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Abstract 

There are many factors which influence the incorporation of particulate in metal matrix 

composites (MMCs). This paper presents work which examines the effect of viscosity during 

Al–SiC MMC production. Processing periods (up to 65 min), stirring speeds (50– 500 rpm), and 

re-inforcement sizes (13–100 lm) for two different viscosity levels (1 and 300 mPa s) were 

investigated. Computer simulations, room temperature analogue fluid simulations, and MMC 

castings were performed. Volume fraction results of SiC at different locations within the fluids 

were assessed by each of these methods and compared. From these tests, a stirring speed of 200 

rpm for the lower viscosity fluid and 300 rpm for the higher viscosity fluid were found to be best 

in order to produce uniform distributions of SiC. In order to obtain a uniform re-inforcement 

distribution in the lower viscosity system, stirring periods were found to range from 14 to 170 s 

and for the higher viscosity system from 540 to more than 3920 s. Fully uniform suspensions 

remained for just a couple of seconds in the lower viscosity system compared to about an hour 

for the higher viscosity system. The modelling approach chosen was found to be useful in 

predicting settling behaviour in the semi-solid metal. 

 

1. Introduction 

In a recent review, it was shown that metal matrix composites (MMCs) can be used in a wide 

cross-section of applications ranging from civil structures, to aerospace, to recreational products 

[1]. This is due to the capability of MMCs to be designed to provide a vast array of mechanical, 

thermal and dimensional accuracy properties. This same review presented a number of the 

methods  by which MMCs can be fabricated. In order to produce homogeneously reinforced 

MMC components, the method chosen for particle incorporation within the matrix is important. 

Some techniques for introducing and mixing the particles have inherent disadvantages. Gas 

injection of particles, for example, may result in part porosity and sophisticated techniques using 

combined ultrasonic transduction in the centrifugal casting process can lead to undesirable 

variations in the percentage of particles from the inner to outer part of a billet [2]. Other 

techniques such as squeeze casting and powder metallurgy methods have enabled high fractions 

of reinforcement to be incorporated in the final casting [3,4]. In comparison, compocasting is a 

relatively simple process of mechanical agitation for the production of MMC which can be easily 



scaled as required [5]. This process involves the addition of particulate reinforcement into semi-

solid metal (SSM) either before or during agitation of the fluid. Previous work has analysed the 

damage mechanisms in alumina reinforced wrought aluminium composites [6]. This work has 

shown that composites produced by the stir casting route can be further processed by 

thixoforging to obtain good mechanical properties. Similar benefits in the mechanical properties 

of reinforced thixocast aluminium alloys were also noted with proper selection of heat treatments 

[7]. The latter two references have in particular shown that with stir cast feedstock and 

appropriate processing conditions thixo-formed MMC components can be produced for 

aerospace applications. 

The clustering of the particulate reinforcement during MMC production has an important 

influence on MMC properties. This is undesirable as it leads to nonhomogeneous response and 

lower macroscopic mechanical proper-ties. Particle clustering can occur due to chemical binding, 

reduction of surface energy, or segregation of the particles [8]. As would be expected, heavy 

particles settle more quickly [9-11]. For similar reasons, clustering is also a contributory factor to 

the reinforcement settling more quickly [8,12]. In recent work by Prabu et al., it was noted that 

particle clustering occurred at a stirring speed of 500 rpm during the stir cast production of 

aluminium alloy A384 with 10% of 64  n sized SiC reinforcement [13]. In this case, the long 

elevated pre-heating of the SiC particles may have contributed to chemical bonding between the 

particles [8]. At higher speeds were the surface layer may have broken down, the authors noted 

that no particle clustering occu-red. In cases where particle clustering does not occur, the 

interaction of particles with each other at higher volume fractions can cause reduced particle 

settling rates [11]. Another factor that may lead to particle segregation is particle pushing by the 

solidification front. If a high enough solidification front speed is developed, called the critical 

speed, the particles are engulfed rather than pushed. A review of the critical velocity models has 

recently been presented by Youssef et al. [8]. As the particulate size (or cluster size) increases 

the critical velocity reduces. This is noted as being due to the reduction in interfacial energy 

difference between the particle and the advancing solid/liquid front as the particulate size 

increases. 

In order to fabricate MMCs with good mechanical properties, other important factors that need to 

be considered include the effect of poor reinforcement wettability by the matrix and the 

propensity for the introduction of porosity during the particle incorporation phase [14]. With 

appropriate choice of materials, fast but non-turbulent agitation, inert atmospheres, and laminar 

direct flow path die filling methods these latter problems can largely be over-come [15]. 

