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Abstract   

Intrinsic and Extrinsic Factors Affecting Proteasome Inhibitor Resistance in 

Multiple Myeloma 

Dr. Catriona Ann Hayes 

The proteasome inhibitor bortezomib remains a key component of high potency 
combination regimens for multiple myeloma (MM), whose primary site of 
inhibition includes proteasome subunit beta-5 (PSMB5). However, all MM 
patients inevitably develop resistance. We therefore investigated intrinsic and 
extrinsic mechanisms underlying resistance to bortezomib in vitro and in vivo. 

We investigated a bortezomib-resistant human cell line termed MM1.VDR-gfp-
luc (VDR) with a 12-fold increase in IC50 for bortezomib, compared to its isogenic 
parental cell line MM1.R-gfp-luc (termed MM.1R), that is resistant to 
dexamethasone. VDR also retained its resistance to dexamethasone, similar to 
parental MM.1R. In an in vivo SCID-beige mouse model, VDR also retained its 
decreased responsiveness to bortezomib.  

By whole exome sequencing we identified a previously documented mutation in 
the PSMB5 gene in VDR, in addition to a number of other mutations of interest. 
We subsequently examined both the genomic and proteomic profiles of MM.1R 
and VDR cells lines, and further explored target genes or proteins of interest. We 
examined the role the bone marrow microenvironment in bortezomib resistance 
in vitro. Finally we analysed bone marrow trephine samples from bortezomib-
refractory multiple myeloma patients for their expression of proteasome-related 
subunits. 

In summary, we identified a number of known and potential novel biomarkers of 
bortezomib resistance in multiple myeloma, which firstly validated our model of 
bortezomib resistance, and secondly revealed a number of novel targets, some 
for which small molecule inhibitors are currently available. In addition we 
emphasized the pertinent role of the bone marrow microenvironment in the 
pathogenesis of drug resistance in multiple myeloma. Finally we measured the 
expression levels of PSMB5 and PSMB8 in clinical samples of patients with 
bortezomib-refractory myeloma, and suggested a role for the use of interferon-
gamma and PSMB8 inhibitors concomitantly in the clinical setting for 
bortezomib-refractory multiple myeloma. 

 

(Word count=293) 
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CHAPTER 1. INTRODUCTION 

1.1  OVERVIEW OF MULTIPLE MYELOMA IN THE CLINICAL 

SETTING 

1.1.1 Introduction 

Multiple myeloma (MM) is characterised by unrestrained proliferation of 

terminally differentiated B-lymphocytes (i.e. plasma cells). It remains an 

incurable disease. Myeloma is the second most common lymphoid malignancy 

after non-Hodgkin’s lymphoma, and third most common haematological 

malignancy in Europe.[1] In the past decade, MM overall survival rates have 

dramatically improved in an era of proteasome inhibitors by the first-in-class 

agent, bortezomib. The APEX (Assessment of Proteasome Inhibition for 

Extending Remissions) Phase III clinical trial demonstrated a 6-month overall 

survival advantage with bortezomib monotherapy compared to high dose 

dexamethasone alone for relapsed MM.[2] Presently bortezomib is currently used 

in combination schedules as up-front treatment for newly diagnosed MM, in 

addition to forming a core component of treatment regimens for relapsed and 

refractory disease.[3] However a dismal 9-month overall survival associated with 

relapsed and refractory MM provokes an urgent need to decipher fundamental 

mechanisms involved in bortezomib resistance (BR).[4] By delineating 

bortezomib-specific resistance pathways that can be overcome by targeted 

therapy, we aim to further improve the prognosis of patients with relapsed and 

refractory multiple myeloma. 

1.1.2 Overview of monoclonal gammopathies 

Multiple myeloma develops from an earlier indolent form of monoclonal plasma 

cell proliferation, called monoclonal gammopathy of undetermined significance 

(MGUS), whereby a monoclonal protein is detected in the patient’s blood. 

