|ENSTGUG00000001743

Turkey|ENSMGAG00000005355

Chicken|ENSGALG00000010316

AnoleLizard|ENSACAG00000011941

Sheep|ENSOARG00000008055

Sheep|ENSOARG00000001908

Sheep|ENSOARG00000013934

Sheep|ENSOARG00000010400

A                 B

Figure 4.7: Pruning gene trees.Example of gene tree from RAxML (ENSOARG00000018254)
before (A) and after (B) pruning (at star symbol).
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Of these groups, five were removed as the multigene family was too large, with too many

independent duplications and losses to infer reliable evolutionary history (’complexity’;

Table 4.6). The full list of maximum likelihood trees and the resulting alignment from the

selected subtree are provided in Appendix 4.4.

Table 4.6: Genes of interest from multigene families removed during the analysis.

Ensembl gene ID name Gene length Reason for removal

ENSOARG00000001131 GIMAP8 6,459 Not enough species

ENSOARG00000000070 - 878 Ancestral duplication pattern

ENSOARG00000020801 - 2,304 Ancestral duplication pattern

ENSOARG00000010344 LTBP1 458,787 Complexity

ENSOARG00000020792 - 512 Complexity

ENSOARG00000000895 - 7,670 Complexity

ENSOARG00000020789 - 10,646 Complexity

ENSOARG00000000101 - 559 Complexity

4.3.3 Detecting selective pressure variation

Following the various filtering steps, 85 gene families remained for positive selection analysis.

The Ovis lineage showed the largest number (22) of gene families with lineage-specific

positive selection (Figure 4.8 & Table 4.7). Signals of positive selection were detected in the

LowFEC lineage in only one of these gene families (OSBPL5). The Bovidae lineage, which

included all sheep plus cattle, showed evidence of positive selection in 12 gene families.

The full set of selective pressure analysis results are available in Appendix 4.6.

148



Human

Gorilla

Rat

Mouse

Dog

Cat

Horse

Sheep

LowFEC

HighFEC

Cow

Pig

Microbat

Elephant

Opossum
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Figure 4.8: Summary of lineage specific positive selection results imposed onto the species
phylogeny used in this chapter. Lineage specific positive selection was examined in the Bovidae
(all sheep and cattle), Ovis (all sheep), sheep reference, Scottish Blackface (HighFEC and LowFEC),
HighFEC and LowFEC lineages. In total 85 gene families were examined for selective pressure.
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Table 4.7: Results of selective pressure analysis. Results for site-specific selective pressure are
shown along with lineage-specific results for HighFEC (H), LowFEC (L), Scottish Blackface (SB),
reference sheep (S), Ovis (O) and Bovidae (B) lineages.

Ensembl Gene ID Gene Name Gene length Site H L SB S O B

ENSOARG00000004198 SCIMP 6,608 - - - - - - -

ENSOARG00000012936 CD83 18,537 - - - - - + -

ENSOARG00000019308 BTLA 33,061 - - - - - - -

ENSOARG00000013782 ALB 22,576 + - - - - - +

ENSOARG00000001286 - 1,505 + - - - - + -

ENSOARG00000017587 PDCD1 7,763 - - - - - + -

ENSOARG00000001720 - 2,762 - - - + - + -

ENSOARG00000004253 - 1,421 - - - - - - -

ENSOARG00000002035 WARS 20,533 - - - - - - -

ENSOARG00000011072 LYVE1 13,901 + - - - - - -

ENSOARG00000007534 LACC1 7,803 - - - - - - -

ENSOARG00000001718 MPPE1 13,251 - - - - - + -

ENSOARG00000020386 APOD 12,496 + - - - - - -

ENSOARG00000003547 MYBL2 31,799 + - - - - - -

ENSOARG00000005011 TTC21B 93,463 - - - - - - -

ENSOARG00000018398 MMRN1 84,917 - - - - - - -

ENSOARG00000020373 MFI2 25,778 - - - - - - -

ENSOARG00000014218 - 42,784 - - - - + + -

ENSOARG00000008738 SCRN1 42,085 - - - - - - -

ENSOARG00000007871 SCRN2 3,179 - - - - - + -

ENSOARG00000005878 CIDEC 7,777 - - - - - - -

ENSOARG00000003661 TOX2 122,422 - - - - - - -

ENSOARG00000001898 FOLR4 4,279 + - - - - - -

ENSOARG00000020194 MAB21L3 30,418 + - - - - - -

ENSOARG00000016543 CXCL9 4,700 + - - - - - -

ENSOARG00000001778 OSBPL5 56,065 - - + - + + +

ENSOARG00000010272 DUSP4 13,283 - - - - - - -

ENSOARG00000013068 SLC9A4 50,331 - - - - + + -

ENSOARG00000013498 DNAH5 263,825 - - - - + + -

ENSOARG00000020509 ADIPOQ 12,544 - - - - - - -

ENSOARG00000010231 MX2 28,730 + - - - - - -

ENSOARG00000011709 PLIN1 11,487 - - - - - + -

ENSOARG00000009194 ATP10A 183,350 - - - - - - -

ENSOARG00000002851 CYP4B1 23,436 - - - - - - +

ENSOARG00000015996 STAB2 169,758 - - - - + + -

ENSOARG00000002342 SH3RF2 131,416 - - - - - - -

ENSOARG00000012377 GSDMA 13,104 - - - - - - -

ENSOARG00000019517 CHI3L2 18,328 - - - - - - -

ENSOARG00000014842 COL6A5 164,242 + - - - - - -

ENSOARG00000018254 FRAS1 514,386 + - - - - + -

ENSOARG00000010719 LPL 23,784 - - - - - - -

ENSOARG00000020224 COL9A2 18,385 + - - - + - -
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Ensembl Gene ID Gene Name Gene length Site H L SB S O B

ENSOARG00000018254 FRAS1 514,386 + - - - - + -

ENSOARG00000010719 LPL 23,784 - - - - - - -

ENSOARG00000020224 COL9A2 18,385 + - - - + - -

ENSOARG00000005151 HMCN1 538,202 - - - - - - -

ENSOARG00000006960 FCRL1 15,697 + - - - - - -

ENSOARG00000000928 ECT2L 64,564 - - - - - - -

ENSOARG00000015815 CNKSR2 222,620 - - - - - - -

ENSOARG00000007090 CYP2F1 9,762 - - - - - - -

ENSOARG00000012273 PLK5 7,182 + - - - - + +

ENSOARG00000009389 KIF18B 15,934 + - - - - - -

ENSOARG00000019641 LSAMP 316,557 - - - - - - -

ENSOARG00000005490 SLC30A2 10,307 + - - - + + -

ENSOARG00000010539 HIF3A 33,107 - - - - - + -

ENSOARG00000007233 ISG17 946 - - - - - - +

ENSOARG00000010473 EPB41L3 89,355 - - - - + + -

ENSOARG00000009143 - 3,509 + - - - - - -

ENSOARG00000018232 - 26,795 + - - - - - -

ENSOARG00000018173 - 654 + - - - - - -

ENSOARG00000010111 - 905 - - - - - - -

ENSOARG00000004611 MCP-3 2,920 + - - - - - -

ENSOARG00000005549 - 4,756 - - - - - - -

ENSOARG00000003000 - 4,250 + - - - - - -

ENSOARG00000005126 EMR3 62,795 + - - - - - +

ENSOARG00000013341 - 288,484 + - - - - + +

ENSOARG00000001140 - 175,629 + - - - - - -

ENSOARG00000004875 - 27,125 + - - - - - -

ENSOARG00000021044 CLEC2B 15,904 + - - - - + -

ENSOARG00000004858 - 305 - - - - - - -

ENSOARG00000009963 - 6,471 + - - - - - +

ENSOARG00000007987 GZMK 10,023 + - - - - - -

ENSOARG00000011275 - 305 - - - - - - -

ENSOARG00000002371 - 10,875 + - - - + - -

ENSOARG00000001279 - 9,277 + - - - - - -

ENSOARG00000002418 - 7,055 + - - - - - -

ENSOARG00000011529 ZFR2 22,497 - - - - - + +

ENSOARG00000000857 - 505 - - - - - - -

ENSOARG00000005312 ZNF461 20,568 + - - - - - -

ENSOARG00000012211 RPS25 1,748 - - - - - - -

ENSOARG00000020811 - 754 - - - - - - +

ENSOARG00000018806 WBP2NL 19,300 + - - - + + -

ENSOARG00000013846 NAPSA 11,091 - - - - - - +

ENSOARG00000013340 CCL26 4,033 - - - - - - -

ENSOARG00000001393 GIMAP8 2,960 + - - - - + +
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A total of 13 genes showed both site and lineage-site signals of positive selection (Figure 4.9).

Site 
selection

16   13   16

38
Lineage-site
selection

Figure 4.9: Summarisation of results from site and lineage-specific selective pressure
analysis. Numbers shown are genes that show site (16) or lineage-site (16) signals of positive
selection, both (13), or none (38).

Looking for selective pressure variation in the sheep reference proteins separately to the

Scottish Blackface allows analysis of regions where there is no coverage from the HighFEC

and LowFEC RNA-Seq reads. One such example is DNAH5 (ENSOARG00000013498),

for which 17 sites were positively selected with respect to the Ovis lineage. The sheep

reference lineage also showed positive selection (Figure 4.10), however upon further

examination of the site under positive selection, this was a region for which there was no

coverage in the Scottish Blackface.

                                     1921             1855
PS_Sites|Sheep                          ------------ ---X-------- ------------ ------------ ------------
PS_Characters|Sheep  ------------ ---E-------- ------------ ------------ ------------
Sheep|ENSOARG00000013498                SLSLFPVSIQIK VFLERYLEKKRL CFPRFFFVSDPA LLEILGQASDPH TIQAHLLNVFDN

Turkey|ENSMGAG00000005882               ------------ --LTGYLEKKRL LFPRFFFVSDPA LLEILGQASDSH TIQAHLLNVFDN
Horse|ENSECAG00000014954                ------------ --LTGYLEKKRL CFPRFFFVSDPA LLEILGQASDTH TIQAHLLNVFDN
Microbat|ENSMLUG00000003652             ------------ --LTGYLEKKRL CFPRFFFVSDPA LLEILGQASDAH TIQAHLLNVFDN
Human|ENSG00000039139                   ------------ --LTGYLEKKRL CFPRFFFVSDPA LLEILGQASDSH TIQAHLLNVFDN
Cow|ENSBTAG00000021972                  ------------ --LTGYLEKKRL CFPRFFFVSDPA LLEILGQASDPH TIQAHLLNVFDN
Fugu|ENSTRUG00000003584                 ------------ --LTGYLEKKRL LFPRFFFVSDPA LLEILGQASDSH TIQAHLLNIFDN
ZebraFinch|ENSTGUG00000007486           ------------ --LTGYLEKKRL LFPRFFFVSDPA LLEILGQASNSH NIQAHLLNVFDN
Elephant|ENSLAFG00000012310             ------------ --LTGYLEKKRL CFPRFFFVSDPA LLEILGQASDSH TIQAHLLNVFDN
Platypus|ENSOANG00000011603             ------------ --LTGYLEKKRL CFPRFFFVSDPA LLEILGQASDSH TIQAHLLNIFDN
Dog|ENSCAFG00000009850                  ------------ --LTGYLEKKRL CFPRFFFVSDPA LLEILGQASDTH TIQAHLVNVFDN
Cat|ENSFCAG00000015341                  ------------ --LTGYLEKKRL CFPRFFFVSDPA LLEILGQASDTH TIQAHLLNVFDN

|ENSOARG00000013498              XXXXXXXXXXXX XXXXXYLEKKRL CFPRFFFVSDPA LLEILGQASDPH TIQAHLLNVFDN

Gorilla|ENSGGOG00000007206              ------------ --LTGYLEKKRL CFPRFFFVSDPA LLEILGQASDSH TIQAHLLNVFDN
Rat|ENSRNOG00000048363                  ------------ --LTGYLEKKRL CFPRFFFVSDPA LLEILGQASDSH TIQAHLLNVFDN
Opossum|ENSMODG00000002817              ------------ --LTGYLEKKRL SFPRFFFVSDPA LLEILGQASDSH TIQAHLLNVFDN

LowFEC|ENSOARG00000013498               XXXXXXXXXXXX XXXXXYLEKKRL CFPRFFFVSDPA LLEILGQASDPH TIQAHLLNVFDN

AnoleLizard|ENSACAG00000005926          ------------ --LTGYLEKKRL SFPRFFFVSDPA LLEILGQASDSH TIQAHLLNVFDN
Zebrafish|ENSDARG00000087373            ------------ ------------ ------------ ------------ ------------
Chicken|ENSGALG00000012997              ------------ --LTGYLEKKRL LFPRFFFVSDPA LLEILGQASDSH TIQAHLLNVFDN
Mouse|ENSMUSG00000022262                ------------ --LTGYLEKKRL CFPRFFFVSDPA LLEILGQASDSH TIQAHLLNVFDN

HighFEC

Figure 4.10: Example of positive selection inferred in the reference sheep gene at a site
where there is no coverage in either Scottish Blackface group (HighFEC or LowFEC). Positive
selection is indicated by an X.

4.3.3.1 Positive selection of genes in the Bovidae lineage

As an example of the 12 gene families inferred to be under positive selection in the Bovidae

(cow, sheep and Scottish Blackface) lineage, the CodeML estimates and LRT results for

albumin (ALB) are presented below. Five sites were inferred to be under positive selection

using BEB (Table 4.8), although examination of the alignments revealed one site (position

482 in the alignment; Figure 4.11) where the amino acid under positive selection was also
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present in dog. This site was subsequently discarded as the observed changes may be

a result of reversal rather than a unique result. The remaining 4 sites were compared to

homologous positions in the human (P02768) and bovine (P02769) Swiss-Prot entries.

The two positively selected (PS) sites at the beginning of the alignment (alignment position

94 and 96; Figure 4.11) are located within the albumin 1 domain, at amino acid 83 and

85 respectively. This region contains a modified residue at position 82, which results in

serine being phosphorylated to become phosphoserine (Han et al., 2008). The positively

selected sites at amino acid 528 and 530 (in the human form; alignment position 546 and

548; Figure 4.11) are located within the albumin 3 domain. The sheep reference sequence

contains a phenylalanine at amino acid 530 (alignment position 548; Figure 4.11), whereas

the Scottish Blackface and cattle reference contain a leucine. In the background species

the predominant residue is threonine. This may suggest that there are a limited number

of alternative amino acids at this location that are acceptable for the protein to remain

functional.