However, lack of knowledge of the flow field remains one of the main problems for 

homogeneous MMC production. If process parameters are not adequately controlled non-

homogeneous particle distribution can arise due to insufficient particulate dispersion, 

sedimentation, solid front particle pushing or flow generated segregation [16]. This in turn 

results in generally undesirable non-uniform MMC properties. 



Developing predictive models for the flow fields and resulting particulate distribution can be a 

complex process. In the compocasting process, selection of stirring speed and period is essential 

for the effective incorporation of particles to occur [17]. In addition, the stirrer/vessel geometry, 

melt temperature, and the material type, amount and nature (e.g. fibrous, faceted, or size) of the 

particles are some of the main factors to consider when develoing these models [18-21]. The 

important influence of stirrer height, blade angle and type on particle distribution has been 

examined in past studies [22,23]. Previous work has also investigated the minimum agitation 

speed that will result in a uniform suspension of particles with a view to avoiding turbulent flow 

and porosity development [18]. Other workers have used transparent moulds to obtain visual data 

from the composite production process to aid model development [24]. These previous 

computational models of MMC production generally take some account of the viscosity 

variations in the semi-solid fluid. Viscosity changes with volume fraction, shape, and size of the 

reinforcing phase. The viscosity is also dependent on the shear rate, stirring time and cooling rate 

[25]. Most numerical models of suspension flow use an effective viscosity value based on a 

function of the solid content and shear rate. For example, Stoke's law, with such viscosity values, 

can be applied to predict particle dispersion or settling rate [26]. Knowledge of the dispersion 

and settling rates allows the cast house to deter-mine, respectively, the time period required to 

produce a homogeneous distribution of reinforcement and how long a prepared batch of MMC 

can be held before it needs to be processed. This paper presents work focused on the 

determination of the re-enforcement dispersion and settling times which influence the production 

of MMCs. Computational models of the flow fields for these processes in analogue systems were 

developed to gain more in depth understanding. 

 

2. Experimental 

The computational models were built as two-phase fluid flow models. The first phase was set as 

either a water or glycerol/water mixture and the second phase as 10% volume fraction of SiC 

particulate. At the start of these simulations the 10% SiC was positioned at the base of the 

mixing vessel with a packing volume of 0.6. A particle size of 13 µm was used in most of the 

tests, however, particles of 30 and 100 µm in size were also investigated to deter-mine their 

effect on settling rate. These phases were chosen as they enabled a Newtonian computational 

model to be applied and room temperature analogue experimental test comparisons. The 

viscosity behaviour of liquid aluminium has been recorded by many workers as Newtonian with 

a viscosity value, similar to water, of 1 mPa s. At very low shear rates (<2 s
-1

) and for periods of 

up to at least 8 min, the viscosity of semi-solid aluminium alloy at 0.3 fraction solid can be 

approximated at 300 mPa s [27]. These previous results indicate that for very low shear rate 

situations, such as during particulate settling, the normally thixotropic semi-solid metal can be 

approximated as a Newtonian fluid for modelling purposes. These values were also set as 

viscosities of the analogue fluids, water and glycerol/water, respectively.Water, glycerol and SiC 

densities were set at 1000, 1260, and 3210 kg/m
3
, respectively. 



The physical dimensions of the modelled system were set to those of a flat-bottomed cylindrical 

crucible of 105 mm inner diameter. The crucible was filled in all tests to a level of 65 mm. A 80 

mm diameter steel four flat bladed impel-ler, with 10 mm wide and 2 mm thick blades set at 45° 

to the vertical, was arranged to pump in the upwards direc-tion. A thin coating of boron nitride 

was applied to the impeller to avoid contamination of the melt and prevent corrosion of the 

stirrer. The stirrer height in all tests was 20 mm from the base of the crucible. In order to aid 

com-parison of results, these model settings indicated above were identical to those used in the 

analogue and MMC fab-rication experimental work. Appropriate processing peri-ods and stirring 

speeds for the experimental tests were informed from the results of the computational models. 

Further specific details on the modelling, analogue and MMC fabrication experiments are given 

below. 