Approximately 1% of MGUS patients will progress to multiple myeloma each 

year.[5] In MGUS or MM, uncontrolled plasma cell proliferation results in the 

secretion of a monoclonal protein of a specific isotype, resulting in abnormal 

heavy chain (IgG/ IgA/ IgD) and/or light chain (kappa, lambda) immunoglobulin 

production. This results in varying isotypes of multiple myeloma, such as IgG 
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kappa myeloma (by far the most common), IgA kappa myeloma, IgA lambda 

myeloma, or light chain myeloma (characterised by the detection of free light 

chains only in the serum or urine), or much less frequently, IgD myeloma. The 

monoclonal protein (or M-protein) is quantified by immunofixation and serum 

protein electrophoresis, and is one of the criteria used to monitor response to 

treatment. The distinction between MGUS and multiple myeloma depends on the 

percentage of monoclonal plasma cells in the patients bone marrow (<10% in 

MGUS, versus ≥10% in myeloma), and the presence of “CRAB” criteria: 

hyperCalcaemia, Renal impairment, Anaemia and lytic Bone lesions. An 

intermediate form known as smouldering myeloma (SMM) is characterised by a 

high monoclonal protein in the serum or urine, ≥10% monoclonal plasma cells in 

the bone marrow, but the absence of CRAB criteria. Approximately 10% of 

patients with SMM progress to symptomatic multiple myeloma each year. 

Finally, solitary plasmacytoma (SPC) is a further entity of the malignant 

monoclonal plasma cell spectrum, whereby one bone lesion has proven 

monoclonal plasma cell proliferation, but in the presence of a low M-protein in 

the serum or urine, and the absence of both CRAB criteria and absence of 

monoclonal plasma cells in the bone marrow,[6] (see table 1.1.2 for summary). 

 

 

 MGUS SMM MM SPC 

Presence of 

M-protein 

 

Present 
(<3g/dL) 

Present 
(≥3g/dL) 

Present 
(≥3g/dL) 

Present 
(<3g/dL) 

Percentage 

monoclonal 

plasma cells 

in bone 

marrow 

<10% ≥10% ≥10% <10% 

CRAB 

criteria 
Not present Not present Present Not present 

Table 1.1.2: Spectrum of monoclonal gammopathies. To fulfil diagnostic 
criteria for multiple myeloma (highlighted in red), an M-protein of ≥3g/dL needs 
to be present in the serum or urine, ≥10% monoclonal plasma cells in the bone 
marrow trephine and exhibit at least one of the four CRAB criteria. 
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1.1.3 Epidemiology of multiple myeloma 

A large retrospective study examining the survival of patients with 

haematological malignancies recently published in the Lancet journal outlines 

the frequency of haematological malignancies in Europe and associated survival 

scores for each subtype. As previously mentioned, multiple myeloma is the 

second most common lymphoid malignancy after non-Hodgkin’s lymphoma, and 

third most common haematological malignancy in Europe. Of all the lymphoid 

malignancies, multiple myeloma was the most frequently occurring, compared to 

Hodgkin’s lymphoma and individual non-Hodgkin’s lymphoma subtypes. 

Between 1996 and 2007, 81,562 cases of multiple myeloma or plasmacytoma 

have been documented. In 1997-1999, the 5-year relative survival for myeloma 

was 29.8% which dramatically increased to 39.6% by 2006-2008, and this stark 

increase has been attributed to novel therapies for myeloma such as the 

immunomodulators thalidomide and lenalidomide, and the proteasome inhibitor 

bortezomib.[1] 

1.1.4 Clinical Presentation 

Multiple myeloma exhibits varying degrees of clinical presentation. Patients with 

known MGUS or smouldering myeloma have routine monitoring of monoclonal-

protein (M-protein) by serum protein electrophoresis (SPEP), serum free light 

chains (sFLCs), Bence-Jones proteins (BJP), creatinine, calcium, and 

haemoglobin. A rise in M-protein/sFLC/BJP or the development of CRAB criteria 

warrant restaging and this is a common means of detecting symptomatic 

myeloma in the clinic. CRAB criteria manifest clinically as bone pain (secondary 

to lytic lesions), fatigue, perioral paraesthesia (secondary to hypercalcaemia), 

anuria or oliguria (secondary to renal impairment), or autonomic neuropathy (a 

paraneoplastic phenomenon associated with myeloma). Suppression of normal 

immunoglobulins by the predominating monoclonal protein can cause impaired 

immune function and increased frequency of infections. 