                                       61              120
PS_Sites|Bovidae                        ------------ ------------ ---------X-X ------------ ------------
PS_Characters|Sheep                     ------------ ------------ ---------H-G ------------ ------------
Sheep|ENSOARG00000013782                AFSQYLQQCPFD EHVKLVKELTEF AKTCVADESHAG CDKSLHTLFGDE LCK-VATLRETY
PS_Characters|Cow                       ------------ ------------ ---------H-G ------------ ------------
Cow|ENSBTAG00000017121                  AFSQYLQQCPFD EHVKLVNELTEF AKTCVADESHAG CEKSLHTLFGDE LCK-VASLRETY
PS_Characters|HighFEC                   ------------ ------------ ---------H-G ------------ ------------
HighFEC|ENSOARG00000013782              AFSQYLQQCPFD EHVKLVNELTEF AKTCVADESHAG CEKSLHTLFGDE LCK-VASLRETY
PS_Characters|LowFEC                    ------------ ------------ ---------H-G ------------ ------------
LowFEC|ENSOARG00000013782               AFSQYLQQCPFD EHVKLVKELTEF AKTCVADESHAG CDKSLHTLFGDE LCK-VATLRETY
Turkey|ENSMGAG00000010180               TFAQYLQRCSYD GLSKLVKDVVDL AQKCVANEDAPE CSKSLPSIILDE ICQ-VEKLRDSY
Horse|ENSECAG00000010305                AFSQYLQQCPFE DHVKLVNEVTEF AKKCAADESAEN CDKSLHTLFGDK LCT-VATLRATY
Microbat|ENSMLUG00000005865             DFSQLLRKSHLD EIVGLVNELTDL ADVCALNELAEN CGKSLHTLVGEK LCS-VKSL----
Platypus|ENSOANG00000009084             ------------ ------------ ------------ -----------K MCS-V-------
Dog|ENSCAFG00000003016                  AFSQYLQQCPFE DHVKLAKEVTEF AKACAAEESGAN CDKSLHTLFGDK LCT-VASLRDKY
Cat|ENSFCAG00000011854                  AFSQYLQQCPFE DHVKLVNEVTEF AKGCVADQSAAN CEKSLHELFGDK LCT-VASLRDKY
Gorilla|ENSGGOG00000014225              AFAQYLQQCPFE DHVKLVNEVTEF AKTCVADESAEN CDKSLHTLFGDK LCT-VATLRETY
Opossum|ENSMODG00000019164              TFAQYLQKCPFE DHVKLVDEVVQF AKGCAADETAEN CGKSLHQLLGDK LCK-IASLRESY
Human|ENSG00000163631                   AFAQYLQQCPFE DHVKLVNEVTEF AKTCVADESAEN CDKSLHTLFGDK LCT-VATLRETY
Elephant|ENSLAFG00000001080             SFAQYLQKSPYD EHVQSVTAVTDL AKTCAADESAEH CGDSLHTIFGDK LCARVTAHQDTY
Chicken|ENSGALG00000020180              TFAQYLQRCSYE GLSKLVKDVVDL AQKCVANEDAPE CSKPLPSIILDE ICQ-VEKLRDSY
Mouse|ENSMUSG00000029368                AFSQYLQKCSYD EHAKLVQEVTDF AKTCVADESAAN CDKSLHTLFGDK LCA-IPNLRENY

                                      481              539
PS_Sites|Bovidae                        -X---------- ------------ ------------ ------------ ------------
PS_Characters|Sheep                     -K---------- ------------ ------------ ------------ ------------
Sheep|ENSOARG00000013782                AKPESERMPCTE DYLSLILNRLCV LHEKTPVSEKVT KCCTESLVNRRP CFSDLTLDETYV
PS_Characters|Cow                       -K---------- ------------ ------------ ------------ ------------
Cow|ENSBTAG00000017121                  TKPESERMPCTE DYLSLILNRLCV LHEKTPVSEKVT KCCTESLVNRRP CFSALTPDETYV
PS_Characters|HighFEC                   -K---------- ------------ ------------ ------------ ------------
HighFEC|ENSOARG00000013782              TKPESERMPCTE DYLSLILNRLCV LHEKTPVSEKVT KCCTESLVNRRP CFSALTPDETYV
PS_Characters|LowFEC                    -K---------- ------------ ------------ ------------ ------------
LowFEC|ENSOARG00000013782               TKPESERMPCTE DYLSLILNRLCV LHEKTPVSEKVT KCCTESLVNRRP CFSALTPDETYV
Turkey|ENSMGAG00000010180               QLSEDRRMACSE GYLSIVIHDMCR RQETTPINDNVS HCCSDSYAHRRP CFTAMGVDTKYV
Horse|ENSECAG00000010305                KLPESERLPCSE NHLALALNRLCV LHEKTPVSEKIT KCCTDSLAERRP CFSALELDEGYV
Microbat|ENSMLUG00000005865             KLPESQRTACSD DYLFNVLNSLCV AHEKSPVSDRVT KCCAESLVNRPS CFYALEVDETYA
Platypus|ENSOANG00000009084             KLDEGHRLACAD DYLALVLDKMCR LHEKTPVSDRVT KCCTDSFADRRP CFSALGVDETFV
Dog|ENSCAFG00000003016                  KKPESERMSCAD DFLSVVLNRLCV LHEKTPVSERVT KCCSESLVNRRP CFSGLEVDETYV
Cat|ENSFCAG00000011854                  THPEAERLSCAE DYLSVVLNRLCV LHEKTPVSERVT KCCTESLVNRRP CFA-LQVDETYV
Gorilla|ENSGGOG00000014225              KHPEAKRMPCAE DYLSVVLNQLCV LHEKTPVSDRVT KCCTESLVNRRP CFSALEVDETYV
Opossum|ENSMODG00000019164              KLSDDEKMGCAE GYLAIVVDKLCR QHEKTPVSDKIT KCCTESLVNRRP CFTALGVDETYE
Human|ENSG00000163631                   KHPEAKRMPCAE DYLSVVLNQLCV LHEKTPVSDRVT KCCTESLVNRRP CFSALEVDETYV
Elephant|ENSLAFG00000001080             KLAEAKRMPCAE DYLSLVLNRLCV LHEKTPVSERIT KCCTESLVNRRP CFTALQTDETYV
Chicken|ENSGALG00000020180              QLPEDRRMACSE GYLSIVIHDTCR KQETTPINDNVS QCCSSSYANRRP CFTAMGVDTKYV
Mouse|ENSMUSG00000029368                TLPEDQRLPCVE DYLSAILNRVCL LHEKTPVSEHVT KCCSGSLVERRP CFSALTVDETYV

                                      541              600
PS_Sites|Bovidae                        -----X-X---- ------------ ------------ ------------ ------------
PS_Characters|Sheep                     -----E-F---- ------------ ------------ ------------ ------------
Sheep|ENSOARG00000013782                PKPFDEKFFTFH ADICTLPDTEKQ IKKQTCSALVEL LKHKPKATDEQL KTVMENFVAFVD
PS_Characters|Cow                       -----E-L---- ------------ ------------ ------------ ------------
Cow|ENSBTAG00000017121                  PKAFDEKLFTFH ADICTLPDTEKQ IKKQT--ALVEL LKHKPKATEEQL KTVMENFVAFVD
PS_Characters|HighFEC                   -----E-L---- ------------ ------------ ------------ ------------
HighFEC|ENSOARG00000013782              PKAFDEKLFTFH ADICTLPDTEKQ IKKQTCSALVEL LKHKPKATEEQL KTVMENFVAFVD
PS_Characters|LowFEC                    -----E-L---- ------------ ------------ ------------ ------------
LowFEC|ENSOARG00000013782               PKAFDEKLFTFH ADICTLPDTEKQ IKKQTCSALVEL LKHKPKATEEQL KTVMENFVAFVG
Turkey|ENSMGAG00000010180               PPPFNPDMFSFD EKLCSAPAEERE VGQMK--LLINL IKRKPQMTEEQI KTIADGFTAMVD
Horse|ENSECAG00000010305                PKEFKAETFTFH ADICTLPEDEKQ IKKQS--ALAEL VKHKPKATKEQL KTVLGNFSAFVA
Microbat|ENSMLUG00000005865             PKEFNAETFTFH ADVCALPVPEQQ VKKQT--ALAEL LKHKPKATEEQL KTVMGNFSAFFQ
Platypus|ENSOANG00000009084             PKEFNADTFTFH ADLCTLPEDQQK AKKQS--VLVEL VKHKPKATDDQL KGIVTDFTAMVT
Dog|ENSCAFG00000003016                  PKEFNAETFTFH ADLCTLPEAEKQ VKKQT--ALVEL LKHKPKATDEQL KTVMGDFGAFVE
Cat|ENSFCAG00000011854                  PKEFSAETFTFH ADLCTLPEAEKQ IKKQS--ALVEL LKHKPKATEEQL KTVMGDFGSFVD
Gorilla|ENSGGOG00000014225              PKEFNAETFTFH ADICTLSEKERQ IKKQT--ALAEL VKHKPKATKEQL KTVMDDFAAFVE
Opossum|ENSMODG00000019164              PKAFSADTFTFH ADLCTLPEEEKQ TKKQT--VLAEL VKHKPKITQDQL KAVISDFTAFVD
Human|ENSG00000163631                   PKEFNAETFTFH ADICTLSEKERQ IKKQT--ALVEL VKHKPKATKEQL KAVMDDFAAFVE
Elephant|ENSLAFG00000001080             PKEFNAETFTFH ADLCTLPEDQKQ IKKQS--VLVEL VKHKPKATDEQL KTVTGQFTGMVE
Chicken|ENSGALG00000020180              PPPFNPDMFSFD EKLCSAPAEERE VGQMK--LLINL IKRKPQMTEEQI KTIADGFTAMVD
Mouse|ENSMUSG00000029368                PKEFKAETFTFH SDICTLPEKEKQ IKKQT--ALAEL VKHKPKATAEQL KTVMDDFAQFLD

Figure 4.11: Selected regions of ALB multiple sequence alignment. Amino acid sites predicted
to be under positive selection in Bovidae (sheep and cattle) by model A are marked with an X.

153



Ta
bl

e
4.

8:
R

es
ul

ts
of

lin
ea

ge
-s

ite
se

le
ct

iv
e

pr
es

su
re

an
al

ys
is

on
A

LB
.T

he
P

co
lu

m
n

sh
ow

s
th

e
nu

m
be

r
of

fr
ee

pa
ra

m
et

er
s

in
th

e
ω

di
st

rib
ut

io
n

th
at

ar
e

es
tim

at
ed

un
de

rt
he

gi
ve

n
m

od
el

.T
he
ω

(t=
0)

co
lu

m
n

sh
ow

s
th

e
in

iti
al
ω

va
lu

e
us

ed
in

th
e

C
od

eM
L

ru
n

fro
m

w
hi

ch
re

su
lts

w
er

e
ta

ke
n.

Th
e

ln
L

co
lu

m
n

sh
ow

s
th

e
lo

g-
lik

el
ih

oo
d

of
th

e
gi

ve
n

m
od

el
.T

he
LR

T
R

es
ul

tc
ol

um
n

sh
ow

s
th

e
re

su
lt

of
LR

Ts
(if

an
y)

fo
rt

he
gi

ve
n

m
od

el
.T

he
Pa

ra
m

et
er

E
st

im
at

es
co

lu
m

n
sh

ow
s

th
e

pa
ra

m
et

er
es

tim
at

es
of

ea
ch

gi
ve

n
m

od
el

fo
rt

he
cu

rr
en

td
at

as
et

.T
he

Po
si

tiv
e

S
el

ec
tio

n
co

lu
m

n
in

di
ca

te
s

w
he

th
er

po
si

tiv
e

se
le

ct
io

n
w

as
pr

ed
ic

te
d

un
de

rt
he

gi
ve

n
m

od
el

.F
in

al
ly,

th
e

Po
si

tiv
el

y
S

el
ec

te
d

S
ite

s
co

lu
m

n
sh

ow
s

th
e

nu
m

be
ro

fp
os

iti
ve

ly
se

le
ct

ed
si

te
s

(if
an

y)
.