 

2.1. Computational models  

The computational fluid dynamic (CFD) models used in this work were developed in Fluent 

Version 4.5 and add on package Mixsim. Initial velocity distributions along the stirrer blade for 

this model were obtained from a 3D velocity model of the flow at the investigated stirring 

velocities (50, 100, 150, 200, 250, 300, 400, and 500 rpm). The initial velocity profiles obtained 

from the 3D simulations, which showed that the flow inside the crucible was symmetrical about 

the impeller axis, were used in 2D simulations to determine the evolution of flow parameters 

over longer time periods. Velocity components, kinetic energy dissipation, eddy dissipation, and 

the volume percentage of SiC measurements were taken through the vessel at different times 

after the commencement of stirring. From initial trials and Reynolds number examination, the k 

— € turbulent model was chosen to model the water system and the laminar flow model for the 

glycerol/water system. Axisymmetric multiphase time dependent Eulerian (granular) models 

were used. All of the measurements reported here were taken along the vertical plane mid way 

between the impeller blades. This is represented in Fig. la as plane AA. The three directions of 

measurement were axial, x, radial, r, and circumferential, 0. The height positions at which 

measurements were taken in the crucible are indicated in Fig. 1b.  



 

 

2.2. Room temperature analogue testing  

In the analogue experiments, water and glycerol/water solution were used to simulate liquid and 

semi-solid aluminium, respectively. A glycerol/water solution with a viscosity of 300 mPa s, 

similar to that encountered at 0.3 fraction solid in the processing of SSM, was used [27,28]. 

Accurate fluid viscosity control was ensured by using a cone and plate viscometer (Rheological 

International, model no. RI:2:L). The same SiC reinforcement particulate as used in the 

modelling and MMC fabrication tests was used in these tests. At the start of testing the 10% SiC 

particles were at the bottom of a flat bottomed transparent glass crucible with dimensions as 

indicated above. A speed controlled DC motor enabled accurate control of the stirring speed 

between 50 and 500 rpm [23]. A uniform dispersion of SiC throughout the liquid was produced 

by means of mechanical shearing with the same type of four flat bladed stirrer as used in the 

modelling and MMC fabrication experiments. Dispersion times were judged visually by eye. To 

examine settling rates, a uniform dispersion of SiC was produced throughout the fluids by means 

of mechanical shearing at 200, 300, and 500 rpm. When shear-ing was stopped, settling times for 

the uniformly dispersed particles in the different fluids were measured.  

 

2.3. MMC fabrication  

The compocaster was made in-house and is shown schematically in Fig. 2. A screw driven 

actuator was bolted vertically beneath the compocaster. The crucible was mounted on a ceramic 

spacer which was in turn attached to the actuator end plate. This arrangement allowed rapid 

extraction of the crucible from the furnace and enabled quenching of the material within 5 s of 

stopping the stirring. A free rotational bearing on top of the actuator prevented rotation of the 

crucible [29]. A356 was chosen as the matrix material for the compo-casting experimental work. 



 

 

At the start of each test, the 10% SiC was placed on the base of the crucible and cut to shape 

A356 ingot was placed on top of the SiC, to give a total height of 65 mm. The combination was 

then heated in the furnace to 650 °C and held for 30 min before the processing temperature was 

set and stirring commenced. This procedure, rather than introducing the particulate on top of the 

liquid or semi-solid metal, was found to provide consistently good particulate wettability. These 

tests were carried out in an inert nitrogen atmosphere. Two MMC ingot castings were fabricated 

in the liquid state at 650 °C with impeller rotational speeds of 200 and 300 rpm. For these tests 

the stirring period was set at 16 s. Six other ingot castings were fabricated via compocasting in 

the semi-solid state at 600 °C (approximately 0.3 fs) with stirring speeds of 200, 300, and 500 

rpm. For the 200 rpm stirring speed, stirring times used were 1030 and 2335 s; for the 300 rpm 

stirring speed, stirring times used were 540 and 1030 s; and for the 500 rpm stirring speed, 

stirring times used were 120 and 540 s. The percentage of SiC at the specified height locations in 

the castings (indicated in Fig. lb) were calculated from image analysis (IA) of micrographs taken 

from sectioned samples at these locations. Percentage SiC values were recorded as the average 

percentage of SiC area from three representative images, each taken over a 0.45 mm2 sample 

area at the specified height locations.  

 

3. Results  

3.1. Computational results  

3.1.1. Dispersion computational results  

At stirring speeds above 300 rpm an excessively high vortex was created in the liquid metal 

analogue water fluid system. This indicated an upper processing bound for the liquid system. A 

lower processing bound presented itself for the glycerol/water system. At speeds below 200 rpm 



the dispersion times were too long due to the higher viscos-ity of this system. The times taken to 

achieve uniform distributions of SiC at various stirring speeds within the two fluids, after 

commencement of stirring, are shown in Tables 1 and 2. 

