
Particle-In-Cell Simulations Of Highly

Collisional Plasmas On The GPU In 1 And 2

Dimensions

A thesis for the degree of

PHILOSOPHIAE DOCTOR

Presented to

DUBLIN CITY UNIVERSITY

By

Nina Hanzlikova B.Sc.

School of Physical Sciences

Dublin City University

Research Supervisor:

Prof. Miles M. Turner

March 2015

Declaration

I hereby certify that this material, which I now submit for assessment

on the programme of study leading to the award of Philosophiae Doctor is

entirely my own work, and that I have exercised reasonable care to ensure

that the work is original, and does not to the best of my knowledge breach

any law of copyright, and has not been taken from the work of others save

and to the extent that such work has been cited and acknowledged within

the text of my work.

Signed: ..

Nina Hanzlikova

ID No.: 56459501

Date: 27th December 2014

Contents

List of Figures xii

List of Symbols xiii

1 Introduction 1

1.1 Overview . 2

1.2 Plasma Fundamentals . 4

1.2.1 Debye Length . 4

1.2.2 Plasma Frequency . 5

1.2.3 Collisions . 7

1.2.4 Diffusion . 9

1.2.5 Plasma Sheath . 11

1.2.6 Driving Potential and Heating 14

1.3 Atmospheric Pressure Plasmas 15

1.3.1 Atmospheric Plasma Sources 15

1.3.2 Atmospheric Plasma Characteristics 16

ii

CONTENTS

1.4 Plasma Modelling . 21

1.4.1 Particle Modelling . 22

1.4.2 Atmospheric Plasma Modelling 23

1.5 Chapter Summary . 25

2 Introduction To High Performance Computing 27

2.1 Graphical Processing Unit (GPU) 28

2.1.1 Hardware Overview . 28

2.1.2 Particle-In-Cell Models On GPU 31

2.2 HPC Alternatives To GPU And CUDA 33

2.3 Chapter Summary . 34

3 PIC-MCC Modelling 35

3.1 PIC-MCC Model Structure . 36

3.2 Discretisation Of Equations 38

3.2.1 Equations Of Motion 39

3.2.2 Electric Field And Potential 39

3.3 Charge Accumulation And Weighting 42

3.4 Normalisation . 44

3.5 Monte Carlo Collisions . 45

3.6 Chapter Summary . 47

4 GPU PIC-MCC Algorithm 48

4.1 GPU PIC-MCC Architecture Overview 49

4.2 Memory Allocation . 52

4.2.1 Particle Data . 52

4.2.2 Cell Data . 53

4.2.3 Field Data . 54

4.2.4 Miscellaneous . 55

iii

CONTENTS

4.3 Particle Generation . 56

4.4 Particle Pusher . 57

4.5 Particle Sort . 59

4.5.1 Sort Kernel 1 - Particles Leaving The Cell 60

4.5.2 Sort Kernel 2 - Particles Moving To Adjacent Cells . . 61

4.5.3 Sort Kernel 3 - Particles Migrating Over Multiple Cells 62

4.6 Particle Addition . 63

4.7 Field Solver . 63

4.7.1 1 Dimension . 64

4.7.2 2 Dimensions . 68

4.8 Chapter Summary . 74

5 Particle Pusher - Leap Frog Integration 75

5.1 Leap Frog Integration Algorithm 76

5.1.1 Classical Leap Frog Implementation 76

5.1.2 Collisions . 78

5.1.3 Leap Frog Modifications 80

5.2 Validation . 84

5.2.1 Integration Under Constant Acceleration 85

5.2.2 Simple Harmonic Motion 87

5.2.3 Effects Of Degree of Leap Frog Fragmentation 89

5.2.4 Effects On Stability Of Simulation 91

5.3 Chapter Summary . 94

6 Benchmarking And Verification 96

6.1 Benchmark Parameters Outline 97

6.2 1D Model Verification . 99

iv

CONTENTS

6.2.1 Comparison Of Our Simulation Techniques To Bench-

mark Models . 100

6.2.2 Simulation Results . 102

6.3 Preliminary 2D Model Verification 106

6.3.1 2D Model Projection To 1 Dimension 106

6.3.2 Simulation Results . 110

6.4 Chapter Summary . 113

7 Performance 115

7.1 1 Dimensional Model . 116

7.1.1 Parallel Scaling . 117

7.1.2 Scaling With Pressure 122

7.2 2 Dimensional Model . 124

7.2.1 Parallel Scaling . 125

7.2.2 Scaling With Pressure 129

7.3 2 Dimensional Field Solver . 131

7.3.1 Strong Scaling . 131

7.3.2 Weak Scaling . 134

7.4 Chapter Summary . 136

8 Conclusions And Future Work 137

8.1 Current Outcomes . 137

8.2 Future Work . 141

Appendices 143

A Parallel Scaling Benchmarks 144

A.1 Strong Scaling . 145

A.2 Weak scaling . 146

v

CONTENTS

B Raw Performance Data 147

B.1 1 Dimensional Model . 147

B.2 2 Dimensional Model . 150

B.3 2 Dimensional Field Solver . 152

C Conferences And Publications 156

C.1 Publications . 156

C.2 Conferences . 156

C.3 Solvers . 157

vi

List of Figures

1.1 Collision parameter schematic for a 90◦ deflection from original

trajectory . 8

1.2 Sheath and presheath formation at a wall.[1] 12

1.3 (a) Externally applied electric field and electric field due to

charge separation. (b) Superposition of the external and avalanche

fields.[2] . 19

2.1 Processing unit architectures. (a) A single core central pro-

cessing units (CPU) hardware structure; (b) A graphical pro-

cessing unit (GPU) hardware structure.[3] 29

3.1 Schematic flow diagram of a typical collisional Particle-In-Cell

plasma model.[4] . 36

3.2 Illustration of the leap-frog integration method, illustrating

the time centering for the updating of position and velocity

parameters.[5] . 40

vii

LIST OF FIGURES

3.3 Force and charge interpolation functions for PIC codes: (a)

Zero-order (Nearest Grid Point); (b) first-order (cloud-in-cell,

PIC); (c) second-order (parabolic or quadratic) spline.[4] . . . 43

4.1 Schematic of our PIC-MCC GPU implementation. 50

4.2 Data array allocation. The cells are of set sizes with free space

after valid particles to allow for sorting between cells.[6] 53

4.3 First kernel of the sorting algorithm. Each thread checks the

particles in its cell in reverse order. If the particle has left

the cell it is moved to the end of the cell’s free space (step

1). It then moves the last particle (first to be checked) into

the freed position (step2). This is repeated for any further

particles (steps 3 and 4). 60

4.4 Second kernel of the sorting algorithm. Each cell first looks

to the cell to its right to iterate through the particles leaving

the cell (i.e. the particles at the end of its free space). Any

particles corresponding to the thread cell position are moved

into the new cell and erased from the data of the right side

cell. This procedure is then repeated for the particles of the

cell to the left of the thread cell. Image taken from [6]. 61

4.5 Third (final) kernel of the sorting algorithm. Each thread

checks its original cell for remaining particles (ones that tra-

versed further than one cell) and moves them to the appro-

priate cell. This step uses one atomic operation. Image taken

from [6]. 62

4.6 Schematic of the cyclic reduction solver for tridiagonal equa-

tion systems, as described by Zhang et al.[7] 69

viii

LIST OF FIGURES

4.7 Schematic of the parallel cyclic reduction solver for tridiagonal

equation systems, as described by Zhang et al.[7] 70

4.8 Schematic of the parallel ADI solver with matrix transpose to

allow for better memory alignment during each half cycle. . . 72

5.1 Graphical representations of the leap frog integration method

for the classical, unmodified and modified collisional regimes.

The vertical dotted lines show the projection of the velocity

value (used for the position update) from the velocity update

timeline onto the position update timeline. 77

5.2 Plot of position deviation from classical leap frog integration

for a particle under constant acceleration. The deviation from

analytical solution for position is plotted for the unmodified,

fragmented leap frog method, and for the modified version.

Each method divides the timestep into 10 sub-steps, where

subdivision δt = 0.1. 86

5.3 Plot of position trajectories for the control case with no timestep

divisions, the unmodified leap frog method with divisions of

δt = 0.1 and the modified leap frog method, presented as a

function of time. 88

5.4 Plot of percentage position deviation of the unmodified pusher

from the analytical solution as a function of time for varying

number of sub-steps. 90

5.5 Plot of superparticle densities for collision rate of νc = 0.01, es-

timating collisions by probability, after 25 000 timesteps with

ωp∆t = 0.2. 91

ix

LIST OF FIGURES

5.6 Plot of superparticle densities for collision rate of νc = 0.01 us-

ing the unmodified leapfrog integrator, after 25 000 timesteps

with ωp∆t = 0.2. The electron density profile is clearly skewed

towards the right as a result of the unaveraged acceleration of

the superparticles and has not reached a steady ion to electron

density ratio. The ion density is also more perturbed than in

Figures 5.5 and 5.7 due to the particles being effectively more

unresponsive to the magnetic field. 92

5.7 Plot of superparticle densities for collision rate of νc = 0.01

implementing the modifications outlined in Section 5.1.3, af-

ter 25 000 timesteps with ωp∆t = 0.2. The behaviour of the

probability simulation with timesteps of ∆t is restored and the

simulation gives the expected quasineutrality and symmetricity. 93

6.1 Time averaged ion density profile for benchmark case 1. Both

our direct PIC-MCC simulation result and that of Turner’s

benchmark PIC-MCC implementation (labeled as implemen-

tation E in his original paper[8] are shown. 102

6.2 Time averaged ion density profile for benchmark case 2. Both

our direct PIC-MCC simulation result and that of Turner’s

benchmark PIC-MCC implementation (labeled as implemen-

tation E in his original paper[8] are shown. 103

6.3 Time averaged ion density profile for benchmark case 3. Both

our direct PIC-MCC simulation result and that of Turner’s

benchmark PIC-MCC implementation (labeled as implemen-

tation E in his original paper[8] are shown. 104

x

LIST OF FIGURES

6.4 Time averaged ion density profile for benchmark case 1 applied

to the collapsed 2D simulation. Both our direct PIC-MCC

simulation result and that of Turner’s benchmark PIC-MCC

implementation (labeled as implementation E in his original

paper[8] are shown. 108

6.5 Time averaged ion density profile for benchmark case 2 applied

to the collapsed 2D simulation. Both our direct PIC-MCC

simulation result and that of Turner’s benchmark PIC-MCC

implementation (labeled as implementation E in his original

paper[8] are shown. 109

6.6 Time averaged ion density profile for benchmark case 3 applied

to the collapsed 2D simulation. Both our direct PIC-MCC

simulation result and that of Turner’s benchmark PIC-MCC

implementation (labeled as implementation E in his original

paper[8] are shown. 110

6.7 Plots of solution to the Poisson equation for the special case

of constant charge density. 113

7.1 Strong scaling of the 1D PIC-MCC model. 117

7.2 Weak scaling of the 1D PIC-MCC model. 121

7.3 Scaling of the 1D PIC-MCC model with pressure of the neutral

feed gas. 122

7.4 Strong scaling of the 2D PIC-MCC model. In this test case the

field solver was switched off. This was due to the significant

computational complexity of the field solver and the compu-

tational overhead it represents, thus allowing us to focus on

the PIC procedure itself. The field solver scaling is examined

in Section 7.3. 126

xi

LIST OF FIGURES

7.5 Weak scaling of the 2D PIC-MCC model. In this test case the

field solver was switched off. This was due to the significant

computational complexity of the field solver and the compu-

tational overhead it represents, thus allowing us to focus on

the PIC procedure itself. The field solver scaling is examined

in Section 7.3. 128

7.6 Scaling of the 2D PIC-MCC model with pressure of the neutral

feed gas. In this test case the field solver was switched off.

This was due to the significant computational complexity of

the field solver and the computational overhead it represents,

thus allowing us to focus on the PIC procedure itself. The

field solver scaling is examined in Section 7.3. 130

7.7 Strong scaling of the DADI field solver. The parallel cyclic

reduction solver, employed by the DADI solver, was not being

scaled but instead supplied with constant values for blocks and

threads. PCR scaling is addressed separately below. 132

7.8 Strong scaling of the parallel cyclic reduction solver (PCR). . . 133

7.9 Weak scaling of the DADI solver. 135

7.10 Weak scaling of the parallel cyclic reduction solver (PCR). . . 135

xii

List of Symbols

ni electron density (m−3) . 4

ne electron density (m−3) . 4

e absolute electron charge (' 1.6022× 10−19 C) . 5

E electric field (V m−1) . 5

λD electron Debye length (m) . 5

Te electron temperature (K, Volts or Joule) . 4

ε0 vacuum permittivity (' 8.8542× 10−12 Fm−1) . 5

n0 plasma density (m−3) . 4

ωpi ion plasma frequency (rad s−1) .6

uB Bohm velocity (ms−1) . 13

kB Boltzmann’s constant (1.3807× 10−23JK−1) . 9

mi ion mass (kg)) . 6

q electric charge (C) . 10

u velocity(ms−1); average velocity . 13

ωpe electron plasma frequency (rad s−1) . 6

xiii

LIST OF SYMBOLS

νc collision frequency (Hz) . 10

λe electron mean free path (m) . 17

me electron mass (' 9.1094× 10−31 kg) .6

v velocity (ms−1) . 39

t time (s) .44

ρ charge density (Cm−3) . 40

λi ion mean free path (m) . 17

∆x PIC cell size . 38

∆t PIC timestep . 38

Φ potential (V) . 4

Ws super-particle weighting factor . 42

σ cross section (ms−2) . 9

Γ particle flux (m−2s−1) .9

µe electron mobility (m2s−1V −1) . 10

µi ion mobility (m2s−1V −1) .10

De electron diffusion coefficient (m2s−1) . 10

Di ion diffusion coefficient (m2s−1) . 10

Da ambipolar diffusion coefficient (m2s−1) . 10

n particle number density (ms−3) . 9

k wavenumber (m−1) . 64

Ti ion temperature (eV) . 18

xiv

Abstract

During 20th century few branches of science have proved themselves to be

more industrially applicable than Plasma science and processing. Across a

vast range of discharge types and regimes, and through industries spanning

semiconductor manufacture, surface sterilisation, food packaging and medic-

inal treatment, industry continues to find new usefulness in this physical

phenomenon well into 21st century. To better cater to this diverse motley

of industries there is a need for more detailed and accurate understanding

of plasma chemistry and kinetics, which drive the plasma processes central

to manufacturing. Extensive efforts have been made to characterise plasma

discharges numerically and mathematically leading to the development a

number of different approaches[1].

In our work we concentrate on the Particle-In-Cell (PIC) - Monte Carlo Col-

lision (MCC) approach to plasma modelling [5][9]. This method has for a

long time been considered computationally prohibitive by its long run times

and high computational resource expense. However, with modern advances

in computing, particularly in the form of relatively cheap accelerator devices

such as GPUs and co-processors, we have developed a massively parallel

simulation in 1 and 2 dimensions to take advantage of this large increase in

computing power. Furthermore, we have implemented some changes to the

traditional PIC-MCC implementation to provide a more generalised simu-

lation, with greater scalability and smooth transition between low and high

(atmospheric) pressure discharge regimes. We also present some preliminary

physical and computational benchmarks for our PIC-MCC implementation

providing a strong case for validation of our results.

Acknowledgements

Over the years of creation of this work many people deserve my thanks

for their expertise and support. Chief amongst them is my supervisor, Prof.

Miles Turner, whose guidance down the years has been instrumental in my

completing this work. Your recognition of the importance for us to under-

stand computer science as well as physics helps push this field forward and

certainly helped in pushing me along with it.

A great thanks is owed to my colleagues from the plasma physics re-

search group, Huw Leggate, Seán Kelly, Samir Kechkar, Sarveshwar Sharma,

Gurusharan Singh, Mubarak Mujawar, Zhenning Su, Nishant Sirse, Bert

Ellingboe, Eamonn Monaghan, Cezar Gaman and David O’Farrell. Not only

was their technical expertise invaluable, their friendship and company truly

enriched my time as a PhD student.

Many friends have provided welcomed distractions down the years and

I’d like to thank them all, in particular Damien, Mary, Cathal O B., Carri,

d fens, Conor, Meabh, Oiśın, Cathal M., Hugh, William & Alison, the Sheerin

siblings, Marissa, Rachel, Jen, Ciarán, Adam, Mike, Sheila & Tiernan, Emma

& Hugh, Alex & Jen, Dave, Helen & Orla, Declan, Selina & Alice, bunbun,

fun and anyone else I’ve inadvertently forgotten. The Taylor family deserves

thanks as well, for countless family dinners they’ve let me gate crash.

Finally I’d like to thank Liam and my own family for putting up with me

so far. They have all been more supportive of me than I ever could hope,

despite in the latter’s case still not being sure what it is I do for the most

part. Thanks to mum and Liam for reading over my work with fresh eyes

and thanks to them and Jan for making life exciting every step of the way.

This research was funded by a grant from the Irish Research Council

(IRC) and Science Foundation Ireland (SFI).

xvi

CHAPTER 1

Introduction

As discussed in the abstract, plasmas are very industrially useful but physi-

cally complex systems. The range of different types of plasmas is extensive,

each with its unique set of dominant phenomena, as well as a set of boundary

conditions defining the plasma, particular to every plasma chamber. It is not

unreasonable to ask where does one begin when faced with a problem of such

complexity.

Since plasmas are a large collection of kinetically interacting charged par-

ticles, to characterise them both electromagnetic and collisional approaches

have to be considered. These allow us to calculate a number of characteristic

parameters and thus give us an overview of the behaviour of the plasma.

From electromagnetic considerations we can establish a characteristic length

for electromagnetic interactions in the plasma, the response frequency of

electrons to applied force (i.e. electric field) and macroscopic charge charac-

1

1.1 Overview

teristics of the discharge. From kinetic interactions we obtain the minimal

collision parameter and diffusion characteristics for the plasma[1]. These pro-

vide us with a considerable tool set for understanding plasma interactions

and modelling of discharges[5, 9].

1.1 Overview

In Chapter 1 of this thesis we discuss the fundamental concepts associated

with our work. In Section 1.2 we outlined some of the fundamental param-

eters associated with plasmas as well as the base processes taking place and

the expected plasma characteristics. In Section 1.3 we extend this descrip-

tion to the special case of atmospheric pressure industrial plasmas, listing

some common atmospheric sources as well as how these differ from the low

pressure cases. An overview of plasma modelling is provided in Section 1.4.

Chapter 2 provides a brief overview of high performance computing (HPC),

with particular focus on the GPU Nvidia CUDA environment. The GPU

hardware architecture is described in Section 2.1.1, followed by a short sum-

mary of particle-in-cell simulation developments on the GPU in Section 2.1.2.

Finally in Section 2.2 we discuss some HPC alternatives to GPU and CUDA

technologies.

In Chapter 3 we outline the conventional PIC-MCC modelling procedure

in greater detail, beginning with high level overview of the model structure

in Section 3.1. The equations to be solved are discretised in Section 3.2, with

numerical smoothing to improve the simulation quality being discussed in

Section 3.3. Normalisation imposed on the system is defined in Section 3.4.

The chapter concludes with a description of the collision simulation technique

in Section 3.5.

2

1.1 Overview

A detailed description of our model design in 1 and 2 dimensions is pre-

sented in Chapter 4. A high level overview of the model procedure is shown

in Section 4.1, with each of the features listed being described in more detail

in the following sections. The data structure is detailed in Section 4.2, with

the algorithmic and numerical procedures described in Sections 4.3-4.7.

Special attention is given to the description of the particle pusher/collider.

This is described in detail in Chapter 5. Here we outline some non-obvious

issues with the naive direct implementation of collisions and propose an al-

ternative implementation (Section 5.1). In Section 5.2 we then provide some

simulation results to support our arguments regarding the severity of the

issue and its resolution with our modifications.

In Chapter 6 we provide verifications of our 1 and 2 dimensional models.

We outline the benchmark parameters in Section 6.1 and offer a brief discus-

sion of the deviations of the benchmark models from our own implementation

at the start of the 1D model verifications in Section 6.2. We offer a prelimi-

nary verification benchmark for the 2D model and discuss its limitations in

Section 6.3.

The computational performances of our models are presented in Chapter

7. Here we present the parallel scaling benchmarks for the 1 dimensional

and 2 dimensional models as well as for the 2 dimensional field solver. In

addition we also provide scaling benchmarks of the PIC-MCC models with

gas pressure. The benchmarks for the 1D and 2D PIC-MCC models and the

2D field solver are presented in Sections 7.1, 7.2 and 7.3 respectively.

The work concludes in Chapter 8 with a summary of our results in Section

8.1 and an outline of future works to be carried out with our models in Section

8.2.

3

1.2 Plasma Fundamentals

1.2 Plasma Fundamentals

As mentioned in the introduction to this chapter, plasmas consist of a collec-

tion of charged particles moving under kinetic interactions and electromag-

netic forces exerted on them[1]. The overall total charge of this system is

approximately zero so on large scales we can say that deviation from neutral-

ity has to be small in comparison to the electron density and the plasma is

said to be quasi-neutral. On local scales, however, we can see accumulation

of charges and thus a potential can be observed.

At the same time plasma particles can freely traverse the plasma and

interact kinetically with each other. As a result of these particle collisions

many chemical processes take place in the plasma, possibly foremost of these

being ionization. In addition, excitation and elastic collisions affect the in-

dividual particle energies and thus modify the rates of chemical reactions

taking place.

Finally plasma boundary also plays an important role to characterising

plasma behaviour. It is usually at the boundary that materials processing

takes place and therefore diffusion from the plasma bulk to the boundary

sheath region as well as particle confinement due to induced electric fields in

the sheath are of great interest to our understanding of plasma processes.

1.2.1 Debye Length

It is reasonable to attempt to characterise these scales in a more vigorous

fashion. Assuming the simple case of singly charged ions and electrons,

where ion density ni = n0 and electrons follow the Boltzmann relation

ne = n0exp(Φ/Te), where Te is given in eV, we can solve the Poisson equa-

tion to obtain an expression for Φ[1]. The Poisson equation for singly charged

4

1.2 Plasma Fundamentals

positive ion and electron system in one dimension is given as

d2Φ

dx2
=

e

ε0
(ne − ni) (1.1)

Solving for Φ we see a sharp drop for values larger than a critical length λD,

which we call Debye length and can calculate from

λD =
(ε0Te

en0

)1/2

(1.2)

Therefore Debye length gives us a measure of the effective screening of

charged plasma particle from the electric field they exert on one another. In

typical low pressure discharge conditions where Te = 4 eV and ne = 1010

cm−3 Debye length is equal to 0.14 mm.

1.2.2 Plasma Frequency

Since plasmas consist of charged particles, it is apparent that applying an

electric field to a plasma causes a displacement of the charges. Electrons are

much more mobile than ions due to their much smaller mass so at a first ap-

proximation the case can be simplified by considering only their movements.

When an electric field is applied, the charges will move so as to create their

own field to oppose it, and thus restore equilibrium. However, due to iner-

tia they will overshoot this position and experience a force in the opposite

direction. This results in oscillation motion of the electrons around the equi-

librium point, with a characteristic frequency called plasma frequency.

To calculate this, if we consider a small displacement s of charged particles

from their equilibrium position, the induced electric field is determined from

Gauss’s law to be

E =
en0s

ε0
(1.3)

5

1.2 Plasma Fundamentals

This gives the force equation as

me
d2s

dt2
= −eE (1.4)

since the force is always directed opposite to the displacement of the charge

to restore the particle to its equilibrium position. Combining these two equa-

tions we see this gives the equation for a simple harmonic oscillator with the

frequency ωpe given by

ωpe =
(e2n0

ε0me

)1/2

(1.5)

In this case we considered electrons to be our oscillating species but the

same argument holds for a centre of mass system with oscillating ions, with

particle specific parameters such as ion charge qi and mass mi replacing the

electron values in Equation 1.5 to give the ion plasma frequency ωpi. The

plasma frequency in the case where both ion and electron plasma frequencies

are being considered is then given by

ω2
p = ω2

pe + ω2
pi (1.6)

However since the characteristic frequency of the species is inversely propor-

tional to the mass of the species and the mass of the ions is several orders

of magnitude larger than that of electrons, the plasma electron frequency

dominates and therefore plasma frequency can be approximated to a high

degree of accuracy as electron plasma frequency value. Discharge plasma

frequencies are usually in the microwave range 1-10 GHz[1].

An interesting effect of this oscillation response frequency is the limiting

behaviour it sets on the interaction of the plasma with an electromagnetic

wave. Since the electrons can only respond to an electric field on timescales

equal to or in excess of the plasma oscillation period, if we subject the plasma

to an EM wave oscillating at a higher frequency, the charges will not have

6

1.2 Plasma Fundamentals

reacted fully to the field before the field has altered. Thus the EM wave will

be able to pass through the plasma without any attenuation or disruption and

the plasma will be effectively transparent. Conversely, at lower frequencies

the electrons will be able to respond to the field and thus attenuation of the

wave will be observed after passing through the plasma.

1.2.3 Collisions

Next let us consider collisions in our particle system. Since we are deal-

ing with a collection of particles there is a large number of different types

of collisions taking place. Of major importance in particular are ionization

reactions with neutral feed gas, which drive the plasma particle creation

mechanism and sustain the discharge through primary and secondary colli-

sions. These processes also clearly determine the plasma density, which in

turn crucially effects material processing features of a plasma, such as surface

etch rates. Ionization rates within the plasma are in turn highly dependent

on the plasma particle energies, a parameter not only affected by the driving

potential applied to the plasma, but also through excitation and elastic colli-

sions between particles. In addition, collisions can also cause recombination

or quenching of excited states and thus affect the particle kinetic properties

further. For a further discussion of the different collision mechanisms the

reader is referred to Lieberman[1].

However we can relatively easily consider the simple case of Coulomb

scattering. It is useful to define the collision parameter b as the radial (per-

pendicular) distance between the initial trajectory of an incident particle and

the centre of its collision partner, which results in a 90◦ deviation in direction

from the original path, as shown in Figure 1.1. Assuming a stationary collid-

ing partner, which can be generalised by taking the centre of mass system,

7

1.2 Plasma Fundamentals

Figure 1.1: Collision parameter schematic for a 90◦ deflection from original

trajectory

8

1.2 Plasma Fundamentals

for the incident particle to just avoid capture its kinetic energy has to be

equal to the potential between the charges

kbTe =
e2

4πε0b
=> b =

e2

4πε0kbTe

where Te is electron temperature in Kelvin.

In reality the deflection happens as a result of multiple small angle scat-

tering collisions and a solution for the scattering parameter can be obtained

from integrating over the small angles as carried out by Lieberman[1].

The scattering parameter is useful in determining the cross section σsc for

scattering collisions, which in turn allows us to calculate the rate constant

K. For cumulative collision angles the cross section is given by

σ90 =
8

π
b2 ln(Λ),

and the rate constant for collisions can be found from

K = σv, (1.7)

allowing for easy calculation of the number of the particular collisions based

on the density of colliding species. Typically, while Λ is a large number, ln

Λ ≈ 10[1].