Other patients are diagnosed following investigation of unexplained 

hypercalcaemia or renal impairment. Some patients will have an incidental 

finding of a raised total serum protein on routine liver profile testing, with a 
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large globulin-to-total-protein ratio. Finally, a number of patients will present 

with multiple myeloma without preceding MGUS or SMM, and will exhibit a 

monoclonal protein in the serum or urine, 10% or more monoclonal plasma cells 

in the bone marrow, and end-organ damage such as debilitating vertebral body 

collapse manifesting with severe back pain or even paralysis. Finally, if the 

tumour burden in the bone marrow is over-whelming, patients may even present 

with a secondary plasma cell leukaemia, whereby circulating malignant plasma 

cells can be seen on blood film by light microscopy. 

1.1.5 Definition of multiple myeloma 

 
To recap, diagnosis of multiple myeloma is based on the International Myeloma 

Working Groups diagnostic criteria as defined by the following parameters: 

≥10% monoclonal plasma cells present in the bone marrow, the detection of an 

M (monoclonal)-protein in the serum and/or urine, whilst also fulfilling at least 

one of the four “CRAB” criteria, that cannot be explained by another concomitant 

pathological process.[6] 

 

1.1.6 Staging of MM 

The Durie-Salmon staging system was historically used to determine stage of 

multiple myeloma, and is based on total M-protein in serum or urine, 

haemoglobin level, serum calcium level and the number of lytic lesions identified 

on skeletal survey. This staging system was first published in 1975, however 

with more advanced means of determining the extent of lytic bone disease and 

with increased availability of PET-CT and MRI to identify lytic bone lesions, this 

staging system is less frequently used nowadays.[7] 

Currently the cornerstone of staging of multiple myeloma is determined by the 

International Staging System, which incorporates the patients’ serum albumin 

and beta-2-microglobulin levels. Patients with a serum albumin measurement 

greater than or equal to 3.5g/dL and a serum beta-2-microglobulin lower than 

3.5mg/L are by definition stage 1 disease. Stage 3 disease is defined a having a 

serum beta-2-microglobulin greater than 5.5mg/L. Stage 2 disease is defined as a 
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serum albumin or beta-2-microglobulin level not fulfilling either stage 1 or stage 

3 disease (see table 1.1.6). A higher disease stage correlates with shorter overall 

survival.[8]  

Newer staging systems have been designed to take the patients co-morbidities 

into account, such as the Freiburg Comorbidity Index, which takes into account 

the patients renal function, respiratory status and Karnofsky Performance 

score.[9]  

 

 

Table 1.1.6: International Staging System (ISS) of Multiple Myeloma. Stage 
of myeloma is determined by serum albumin and serum beta-2-microglobulin 
(B2M) levels. 

 

1.1.7 Management of Multiple Myeloma 

MM is increasingly becoming a disease that requires individualised patient 

therapy, depending on the stage of their disease and characteristic features at 

presentation. The European Myeloma Network published a new set of guidelines 

in relation to management of patients with newly diagnosed multiple myeloma 

in February 2014. Patients are first risk stratified based on ISS stage and 

cytogenetic abnormalities that are present in the malignant plasma cell clone. 

Induction therapy with a triple regimen to include bortezomib and 

dexamethasone with the addition of adriamycin/thalidomide/cyclophosphamide 

is recommended as first line for induction therapy. In patients who are medically 

ISS Staging of MM Stage I Stage II Stage III 

Serum albumin >3.5g/dL <3.5 g/dL 

(and B2M<3.5mg/L) 

N/A 

Serum B2M <3.5mg/L 3.5-5.5mg/L 

(with any albumin 

level) 

>5.5mg/L 
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fit, induction therapy should be followed by autologous stem cell transplant 

(ASCT), with subsequent thalidomide or lenalidomide-based maintenance 

therapy. Bortezomib consolidation should also be considered following ASCT 

should the patient fail to achieve an excellent response to ASCT. In patients who 

are non-transplant eligible, a combination of melphalan and prednisolone with 

either bortezomib or thalidomide is recommended, with the possibility of 

lenalidomide monotherapy or lenalidomide plus reduced-dose dexamethasone 

maintenance,[10] (see figure 1.1.7 for summary). 