Tr
ee

M
od

el
p

ω
(t

=0
)

ln
L

LR
T

R
es

ul
t

P
ar

am
et

er
E

st
im

at
es

Po
si

tiv
e

S
el

ec
tio

n

Po
si

tiv
el

y
S

el
ec

te
d

S
ite

s

(P
(ω

>1
)>

0.
5)

B
ov

id
ae

m
od

el
A

3
2

-1
56

50
.6

52
76

m
od

el
A

p0
=0

.6
73

16
p1

=0
.3

13
12

p2
=0

.0
09

36
p3

=0
.0

04
35

w
0=

0.
17

87
2

w
1=

1.
00

00
0

w
2=

26
.6

71
45

Ye
s

5
B

E
B

si
te

s

m
od

el
A

nu
ll

3
1

-1
56

54
.2

87
51

N
/A

p0
=0

.6
60

09
p1

=0
.3

09
78

p2
=0

.0
20

51
p3

=0
.0

09
62

w
0=

0.
17

83
1

w
1=

1.
00

00
0

w
2=

1.
00

00
0

N
ot

A
llo

w
ed

O
vi

s
m

od
el

A
3

10
-1

56
53

.9
21

44
m

1N
eu

tra
l,

m
od

el
A

nu
ll

p0
=0

.6
76

03
p1

=0
.3

19
29

p2
=0

.0
03

18
p3

=0
.0

01
50

w
0=

0.
17

91
4

w
1=

1.
00

00
0

w
2=

99
.9

25
13

N
o

m
od

el
A

nu
ll

3
1

-1
56

54
.5

37
17

N
/A

p0
=0

.6
78

16
p1

=0
.3

21
84

p2
=0

.0
00

00
p3

=0
.0

00
00

w
0=

0.
17

89
8

w
1=

1.
00

00
0

w
2=

1.
00

00
0

N
ot

A
llo

w
ed

S
co

tti
sh

B
la

ck
fa

ce

m
od

el
A

3
2

-1
56

54
.5

37
17

m
1N

eu
tra

l,

m
od

el
A

nu
ll

p0
=0

.6
72

90
p1

=0
.3

19
34

p2
=0

.0
05

27
p3

=0
.0

02
50

w
0=

0.
17

89
8

w
1=

1.
00

00
0

w
2=

1.
00

00
0

N
o

m
od

el
A

nu
ll

3
1

-1
56

54
.5

37
18

N
/A

p0
=0

.5
55

30
p1

=0
.2

63
53

p2
=0

.1
22

87
p3

=0
.0

58
31

w
0=

0.
17

89
8

w
1=

1.
00

00
0

w
2=

1.
00

00
0

N
ot

A
llo

w
ed

S
he

ep

re
fe

re
nc

e

m
od

el
A

3
2

-1
56

54
.5

37
17

m
1N

eu
tra

l,

m
od

el
A

nu
ll

p0
=0

.6
78

16
p1

=0
.3

21
84

p2
=0

.0
00

00
p3

=0
.0

00
00

w
0=

0.
17

89
8

w
1=

1.
00

00
0

w
2=

1.
00

00
0

N
o

m
od

el
A

n u
ll

3
1

-1
56

54
.5

37
17

N
/A

p0
=0

.6
78

16
p1

=0
.3

21
84

p2
=0

.0
00

00
p3

=0
.0

00
00

w
0=

0.
17

89
8

w
1=

1.
00

00
0

w
2=

1.
00

00
0

N
ot

A
llo

w
ed

H
ig

hF
E

C
m

od
el

A
3

2
-1

56
54

.5
37

17
m

1N
eu

tra
l,

m
od

el
A

nu
ll

p0
=0

.6
77

04
p1

=0
.3

21
30

p2
=0

.0
01

12
p3

=0
.0

00
53

w
0=

0.
17

89
8

w
1=

1.
00

00
0

w
2=

1.
00

00
0

N
o

m
od

el
A

n u
ll

3
1

-1
56

54
.5

37
17

N
/A

p0
=0

.6
77

55
p1

=0
.3

21
54

p2
=0

.0
00

62
p3

=0
.0

00
29

w
0=

0.
17

89
8

w
1=

1.
00

00
0

w
2=

1.
00

00
0

N
ot

A
llo

w
ed

Lo
w

FE
C

m
od

el
A

3
2

-1
56

54
.5

37
17

m
1N

eu
tra

l,

m
od

el
A

nu
ll

p0
=0

.6
78

16
p1

=0
.3

21
84

p2
=0

.0
00

00
p3

=0
.0

00
00

w
0=

0.
17

89
8

w
1=

1.
00

00
0

w
2=

1.
00

00
0

N
o

m
od

el
A

n u
ll

3
1

-1
56

54
.5

37
17

N
/A

p0
=0

.6
78

16
p1

=0
.3

21
84

p2
=0

.0
00

00
p3

=0
.0

00
00

w
0=

0.
17

89
8

w
1=

1.
00

00
0

w
2=

1.
00

00
0

N
ot

A
llo

w
ed

154



4.3.3.2 Positive selection of genes in the Ovis lineage

The Ovis lineage showed the largest number of genes with evidence of positive selection,

with 22 gene families showing evidence of positively selected sites (Table 4.7). The two

proteins with the most positively selected sites in the Ovis lineage were FRAS1 and DNAH5.

There were 20 positively selected sites identified in the extracellular matrix protein FRAS1

using BEB (Table 4.9). All 20 sites were compared to homologous positions in the

human Swiss-Prot entry (Q86XX4), and were found to be contained within an extracellular

topological domain predicted by UniProt (27-3,901 aa). The positively selected sites were

distributed throughout this domain, but no further functional annotation could be gleaned

from available data. The Fraser syndrome 1 (FRAS1) gene encodes an extracellular

matrix protein that appears to function in the regulation of epidermal-basement membrane

adhesion and organogenesis during development (McGregor et al., 2003; Short et al., 2007).

The FRAS1 protein contains a series of N-terminal cysteine-rich repeat motifs previously

implicated in BMP metabolism, and it has been suggested that it may play a role in both

structure and signal propagation in the extracellular matrix (McGregor et al., 2003). In vitro

studies have suggested a role for extracellular matrix proteins in regulating the response to

chemokines (Young, 1999).

                                                        1009            1056
PS_Sites|Ovis                           ----------X- ------------ ------------ --X---------
PS_Characters|Sheep                     ----------E- ------------ ------------ --D---------
Sheep|ENSOARG00000018254                CNACSGPLRTEC LQCMDGYVLQDG ACVEQCSASFYR DVDL---CKSCE
PS_Characters|HighFEC                   ----------E- ------------ ------------ --D---------
HighFEC|ENSOARG00000018254              CNACSGPLRTEC LQCMDGYVLQDG ACVEQCSASFYR DVDL---CKSCE
PS_Characters|LowFEC                    ----------E- ------------ ------------ --D---------
LowFEC|ENSOARG00000018254               CNACSGPLRTEC LQCMDGYVLQDG ACVEQCSASFYR DVDL---CKSCE
Horse|ENSECAG00000007044                CNACSGPLRTDC LQCIEGYVLQDG ACVEQCSPSFYQ DSGL---CKSCN
Microbat|ENSMLUG00000012678             ------------ ------------ ------------ ------------
Cow|ENSBTAG00000010716                  CNVCSGPLRTDC LQCMDGYVLQDG ACVEQCSASFYR DLGL---CKSCE
Dog|ENSCAFG00000008752                  CNACSGPLRTDC LQCMDGYVLQDG ACVEQCSPSFYR DLGL---CKSCG
Cat|ENSFCAG00000011279                  CNACSGPLRTDC LQCMDGYVLQDG ACVEQCSPSFYR GHGPLQECRGCS
Gorilla|ENSGGOG00000003170              CSACSGPLKTDC LQCMDGYALQDG ACVEQCLSSFYQ DSGL---CKNCD
Rat|ENSRNOG00000002053                  CNACTGPLRTDC LQCMDGYVLQDG VCVEQCSPQHYR DSGS---CKRCD
Human|ENSG00000138759                   CSACSGPLKTDC LQCMDGYVLQDG ACVEQCLSSFYQ DSGL---CKNCD
Elephant|ENSLAFG00000028453             ------------ ------------ ------------ ------------
Pig|ENSSSCG00000008991                  CNACSGPLRTDC LQCMDGYVLQDG TCVEQCSPSFYR DSGL---CKSCG
Mouse|ENSMUSG00000034687                CNACTGPLRTDC LQCMDGYVLQDG VCVEQCSPQHYR DSGS---CKRCD

Figure 4.12: Selected region of FRAS1 multiple sequence alignment. Amino acid sites
predicted to be under positive selection in Ovis (sheep reference and Scottish Blackface) by model
A are marked with an X.

Positive selective pressure was identified in 32 BEB sites in DNAH5 (dynein heavy chain 5,

axonema). Of these, 18 were confirmed as unique amino acids through visual inspection

of protein alignments. These 18 sites were compared to homologous positions in the

human Swiss-Prot entry (Q8TE73), and were all found to be contained within the dynein

heavy chain 5, axonemal (1-4,624 aa). Dyneins are microtubule-associated motor protein

complexes composed of several heavy, light, and intermediate chains, and are required

for structural and functional integrity of cilia and flagella (Ibañez-Tallon et al., 2003). Cilia

have been shown to play a role in the gastrointestinal tract of mice, where they modulate

gastrin secretion and gastric acidity (Saqui-Salces et al., 2012). DNAH5 has been shown

to be decreased in the intestine of pigs on a protein restricted diet compared to controls,

indicating that DNAH5 may play a role in nutrition absorption (Ren et al., 2014). Expression
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of DNAH5 was increased in the abomasal lymph node of HighFEC Scottish Blackface

lambs in comparison to their LowFEC counterparts (Chapter 3), despite the lack of ciliated

epithelial cells in the gastrointestinal tract of ruminants. The DNAH5 paralog DNAH9 had

low FST values in a survey of the genetic diversity of 19 diverse cattle breeds (The Bovine

HapMap Consortium et al., 2009), indicating that genes in this family may play an important

role in ruminants, despite the lack of evidence for their role in the gastrointestinal system.

                                     4081               4140
PS_Sites|Ovis                           ------------ ------------ ------X--X-- X----------- ------------
PS_Characters|Sheep                     ------------ ------------ ------Q--R-- S----------- ------------
Sheep|ENSOARG00000013498                QNGIIVTKASRY PLLIDPQTQGKI WIKNDKQSRREL SITSLNHKYFRN HLEDSLSLGRPL
PS_Characters|HighFEC                   ------------ ------------ ------Q--R-- S----------- ------------
HighFEC|ENSOARG00000013498              QNGIIVTKASRY PLLIDPQTQGKI WIKNDKQSRREL SITSLNHKYFRN HLEDSLSLGRPL
PS_Characters|LowFEC                    ------------ ------------ ------X--X-- X----------- ------------
LowFEC|ENSOARG00000013498               QNGIIVTKASRY PLLIDPQTQGKI WIKNXXXXXXXX XITSLNHKYFRN HLEDSLSLGRPL
Turkey|ENSMGAG00000005882               QNGIIVTKASRY PLLIDPQTQGKI WLKN-KEGKNEL QTNSLNHKYFRN HLEDSLSLGRPL
Horse|ENSECAG00000014954                QNGIIVTKASRY PLLIDPQTQGKI WIKN-KESQNEL QITSLNHKYFRN HLEDSLSLGRPL
Microbat|ENSMLUG00000003652             QNGIIVTKASRY PLLIDPQTQGKI WIKN-KESQNEL QITSLNHKYFRN HLEDSLSLGRPL
Human|ENSG00000039139                   QNGIIVTKASRY PLLIDPQTQGKI WIKN-KESRNEL QITSLNHKYFRN HLEDSLSLGRPL
Cow|ENSBTAG00000021972                  QNGIIVTKASRY PLLIDPQTQGKI WIKN-KENQNEL QITSLNHKYFRN HLEDSLSLGRPL
Fugu|ENSTRUG00000003584                 QNGIIVTKAARY PLLVDPQTQGKS WIKN-KEAQNDL LITSLNHKYFKN HLEDSLSLGRPL
ZebraFinch|ENSTGUG00000007486           QNGIIVTKASRY PLLIDPQTQGKI WIKN-KEGRNDL QITSLNHKYFRN HLEDSLSLGRPL
Elephant|ENSLAFG00000012310             QNGIIVTKASRY PLLIDPQTQGKI WIKN-KENRNEL QITSLNHKYFRN HLEDSLSLGRPL
Platypus|ENSOANG00000011603             QNGIIVTKAARC PLLIDPQAQGKI WIKN-KENRNEL QVTSLNHKYFRN HLEDSLSLGRPL
Dog|ENSCAFG00000009850                  QNGIIVTKASRF PLLIDPQTQGKI WIKN-KESQNEL QITSLNHKYFRN HLEDSLSLGRPL
Cat|ENSFCAG00000015341                  QNGIIVTKASRY PLLIDPQTQGKI WIKN-KESRNEL QITSLNHKYFRN HLEDSLSLGRPL
Gorilla|ENSGGOG00000007206              QNGIIVTKASRY PLLIDPQTQGKI WIKN-KESRNEL QITSLNHKYFRN HLEDSLSLGRPL
Rat|ENSRNOG00000048363                  ------------ ------------ ------------ ------------ ------------
Opossum|ENSMODG00000002817              QNGIIVTKASRY PLLIDPQTQGKI WIKN-KESKNEL QITSLNHKYFRN HLEDSLSLGRPL
AnoleLizard|ENSACAG00000005926          QNGIIVTKAARY PLLIDPQTQGKI WIKN-KETRNEL QITSLNHKYFRS HLEDSLSLGRPM
Zebrafish|ENSDARG00000087373            QNGIIVTKAARF PLLIDPQTQGKI WIKN-KESKNEL QITSLNHKYFRN HLEDSLSLGRPL
Chicken|ENSGALG00000012997              QNGIIVTKASRY PLLIDPQAQGKI WLKN-KEGKNEL QITSLNHKYFRN HLEDSLSLGRPL
Mouse|ENSMUSG00000022262                QNGIIVTKASRY PLLIDPQTQGKI WIKN-KESQNEL QITSLNHKYFRN HLEDSLSLGRPL

Figure 4.13: Selected region of DNAH5 multiple sequence alignment. Amino acid sites
predicted to be under positive selection in Ovis (sheep reference and Scottish Blackface) by model
A are marked with an X.

4.3.3.3 Putative positive selection in the LowFEC Scottish Blackface lineage

The Ovis lineage was predicted to be undergoing strong positive selection at specific sites

in OSBPL5, with the Bovidae, sheep reference, and LowFEC Scottish Blackface lineages all

showing evidence of positive selection (Table 4.11). Upon further examination of the the two

positively selected sites in the LowFEC lineage identified using BEB (Figure 4.14) however,

it appears that this may not actually be the case. In the region containing these two sites

the sheep alignment does not accurately match those of the other species, including cattle

(Figure 4.14). This may be the result of an error in either the assembly or the annotation of

the sheep genome, and is one of the consequences of working on a ’new’ genome. This

result emphasises that the rate of false positives in selective pressure analyses is high, and

it is particularly prone to errors in genome/annotation quality and alignment (Fletcher and

Yang, 2010; Redelings, 2014).
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                                    541              600
PS_Sites|LowFEC                       ------------ --X--------- ------X----- ------------ ------------
PS_Characters|LowFEC   ------------ --T--------- ------T----- ------------ ------------
LowFEC|ENSOARG00000001778             THTHKHTRLALI PHT--------- -HTHTYTXXPGX SWALDAXXXXXX XXXGSTATTXXX
Sheep|ENSOARG00000001778              THTHKHTRLALI PHS--------- -HTHTYSVSPGP SWALHASEKHDG RGLGSTATTPCL

Horse|ENSECAG00000007415              SHTF------YI AEQARPPARTPG TVSHHPPVS--- --AFHVSNRKDG FCISGSITAKSR
Cow|ENSBTAG00000001077                SHTF------YI AEQ--------- -VSHHPPVS--- --AFHVSNRKDG FCISGSITAKSR
Dog|ENSCAFG00000010329                SHTF------YI AEQ--------- -VSHHPPVS--- --AFHVSNRKDG FCISGSITAKSR
Cat|ENSFCAG00000006947                SHTF------YI AEQ--------- -VSHHPPVS--- --AFHVSNRKDG FCISGNITAKSR

HighFEC|ENSOARG00000001778            THTHKHTRLALI PHS--------- -HTHTYSVSPGP SWALDAXXXXXX XXXXXXXXXXXX

Gorilla|ENSGGOG00000013248            SRTF------YI AEQ--------- -VSHHPPVS--- --AFHVSNRKDG FCISGSITAKSR
Opossum|ENSMODG00000007169            SHTF------YV AEQ--------- -VSHHPPVS--- --AFHVSNRKDG FCITGSILAKSK
Human|ENSG00000021762                 SRTF------YI AEQ--------- -VSHHPPVS--- --AFHVSNRKDG FCISGSITAKSR
Elephant|ENSLAFG00000022174           SHTF------YI AEQ--------- -VSHHPPVS--- --AFHVSNRKDG FCISGSITAKSK
Mouse|ENSMUSG00000037606              SHTF------YI AEQ--------- -VSHHPPVS--- --AFYVSNRKDG FCMSGSITAKSK

Figure 4.14: Selected region of OSBPL5 multiple sequence alignment. Amino acid sites
predicted to be under positive selection in LowFEC Scottish Blackface animals by model A are
marked with an X.