1.2.4 Diffusion

In a multi-species system the movement of particles will result in mixing of

the different species and thus diffusion. Diffusion can be defined in terms of

particle fluxes, where particles being accelerated to higher speeds mix faster

and collisions act to decelerate them and reduce the particle flux. Combining

the acceleration due to induced electric field in the discharge with Fick’s law

for diffusion we get the particle flux expression

Γ = ±µnE −D∇n (1.8)

9

1.2 Plasma Fundamentals

where

µ =
|q|
mνc

D =
kbT

mνc

are the mobility for momentum transfer frequency νc and the diffusion co-

efficient respectively. The actual range of νc values encountered in industrial

plasmas is large. In the low pressure limit the collision frequency is much

lower than the electron plasma frequency described in Section 1.2.2, while at

atmospheric pressures it comes to dominate it. Therefore particle mobility

can vary significantly with the plasma source. In addition the relation above

does not assume a particular particle species and thus has to hold for both

ions and electrons.

However for quasi-neutrality to be satisfied one species cannot have a

larger flux than the other specie. A greater flux in one specie would result in

depletion of the species in the region and thus to a buildup of the opposite

charge, inducing an electric field to oppose this flux motion. It is therefore

necessary to equate the ion and electron fluxes as given by Equation 1.8.

Solving for E and substituting into the ion or electron flux equation results

in

Γ = −µiDe + µeDi

µi + µe
∇n

This is just Fick’s law with

Da =
µiDe + µeDi

µi + µe
(1.9)

being the ambipolar diffusion coefficient. Ambipolar diffusion, combined with

a suitable boundary condition allows for the calculation of the density as a

function of time and position. It may be tempting to set the boundary

as a perfectly absorbing wall, with species density tending to zero at this

boundary, but this would lead to a particle flux of zero at the wall for any

10

1.2 Plasma Fundamentals

finite velocity value, which is inconsistent with any physical solution. It is

therefore necessary to take a closer look at the conditions at the wall.

1.2.5 Plasma Sheath

The simplest case to consider is that of a uniform species distribution confined

in a chamber with absorbing walls. Initially particles will begin diffusing

outwards from the bulk. The electrons, being lighter and thus having higher

mobility than the ions will be lost faster and thus there will be a build up of

positive charge at the walls. This will result in a potential gradient forming

at the boundary, inducing an electric field directed out of the discharge.

Electrons will therefore be accelerated in the opposite direction, reducing

the electron loss at the wall and effectively confining them in the bulk of the

plasma. The positive charge region at the edge of a plasma is referred to as

the plasma sheath.

At the same time the buildup of positive charge in the sheath region means

any positive charges in the bulk of the discharge will also be repelled from

entering it. However a flux into the sheath is required by the ion continuity

equation. Therefore only ions of a particular minimum velocity will be able

to enter the sheath. Due to this there has to exist a region at the boundary

between the bulk plasma and the sheath where the plasma is still essentially

quasi-neutral but a small potential gradient exists to accelerate the ions to

the required velocity. This acceleration takes place in the so called presheath.

To treat this mathematically, let us consider the potential and density

profile shown in Figure 1.2. Taking the potential as zero at the sheath-

presheath boundary and using ion continuity equation at the sheath edge

combined with energy conservation, the expression for the ion density is

11

1.2 Plasma Fundamentals

Figure 1.2: Sheath and presheath formation at a wall.[1]

12

1.2 Plasma Fundamentals

given as

ni(x) = nis

(
1− 2eΦ(x)

Mu2
s

)−1/2

(1.10)

where nis and us are the density and the ion velocity at the sheath edge re-

spectively. Using the Boltzmann relation for electrons, the Poisson equation

becomes
d2Φ

dx2
=
ens
ε0

[
exp

Φ

Te
−
(

1− Φ

Es

)−1/2
]

(1.11)

where Es = 1
2
Mu2

s/e and by multiplying both sides by dΦ/dx and integrating

over dx we can get the expression for the first derivative of Φ as

1

2

(dΦ

dx

)2

=
ens
ε0

[
Teexp

Φ

Te
− Te + 2Es

(
1− Φ

Te

)1/2

− 2Es
]

(1.12)

Clearly to obtain any physically meaningful solution the right hand side of

the equation has to be a positive number, so using Taylor expansion in the

first two terms yields the inequality

1

2

Φ2

Te
− 1

4

Φ2

Es
≥ 0

or

us ≥ ub =
(eTe
M

)1/2

(1.13)

where ub is called the Bohm velocity. This requirement is referred to as the

Bohm criterion and sets the sheath ion velocity requirement of uis ≥ ub[10].

Conversely, it is required that the bulk ions have speeds smaller than the

Bohm velocity to avoid sheath formation. The sheath edge where the bulk

joins the sheath is defined to have the ions with a velocity distribution around

the Bohm velocity. At Te = 4 eV in Helium plasma this is approximately

9000 m/s, while sheath width in nominally in the region of 1 cm (for Child

Law sheath)[1].

13

1.2 Plasma Fundamentals

1.2.6 Driving Potential and Heating

To achieve sustained plasma conditions, driving potential is applied to the

discharge. In materials processing a particularly popular type of discharge

is the so-called rf-diode, a capacitively coupled radio frequency driven dis-

charge. The plasma is confined between two electrodes and driven by the

applied radio frequency signal. The driving voltage is typically between 100-

1000 V with an electrode separation of 2-10 cm[1].

Since the driving frequency is much higher than the ion plasma frequency,

most applied potential energy is transferred to the electrons. The relatively

heavy ions continuously bombard the electrodes over the rf cycle while elec-

trons oscillate with the field and thus are lost only when the electron cloud

approaches the electrode.

In addition to heating due to the applied electric field, electrons in the

sheath are also heated through stochastic heating. Stochastic heating takes

place due to accelerated electrons in the sheath colliding with the oscillating

sheath and thus is sometimes referred to as the collisionless heating. This

effect is most significant at low pressures.

On the other hand at high pressures, the bulk plasma Ohmic heating

comes to dominate over stochastic heating. Ohmic heating takes place due to

electron collisions with neutrals in the bulk. At low pressures these collisions

are moderately rare, in comparison to the much more prevalent stochastic

collisions. However as the pressure increases these collisions become much

more common and come to dominate the heating processes.

14

1.3 Atmospheric Pressure Plasmas

1.3 Atmospheric Pressure Plasmas

Atmospheric pressure plasmas usually come in two broad varieties, thermal

and cold plasmas. Thermal plasmas are characterised by the constituent par-

ticles being in local thermodynamic equilibrium (LTE). Conversely in cold

plasmas the electron temperature is expected to be much larger than the ion

temperature and the plasma is said to be a non-local thermodynamic equi-

librium plasma (non-LTE). Particularly in spectroscopic studies of plasmas

the thermal equilibrium of particles becomes important[11]. In practice for

considerations such as limiting energy losses through heating as well as not

damaging treated surfaces, and in medical treatment applications it is desir-

able for the plasma to be non-LTE and moderately uniform over the treated

surface area.

1.3.1 Atmospheric Plasma Sources

The variety of atmospheric plasma sources available is extensive and therefore

providing an exhaustive list of these would extend outside the scope of this

work. However a few examples of sources of different types of plasma are

outlined below.

Arc Plasma Torch

Arc plasma torches come in two varieties, current-carrying arc and trans-

ferred arc[12]. In the case of the former the nozzle is positively biased and

becomes the anode of the system, while in the latter case the nozzle is left

as the floating potential and the treated material is biased to be the an-

ode. Sources of this type include Plazjet[13], Plasmapen and Plasmapen

Xtension[14] and Plasma-Jet[15].

15

1.3 Atmospheric Pressure Plasmas

Corona Discharge

Corona discharge[16] is an example of a pulsed working mode source. The

discharge is driven by a DC power supply which is pulsed, rather than steady.

The duration of this pulsing is shorter than the time needed for arc creation.

The treated surface is biased as the anode, with the voltage driven between

it and the wire cathode.

Dielectric Barrier Discharge (DBD)

Dielectric-Barrier discharges were first reported by Siemens in 1957[17], who

concentrated on their use in ozone generation. Two distinct modes of oper-

ation are achievable with DBDs, the filamentary discharge[18] and the more

uniform glow discharge[19]. The latter usually requires more specific running

conditions such as feed gas composition and pressure pulsing[20], as well as

electrode structure and power frequency[21].

Atmospheric Pressure Plasma Jet (APPJ)

This is a small, low power, radio frequency driven plasma torch[16]. Two

common electrode configurations are with two concentric electrodes with

working gas flow through the system[12] and two planar, perforated alu-

minum electrodes that allow gas flow through electrodes themselves [22].

1.3.2 Atmospheric Plasma Characteristics

The special case of atmospheric pressure plasmas is an attractive discharge

regime for industrial applications, largely due to the potential ease of opera-

tion and low deployment costs. The vacuum conditions and airtight plasma

chambers required in low pressure processing are expensive and cumbersome

16

1.3 Atmospheric Pressure Plasmas

and particularly in fields such as medicine impractical for widespread use. In

recent years this has motivated a considerable interest in discharges charac-

terised by higher pressures. However, as appealing as the premise of plasma

plumes operational in open air is, there are many practical problems associ-

ated with the basic operation at atmospheric pressures.

To illustrate this it is necessary to consider the ionization mechanism in

plasmas. As discussed in Section 1.2, the driving mechanism behind ioniza-

tion in a plasma is collisions between charged particles and neutrals. As-

suming we begin with a small number of electrons near the cathode, these

are accelerated towards the anode and on their way they collide with neutral

background gas causing more ionization and production of electrons. There-

fore the electron density can be expressed as ne(x) = ne0exp(αx), where α is

the Townsend Ionization Coefficient. Meanwhile ions generated through ion-

ization near the anode are accelerated towards the cathode, causing further

ionization through collisions and resulting in additional ne0γ[exp(αd) − 1]

electrons, where γ is the second Townsend coefficient. This then in turn

leads to further avalanche effect, as discussed in literature[1, 2]. The first

Townsend coefficient α can be semi-empirically determined from

α

p
= A exp

(
− B

E/p

)
(1.14)

where A and B are parameters dependent on the gas in the discharge and

p is the pressure. At some point the creation of electrons through collisions

starts to equal the loss rate at the walls and a self-sustained discharge is

achieved.

This mechanism clearly heavily relies on diffusion of charged particles

across the gas. However diffusion timescale is inversely proportional to the

mean free path λ of the particles in the discharge, which in turn is itself

inversely proportional to the pressure. This leads to slow diffusion of charges

17

1.3 Atmospheric Pressure Plasmas

and their localisation within the discharge. The increase in collisions with

pressure also leads to more losses through dissociative recombination and it

is in fact this timescale that dominates the loss processes at higher pressures.

In addition, collisions between electrons and neutrals lead to a larger

energy transfer between the species at higher pressures. At low pressures

collisions are relatively rare and most heating from the electric field is there-

fore confined to electrons, which are light enough to respond to the applied

field as well as transfer very little of this obtained energy during the rela-

tively rare collisions with the much heavier ions. However as the gas pressure

increases towards atmospheric values, the increase in collisions results in suf-

ficient energy transfer between the species for the low pressure assumption

of temperature imbalance between ions (Ti) and electrons (Te) to no longer

hold. Therefore it can be seen that by increasing the ion density electron tem-

perature reduction is achieved, resulting in reduced ionization and reaction

rates and energy losses.

Returning to the study of the ionization at high pressure it can be seen

that the localised region of high ionization can result in a localised temper-

ature increase due to recombination and gas heating. Assuming constant

pressure to conserve particle continuity this will result in the gas density

reducing. As discussed above the electron temperature will increase as a

result of reduction in energy losses and this will further increase the ioniza-

tion rate in the region[23]. This situation dominates particularly in core of

plasma columns and thus results in a tendency towards plasma contraction

and filamentation.

Not all charge build-ups necessarily reach these instability conditions.

Starting with a localised avalanche, the charged species will start heading

towards the oppositely charged electrodes creating an electric field directed

18

1.3 Atmospheric Pressure Plasmas

Figure 1.3: (a) Externally applied electric field and electric field due to charge

separation. (b) Superposition of the external and avalanche fields.[2]

19

1.3 Atmospheric Pressure Plasmas

as shown in Figure 1.3. The field at the ends of the avalanche is directed in

the same direction as the externally applied field while within the avalanche

there is in fact a drop in the combined electric field. As a result an increased

ionization rate can be observed at the edges while there is an ionization drop

in the avalanche itself. From the requirement of quasi-neutrality, we can see a

plasma streamer forming from the avalanche when the resultant electric field

in the avalanche is zero, which corresponds to the induced electric field due

to charge separation being equal to the applied electric field. Mathematically

the condition for streamer formation is given by the Meek criterion

Ea =
e

4πε0r2
a

exp

[
α
(E0

p

)
∗ d
]
≈ E0 (1.15)

where ra is the avalanche head radius and d is the streamer gap.

For industrial applications plasma instabilities are generally to be avoided.

The build up of localised ionized channel manifests as sparks or arcing, which

leads to significant damage of the surface being processed. There are various

ways of limiting the instability formations at high energy, generally focus-

ing on keeping the imbalance between ion and electron temperatures large

enough to allow for diffusion timescale to dominate the charged species loss

processes. Imposing a limited time duration results in the avalanche not

having enough time to transit into a streamer. Applying a high electric field

on the other hand postpones the streamer formation since a larger electric

field has to be induced in the avalanche for the Meek criterion to be satisfied.

Artificially limiting current and heat removal will limit the ionization inside

an avalanche region to avoid a buildup and streamer formation.

In practise a number of different techniques have been seen to be ef-

fective in producing stable atmospheric pressure discharges. This includes

using distributed resistive electrodes to limit the current, as developed by

Laroussi and Alexeff[24]. Similarly charge buildup can be limited by intro-

20

1.4 Plasma Modelling

ducing a dielectric barrier at the electrodes, resulting in a Dielectric Barrier

Discharge[25]. In more specialised cases high frequency excitation has also

been seen to limit the formation of instabilities, as shown by Liu et al [26].

Additionally heat removal and diffusion can be encouraged by reducing the

physical dimensions of the discharge. This is the mechanism for instability

reduction in atmospheric pressure micro-discharges[27]. A more comprehen-

sive discussion of all these discharges is given by Tendero [12]

Presuming one overcomes the problem of instabilities the resultant plasma

system is still a lot more complex to characterise than the low pressure coun-

terpart. The increase in collisions results in more complex chemistries where

three body reactions become of importance in the system. Ionic processes

also gain in importance over metastable ones since increase in collisions leads

to both higher ionization rates and greater quenching of species. As men-

tioned, these conditions will favour dissociative recombination losses over

diffusion losses leading to decrease in importance of ambipolar diffusion and

heterogeneous reactions across large volumes.

1.4 Plasma Modelling

A number of different plasma modeling approaches have been developed in

the field, each with its own advantages and disadvantages. Three major ap-

proaches to simulating plasmas can be summed up as fluid models, particle-

in-cell models and hybrid models, the last of which combines the charac-

teristics of the former two approaches[5]. In our work we concentrated on

the particle-in-cell approach, due to our interest in highly collisional plasma

regimes and their kinetic characterisation.

21

1.4 Plasma Modelling

1.4.1 Particle Modelling

Particle-in-cell (PIC) codes have been a popular method of modelling plasmas

since the 1960s[28–31]. Despite their computational cost usually making

all but simple plasma chamber geometries and chemistries prohibitive, they

none-the-less provide a direct simulation vehicle for the study of plasma

kinetics.

As discussed by Lieberman[1], a central issue in characterising the ki-

netic interactions of plasmas is the non-Maxwellian nature of the electron

distribution in non-LTE discharges. As a result electron energy distribution

functions have to be calculated directly from the Boltzmann equation

∂fe
∂t

+ v · ∇fe +
F

m
· ∇vfe =

∂fe
∂t

∣∣∣∣
c

(1.16)

The solution to this equation is notoriously complex, resulting in a set of

coupled, non-linear, integro-differential equations in seven dimensions (x, y,

z, vx, vy, vz, t). Conveniently, the PIC method provides a direct numerical

solution for this problem without the need for assumptions relating to the

electron distribution itself. This is achieved through tracking samples of the

particle phase space during the simulation and resolving the physical and

chemical phenomena through direct collisions. Therefore the electron energy

distribution function and electron probability distribution function can be

calculated directly from the simulation.

The resultant discrete superparticles then allow for direct determination

of trajectories of the phase space slices. At the same time the spatial charge

accumulation is abstracted into a charge grid, solving the potential for the

system in a much more efficient fashion than direct particle-particle interac-

tions.

Collisions began being introduced into PIC codes a decade after the pio-

22

1.4 Plasma Modelling

neering efforts listed above[32–35], mostly through the adoption of the Monte

Carlo procedure. These simulations relied heavily on low collision probabil-

ities, consistent with low pressure plasmas, requiring the assumption of low

collision frequency in comparison to the plasma frequency. The resolution of

these collisions took place at the end of each timestep, although timestep cen-

tering of collisions is currently also sometimes employed. A modification can

be introduced for higher pressure cases, where a modified collision probabil-

ity is calculated, but this presents a collision limit of one collision per particle

per timestep[36]. In the case of high collision rates, an alternative is provided

in texts such as Hockney’s[9, 37], which still remains the definitive literature

on the subject. In this approach, a particle subdivided into collision times

leading up to the timestep boundary may undergo several collisions between

each solution of the field equations. The global timestep ∆t is then the in-

terval between solutions of the field equation, while particles advances across

these intervals in a sequence of intermediate steps punctuated by collisions.

1.4.2 Atmospheric Plasma Modelling

As discussed in Section 1.3.2, non-LTE atmospheric pressure discharges con-

sist of streamers forming between the electrodes and dielectrics. It is therefore

immediately apparent that to study this class of discharges a minimum of

2 dimensions is needed in our simulations. These models tend to be very

complex and computationally intensive[9] and therefore various simplifying

assumptions have been adopted in most studies.

At atmospheric pressure the discharge consists of a number of (overlap-

ping) microdischarges. Therefore it becomes necessary to simulate injection

of species. A mixture of global or fluid model approaches to this can be

found in the literature[38, 39]. These models solve for the species continuity

23

1.4 Plasma Modelling

equation assuming predefined rates for kinetic reactions. While much faster

than kinetic models, the defined rates of reaction require defined energy dis-

tributions for the species. Most commonly we assume a Maxwellian electron

distribution however this also imposes an inherent assumption of thermal

equilibrium as well as equilibrium of electrons with the applied field. This

potentially limits the time resolution usefulness of these models.

An alternative approach is that of hybrid models, where one species is

approximated by the fluid approach while the other is treated kinetically

through Particle-In-Cell/Monte Carlo methods. A discussion of the hybrid

model approach is given in [40, 41]. The adaptation of this technique to

the atmospheric pressure discharge can be found in the work of Kong[42, 43]

where both cathode fall region and sheath regions in DBDs were examined

with kinetic treatment of the electrons.

Probably the most accurate approach to the plasma discharge modelling

problem is the Particle-In-Cell model, where all species are treated kineti-

cally and thus no kinetics dependent coefficients need to be supplied from

assumed particle distributions. These methods were particularly developed

by Hockney[9] and Birdsall[5], which still remain the seminal texts on this

subject. Unfortunately the kinetic treatment is computationally expensive

both in terms of memory storage and arithmetic operations due to the species

being treated in terms of large numbers of superparticles, with defined po-

sitions and velocities. This leads to problems in representing particularly

complex plasma systems both in terms of the particle kinetics in the plasma

as well as any more exotic plasma chamber geometries. Therefore kinetic

models have not seen much popularity in atmospheric simulation as well as

more realistic plasma conditions.

However with the advent of improved computational resources available

24

1.5 Chapter Summary

at reasonable prices this attitude has been changing, with efforts being made

to examine some of the simplifying assumptions of the popular fluid mod-

els using the kinetic models in at least simplified scenarios. Of particular

interest is the work of Avtaeva and Skornyakov[44], who examined the lo-

cal field approximation for electrons in DBD and the comparisons of fluid

and kinetic 1D models carried out by Lee et al.[45]. Both studies seemed to

show moderate qualitative agreement between the different approaches but

notable quantitative differences between the obtained results.

Most recently more analytical groundwork has been presented to explore

dealing with more irregular geometries by Fichtl et al.[46]. This work ap-

proaches the problem by transforming the irregular physical grid into a rect-

angular logical grid, which reduces the problem into a familiar one with

addition of certain coordinate transformations. However this formulation

leads to the pusher position integration of particles becoming an implicit one

and thus results in a much more complicated solver for the particle veloc-

ity and position advancement. The field solver also gains in complexity to

account for the physical geometry. However Fichtl has presented results of

his implementation showing agreement for some common periodic boundary

condition problems.

1.5 Chapter Summary

In this chapter we outlined some important fundamental parameters in a

plasma. We described the importance of Debye length and plasma frequency,

as well as described the mechanics behind plasma collisions, diffusion and

sheath formation. In the case of high pressure plasmas, streamer formation

was briefly outlined. Finally a brief overview of plasma simulation outcomes

25

1.5 Chapter Summary

in literature was also provided.

26

CHAPTER 2

Introduction To High Performance Computing

In recent years industrial demands have resulted in increasingly more sophis-

ticated plasma sources. This demand has in turn driven the need for more

computationally complex models to characterise these sources theoretically.

The resultant increase in computational intensity of the models presents a

considerable challenge for many commercially available computational sys-

tems. Within the plasma simulation community this has highlighted the

need for highly scalable algorithms and High Performance Computing (HPC)

hardware infrastructures to support them.

In our work we have concentrated on the Graphical Processing Unit

(GPU) architecture using Nvidia CUDA parallel computing platform. The

GPU provides an inexpensive, highly scalable accelerator alternative to so-

phisticated CPU systems. In turn the Nvidia CUDA platform provides a

convenient environment for C/C++ developers to transition into GPU devel-

27

2.1 Graphical Processing Unit (GPU)

opment, with a number of tools and libraries made available and maintained

by Nvidia. Some alternatives to these technologies are discussed in Section

2.2.

2.1 Graphical Processing Unit (GPU)

The need for dedicated computer display hardware became apparent as early

as 1983, with Intel’s release of the iSBX 275 Video Graphics Controller Multi-

module Board[47]. Since the display bitmap consists of a large array of points

that need to be periodically updated with respect to the display colour and

quality it becomes apparent that significant amounts of computation are in-

volved in any visual output from the useful computation being carried out

on the host machine. The Intel iSBX 275 Controller was the first dedicated

piece of hardware to handle just this overhead, paving the way for more so-

phisticated display capabilities as well as freeing up the CPU for more useful

computation. Since then a number of dedicated graphics hardware compa-

nies have been created with probably the most notable being the Nvidia

company, which introduced the first “Graphical Processing Unit” with its

GeForce 256 card[48], and AMD acquired ATI Technologies introduction of

the Radeon R300 card.

2.1.1 Hardware Overview

The main computational premise in graphics programming revolves around

having a large set of data where each element is updated periodically using

a similar arithmetic procedure. This system is largely independent at up-

date time on updates taking place in other elements simultaneously. To this

effect the GPU architecture employs hugely parallel programming using the

28

2.1 Graphical Processing Unit (GPU)

Figure 2.1: Processing unit architectures. (a) A single core central processing

units (CPU) hardware structure; (b) A graphical processing unit (GPU) hardware

structure.[3]

29

2.1 Graphical Processing Unit (GPU)

Single Instruction Multiple Thread (SIMT) model. Where the multicore hy-

perthreaded CPU can concurrently run at most number of threads equal to

twice the number of cores, GPUs frequently run hundreds of threads at the

same time (the exact number depends on the number of multiprocessors on

the card, each of which executes 32 threads, known as a warp, concurrently).

A hardware schematic of a single core CPU vs. GPU is shown in Figure

2.1. Since the purpose of a modern CPU is exceedingly varied, including

many applications revolving around memory accesses, string processing and

threaded applications carrying out different procedures on individual threads,

much more hardware is dedicated to controller and memory cache than in

the GPU. Therefore the CPU allows for a lot of flexibility in usage and

application building. On the other hand, the GPU was developed with a

number-crunching purpose in mind and thus memory precision and flexibil-

ity were exchanged for additional arithmetic logic units. This trade-off is

discussed at some lengths by various graphics card manufactures in release

notes such as Nvidia CUDA Programming Guide[3]. In addition, since GPUs

were originally designed to speed up the calculation in an application rather

than carry the bulk of it, the cards lack a master controller that would allow

for thread coordination from the graphics card, unlike their CPU cousins.

Therefore GPU threads always have to be launched from the host (CPU

implemented) code.

The premise of intensive arithmetic calculations on a large data set is

of course not unique to determining the display bitmaps between monitor

refresh rates. Many scientific problems also involve this process to con-

verge on a numerical solution. To take advantage of this in the later part of

2000s[49, 50] more general purpose programming language extensions were

being developed, with the most popular being Nvidia CUDA launched in

30

2.1 Graphical Processing Unit (GPU)

2007 and OpenCL in 2008.

The PIC simulation itself as previously discussed involves a simulation

of a large number of particles being periodically updated with a set of pa-

rameters independent of the updates to other superparticles. However at

low pressure most of the operations taking place are memory related, and

therefore the arithmetic capabilities are not being utilised as much as could

be desired. In addition since in most cases the CPU and GPU do not share

the same physical memory space, particle data has to be copied between

the two devices every time either requires access to the updated values. In

more numerically expensive problems this performance overhead is offset by

the speed improvement from the arithmetic portion of the procedure but in a

memory access based application it may sometimes be more efficient to carry

out the calculation on the host rather than the GPU[51].

2.1.2 Particle-In-Cell Models On GPU

The Particle-In-Cell code renaissance has been mostly made possible with

advances in computer science in the last few decades. The basic structure of

a PIC code has been largely unchanged until the advent of multi-core CPUs

and GPUs. Importantly, the architectural shifts meant simulation code was

no longer speeding up predominantly as a result of faster processor clock

speeds. Instead it was the ability to carry out instructions simultaneously

that has resulted in most of performance improvements in modern software.

With the 2007 launch of Nvidia CUDA computing architecture[49], first

serious efforts were made to utilise some of the more exotic parallel computa-

tional acceleration methods in scientific computing. This included Nvidia’s

development of numerical method libraries for common numerical problems

such as sparse matrix methods or Fourier transforms, as well as establishing

31

2.1 Graphical Processing Unit (GPU)

a registered developer community with extensive workshops and documenta-

tion to make up for any shortcomings in the range and maturity of products

on offer.

In plasma science there has been a particular interest in adapting existing

simulation techniques to take advantage of parallel processing capabilities in

the last 8 years. Particularly in the case of Particle-In-Cell codes, where spa-

tial cell positions are largely independent of each other within the timestep

allowing for ease of parallelisation this has been a topic of interest. A devia-

tion from the spatial independence is seen in the particle-to-grid interpolation

for solving of the Poisson equation (see Sections 1.2 and 3.3), and was ad-

dressed by Stantchev et al. in [52]. This approach uses shared memory to

reduce memory access times in the interpolation while allowing for a large

amount of interthread communication in the GPU code. The same group

also saw the GPU as a convenient aid in providing visual output for the PIC

simulation, allowing for 2D display of plasma turbulances[53].