Locally in our tertiary referral centre at the Mater Misericordiae University 

Hospital, patients initially undergo induction therapy with a bortezomib-based 

regimen for example RVD (lenalidomide (i.e. Revlimid), bortezomib (i.e. 

Velcade), dexamethasone).[11] Patients also receive monthly bisphosphonate 

infusions, mainly zoledronic acid, which has been shown to reduce skeletal-

related events (i.e. bone fractures) in MM patients and also appears to increase 

overall survival in MM.[12] For transplant eligible candidates, if an appropriate 

response is achieved with induction therapy, autologous stem cell transplant 

(ASCT) will be considered depending on the individual’s risk for progression. 

Following ASCT, or achievement of clinical response in the absence of ASCT, 

patients are assigned maintenance therapy, often in the form of lenalidomide 

which has been shown to prolong time to progression and overall survival, and 

are maintained on same until progression occurs.[13]  
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Figure 1.1.7: European Myeloma Network 2014 Guidelines on Management 

of Newly diagnosed Multiple Myeloma. Overview of recent guidelines for the 

management of newly diagnosed MM. Note: Bort= bortezomib; Adria= 

adriamycin; Dex= high dose dexamethasone; Thal= thalidomide; Cyclophos= 

cyclophosphamide; Len= lenalidomide; Mel= melphalan; Pred= prednisolone; 

dex= low dose dexamethasone. 

Newly diagnosed 

Multiple Myeloma

Transplant 

eligible

Induction:

Bort/Adria/Dex

or

Bort/Thal/Dex

or

Bort/Cyclophos/Dex

Autologous Stem Cell Transplant

Optimal Response

Len maintenance

Suboptimal Response

Bort consolidation, 

then Len maintenance.

Transplant 

ineligible

Induction:

Mel/Bort/Pred

or

Mel/Thal/Pred

Maintenance:

Len

or

Len/dex
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1.1.8 Novel/ Investigational Therapies for MM 

A variety of promising novel agents are currently under investigation for the 

management of MM. These include novel histone deacetylase inhibitors (e.g. 

panobinostat), second generation proteasome inhibitors (carfilzomib, ixazomib), 

novel immunomodulators (such as pomalidomide), a novel PI3K-Akt 

(phosphatidylinositol 3-kinase-Akt) inhibitor (perifosine), a NEDD8-activating 

enzyme inhibitor (MLN4924) and an mTOR inhibitor (BEZ235). 

 

Histone deacetylase (HDAC) inhibitors such as vorinostat have successfully 

undergone Phase I clinical trials in 2008 demonstrating tolerability in relapsed 

and refractory MM as a single agent,[14] and furthermore efficacy when used in 

combination with bortezomib in another clinical trial in 2012.[15] Panobinostat, a 

class I, II and IV HDAC inhibitor is considered the most efficacious HDAC 

inhibitor and allows dual inhibition of the proteasome and aggresome when 

combined with bortezomib.[16] A number of phase 1 and 2 clinical trials, 

including PANORAMA 2 at our collaborating centre at Dana-Farber Cancer 

Institute, have proven its efficacy for use in relapsed and refractory multiple 

myeloma in the clinical setting.[17-19] Panobinostat is also undergoing clinical 

trials for its use in newly diagnosed transplant-eligible multiple myeloma in 

combination with lenalidomide-bortezomib-dexamethasone, and in the relapsed 

and refractory setting in combination with carfilzomib (www.clinicaltrials.gov). 