4.3.3.4 Pathway analysis of genes with lineage-specific positive selection

Of the 31 genes that showed evidence of lineage-specific positive selection, one to one

human homologs could be found for 23 (Table ??). The top networks from the IPA analysis

were “Cancer, Cell-To-Cell Signalling and Interaction, Nervous System Development and

Function” (score: 33) and “Gene Expression, Carbohydrate Metabolism, Lipid Metabolism”

(score: 18; Figure 4.15).
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A) Network 1 
      Cancer, Cell-To-Cell Signaling and Interaction, Nervous System Development and Function              

B) Network 2
      Gene Expression, Carbohydrate Metabolism, Lipid Metabolism

Figure 4.15: Top networks from IPA analysis of genes showing evidence of lineage-specific
positive selection. Genes showing lineage-specific positive selection are coloured blue.
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The top diseases and disorders associated with the genes showing lineage-specific positive

selection included the inflammatory response, dermatological diseases and conditions

and connective tissue disorders (Table 4.12). The most significant of these was the

inflammatory response, which was associated with 6 of the genes showing positive selection.

Inflammation plays an important role in both the innate and adaptive immune response to

gastrointestinal parasites, with inflammation and immunity inextricably linked (Sutherland

and Scott, 2009).

Table 4.12: Top diseases and bio functions analysis from IPA of genes showing lineage-
specific positive selection.

Diseases and disorders p-value # Molecules

Inflammatory Response 1.24E-04 - 4.89E-02 6

Cancer 2.17E-04 - 4.60E-02 14

Dermatological Diseases and Conditions 2.17E-04 - 3.08E-02 10

Connective Tissue Disorders 1.20E-03 - 2.04E-02 6

Developmental Disorder 1.20E-03 - 4.74E-02 7

It must be acknowledged that these results are biased as the subset of genes analysed were

differentially expressed in sheep with divergent responses to gastrointestinal nematode

infection (Chapter 3). Despite this limitation, IPA analysis results suggest that the observed

positive selection may be a result of selective pressure placed on sheep and cattle by

pathogenic infection.

4.3.3.5 Limitations of the analysis

While care was taken to address known limitations in selective pressure analyses, such as

sensitivity to taxa number and short sequence length, there are a number of factors that

can result in false positives. Alignment errors may lead to high false positive numbers in the

lineage-site test (Fletcher and Yang, 2010), and accurate multiple sequence alignment is

essential for detecting positive selection (Redelings, 2014). While PRANK (Loytynoja and

Goldman, 2008) has a low false positive rate in comparison to alignments from other popular

software such as MUSCLE (Edgar, 2004), MAFFT (Katoh et al., 2002), and ClustalW (Larkin

et al., 2007), it is by no means a perfect tool (Fletcher and Yang, 2010).

Evidence of positive selection may therefore not always be indicative of a protein functional

shift. Biased gene conversion (Galtier and Duret, 2007), relaxation of functional constraint

(Hughes and Friedman, 2004) and recombination events can confound the identification

of positively selected amino acid sites, however CodeML is robust to lower levels of

recombination (Anisimova et al., 2003). Low effective population size (Ne) may also

make it difficult to detect adaptive molecular evolution in some species (Gossmann et al.,

2012).

Resistance to gastrointestinal nematodes in sheep is understood to be a complex polygenic

trait, controlled by many genes of relatively small effect (Crawford et al., 2006; Kemper
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et al., 2009). In humans widespread signals of polygenic selection have been observed in

immune-response related pathways (Daub et al., 2013), however selection may be acting

on many genes at a time and modifying allele frequencies only slightly, making it difficult to

detect signals of adaptation (Pritchard et al., 2010).

4.3.4 Conclusions

Domestication of livestock has resulted in lineage-specific changes in genes involved in

the inflammatory response and connective tissue disorders. As these genes have been

shown to be differentially expressed in sheep with divergent responses to gastrointestinal

nematode infection, the positive selection observed may be a result of selective pressure

placed on sheep as a result of GIN infection.
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Chapter 5

Associations between polymorphisms in

the genome and nematode resistance in

Scottish Blackface lambs
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5.1 Introduction

Current strategies for the control of gastrointestinal nematodes, based almost entirely on

the frequent use of anthelmintics, are increasingly regarded as unsustainable due to the

emergence of nematode resistance (Kaplan, 2004). Resistance has been reported to

the benzimidazole (BZ) and levamisole (LV) drenches on Irish farms (Patten et al., 2007),

leaving only macrocyclic lactones (ML) and the prescription-only monepantel (AD) and the

derquantel (SI)/macrocyclic lactones combination Startect to treat drug resistant nematodes.

Additionally, there is increasing consumer resistance to the use of systemic chemicals, such

as anthelmintics, in food production.

Direct measurement of parasite burden requires slaughter of the animal, therefore indirect

phenotypic markers such as faecal egg count (FEC) are routinely used for selection of

resistant animals for breeding. FEC has been shown to be moderately heritable, with a

wide variability among individuals (Bishop and Morris, 2007; Safari et al., 2005). Therefore

selective breeding for resistance is an alternative, sustainable method of nematode control.

Rapid genetic progress has been demonstrated in selective breeding programmes in

research flocks (Windon, 1990; Cummins et al., 1991; Woolaston et al., 1991; Morris et al.,

1997, 2000, 2005; Greeff and Karlsson, 2006), and commercial breeding programmes

are currently implemented in Australia (www.sheepgenetics.org.au) and New Zealand

(www.sil.co.nz) where resistant animals are identified by low FEC. Recording of this

phenotype in Ireland (www.sheep.ie) however is only just beginning to be carried out

routinely.

Studies using microsatellite-based linkage analysis (LA) led to the identification of multiple

regions of the genome associated with GIN resistance (e.g. Beh et al., 2002; Crawford

et al., 2006; Davies et al., 2006), however the identification of candidate genes through

QTL mapping has proven difficult, as QTL often span millions of base pairs and contain

hundreds of potential candidate genes. Recent advances in high throughput sequencing

and genotyping technologies provide new opportunities to understand the host response to

GIN at the molecular level, and identify polymorphisms conferring GIN resistance. Genome-

wide association studies utilise the information provided by a large number of markers

spread evenly throughout the genome to detect variants associated with a trait. While

these variants may not be responsible for the observed phenotype, they may be in linkage

disequilibrium (LD) with the causative mutation and thus can be used for selection.

With the advent of the Illumina® Ovine SNP50 BeadChip (www.sheephapmap.org) in

2009, microsatellites have largely been replaced with SNP-based genome-wide association

studies (GWAS) (e.g. Kemper et al., 2011; Sallé et al., 2012; Riggio et al., 2013, 2014).

The information provided by the OvineSNP50 BeadChip has been used across multiple

independent populations to identify genomic regions that are associated with GIN resistance

(Kemper et al., 2011; Sallé, 2012; Pickering, 2013; Riggio et al., 2013). A subsequent
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meta-analysis of three independent populations, including those used by Sallé et al. (2012)

and Riggio et al. (2013), successfully identified regions in common between the three

populations (Riggio et al., 2014). This analysis revealed regions that had not previously

been identified in the separate analyses, indicating the potential power of a meta-analyses.

If SNPs are to be utilised in selection programmes, however, the associations must be

independently validated. For this reason the significant QTL and genomic regions from

the original studies were genotyped in the Scottish Blackface population used in this study.

Additionally, results from the RNA-Seq analysis (Chapter 3) provided a list of candidate

genes for GIN resistance. Discovery of the causal mutation, or linked polymorphisms, within

these genes would not only help in understanding the biological pathways underlying the

trait, but also allow estimation of the proportion of variation in FEC explained by the SNP.

For this reason markers in these candidate genes were also genotyped in the Scottish

Blackface population used in this study.
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5.2 Materials and Methods

5.2.1 Animals

All lambs were sourced from the purebred Scottish Blackface flock at the Teagasc Hill

Sheep Farm in Leenane, Co. Mayo, over a 2 year period (2010 - 2011; details in Chapter 2).

Flock FEC was monitored weekly from early June, in both 2010 and 2011, when lambs were

approximately 8 weeks of age, using the FECPAK system (www.fecpak.co.nz). Once flock

FEC reached approximately 600 EPG lambs were individually sampled twice (FEC1A and

FEC1B), with samples A and B taken 1 week apart. Following FEC1B sampling, lambs were

dosed with a macrocyclic lactone (ML; Oramec, Merial Animal Health Ltd) in accordance

with manufacturer’s recommendations. Flock FEC was then monitored weekly (FECPAK),

and once flock FEC again reached approximately 600 EPG the sampling protocol was

repeated to yield FEC2A and FEC2B. Individual FEC was determined using the modified

McMaster method (Ministry of Agriculture Fisheries and Food, 1986). Faecal egg counts

were distinguished as Nematodirus and ’other Trichostrongyles’. Body weight was taken

at approximately 14 weeks of age for all animals, and again at approximately 20 weeks

of age for the 2011-born animals. At the last faecal sampling (FEC2B) blood samples

were collected from each lamb by jugular venipuncture into aseptic vacutainers for DNA

extraction (green vacutainer; lithium heparin).

5.2.2 DNA extraction

Genomic DNA was extracted from 9 mL of whole sheep blood using the high salt method,

as previously described (Montgomery and Sise, 1990). Briefly, red blood cells were lysed in

2 volumes of red blood cell lysing solution (RBCLS; Appendix 5.1) for 5 min, during which

time a change in colour was observed. Tubes were then centrifuged at 1,100 x g for 10 min

to pellet the white blood cells. All centrifugation steps were performed at room temperature.

To ensure the complete lysis of red blood cells, 10 mL RBCLS was added to the pellet and

shaken to mix. Pure white blood cells were then harvested by centrifugation at 800 x g

for 5 min. Pelleted white blood cells were washed in Tris buffered saline and centrifuged

at 800 x g for 5 min. Washed white blood cells were resuspended by vigorous vortexing

in 3 mL of TE buffer before the addition of 3 mL of freshly made Proteinase K-EDTA-SDS

(Appendix 5.1) solution while gently swirling the tubes. The tubes were incubated at 50°C

in a water bath for a minimum of 2 h, or overnight. The digested sample was extracted with

3 mL of saturated NaCl, shaken vigorously for 1 min, and centrifuged at 1,100 x g for 10

min. The supernatant was carefully decanted into falcon tubes containing 20 ml of 95%

Analar ethanol to precipitate the DNA, and the tubes inverted gently, before the DNA was

spooled out using a sealed Pasteur pipette. DNA was washed in 70% Analar ethanol and
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dried overnight before resuspension in 1 mL of sterile TE. DNA was cleaned using a DNA

blood mini kit (Qiagen, Germany).

In some cases whole blood was frozen, which results in the lysis of the white blood cells. For

these samples genomic DNA was extracted from 400 uL of sheep blood using the Maxwell®
16 Research System (Promega, UK), as per the manufacturer’s recommendations.

5.2.3 Selection of SNP

SNPs for association studies were identified from two sources:

1. Candidate genes chosen because they were differentially expressed (DE) between

HighFEC and LowFEC Scottish Blackface (Chapter 3),

2. Candidate genomic regions chosen because they were associated with GIN resistance

in a previous study (Riggio et al., 2014).

SNP in genes differentially expressed between HighFEC and LowFEC animals

A total of 41 genes differentially expressed between HighFEC and LowFEC animals were

identified (Chapter 3). Eight genes were on scaffolds or contigs, so their genomic location

was unknown. These were discarded from further analysis. Genotyping of SNP within

the remaining genes (Table 3.6 & Table 3.7) was undertaken in order to determine if

polymorphisms within the genes were associated with resistance. The SNPs examined

(RNA-Seq cohort) were chosen from those on the Ovine Infinium® HD SNP BeadChip

(Table 5.1). Two genes did not contain any SNP and were also discarded.
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Table 5.1: Genomic location of SNP in RNA-Seq cohort. SNP were in coding (C) or non-coding
(NC) regions.