Since GPUs have latencies associated with memory access, it is convenient

to keep the read/write operations organised within memory space for efficient

calculations. In particular, this has been examined by Mertmann et al.[6],

who give a number of different approaches to the organisation of particles in

memory space with sorting grids of varying coarseness as well as their study of

performance affects for different tread/block configurations. A 2D extension

of a fully relativistic PIC simulation was benchmarked by Kong et al.[54],

giving a measure of comparative performance to CPU code as achieved by

the GPU implementation.

Finally, due to the moderately low expense associated with GPUs, a

number of GPU clusters have become available to the scientific community

as means of carrying out high performance computing, including the Irish

32

2.2 HPC Alternatives To GPU And CUDA

Centre for High-End Computing (ICHEC) GPU cluster[55]. As a result

efforts have been made in plasma modelling research to take advantage of

these facilities, with Burau et al. examining the case of a fully relativistic

GPU PIC code on a cluster[56].

2.2 HPC Alternatives To GPU And CUDA

Some of the motivations for use of the GPU hardware architecture and CUDA

platform were discussed at the start of this chapter. In this sections we will

briefly list some of the HPC alternatives.

OpenCL

OpenCL is a popular alternative to Nvidia CUDA platform. It is a frame-

work which allows execution across heterogeneous computing platforms con-

sisting of not only CPUs and GPUs, but also digital signal processors (DSPs),

field-programmable gate arrays (FPGAs) and other processors. It includes

a language based on C99. Where CUDA is only available on Nvidia GPUs,

OpenCL does not suffer this restriction, allowing for development on the

slightly less costly AMD graphics cards. On the other hand OpenCL is a

slightly newer technology than CUDA and thus some of the libraries avail-

able on the CUDA platform were not available on the OpenCL platform at

the start of this project. In addition the CUDA C/C++ extensions are more

integrated into C/C++ engineering standards than those of OpenCL.

Intel R©Xeon Phi Coprocessor

A sophisticated alternative to the GPU is presented by the Intel R©Xeon Phi

architecture. This combines the accelerator approach of the GPUs with the

33

2.3 Chapter Summary

flexibility of the standard CPU processor. It supports MPI and OpenMP

parallel platforms and provides the user with offload execution mode and

native execution mode. The offload mode is similar to that of the GPU

operation, where calculation is offloaded from the host system onto the ac-

celerator device. In the native mode, the entire execution takes place on

the accelerator, and the device emulates a many-core CPU system. Code

designed for execution in the native mode has to be specified as such to

compiler at compile time, thus making it fully portable to CPU execution

as well as compatible with most standard development tools (e.g. debuggers

and memory-checkers). Unfortunately the price of this accelerator is much

higher than that of a GPU, being comparable to that of high end CPUs. The

peak performances achievable on the Xeon Phi are also somewhat lower than

those on the GPU.

Many-CPU Systems

Computer systems with many CPUs are largely outside the scope of this

work, since they usually constitute supercomputer systems. The Irish Cen-

tre for High-End Computing (ICHEC) provides such facilities to Irish re-

searchers, on successful requisitioning of computational resources.

2.3 Chapter Summary

In this chapter we gave a brief introduction to the topic of High Performance

Computing. In particular we discussed the hardware design and specifica-

tions of the GPU architecture as well as the Nvidia CUDA parallel platform.

A short overview of use of the GPU in PIC-MCC modelling was also given.

Finally we outlined some alternative architectures and platforms for HPC.

34

CHAPTER 3

PIC-MCC Modelling

Since plasmas are a large collection of kinetically interacting charged par-

ticles, to characterise them both electromagnetic and collisional approaches

have to be considered. These allow us to calculate a number of characteristic

parameters and thus give us an overview of the behaviour of the plasma.

From electromagnetic considerations we can establish a characteristic length

at which electromagnetic force acts in a plasma, the response frequency of

electrons to applied force (i.e. electric field) and macroscopic charge charac-

teristics of the discharge. From kinetic interactions we obtain the minimal

collision parameter and diffusion characteristics for the plasma[1]. These pro-

vide us with a considerable tool set for understanding plasma interactions

and modelling of discharges[5, 9].

35

3.1 PIC-MCC Model Structure

Figure 3.1: Schematic flow diagram of a typical collisional Particle-In-Cell

plasma model.[4]

3.1 PIC-MCC Model Structure

Particle-In-Cell codes provide a very comprehensive physical view of a dis-

charge. They employ very few simplifying assumptions, leading to detailed

models of fundamental processes on even short timescales, as based on direct

particle kinetics as opposed to energy distributions. Unfortunately this also

leads to a large computational overhead for any more realistic laboratory

set ups such as those employing complex feed gas mixtures, plasma chamber

geometries, chemical (collisional) reactions or plasma-wall interactions.

PIC codes rely on treating the kinetic interactions directly on individual

particle level. However since even moderately low pressure discharges con-

sist of charged particles of density in the order of 1015m−3[1], this number

is really beyond the scope of a simulation. Instead the simulations track so

called superparticles which correspond to an element of particle phase-space

with appropriately adjusted charge and mass parameters. An individual su-

36

3.1 PIC-MCC Model Structure

perparticle commonly represents on the order of 108 actual particles even at

low pressure. This allows for representation of the plasma in terms of much

more manageable superparticle densities, where each superparticle consists

of a large number of real particles. This approach reduces the computational

cost sufficiently to allow us to deal with the kinetic interactions of particles

but the problem of electromagnetic interactions still remains. Summing up

individual force contributions from each particle would result in operations

on the order of N2[9], which is, needless to say, unacceptable for any realis-

tic simulation. Instead, PIC models use a particle-mesh interpolation, where

superparticles contribute charge to a mesh point, with the electric field being

calculated for individual positional mesh points rather than individual par-

ticles. The computational overhead thus reduces to the order of N logN [9]

operations, which is much more acceptable.

The actual flow diagram of a PIC model is shown in Figure 3.1. It is

assumed that the simulation contains a finite number of superparticles with

initialised positions and velocities. From the particle velocities we can inter-

polate the charges accumulated for each cell, which in turn allows for calcu-

lating the potential and electric field in each cell using the Poisson equation.

Thus accelerations for particles in each cell can be determined. With this

information the velocities and positions of each particle can be updated and

the simulation can be advanced to the next timestep. Optionally during or

after this particle push, collision simulation can be implemented. The ap-

propriate method for simulating particle collisions depends on the collision

frequency and the types of collisions present but is usually a variation on the

Monte Carlo procedure incorporated into the PIC model, as described by

Hockney and Eastwood[9] and Birdsall[4]. The method chosen in our code

as well as the justification for this choice will be discussed in Chapter 5.

37

3.2 Discretisation Of Equations

Finally, some numerical constraints have to be imposed on the PIC model

to achieve satisfactory physical results rather than artificial numerical effects.

A more detailed discussion of the reasons for these is given in Hockney’s

text[9], here we will only provide a brief statement of them. To begin, our

cell size has to be small enough to allow for sufficient resolution of internal

structures of the plasma and for correct solution of the Poisson equation.

Due to charge shielding affects in plasmas, the cell width ∆x has to be on

the order of Debye length, with the common value in use being λD/2. The

time step ∆t also needs to be constrained, in this case to be short enough to

resolve electron behaviour. These time scales are, as we have seen in Section

1.2, characterised by the plasma frequency ωp. In this case the nominal

values recommended are ωp∆t ∼ 0.2. Finally, we require the length of our

simulation to be much longer in comparison to Debye length to allow for

proper resolution of the potential and electric field.

3.2 Discretisation Of Equations

In the PIC-MCC approach, the plasma model can be described through two

major modelling components. The superparticles need to be advanced in

space while simultaneously characterising their electromagnetic interactions.

Therefore we need to obtain discrete expressions for the equations of motion

and we also need to develop a numerical solution for the electric field equa-

tions to allow us to correctly determine localised forces on these particles.

38

3.2 Discretisation Of Equations

3.2.1 Equations Of Motion

To determine the updates necessary for the velocity and position changes

between timesteps, we have to consider the basic differential equations

m
dv

dt
= F

dr

dt
= v

These can be written in the finite difference form as

m
vnew − vold

∆t
= Fold (3.1)

rnew − rold
∆t

= vnew (3.2)

It should be readily apparent that the value of Fold and vnew on the right

hand side (RHS) of Equations 3.1 and 3.2 are the average values of these

parameters over the time interval ∆t. It then follows that if ∆t is small the

variation of these parameters is approximately linear and the average value

is the value given at the time interval mid-point. This is illustrated in Figure

3.2, where we see that the velocity parameter is always calculated at the half

time step and the position at the full time step boundary.

3.2.2 Electric Field And Potential

To advance the charged particle velocities over the timestep, a solution to

Maxwell’s equations needs to be determined.

∇ · E =
ρ

ε0
(3.3)

∇ ·H = 0 (3.4)

∇× E = −µ0
∂H

∂t
(3.5)

39

3.2 Discretisation Of Equations

Figure 3.2: Illustration of the leap-frog integration method, illustrating the time

centering for the updating of position and velocity parameters.[5]

∇×H = ε0
∂E

∂t
+ J (3.6)

In the low-temperature, high-pressure, rf-driven discharge limit, Equation

3.5 can be further simplified as ∇ × E ≈ 0. In the rf-driven discharge, the

timescale of variation of the magnetic field is proportional to the frequency

of the driving signal, ωrf . This frequency is much lower than the electron

plasma frequency, ωpe (which in turn, in the high pressure limit is much

lower than the collision frequency ωc). Therefore on the timescales of the

simulation timestep, the magnetic field only varies very slowly with time and

thus becomes negligible.

Thus, since the curl of a gradient is zero, the electric field can be calcu-

lated from the potential and only the Poisson equation, as given in Equation

1.1, has to be solved for this simulation of this system. Applying the finite

difference discretisation twice for the second derivative results in

Φj−1 − 2Φj + Φj+1

(∆x)2
= −ρj

ε0
(3.7)

40

3.2 Discretisation Of Equations

and

Ej =
Φj−1 − Φj+1

2∆x
(3.8)

The PIC model allows for easy determination of the charge density ρ from

the positions of the superparticles. To determine the potential Φ though, a

boundary condition needs to be applied to the system. This is particular to

the discharge being modelled, though common choices for the simplest system

are the periodic boundary condition or the grounded boundary condition[9].

Based on the choice of boundary condition different approaches to finding Φ

become appropriate. Many of these methods are discussed in the literature

[5, 9] and therefore the discussion here will be limited to the method chosen

in the implementation being presented here.

In two dimensions the solution for the potential becomes somewhat more

complicated. The Poisson equation becomes non-linear in two dimensions

and therefore an iterative approach to solving the system has to be adopted.

With this in mind we decided to follow the approach of Vahedi et al.[57] and

modify the Poisson equation in two dimension into its parabolic form, aiming

to solve for steady state.

∇2Φ +
ρ

ε0
=
∂2Φ

∂x2
+
∂2Φ

∂y2
+
ρ

ε0
=
dΦ

dt
(3.9)

Each partial derivative can in turn be discretised as given in the left hand

side (LHS) of Equation 3.7 resulting in

Φn+1
i−1,j − 2Φn+1

i,j + Φn+1
i+1,j

∆x2
+

Φn+1
i,j−1 − 2Φn+1

i,j + Φn+1
i,j+1

∆y2
+
ρi,j
ε0

=
Φn+1
i,j − Φn

i,j

∆t
(3.10)

As is plain from the equation above, subscript i refers to the spatial coordi-

nate in the x-direction, subscript j to the spatial coordinate in the y-direction

and superscript n to the artificial time iteration. The system is considered

to be in steady state when the time derivative on the RHS approaches zero.

41

3.3 Charge Accumulation And Weighting

3.3 Charge Accumulation And Weighting

The use of a finite grid for the purposes of calculating the potential and accel-

eration presents its own problems. Applying a simple binning procedure to

our particle distribution results in a charge profile of the shape seen in Figure

3.3 (a). This is equivalent to finite sized particles of width δx occupying the

cell. As a particle centre traverses the boundaries between cells we would

observe a sharp jump between the densities of the two cells. The resultant

potential would be very noisy due to the sharp charge density transitions at

the wall boundaries. A similar problem is encountered when extrapolating

between acceleration and velocity, where we observe a discontinuity in the

variations of the accelerations in adjacent cells.

For this reason smoothing functions Ws are applied to the cell charge

assignments and accelerations of particles during the weighting process, as

based on the particle position. Most commonly these are referred to as zero-,

first- and second-order weighting and the effective particle shapes associated

with each are shown in Figure 3.3. The higher order schemes effectively turn

each superparticle into a real particle cloud (the Cloud-In-Cell, CIC, model),

where the clouds can move freely through each other. The first-order scheme

can be obtained easily by applying a linear interpolation to the particle charge

contribution as determined from its nearest grid point. In the second-order

weighting a quadratic or cubic spline is applied, leading to better smoothing

than the first-order weighting.

Unfortunately, the use of higher order weightings becomes more compu-

tationally costly with more complicated interpolation functions. However

the smoother charge and acceleration profiles resulting from this procedure,

while requiring more operations per particle, also allow for a coarser grid

and fewer superparticles while producing the same physical results. This

42

3.3 Charge Accumulation And Weighting

Figure 3.3: Force and charge interpolation functions for PIC codes: (a) Zero-

order (Nearest Grid Point); (b) first-order (cloud-in-cell, PIC); (c) second-order

(parabolic or quadratic) spline.[4]

43

3.4 Normalisation

goes some way to reduce the computational cost associated with smoothing

functions. For most problems first order weighting is found to provide an ac-

ceptable compromise between simulation speed and smoothness of physical

quantities[9].

It should be noted that the same weighting scheme should be applied to

both the charge assignment and the calculation of a superparticle’s acceler-

ation. This is due to the smoothing function effectively setting the particle

shape. Consecutive changes in the weighting function form would then re-

sult in alterations of this shape during the simulation. The outcome of this

would be that particles could impose electric fields on themselves in addition

to their contribution to the potential, resulting in a physical inconsistency in

the simulation.

3.4 Normalisation

From the mathematics outlined in Section 3.2 it is clear that the equations be-

ing solved by the PIC model contain a number of physical constants through-

out the simulation. Since these are essentially repetitions of the same oper-

ations it is computationally efficient to work in normalised units, where the

cell width ∆x and time step ∆t are equal to 1. For simplicity the cell height is

equal to the cell width. The above normalisation leads to the transformation

x′ =
x

∆x
, t′ =

t

∆t
(3.11)

From these definitions it follows that

v′ = v
∆t

∆x
, a′ = a

(∆t)2

∆x
(3.12)

By relating the particle acceleration to the electric field and substituting the

new normalised acceleration, a logical normalisation choice for electric field

44

3.5 Monte Carlo Collisions

presents itself as

a′ =
e(∆t)2

me∆x
E = E ′ (3.13)

Substituting this normalised electric field value into the potential expression

given in Equation 3.8, we find the normalisation constant for potential to be

Φ′ = − e(∆t)2

2me(∆x)2
Φ (3.14)

Similarly, this can then be used in the Poisson equation (Equation 3.7) to

find the normalisation for the charge density ρ. This is seen to be given by

ρ′ =
e(∆t)2

2meε0
ρ (3.15)

3.5 Monte Carlo Collisions

Collisions in PIC codes are implemented through the Monte Carlo procedure.

The details of this implementation are dependent on the collision frequency

as well as types of collisional processes being modeled. For collision cases of

collision frequency up to once per timestep, the most frequently implemented

technique involves decoupling of the collision handling from the velocity and

position integration. This is achieved by carrying out the particle advance-

ment as in the case of no collisions and applying the collision process at a

fixed, constant point in the timestep. Most frequently the end of the push is

chosen for these collisions however this is not a requirement of the scheme.

In this case a pseudo-random uniform number is compared to the probability

of collision for the particle, P , for the timestep. The collision probability P

can be calculated from the mean free path λ(v) as given by Birdsall[4]

P = 1− exp(
−v∆t

λ
) = 1− exp(−νc∆t), νc =

v

λ
(3.16)

where νc is the collision frequency for the particle velocity. For νc∆t� 1.0,

the probability P becomes approximately equal to νc∆t. Further selectivity

45

3.5 Monte Carlo Collisions

of collision processes can be achieved through the null collision method[58].

This requires obtaining a probability for each different type of collision being

simulated and comparing the uniform number between these to select the

appropriate collision process.

This procedure however limits the simulation to a maximum of single

collision within a timestep. In many problems it is desirable to have a higher

collision rate, which requires breaking down of the timestep into smaller seg-

ments. This can be implemented with the probability approach by compar-

ing a uniform pseudo-random number to the collision probability at constant

sub-timestep intervals, with the Leap Frog integration taking place between

each comparison.

Alternatively a non-constant sub-timestep interval can be generated for

each particle, producing the time until collision, as given by

δt = − lnR

νc
(3.17)

where R is a uniform pseudo-random number. In this approach the sub-

timestep and timestep boundaries no longer have to align giving each particle

an extra piece of data associated with it between each timestep. However

this is a much more direct way of simulating collisions and at high collision

frequencies can be more accurate. These techniques are discussed in further

detail in Chapter 10 of Hockney et al. [9] or in the accompanying paper[37].

The schematic of the subdivision of the leap frog integration over the timestep

is shown in Figure 5.1(b).

Generally collision frequency νc is determined from experimental colli-

sional cross section σ data, through the relation

νc = SNg S = σ(ε)v (3.18)

where Ng is the gas density, ε is the energy of the collision and v is the

46

3.6 Chapter Summary

relative velocity in the frame of reference for which the cross sections were

measured. This is most frequently the centre of mass frame of reference but

other frames may be chosen by different experiments.

In the case of collisions with other tracked particles instead of neutral gas

density, the density of the collision partner species would be used. In ad-

dition, after successful resolution of the superparticle velocity modifications

due to the collision, the collision partner particle would also have to undergo

velocity modifications to account for this interaction.

3.6 Chapter Summary

In this chapter we provided a detailed overview of the particle-in-cell mod-

elling technique, combined with Monte Carlo collision procedures when ap-

plied to plasmas. We discretised the equations of interest and discussed

base techniques used to solve them. We have also introduced simulation

techniques such as particle weighting and parameter normalisations, used

to provide smoothing of values to counter the imposed discretisation and

improve computational efficiency. We also introduced some of the restric-

tions on physical parameter sizes imposed by implicit assumptions within

the computational procedures, in particular in relation to collision frequen-

cies as compared to plasma frequency.

47

CHAPTER 4

GPU PIC-MCC Algorithm

As discussed in Section 2.1.1 the GPU uses the SIMT model for parallel pro-

cessing. This is effectively just the Single Instruction Multiple Data (SIMD)

model, which relies on having a large set of data whose every element is being

operated on by the same set of instruction. Best performances are achieved

when there is minimal instruction divergence between thread functions. In

the case of the GPU, memory copy latencies also cause an operational over-

head and thus it is profitable to minimise these in comparison to numerical

operations. It is therefore desirable for the device code to consist of a large

number of identical numerical operations on a sizable data set, very much

like the case of calculating point transformations for graphics.

The collisionless PIC model would in fact be ideal for satisfying the first

of these two criteria. The updating of the position and velocity of particles

(particle push) takes the same form for all the particles and the cell specific

48

4.1 GPU PIC-MCC Architecture Overview

acceleration allows for a convenient thread assignment in the case of a large

number of available threads. However the update of positions and veloci-

ties is mathematically straightforward and requires little computation so it

is not very memory copy efficient. On the other hand collisional PIC codes

improve the ratio of numerical operations to memory accesses due to recal-

culation of velocities necessitated by the particle collisions. As the collision

frequency increases so does the arithmetic intensity. However since collisions

are modelled using Monte Carlo methods, the interval between collisions is

effectively randomised and the particles will experience varying numbers of

collisions per timestep. This results in a deviation from the strict SIMT

model and particularly at lower collision frequencies leads to load balancing

problems and performance decrease.

At the end of each timestep, new accelerations have to be calculated

from the updated positions of the superparticles. By this stage all particle

positions and velocities need to have been updated before the simulation

can proceed. This therefore presents the natural need for a global thread

synchronisation point. While in general synchronisation points result in per-

formance decrease they also effectively reset the loads for threads resulting in

a smoother load balancing performance across the simulated timesteps (i.e.

load balancing problem does not significantly disimprove with simulation

time).

4.1 GPU PIC-MCC Architecture Overview

An outline of the our Particle-In-Cell model is given in Figure 4.1. This im-

plements a slightly different architecture to the one normally encountered in

PIC-MCC models (see Figure 3.1), since the latter usually decouple the push

49

4.1 GPU PIC-MCC Architecture Overview

Integration of equations

of motion, moving particles

F v' x

Monte Carlo

collisions

v' v

Weighting

(x, v) (, J)

Particle Sort

(x, v) (x, v)

Integration of eld

equations on grid

(, J) (E, B)

Weighting

(E, B) F

Particle Push

Δt

Figure 4.1: Schematic of our PIC-MCC GPU implementation.

and the collision procedures. However due to our wish to model collisions

irregularly spaced within the timestep we required for these to be handled

within the push itself.

Since coinciding reads/writes to a given memory location by multiple

threads should be avoided due to the poor performance of atomic operations,

it is necessary to determine a logical breakdown of the code into threads, with

sorting of particles in memory according to their positions being a convenient

way of improving the memory access patterns in the code. Therefore a rough

outline of our code can be given as follows:

1. Particle generation. This part of the code loads particle data into

memory and is only called in this form at the start of the simulation,

though in the case of ionization can be reused to generate new super-

particles.

50

4.1 GPU PIC-MCC Architecture Overview

2. Field solver. Here we calculate the accelerations of the particles in a

cell as based on the charge density due to their positions. This opera-

tion needs to be initially carried out before the first push to determine

starting accelerations. In the case of no weighting the charge density

would be zero throughout the simulation but due to the application of

higher order weightings to the particle shapes there will be very small

non-zero acceleration in the cells.

3. Particle pusher. After determining the accelerations of particles for

each cell, the velocities and positions need to be updated. This step

accounts for all the kinetics of the particles and it is here that we imple-

ment our Monte Carlo collisions. In the case of atmospheric pressure

plasma it is this step which is potentially most time consuming. The

high density leads to a large number of collisions and thus velocity

recalculations, significantly increasing the arithmetic intensity of the

simulation. This step is also the most easily parallelisable, particularly

in the presence of some form of sorting algorithm, allowing for easy

treatment of particles within a given cell in bulk.

4. Particle sort. Once the particle positions have been updated it is

useful to sort them in the continuous memory space according to their

physical position. This reduces the latency associated with memory

access across the particle data and allows for convenient hierarchy for

parallelisation in the rest of the simulation (i.e. for summing over

the charge contributions in the cell or for determining the appropriate

acceleration as based on the particle cell). The acceptability of the

performance overhead associated with this procedure, much like the

memory copy latency, is dependent on the arithmetic intensity of the

51

4.2 Memory Allocation

rest of the simulation, so performance increases for more collisional PIC

models.

All of the above listed steps are performed on the device as GPU functions

(kernels) and are discussed in greater detail below. In the case of multiple

superparticle species (such as in the case of electrons and ions), the CPU

host code launching the kernels loops over serially for each specie. On the

current hardware setup this is acceptable due to the relatively small number

of multiprocessors available on our test card as well as the large number

of cells in our simulation but would potentially present another convenient

natural parallelisation division on multicard system.

4.2 Memory Allocation

Since PIC models rely on kinetic treatment of the plasma particles each

superparticle has to have an associated position and velocity. In the 1D3V

and 2D3V cases there is one float or float2 position variable respectively and

one velocity float3 component kept in the associated storage, as discused in

the following Section 4.2.1. In addition an integer specifying the species of

the particle is kept in memory, and a float giving the generated time to next

collision is necessary. Due to the GPU and CPU not sharing memory space

the memory to contain these variables has to be allocated individually on

both processing units.

4.2.1 Particle Data

The most important memory building block of our simulation is the particle

class. An instance of this class contains all the information on the individual

superparticle, including kinetic and positional information, specie, relevant

52

4.2 Memory Allocation

Figure 4.2: Data array allocation. The cells are of set sizes with free space after

valid particles to allow for sorting between cells.[6]

constant physical parameters and time to next collision. Particle objects are

arranged in an array, sorted by cell position in the plasma and with some

empty space at the end of each cell, necessary to provide space for sorting

particles after cell migration. This is illustrated in Figure 4.2. A copy of

this array needs to be maintained in both device and host memory. Where

possible vector variables (i.e. float2 and float3) are used to express physical

parameters.

4.2.2 Cell Data

Since accelerations are calculated on per cell basis, for weighting purposes

every cell stores acceleration values for each cell edge, which is then weighted

according to position. In the case of ionizing collisions the number of charged

particles created is stored as an integer in each cell. This variable is also used

in the case of rescaling to allow for additional particle creation. As discussed

above, the particle arrays contain empty particle holders at the end of each

cell. Therefore the cell data structure stores the index of the first empty

element in each cell and the first free element at the end of the cell, to be

used for designating particles leaving the cell later in the simulation (this is

described in detail in Section 4.5). All of these parameters also require a

53

4.2 Memory Allocation

CPU and a GPU copy to be useful on either processor.

4.2.3 Field Data

The field solver implemented in our model differs between the one and two

dimensional case. The one dimensional case uses a Sine transform based

solution, while the two dimensional solver finds the potential through a dy-

namic alternating direction implicit solver (DADI). Therefore the two cases

have slightly different requirements for the memory space allocation.

The weighting of the charge density contributions requires access to the

charge densities of cells handled by adjacent threads. Therefore local vari-

ables which provide for much faster memory access, cannot be employed in

the charge summation. However performance during this step can be im-

proved through the use of shared memory rather than global memory for

summation charges due to the particles. Unlike local memory, shared mem-

ory can be accessed by all threads within a thread block. This implemen-

tation however requires the addition of boundary arrays to the field data

structure. The charges at the thread block boundaries are then resolved

on the host, thus avoiding the use of atomic operations in calculating the

remaining charge at the shared memory block boundaries.

1 Dimension

In the one dimensional case, for the grounded electrode boundary condition,

we use the Sine Transform to determine the solution to the Poisson equation.

This is numerically obtained from a modified array for Fourier Transform,

and uses the CUDA Fast Fourier Transform (CUFFT) library for the trans-

formation itself. We therefore have a host and a device allocated special

complex variable arrays required by this library, for the density and poten-

54

4.2 Memory Allocation

tial respectively. Charge accumulation is injected into the real component of

the complex charge density variable. After the potential solution has beem

obtained and arrays have been transformed back into the original domain, the

real components of the potential elements contain the calculated potential

values.