 

With the success of bortezomib, second generation proteasome inhibitors (PIs) 

are now at the forefront of investigation for MM treatment. In particular 

carfilzomib, a proteasome inhibitor which binds irreversibly to the proteasome, 

received FDA approval in July 2012 for use in relapsed and refractory multiple 

myeloma, in patients who have received at least 2 previous treatment regimens 

containing bortezomib and an immunomodulator such as lenalidomide or 

thalidomide.[20] A number of further studies have proven the efficacy of 

carfilzomib in both newly diagnosed and relapsed and refractory multiple 

myeloma.[21-24] Furthermore, oral proteasome inhibitors are also under 

investigation such as marizomib, a broad spectrum proteasome inhibitor that is 
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at the pre-clinical phase of investigation and targets multiple sites of proteolytic 

activity within the proteasome,[25] and ixazomib, a twice weekly oral proteasome 

inhibitor which has just completed phase 1 clinical trial with promising results 

for its use in refractory myeloma.[26] 

 

In an era of novel proteasome inhibitors, we also see novel immunomodulatory 

drugs at the forefront of multiple myeloma research. In particular pomalidomide 

in February 2013 was granted accelerated FDA-approval for its use in refractory 

multiple myeloma in the United States, and subsequently achieved approval in 

Europe in August 2013.[27-31] At our local haematology department at the Mater 

Misericordiae Hospital in Dublin we have enrolled a number of patients in the 

STRATUS study that is examining the use of pomalidomide in combination with 

low dose dexamethasone in relapsed and refractory myeloma. 

 

Finally, perifosine, the Akt inhibitor that targets phosphatidylinositol 3-kinase-

Akt signalling, has successfully completed Phase I clinical trials in relapsed 

myeloma with encouraging results.[32, 33] Down the pipeline additional agents 

that are currently under investigation include those targeting two pathways 

strongly implicated in multiple myeloma pathogenesis including (a) the 

ubiquitination pathway, in particular NEDD-8-activating enzyme inhibition via 

MLN4924 (of which phase 1 clinical trial has been completed, results 

pending),[34] and (b) inhibitors of the phosphatidylinositol 3-kinase (PI3K)-Akt-

mammalian target of rapamycin (mTOR) pathway via BEZ235 (which is 

currently in clinical trials for solid tumour malignancies).[35]   

 

1.2 RELAPSED AND REFRACTORY MULTIPLE MYELOMA 

1.2.1 Definition of relapsed and refractory MM  

The International Myeloma Working Group, in addition to providing us with 

diagnostic criteria for myeloma, have also provided us with response criteria in 

multiple myeloma.[6] Response is broken down into a number of categories that 

include complete response (CR), very good partial response (VGPR), partial 

response (PR), stable disease (SD), minimal response (MR) and progressive 
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disease (PD). These responses are based mainly on the degree of reduction in 

serum or urine M-protein, reduction in number of clonal plasma cells in the bone 

marrow, disappearance of soft tissue plasmacytomas, and if clinically indicated, 

reduction in free light chain assays.  

Progressive disease is based on an increase of 25% from initially documented 

value in any of the following: serum M-protein, urine M-protein, serum free light 

chains (if serum or urine M-protein not detectable at baseline). In addition an 

increase in the percentage plasma cells in the bone marrow must be ≥10%. The 

development of new lytic lesions or new hypercalcaemia that can solely be 

attributed to the myeloma also correlate with progressive disease. 

“Relapsed myeloma” is defined based on criteria indicating increased disease 

burden, or new/ worsening CRAB criteria. “Clinical relapse” is used in the clinical 

setting to document the recurrence of disease following completion of therapy, 

however it is not used to calculate time to progression or progression free 

survival. Specifically, the development of new bone lesions or new soft tissue 

plasmacytomas, increasing size of known plasmacytomas by 50% (that are at 

least 1cm larger than before), elevated serum calcium levels >2.65mmol/L, a 

reduction in haemoglobin ≥2g/dL, or an increase in serum creatinine 

>177umol/L all correlate with relapsed myeloma. 

“Refractory myeloma” is defined as a lack of any measurable response in a patient 

to current treatment, or progression of disease within 60 days of their last 

treatment. There are two main groups of refractory myeloma, primary refractory 

myeloma whereby patients do not respond to induction chemotherapy; and 

secondary refractory myeloma, whereby patients respond to induction therapy 

but do not respond to salvage therapy after relapse following induction therapy. 