Gene Name Chr Gene start Gene end Gene length Total SNP Genotyped C NC

ENSOARG00000020224 COL9A2 1 14,676,505 14,694,890 18,385 8 2 1 1

ENSOARG00000006960 FCRL1 1 106,671,532 106,687,229 15,697 12 3 3 0

ENSOARG00000019308 BTLA 1 175,586,573 175,619,634 33,061 14 3 3 0

ENSOARG00000020373 MFI2 1 189,724,320 189,750,098 25,778 10 3 0 3

ENSOARG00000020386 APOD 1 190,322,087 190,334,583 12,496 2 2 0 2

ENSOARG00000010719 LPL 2 45,652,122 45,675,906 23,784 7 3 2 1

ENSOARG00000005490 SLC30A2 2 239,927,723 239,938,030 10,307 6 3 3 0

ENSOARG00000021044 CLEC2B 3 204,722,589 204,738,493 15,904 3 3 0 3

ENSOARG00000018806 WBP2NL 3 217,007,512 217,026,812 19,300 4 2 1 1

ENSOARG00000013341 - 5 11,795,634 12,084,118 288,484 65 5 3 2

ENSOARG00000011529 ZFR2 5 17,716,762 17,739,259 22,497 13 3 2 1

ENSOARG00000002342 SH3RF2 5 54,627,464 54,758,880 131,416 32 5 1 4

ENSOARG00000013782 ALB 6 88,136,611 88,159,187 22,576 8 3 1 2

ENSOARG00000016543 CXCL9 6 90,526,788 90,531,488 4,700 2 2 1 1

ENSOARG00000018254 FRAS1 6 92,393,951 92,908,337 514,386 164 7 7 0

ENSOARG00000000928 ECT2L 8 63,609,664 63,674,228 64,564 19 4 2 2

ENSOARG00000004253 - 11 13,939,705 13,941,126 1,421 1 1 0 1

ENSOARG00000007871 SCRN2 11 38,175,720 38,178,899 3,179 2 1 1 0

ENSOARG00000012882 CACNB2 13 31,828,331 32,071,214 242,883 58 5 0 5

ENSOARG00000005312 ZNF461 14 46,051,699 46,072,267 20,568 6 3 3 0

ENSOARG00000002371 - 14 59,902,860 59,913,735 10,875 5 2 1 1

ENSOARG00000001898 FOLR4 15 844,049 848,328 4,279 3 3 3 0

ENSOARG00000007987 GZMK 16 24,143,311 24,153,334 10,023 6 3 2 1

ENSOARG00000013498 DNAH5 16 59,094,860 59,358,685 263,825 89 6 6 0

ENSOARG00000005549 - 17 6,548,267 6,553,023 4,756 1 1 0 1

ENSOARG00000009194 ATP10A 18 1,810,732 1,994,082 183,350 50 5 3 2

ENSOARG00000002035 WARS 18 63,910,328 63,930,861 20,533 5 3 1 2

ENSOARG00000009143 - 18 68,547,748 68,551,257 3,509 5 2 1 1

ENSOARG00000001778 - 21 47,746,255 47,802,320 56,065 12 4 1 3

ENSOARG00000001718 MPPE1 23 43,090,283 43,103,534 13,251 3 3 1 2

ENSOARG00000002175 DNASE1 24 3,019,422 3,021,959 2,537 3 3 2 1

SNP were prioritised for genotying using the following criteria: 1) at least one SNP in each

gene of interest, 2) SNP in a coding region of the gene of interest, and 2) SNP polymorphic

in the Scottish Blackface RNA-Seq data set. Of the 100 SNP submitted for plex design, 93

were subsequently genotyped (Sequenom GmbH, Germany).

GWAS from European sheep populations

A joint genome-wide association study (GWAS) of three European sheep populations,

Scottish Blackface (Riggio et al., 2013), Romane x Martinique BlackBelly (Sallé et al., 2012)

and Sarda x Laucaune (AGRIS, Sardinia) was carried out (Riggio et al., 2014). Average

animal FEC (Nematodirus and other Trichostrongyles combined) was used for each animal

as the phenotypic measure of GIN resistance. After quality control, 4,123 animals and

38,991 SNPs were available for analysis. Analyses were performed using the regional

heritability mapping (RHM) approach (Nagamine et al., 2012). This led to the identification

of genome-wide significant regions on OAR4, 12, 14, 19 and 20. Several other regions

(on OAR1, 3, 4, 5, 7, 12, 19, 20 and 24) were significant at the suggestive level (Riggio

et al., 2014): 6 of these regions, on OAR3, 4, 5, 7, 12 and 14 (Table 5.2), were chosen for
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genotyping in the Scottish Blackface population used in this study (Validation cohort). The

regions on OAR 13 and 21 (Table 5.2) were significant only in the Romane X Blackbelly

sheep population (Sallé et al., 2012), yet they were included due to their high significance

in that population.

Table 5.2: Genomic location or regions chosen for SNP validation genotyping. Regions were
chosen from a joint GWAS of three European sheep populations (Riggio et al., 2014).

Chromosome Region SNP

OAR 3 87.2 - 92.2 Mb 113

OAR 4 6.7 - 11.7 Mb 109

OAR 5 85.0 - 91.0 Mb 113

OAR 7 50.4 - 55.5 Mb 116

OAR 12 45.0 - 57.9 Mb 262

OAR 13 69.0 - 73.0 Mb 101

OAR 14 45.3 - 50.4 Mb 108

OAR 21 36.2 - 39.2 Mb 10

All regions covered approximately 5 Mb (Table 5.2), with the exception of the region on

OAR12, which spanned two extended regions (13 Mb). The region on OAR21 encompassed

a potential causative mutation in the pepsinogen gene. Of the 932 SNPs, 588 were sourced

from the Illumina® Ovine SNP50 BeadChip, and 344 from the Ovine Infinium® HD SNP

BeadChip.

5.2.4 Genotyping

The 93 SNPs in candidate genes (RNA-Seq cohort) were genotyped in 253 Scottish

Blackface animals by Sequenom GmbH (Germany) using the MassARRAY® system. The

932 SNPs from the candidate genomic regions (Validation cohort) were genotyped in a

subset (202) of these animals by LGC Genomics (Germany), using KASP™ technology.

The subset of 202 animals were selected based on availability of DNA. These animals were

selected from both 2010 and 2011, and included both male and female lambs.

As a measure of quality control SNPs with a minor allele frequency <0.02 and/or a call rate

<90% were removed from analysis. Deviation from Hardy Weinberg equilibrium was not

used as a criterion for excluding SNPs. Individual animals with low (<95%) call rates were

also removed. After these quality control measures 84 markers and 237 animals remained

from the RNA-Seq cohort, and 867 markers and 202 animals from the Validation cohort.

5.2.5 Statistical analysis

Prior to analysis FEC A and B (taken one week apart) from each round of natural infection

(FEC1 and FEC2) were averaged, with Nematodirus and other Trichostrongyles counts
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analysed separately. FEC values were then log transformed (ln(X+25)) to stabilise the

variance. Body weight (14 weeks and 20 weeks) was adjusted for age using the following

formula

wtXa =
weight

age(days)
× (X×7)

Where X is either 14 or 20. A variance component analysis was carried out in ASReml

(v3.0; Gilmour et al., 2009), using the available pedigree information, to estimate heritability

of each trait (Appendix 5.2). All animals for which phenotypic data was available were used

(n = 261). A model was fitted with sex (male or female) and grazing group (Lowland10,

Lowland11 or Hill11) as fixed effects for FEC traits (Nematodirus and other Trichostrongyles),

and sex, grazing group and dam age (2 years or older than 2 years) as fixed effects for

weight traits (wt14a and wt20a). Animal was fitted as random. Other fixed effects (birth type

and rearing type) were examined but were not significant and so were discarded from the

model. Phenotypic variance and heritability were also calculated using ASReml

Phenotype(P) = Genotype(G)+Enviroment(E)

Phenotypic variance is defined as additive genetic variance (animal) + residual variance

Var(P) = Var(A)+Var(R)

The additive genetic variance as a proportion of the phenotypic variance is known as

narrow-sense heritability, and is defined as

h2 =
Var(A)
Var(P)

Association analyses were performed using the GenABEL package (Aulchenko et al., 2007)

in the R environment (http://www.r-project.org), as per the method of Riggio et al. (2013)

(Appendix 5.3). To account for relatedness, the variance-covariance matrix was estimated

from the genomic kinship matrix, constructed using pair-wise average Identities-by-State

(IBS). These were calculated for all samples on the basis of all autosomal SNPs. Population

stratification was observed using a multidimensional scaling plot of kinship distance based

on IBS. A linear mixed (polygenic) model was estimated based on the variance-covariance

matrix and the kinship matrix, with sex (male or female) and grazing group (Lowland10,

Lowland11 or Hill11) as fixed effects. From this heritability was also calculated.

Association was then tested using an mmscore function (Chen and Abecasis, 2007) on the

residuals, which have been corrected for relatedness, and therefore should be independent

of pedigree or prior selection. After Bonferroni correction the significance level thresholds for
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the RNA-Seq cohort were P < 5.88 x 10-4 and P < 1.18 x 10-2 for genome-wide significance

(P < 0.05) and suggestive significance (that is, one false positive per genome scan),

respectively. The corresponding significance level thresholds for the Validation cohort were

P < 5.78 x 10-5 and P < 1.15 x 10-3 respectively. To account for any remaining population

substructure not accounted for by the genomic kinship matrix, P-values were corrected for

the genomic inflation factor λ (Chen and Abecasis, 2007).

As mmscore SNP effects are biased downwards, a subset of SNPs (n = 5) with the lowest

corrected P-values was taken and effects re-estimated in ASReml (Gilmour et al., 2009).

This was done by fitting the SNPs one at a time as fixed effects in the previously described

model (Appendix 5.4.1). The predicted trait values (Appendix 5.4.2) were converted to

genotypic values as follows (Appendix 5.4.3):

a =
(AA−BB)

2

d = AB− AA+BB
2

The proportion of VA due to each SNP was estimated as

2pq(a+ d(q− p))2

VA

where AA, BB and AB are the predicted trait values for each genotype class, p and q are

the allelic frequencies at the SNP locus, a is the genotypic value of the best homozygote,

d is the deviation due to dominance and VA is the total additive genetic variance of the

trait obtained when no SNP fixed effects are included in the model (Falconer and Mackay,

1996). Standard errors of a and d were constructed from the variance–covariance matrix of

the predicted genotype classes, as were the SED for pairwise contrasts between the SNP

genotype classes.
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5.3 Results and discussion

5.3.1 Heritability estimation

The association between selected SNPs and Nematodirus and other Trichostrongyles

FEC in an Irish Scottish Blackface population was examined in this study. Summary

statistics for FEC traits are reported in Table 5.3. As expected, Nematodirus egg counts

were considerably lower than the other Trichostrongyles egg counts. The average other

Trichostrongyles FEC was similar for FEC1 and FEC2, however the range was greater from

the first natural infection (Table 5.3).

Table 5.3: Descriptive statistics for faecal egg count (FEC) traits of all Scottish Blackface
lambs. FEC were reported as Nematodirus and “other Trichostrongyles”.

Average age

(range) in weeks
Trait Animals Mean (Range)

Mean ± SD of

transformed data

17 (11 - 23)

Other Trichostrongyles

FEC1
260 859 (0 - 4,835) 6.29 ± 1.16

Nematodirus FEC1 260 62 (0 - 500) 4.09 ± 0.86

26 (19 - 35)

Other Trichostrongyles

FEC2
260 825 (25 - 3,225) 6.46 ± 0.82

Nematodirus FEC2 260 24 (0 - 250) 3.62 ± 0.65

Heritability estimates using the pedigree-based approach (ASReml) and the genomic

relationship matrix from GenABEL are reported in Table 5.4. The average heritability

estimate for FEC in the Scottish Blackface population used in this study is within the range

reported in the literature. As expected, the heritability estimates using IBS relationships

were lower than the pedigree-based estimates. Despite the low number of markers used

in both cohorts, average heritability for FEC was estimated to be 0.08 for the RNA-Seq

cohort, and 0.14 for the Validation cohort. This indicates that the overall panel of SNPs

used explained a proportion of the variation, and may therefore have the potential to be

used as markers for GIN resistance.

Heritability estimates were larger for FEC1 for both Nematodirus and other Trichostrongyles

measurements (Table 5.4), however the differences were not significant due to the large

standard deviations. This may be due to the reduced range in FEC observed during the

second infection (Table 5.3), particularly in the Lowland11 grazing group (Figure 5.1). The

Validation SNP cohort did not explain any more of the heritability in body weight at 14

weeks of age than the RNA-Seq SNPs. For body weight at 20 weeks of age data was only

available from the 2011-born animals (Table 5.4). Heritability estimates for this trait using

both the pedigree-based approach (ASReml) and the genomic relationship matrix from

GenABEL were larger than those for 14 weeks of age.
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Figure 5.1: Correlation between log-transformed faecal egg count (FEC) values. Correlation
between log-transformed FEC values from two natural infections (FEC1 and FEC2) in the three
grazing groups contained within the Scottish Blackface population (Lowland10, Lowland11 and
Hill11).

5.3.2 Population stratification

Multi-dimensional scaling (MDS) plots of kinship distance based on IBS showed no

population stratification of the animals genotyped with the RNA-Seq SNP cohort (Figure 5.2A).

The results from the animals genotyped with the Validation SNP cohort showed some

genetic sub-structure, with three distinct groups (Figure 5.2B).
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Figure 5.2: Population stratification shown by genotyped SNP. Multi-dimensional scaling (MDS)
plots for animals genotyped with RNA-Seq cohort (A) and Validation cohort (B) SNPs. Animals in B
are clustered into three groups (C1, C2 and C3).

Upon examination of the animals contained within each group it was revealed that each

contained unique sires, with no sire present in more than one group aside from ram 0794334,

who had one of his progeny in cluster 1 (Table 5.5) with the remaining 42 progeny in cluster

3. The three distinct groups observed may therefore be a result of haplotypes present in

these sires within the regions chosen for genotyping.
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Table 5.5: Sire information from the animals used in this study. All animals were purchased
for use on the Teagasc Hill Sheep Farm in Leenane, County Mayo. C1, C2 and C3 refer to the
number of progeny from each sire represented in each of these groups on the MDS plot for animals
genotyped with Validation SNP cohort (Figure 5.2B).