2 Dimensions

The two dimensional solver no longer requires complex variables for the

charge and potential arrays and thus float arrays suffice. In addition an

instance of the DADI solver is also created and maintained throughout the

simulation, since it has to be reused on every field solution. This solver in-

stance requires a memory overhead to allow for mathematical manipulation

of the input arrays. This includes destination arrays for matrix transpose[59]

and arrays for determining dynamic timestep modification[60]. The DADI

solver itself uses a parallel cyclic reduction (PCR) solver to find the solution

to the tridiagonal system. The PCR solver in turn requires storage space to

record the tridiagonal matrix being solved.

4.2.4 Miscellaneous

It is useful to calculate the particle density per cell during the simulation and

it is necessary prior to sorting particles to determine whether the designated

cell memory contains sufficient space for the migrating particles. These values

are stored in host integer arrays of the cell simulation length. The allocation

of addition GPU and CPU particle memory has to take place on the host

and therefore no GPU memory counterpart for the particle count is required.

55

4.3 Particle Generation

4.3 Particle Generation

The particle and cell data is populated with values on the device. In our code

the particle push and generation use the convenient parallelisation already

inherent from the use of a cell structure for solving of the Poisson equation.

The number of cells in a given 1D simulation is usually on the order of hun-

dreds since the cell width is confined to be of the order of Debye length and

most plasma systems of interest are much larger. This number only increases

for higher dimensional simulations. Therefore it would be challenging to de-

ploy a simulation of such parallelism efficiently on a workstation CPU, with

only a small number of concurrent threads available. However this configu-

ration is well suited to the GPU, where thread numbers are expected to be

large even for a single card.

The initial number of superparticles per cell is constant, with positions

being stored as absolute numbers in the memory. This allows for ease of

debugging since the code relies less on the relative particle memory position in

the data structure. The position between the cell boundaries is generated as a

pseudorandom number from the CURAND device library API. Similarly the

velocity of each superparticle is initialised using the normal distribution from

this API, centered around the appropriate thermal velocity for the species.

The electrons are assumed to be at 30 000K while the ions are in thermal

equilibrium with the feed gas at 300K.

The species integer variable is set as 0 for empty memory particle slots

to allow for quick checking for actual filled particle positions. It is set as

1 for electrons and higher numbers for other species. Time to last collision

is generated from Equation 3.17 in the previous chapter. In the cell data

structure an index is initialised to record the location of the next free particle

space for that cell in the particle data array. The index recording the end of

56

4.4 Particle Pusher

the cell’s particular particle data array section is also recorded.

Since each cell has to have particles followed by some amount of allocated

free space to allow for particle sorting (see Fig. 4.2), after recording all the

valid superparticles, this space is also initialised. All the particle data pa-

rameters in the empty slots are set to zero and, as mentioned, the space is

marked as invalid particles by setting the species value. During the parti-

cle count procedure mentioned in Section 4.2.4 it is then simple to confirm

the agreement between the index values and the actual particles contained

in these designated spaces by checking the value parameters of the empty

particles.

4.4 Particle Pusher

In our particle pusher we wanted to implement collisions without the tradi-

tional limit on collision frequency of νc∆t� 1.0 and therefore we chose the

second approach discussed in Section 3.5. Here time between collisions δt

is calculated directly, and thus collisions do not uniformly align at a given

point on the timestep. The repercussions of this complication on the position

and velocity integration itself will be further discussed in Chapter 5, in this

Section we will only give a brief outline of our pusher.

The particle push is designed to update the velocity and position coordi-

nates of the superparticles. The GPU implementation parallelises this oper-

ation on thread per cell basis, much the way particle initialisation is handled.

The list of particles in the cell is cycled through serially by each individual

thread and particles are pushed to the beginning of the next timestep in sub

intervals dependent on the collision frequency.

The general outline of the particle pusher can be summarised as follows:

57

4.4 Particle Pusher

1. Calculate thread-specific parameters, such as the cell position and ac-

celeration gradient in the cell.

2. Iterating backwards (from the end of filled space) over all the particles

in the cell, the acceleration of the particle at the start of the pusher is

calculated using first order weighting, as discussed in Section 3.3. This

value is used throughout the timestep as opposed to being recalculated

for each hop.

3. Each particle is collisionally advanced to the end of the timestep using

our custom integration procedure described in Chapter 5

4. Last advancement segment of the push check whether the particle has

escaped the discharge boundary and if so removes it from the particle

data array. To avoid empty spaces in the continuous memory block,

this empty position is filled by the last particle in the block. Since

the particles are iterated over backwards, this replacement particle has

already been updated for this timestep and so our executing thread can

move on with no further action necessary.

The push procedure takes place completely on the GPU device. This

presents a very important limitation. The memory space allocated for the

particle array cannot be changed at this point in time due to global dynamic

memory allocation not being enabled on the device. Therefore at this point

only the number of particle creating collisions in each cell are recorded for

every particle specie. These particles are not actually created until control

of the memory array is returned to the host and it has been ensured enough

memory has been allocated for the new particle density.

58

4.5 Particle Sort

4.5 Particle Sort

For book-keeping and memory access purposes it is useful to keep the par-

ticles positioned in a particular cell also close to each other in the memory.

Therefore our code implements a particle sorting algorithm as based on the

work of Mertmann et al [6]. This consists of three kernels and employs a sin-

gle atomic operation in the last of these kernels. While this procedure does

add an overhead to the simulation, particularly due to the process being fo-

cused on memory operations rather than arithmetic operations, it is seen,

as will be later discussed, that at higher collision frequencies this operation

takes up only a small fraction of the total computing time.

However before particle sorting can take place we need to determine

whether the existing allocated particle data memory array contains sufficient

space to accommodate the resolution of the particle flux through the cell.

Due to the implicitly arbitrary order in which threads are cycled through on

the hardware it is impossible to guarantee all the leaving particles have been

moved before new ones enter. Thus each cell has to be simultaneously han-

dle the maximum number of particles present if all transient particles have

arrived at this destination before and of the leaving particles have been re-

moved. It is therefore necessary that prior to initiating particles sorting, the

host code sums over the particles leaving and particles entering a cell and al-

locates additional space if necessary. Any particles created during ionization

are also calculated into this space allocation, to avoid having to repeat this

particle summation after sorting. The actual ionization particles themselves

are only added to the species data after the sorting, to minimise the number

of particles traversed during the sort. This is carried out using the generation

mechanism used in the initial data population during particle generation.

59

4.5 Particle Sort

Figure 4.3: First kernel of the sorting algorithm. Each thread checks the particles

in its cell in reverse order. If the particle has left the cell it is moved to the end

of the cell’s free space (step 1). It then moves the last particle (first to be checked)

into the freed position (step2). This is repeated for any further particles (steps 3

and 4).

4.5.1 Sort Kernel 1 - Particles Leaving The Cell

The first kernel of the sorting algorithm is outlined in Figure 4.3. As in

the case of particle push, an individual thread is launched for each cell and

proceeds to iterate through the particles in backwards order (i.e. from last

to first by index in the array). Each particle’s position coordinate is checked

with respect to the cell position and if the particle is found to now correspond

to a different cell, its data is copied to the end of the free space in the cell.

The data of the last indexed particle still in the cell is then moved to the

now free position in the memory to avoid empty spaces in the memory chunk

containing the particles still in the cell. The cell index parameters marking

the end of the valid cell particles and start of particles found to be leaving the

cell are adjusted accordingly for the particle movement. This is in contrast

to the procedure outlined by Mertmann et al., where the step of filling up

freed spaces in the valid particle portion of the array is done in a separate

particle iteration after any invalid position particles were moved to the end

60

4.5 Particle Sort

Figure 4.4: Second kernel of the sorting algorithm. Each cell first looks to the

cell to its right to iterate through the particles leaving the cell (i.e. the particles at

the end of its free space). Any particles corresponding to the thread cell position

are moved into the new cell and erased from the data of the right side cell. This

procedure is then repeated for the particles of the cell to the left of the thread cell.

Image taken from [6].

of free space[6].

4.5.2 Sort Kernel 2 - Particles Moving To Adjacent

Cells

Next, a kernel is launched to move particles from adjacent cells into their new

cell. Every thread checks each of its adjacent cells in turn for particles whose

position corresponds to that of the thread’s cell. Any particles satisfying this

criterion are moved to the thread’s cell at the end of the valid data array,

their data in the adjacent cell being erased. The index for valid data in

the cell is also incremented. The whole procedure of the second kernel is

61

4.5 Particle Sort

Figure 4.5: Third (final) kernel of the sorting algorithm. Each thread checks its

original cell for remaining particles (ones that traversed further than one cell) and

moves them to the appropriate cell. This step uses one atomic operation. Image

taken from [6].

summarised in Figure 4.4. Since only one thread can ever be writing to its

cell particle array and each moving particle can also only correspond to one

cell, no atomic operations are necessary to implement this kernel. While in

the 1 dimensional sort case only the cells left and right have to be checked,

in the 2 dimensional case we extend this principle to cells above, below and

diagonal to the current cell.

4.5.3 Sort Kernel 3 - Particles Migrating Over Multi-

ple Cells

Finally any outstanding particles which have traversed more than one cell

length are moved to their appropriate cells in the third kernel of the algo-

62

4.6 Particle Addition

rithm. Each thread checks over the moving particle memory space at the

end of the cell’s particle data array for any remaining particles. The particle

position is used to determine the new cell index and a single atomic operation

is used to find the index of the first free space after valid, sorted particles

in that cell. The thread then copies the particle’s data to this new cell and

erases it from its own cell’s particle data. Figure 4.5 outlines this procedure.

4.6 Particle Addition

Once all the particles have been sorted any ionization which took place over

the last timestep has to be resolved. The existing particles have had their ve-

locity effects resolved during the push kernel, however the collisional products

are now added to each cell, starting in the first free position after the freshly

sorted particles. The new particles are initialised with a random position in

the cell and energy normally distributed around the expected species tem-

perature. This step is done in parallel on the device in a fashion analogous

to the initial creation of particles. One side effect of this collision handling is

that energy of the system is not conserved. However deviation from energy

conservation should be relatively small, particularly in either low collisional

cases and/or in cases of relatively good species thermal agreement with the

assumed distribution.

4.7 Field Solver

Finding the electric field solution for the system is possibly the most math-

ematically complex part of the PIC model. The type of field solver used

generally depends on the choice of boundary conditions of the plasma, geom-

63

4.7 Field Solver

etry of the chamber, and number of dimensions required in our simulation.

Since we chose to implement both one and two dimensional models, each re-

quired a different solver. In both cases we chose to implement the grounded

boundary condition, allowing for simple superposition of RF potential for a

more reasonable physical model.

4.7.1 1 Dimension

As discussed in Hockney et al.[9], in the special case of a grounded boundary

solution an efficient method of calculating the electric potential of the system

is through the use of Sine transform. This useful transform is expressed as

φ̂k =
N−1∑
x=1

φpsin
(πkx
N

)
(4.1)

with each boundary value tending to zero. This method is very similar to

the use of the Fourier Transform

φk =
N∑
x=1

φ̂xexp
(−2πikx

N

)
(4.2)

to solve differential equations, with the exception that while in the case of

an exponential we obtain the exponential back on every instance of differ-

entiation, the Sine Transform requires two differential iterations for the Sine

term to reappear.

Therefore the relation

d2

dx2
φ̂k = −

(πk
N

)2

φ̂k (4.3)

can be used to change the integration procedure into a multiplication in the

transformed domain. Substituting Equation 4.3 into the Poisson equation

1.1, where the charge density has had the Sine transform applied to it results

in

Φ̂k =
N2ρ(k)

ε0π2k2
(4.4)

64

4.7 Field Solver

To obtain the potential in the x rather than the k domain we apply the

inverse Sine transform to Φ̂k. Conveniently, the Sine Transform is also its

own inverse with the scaling factor of N/2 [61].

Due to the discretisation of our Poisson equation in 3.7, we also need to

modify our scaling factor for differentiation in the k domain. Equation 4.4

then becomes

Φ̂k =
ρ(k)

ε0K2
(4.5)

where

K2 = κ2

[
sinκ∆x

2
κ∆x

2

]2

, κ =
πk

N

As the cell grid becomes finer the value of K approaches that of κ. For a

discussion of the difference between the two parameters the reader is referred

to Birdsall et al [5].

When actually implementing this solution computationally, firstly let us

consider obtaining the RHS of Equation 3.7. In our field data structure

we have a density array of length Ncell - 1 allocated. This is because we

are effectively finding the charge density and thus potential on each cell

boundary, with the outer extremities being grounded. From Equation 3.8 it

is however obvious that a value for the potential is necessary for the imaginary

cells just outside our chamber for us to be able to determine the acceleration

at the boundaries. Here we approximate the potential value to be the inverse

mirror image of the corresponding value on the valid side of the boundary,

making the potential effectively half a cycle of a periodic pattern on the

simulation length interval.

Since multiple species of different charges are present in the simulation,

the charge density is initialised as 0. The different species are then iterated

over on the host with their charge contributions added to the charge density

array as appropriate. However the first order weighting being applied to

65

4.7 Field Solver

the charge summation also requires each cell to contribute some charge to

its neighbouring cell. For this a temporary shared cell charge structure is

declared in the kernel charge summation function, to account for the particle

charge contribution to the left and right cell boundary as based on its position

in the cell. Once the thread block has finished its summation, each thread

looks to its right side neighbour and adds its left boundary contribution to its

own right side value. This charge is then store in the charge density array.

However a layer of complexity is introduced due to shared memory being

only visible for threads of the same block. Therefore the left side boundary

value for the left-most cell in the thread block is stored in global memory

and added to the charge density sum on the host after the conclusion of the

kernel.

As was discussed, we have opted for a grounded boundary condition and

chose the Sine Transform method to solve for the potential. The Sine Trans-

form given in Equation 4.1 above, makes its similarity to the Fourier Trans-

form readily apparent. In fact the Fourier Transform can be used to con-

veniently obtain the Sine Transform and thus we can take advantage of the

parallel Fast Fourier Transform implementation available from the official

CUDA toolkit libraries. This procedure is described in detail by Press et

al.[61] and requires the construction of an auxiliary array from the original

data. This new array then undergoes the Fourier Transform, output of which

can then be used to re-construct the Sine Transform of the original array.

The auxiliary array yj is constructed from the Sine Transform data fj =

66

4.7 Field Solver

0, ..., N as follows

y0 = 0

yj = sin(jπ/N)(fj−1 + fN−j) +
1

2
(fj−1 − fN−j) (4.6)

j = 1, ..., N

After applying the Fourier Transform to this array it can be seen that the

Sine Transform is given as

S2k+1 = Ik+1

S2k = S2k−2 +Rk (4.7)

k = 0, ..., N/2

where Ik and Rk are the imaginary and real component of the Fourier Trans-

form respectively. Since the even terms of the Sine Transform require recur-

sion, we require a starting point for the elements, in this case

S0 =
N−1∑
j=0

fjsin(jπ/N) (4.8)

After obtaining the sine transform of the charge density, solving the differen-

tial equation in the frequency domain becomes a problem of multiplication,

as described in Equation 4.7.1.

To obtain the differential equation solution in the spatial coordinate do-

main we need to apply the inverse Sine Transform to the data set. Fortu-

nately the inverse transform can be obtained by applying the Sine Transform

a second time, with the resulting data being scaled by a factor of N/2 with

respect to the original data. Therefore the data has to be normalised for this

scale factor to obtain the potential due to the charge distribution.

Finally we use the finite difference method applied to the potential to

find the electric field at each cell boundary. This gives us the force on each

species and thus the accelerations to be applied to each particle.

67

4.7 Field Solver

4.7.2 2 Dimensions

As discussed in Section 3.2.2, the solution to the Poisson equation becomes

more complex in 2 dimensions. The elliptic form of the Poisson equation is

given in Equation 3.10. As discussed by sources such as Vahedi et al.[57], by

introducing the artificial time dependence we can solve the Poisson equation

for the steady state (i.e. the time derivative term goes to zero). The iterative

procedure itself takes place around the artificial time parameter ∆t, which

can be dynamically adjusted to provide faster convergence.

In our parallel implementation we based our solver on the work presented

by Wei et al.[62]. Taking Equation 3.10 and rearranging to group expressions

in terms of spatial and time coordinates we obtain

Φn
i,j =

(
1 +

2∆t

∆x2
+

2∆t

∆y2

)
Φn+1
i,j −

∆t

∆x2
Φn+1
i+1,j −

∆t

∆x2
Φn+1
i−1,j −

∆t

∆y2
Φn+1
i,j+1

− ∆t

∆y2
Φn+1
i,j−1 −

ρi,j
ε0

∆t (4.9)

Calculating a solution to this expression then relies on trying to converge

onto the steady state through a series of successive double sweeps. By break-

ing a single timestep iteration up into half steps, where each half step sweeps

over one spatial dimension in turn, while assuming values from the previous

half sweep for the other spatial dimension, an approximation to the solution

can be found. For the first sweep we reformulate Equation 4.9 as

aiΦ
n+1/2
i−1,j + biΦ

n+1/2
i,j + ciΦ

n+1/2
i+1,j = di (4.10)

where ai = ci = − ∆t
∆x2

, bi =
(

1 + 2∆t
∆x2

+ 2∆t
∆y2

)
and di = Φn

i,j + ∆t
∆y2

Φn
i,j−1 +

∆t
∆y2

Φn
i,j+1 +

ρi,j
ε0

∆t. For the second sweep the expression instead becomes

ajΦ
n+1
i,j−1 + bjΦ

n+1
i,j + cjΦ

n+1
i,j+1 = dj (4.11)

with the coefficients taking the form aj = cj = − ∆t
∆y2

, bj =
(

1 + 2∆t
∆x2

+ 2∆t
∆y2

)
and dj = Φ

n+1/2
i,j + ∆t

∆x2
Φ
n+1/2
i−1,j + ∆t

∆x2
Φ
n+1/2
i+1,j +

ρi,j
ε0

∆t.

68

4.7 Field Solver

Figure 4.6: Schematic of the cyclic reduction solver for tridiagonal equation

systems, as described by Zhang et al.[7]

As can be seen from Equations 4.10 and 4.11, in both parts of the sweep

the resultant is a series of tridiagonal systems across the y- and x- direction,

respectively. Much work has been dedicated to the problem of efficiently

solving tridiagonal systems in the literature and with consideration for our

computer architecture we opted for the parallel cyclic reduction solver (PCR),

describe by Zhang et al.[7].

The classical cyclic reduction (CR) solver is illustrated in Figure 4.6. At

the first step of the cycle each set of adjacent 3 equations in the linear system

will only consist of a small number of elements of Φ. For example, for the

first sweep of the double sweep a typical set of three adjacent equations can

be expressed as

ai−1Φ
n+1/2
i−2,j + bi−1Φ

n+1/2
i−1,j + ci−1Φ

n+1/2
i,j = di−1

aiΦ
n+1/2
i−1,j + biΦ

n+1/2
i,j + ciΦ

n+1/2
i+1,j = di

ai+1Φ
n+1/2
i,j + bi+1Φ

n+1/2
i+1,j + ci+1Φ

n+1/2
i+2,j = di+1

(4.12)

In this expression it would be simple to eliminate most of the terms on the

69

4.7 Field Solver

Figure 4.7: Schematic of the parallel cyclic reduction solver for tridiagonal equa-

tion systems, as described by Zhang et al.[7]

LHS, leaving only the terms including Φ
n+1/2
i−2,j and Φ

n+1/2
i+2,j term. As shown

in the figure, by applying this reduction, centered on every even numbered

equation we immediately half the number of systems. The same can then be

repeated for the new set of equations to half the number of these and so on

until the problem is trivialised to a set of two equations, which can be solved

quite easily. Afterwards we can apply backwards substitution to recover the

other values of Φ in the system.

The parallel cyclic reduction (PCR) is an extension of the ideas of the CR

solver. In this approach rather then only aiming to obtain a direct reduction

solution at 2 points in the system, relying on backwards substitution for the

rest, we instead hope to utilise parallelisation to solve the system simultane-

ously. As shown in Figure 4.7, reduction now takes place centered on every

point in the system. We rely on the parallelism managing the overhead of

the increase in calculation needed, while gaining the benefit of not needing

the backwards substitution procedure.

The algorithm presented by Zhang et al.[7] expects multiple linear system

sets to require solving, which is consistent with our problem, where each

70

4.7 Field Solver

row or column represents a distinct linear system. The partitioning of this

system is done by dedicating a thread block to each system, while each

equation in a single system is handled by a single thread. This allows for

each equation system to be able to impose thread synchronisation points in

the execution after each reduction step - a necessity due to the next reduction

cycle relying on equations resultant from the previous step. In addition, in

Zhang’s implementation the system data is copied into shared memory to

speed up memory accesses.

Unfortunately the fixed maximum number of threads available to a thread

block and the limited amount of shared memory available on the GPU also

limit the size of each linear system in our problem. Therefore we decided

to use the much larger global memory to hold our intermediate solution

steps and also to generalise the procedure to allow for each thread to handle

more than a single equation during each reduction cycle. Synchronisation,

still necessary due to each new reduction cycle using a previously reduced

equation, is only called after each thread has looked after every equation

assigned to it. We have also generalised our procedure from Zhang’s to

handle system sizes other than power-of-two sized ones through ensuring

that each ”step” between equations being used in the current reduction does

not extend our read to outside the system size.

As discussed by Wei et al.[62] since ADI procedure sweeps alternately

over rows and columns, for one half of the sweep the memory arrangement

of our linear system will not be aligned. Each element will effectively be

offset by the length of the system in the perpendicular direction. This can

be problematic for performance since reads from memory take place in bursts

[63]. A memory burst delivers to the function not just the requested data

but also some of the data adjacent to the location initially queried. This

71

4.7 Field Solver

Figure 4.8: Schematic of the parallel ADI solver with matrix transpose to allow

for better memory alignment during each half cycle.

72

4.7 Field Solver

is utilised to significantly reduce reads overhead on the GPU when threads

simultaneously request adjacent memory by the function taking the data

from the first burst, rather than reissuing a read request. Therefore for

half the ADI sweep, the memory mis-alignment results in our reads being

significantly slower.

Therefore it is beneficial to the performance of the solver to first transpose

the linear systems before carrying out the unaligned part of the sweep. An

efficient matrix transpose algorithm has been developed by Ruetsch et al.[59]

and can be used to great effect to remove the memory alignment problem.

By transposing the matrix, we reverse the organisation of the elements in the

memory so for the purposes of cyclic reduction each new system is now again

adjacent in memory. The whole ADI procedure is summarised in Figure 4.8.

As mentioned above, the rate of conversion on the steady state solution

can be significantly improved by dynamically adjusting the artificial timestep

parameter size[60]. We define a parameter TP as

TP ≡ ‖ Φn+2 − ¯Φn+2 ‖
‖ Φn+2 − Φn ‖

(4.13)

Φn+2 is obtained by applying 2 double sweeps to Φn, while ¯Φn+2 is calculated

by applying a single double sweep of timestep size 2∆t. Doss et al.[60]

determined that depending on the range between which the parameter TP

falls it is advantageous to adjust the timestep ∆t by a constant factor. For

intervals (-∞, 0.05], (0.05, 0.1], (0.1, 0.3], (0.3, 0.4] and (0.4, 0.6] these factors

are 4, 2, 1, 0.5 and 0.25 respectively. In the event that TP falls above 0.6,

it is recommended that the new value of Φ is rejected and ∆t is adjusted by

the factor of 0.0625.

73

4.8 Chapter Summary

4.8 Chapter Summary

A detailed description of out PIC-MCC models in 1 and 2 dimensions was

provided in this chapter. A high level overview of the procedure was de-

scribed to allow the reader to better understand the component architecture

of our models, with each component with the exception of the collisional

pusher being described at length. A detailed account of the data structures

used in our model was given, and algorithmic details were provided for each

component, with the above exception. Some specific limitations due the

GPU computing architecture were introduced and overheads associated with

their handling as well as additional physical assumptions required for their

handling were discussed. Detailed accounts were also given of the moder-

ately complex field solver in both 1 and 2 dimensions, as implemented for

the highly parallel architecture of the GPU. The mostly omitted collisional

pusher will be discussed in detail in the following chapter.

74

CHAPTER 5

Particle Pusher - Leap Frog Integration

In the previous chapter we touched on an important part of the PIC-MCC

simulation procedure - the need to advance the particle positions and veloc-

ities in time. In the collisionless case this is a moderately straight forward

integration procedure. Collisions themselves are added through incorporation

of the Monte Carlo procedure before, after or during this integration. The

collision procedures themselves can be variously resolved at evenly spaced

intervals, most commonly the duration of a single timestep, or at irregular

intervals generated aroud the free flight time of the particle (see Section 3.5).

The point in integration at which to implement collisions has generally been

viewed as arbitrary, at least for the electrostatic simulation case[9], however

on our closer examination of generalised treatment of collisions, independent

of collision frequency, we discovered that this view is not completely accurate.

In this chapter we describe the coupling of the leap frog integrator to collision

75

5.1 Leap Frog Integration Algorithm

simulation and some difficulties in preserving accuracy of this scheme.

5.1 Leap Frog Integration Algorithm

Leap frog integration is a simple yet powerful scheme for velocity and po-

sition integration. It is fast and accurate, with low complexity, making it

very popular in the field of particle and plasma simulation[5, 9]. In particle

simulation it is frequently coupled to the Monte Carlo procedure to charac-

terise inter-particle interactions[32–35]. Generally these collisions tend to be

limited to relatively low collision frequencies[36] but alternative approaches

focused on handling of higher collision frequencies have been proposed most

notably by Hockney et al.[9, 37].

In Hockney’s approach, a particle subdivided into collision times leading

up to the timestep boundary, may undergo several collisions between each

solution of the field equations. The global timestep ∆t denotes the inter-

val between solutions of the field equation. Particles are advanced across a

timestep through a number of intermediate steps, with a Monte Carlo colli-

sion being resolved at the end of each sub-step.

While attractive in its simplicity, it can be shown that the subdivision

method results in inaccurate estimation of the velocity and position inte-

gration over time[64]. Here we present both this accuracy analysis and the

modifications implemented in our push simulation to restore the numerical

validity of our scheme.

5.1.1 Classical Leap Frog Implementation

The discrete solution to the equations of motion has been described in Section

3.2.1, with a strategy for numerical implementation given in Section 4.4.

76

5.1 Leap Frog Integration Algorithm

(a) Graphical representation of the leap

frog integration method over one timestep.

The top horizontal line shows the velocity

update timeline while the lower shows the

position update timeline. The vertical dot-

ted line projects the velocity value used for

the position update onto the position time-

line. In the classical case, the final velocity

value after velocity update, is the mid-point

value, or average velocity for the position

update.

(b) Graphical presentation of the velocity

projection onto the position timeline for the

unmodified leap frog integration method.

Each ”hop” on the velocity update timeline

represents free flight of the particle. As in

Figure 5.1(a), we present the projection of

the velocity value being used to update the

position integration. However, here the pro-

jection dotted lines are not vertical, showing

that the velocity values being used do not

actually correspond to the particle velocity

mid-update (i.e. average update velocity).

Therefore these velocity values are incorrect

for the position update.

(c) Graphical presentation of the velocity

projection onto the position timeline for

our modified leap frog integration method.