 

 

These tables represent the times taken until a steady state distribution was achieved in the 

crucible. The steady state SiC distribution results at the various stirring speeds and locations in 

the crucible are presented in Figs. 3 and 4.  

Fig. 3a—d shows the fraction of SiC against the radial distance from the central axis of the 

crucible for the water system. The key on the right of the graphs (P, Q, S, and T) indicates the 

height at which the radial fraction of SiC was computed, see Fig. lb. From Fig. 3a, it is can be 

seen that a significant fraction of SiC remains near the base of the crucible (location P), under the 

stirrer position. 

However, Fig. 3b—d shows that at stirring speeds of 200 rpm and above, a relatively uniform 

fraction of SiC is present throughout the crucible. Fig. 4a—d represents the steady state 

distribution results for the glycerol/water system. A larger amount of particles can be seen under 

the stirrer position and at the wall for a stirring speed of 200 rpm in the glycerol/water system 

(Fig. 4a) compared with the water system (Fig. 3b). Larger resistance to particle dispersion was 

evident in the glycerol/water system due to its higher viscosity and density. At higher stirrer 

speeds in the glycerol/water system (Fig. 4b—d) a relatively uniform fraction of SiC was noted 

throughout the crucible. 



 

3.1.2. Settling computational results 

The settling simulations were started from a point of homogeneous distribution in the two fluids. 

Fig. 5 represents the volume fraction distribution at positions Q, S, and T during settling in the 

 



water (Fig. 5a, c, and e) and the glycerol/water systems (Fig. 5b, d, and 0. After 60 s in the water 

system the volume fraction of SiC at the base of the crucible (Fig. 5a) approached the maximum 

packing fraction solid and little SiC remained in the upper part of the fluid (Fig. 5c and e). 

Settling took much longer, more than 3920 s, in the higher viscosity and density glycerol/ water 

system, see Fig. 5b, d, and f.  

 

 

The effect of different particle sizes (13, 30, and 100  m) on settling rate was also examined. 

Fig. 6 shows the fractions of SiC during settling along a vertical plane in the fluid situated 8.5 

mm from the outer wall. As expected from Stoke's law, the smaller diameter particles were seen 

to settle more slowly than the larger diameter particles. 

 



 

 

3.2. Analogue results  

3.2.1. Dispersion analogue results  

Good correlation between the computational simulation (Tables 1 and 2) and analogue dispersion 

results was noted. Fig. 7a and b presents a comparison between the computational and analogue 

results in the two fluid systems. These figures suggest that for quick dispersion of SiC, a 

minimum stirring speed of 200 rpm should be used for liquid state processing and 300 rpm for 

the higher viscosity fluid system. Stirring speeds greater than 300 rpm generated excessively 

large vortices in both fluid systems at the fluid surface. 

 

 

 

 



3.2.2. Settling analogue results  

Computational simulation and the analogue test results for settling rate also agreed well. In all 

cases, particulate settling times measured were independent of the stirring speed used to obtain 

the initial homogeneous distribution. Approximately 90% of all particles settled within 60 s in 

water and complete settling was recorded after approximately 180 s. The time at which 

particulate settling occurred in the glycerol/water mixtures was clearly evident from the 

emergence a transparent layer, absent of SiC particles, at the top of the mixture. For all 

glycerol/water mixtures a uniform dispersion of SiC remained for approximately 1 h, and 

complete particulate settling only occurred after 20 h. 

 

3.3. MMC fabrication results  

The average volume fraction of SiC at locations Q, S, and T was determined from image analysis 

(IA) of micro-graphs taken from sectioned samples at these locations. These volume fractions of 

SiC measured from the MMC disperiosn experiments are shown in Figs. 8 and 9, for the lower 

and higher viscosity systems, respectively. The computational results are also compared to the 

experimental results for the liquid system dispersion in Fig. 8 and settling in Fig. 10. As the 

models presented above do not account for thixotropic type fluid behaviour no such coma-prison 

is presented with the compocasting dispersion results which are shown in Fig. 9. However, as 

discussed in Section 2, a comparison may be made between the model and MMC fabrication 

settling results for semi-solid state processing. These results are presented in Fig. 11. A uniform 

distribution of SiC through the castings was judged to have occurred where the SiC percentage at 

the three locations was similar in level.  