Ram ID Purchased Date Original owner C1 C2 C3

0492728 Maam X Mart 12/10/08 Tom Whelan, Barrnahowna, Tourmakeady 11 - -

0792730 Maam X Mart 12/10/08 Tom Egan, Finny Clonbur, Co. Galway 4 - -

0794368 Maam X Mart 4/10/09 Brendan Varley, Glentrague, Clonbur, Co. Galway 15 - -

0594333 On farm 2011 Brian Reilly, Glenacolly, Leenane, Co. Mayo 39 - -

0792729 Maam X Mart 12/10/08 Tom Egan, Finny Clonbur, Co. Galway 7 - -

0994335 Maam X Mart 10/10/11 Danny Fadian 34 - -

0894367 On farm - Brian Reilly, Glenacolly, Leenane, Co. Mayo - 49 -

0794334 Maam X Mart 10/10/11 Patrick Henagehen 1 - 42

5.3.3 Association analysis

Association analysis identified five suggestive SNPs (one for other Trichostrongyles FEC2,

two for Nematodirus FEC1, and one each for weight at 14 and 20 weeks of age) from

the RNA-Seq cohort (Figure 5.3B & Figure 5.4A), and one suggestive SNP (Nematodirus

FEC1) from the Validation cohort (Figure 5.6A). Manhattan plots displaying the association

analysis results and the corresponding Q–Q plots of observed P-values against expected

P-values for other Trichostrongyles FEC (Figure 5.3 and Figure 5.5) and Nematodirus FEC

(Figure 5.4 and Figure 5.6) are shown below. The results show a range of significance for

individual SNPs, however no individual SNP reached the significance level after Bonferroni

correction.
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Figure 5.3: RNA-Seq SNP cohort association analysis results for other Trichostrongyles
faecal egg count (FEC) traits. Manhattan plot displaying the RNA-Seq cohort association analysis
results (-log10(P) of the corresponding Pc1df, P-values corrected for the genomic inflation factor λ)
and Q–Q plot (below) of observed P-values against the expected P-values for other Trichostrongyles
FEC1 (a, c) and FEC2 (b, d). Genome-wide P<0.05 (solid line) and suggestive (dashed line)
thresholds are also shown.

The RNA-Seq cohort SNP OAR5_54653150 reached genome-wide suggestive significance

for other Trichostrongyles FEC2 (Figure 5.3B). This SNP is an intronic variant within the

SH3 domain containing ring finger 2 gene (SH3RF2). SH3RF2 acts as a scaffold protein

and expression leads to the activation of the JNK pathway and to nuclear translocation

of NF-κB. (Tapon et al., 1998). The JNK pathway is activated primarily by cytokines and

exposure to environmental stress (Weston and Davis, 2007), and the nuclear factor NF-κB

pathway is considered a prototypical pro-inflammatory signalling pathway (Lawrence, 2009).

A deletion that removes all but the first exon is associated with high growth in chickens,

with SH3RF2 expressed in the hypothalamus of low growth animals but not in high growth

individuals (?). The animals in the high growth line have also been reported to have a

genetic defect in hypothalamic appetite regulation (Dunnington and Siegel, 1996).
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Figure 5.4: RNA-Seq SNP cohort association analysis results for Nematodirus faecal egg
count (FEC) traits. Manhattan plot displaying the RNA-Seq cohort association analysis results
(-log10(P) of the corresponding Pc1df, P-values corrected for the genomic inflation factor λ) and
Q–Q plot (below) of observed P-values against the expected P-values for Nematodirus FEC1 (a, c)
and FEC2 (b, d). Genome-wide P<0.05 (solid line) and suggestive (dashed line) thresholds are also
shown.

Two RNA-Seq cohort SNPs reached a suggestive level of significance for Nematodirus

FEC1 (Figure 5.4A). The first, located within the Fraser syndrome 1 gene (FRAS1), codes

for a missense variant that results in a change from isoleucine to a valine at codon 1128.

This change is classified as ’tolerated’ by the SIFT algorithm (score=1) (Kumar et al., 2009).

FRAS1 appears to function in the regulation of epidermal-basement membrane adhesion

and organogenesis during development in both humans and mice (McGregor et al., 2003;

Short et al., 2007). The second SNP is an intronic variant contained within the albumin

(ALB) gene. Serum albumin, the main protein of plasma, is a carrier protein for steroids,

fatty acids, and thyroid hormones, and functions as a regulator of the colloidal osmotic

pressure of blood. ALB has been associated with GIN infection in four separate studies

(Keane et al., 2006; Knight et al., 2010; Nagaraj et al., 2012; Pemberton et al., 2012). It has
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been hypothesised that albumin may be constitutively released into the gastric mucus, and

may therefore play an innate protective role (Pemberton et al., 2012).
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Figure 5.5: Validation SNP cohort association analysis results for other Trichostrongyles
faecal egg count (FEC) traits. Manhattan plot displaying the Validation cohort association analysis
results (-log10(P) of the corresponding Pc1df, P-values corrected for the genomic inflation factor λ)
and Q–Q plot (below) of observed P-values against the expected P-values for other Trichostrongyles
FEC1 (a, c) and FEC2 (b, d). Genome-wide suggestive (dashed line) thresholds are also shown.

None of the Validation cohort SNPs within the QTL for pepsinogen variation under infection

(Sallé et al., 2012) were significant, although one SNP approached suggestive significance

(corrected P-value of 0.007) for other Trichostrongyles FEC1 (Figure 5.5). Pepsinogen level

was not found to be significantly different between selected HighFEC and LowFEC animals

from this population given a controlled challenge of T. circumcincta (Chapter 2), and it is

therefore not surprising that SNPs within this QTL were not highly significant.
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Figure 5.6: Validation SNP cohort association analysis results for Nematodirus faecal egg
count (FEC) traits. Manhattan plot displaying the Validation cohort association analysis results
(-log10(P) of the corresponding Pc1df, P-values corrected for the genomic inflation factor λ) and
Q–Q plot (below) of observed P-values against the expected P-values for Nematodirus FEC1 (a, c)
and FEC2 (b, d). Genome-wide suggestive (dashed line) thresholds are also shown.

The region on OAR13 covered by the Validation SNP cohort was shown to be highly

significantly associated with FEC in Romane × Martinik Black Belly backcross lambs after a

secondary challenge with Haemonchus contortus (Sallé et al., 2012). The observed effects

could not be matched to any known functional candidate genes within the QTL, located

between 70.1 and 77.8 Mb, however a SNP in this region (s09683.1) is also associated

with Nematodirus FEC1 in the present analysis. There were no suggestive SNPs in the

regions identified from the Scottish Blackface GWAS (Riggio et al., 2013), highlighting the

differences between populations of animals of the same breed.
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Figure 5.7: RNA-Seq SNP cohort association analysis results for body weight traits.
Manhattan plot displaying the RNA-Seq cohort association analysis results (-log10(P) of the
corresponding Pc1df, P-values corrected for the genomic inflation factor λ) and Q–Q plot (below) of
observed P-values against the expected P-values for body weight at 14 weeks (wt14a; a, c) and 20
weeks (wt20a; b, d) of age. Genome-wide suggestive (dashed line) thresholds are also shown.

Two RNA-Seq cohort SNPs were suggestively associated with weight traits (Figure 5.7A and

B). The missense variant OAR16_59155635 (arginine changed to histidine at amino acid

1078) within DNAH5 (dynein heavy chain 5, axonema), suggestively associated with weight

at 14 weeks of age, is classified as ’tolerated’ by the SIFT algorithm (score=0.29). Dyneins

are microtubule-associated motor protein complexes, and are required for structural and

functional integrity of cilia and flagella (Ibañez-Tallon et al., 2003). DNAH5 has been shown

to be decreased in the intestine of pigs on a protein restricted diet compared to controls,

indicating that DNAH5 may play a role in nutrition absorption (Ren et al., 2014).

Infection with T. circumcincta has been shown to reduce growth rate in young lambs (Coop

et al., 1982; Bishop et al., 1996; Bouix et al., 1998; Bishop and Stear, 2000a, 2001), with

animals with lower FEC growing more quickly (Coop et al., 1982, 1985). The nutritional
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status of the host during infection is important, with the provision of additional protein to

growing sheep during infection resulting in enhanced immunity to GIN (Brunsdon, 1964;

Coop et al., 1995; Van Houtert and Sykes, 1996). The presence of SNPs in genes involved

in appetite and metabolism may therefore be associated with the ability of animals to

combat GIN infection through increased ingestion of food - and thus of protein. Infection

induces protein deficiency by increasing the demand for amino acids in the alimentary

tract while reducing supply through depression of appetite (Sykes and Coop, 2001). T.

colubriformis-infected sheep given a choice between two feeds that differ in their protein

concentration are able to modify their diet selection in order to meet the increased protein

requirements resulting from the infection (Kyriazakis et al., 1994).

The SNP OAR15_846268, associated with weight at 20 weeks of age, is also a tolerated

(SIFT score=0.9) missense variant (lysine to gluatmic acid at amino acid 30). This SNP lies

within FOLR4 (folate receptor 4, delta). Treg cells have been shown to constitutively express

high amounts of folate receptor 4, which is essential for their maintenance (Yamaguchi

et al., 2007). Treg are a subpopulation of CD4+T cells that modulate the immune system

through production of the immunosuppressive cytokines IL-10 and TGF-β. They are an

important “self-check” in the immune system, and have been shown to be induced and

expanded during helminth infection (Allen and Maizels, 2011).
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Figure 5.8: Validation SNP cohort association analysis results for body weight traits.
Manhattan plot displaying the Validation cohort association analysis results (-log10(P) of the
corresponding Pc1df, P-values corrected for the genomic inflation factor λ) and Q–Q plot (below) of
observed P-values against the expected P-values for body weight at 14 weeks (wt14a; a, c) and 20
weeks (wt20a; b, d) of age. Genome-wide suggestive (dashed line) thresholds are also shown.

No Validation cohort SNPs reached a suggestive level of significance (Figure 5.8). A

summary of the 5 most significant SNPs for each trait, their significance level (Pc1df,

GenABEL P-value corrected for the genomic inflation factor λ) and ASReml p-value for the

RNA-Seq and Validation SNP cohorts are reported in Table 5.6 and Table 5.7, respectively.
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Table 5.6: Top 5 RNA-Seq cohort SNPs for each FEC trait. SNP are sorted by significance
level (Pc1df, GenABEL P-value corrected for the genomic inflation factor λ). Chromosome number
and position are described within the SNP name. SNPs are either coding (C) or non-coding (NC).
P-values for each SNP were also re-estimated in ASReml (P-value) with each SNP as a fixed effect.

Trait SNP A1 A2 N Pc1df Sig. Sug. Coding Gene P-value

FEC1_lnOT OAR2_45658663 C T 235 0.0204 C LPL 0.0220

OAR6_88151153 G T 234 0.0258 N ALB 0.3050

OAR3_204733979 G A 236 0.0296 N CLEC2B 0.2170

OAR21_47759570 T C 236 0.0332 N 0.1210

OAR21_47759083 C T 236 0.0388 N 0.1460

FEC2_lnOT OAR5_54653150 C T 237 0.0046 Y N SH3RF2 0.0080

OAR11_38176374 C G 237 0.0274 C SCRN2 0.0880

OAR2_239931409 T A 237 0.0320 C SLC30A2 0.0310

OAR6_88151153 G T 235 0.0352 N ALB 0.0340

OAR6_92741314 T C 237 0.0602 C FRAS1 0.0450

FEC1_lnNem OAR6_92746652 A G 235 0.0059 Y C FRAS1 0.1100

OAR6_88151153 G T 234 0.0088 Y N ALB 0.0850

OAR18_1929542 A G 235 0.0133 N ATP10A 0.0760

OAR2_45653400 G T 236 0.0151 N LPL 0.2630

OAR2_45675893 A G 235 0.0752 C LPL 0.2210

FEC2_lnNem OAR5_11926149 T C 217 0.0152 N 0.0280

OAR13_32030417 G A 234 0.0157 N CACNB2 0.0660

OAR2_45653400 G T 237 0.0164 N LPL 0.1310

OAR21_47759570 T C 237 0.0190 N 0.0560

OAR21_47759083 C T 237 0.0422 N 0.1120

wt14a OAR16_59155635 A G 232 0.0069 Y C DNAH5 0.002

OAR1_14688520 C T 232 0.0347 C COL9A2 0.012

OAR1_14691551 G A 232 0.0347 N COL9A2 0.012

OAR16_59153719 T C 232 0.0461 C DNAH5 0.016

OAR15_847289 G A 232 0.0485 C FOLR4 0.006

wt20a OAR15_846268 A G 156 0.0012 Y C FOLR4 0.005

OAR1_189741476 A G 156 0.0276 N MFI2 0.065

OAR3_204733979 G A 156 0.0510 N CLEC2B 0.183

OAR16_59117728 A G 156 0.0769 C DNAH5 0.024

OAR3_204731481 C T 147 0.0896 N CLEC2B 0.125

184



Table 5.7: Top 5 Validation cohort SNPs for each FEC trait. SNP are sorted by significance level
(Pc1df, GenABEL P-value corrected for the genomic inflation factor λ). P-values for each SNP were
also re-estimated in ASReml (P-value) with each SNP as a fixed effect.

Trait SNP Chr Position A1 A2 N Pc1df Sig. Sug. P-value

FEC1_lnOT OAR7_53958778 7 53958778 G A 199 0.0013 0.006

s00660_1 13 72309372 A G 200 0.0017 0.007

OAR12_46119459 12 46119459 G T 197 0.0021 0.003

OAR12_46045439 12 46045439 G A 198 0.0022 0.004

OAR7_57813736_1 7 52367152 T C 196 0.0034 0.024

FEC2_lnOT s02002_1 12 54784267 C T 198 0.0017 <0.001

OAR12_46212305 12 46212305 A G 201 0.0059 0.003

s53649_1 12 47882527 C A 201 0.0062 0.003

s54156_1 21 36240663 C T 201 0.0069 0.002

OAR5_89535202 5 89535202 C T 199 0.0076 0.008

FEC1_lnNem s09683_1 13 72474617 A G 200 0.0010 Y 0.013

s75832_1 14 46590917 C A 198 0.0027 0.010

OAR7_51056435 7 51056435 A G 199 0.0040 0.018

OAR4_8687452_1 4 8658001 C T 199 0.0050 0.031

OAR7_53867898 7 53867898 C T 198 0.0079 0.034

FEC2_lnNem OAR7_60254585_1 7 54439369 C T 201 0.0021 0.009

OAR4_8579647_1 4 8554085 A G 197 0.0024 0.007

OAR12_60974719_1 12 54847345 C T 200 0.0051 0.019

OAR14_48676584_1 14 46319049 A G 200 0.0053 0.017

OAR3_97664476_1 3 91999429 G C 202 0.0063 0.028

wt14a OAR4_6967496_1 4 7211794 T C 195 0.0019 0.007

OAR14_47918448 14 47918448 G A 198 0.0026 0.013

OAR7_58944510_1 7 53341820 G A 197 0.0038 0.037

OAR12_57110529 12 57110529 A G 197 0.0097 0.098

s43133_1 13 72638850 T C 198 0.0100 0.078

wt20a OAR12_46430191 12 46430191 A G 156 0.0051 0.021

s63393_1 7 55204866 G A 156 0.0059 0.014

OAR5_87108294 5 87108294 T G 156 0.0064 0.003

OAR3_96268784_1 3 90654749 C T 156 0.0066 0.038

OAR13_76998194_1 13 71580447 A G 156 0.0081 0.017

Resistance to gastrointestinal nematodes in sheep is understood to be a complex polygenic

trait, controlled by many genes of relatively small effect (Crawford et al., 2006; Kemper et al.,

2009). To this end, single markers have been estimated to explain a maximum of 0.48% or

0.08% of the phenotypic variance in FEC following challenge with either T. colubriformis or

H. contortus respectively (Kemper et al., 2011). Single markers were estimated to explain a

maximum of 0.50% of the additive genetic variance in this study (Table 5.8). The RNA-Seq

SNP cohort accounted for a larger proportion of the additive genetic variance (Table 5.8).