Each ”hop” on the velocity update timeline

represents free flight of the particle. Once

again the dotted vertical lines show the ve-

locity value projections onto the position

update timeline. Here we see that the pro-

jection lines are once again vertical, restor-

ing the accuracy of the leap frog method.

Figure 5.1: Graphical representations of the leap frog integration method for the

classical, unmodified and modified collisional regimes. The vertical dotted lines

show the projection of the velocity value (used for the position update) from the

velocity update timeline onto the position update timeline.

77

5.1 Leap Frog Integration Algorithm

As mentioned in the former, the force value used to determine the velocity

update as well as the velocity value used for the position update are the

average values for their updates. During the timestep the force being used,

and therefore the acceleration is constant. Therefore if no collisions take

place during the timestep, the velocity value midway through the timestep

is also the average velocity for the update, as shown in Figure 5.1(a). This is

the central idea in the leap frog integration, where the recorded position and

velocity parameters have a half timestep phase difference introduced between

them. Equations 3.1 and 3.2 can then be subscripted in terms of the timestep

position as

Ft =
vt+∆t/2 − vt−∆t/2

∆t
(5.1)

vt+∆t/2 =
xt+∆t − xt

∆t
(5.2)

This is a very elegant implementation of the integration itself. The use

of average values provides a high degree of accuracy in comparison to an

identical procedure without the phase shift, where the final (as opposed to

middle) velocity values would be used for the calculation. No additional

memory needs to be used to store velocity values from the previous step and

the straight forward implementation of this procedure makes it one of the

most popular schemes for particle push.

5.1.2 Collisions

The Monte Carlo procedure for collisions itself is described in Section 3.5.

As mentioned, there are two distinct approaches to modelling collisions, one

centering around resolving collisions of a calculated probability after a con-

stant particle flight time and the second requiring collision time calculation

and allowing for resolution after distinct time period for each particle. In the

78

5.1 Leap Frog Integration Algorithm

former method the collision probability after a constant time interval ∆t is

given as

P = 1− exp(
−v∆t

λ
) = 1− exp(−νc∆t), νc =

v

λ

and can simplify to

P = νc∆t

in the νc∆t� 1.0 limit. Ultimately even the first formulation of the proba-

bility calculation is limited to relatively low normalised collision frequencies

since the maximum number of collisions being resolved in the interval ∆t is

one.

At low pressures collision frequency is fairly small and therefore it is not

the free flight time but rather electron reaction time to electric field (i.e.

as determined from plasma frequency) which dominates the accuracy of the

simulation. However at atmospheric pressures, the collision frequency begins

to dominate over the plasma frequency and the free flight time starts to con-

strain the simulation timescale. As a result this type of Monte Carlo collision

resolution sometimes chooses a smaller collision sampling time δt than the

push timestep ∆t and thus carries out Monte Carlo collisions multiple times

per timestep.

A more general method of modelling Monte Carlo collisions is presented

by the second method of Section 3.5, which calculates the time between

individual collisions

δt = − lnR

νc

This method clearly allows for different intervals and thus does not suffer

from the issues of the former method. However conversely we now have to

handle sampling flight times that project the particle across the timestep

79

5.1 Leap Frog Integration Algorithm

boundary. Therefore more information, namely the flight time remaining to

next collision, has to be stored for each particle.

Multiple collision types can be simulated using the null collision method[58].

In this the maximum total collision frequency is calculated from a given set

of collisional cross sections. The free flight times are then generated for this

frequency, to account for the ”most collisional” scenario. Not all of these

collision times result in collisions, of course, since this is the ’worst case’

scenario. Instead at collision resolution time we calculate the probability

associated with each type of collision. This probability is just the ratio of

the actual collision frequency for the process at the current velocity, to the

maximum total collision frequency.

Both of the collision methods designed for higher collision frequency han-

dling clearly cannot be decoupled from the push procedure. This is generally

implemented through free flight leap frog sub-hops within each timestep, ac-

companied by a Monte Carlo collision to resolve the velocities at the end of

each sub-hop. This is illustrated in Figure 5.1(b).

5.1.3 Leap Frog Modifications

As seen from Figure 5.1(b), the subdivision of the timestep into smaller

segments presents a problem for the integrator. In Section 5.1.1 we discussed

the positioning of the evaluation of the position and velocity on the timeline

of the simulation. Here we outlined the importance of the half-timestep

phase difference between the velocity and position value, as well as how,

in the collisionless case, this relates to the average velocity over the position

update. In this case, as illustrated in Figure 5.1(a), we see that the evaluated

velocity position align exactly with the mid-point of the position update when

projected onto the timeline.

80

5.1 Leap Frog Integration Algorithm

This is in contrast to the case where the timestep is divided into smaller

hops, due to the presence of multiple collisions in one timestep (Figure

5.1(b)). Here we also project the velocity value being used for the update

onto the each corresponding position hop. We see that these evaluation

times do not agree between the two timelines, with the velocity timeline be-

ing treated as if it was shifted forward into the position update timeline.

This in effect also invalidates the half timestep phase shift between the ve-

locity and position, as imposed for the accuracy of the integration schemes.

Unmodified this results in a significant reduction of the approximation ac-

curacy where the velocity value at vt+∆t/2 is being treated as final velocity

for the total position integration over the timestep. The change in posi-

tion over the timestep is therefore underestimated, an effect which can be

reduced by making the timestep smaller so the continuous integrations are

longer within. This however also requires longer runtimes for a set simulation

time than the collisionless or weakly collisional probability case. For these

reasons more complex integration solvers, parallelisation, and other methods

are common[65, 66].

In our work we developed an alternative leap frog approach to remedy

this issue. As seen from Figure 5.1(a), during every timestep we need to

consider times between t−∆t/2 and t+ ∆t with 3 distinct stages:

1. Update of velocity parameter from t − ∆t/2 to t, with no update to

position.

2. Update of velocity and position from t to t+ ∆t/2.

3. Update of position only from t+ ∆t/2 to t+ ∆t.

Therefore a reasonable sub-partitioning can be implemented by treating each

of these stages individually. In the first stage we apply collisions to the ve-

81

5.1 Leap Frog Integration Algorithm

locity parameter, leaving the position parameter unchanged. For the second

stage we update the velocity while calculating its average value for the col-

lision sub-timestep and use this parameter to advance the position for the

collision sub-step. Lastly we use a local velocity variable to replace the ac-

tual velocity variable and use this in the procedure outlined for stage 2, thus

avoiding updating of the actual velocity for this part of the integration.

In Figure 5.1(c), the projections of the velocity update onto the position

update timeline are illustrated. In the third stage update we include the

velocity update projection necessary to integrate the position value to the

end of the timestep. We see that the sub-hops now once again align with each

other and that average velocity values project directly onto the corresponding

times for mid-position update times. This modification clearly restores the

update timeline projection characteristic of the leap frog integration method,

as shown in Figure 5.1(a).

The pseudo-code outline of the algorithm can be seen below:

* Stage 1 *\

time = t - ∆ t/2

while time + tcoll <= t:

update velocity up to tcoll

collide velocity

time += tcoll

tcoll = new tcoll

tremainder = t - time * t rem in Figure 5.1(c) *\

update velocity up to tremainder

time += tremainder * time now equals t *\

82

5.1 Leap Frog Integration Algorithm

* Stage 2 *\

while time + tcoll <= t + ∆ t /2:

vold = velocity

update velocity up to tcoll

calculate vaverage

collide velocity

update position with vaverage up to tcoll

time += tcoll

tcoll = new tcoll

tremainder = t + ∆ t/2 - time * t rem in Figure 5.1(c) *\

vold = velocity

update velocity up to tremainder

calculate vaverage

update position with vaverage up to tremainder

time += tremainder * time now equals t + ∆ t/2 *\

* Stage 3 *\

vtemp = velocity

while time + tcoll <= t + ∆ t:

vold = vtemp

update vtemp up to tcoll

calculate vaverage

collide vtemp

update position with vaverage up to tcoll

time += tcoll

tcoll = new tcoll

tremainder = t + ∆ t/2 - time * t rem in Figure 5.1(c) *\

83

5.2 Validation

vold = velocity

update vtemp up to tremainder

calculate vaverage

update position with vaverage up to tremainder

time += tremainder * time now equals t + ∆ t *\

One important feature of note is that collisions are now effectively re-

solved over all three stages. This distinction is of importance in stage 3,

where the collisions we consider are only simulated for the position advance-

ment of the particles. Therefore in this stage we take care not to create any

particles through ionizing processes or destroy any particles through recom-

bination. Without this precaution the ionization or capture reactions would

be overestimated by factor 1.5 of the actual value.

Also of importance to note for this approach is the requirement for a

greater amount of pseudo-random number generation, as well as the effective

discarding of random numbers in Stage 3 without using them to update

the actual velocity component. With a good random distribution and high

collisions this should not be a problem, however in our code we take the

precaution of saving the state of the random number generator at the start

of Stage 3 and reverting the generator to this state at the end of the timestep.

5.2 Validation

In Section 5.1 above we outlined the mathematical issue with the segmented

and unmodified leap frog integration method. In this section we examine

how much of an impact this behaviour has on the numerical results of the

integration.

84

5.2 Validation

In Sections 5.2.1 and 5.2.2 we examine the motion of a single particle

under constant acceleration and under simple harmonic oscillation (SHM)

respectively. In these 2 cases we wished to illustrate the issue of dividing the

single step into multiple sub-hops and thus we set the sub-hop interval δt to

a constant value. This corresponds to the sampling described for the con-

stant interval Monte Carlo probability method in Section 5.1.2. However we

did not carry out a collision at the end of a sub-hop, leaving the velocity of

the particle unchanged. Thus in principle the correct integration procedure

should result respectively in the well known collision-less trajectory of a par-

ticle moving linearly at a constant acceleration and a particle harmonically

oscillating with time. We further also examined the effects of changing the

sub-hop interval δt to illustrate the sensitivity of the calculated trajectories

to the degree of fragmentation of the integration timestep. These results are

presented in Section 5.2.3.

Finally in Section 5.2.4 we take a look at the effect this issue has on a full

Particle-In-Cell simulation. For comparison purposes we implemented three

versions of the particle push. Firstly, for comparison purposes we constructed

a simple MC-PIC probability pusher with collision interval δt equal to the

push timestep ∆t. This was compared to the unmodified, fragmented pusher

implementing the irregular collision interval, as illustrated in Figure 5.1(b)

and our modified leap frog pusher of Figure 5.1(c).

5.2.1 Integration Under Constant Acceleration

As mentioned above, to examine the numerical results of the integration we

tracked the variation of position with time for a single particle under constant

acceleration. We compared the deviations of the unmodified and the modified

leap frog procedure to the analytical solution for the displacement under the

85

5.2 Validation

Figure 5.2: Plot of position deviation from classical leap frog integration for a

particle under constant acceleration. The deviation from analytical solution for

position is plotted for the unmodified, fragmented leap frog method, and for the

modified version. Each method divides the timestep into 10 sub-steps, where sub-

division δt = 0.1.

86

5.2 Validation

set parameters (positionanalytical - positionLF), and these results are shown in

Figure 5.2. The simulation used single precision accuracy and dimensionless

units which roughly correspond to the normalised values used in our PIC

code, where the cell size and timestep size are 1 and electron thermal velocity

is 0.4. The sub-hop interval δt was set as 0.1. The acceleration itself was set at

a constant value of 0.1, which was also comparable to the initial acceleration

calculated for the sheaths in our PIC model. Therefore this acceleration can

be seen as indicative of the conditions experienced in the sheath and the

associated electron confinement and ion diffusion.

In the Figure, the unmodified integrator shows a linear, cumulative in-

crease in the deviation from the analytically determined position value. This

linearity in the deviation can be attributed to the constant value of the sub-

hop interval parameter δt. The value of δt defines the constant amount of

fragmentation of each push timestep and under constant acceleration we ex-

pect the cummulative position deviation to increase linearly. In contrast the

modified pusher deviation value is seen to be negligible, both highlighting

the error in estimation due to the unmodified integrator and the validity of

our approximation.

5.2.2 Simple Harmonic Motion

A more interesting acceleration case is that of simple harmonic motion. Since

particle in SHM is effectively confined to oscillate around a point, this ac-

celeration can illustrate the effects of the timestep fragmentation on the po-

sitional confinement of a particle to a particular area. In this analysis we

again tracked the motion of a single particle. Much like in the constant ac-

celeration case in Section 5.2.1 we used physical values similar to those of

the normalised PIC model. The timestep and cell size were set to 1, with the

87

5.2 Validation

Figure 5.3: Plot of position trajectories for the control case with no timestep di-

visions, the unmodified leap frog method with divisions of δt = 0.1 and the modified

leap frog method, presented as a function of time.

88

5.2 Validation

particle velocity corresponding to the normalised electron thermal velocity

of 0.4. The sub-hop interval δt was again set to 0.1. The factor k/m, the

ratio of the spring constant to the particle mass, is set at 0.1.

Figure 5.3 shows the oscillation trajectory for the unfragmented leap frog

position integration (labelled as control), the unmodified fragmented pusher

and our modified leap frog pusher. It is immediately apparent that the un-

modified pusher oscillation does not remain constant around the equilibrium

point. Instead the amplitude of the oscillation increases, showing decay of

the containment of the particle around the equilibrium. On closer investiga-

tion the period of the oscillation is also seen to increase. These effects are

due to underestimation of the motion of the particle over a single timestep

leading to underestimation of the position-based determination of the parti-

cle acceleration, thus artificially increasing the period and amplitude of the

oscillation. This can be catastrophic for a plasma simulation since it is the

harmonic oscillator behaviour that determines the motions of the plasma

particles, potentially resulting in an instability in the simulation and over-

estimation of the loss of particles at the boundary. In contrast we see that

our modification removes this problem. The particle oscillation amplitude

remains constant throughout our advancement and agrees well with the un-

fragmented calculation of oscillation values.

5.2.3 Effects Of Degree of Leap Frog Fragmentation

In the previous comparison examples we used a constant sub-hop interval δt

of 0.1. Since our analysis centers on examining the effects of the fragmenta-

tion of the particle pusher we considered it important to take a closer look

at the effects of changing the value of δt. We chose to re-examine the devi-

ations observed for the single particle, constant acceleration case presented

89

5.2 Validation

Figure 5.4: Plot of percentage position deviation of the unmodified pusher from

the analytical solution as a function of time for varying number of sub-steps.

in Section 5.2.1, but this time we used sub-hop interval values, δt, of 0.5,

0.2 and 0.1. The other parameters remained identical to those described in

Section 5.2.1.

In Figure 5.4 we plot the percentage deviation from the analytical solu-

tion versus the timestep. A trend can be observed corresponding to great

deviation from solution with finer sub-stepping, a case interesting to highly

collisional systems where more collisions occur and thus more divisions of

the position and velocity updates are desirable. The plots show non-linear

behaviour since this is a percentage value of deviation, as calculated from

the total distance travelled up to that point. In practice, since acceleration

remains rarely constant in PIC models, particle will be constantly subjected

to the deviations seen in the early timestep regime in this plot.

90

5.2 Validation

Figure 5.5: Plot of superparticle densities for collision rate of νc = 0.01, esti-

mating collisions by probability, after 25 000 timesteps with ωp∆t = 0.2.

5.2.4 Effects On Stability Of Simulation

Finally we also examined the effects sub-divisioning of the pusher has on the

PIC-MCC simulation. We concentrated on evaluating the charged particle

density profile for a simple, weakly collisional case plasma case. The test

simulation consisted of a 1D GPU particle-in-cell code with grounded elec-

trode boundary condition. The species simulated consisted of electron and

Argon superparticles with plasma density of 1015 m−3. The usual numerical

parameters from literature[5, 9] of ωp∆t = 0.2 and ∆x/λD = 0.5 were used,

which in turn translated to timesteps of the order of 10−10s and cell width

of order 10−4m. The system was simulated for the total cell length of 128

cells with collision frequency νc = 0.01 and at 25 000 timesteps data on the

density profiles of the system was collected. The system simulated elastic

backscatter collisions only.

91

5.2 Validation

Figure 5.6: Plot of superparticle densities for collision rate of νc = 0.01 using

the unmodified leapfrog integrator, after 25 000 timesteps with ωp∆t = 0.2. The

electron density profile is clearly skewed towards the right as a result of the unaver-

aged acceleration of the superparticles and has not reached a steady ion to electron

density ratio. The ion density is also more perturbed than in Figures 5.5 and 5.7

due to the particles being effectively more unresponsive to the magnetic field.

For our expected benchmark case we implemented a simple leap frog

pusher with Monte Carlo probability collisions resolved at the end of the

timestep. This case clearly did not contain subdivision of the leap frog in-

tegrator and at low collision frequencies is expected to agree well with the

more direct Monte Carlo collision interval calculation (see Section 5.1.2). The

density profile of this pusher is shown in Figure 5.5.

The fragmentation of the pusher, on the other hand, was achieved by

implementing a collisional particle pusher using the direct sub-hop interval

calculation, as described in Section 5.1.2. In the unmodified case we do a

direct leap frog advancement for each sub-hop as was schematically described

92

5.2 Validation

Figure 5.7: Plot of superparticle densities for collision rate of νc = 0.01 imple-

menting the modifications outlined in Section 5.1.3, after 25 000 timesteps with

ωp∆t = 0.2. The behaviour of the probability simulation with timesteps of ∆t is

restored and the simulation gives the expected quasineutrality and symmetricity.

in Figure 5.1(b). The resultant density profile for this case can be seen in

Figure 5.6.

Finally we modified the pusher as described in Section 5.1.3 to correctly

simulate the variable collision interval Monte Carlo method. This modifica-

tion provides the pusher with greatest flexibility in valid collision frequency

values, since there is no maximum limit on the number of resolved collisions

per timestep. The density profile of this implementation is shown in Figure

5.7.

From the density plots of the three simulations it is readily apparent that

for commonly accepted PIC simulation parameters the unmodified pusher

implementation is unstable. Insufficient electron confinement is observed at

93

5.3 Chapter Summary

the boundary, resulting in no establishment of quasineutrality in the bulk

plasma. Since the Poisson equation solution resembles the simple harmonic

motion case examined in Section 5.2.2 above, this is believed to be due to

the increasing overestimation of the particle motion and the decay of the

oscillation observed in that case. This leads to very little electron trapping

at the plasma boundary. From the examination of the effect of increased sub-

stepping, as shown in Figure 5.4, it is expected that to achieve any reasonable

numerical stability the timestep value would need to be reduced significantly,

adding to the computational overhead.

This effect gives some explanation why meaningful results were achievable

in previous simulation works on the subject. Taking the case of Hockney’s

work[9, 37], on which ours is based, the timestep cited is smaller than the

one used in our simulation. In addition, with a sufficiently high frequency of

velocity reducing collisions the displacement of a particle over the timestep

is lower than for a less collisional model. Therefore with less position and

velocity change over the timestep the discrepancies between the expected and

calculated results will require a longer runtime to become apparent.

5.3 Chapter Summary

In this chapter we presented a detailed outline of the collisional particle

pusher used in our procedure. We outlined the requirements on our pusher

in light of application to highly collisional simulation regimes and described

our resultant choice of direct collision-time Monte Carlo pusher. Problems

with the naive implementation of this pusher were demonstrated, both con-

ceptually and through simulation and an alternative pusher was developed

to correct for these issues. This alternative implementation was described

94

5.3 Chapter Summary

both graphically and through pseudo-code. The correction to the procedure

through our modifications was demonstrated through simulation of base ac-

celeration cases. A comparison of the effects on simulation of this issue when

uncorrected were shown through 1D grounded boundary condition density

profiles.

95

CHAPTER 6

Benchmarking And Verification

In Chapters 3 and 4 we outlined the algorithm used in Particle-in-Cell mod-

elling with Monte Carlo collisions. In these simulations we are clearly mod-

elling a very complex system, requiring resolution of multiple different phys-

ical features and processes. As such this simulation presents us with the

challenge of validating our simulation as physically meaningful after combin-

ing all these complex computational elements into a whole.

The need for comprehensive benchmarking and verification procedures for

scientific simulations has been periodically highlighted since 1990s [67, 68].

Issues were raised about the validity of a number of widely accepted and

professionally maintained codes after the demonstration of a number of errors

in these simulations. Due to these effects calls were made for more rigorous

validation and verification procedures in scientific simulation software [67–

69]. In the plasma community these calls were until recently only addressed

96

6.1 Benchmark Parameters Outline

sporadically, predominantly in the swarm physics community [70–75] or in

works on positive column development [76]. However in 2013 Turner et al.[8]

proposed a set of benchmarks for low pressure discharge models to address

this concern. The benchmarks presented in that work were also used to

validate our PIC-MCC plasma model and results of this analysis are outlined

below.

6.1 Benchmark Parameters Outline

The benchmark conditions used to validate our model were determined based

on experimental set up utilised by Godyak et al.[77]. As argued by Turner,

Godyak’s experiments are well-characterised and reproducible, thus enabling

a relative ease of further future experimental validation. These benchmarks

are also quite similar to Turner’s earlier benchmark set, as determined from

the experimental work of Surendra[78]. Four benchmark cases were outlined

in Turner’s work [8]. Of these, benchmark number 4 is significantly more

time-consuming to carry out in practice than the other cases due to the

excessively long runtime of this case. Therefore due to significant constraints

on the time available for the completion of this work only the first 3 cases were

applied to our simulation. Turner’s complete benchmarks are summarised in

Table 6.1.

The chemistry used in this simple model is that of a Helium plasma, with

singly charged ions and electrons being the actively modelled species. In

the case of electron superparticles the simulation handles ionization, elas-

tic momentum transfer collisions and two excitation reactions between the

electrons and neutrals. The elastic collisions are assumed to be isotropically

97

6.1 Benchmark Parameters Outline

Table 6.1: Benchmark parameters for the verification of our PIC-MCC model

case: 1 2 3 4

Electrode separation L (10−2 m) 6.7

Neutral density N (1020 m−3) 9.64 32.1 96.4 321

Neutral temperature Tn (K) 300

Electron temperature Te (K) 30 000

Ion temperature Ti (K) 300

Applied frequency f (106 Hz) 13.56

Applied voltage V (V) 450 200 150 120

Electron mass me (10−31 kg) 9.109

Ion mass mi (10−27 kg) 6.67

Plasma density n0 (1014 m−3) 2.56 5.12 5.12 3.84

Particles per cell Nc 512 256 128 64

Cell size ∆x (m) L/128 L/256 L/512 L/512

Time step size ∆t (s) (400f)−1 (800f)−1 (1600f)−1 (3200f)−1

Steps to execute NS 512 000 4 096 000 8 192 000 49 152 000

Steps to average NA 12 800 25 600 51 200 102 400

98

6.2 1D Model Verification

scattered in the centre of mass frame of reference. The ion-neutral collisions

also model isotropic elastic collision reactions but in addition they introduce

an anisotropic back-scatter elastic collision component[79]. Cross sections

used for determining the collision frequency were obtained from the Biagi

v7.1 set available from the LxCat cross section repository[80]. For most of

the reactions of interest in our benchmarks these were compiled from exper-

imental data but for the back-scatter elastic collisions of ions with neutrals,

cross sections can be calculated from analytic expressions[81]. The neutral

gas density and temperature were approximated to be constant during the

simulation.

The driving potential is applied as a sinusoidal function of frequency

13.56 MHz for each of the four cases. As discussed by Turner [8] the peak

voltage for each case was selected to give an approximately constant current

density amplitude of 10 Am−2 between the cases. The plasma in our model

is confined between two planar electrodes.

6.2 1D Model Verification

General benchmarks applied to our model were described above. The four

cases outlined in Turner’s work[8] were however applied to slightly differently

characterised PIC simulation procedures than the one presented in our work.

Therefore we expect that while our results are not likely to be identical, if

a good agreement is achieved this provides not only a verification for our

model but a further support for the effectiveness of the selected benchmark

parameters in validating these types of plasma models.

The simulation model differences between our PIC-MCC model and the

ones outlined in Turner’s paper are further addressed in Section 6.2.1. These

99

6.2 1D Model Verification

are followed by the actual results of our benchmarking cases in Section 6.2.2.

Here we compare our results to those presented by Turner et al. and discuss

agreements and deviations between the models and the different benchmark

cases.

6.2.1 Comparison Of Our Simulation Techniques To

Benchmark Models

As outlined in Chapter 4 from the beginning our PIC-MCC design was de-

veloped with GPU execution in mind. In Section 4.2.4 we mentioned the

need to allocate global memory for the particle array on the host since these

types of allocations are not available on the device. Therefore the extra space

available in the memory particle array is fixed for the duration of the particle

push procedure.

Since our collision processes are resolved in the particle push procedure,

this presents a problem for the ionization processes. Ionizing electron colli-

sions not only clearly generate additional electrons but they also create ion

product partners from the neutral feed gas. In the benchmark cases from

Turner et al.[8] these newly created particles are added automatically during

the ionization collision procedure since this is generally implemented on the

CPU, where re-allocations can be handled automatically. However, as we

discussed in Section 4.6, to be able to create new particles through ioniza-

tion during the collision procedure itself we would have to be able guarantee

that sufficient memory has been allocated in all collision product arrays to

accommodate these new particles.

This issue is further compounded by our choice of direct collision reso-

lution Monte Carlo procedure. Where the benchmark cases used the simple

probability method, outlined in Equation 3.16 of Section 3.5, our model was

100

6.2 1D Model Verification

designed for a more generalised handling of collision frequencies, calculating

the times to next collision instead. The types of collisions were resolved using

the null collision method[58] at the end of each free flight interval. While

this effectively removes the accuracy constraint of low collision frequencies,

as imposed on the benchmark cases, from our own simulation, this generic

handling also removes any guarantee of the maximum number of ionization

collisions experienced by a particle within a timestep. Where the benchmark

cases guarantee at most one particle creation collision per timestep, our model

can experience an unspecified number of such collisions. Therefore even were

it practical to allocate enough space in the particle data arrays to accom-

modate every possible ionization (in the simple benchmark case this would

double our memory space requirement for the particle arrays), our model

does not give us any guarantees of what this maximum number would be.

As discussed in Section 4.6 we instead chose to record the number of par-

ticles created in each cell for each superparticle specie. This information was

then used to add the new particles after the particle push for the timestep.

The ionization collision kinetics are still resolved during the particle push

procedure however unlike in the case of the benchmarks, all the remaining

energy after ionization is deposited into the original colliding electron. The

new particles are then generated with energies normally distributed around

the set species temperature.

Finally it should be noted that Turner’s choice of benchmark cases was

determined through selecting four plasma operational pressure points ap-

proximately spanning the range of convenient values for their simulation

model limits. At the lower end this was determined from limits of discharge

sustainability through ionization, which agrees with the limits of our sim-

ulation. However the upper limit was determined from their Monte Carlo

101

6.2 1D Model Verification

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Position across discharge (m)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

He
+

 d
en

si
ty

 (m
^

-3
)

1e14

Direct PIC-MCC
Turner's PIC-MCC

Figure 6.1: Time averaged ion density profile for benchmark case 1. Both our

direct PIC-MCC simulation result and that of Turner’s benchmark PIC-MCC im-

plementation (labeled as implementation E in his original paper[8] are shown.

collision procedure requirement of νc∆t � 1.0, which is not necessary for

our direct Monte Carlo procedure.