Finally, “relapsed and refractory myeloma” is defined clinically as someone who 

obtained at least a minimal response to therapy, then develops progressive 

disease, undergoes salvage chemotherapy, and either does not respond to 

salvage treatment at all or experiences progressive disease within sixty days of 

their last treatment.[36] 
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1.2.2 Poor prognosis associated with relapsed and refractory MM 

Despite an era of novel therapies including the proteasome inhibitor bortezomib 

and the immunomodulators (IMiD) thalidomide and lenalidomide, patients 

inevitably develop a state of relapsed and refractory disease. The prognosis at 

this disease stage was vividly outlined by Kumar et al. in a large multicentre 

study in 2012. In total, 286 patients were studied. The inclusion criteria included 

patients who were refractory to bortezomib, and/or were resistant to an 

immunomodulator (thalidomide or lenalidomide) or intolerant of /ineligible for 

treatment with an IMiD. Time zero (or T0) was defined as the time in which the 

patients fulfilled the aforementioned criteria. The average age of the patients 

included in the study was 58 years at time zero. The average EFS (event free 

survival) from time zero for the entire group was 5 months (95% CI; 4, 6), and 

the average overall survival was 9 months (95% CI; 7, 11). The total overall 

survival for the group from time of diagnosis was 4.7 years (or 56 months; 95% 

CI; 44, 72). For patients specifically refractory to bortezomib, their median 

overall survival was found to be just 9 months ((95% CI; 7,11), and for those 

refractory to or intolerant of an IMiD overall survival was also 9 months (95% 

CI; 7,13). Figure 1.2.2.1 represents the survival outcomes for both bortezomib 

refractory and IMiD refractory/intolerant patients. 
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Figure 1.2.2.1: Survival outcomes of patients with bortezomib and 

immunomodulator refractoriness. The mean overall survival of patients found 

to be refractory to an immunomodulator or bortezomib was found to be 9 

months. (Figure extracted from Leukaemia Journal, January 2012; 26(1):149-57. 

“Risk of progression and survival in multiple myeloma relapsing after therapy with 

IMiDs and bortezomib: a multicenter international myeloma working group study.” 

Kumar et al.) 
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1.2.3 Treatment options in relapsed and refractory multiple myeloma 

As the majority of patients will eventually relapse, salvage therapies with both 

conventional and novel agents are deployed.[36] For a first and indolent relapse, 

salvage therapy with bortezomib or an immunomodulator (lenalidomide, 

thalidomide) in combination with dexamethasone may be considered, depending 

on the patient’s prior response to these agents. For aggressive relapse or relapse 

late in the disease a combination regimen including a novel agent as part of a 

clinical trial should be considered, for example encompassing a novel Akt 

inhibitor such as perifosine with lenalidomide and dexamethasone,[33] or using 

monoclonal antibody therapy for example bortezomib/elotuzumab regimen[37]. 

Alternatively a chemotherapy-based regimen such as DCEP (Dexamethasone, 

cyclophosphamide, etoposide, cisplatin) or DT-PACE (Dexamethasone, 

thalidomide- cisplatin, doxorubicin, cyclophosphamide, and etoposide) may be 

used.[36] Autologous stem cell transplant can be considered at this stage also, 

however the disease-free survival in relapsed and refractory myeloma versus 

newly diagnosed patients under-going ASCT may be somewhat shorter.  

 

In summary, bortezomib now forms the cornerstone of combination regimens 

for MM patients at diagnosis and at time of relapse, therefore examining 

resistance to bortezomib is of utmost importance in the clinical setting.  