This is expected, as they were chosen to be polymorphic within the population, and are

from genes that were differentially expressed between HighFEC and LowFEC animals.

The differences between the P-values using the mmscore function in GenABEL and those

from the re-estimation in ASReml may be attributable to lack of power. Sample size is very

important for GWAS, particularly when looking for variants with small effect sizes (Spencer

et al., 2009), which is likely to be why no SNPs reached statistical significance. Using the
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same approach as the present study, Riggio et al. (2013) did an association analysis using

752 Scottish Blackface lambs. Using this much larger population, only two significant SNPs

were found, one for Nematodirus FEC and one for other Trichostrongyles FEC at 16 weeks,

highlighting the polygenic nature of the trait and the large number of animals required for

association studies.

5.3.4 Conclusions

The results from this study support the use of a panel of SNPs rather than individual SNPs

for predicting nematode resistance, in agreement with the complexity of this polygenic trait.

While a small subset of the SNPs examined in this study had been shown to be significantly

associated with gastrointestinal nematode resistance in other populations, including animals

of the same breed, there were no significant associations found between individual SNPs

and FEC in the Scottish Blackface population used in the association analysis. A number of

suggestive associations were detected however. The observed results highlight the shared

and unique mechanisms of resistance to gastrointestinal nematodes within and between

populations. Overall, the panel of SNPs as a whole was useful in explaining a proportion of

the observed heritability of the trait.
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Chapter 6

General Discussion
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Gastrointestinal nematodes are a serious cause of morbidity and mortality in grazing

ruminants. Infected lambs have a reduced ability to absorb nutrients from the gastrointestinal

tract resulting in ill-thrift and occasional death. Sub-clinical infection adds to the production

losses, in the form of reduced growth rate and light, under-finished carcasses. However,

lambs must be challenged with infective L3 in order to allow the development of acquired

immunity. Effective nematode control strategies must therefore limit host exposure to

nematodes to a level that allows the development of immunity while not compromising

performance.

Anthelmintic drenching has been the method of choice for nematode control for the last

50 years. However, consumer concerns about food products from animals subjected

to chemical treatment, combined with the inevitable evolution of anthelmintic resistant

nematodes means alternative, sustainable methods of nematode control are required. A

sustainable method of nematode control is to select for genetically resistant individuals.

Selection on phenotype (faecal egg count, FEC) requires detailed trait measurement. This

is time-consuming, unappealing and expensive. Selecting resistant animals would be

simplified if animals could be selected by genotype; this could also accelerate genetic gain.

A detailed understanding of the genes and mechanisms involved in protective immunity

and the factors that regulate this response would also aid the development of effective and

sustainable nematode control methods, such as immunomodulatory anthelmintics. The

aim of this study was to identify genes and biological processes mediating the response to

nematode infection.

In Ireland, two lowland sheep breeds have been extensively studied with respect to

nematode resistance and it has been demonstrated that the Texel breed is more resistant

to nematode infection than the Suffolk breed (Hanrahan and Crowley, 1999; Sayers et al.,

2005a; Good et al., 2006; Sayers et al., 2008; Hassan et al., 2011a). However, there have

been no studies to date in Ireland on breeds that occupy hill and marginal land. Extensive

studies in Scotland have shown substantial genetic variation among Scottish Blackface

lambs in both FEC and in worm length (Stear et al., 1999b). This breed is commonly found

on hill country in Ireland, and is also an important source of crossbred ewes for the lowland

sheep sector. For these reasons the Scottish Blackface breed was the focus of this study.

Reduced FEC in Scottish Blackface lambs is primarily a result of reduced fecundity

of adult T. circumcincta females

This is the first study in Ireland to confirm within-breed differences in the ability of Scottish

Blackface lambs to resist gastrointestinal nematode infection (Chapter 2). After a controlled

challenge with Teladorsagia circumcincta, LowFEC animals displayed lower FEC throughout

the course of infection, validating FEC measurements from two independent natural

infections as a method of identifying resistant and susceptible animals. Worm fecundity

was significantly lower in the LowFEC (resistant) animals, with shorter, less fecund adult
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females. While there were no significant differences in worm burden between the HighFEC

and LowFEC animals, there was a correlation between number of mature females and

FEC on day of slaughter. There was some evidence that the HighFEC animals tended

towards a higher worm burden in both the 2010W cohort animals slaughtered at 14 days

post infection, and the 2011E animals slaughtered at 71 days post infection, although this

was not statistically significant. FEC in the 2011E cohort peaked at 56 days post infection,

and had begun to decline by 71 dpi. This could be a consequence of a reduction in worm

number or in the number of eggs produced per worm. Therefore slaughter at 71 days post

infection may have been too late to fully capture the peak values for the number of adult

worms. Taken together, these results indicate that adult worm burden may also play a

role in reduced FEC in resistant Scottish Blackface lambs, although further experiments

would be required to validate this. In agreement with our study, studies in Scotland indicate

that variability in FEC in Scottish Blackface lambs is largely due to differences in average

worm fecundity (Stear et al., 1996), although adult worm burden was also a contributing

factor (Stear et al., 1995b). Results from the study by Stear et al. (1996) indicates that

the acquired immune response in Scottish Blackface lambs develops in two stages. Firstly,

lambs develop specific local IgA responses that regulate worm development and therefore

fecundity, decreasing egg production. Secondly, in association with the production of globule

leukocytes in the abomasal mucosa, an effective hypersensitivity response is developed

that regulates worm burden, in conjunction with decreased fecundity of the worms that do

establish (Seaton et al., 1989; Stear et al., 1995b, 1996).

These results are in contrast to the mechanisms of resistance found in in the two other

breeds studied extensively in Ireland, Texel and Suffolk, where differences in FEC are

largely a result of variation in worm burden rather than variation in average worm fecundity

(Good et al., 2006). These differences in FEC are observed irrespective of age, suggesting

that the increased resistance to gastrointestinal nematodes in Texel lambs may be innate.

This could be a result of either the innate immune response, or innate characteristics of the

breed, that may include smooth muscle function (Vallance et al., 1997; Diez-Tascon et al.,

2005) or other innate defences (Douch et al., 1984). Transcriptional profiling of lambs from

both breeds identified a panel of genes expressed in the absence of infection that were

mostly related to the innate immune response (Ahmed, 2013). Future work could include

examination of the innate and acquired immune response in all three breeds, examining

the mechanisms of resistance over time in Texel, Suffolk and resistant and susceptible

Scottish Blackface. The animal selection model validated in Chapter 2 required exposing

the animals to gastrointestinal nematodes, and selecting for resistance or susceptibility

based on FEC. Examining the innate immune response within breed requires selection

of known resistant and susceptible naïve animal. This is not currently possible in Ireland,

however genetic selection for health traits, such as parasite resistance, is on the verge of

implementation in Ireland (www.sheep.ie). Phenotype recording for FEC commenced in

2013, and estimated breeding values (EBVs) for parasite resistance should be available for
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some sires in 2015. This would allow monitoring of the response to infection in resistant

and susceptible individuals that had not had prior exposure to gastrointestinal nematodes.

A significant difference in worm burden was observed between the 2010W and 2011W

cohorts. This is most likely the result of the use of older and potentially less infective larvae

for the infection of the 2011W cohort. In particular the low level of larvae in the HighFEC

animals at 7 dpi was a cause for concern. The difference in worm burden between the two

cohorts meant that results from both years were analysed separately. The 2011W cohort

had consistently lower plasma pepsinogen, and serum and mucosa anti-T. circumcincta IgA

than the 2010W cohort, reflective of the lower worm burden.

While pepsinogen levels have previously been reported to be an indicator of ostertagiosis

in lambs (Lawton et al., 1996; Balic et al., 2000b; Davies et al., 2005), other studies of

within-breed differences of gastrointestinal nematode resistance have found that it is not

significantly different between lambs with consistently high or low FEC (Stear et al., 1995a).

Pepsinogen levels increased post-infection in all cohorts, indicating that abomasal damage

did occur, however there was no effect of phenotype (HighFEC or LowFEC). Basophils

and eosinophils produce cytokines that can enhance the protective immune response

against gastrointestinal nematode infection (Anthony et al., 2007), however it does not

appear that levels of these cells circulating in the blood are able to differentiate HighFEC

and LowFEC animals. Previous work has found an association between the number

of peripheral eosinophils and both FEC (Stear et al., 2002) and worm burden (Beraldi

et al., 2008) in Scottish Blackface lambs, with resistant (low FEC) animals having higher

circulating eosinophils. This is in contrast to our study, where none of the haematology

parameters taken at the time of sampling were associated with FEC2. While both peripheral

eosinophil counts and plasma pepsinogen concentrations, in conjunction with FEC, have

been postulated to be an effective tool in selecting resistant Scottish Blackface lambs (Stear

et al., 1995c), under a controlled challenge they did not differentiate animals with high

and low FEC in this study. Peripheral eosinophil concentrations were higher in LowFEC

animals over the course of infection in the 2011E cohort although this difference was not

statistically significant. This could be due to low power, which could be resolved in future by

increasing the number of animals studied per group. The relationship between peripheral

blood eosinophilia and tissue eosinophilia is reasonably weak, with only a proportion of

eosinophils found in the blood moving into the abomasal mucosa (Henderson and Stear,

2006). The lack of a statistically significant difference between HighFEC and LowFEC lambs

in peripheral eosinophilia may therefore not be reflective of eosinophil levels in the abomasal

mucosa, the site of infection. Unfortunately the number of eosinophils in abomasal tissue

was not measured in any of our cohorts. Future work should therefore consider examining

the role of tissue eosinophilia in GIN resistance of Irish sheep populations.

In sheep the majority of plasma IgA, the isotype closely associated with intestinal mucosal

immune responses, derives from the mucosal surfaces of the gastrointestinal tract (Sheldrake

et al., 1984), and association between levels of plasma and mucosal IgA is a lot stronger than
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that of eosinophils (Henderson and Stear, 2006). IgA produced in the gastrointestinal tract

can either bind to parasites and parasite secretions, or be transported into the bloodstream.

Increased levels of IgA has been positively associated with resistance to T. circumcincta,

regulating both worm length and fecundity (Smith et al., 1985; Stear et al., 2004; Strain

et al., 2002; Stear et al., 1995b, 1999b,c; Strain and Stear, 1999; Halliday et al., 2007). This

resistance is regulated through suppressed parasite growth, development and fecundity,

and mediated by IgA activity against 4th-stage larvae. While the antigen used in this study

was generated from L3 larvae, it has been reported that there is a correlation (r = 0.68; P <

0.001) between the IgA response to both L3 and L4 antigen (Stear et al., 1995b). Despite

this, future work could examine the IgA response to antigen from 4th-stage larvae, as this

is strongly correlated with worm fecundity (Stear et al., 1995b). Results from the 2011E

cohort show LowFEC animals had significantly higher levels of serum anti-T. circumcincta

IgA throughout the infection. The 2010W cohort LowFEC animals also had numerically

higher levels of serum IgA at day 7, although this was not statistically significant. This may

be a result of only having 5 lambs per group in the 2010W and 2011W cohorts, compared

with 10 in the 2011E cohort, resulting in reduced statistical power. The resistant animals

therefore have larger quantities of unbound IgA entering the bloodstream, particularly at

day 7. This could potentially be due to excess IgA production, or a result of excess free

IgA due to low worm numbers or reduced worm length. A commercial antibody test, CarLa,

targets the carbohydrate larval antigen of T. colubriformis. Antibodies to CarLA have been

shown to be higher in resistant lambs (Harrison et al., 2008; Shaw et al., 2012). In our

study the serum IgA response to CarLA was found to mirror that of the response to L3

T. circumcincta antigen, despite the fact that the antigens in both tests were derived from

different nematode species. This indicates that the CarLA test could potentially be used

as a proxy test for anti-T. circumcincta antibodies if T. circumcincta antigen could not be

sourced.