6.2.2 Simulation Results

In Figure 6.1 we show the comparison between ion density profiles obtained

from our direct PIC-MCC and from Turner’s benchmark model using the first

benchmarking case. Overall there is significant qualitative and quantitative

agreement between the two density profiles. However in the centre of the

discharge we observe a deviation of our model from the accepted expected

profile, with out model slightly overestimating the ion density. As discussed

in Section 6.2.1, the expected reason for this is the difference in ionization

102

6.2 1D Model Verification

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Position across discharge (m)

0

1

2

3

4

5

6

7

8

9

He
+

 d
en

si
ty

 (m
^

-3
)

1e14

Direct PIC-MCC
Turner's PIC-MCC

Figure 6.2: Time averaged ion density profile for benchmark case 2. Both our

direct PIC-MCC simulation result and that of Turner’s benchmark PIC-MCC im-

plementation (labeled as implementation E in his original paper[8] are shown.

collision handling between the two models.

The ionization profile for benchmark case 2 is shown in Figure 6.2. Here,

similarly as in the case 1 benchmark from Figure 6.1, we observe mostly good

agreement between the two models. However in the centre of the discharge

once again our direct model results in slightly higher ion density than would

be expected. The ion density observed in the second benchmark case is

larger than that of case 1 and as a result the absolute value of the ion density

difference between our model and the benchmark model is larger in the second

case. The percentage ion density deviation value however is seen to reduce,

showing a clear improvement in agreement between the two models at the

higher pressures of the case 2 benchmark.

Benchmark case 3 ion density profile is illustrated in Figure 6.3. As

103

6.2 1D Model Verification

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Position across discharge (m)

0.0

0.5

1.0

1.5

2.0

He
+

 d
en

si
ty

 (m
^

-3
)

1e15

Direct PIC-MCC
Turner's PIC-MCC

Figure 6.3: Time averaged ion density profile for benchmark case 3. Both our

direct PIC-MCC simulation result and that of Turner’s benchmark PIC-MCC im-

plementation (labeled as implementation E in his original paper[8] are shown.

104

6.2 1D Model Verification

observed in the previous cases, here too we see a good agreement with the

benchmark case in general, with a slight deviation from the benchmark ion

density in the plasma bulk. Once again, as expected from a higher pressure

case, the overall ion density has increased in comparison to the previous two

cases. We also see a further decrease in the percentage deviation of the two

densities in the bulk of the modelled discharge, resulting in closer agreement

of our calculated ion density to the benchmark for case 3 than for the two

previous cases.

Of note in all of these cases is a slight asymmetry in the the density profiles

around the centre. This is believed to be a numeric effect produced by the

pseudo-random number generator (RNG). While not well documented in peer

reviewed literature, other research groups have raised the issue as prevalent in

PIC-MCC models using standard C/C++ random number generator. This

is also the generator used as base for the Nvidia CUDA RNG employed in

our model. The asymmetry is reported to disappear with the change of RNG

to an alternative such as the Mersenne Twister.

Likewise of note are the oscillatory artifacts observed at the peaks of our

density profiles. These are most apparent in case 1 but can be discerned in

the other cases. The origin of these oscillations is not well understood at

the moment. It is possible that they are the result of our using our modified

Monte Carlo collision procedure. The new collision procedure is expected to

provide greater perturbation to the system than the conventional implemen-

tation, which resolves all collisions at a well-defined time. In addition, our

alternative Monte Carlo collision implementation presents a greater overhead

on the RNG, with free flight times being determined from the uniform dis-

tribution. Therefore any issues with the RNG distribution, such as the one

discussed for the asymmetry case above are expected to affect our collision

105

6.3 Preliminary 2D Model Verification

procedure to a greater extent than the traditional collision implementation.

6.3 Preliminary 2D Model Verification

Unfortunately at the time of the writing comprehensive benchmarks for 2D

simulations were unavailable. 2 dimensional simulations are comparatively

time-consuming, with long runtimes due to the non-linear increase in problem

domain on scaling from 1 dimensional case to the 2 dimensions, as well as the

need for a significantly more complex field solver in 2 dimensions. As noted

in the reasoning for omitting benchmark case 4 from our current results,

in obtaining physical benchmark data we were under some time constraints

with respect to measurements and as such proposed preliminary 2D PIC-

MCC model benchmarks rather than a full suite of measurements.

In these preliminary measurements we collapse the 2 dimensional model

into 1 dimension. This allows us to confidently use Turner’s benchmarks in

measurements of the 2D model and reduce the runtimes to approximately

those of the 1D case. The majority of the procedures within our model

remain the same and thus get tested for correctness. The exception of note

is the 2 dimensional field solver. With the field solver we confined ourselves

to re-using the parallel cyclic reduction solver (PCR) for solving the potential

in 1D and separately testing the DADI solver with respect to the analytical

solution for the case. The technique of projecting the 2D model onto 1D is

discussed in Section 6.3.1, with the simulation results shown in Section 6.3.2.

6.3.1 2D Model Projection To 1 Dimension

In our projection procedure we adopted two philosophies:

(i) Where possible use all existing code with addition of boundary han-

106

6.3 Preliminary 2D Model Verification

dling.

(ii) If (i) is not feasible use existing code/solver with problematic section

omitted.

In practice point (i) was sufficient for most of the code except the 2D field

solver. To implement these changes we defined a global parameter ONE DIM,

to be defined in our constants for 1D execution. At critical, dimension-specific

portions our model checks whether this parameter is defined and takes ap-

propriate action accordingly. Critical sections included for instance disabling

particle move in y-directions during push and correct scaling of the accelera-

tion and charge distribution, as determined from superparticle position. For

each of these changes only the scaling parameter for y-direction had to be

adjusted. An advantage of this approach was that since our particles no

longer moved in the y-direction, particle sorting for 2D simulation could be

applied in its completeness while still returning correct results.

As mentioned, the 2 dimensional DADI field solver is not easily reduced

to 1D without removal of a bulk of its procedure. Therefore we decided

instead to re-purpose the PCR solver, used by the DADI solver, to solve the

tridiagonal formulation of the Poisson equation in 1 dimension. Since the

PCR solver is instrumental to the DADI solver itself, correct performance of

this procedure provides a significant partial verification of the DADI solver

itself. For the verification of the correctness of the DADI solver overall we

confined ourselves to calculating the solution to the constant charge density

2D problem and comparing it to the analytical solution. These results are

presented at the end of Section 6.3.2.

107

6.3 Preliminary 2D Model Verification

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Position across discharge (m)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

He
+

 d
en

si
ty

 (m
^

-3
)

1e14

Direct 2D-PIC-MCC
Turner's PIC-MCC

Figure 6.4: Time averaged ion density profile for benchmark case 1 applied to

the collapsed 2D simulation. Both our direct PIC-MCC simulation result and that

of Turner’s benchmark PIC-MCC implementation (labeled as implementation E in

his original paper[8] are shown.

108

6.3 Preliminary 2D Model Verification

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Position across discharge (m)

0

1

2

3

4

5

6

7

8

9

He
+

 d
en

si
ty

 (m
^

-3
)

1e14

Direct 2D-PIC-MCC
Turner's PIC-MCC

Figure 6.5: Time averaged ion density profile for benchmark case 2 applied to

the collapsed 2D simulation. Both our direct PIC-MCC simulation result and that

of Turner’s benchmark PIC-MCC implementation (labeled as implementation E in

his original paper[8] are shown.

109

6.3 Preliminary 2D Model Verification

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Position across discharge (m)

0.0

0.5

1.0

1.5

2.0

He
+

 d
en

si
ty

 (m
^

-3
)

1e15

Direct 2D-PIC-MCC
Turner's PIC-MCC

Figure 6.6: Time averaged ion density profile for benchmark case 3 applied to

the collapsed 2D simulation. Both our direct PIC-MCC simulation result and that

of Turner’s benchmark PIC-MCC implementation (labeled as implementation E in

his original paper[8] are shown.

6.3.2 Simulation Results

The ion density profile results for cases 1, 2 and 3 are shown in Figures

6.4, 6.5 and 6.6 respectively. As with the 1 dimensional model benchmark

plots, we also include the profiles for the same benchmarks obtained from the

work of Turner et al.[8]. It is immediately apparent that the 2D collapsed

model profiles strongly agree with the profiles from the 1D model analysis,

demonstrating a strong self-consistency between the 2 implementations.

It follows that similarly to the 1 dimensional results, in the 2D case we also

observe that while our cases show fairly good agreement with the benchmark,

the ion density tends to be higher for our model than for the benchmark cases.

110

6.3 Preliminary 2D Model Verification

This effect reduces in significance as we move to the higher pressure regimes.

Once again we believe the discrepancy is due to the alternative handling

of energy splitting during ionization implemented in our model as well as

the use of distributions for initialising the ionization particle energies. As

discussed in Section 6.2.1 above, this results in energy not being conserved

during these collisions and can thus explain this deviation from the expected

benchmark.

DADI Solver

An analytical solution to the 2 dimensional Poisson equation can be calcu-

lated for the special case of constant charge density. Using the normalised

form of the Poisson equation, where − ρ
ε0

= f(x, y) = 1, our equation takes

the form

∆Φ = 1 (6.1)

which is of the form

∆u = λu

where λ is an eigenvalue of matrix u. Let us denote eigenfunction corre-

sponding to eigenvalue λk as Λk. We can thus express function f as

f =
∞∑
n=1

FnΛn (6.2)

This is effectively an expression for Fourier series with coefficients Fn being

calculated in the usual way as

F =
4

ab

∫ b

0

∫ a

0

f(x, y)Λdxdy (6.3)

Similarly, we expect u to be expressible as a series of terms of the eigen-

functions

u =
∞∑
n=1

UnΛn (6.4)

111

6.3 Preliminary 2D Model Verification

Substituting these results into the Poisson equation above, along with the

fact ∆Λn = −λnΛn we obtain the result

∞∑
n=1

−λnUnΛn =
∞∑
n=1

FnΛn

where the coefficients Un are given as

Un = −Fn
λn

(6.5)

When this procedure is applied to our test Equation 6.1 above we can

easily show that the eigenfunctions are sin(mπ
l
x)sin(nπ

l
y) for a square problem

domain of length l. The eigenvalues for these eigenfunctions are π2

l2
(m2 + n2).

Coefficients F then become

Fm,n =
4

π2

1

mn

[
1− (−1)m

][
1− (−1)n

]
(6.6)

and using Equation 6.5 we find the coefficients of u as

Umn = − 4

π2

l2

π2

1

mn(m2 + n2)

[
1− (−1)m

][
1− (−1)n

]
(6.7)

Thus the analytical solution for u (= Φ) up to terms m = n = 3 is given as

u = Φ = − 8

π2

l2

π2

[
sin
(π
l
x
)

sin
(π
l
y
)

+
1

15
sin
(3π

l
x
)

sin
(π
l
y
)

+

1

15
sin
(π
l
x
)

sin
(3π

l
y
)

+
1

81
sin
(3π

l
x
)

sin
(3π

l
y
)]

(6.8)

The solution of the analytical formulation of the Poisson equation (Equation

6.8) and the DADI procedure results are shown in Figures 6.7(a) and 6.7(b)

respectively. In these cases we set the problem size to l = 128, with ∆x =

∆y = 1. The ratio of charge density to permittivity of free space is ρ
ε0

=

1, introducing a factor of -1 to the solution in Equation 6.8 (as seen from

calculation of coefficients F , where f = -1). The maximum value calculated

from the analytical solution is 1182.8 while the maximum reached by our

112

6.4 Chapter Summary

Position in the x-direction

0 20 40 60 80 100 120 Positi
on in th

e y-d
irectio

n

0
20

40
60

80
100

120

De
riv

at
iv

e
so

lu
tio

n

0

200

400

600

800

1000

(a) Potential profile calculated from the an-

alytical solution.

Position in the x-direction

0 20 40 60 80 100 120 Positi
on in th

e y-d
irectio

n

0
20

40
60

80
100

120

De
riv

at
iv

e
so

lu
tio

n

0

200

400

600

800

1000

1200

(b) Potential profile obtained from our

DADI solver.

Figure 6.7: Plots of solution to the Poisson equation for the special case of

constant charge density.

DADI implementation is 1205.2. This is clearly a good agreement between

the two solutions, an agreement that can be further fine-tuned by reducing

the tolerance value used by the DADI solver to determine convergence, which

was set at a fairly relaxed value for this test case.

6.4 Chapter Summary

In this chapter we have outlined the benchmarks used to validate our model

for physical correctness. We have discussed the benchmark choice of Turner et

al.[8] as well as the experimental data used to generate the benchmark param-

eters. We have presented our 1 dimensional model’s results for these bench-

marks, compared them to results seen in literature and discussed sources of

discrepancy between our model and the benchmark cases. Finally we have

presented preliminary benchmarks for the 2D model under 1D conditions,

with separate verification results for the 2D field solver and compared these

113

6.4 Chapter Summary

results to both our 1D model and the literature benchmark.

114

CHAPTER 7

Performance

In this thesis we have outlined the architecture design and implementation of

the 1 and 2 dimensional PIC-MCC procedure for arbitrary collision frequen-

cies, as designed for massively parallel accelerator devices such as the GPU.

With this focus it is important to examine the computational performance

and scalability of our models. As is the case with an overwhelming major-

ity of numerical models, the PIC simulation procedure is not fully scalable.

Some of the bottlenecks for the parallelism were discussed in greater detail

in Chapter 4 and will be summarised in individual sections below.

For characterising parallel scaling of our models we have measured their

strong and weak scaling characteristics. These provide a standard perfor-

mance measure in the parallel computing community and reader is referred

to Appendix A for a more detailed description of their conditions. In addi-

tion since in the majority of the parallel scaling cases there is a large gradient

115

7.1 1 Dimensional Model

between the thread number extremes we have decided to reproduce the raw

performance measurements in Appendix B.

The 1 dimensional PIC-MCC model scaling is outlined in Section 7.1.

This includes both the parallel scaling analysis, where we examine how the

base model scales onto the GPU hardware and a simple scaling measurement

of the model with neutral gas density, to examine the performances expected

at higher pressures and thus in effect higher computational intensities. These

same measurements are reproduced for the 2D model in Section 7.2. Finally

due to the complexity of its implementation we also separately examine the

parallel scaling of the 2D field solver and present these results in Section 7.3.

All the measurements presented in this chapter were carried out on a sin-

gle Dell Precision T5500 Workstation. The workstation hosted one Nvidia R©

GeForce R© GTX 760 graphics card with 4GB of GDDR5 memory. The host

system consisted of two Intel R© Xeon R© X5650 CPUs and 6144 MB of DDR3

memory, however throughout our study we have endeavoured to minimise

the host portions of the code and therefore these were not scaled for our

performance results.

7.1 1 Dimensional Model

The test parameters for 1D PIC-MCC model scaling were derived based on

the benchmark ranges presented in Table 6.1 in Chapter 6. The total system

length was 6.7 cm, with a grid cell total of 512. The peak of the applied si-

nusoidal voltage was 150V. This signal was of 13.56MHz frequency (f), with

timestep of (800f)−1. The initial plasma density was chosen as 5.12×1014

m−3 and each cell was initialised with 64 superparticles. Since these mea-

surements were focused on measuring the computational performance of the

116

7.1 1 Dimensional Model

of thread blocks

1
2

4
8

16
32

64
128 # of threads per block

4 8 16 32 64 128 256 512

Ti
m

e
to

 s
ol

ut
io

n
(s

)

40
60
80
100
120
140
160
180

Figure 7.1: Strong scaling of the 1D PIC-MCC model.

model rather than its physical accuracy, the system was simulated for 1000

timesteps per measurement rather than until steady state is observed.

7.1.1 Parallel Scaling

The parallel scaling measurements were carried out under a constant neutral

gas density of 9.64×1020 m−3. Of interest in these measurements was not only

performance scaling of the model with increasing total number of threads but

also the affect of different thread-block configurations on the performance.

The total number of threads in a simulation run is found from the product

of the number of threads per block and the number of blocks in a simulation

run.

117

7.1 1 Dimensional Model

Strong Scaling

The strong scaling results for the 1D PIC-MCC model are shown in Fig-

ure 7.1. As is expected, a stark performance increase is seen as we increase

the total number of threads available to the execution. The minimum num-

ber thread grid configuration for our measurement is 1 block × 4 threads,

with maximum scaling to 128 blocks × 512 threads. Clearly in a system of

512 cells, this maximum significantly exceeds the maximum parallelisation

possible for our model at this systems size. Instead, for block/thread config-

urations roughly exceeding the maximum parallelisation of the problem we

obtain some measure of the overheads associated with creating idle threads

and blocks during our execution.

As can be seen from Figure 7.1 performance increases until roughly each

cell is serviced by an individual thread. This is not a linear increase even for

the power-of-two axes used in this figure, showing that performance increase

is most notable at lower thread values. This behaviour is similar to scaling

profiles noticed for other real-world irregular numerical applications on tran-

sitions to massively parallel regimes[82, 83]. Severity of the non-linearity of

these types of scalings are largely hardware architecture-dependant. Most

high-end hardware is designed and optimised for a standard set of high per-

formance numerical benchmarks called LINPACK[84]. This standard bench-

mark looks at the performance of a given hardware system in solving a system

of linear equations in a general dense matrix for a selection of different sizes.

While a powerful solver in itself, as discussed by Flynn et al.[85] the simple

linear system solution is a very regular application, in as far as the locality

of data in memory is concerned, as well as memory accesses associated with

the solution. Therefore it is a poor reflection of a realistic numerical appli-

cation which is generally irregular in data locality and memory accesses and

118

7.1 1 Dimensional Model

therefore cannot make any of these guarantees.

Another important feature to note is that the application does not scale

symmetrically for threads and blocks. In fact our application scales more

efficiently with additions of further thread blocks over increase in the num-

ber of threads per block. This effect is most likely hardware-specific to GPU

architecture implementation, as well as our specific card type. As mentioned

above, our measurements were carried out on a GeForce GTX 760 GPU. Ac-

cording to its release notes[86], this card contains 1152 cores, divided among

6 streaming multiprocessors. Cores executing on a given multiprocessor all

share data cache[3]. The block/thread software space translates onto this

hardware as follows:

1. A block of threads is assigned to a single multiprocessor.

2. The thread block executes its threads on the cores available on the

multiprocessor. These threads share the multiprocessor data cache.

3. Threads are executed in warps of 32. While multiple warps run concur-

rently if cores are available, each warp is treated as a distinct portion

of the computation.

4. Within a warp, any conditional if statements are serialised during ex-

ecution.

5. If a multiprocessor does not have resources available for all the warps

of a given block, the idle warps have to wait until threads become

available.

Since the entire (complex) particle push procedure takes place on the

GPU it is clear that our PIC-MCC model presents a significant memory

119

7.1 1 Dimensional Model

and instruction overhead per thread. Therefore while many-thread execu-

tion optimises the core utilisation for computation, the memory and instruc-

tion requirements of this configuration for a single multiprocessor data cache

presents an unacceptable overhead for our performance. The data no longer

fits in the fast cache and instead the execution suffers from cache misses

and associated memory loading overheads. In addition our collisional Monte

Carlo implementation clearly suffers from conditional divergence as well. Re-

ducing the number of threads per block also reduces the chance of a diver-

gence within the threads of a particular block. In fact the peak performance

was observed for 8 threads, 64 blocks configuration for our test case, however

the optimal configuration is expected to vary for model systems of different

grid sizes and superparticle densities.

Weak Scaling

The weak scaling of our PIC-MCC model is presented in Figure 7.2. In

this measurement the computational load per thread is kept constant as

the number of threads scales upwards. In an ideal case this scaling would

show constant performance independent of thread/block configuration. As

discussed in Appendix A, this measurement was concerned with replicating

these parameters and thus modifications to the computation were carried out

to reflect the computation load rather than physical accuracy on these runs.

Crucially, the total grid size of the system becomes the product of threads per

block and blocks, rather than the specified 512 cells from the strong scaling

measurements.

As we see the scaling shows a fairly constant profile until the upper end

of system size, where the run time starts increasing significantly. This cut-

off is seen at a few thousand cells size and can be attributed to the serial

120

7.1 1 Dimensional Model

of thread blocks

1
2

4
8

16
32

64
128

of threads per block 4
8

16
32

64
128

Tim
e to solution (s)

50
100
150
200
250
300
350
400

Figure 7.2: Weak scaling of the 1D PIC-MCC model.

portions of the code (such as memory space checks) beginning to dominate

the execution time for the constrained load parallel sections. These portions

are generally proportional to the simulation grid size and are predominantly

necessitated due to memory allocation limitations during device execution

(see Chapter 4).

It should also be noted that in this case we once again notice an asymme-

try in the scaling of threads and blocks. We see that the scaling along threads

performs worse than scaling along blocks. This effect can once again be at-

tributed to the combination of data cache saturation and thread divergence

serialisation, as was discussed for the strong scaling case.

121

7.1 1 Dimensional Model

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Neutral gas density (m^-3) 1e23

25

30

35

40

45

50

T
im

e
to

 s
o
lu

ti
o
n
 (

s)

Figure 7.3: Scaling of the 1D PIC-MCC model with pressure of the neutral feed

gas.

7.1.2 Scaling With Pressure

Since our model was designed to scale freely to highly collisional regimes we

have decided to provide some preliminary measurement for the performance

scaling of the model with varying neutral gas density. As discussed in Sec-

tion 3.5, the null collision frequency is proportional to the neutral density,

which itself is a function of gas pressure under controlled temperature condi-

tions (which is a reasonable approximation of the case of non-LTE plasmas).

Unfortunately since our modified pusher was developed during the design of

our PIC-MCC model, at the time of the writing an alternative generic im-

plementation was unavailable for comparison. Therefore our discussion has

to be confined to qualitative trends associated with high-pressure PIC-MCC

simulations rather than quantitative ones.

122

7.1 1 Dimensional Model

The performance for scaling with neutrals density is shown in Figure 7.3.

We observe a steeper gradient in the time increase during the lower density

regime, with the curve levelling off somewhat around density of 6.0×1022

m−3. The total density range over which measurements were taken extends

from 9.64×1020 m−3 to 3.21×1023 m−3. Needless to say this is a fairly huge

range corresponding to pressures from 3.99 Pa to 1.33×103 Pa respectively.

As can be seen, within this range we observe only a relatively small change

in the runtime per 1000 timesteps, with the runtime difference on the smaller

gradient portion of the graph (range 6.0×1022 m−3 - 3.21×1023 m−3) being

10 seconds.

The change in the gradient observed in the plot above is hard to diag-

nose due to some uncertainty introduced into the absolute values of these

measurements due to other simulation processes running on the card simul-

taneously (these effects can be better observed in some of the figures below).

However two effects that are likely to contribute to this discrepancy are load

balancing between threads and divergence between warps.

In lower collisional regimes, a collision taking place near the end of the

timestep can cause a significant delay in execution as the other threads idly

wait for this single execution to terminate. As the collision probability in-

creases, the likelihood of multiple threads experiencing a collision near the

end of the timestep increases, and so computation becomes more balanced

than previously, with a more even load spread between threads. Thus the

performance is expected to begin in a state of good load balance at very low

collisions, transition into a poorly load balanced regime as the collision fre-

quency increases and return to better load balance after some critical value

of collision frequency.

As discussed in the strong scaling section above, any conditional opera-

123

7.2 2 Dimensional Model

tions within a thread warp get serialised. Therefore the load balancing issue

described in the paragraph above also affects the performance in this fash-

ion. At low collision frequencies where only a relatively small total number

of collisions take place per timestep, this divergence between executions (i.e.

whether a collision takes place) can be fairly apparent. As the simulation

progresses to a higher collision regime, this situation becomes less divergent

since statistically all threads start to experience collisions and the difference

in the number of collisions effectively only impacts the latter part of the push.

Therefore the more collisional case results in smaller divergence between the

threads in a given warp, and thus only a smaller section of the push execution

has to be serialised.

7.2 2 Dimensional Model

As discussed in the case of the 1D model scaling the focus of this analy-

sis was the measurement of computational performance rather than physical

validation. Therefore the test measurements for the 2D PIC-MCC model

were carried out over 100 timesteps, rather than over a physical solution

range. The 2D model is more computationally complex than the 1D imple-

mentation, mainly due to the more complex field solver, and therefore it was

decided a more accurate approach to performance benchmarking would be

to examine the 2D PIC-MCC model separately to its field solver. Therefore

for these measurements the field solver was switched off. Measurements in

this section only represent the scaling of the kinetic parts of the solution,

sorting, charge accumulation and acceleration calculation (albeit set to zero

due to the potential being set at this value). The scaling of the field solver

is covered separately in Section 7.3.

124

7.2 2 Dimensional Model

The test parameters used for this measurement were also fairly similar to

the 1D model performance benchmark. The discharge boundary was a square

of side length 6.7 cm, divided over a cell grid of 128×128. The timestep was

kept at (800×13.56MHz)−1 and the initial plasma density was 5.12×1014

m−3, to be consistent with the 1D simulation parameters. Each cell was

initialised with 100 superparticles.

7.2.1 Parallel Scaling

The neutral gas density was once again kept constant for this part of the per-

formance analysis, at the value of 9.64×1020 m−3. As was the case in Section

7.1.1, multiple thread and block configurations were examined to provide us

with not only information on scaling as a function of total number of threads

but also as a function of the block/thread GPU hierarchy. However, in our

2D implementation we now use a 2 dimensional grid of blocks and threads.

Therefore in this section our axes are presented in terms of the 2 dimensional

thread and block configurations specified for the execution.

Strong Scaling

Figure 7.4 shows the strong scaling of the 2D PIC-MCC model over 100

timesteps. It is readily apparent that the scaling profile of the 2D model

demonstrates many similarities with that of the 1D model. As was the case

for the latter, at the upper scale of total thread values we exceed the max-

imum parallelisation values for our 128×128 cell grid model. In addition

our maximum number of threads per block for which measurements were

obtained (16×16, or total 256 threads per block) is constrained by the hard-

ware limit on the total supported number of threads per block, as dependent

on the compute capability of the GPU.

125

7.2 2 Dimensional Model

of thread blocks

1x1
2x2

4x4
8x8

16x16
32x32

64x64 # of th
reads per block

2x2

4x4

8x8

16x16

T
im

e
to

 s
o
lu

ti
o
n
 (

s)

0

100

200

300

400

500

600

700

Figure 7.4: Strong scaling of the 2D PIC-MCC model. In this test case the field

solver was switched off. This was due to the significant computational complexity

of the field solver and the computational overhead it represents, thus allowing us to

focus on the PIC procedure itself. The field solver scaling is examined in Section

7.3.