 

 



 



 

4. Discussion  

4.1. Computational and analogue simulations  

A measure of the degree of suspension that is often used in the literature is the quantity of 

particulate remaining on the base of the vessel [30]. Experimental results from Rohatgi et al. 

examined the homogeneity of SiC distributions during stirring in water—SiC mixtures [22]. 

According to their work, the minimum speed required for a completely homogeneous suspension 

of SiC in water was found to be in the range 200-300 rpm. This agrees well with the results 

found in this work, see Fig. 3. For the higher viscos-ity glycerol/water system, a stirring speed of 

300 rpm was found in the current work to be better suited to achieving a relatively uniform 

distribution, see Fig. 4. Dispersion times noted at the various stirring speeds in water are shown 

in Fig. 7a. From this figure it can be seen that the dispersion times at 100 rpm were determined 

as 170 and 180 s from the computer simulation and analogue experiments, respectively. Good 

correlation was again obtained between the analogue and computational simulation experiments 

for the higher viscosity glycerol/water fluid system. Fig. 7b shows that a much increased 

dispersion time of 2400 s at 200 rpm in this system. 

From the results presented in previous work and above it is apparent that the stirring velocity has 

a significant effect on particle distribution in the water—SiC mixture [23]. These effects are 

dampened in the higher viscosity glycerol/water mixtures. Excessive vortex height that was 

recorded for some processing condition can result in air entrapment leading to internal voids and 

oxides within the casting which deteriorate the mechanical properties. 

Non-reactive argon or nitrogen gas atmospheres mitigate the problems of oxide formation. 

However, these gases may also form pores when present within the SSM during solidification. 

Nevertheless, brute force has also been shown to provide a good method for incorporating 

particles in SSM [15]. With these points under consideration for batch MMC casting a 

production procedure is suggested as follows. The stirrer should produce strong currents in the 

bottom region of the SSM to encourage particle entrapment yet provide quiescent fluid surfaces 

to discourage gas entrapment. From the present work a stirring speed of 200 rpm and 300 rpm 

are suggested as the stirring speeds that can be used in the liquid at 1 mPa s and semi-solid states 



at 300 mPa s, respectively, to promote particle dispersion yet guard against void entrapment. To 

obtain uniform particle distribution at these speeds periods of 16 s in the liquid state and 16 min 

in the higher viscosity fluid are required, see Fig. 7. It is therefore further suggested that, for 

higher production rates, the uniform distribution should be obtained in the liquid state after 

which temperature should be lowered into the semi-solid state to retain the uniform particulate 

distribution long enough for the forming operation to take place.  

 

4.2. Computational and compocasting distributions  

 

Uniform particulate distributions were obtained through the crucible in the liquid MMC 

dispersion experiments, see Fig. 8. It can be seen, however, that the computational simulation 

and experimental results do not correspond well. The experimental results in this case were 

lower than the computational results. Factors that could lead to differences between these results 

include particle pushing during solidification, non-wetting, clustering and settling before 

quenching which took up to 5 s [14,31,32]. These potential factors are discussed below. 

Particle pushing by the solidification front has been recorded at undercoolings lower than 60 

°C/s [33]. The critical velocity model presented by Stefanescu et al. was used to calculate the 

critical solidification front velocity [8,33]. This was found to be 4 pmts. The literature confirms 

that at solidification rates above this particle pushing would not be expected. Secondary phase 

particle pushing was not expected in this work as undercoolings of 100 °C/s and above were 

recorded. Previous examination of the compcasting cross-sectional micrographs also revealed a 

uniform distribution of particulate [29]. 

The wettability of SiC with liquid aluminium is low. This results in reduced fluid drag forces on 

the settled particles which could allow reduced settling rates in the compocastings when 

compared to the computational model results. However, in the present work extensive efforts and 

microstructural examinations were made to develop the system of casting (described in Section 

2) so that particle wetting could be assured. As mentioned in Section 1 a number of workers have 

noted that particle clustering will tend to lead to an increased particle settling rate. No particulate 

clustering was evident in any of compocastings produced in this work [29]. This lack of 

clustering is believed to be due to the low volume fraction of re-inforcement and the stir-casting 

procedure used. The volume fraction percentage of particulate used in this work (10%) is at the 

low end of that which is currently used in practice [1]. The chances of reinforcement particle 

collisions would therefore be lower. In addition, the viscosities investigated (1 and 300 mPa s) 

were relatively low compared to industrial thixoforming process. At these lower stress levels, 

high stress concentrations which may force particulate together in other processes were not as 

prevalent [6]. 