While the model for selection of resistant and susceptible animals was validated in female

lambs, the animals used to define the acute response to infection were male. This was

unavoidable, due to the number of lambs present on the Teagasc Hill Sheep Farm, however

this must be kept in mind when interpreting the results. Sex has been shown to affect

host resistance to T. circumcincta infection, with females having lower FEC (Barger, 1993;

Stear et al., 1996; Bouix et al., 1998), which may be a result of higher IgA activity (Strain

et al., 2002). Future work could examine the differences between male and female lambs

selected for high or low FEC, and determine the differences and similarities between the

mechanisms of resistance in each sex.
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Rapid effective immune response observed in the abomasal lymph node of LowFEC

Scottish Blackface in response to infection with T. circumcincta

Following on from the identification of Scottish Blackface lambs with divergent phenotypes

for GIN resistance, we characterised the transcriptome of the abomasal lymph node

following a controlled challenge with T. circumcincta. The aim of Chapter 3 was to identify

genes and biological processes associated with the host response to GIN in resistant and

susceptible individuals. While this experiment was designed so that all gene expression

data could be analysed together, fitting year as a variable, the observed differences in

worm burden combined with the separation of samples by year on the MDS plot meant

that this was not viable. This had the consequence of lower numbers of animals per group

than originally intended when determining the acute response to infection. This may have

reduced our power to detect differentially expressed genes. A number of genes were found

to be differentially expressed between both HighFEC and LowFEC animals, and between

7 and 14 days post infection. Despite the difference in worm burden between the two

cohorts, examining upstream regulators revealed pathways and biological mechanisms in

common between the HighFEC and LowFEC animals. At 7 dpi genes downstream from the

regulators PPARG, IFNG and IL4 were activated in LowFEC animals, whereas by day 14

genes downstream of these regulators were upregulated in HighFEC animals. Interferon

gamma (IFNγ) is secreted by TH1 lymphocytes, and plays a critical role in regulating the

type 1 versus type 2 immune responses in vertebrates (Wakelin, 1996), whereas IL4 is

typically associated with a TH2-type response (Anthony et al., 2007). The differentially

expressed genes, along with the results from the upstream regulator analysis, indicate

that it appears to be the differential interplay between TH1/TH2 genes that controls the

response to gastrointestinal nematodes in resistant compared to susceptible animals. This

is in agreement with previous studies using Texel and Suffolk animals (Hassan et al., 2011b;

Ahmed, 2013). The LowFEC (resistant) Scottish Blackface lambs are generating an immune

response to T. circumcincta at 7 days post infection, whereas in their HighFEC counterparts

this response is delayed until ~14 days post infection. The immune response generated by

the LowFEC animals may therefore be influencing the larval stages of T. circumcincta. This

response, in conjunction with the IgA response, could result in shorter, less fecund adults in

LowFEC animals, as reported in Chapter 2.

Many of these genes were found to be in agreement with other studies on resistance

to gastrointestinal nematodes in sheep, including those investigating the transcriptome

(Ahmed, 2013; Gossner et al., 2013) and the proteome (Nagaraj et al., 2012). These results

are in agreement with the systems genetics study undertaken by Sayre and Harris (2012),

which combined data from multiple QTL and gene expression studies. These authors

discovered common pathways between genes in QTL associated with genetic resistance

to internal parasites. This suggests that there may be some pathways in common to GIN

resistance over multiple breeds of sheep and species of gastrointestinal nematode, despite

the different mechanisms of resistance between breeds already discussed.
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The number of genes differentially expressed for each comparison was relatively low when

compared to other RNA-Seq studies of the same tissue (Pemberton et al., 2011; Ahmed,

2013; Gossner et al., 2013). While Pemberton et al. (2011) (and subsequently Gossner

et al., 2013) looked at variation in the transcriptome within Scottish Blackface lambs, the

study population consisted of 789 individuals bred over a 3-year period (Davies et al., 2006).

The animals used in this study, however, came from of a population of 258 individuals bred

over a 2-year period, and therefore animals selected within this population may not have

been sufficiently divergent to detect a large number of differentially expressed genes. In the

future, progeny from tested sires with high and low EBVs for parasite resistance could be

utilised, which would ensure the use of animals with divergent phenotypes for resistance to

gastrointestinal nematodes. This would also allow an increase in the number of animals

used, which would increase the statistical power of the study. Alternatively, there may be

variation between animals in how they manifest resistance or susceptibility, which would

result in a low number of genes in common between animals within-group. Despite this,

there may be pathways in common between the genes that are upregulated in each animal

in response to infection. It is for this reason that genes found to be significant using common

dispersion estimates were used for network and pathway analysis.

Utilising progeny from sires with high and low EBVs would allow the examination of

the development of immunity over time. The selection model used required FEC from

two independent natural infections, resulting in the lambs being approximately six to

seven months old at slaughter. Using EBVs for selection would allow the response to

gastrointestinal nematode infection to be examined in both naïve lambs, and lambs after

primary or secondary infection.

Results throughout this thesis, in particular Chapter 3 and Chapter 4, have been reliant on

both the sheep genome assembly and annotation quality. The ovine genome assembly

(OARv3.1) was produced by the International Sheep Genome Consortium (ISGC) in

September 2012, with the Ensembl annotation released in December 2013 (Ensembl

release 74). Of the differentially expressed genes identified in this study, approximately 30%

were classified as novel protein coding genes in Ensembl. Future releases of the sheep

genome will result in the number of functionally annotated genes increasing, ultimately

resulting in increased information from the RNA-Seq data. For example, the two most

studied regions with regards to resistance to gastrointestinal nematodes in sheep are the

region of the Major Histocompatibility Complex (MHC) on chromosome 20, and the region

containing the interferon gamma (IFNγ) gene on chromosome 3 (Bishop and Morris, 2007).

The MHC region is extremely polymorphic (Stear et al., 2005), which makes assembly and

annotation difficult. To this end the extensively studied MHC class IIa gene Ovar-DRB1

(Schwaiger et al., 1995; Sayers et al., 2005a; Stear et al., 2005) is not found in the current

Ensembl release (75). Additionally, some genes, such as ENSOARG00000013341, have

multiple within-species paralogs (19 in Ensembl release 75). This has implications when

mapping RNA-Seq reads to the genome assembly, as only uniquely mapped reads were
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kept for read counts.

In this study gene expression was examined in the abomasal lymph node, the site from

which the immune response is generated, rather than the abomasal mucosa, the site of

interaction between the nematode and the immune response. It was shown in a study

of Johne’s disease in calves that cytokine levels were generally higher in the mesenteric

lymph nodes than in the intestine, and that the cytokines expressed had different profiles

depending on the type of tissue examined and the time of sampling following infection

(Wu et al., 2007). Both abomasal tissue and abomasal mucosa is available for all animals

sequenced in this study. Future work could include sequencing the entire transcriptome, or

selected genes through targeted re-sequencing and exome capture (Ng et al., 2009), of the

abomasal mucosa. This would allow examination of communication between the abomasal

mucosa, the site of infection, and the lymph node, from where the immune response is

generated.

While Chapter 3 focussed on the discovery of differentially expressed genes between

HighFEC and LowFEC animals, and subsequently the pathways and networks in which

these genes are located, RNA-Seq data can also be used for other discovery applications.

Novel transcripts, exons, or alternative splicing events can all be detected from RNA-

Seq data (Iyer and Chinnaiyan, 2011). One of the genes found to be upregulated in

HighFEC animals at 7dpi in 2011 was a novel micro RNA. These small, non-coding RNAs

function in transcriptional and post-transcriptional regulation of gene expression (Chen

and Rajewsky, 2007) and have been shown to affect inflammatory and immune mediated

diseases (O’Connell et al., 2012; Singh et al., 2013). Profiling of micro RNA expression

could help to elucidate their role in the response to gastrointestinal nematodes in sheep.

Future work could therefore examine the RNA-Seq data for expression and differential

expression of a range of non-protein coding RNAs such as micro RNAs, long non-coding

RNAs, and short interfering RNAs. The data could also be interrogated to examine novel

transcripts and splice variants.

Positive selective pressure in ruminant genomes within genes associated with high

and low FEC in Scottish Blackface lambs

The selective pressure caused by gastrointestinal nematodes in ruminants may leave a

genetic footprint for directional positive selection, quantifiable by measures of sequence

change (as in Morgan et al., 2010). The aim of Chapter 4 was to the take subset of genes,

identified as being differentially expressed in the abomasal lymph node of resistant and

susceptible Scottish Blackface lambs after infection with the gastrointestinal nematode T.

circumcincta (Chapter 3), and look for selective pressure variation that may be associated

with resistance or susceptibility to gastrointestinal nematodes. Selective pressure variation

was examined using a lineage-site specific analysis, focussing on the lineages to Bovidae,

Ovis (sheep reference and Scottish Blackface), sheep (reference) and the HighFEC and
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LowFEC animals. The Ovis lineage showed the largest number of gene families with

lineage-specific positive selection, whereas no genes were found to be under positive

selection uniquely in the Scottish Blackface groups. This analysis was hampered by

the use of RNA-Seq reads as a proxy for genomic sequencing, which resulted in no

coverage in some regions of the coding sequences being examined. Pathway analysis

of the genes under lineage-specific positive selection revealed that these genes were

involved in the inflammatory response, dermatological diseases and conditions, and

connective tissue disorders. Inflammation plays an important role in both the innate and

adaptive immune response to gastrointestinal parasites, with inflammation and immunity

inextricably linked (Sutherland and Scott, 2009). As the genes examined have been

shown to be differentially expressed in animals with divergent phenotypes for resistance to

gastrointestinal nematodes, pathway analysis suggests that the observed positive selection

may be a result of selective pressure placed on sheep and cattle by pathogenic infection.

While genes that are involved in immunity and have undergone adaptive evolution have

been identified in a number of studies in cattle (Lynn et al., 2005; Larson et al., 2006; Babiuk

et al., 2007; Freeman et al., 2008; Jann et al., 2008; Takeshima et al., 2009), studies of

adaptive evolution in the sheep genome have previously been limited by a lack of sheep

coding sequence data and lack of an assembled sheep genome. This chapter therefore

represents the first large-scale comparative genomics study of the considerable selective

pressure placed on the sheep genome by gastrointestinal nematodes.

Suggestive associations between polymorphisms in the genome and variation in

nematode resistance and body weight in Scottish Blackface lambs

Selective pressure can result in polymorphisms that increase fitness, in this case increased

resistance to gastrointestinal nematodes. If the selective advantage is great enough these

polymorphisms will be swept to fixation in the population, as seen in the species level

selective pressure analyses of Chapter 4. Association analyses can be used to identify

either causal mutations, or a marker in close linkage disequilibrium (LD) with a causal

mutation that can subsequently be used for selection. Markers in the candidate genes

identified in the RNA-Seq analysis (Chapter 3) were genotyped in the Scottish Blackface

population used in this study. Markers in genomic regions previously identified as associated

with nematode resistance in a meta-analysis of three genome-wide association studies

(Riggio et al., 2014) were also examined for association in our flock. All lambs born within

the Scottish Blackface flock in 2010 and 2011 were genotyped, and an association analysis

performed between the genotyped SNPs and FEC (both Trichostrongyles and Nematodirus

FEC1 and FEC2) and weight (14 weeks and 20 weeks) traits. While no SNP reached

significance after correction for multiple testing, six SNPs (five from the RNA-Seq cohort and

one from the Validation cohort) reached the suggestive level of significance for association

with FEC or weight traits. Single markers were estimated to explain a maximum of 0.50% of

the additive genetic variance, however the panel of SNPs as whole was useful in explaining
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a proportion of the observed heritability of the trait. Animals within and between populations

appear to have both shared and unique mechanisms of resistance. These observed results

highlight the polygenic nature of resistance to gastrointestinal nematodes. This study was

limited by the number of animals available (253) for genotyping. Previous studies have

used numbers ranging from 750 to over 1000 individuals (Sallé et al., 2012; Riggio et al.,

2013) for the detection of QTL regions. Future work on validating the SNP of interest from

this study would require access to a larger population of Scottish Blackface animals, for

increased power. As resistance to gastrointestinal nematodes is a complex polygenic trait,

controlled by many genes of relatively small effect (Crawford et al., 2006; Kemper et al.,

2009), future work on identifying SNP to be used in selection programs will likely focus on

utilising a panel of SNP rather than searching for individual causative mutations.

By using the same gene set for both selective pressure analysis and SNP genotyping the

commonalities between the two studies can be examined. An intronic variant contained

within the albumin (ALB) gene was suggestively associated with Nematodirus FEC1. The

coding sequence of this gene also shows evidence of positive selection in the Bovidae

lineage. Albumin is a negative acute phase protein, which has been shown to decline in

response to internal challenges, such as infection, inflammation or stress Murata et al.

(2004). ALB has been associated with GIN infection in four separate studies in sheep

(Keane et al., 2006; Knight et al., 2010; Nagaraj et al., 2012; Pemberton et al., 2012). It

has been hypothesised that albumin may be constitutively released into the gastric mucus,

and may therefore play an innate protective role (Pemberton et al., 2012). The two proteins

with the most positively selected sites in the Ovis lineage were FRAS1 and DNAH5. A SNP

located within the Fraser syndrome 1 gene (FRAS1), was suggestively associated with

Nematodirus FEC1. This SNP codes for a missense variant that results in a change from

isoleucine to a valine at codon 1128. While 20 sites in FRAS1 show Ovis lineage-specific

evidence of positive selection, codon 1128 is not one of them. Positive selection was also

observed within DNAH5 (dynein heavy chain 5, axonema). A missense variant within

DNAH5 results in a change from arginine to histidine at amino acid 1078, and is potentially

associated with weight at 14 weeks of age. However, this particular SNP is not under

positive selection. Despite neither genotyped SNP showing evidence of positive selection,

further genotyping could help to elucidate if SNPs within any of the positively selected sites

within each gene are more strongly associated with the trait of interest. The evidence of

association with traits of interest could be the result of linkage disequilibrium with a causal

mutation within the gene.

Conclusions

This study represents the first characterisation of resistance to gastrointestinal nematodes

in Scottish Blackface animals in Ireland. Resistance was found to manifest through reduced

fecundity in nematodes, although reduced worm burden may also play a role. The anti-

197



nematode response was mediated, at least in part, by IgA. Transcriptional profiling of the

abomasal lymph node during a controlled challenge with T. circumcincta indicated that the

LowFEC (resistant) Scottish Blackface lambs are generating an immune response to T.

circumcincta at 7 days post infection, whereas in their HighFEC counterparts this response

is delayed until ~14 days post infection. This is in agreement with a previous study of

resistant and susceptible breeds in Ireland in which it was found the resistant breed (Texel)

generated a more rapid immune response than the susceptible breed (Suffolk). The early

immune response generated by the LowFEC animals may therefore be influencing the

larval stages of T. circumcincta, which could result in the shorter, less fecund adults, as

reported in Chapter 2. Selective pressure analysis revealed selection acting on the coding

sequence a number of differentially expressed genes in sheep and cattle, potentially as

a result of the selective pressure placed on these species by gastrointestinal nematodes.

Finally, suggestive associations were found between SNP in differentially expressed genes

and FEC traits, however the lack of any genome-wide significant associations may be due

to the polygenic nature of the trait.
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