126

7.2 2 Dimensional Model

As described for the 1 dimensional case, here too we see a non-linear

scaling of the application with addition of threads. Much like the 1 dimen-

sional mode, the 2 dimensional problem is an irregular one and therefore

it, too, suffers from non-optimal memory access patterns, which negatively

impact its memory handling performance. In addition there is once again an

asymmetry in scaling with blocks versus scaling with threads. The reader

is referred to Appendix B for a clearer characterisation of this effect. As

is the case for the 1D PIC-MCC model, the 2D model also presents a sig-

nificant memory overhead as well as larger thread divergence, which in the

case of low block numbers results in a large memory/instruction space being

assigned to a small number of data caches as well as greater serialisation

of warp threads. Data cache saturation increases the occurrence of cache

misses for a set of processing threads and creates an overhead due to loading

of memory pages. Therefore performance improvement is observed for con-

figurations with smaller numbers of threads per block and larger numbers of

blocks. In fact peak performance for our test case was observed for 32×32

blocks and 4×4 threads configuration, however once again these values are

dependent on the specific test case parameters.

Weak Scaling

The 2 dimensional PIC-MCC model weak scaling is shown in Figure 7.5.

As discussed in Section 7.2, here we also switched off the field solver and

instead concentrated on benchmarking the kinetic framework of the system.

The adjustments required to our code to better replicate the weak scaling

conditions are discussed briefly in Appendices A and B. As was the case for

the 1D model weak scaling, since load is being kept constant per thread, our

total grid size effectively becomes a function of the total number of threads

127

7.2 2 Dimensional Model

of th
read blocks

1x1

2x2

4x4

8x8
16x16

of threads per block 2x2

4x4

8x8

16x16

T
im

e to
 so

lu
tio

n
 (s)

0
20
40
60

80

100

120

140

160

180

Figure 7.5: Weak scaling of the 2D PIC-MCC model. In this test case the field

solver was switched off. This was due to the significant computational complexity

of the field solver and the computational overhead it represents, thus allowing us to

focus on the PIC procedure itself. The field solver scaling is examined in Section

7.3.

128

7.2 2 Dimensional Model

in the system. Therefore any serial portions of the code are expected to show

scaling performance decrease.

In the 2D case we too observe the effects of the overhead associated with

the serial portions of the code on the overall performance as we progress

to higher grid sizes. However at the lower end of the grid spectrum we see

a fairly consistent scaling profile, which presents an encouraging result for

our parallelisation model. In addition we once again observe the asymmetry

in scaling between thread-dominant and block dominant parallelisation, as

seen more clearly from raw data in Appendix B. As in the previous cases

this observation can be attributed to data cache saturation and warp thread

divergence experienced at higher thread numbers.

7.2.2 Scaling With Pressure

In characterising the neutrals density scaling of the system we used similar

parameters to those used for the parallel scaling characterisation. In this

case we also disabled the field solver to better resolve the performance of the

kinetic portions of this code. While the absence of the field solver and applied

potential will affect the ionization rate in the system, since our collisions

are modelled using the null collision method[58], the computation associated

with resolving collisions remains characteristic of the full system. Once again

the total density range over which measurements were taken extends from

9.64×1020 m−3 to 3.21×1023 m−3, corresponding to 3.99 Pa and 1.33×103 Pa

respectively.

Figure 7.6 shows the neutrals density scaling profile for our 2D model.

In this case we observe a broadly similar trend to that of the 1D pressure

scaling, with an overall performance change between 5.0×1022 and 3.21×1023

showing a fairly smooth profile and being around 12 seconds. The profile at

129

7.2 2 Dimensional Model

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Neutral gas density (m^-3) 1e23

30

35

40

45

50

55

T
im

e
to

 s
o
lu

ti
o
n
 (

s)

Figure 7.6: Scaling of the 2D PIC-MCC model with pressure of the neutral feed

gas. In this test case the field solver was switched off. This was due to the signif-

icant computational complexity of the field solver and the computational overhead

it represents, thus allowing us to focus on the PIC procedure itself. The field solver

scaling is examined in Section 7.3.

130

7.3 2 Dimensional Field Solver

the lower end of the spectrum is not as well characterised, as is apparent from

the figure. This portion was problematic to measure due to other simulation

running on the test card during these measurements as well as background

tasks such as driving of display introducing an uncertainty into our results.

However we do see some signs of a similar drop off in the computation time,

as seen in the 1D case, which would correspond to the transition across the

poorly load balanced regime, as discussed in Section 7.1.2.

7.3 2 Dimensional Field Solver

A very important portion of our 2D PIC-MCC implementation is the field

solver. As discussed in Chapter 4 for this we wrote a dynamic alternating

direction implicit solver (DADI) for the GPU. This solver in turn requires an

efficient linear system solver and since we desire for this to be as parallelisable

as possible, we chose the GPU parallel cyclic reduction solver of Zhang et

al.[7] with some generalisations to allow for the handling of more physical

systems. The background to both these implementations is discussed in

Section 4.7.2. As a result in this section we present the parallel scaling

of both the PCR solver and the DADI solver with constant PCR solver

parallelisation values.

7.3.1 Strong Scaling

The DADI strong scaling profile was generated for a 128×128 system, with

cell width and input function values normalised to 1. These scaling results

are shown in Figure 7.7. In contrast the PCR solver scaling was measured

over a 512×512 grid with the Poisson equation in 1 dimension being the test

system of equation for each of the 512 systems and the source term ρ
ε0

= 1.

131

7.3 2 Dimensional Field Solver

of thread blocks

1x1
2x2

4x4
8x8

16x16
32x32

64x64 # of threads per block

2x2
4x4

8x8
16x16

T
im

e
to

 s
o
lu

ti
o
n
 (

s)

0

50

100

150

200

250

300

350

400

450

Figure 7.7: Strong scaling of the DADI field solver. The parallel cyclic reduction

solver, employed by the DADI solver, was not being scaled but instead supplied with

constant values for blocks and threads. PCR scaling is addressed separately below.

132

7.3 2 Dimensional Field Solver

of thread blocks

1
24

8
16

32
64
128

256
512

of threads per block
4 8 16 32 64 128 256 512

Ti
m

e
to

 s
ol

ut
io

n
(m

s)

100

200

300

400

500

Figure 7.8: Strong scaling of the parallel cyclic reduction solver (PCR).

These strong scaling results are shown in Figure 7.8. The choice of a smaller

domain for the DADI scaling tests was mainly due to the excessive execution

times associated with convergence calculations for the low threading cases in

this solver.

Both these cases show a broadly similar scaling characteristic, with a non-

linear scaling profile associated with our previous application measurements.

Of interest to note is that unlike the PIC-MCC models examined above,

in the PCR case we see a reverse asymmetry profile between thread and

block scaling in comparison to the latter cases. In the PCR case we see that

performance improves more with addition of threads rather than blocks to

the execution system, as shown more clearly in the raw data in Appendix B.

In the DADI scaling overall we see an improvement of scaling with addition

of blocks, as was the case in the PIC-MCC scaling in 1 and 2 dimensions.

133

7.3 2 Dimensional Field Solver

As discussed in Section 7.1.1, the optimal execution on GPU takes place

when non-divergent full warps of threads access contiguous portions of mem-

ory, carry out a reasonably straightforward calculation on the data set and

return new values to contiguous portions of memory. The PCR solver fits

this computation model very well and therefore we see optimal scaling pro-

file for this case, with larger thread numbers filling warps more fully, optimal

memory access patterns and moderately small requirements on storage in

data cache. On the other hand the DADI solver is a much more complex

numerical solver, with a parallel GPU transpose function (irregular) and a

coefficient recalculation GPU function (also irregular) as well as the conver-

gence procedure. Therefore this solver does not fit the hardware-optimised

model of computation for the device and we see a different scaling pattern

asymmetry than in the PCR case.

7.3.2 Weak Scaling

The weak scaling profiles for the DADI and the PCR solver are shown in

Figures 7.9 and 7.10 respectively. While the DADI solver shows a profile

much more reminiscent of those seen for the two PIC-MCC models, the PCR

solver shows a very constant weak scaling performance over the measurement

range. As was discussed in Section 7.3.1 above, the PCR solver is expected

to show a much more optimal scaling profile since the GPU hardware itself

is designed with solving these types of problems in mind. Indeed in the ideal

case weak scaling performance is expected to be relatively constant over a

large thread range.

On the other hand we see that as we progress to higher thread regimes

the DADI solver performance suffers from greater overheads. These are both

due to the serialised portions associated with the convergence solver as well

134

7.3 2 Dimensional Field Solver

of th
read blocks

1x1
2x2

4x4
8x8

16x16
32x32

64x64

of threads per block 2x2

4x4

8x8

16x16

T
im

e to
 so

lu
tio

n
 (m

s)

5

6

7

8

9

10

11

12

13

Figure 7.9: Weak scaling of the DADI solver.

of thread blocks

1 2 4 8 16 32 64128256512 # of threads per block

4
8

16
32

64
128

256
512

Ti
m

e
to

 s
ol

ut
io

n
(m

s)

0
2
4
6
8
10
12
14

Figure 7.10: Weak scaling of the parallel cyclic reduction solver (PCR).

135

7.4 Chapter Summary

as the computation execution patterns not fitting the hardware-optimised

computation pattern as well as the PCR solver. Therefore the DADI weak

scaling profile is much more characteristic of the profiles expected from ir-

regular real-world applications such as the 1 and 2 dimensional PIC-MCC

models.

7.4 Chapter Summary

In this Chapter we examined the parallel scaling of our PIC-MCC models

and their significant constituents. We have discussed at some length the

computing models optimised for at hardware level and the performance chal-

lenges they present for irregular applications consistent with system models

characteristic of real world problems, such as the PIC-MCC model. We have

also discussed the hardware utilisation expected from real-world applications,

allowing for more optimised choice of computation hardware in the future.

Finally by presenting a computation component considered representative of

optimal GPU hardware utilisation we have illustrated the divergence of the

manufacturer-expected computation model from the realistic computation

model.

136

CHAPTER 8

Conclusions And Future Work

8.1 Current Outcomes

In this work we have presented the research methodology and outcomes ob-

tained when adjusting the existing Particle-In-Cell (PIC) modelling tech-

niques to the high performance computational regime on the GPU and the

highly collisional physical regime at atmospheric pressures. In the process

we have also discussed and presented some measurements benchmarks to ac-

company our architectural studies and allow free reproduction of our results.

In Chapters 1 and 3 we have discussed the basic physical characterisa-

tions of industrial plasmas and the practical implementation requirements of

collisional Particle-In-Cell modelling respectively. In these chapters we not

only concentrated on outlining the physics to be characterised, we have also

discussed the computational hardware used to implement these models and

137

8.1 Current Outcomes

the practical constraints it presents on our computational implementation.

We also showed the numerical constraint imposed on the model by the char-

acterisations formerly adopted by the plasma modelling community and the

restrictions these impose on the validity of the simulation.

In Chapter 4 we presented in detail the architecture of 1 and 2 dimensional

PIC-MCC models as developed for the computational constraints presented

by the GPU. We have explicitly detailed our data structures and discussed

the memory allocation difficulties presented by the GPU capabilities and

the physical model requirements. We have developed consistent handling of

memory allocations for non-particle-conserving model. Using Mertmann et

al.[6] sorting procedure we exploited the data localisation to optimise the

charge accumulation procedure. Using shared memory we designed a conve-

nient weighting procedure to allow for better particle cloud characterisation

of the charge in each cell.

In addition we also developed a fully GPU-utilising stand alone field solver

for both 1 and 2 dimensional PIC procedures. Of particular interest is the

2 dimensional dynamic alternating direction implicit (DADI) solver. Due to

our focus on physically meaningful utilisation of this solver we generalised the

designs presented in literature[7, 62] to robustly handle more general systems.

This resulted in our removing some of the computational constraints on the

system size formerly imposed by these solvers.

In our attempt at extending our PIC-MCC model to highly collisional

physical regimes consistent with atmospheric pressures, we developed an al-

ternative particle pusher to facilitate for more direct simulation of Monte

Carlo (MC) collisions. We showed the numerical inconsistencies inherent in

the naive simulation of irregularly occurring Monte Carlo collisions within

the leap frog pusher procedure and developed a technique to correct for these

138

8.1 Current Outcomes

issues. We have also presented numerical accuracy measurements for the un-

modified leap frog pusher, naive collisional implementation pusher and our

modified collision pusher under null collisions, and illustrated how the naive

implementation diverges from the expected values. At the same time we

have shown our modifications restore the numerical accuracy of the scheme

for irregularly time-resolved MC collisions. In addition we also presented

the effects the naive implementation of the pusher fragmentation has on the

model stability, in particular the electron confinement in the bulk plasma.

The restoration of the expected properties under our modified pusher regime

was demonstrated. Finally these modifications in effect removed the simula-

tion timestep constraints imposed by the classical probabilistic MC collisions

procedure, while preserving the simulation accuracy, thus significantly in-

creasing the absolute size of the timestep permissible for a self consistent

simulation at higher gas pressures. These results were presented in Chapter

5.

With the development of our alternative, direct MC collisional procedure

as well as the overall computationally complex PIC simulation design we

recognised the need for extensive physical verifications. Therefore our PIC-

MCC procedure was used in conjunction with a set of well-characterised phys-

ical simulation benchmarks at low pressure and our particle density profiles

were compared to those obtained from multiple distinct models developed

independently by different members of the plasma physics community. With

our model we were able to obtain good agreement to other simulations of the

given physical cases as well as highlight some quantitative differences seen

between our implementation and that of other PIC-MCC models. Our work

on physical verifications was discussed in Chapter 6.

Finally in Chapter 7 computational performance measurements of our

139

8.1 Current Outcomes

GPU PIC-MCC model were presented. Good parallel scaling was shown for

both our PIC-MCC models in 1 and 2 dimensions and for the 2 dimensional

field solver. Due to the complexity of the 2 dimensional model, to show more

detailed performance analysis, the PIC-MCC model and the field solver were

analysed separately. In this chapter we also showed the overheads accrued

from serialised sections present in the PIC-MCC models due to the GPU

computational constraints and presented their scalings over problem sizes.

Scaling with gas pressure was measured to better predict the performance of

our models on scaling to atmospheric pressure regimes.

In addition in this chapter we also discussed a number of hardware de-

sign choices in the GPU design and their affects on our scaling profiles. We

discussed the application formulation expectations in the GPU hardware de-

sign and the realities of the applications seen in practice. Solvers within our

PIC-MCC models consistent with these best-case applications were identi-

fied and their scaling profiles were compared to those of the more realistic,

irregular portions of our applications. Scaling profile features of the models

were identified and explained in terms of the GPU hardware design features.

Overall the aim of our study was to develop a two-fold extensive design

and analysis of the PIC-MCC model capable of characterising a plasma at

atmospheric pressures and specifically designed for the GPU hardware exe-

cution. In this work we have presented the detailed design of our GPU PIC-

MCC model, at both 1 and 2 dimensions. The adjustments of our modelling

procedures to account for arbitrary collision frequencies were presented, as

were the computational architecture design choices necessitated by the GPU.

The resultant models were subjected to a number of verification procedures

to determine their physical accuracy as well as an extensive scaling analysis

to characterise their performance on the given execution hardware.

140

8.2 Future Work

8.2 Future Work

As discussed in Chapter 6, due to the comparatively long runtimes associated

with the 2 dimensional PIC simulation we have only so far presented prelim-

inary verifications of our 2D model. While these preliminary results are still

valuable, it would be desirable to implement a suite of full 2D benchmarks,

similar to those developed for the 1D PIC-MCC model. This is a complex

challenge however, particularly since unlike for the 1D case, no systematic

benchmarking effort has been as yet introduced for the 2D case. There-

fore for this we require a wider collaboration with other groups and their

independently developed 2D models, as was the case in the 1D verification

benchmarks development.

The runtime lengths for certain 1D model conditions and virtually all

realistic 2D model conditions present an additional obstacle. In our current

formulation of the models, we assume that our computation does not get

interrupted by a reboot or a system crash. As the runtime of a simulation

is extended this guarantee is hard to facilitate due to random events such as

brief grid outages or OS service crashes. Therefore in practice it is difficult to

ensure uptime for the entire duration of the computation. To better handle

these random real events we wish to introduce a checkpoint procedure into

our model. While the writes to disk associated with a checkpoint procedure

would present a performance overhead on the runtime, the checkpoint itself

would provide a much more graceful recovery option after a crash for our

models.

While a lot of energy has been dedicated to verification, it would be of

interest to validate our 1 and 2 dimensional models directly against the ex-

perimental measurements of Godyak et al.[77, 87]. These experimental works

were not only used to determine the verification parameters in Chapter 6,

141

8.2 Future Work

there is also some preliminary evidence[88] that the current and plasma den-

sity profiles with voltage are not fully modelled by the standard 1 dimensional

PIC models. Therefore it would be interesting to see what, if any effects

transitioning to 2D simulation as well as the introduction of our alternate

collisional pusher would have on these results.

Finally as discussed in Chapter 7, our performance measurements show

strong signs of profile features associated with irregular applications. As such

two interesting performance avenues present themselves. Firstly it would

be interesting to examine the performances of CPU codes accelerated using

only a subset of the GPU procedures developed for our model. This would

allow for some of the GPU design specific overheads to be removed while

also providing massive parallelism for performance-critical sections of a CPU

model. Secondly it would be of great interest to see our design translated

onto the Intel R© Xeon R© Phi architecture, which provides a more flexible

alternative to the GPU. It is our expectation that some of the overheads

due to memory allocation management would be unnecessary on the Xeon R©

Phi, thus potentially having significant effects on the performance of our base

design on this device.

142

Appendices

143

APPENDIX A

Parallel Scaling Benchmarks

The subject of parallel scaling is quite extensively discussed in literature, with

widely varying opinions and options of which approach best characterises the

parallel performance of an algorithm or a computer system[89–91]. Indeed

parallel scaling of an algorithm frequently varies drastically based on the

hardware available for execution, a feature we have endeavoured to stress in

the outline of our model and the justification for our architectural choices.

For basic parallel scaling measurements we have confined ourselves to the

industry standard of strong and weak scaling measurements[92], which are

outlined in more detail below. The general purpose of these measurements

is to examine the scaling of the system as more threads become available

as well as the degree of parallelism achieved in the examined code and the

overhead presented on the execution device due to background overheads

such as thread creation and non-locality of data in memory.

144

A.1 Strong Scaling

A.1 Strong Scaling

The so-called strong scaling is a very powerful, yet conceptually simple mea-

surement. It provides a very accurate measure of the scaling of a code or

a section of a code with addition of threads. In this approach the size of

the system is kept constant, irrespective of the number of threads available

for its execution. A process is considered to square linearly if the speedup

observed is linearly proportional to the number of threads utilised by the

computation. The efficiency of this scaling can be calculated as

Eff =
t1
NtN

× 100% (A.1)

where t1 is the time taken to execute the entire test load by 1 thread, N is

the number of threads and tN is the time taken to execute the test load by

these threads.

In practice in simulation of physical models, linear scaling is unlikely.

Due to the complexity of these models, the system is usually divided into

execution blocks for individual threads along logically convenient boundaries

(such as cells in our model). It is usually very difficult to divide the load

in this type of problem evenly among the available threads and thus load

balancing can become an issue. In addition this type of dividing sets an

upper bound on the number of threads a model can benefit from in prac-

tice. Finally the hardware computational resources of the execution device

limit the number of concurrently available threads, eventually leading to a

decline in performance as overhead of thread switching begins to dominate

the execution.

145

A.2 Weak scaling

A.2 Weak scaling

Weak scaling presents what is frequently considered a lesser measure of par-

allel scaling of an application. In this scaling the computational load per

thread is kept constant. The performance of the code is measured with in-

creasing number of threads (which also clearly increases the overall problem

size). While this measurement does not necessarily provide information on

the scaling of a problem of given size onto a more parallel system, it is instead

a measure of scaling a problem up in size. This is of particular interest for

problem too large to fit on a single node. In addition, as applied to measure-

ments of our models, weak scaling also provides a measure of the overhead

scaling with problem size for the critical sections of our procedures. As with

strong scaling, a weak scaling efficiency can be calculated. This is given by

Eff =
t1
tN
× 100% (A.2)

where t1 is the execution time for 1 thread and tN is the execution time for

N threads.

In practice measuring weak scaling tends to be more complex than mea-

suring strong scaling for most moderately complex solvers and models. For

convergence and iterative solvers the iterations required for a solution vary

on problem size and therefore the execution load per thread to reach solution

would vary by numbers of threads. In addition, once again it is not straight

forward to perfectly balance a load among threads as problem size increases.

Therefore weak scaling should be considered a more rough measure than

strong scaling.

146

APPENDIX B

Raw Performance Data

Here we present the raw data used in our performance analysis, presented in

Chapter 7. This serves both, as documentation of our performance analysis

as well as a reference for some of the points of our performance analysis

discussed in the main work but not immediately apparent under the axes

resolution of the accompanying plots.

In the sections below we also summarise the data collection conditions

for each case. This is to allow for ease of reference and/or reproduction of

our results.

B.1 1 Dimensional Model

147

B.1 1 Dimensional Model

Table B.1: Performance values for the strong scaling of the 1D model. Times given in

seconds.

Blocks: 1 2 4 8 16 32 64 128

Threads:

4 184.59 112.83 75.818 50.877 37.410 32.363 29.405 28.728

8 155.71 96.238 67.025 44.586 35.543 30.735 27.235 27.616

16 137.88 87.565 63.179 42.313 35.082 30.414 29.519 29.866

32 125.49 83.587 60.824 40.971 32.827 34.571 33.089 32.793

64 85.544 62.674 41.210 33.467 32.947 30.414 34.508 33.784

128 61.909 42.931 33.263 32.868 33.657 34.454 34.413 33.712

256 40.888 35.050 33.674 33.601 34.243 34.448 33.852 34.644

512 36.399 35.007 37.425 37.966 37.390 37.898 37.582 36.470

148

B.1 1 Dimensional Model

Table B.2: Performance values for the weak scaling of the 1D model. Times given in

seconds.

Blocks: 1 2 4 8 16 32 64 128

Threads:

4 9.9285 11.247 11.566 10.909 12.053 15.524 17.966 25.864

8 10.790 12.049 13.008 12.918 16.121 19.285 25.486 39.447

16 14.332 14.331 16.262 16.473 20.759 26.427 39.029 58.863

32 18.530 18.475 20.944 25.753 27.477 40.467 59.443 114.82

64 19.716 20.556 25.906 28.516 40.920 58.691 114.44 215.68

128 20.314 25.978 28.411 41.129 58.289 110.41 223.09 410.46

A test 1D plasma model was simulated over 1000 timesteps and execution

times under different thread/block configurations were recorded. The total

length of the system was 6.7 cm, divided onto a grid of 512 cells. The peak

of the applied sinusoidal voltage was 150V. This signal was of 13.56MHz

frequency (f), with timestep of (800f)−1. The initial plasma density was

chosen as 5.12×1014 m−3 and each cell was initialised with 64 superparti-

cles. The neutral gas density was chosen as 9.64×1020 m−3. As is readily

apparent, these parameters fall comfortable within the physically meaning-

ful benchmark cases described in Chapter 6. The strong scaling data for

these conditions is presented in Table B.1 while the data for the weak scaling

analysis is shown in Table B.2.

As discussed in Appendix A, the weak scaling analysis required some

modification to the model to achieve better load balancing for each thread.

Thus the numerical simulation results of this analysis were not expected to

149

B.2 2 Dimensional Model

Table B.3: Performance values for the strong scaling of the 2D model. Times

given in seconds.

Blocks: 1×1 2×2 4×4 8×8 16×16 32×32 64×64

Threads:

2×2 659 189.05 68.561 37.993 35.069 34.388 34.089

4×4 432.68 129.38 53.700 34.785 32.761 32.218 32.581

8×8 204.53 72.351 39.241 36.325 36.815 36.494 37.084

16×16 72.830 38.546 36.321 37.013 36.827 36.706 37.057

be accurate or physically meaningful. Instead we concentrated on replicat-

ing operations expected to be carried out on a timestep pass so as to better

examine the scaling behaviour under constant load per thread. Thus to

conserve the overall number of particles, we disabled particle losses and par-

ticle creation for this analysis. This is certainly not a perfect weak scaling

measurement however with our architecture in mind it gives a reasonable

approximation of the weak scaling of our model.

B.2 2 Dimensional Model

Since the 2D model was also being measured for performance rather than

physical validation, the test measurements were carried out over 100 timesteps.

The 2D model was somewhat more computationally complex than the 1D

150

B.2 2 Dimensional Model

Table B.4: Performance values for the weak scaling of the

2D model. Times given in seconds.

Blocks: 1×1 2×2 4×4 8×8 16×16

Threads:

2×2 0.969 1.0287 1.2062 1.6482 3.8611

4×4 1.3829 1.7025 2.0718 3.6980 10.666

8×8 1.8682 2.1273 4.0922 11.204 40.461

16×16 2.1889 4.2118 11.370 40.398 164.322

implementation, mainly due to the more complex field solver and therefore it

was decided a more accurate approach to performance benchmarking would

be to treat the 2D PIC-MCC model separate to the field solver. Therefore

for these measurements the field solver was switched off. As a result these

measurements only represent the scaling of the kinetic treatment, sorting,

charge accumulation and acceleration calculation (albeit set to zero due to

the potential being set at this value). The field solver performance analysis

is instead presented separately in Sections 7.3 and B.3.

The physical parameters chosen for this simulation were similar to the

ones given for the 1D model performance analysis. The neutral gas den-

sity was set at 9.64×1020, the timestep was chosen as (800f)−1, where f =

13.56MHz and plasma density was initialised as 5.12×1014 m−3. The physi-

cal size of the system was chosen as a square 6.7 cm × 6.7 cm in size. A cell

grid of 128 × 128 was imposed on these physical values and each cell was

initialised with 100 superparticles. As was the case with the 1D performance

benchmark above, here we also attempted to better approximate weak scal-

151

B.3 2 Dimensional Field Solver

Table B.5: Performance values for the strong scaling of the DADI solver.

Times given in seconds.

Blocks: 1×1 2×2 4×4 8×8 16×16 32×32 64×64

Threads:

2×2 429 164.063 86.728 61.435 58.894 57.443 60.161

4×4 208.19 101.112 65.301 53.433 51.874 52.325 53.383

8×8 116.31 68.909 54.869 51.064 50.028 49.851 50.399

16×16 69.978 55.357 50.448 50.332 49.975 50.309 52.159

ing by disabling particle gains and losses for that analysis. The raw data for

the strong and weak scaling of the 2D model is given in Tables B.3 and B.4

respectively.

B.3 2 Dimensional Field Solver

Our DADI field solver can be characterised as a composite parallel applica-

tion, consisting of a linear system solver, in this case the PCR solver, and

the DADI convergence solver. It is clear that the PCR solver is a non-

trivial parallel implementation[7] and therefore merits separate parallel per-

formance evaluation. Therefore in this analysis we examined both the PCR

solver alone and (in the case of strong scaling) the DADI solver with fixed

152

B.3 2 Dimensional Field Solver

Table B.6: Performance values for the weak scaling of the DADI solver.

Times given in milliseconds.