Although settling is fast in the liquid system, after some analysis it can be shown that settling is 

not expected to have a large effect on the results. Stoke's law for particle settling can be used to 

express the terminal velocity of a falling particle in a homogeneously mixed system as fol-lows 

pf),g lows UT = c81, where x is the particle diameter (13 pm), pp is the particle density (3200 



kg/m3), pf is the fluid density (1000 kg/m3), g is the gravitational constant (9.81 m/s2), and it/ is 

the viscosity of the fluid (1.3 mPa s and 390 mPa s in this case). Adjustment was required to the 

viscosity here to take account of the 10% particle con-tent [26]. This adjustment was automated 

in the CFD soft-ware. Using this equation terminal velocity for particles in the liquid system can 

be calculated as 0.16 mm/s. At this settling rate, only a small amount of settling is expected 

within a five second quench period. This settling value reduces to 0.0005 mm/s if the higher 

viscosity and density levels are used in the calculation. These settling rates com-pare well with 

those predicted by the computational model. Recalculating the settling rate with the density of 

aluminium (2700 kg/m3) for the liquid system gives a reduced settling value of 0.04 mm/s. With 

these settling rates in the liquid systems and within the five second quench period,the degree of 

settling cannot be expected to account for the results discrepancy in Fig. 8. 

One other important possibile cause is the fact that suspensions in general and those examined in 

this work are shear thinning (pseudoplastic). Although the computational model does take 

account of the increased viscosity of the fluid, due to particulate content, the Newtonian model 

used does not predict pseudoplastic effects. Previous work has indicated Ostwald-De Waele 

power law exponents of between —0.6 and —0.99 in the aluimium alloy SiC composite system 

[34]. This appears to most reason-ably explain the reduced dispersion rates in the MMC 

fabrication experiments compared those found from the computational results. 

During the compocasting process, Fig. 9a and b shows that a shear period slightly longer than 

2335 s was required to produce a uniform distribution of SiC at a velocity of 200 rpm. At the 

higher stirring speed of 300 rpm, results in Fig. 9c and d, indicate that a lower shear period 

between 540 and 1030 s was required to produce a uniform distribution. At the highest stirring 

speed of 500 rpm, Fig. 9e and f shows that a shorter shear period between 120 and 540 s was 

required to produce a uniform distribution of SiC. The settling experiments were started from a 

point of uni-form particulate distributions. The processing parameters to achieve these uniform 

distributions were found from the dispersion experiments indicated above. Good correlation was 

found between the settling simulation results and the MMC liquid and semi-solid metal settling 

results, see Figs. 10 and 11. Interestingly, reasonable correlation was found for the semi-solid 

metal even for the higher period of 3020 s, see Fig. 11. The correlation between the 

computational and compocasting results agrees with the initial hypothesis that the Newtonian 

model can, with appropriate prior knowledge, be used for semi-solid fluids. Conditions for the 

use of such a model include restrictions to very low shear rate and limited periods. Prior 

experimental work to determine appropriate viscosity values, shear rates and periods would be 

needed to apply such a model to other settling conditions.  

 

5. Conclusions  

 

Speeds of 200 rpm for the lower viscosity system and 300 rpm for the higher viscosity system 

were determined as best in order to produce a uniform distribution of SiC. These agitation speeds 

allowed particle dispersion without inducing turbulent flow or gas entrapment. At these speeds 



uniform distributions should be obtained after 16 s in the water system and after 16 min in the 

glycerol/water system. Due to the fast dispersion that occurs in the liquid state and slow settling 

in the semi-solid state, a processing regime can be devised to produce MMC parts. This would 

involve agitation in the liquid state to obtain a uniform particulate distribution, followed by 

reduction in temperature of the material into the semi-solid state to slow the settling of the 

particulate, and followed by laminar filling during forming of the MMC to shape. Results 

indicate that under certain well defined conditions, a Newtonian viscosity value can be used to 

predict particle settling during semi-solid MMC production. This would not hold true for particle 

dispersion which occurs at higher shear rates and therefore requires a more developed thixotropic 

type of fluid model. Reduced particle size was seen to result in a significant increase in settling 

times in accordance with Stoke's Law. However, increased dispersion times would also be 

expected with smaller particles sizes. For accuracy these models should also take account of 

parameter changes though the semi-solid regime such as shear rate, material densities, particulate 

shape, and particulate surface energy changes. The effect of these and other parameters on 

viscosity development in particular need to be investigated further to allow for a fuller 

knowledge of this process.  
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