Blocks: 1×1 2×2 4×4 8×8 16×16 32×32 64×64

Threads:

2×2 5.7857 6.1777 6.5539 6.1633 6.5277 7.4544 8.0819

4×4 6.3551 6.1804 6.4148 6.0265 6.3700 7.2567 8.0625

8×8 6.0215 6.1438 6.3527 6.1795 6.8876 7.6580 8.5372

16×16 6.0430 6.5244 5.9936 6.7466 7.3640 8.9542 12.771

Table B.7: Performance values for the strong scaling of the PCR solver. Times given in

milliseconds.

Blocks: 1 2 4 8 16 32 64 128 256 512

Threads:

4 573.7 292.3 151.4 93.24 55.44 35.23 23.94 25.77 22.52 22.71

8 294.4 152.7 81.81 46.21 36.19 23.03 18.01 20.46 18.06 18.70

16 146.0 78.67 44.46 29.17 20.58 16.84 14.78 14.85 14.09 14.62

32 76.82 43.69 26.55 20.34 15.65 13.86 12.71 12.50 12.01 12.04

64 43.49 27.64 19.72 15.28 12.38 11.48 11.93 11.72 11.78 11.68

128 28.93 19.35 15.86 13.22 11.39 10.37 11.72 11.24 11.98 11.55

256 21.49 15.45 14.06 11.94 11.05 12.24 12.81 11.71 11.73 11.64

512 18.68 14.47 12.48 10.97 10.06 11.50 11.33 11.00 11.37 11.41

153

B.3 2 Dimensional Field Solver

PCR thread/block configuration parameters. Unlike the PIC models, the

DADI solver reaches convergence comparatively quickly so therefore in the

strong scaling case instead of setting a constant number of passes manually

we instead measured the time taken to converge onto a solution under a con-

stant accuracy requirement. Since the problem size and the source term were

kept constant for the strong scaling case, the number of passes required for

convergence remains the same.

The DADI strong scaling measurements were carried out on a 128×128

grid and are presented in Table B.5. In contrast the strong scaling measure-

ments of the PCR solver were calculated for a system size of 512×512 and are

shown in Table B.7. This discrepancy between the sizes does not affect the

validity of the measurements much since both solvers were treated separately.

The DADI problem size is smaller due to the parallel scaling measurements

taking excessively long for the low number of total threads configurations, as

seen both from the plot in Figure 7.7 and the table above. The numerical

parameters supplied to the DADI solver were for a normalised system of ∆x

= δy = 1 and ρ/ε0 = 1. For the PCR solver we used a Poisson solution in

1D as our test problem, where ρ/ε0 = 1 as well.

The weak scaling raw data for DADI and PCR solvers are shown in Tables

B.6 and B.8 respectively. As described for the previous weak scaling cases,

in our measurement we were more interested in keeping our operation load

constant, rather than obtaining correct mathematical result. Therefore for

the DADI solver we constrained our measurement to a single DADI pass,

and for the PCR solver a single cyclic reduction.

154

B.3 2 Dimensional Field Solver

Table B.8: Performance values for the weak scaling of the PCR solver. Times given in

milliseconds.

Blocks: 1 2 4 8 16 32 64 128 256 512

Threads:

4 8.493 7.855 7.980 9.891 11.25 9.991 7.869 10.93 10.12 8.057

8 8.499 7.809 8.813 9.257 7.941 10.62 9.612 8.707 9.397 8.577

16 7.992 8.656 8.764 9.963 7.887 9.250 8.443 9.192 9.871 8.850

32 10.10 9.248 7.897 10.42 8.766 8.773 9.675 9.147 10.40 8.048

64 10.79 8.254 8.350 7.876 8.041 9.784 10.86 9.198 8.282 8.164

128 11.30 9.240 9.179 7.850 10.77 9.743 10.57 10.29 9.062 11.41

256 9.354 8.993 8.629 9.881 7.645 10.89 8.701 7.916 9.516 11.32

512 10.85 9.618 8.286 8.647 7.883 10.19 10.60 9.333 9.025 10.96

155

APPENDIX C

Conferences And Publications

C.1 Publications

Leap frog integrator modifications in highly collisional particle-in-

cell codes

N. Hanzlikova, M.M. Turner

Journal of Computational Physics, 268, 2014

C.2 Conferences

Paper and talk presentation (A novel finite element method assembler for

co-processors and accelerators), IA3 2013, Denver, CO, USA.

Attendant, Supercomputing 2013, Denver, CO, USA.

Poster presentation (1 dimensional atmospheric Particle-In-Cell plasma sim-

156

C.3 Solvers

ulation on the GPU), ICOPS 2012, Edinburgh, UK.

Poster presentation (Highly Parallel Particle-In-Cell Simulations Using CPUs

and GPUs), ICPIG 2011, Belfast, UK.

Poster presentation (Simulations of Atmospheric Pressure Plasma using the

Kinetic Approach), Globe Forum 2010, Dublin, Ireland.

Attended Plasma Summer School and Masterclass 2010, Bad Honnef, Ger-

many.

C.3 Solvers

• Parallel cyclic reduction solver:

https://github.com/geekity/PCR

• Dynamic alternating direction implicit solver:

https://github.com/geekity/ADI

157

Bibliography

[1] M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges

and Materials Processing. John Willey & Sons, Inc., 1994.

[2] A. A. Fridman, Plasma Chemistry. Cambridge University Press, 2008.

[3] Nvidia, Nvidia CUDA programming Guide (V 4.0), 2011.

[4] C. K. Birdsall, “Particle-in-cell charged-particle simulations, plus Monte

Carlo collisions with neutral atoms, PIC-MCC,” IEEE Transactions on

Plasma Science, vol. 19, pp. 65–85, Apr. 1991.

[5] C. Birdsall and A. Langdon, Plasma Physics via Computer Simulation.

Institute Of Physics, 1991.

[6] P. Mertmann, D. Eremin, T. Mussenbrock, R. P. Brinkmann, and

P. Awakowicz, “Fine-sorting one-dimensional particle-in-cell algorithm

with monte-carlo collisions on a graphics processing unit,” Computer

Physics Communications, vol. 182, no. 10, pp. 2161 – 2167, 2011.

158

BIBLIOGRAPHY

[7] Y. Zhang, J. Cohen, A. Davidson, and J. Owens, “A hybrid method for

solving tridiagonal systems on the gpu,” in GPU Computing Gems Jade

Edition (W. Hwu, ed.), Elsevier, 2011.

[8] M. M. Turner, A. Derzsi, Z. Donkó, D. Eremin, S. J. Kelly, T. Lafleur,

and T. Mussenbrock, “Simulation benchmarks for low-pressure plasmas:

Capacitive discharges,” Physics of Plasmas, vol. 20, p. 013507, Jan.

2013.

[9] R. W. Hockney and J. W. Eastwood, Computer Simulation Using Par-

ticles. Taylor & Francis, Jan. 1989.

[10] D. Bohm, “Minimum ionic kinetic energy for a stable sheath,” The Char-

acteristics of Electrical Discharges in Magnetic Fields, MacGraw-Hill,

New York, vol. Chapter 3, pp. 77–86, 1949.

[11] H. R. Griem, “High-density corrections in plasma spectroscopy,” Phys.

Rev., vol. 128, pp. 997–1003, Nov 1962.

[12] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, “At-

mospheric pressure plasmas: A review,” Spectrochimica Acta, vol. 61,

pp. 2–30, Jan. 2006.

[13] P. Fauchais, A. Vardelle, and B. Dussoubs, “Quo vadis thermal spray-

ing?,” Journal of Thermal Spray Technology, vol. 10, no. 1, pp. 44–66,

2001.

[14] “Pva-tepla,” 2014.

[15] “Corotec,” 2014.

159

BIBLIOGRAPHY

[16] A. Schutze, J. Jeong, S. Babayan, J. Park, G. S. Selwyn, and R. F.

Hicks, “The atmospheric-pressure plasma jet: a review and compari-

son to other plasma sources,” Plasma Science, IEEE Transactions on,

vol. 26, pp. 1685–1694, Dec 1998.

[17] W. Siemens Poggendorff’s Ann. Phys. Chem, vol. 102, p. 66, 1857.

[18] K. Buss, “Die elektrodenlose entladung nach messung mit dem katho-

denoszillographen,” Electrical Engineering (Archiv fur Elektrotechnik),

vol. 26, no. 4, pp. 261–265, 1932. 10.1007/BF01657192.

[19] F. Massines, A. Rabehi, P. Decomps, R. B. Gadri, P. Segur, and C. May-

oux, “Experimental and theoretical study of a glow discharge at atmo-

spheric pressure controlled by dielectric barrier,” J. Appl. Phys., vol. 83,

no. 6, pp. 2950–2957, 1998.

[20] K. G. Donohoe and T. Wydeven, “Plasma polymerization of ethylene in

an atmospheric pressure-pulsed discharge,” Journal of Applied Polymer

Science, vol. 23, no. 9, pp. 2591–2601, 1979.

[21] S. Kanazawa, M. Kogoma, T. Moriwaki, and S. Okazaki, “Stable glow

plasma at atmospheric pressure,” Journal of Physics D: Applied Physics,

vol. 21, no. 5, p. 838, 1988.

[22] J. Park, I. Henins, H. Herrmann, G. Selwyn, J. Jeong, R. Hicks, D. Shim,

and C. Chang, “An atmospheric plasma source,” Applied Physics Let-

ters, vol. 76, no. 3, pp. 288–290, 2000.

[23] Y. P. Raizer, Gas Discharge Physics. Springer, 1997.

[24] I. Alexeff and M. Laroussi, “The uniform, steady-state atmospheric

160

BIBLIOGRAPHY

pressure DC plasma,” IEEE Transactions on Plasma Science, vol. 30,

pp. 174–175, Feb. 2002.

[25] F. Massines, A. Rabehi, P. Decomps, R. B. Gadri, P. Ségur, and C. May-

oux, “Experimental and theoretical study of a glow discharge at at-

mospheric pressure controlled by dielectric barrier,” Journal of Applied

Physics, vol. 83, pp. 2950–2957, Mar. 1998.

[26] D. W. Liu, F. Iza, and M. G. Kong, “Evolution of Atmospheric-Pressure

RF Plasmas as the Excitation Frequency Increases,” Plasma Processes

and Polymers, vol. 6, no. 6-7, pp. 446–450, 2009.

[27] K. H. Becker, K. H. Schoenbach, and J. G. Eden, “TOPICAL REVIEW:

Microplasmas and applications,” Journal of Physics D Applied Physics,

vol. 39, p. 55, Feb. 2006.

[28] O. Buneman, “Dissipation of currents in ionized media,” Phys. Rev.,

vol. 115, pp. 503–517, Aug 1959.

[29] C. K. Birdsall and W. B. Bridges, “Space-Charge Instabilities in Elec-

tron Diodes and Plasma Converters,” Journal of Applied Physics,

vol. 32, pp. 2611–2618, Dec. 1961.

[30] J. Dawson, “One-dimensional plasma model,” Physics Of Fluids, vol. 5,

pp. 445–59, 1962.

[31] P. Burger, “Theory of Large-Amplitude Oscillations in the One-

Dimensional Low-Pressure Cesium Thermionic Converter,” Journal of

Applied Physics, vol. 36, pp. 1938–1943, June 1965.

[32] P. Burger, “Elastic Collisions in Simulating One-Dimensional Plasma

161

BIBLIOGRAPHY

Diodes on the Computer,” Physics of Fluids, vol. 10, pp. 658–666, Mar.

1967.

[33] R. Shanny, J. M. Dawson, and J. M. Greene, “One-Dimensional Model

of a Lorentz Plasma,” Physics of Fluids, vol. 10, pp. 1281–1287, June

1967.

[34] T. Takizuka and H. Abe, “A binary collision model for plasma simula-

tion with a particle code,” Journal of Computational Physics, vol. 25,

pp. 205–219, Nov. 1977.

[35] R. J. Procassini, C. K. Birdsall, E. C. Morse, and B. I. Cohen, “A

relativistic Monte Carlo binary collision model for use in plasma particle

simulation codes,” tech. rep., May 1987.

[36] X. Wang, C. Li, M. Lu, and Y. Pu, “Study on an atmospheric pressure

glow discharge,” Plasma Sources Science Technology, vol. 12, pp. 358–

361, Aug. 2003.

[37] R. Hockney, R. Warriner, and M. Reiser, “Two-dimensional particle

models in semiconductor-device analysis,” Electronics Letters, vol. 10,

pp. 484 –486, 14 1974.

[38] B. Eliasson, W. Egli, and U. Kogelschatz, “Modelling of dielectric barrier

discharge chemistry,” Pure Appl. Chem., vol. 66, no. 6, pp. 1275–1286,

1994.

[39] R. Dorai and M. J. Kushner, “Consequences of propene and propane on

plasma remediation of no[sub x],” Journal of Applied Physics, vol. 88,

no. 6, pp. 3739–3747, 2000.

162

BIBLIOGRAPHY

[40] A. Bogaerts and R. Gijbels, “Numerical modelling of gas discharge plas-

mas for various applications,” Vacuum, vol. 69, no. 13, pp. 37 – 52,

2002. ¡ce:title¿12th International School on Vacuum, Electron and Ion

Technologie s, 17-22 September 2001, Varna, Bulgaria¡/ce:title¿.

[41] M. J. Kushner, “Hybrid modelling of low temperature plasmas for fun-

damental investigations and equipment design,” Journal of Physics D:

Applied Physics, vol. 42, no. 19, p. 194013, 2009.

[42] J. J. Shi and M. G. Kong, “Cathode fall characteristics in a dc atmo-

spheric pressure glow discharge,” Journal of Applied Physics, vol. 94,

no. 9, pp. 5504–5513, 2003.

[43] X. M. Zhu and M. G. Kong, “Electron kinetic effects in atmospheric

dielectric-barrier glow discharges,” Journal of Applied Physics, vol. 97,

no. 8, p. 083301, 2005.

[44] S. Avtaeva and A. Skornyakov, “Effect of nonlocal electron ki-

netics on the characteristics of a dielectric barrier discharge in

xenon,” Plasma Physics Reports, vol. 35, pp. 593–602, 2009.

10.1134/S1063780X09070083.

[45] S. M. Lee, Y. J. Hong, Y. S. Seo, F. Iza, G. C. Kim, and J. K. Lee,

“Simulations of biomedical atmospheric-pressure discharges,” Computer

Physics Communications, vol. 180, no. 4, pp. 636 – 641, 2009.

[46] C. A. Fichtl, J. M. Finn, and K. L. Cartwright, “An Arbitrary Curvilin-

ear Coordinate Method for Particle-In-Cell Modeling,” ArXiv e-prints,

Jan. 2012.

[47] M. Swaine, “New Chip from Intel Gives High-Quality Displays,” Info

World, vol. 5, no. 11, p. 16, 1983.

163

BIBLIOGRAPHY

[48] Nvidia, “NVIDIA: GeForce 256 - The World’s First GPU.”

http://www.nvidia.com/page/geforce256.html, 1999.

[49] Nvidia, Nvidia CUDA Programming Guide (V 1.0), 2007.

[50] Apple Inc., “Apple Previews Mac OS X Snow Leopard to Devel-

opers.” http://www.apple.com/pr/library/2008/06/09Apple-Previews-

Mac-OS-X-Snow-Leopard-to-Developers.html, 2008.

[51] J. Sanders and E. Kandrot, CUDA By Example: An Introduction

to General-Purpose GPU Programming. Addison-Wesley Professional,

1 ed., 2010.

[52] G. Stantchev, W. Dorland, and N. Gumerov, “Fast parallel Particle-To-

Grid interpolation for plasma PIC simulations on the GPU,” J. Parallel

Distr. Com., vol. 68, pp. 1339–1349, 2008.

[53] G. Stantchev, D. Juba, W. Dorland, and A. Varshney, “Using graph-

ics processors for high-performance computation and visualization of

plasma turbulence,” Computing in Science Engineering, vol. 11, pp. 52

–59, march-april 2009.

[54] X. Kong, M. C. Huang, C. Ren, and V. K. Decyk, “Particle-in-cell simu-

lations with charge-conserving current deposition on graphic processing

units,” Journal of Computational Physics, vol. 230, no. 4, pp. 1676 –

1685, 2011.

[55] I. C. for High-End Computing, “GPGPU Research Projects.”

http://www.ichec.ie/research/gpgpu projects.php, 2012.

[56] H. Burau, R. Widera, W. Ho andnig, G. Juckeland, A. Debus, T. Kluge,

U. Schramm, T. Cowan, R. Sauerbrey, and M. Bussmann, “Picongpu: A

164

BIBLIOGRAPHY

fully relativistic particle-in-cell code for a gpu cluster,” Plasma Science,

IEEE Transactions on, vol. 38, pp. 2831 –2839, oct. 2010.

[57] V. Vahedi and G. DiPeso, “Simultaneous potential and circuit solu-

tion for two-dimensional bounded plasma simulation codes,” J. Comput.

Phys., vol. 131, pp. 149–163, Feb. 1997.

[58] K. Koura, “Null-collision technique in the direct-simulation Monte Carlo

method,” Physics of Fluids, vol. 29, pp. 3509–3511, Nov. 1986.

[59] G. Ruetsch, P. Micikevicius, and T. Scudiero, Optimizing Matrix Trans-

pose in Cuda. Nvidia CUDA.

[60] S. Doss and K. Miller, “Dynamic ADI Methods for Elliptic Equations,”

SIAM Journal on Numerical Analysis, vol. 16, pp. 837–856, Oct. 1979.

[61] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,

Numerical Recipes in C. Cambridge University Press, 1 ed., Feb. 1988.

[62] Z. Wei, B. Jang, Y. Zhang, and Y. Jia, “Parallelizing alternating direc-

tion implicit solver on {GPUs},” Procedia Computer Science, vol. 18,

no. 0, pp. 389 – 398, 2013. 2013 International Conference on Computa-

tional Science.

[63] I.-J. Sung, J. A. Stratton, and W.-M. W. Hwu, “Data layout trans-

formation exploiting memory-level parallelism in structured grid many-

core applications,” in Proceedings of the 19th International Conference

on Parallel Architectures and Compilation Techniques, PACT ’10, (New

York, NY, USA), pp. 513–522, ACM, 2010.

[64] N. Hanzlikova and M. Turner, “Leap frog integrator modifications

165

BIBLIOGRAPHY

in highly collisional particle-in-cell codes,” Journal of Computational

Physics, vol. 268, no. 0, pp. 355 – 362, 2014.

[65] G. Chen, L. Chacón, and D. Barnes, “An energy- and charge-conserving,

implicit, electrostatic particle-in-cell algorithm,” Journal of Computa-

tional Physics, vol. 230, no. 18, pp. 7018 – 7036, 2011.

[66] E. Kawamura, C. K. Birdsall, and V. Vahedi, “Physical and numerical

methods of speeding up particle codes and paralleling as applied to RF

discharges,” Plasma Sources Science Technology, vol. 9, pp. 413–428,

Aug. 2000.

[67] L. Hatton and A. Roberts, “How accurate is scientific software?,” IEEE

Trans. Softw. Eng., vol. 20, pp. 785–797, Oct. 1994.

[68] L. Hatton, “The t experiments: Errors in scientific software,” IEEE

Comput. Sci. Eng., vol. 4, pp. 27–38, Apr. 1997.

[69] C. J. Roy and W. L. Oberkampf, “A comprehensive framework for ver-

ification, validation, and uncertainty quantification in scientific com-

puting,” Computer Methods in Applied Mechanics and Engineering,

vol. 200, no. 2528, pp. 2131 – 2144, 2011.

[70] I. D. Reid, “An investigation of the accuracy of numerical solutions of

Boltzmann’s equation for electron swarms in gases with large inelastic

cross sections,” Australian Journal of Physics, vol. 32, p. 231, June 1979.

[71] L. C. Pitchford, S. V. ONeil, and J. R. Rumble, “Extended boltzmann

analysis of electron swarm experiments,” Phys. Rev. A, vol. 23, pp. 294–

304, Jan 1981.

166

BIBLIOGRAPHY

[72] J. P. Verboncoeur, G. J. Parker, B. M. Penetrante, and W. L. Mor-

gan, “Comparison of collision rates in particle-in-cell, Monte Carlo, and

Boltzmann codes,” Journal of Applied Physics, vol. 80, pp. 1299–1303,

Aug. 1996.

[73] Z. Raspopovic, S. Sakadzic, S. Bzenic, and Z. Petrovic, “Benchmark

calculations for monte carlo simulations of electron transport,” Plasma

Science, IEEE Transactions on, vol. 27, pp. 1241–1248, Oct 1999.

[74] N. R. Pinhão, Z. Donkó, D. Loffhagen, M. J. Pinheiro, and E. A. Richley,

“Comparison of kinetic calculation techniques for the analysis of elec-

tron swarm transport at low to moderate E/N values,” Plasma Sources

Science Technology, vol. 13, pp. 719–728, Nov. 2004.

[75] Z. L. Petrović, S. Dujko, D. Marić, G. Malović, Ž. Nikitović, O. Šašić,

J. Jovanović, V. Stojanović, and M. Radmilović-Radjenović, “REVIEW

ARTICLE: Measurement and interpretation of swarm parameters and

their application in plasma modelling,” Journal of Physics D Applied

Physics, vol. 42, p. 194002, Oct. 2009.

[76] J. E. Lawler and U. Kortshagen, “Self-consistent Monte Carlo simula-

tions of the positive column of gas discharges,” Journal of Physics D

Applied Physics, vol. 32, pp. 3188–3198, Dec. 1999.

[77] V. A. Godyak, R. B. Piejak, and B. M. Alexandrovich, “Measurement

of electron energy distribution in low-pressure RF discharges,” Plasma

Sources Science Technology, vol. 1, pp. 36–58, Mar. 1992.

[78] M. Surendra, “Radiofrequency discharge benchmark model compari-

son,” Plasma Sources Science Technology, vol. 4, pp. 56–73, Feb. 1995.

167

BIBLIOGRAPHY

[79] A. V. Phelps, “The application of scattering cross sections to ion flux

models in discharge sheaths,” Journal of Applied Physics, vol. 76,

pp. 747–753, July 1994.

[80] S. F. Biagi, “Biagi v7.1 experimental cross section data set,” Jan. 2014.

[81] A. V. Phelps, “Compilation of atomic and molecular data,” 2005.

[82] D. Nikolopoulos, E. Ayguade, and C. Polychronopoulos, “Scaling irregu-

lar parallel codes with minimal programming effort,” in Supercomputing,

ACM/IEEE 2001 Conference, pp. 5–5, Nov 2001.

[83] N. Hanzlikova and E. R. Rodrigues, “A novel finite element method

assembler for co-processors and accelerators,” in Proceedings of the 3rd

Workshop on Irregular Applications: Architectures and Algorithms, IA3

’13, (New York, NY, USA), pp. 1:1–1:8, ACM, 2013.

[84] J. Dongarra and P. Luszczek, “Linpack benchmark,” in Encyclopedia of

Parallel Computing (D. Padua, ed.), pp. 1033–1036, Springer US, 2011.

[85] M. J. Flynn, O. Mencer, V. Milutinovic, G. Rakocevic, P. Stenstrom,

R. Trobec, and M. Valero, “Moving from petaflops to petadata,” Com-

mun. ACM, vol. 56, pp. 39–42, May 2013.

[86] NVIDIA, “Nvidia geforce gtx 760 specifications,” 2014.

[87] V. A. Godyak, R. B. Piejak, and B. M. Alexandrovich, “Evolution of

the electron-energy-distribution function during rf discharge transition

to the high-voltage mode,” Phys. Rev. Lett., vol. 68, pp. 40–43, Jan

1992.

[88] R. G. Houben and M. M. Turner, “Metastables and secondary emission

in a particle in cell simulation of a helium plasma.” 2014.

168

BIBLIOGRAPHY

[89] R. Hockney, “Performance parameters and benchmarking of supercom-

puters,” Parallel Computing, vol. 17, no. 1011, pp. 1111 – 1130, 1991.

Benchmarking of high performance supercomputers.

[90] X.-H. Sun and J. L. Gustafson, “Toward a better parallel performance

metric,” Parallel Computing, vol. 17, no. 1011, pp. 1093 – 1109, 1991.

Benchmarking of high performance supercomputers.

[91] D. Bailey, The NAS Parallel Benchmarks. NASA technical memoran-

dum, National Aeronautics and Space Administration, Ames Research

Center, 1993.

[92] Sharcnet-Consortium, “Measuring parallel scaling performance,” 2014.

169

	List of Figures
	List of Symbols
	Introduction
	Overview
	Plasma Fundamentals
	Debye Length
	Plasma Frequency
	Collisions
	Diffusion
	Plasma Sheath
	Driving Potential and Heating

	Atmospheric Pressure Plasmas
	Atmospheric Plasma Sources
	Atmospheric Plasma Characteristics

	Plasma Modelling
	Particle Modelling
	Atmospheric Plasma Modelling

	Chapter Summary

	Introduction To High Performance Computing
	Graphical Processing Unit (GPU)
	Hardware Overview
	Particle-In-Cell Models On GPU

	HPC Alternatives To GPU And CUDA
	Chapter Summary

	PIC-MCC Modelling
	PIC-MCC Model Structure
	Discretisation Of Equations
	Equations Of Motion
	Electric Field And Potential

	Charge Accumulation And Weighting
	Normalisation
	Monte Carlo Collisions
	Chapter Summary

	GPU PIC-MCC Algorithm
	GPU PIC-MCC Architecture Overview
	Memory Allocation
	Particle Data
	Cell Data
	Field Data
	Miscellaneous

	Particle Generation
	Particle Pusher
	Particle Sort
	Sort Kernel 1 - Particles Leaving The Cell
	Sort Kernel 2 - Particles Moving To Adjacent Cells
	Sort Kernel 3 - Particles Migrating Over Multiple Cells

	Particle Addition
	Field Solver
	1 Dimension
	2 Dimensions

	Chapter Summary

	Particle Pusher - Leap Frog Integration
	Leap Frog Integration Algorithm
	Classical Leap Frog Implementation
	Collisions
	Leap Frog Modifications

	Validation
	Integration Under Constant Acceleration
	Simple Harmonic Motion
	Effects Of Degree of Leap Frog Fragmentation
	Effects On Stability Of Simulation

	Chapter Summary

	Benchmarking And Verification
	Benchmark Parameters Outline
	1D Model Verification
	Comparison Of Our Simulation Techniques To Benchmark Models
	Simulation Results

	Preliminary 2D Model Verification
	2D Model Projection To 1 Dimension
	Simulation Results

	Chapter Summary

	Performance
	1 Dimensional Model
	Parallel Scaling
	Scaling With Pressure

	2 Dimensional Model
	Parallel Scaling
	Scaling With Pressure

	2 Dimensional Field Solver
	Strong Scaling
	Weak Scaling

	Chapter Summary

	Conclusions And Future Work
	Current Outcomes
	Future Work

	Appendices
	Parallel Scaling Benchmarks
	Strong Scaling
	Weak scaling

	Raw Performance Data
	1 Dimensional Model
	2 Dimensional Model
	2 Dimensional Field Solver

	Conferences And Publications
	Publications
	Conferences
	Solvers