 

1.3 PROTEASOME INHIBITION IN MULTIPLE MYELOMA 

1.3.1 The role of the 20S proteasome 

The proteasome has been studied in great detail since the emergence of first and 

more recently second generation proteasome inhibitors. It is an intracellular 

structure located in both the nucleus and cytoplasm and functions in recycling 

ubiquitinated proteins that have been tagged for degradation.  The proteasome 

consists of a 20S core particle and two 19S regulatory caps on either end. The 

20S core contains two outer rings of α subunits, and 2 inner rings of β (beta) 

subunits. The catalytic sites for proteolysis lie within the β subunits.  Three 

catalytic activities occur in protein degradation: chymotrypsin-like (CT-L), 
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caspase-like (C-L) and trypsin-like (T-L) activities, and these predominate in the 

β5, β1 and β2 subunits respectively.[38] 

1.3.2 Rationale for use of bortezomib in multiple myeloma 

Bortezomib preferentially binds and reversibly inhibits the chymotrypsin (CT)-

like active site by binding to threonine residues within the β5 subunit, and to a 

lesser degree inhibits caspase-like and trypsin-like activity.[39] This results in 

subsequent endoplasmic reticulum stress, accumulation of misfolded proteins 

within the cell, and resultant cellular apoptosis.[40]  

 

The original rationale for use of bortezomib as an anti-MM agent was to suppress 

anti-apoptotic nuclear factor-kappaB (NF-ĸB) activity by preventing recycling of 

its inhibitor, IkappaB, as outlined by Hideshima et al in 2002.[41] A vast body of 

further pre-clinical and clinical evidence for the many roles of bortezomib in MM 

has since emerged.  Bortezomib re-sensitises drug resistant LR5 and RPMI-8226-

Dox40 myeloma cells in vitro (that are resistant to melphalan and doxorubicin 

respectively) to their respective resistance-related agents when treated in 

combination with bortezomib.[42] Bortezomib when used in combination with a 

human homologue of Mdm2-(Hdm2)/p53 inhibitor (i.e. nutlin-3) demonstrates 

synergistic cell death in MM cells co-cultured in the presence of bone marrow 

stromal cells, which is not efficacious when the Mdm2 inhibitor is used in 

isolation.[43] In addition to the anti-myeloma effect of bortezomib, a positive 

impact on bone remodelling has been attributed to bortezomib by its stimulatory 

effects at the transcript level on genes promoting osteoblast differentiation such 

as alkaline phosphatase and osteocalcin, and at the molecular level by up-

regulating Runx2, as seen in C2C12 mouse myeloblast cells.[44] In an in vivo 

mouse model (engrafted with plasma cells from 16 MM patients), bortezomib 

has been shown to counteract the secondary effects of myelomatous bone 

disease by stimulating osteocalcin secretion by osteoblasts, (thus promoting 

osteoblastogenesis), in addition to suppressing osteoclastogenesis.[45] Finally a 

prospective trial examining patients under-going single agent bortezomib 

treatment confirmed the pro-osteogenic effects of bortezomib in vivo by micro-



20 

CT demonstrating increased osteoid deposition in bortezomib-responsive 

patients.[46] 

 

1.3.3 Second generation proteasome inhibitors 

Proteasome inhibitors can be divided into three subgroups: peptide boronates 

(bortezomib, ixazomib, delanzomib), peptide epoxyketones (carfilzomib, 

oprozomib), and beta-lactones (marizomib), see table 1.3.3 for a summary of 

their properties. 

 

Following the success of bortezomib the aforementioned second generation 

proteasome inhibitors have been developed, the most notable of these includes 

the epoxyketone carfilzomib, which has also achieved FDA approval for use in 

multiple myeloma. Carfilzomib selectively inhibits CT-like activity, but does so 

irreversibly.[47, 48] In addition it inhibits trypsin-like and caspase-like proteolytic 

activity but to a lesser degree in comparison to bortezomib. Carfilzomib has been 

shown to overcome bortezomib resistance in both bortezomib-resistant cell 

lines and in clinical samples of bortezomib-refractory multiple myeloma patients 

in the in vitro setting.[48] In addition in the in vivo setting, the frequency of 

peripheral neuropathy associated with bortezomib treatment, which can 

frequently warrant dose reduction or drug discontinuation, is markedly reduced 

with carfilzomib treatment.[49] This adverse side effect has been attributed to the 

off-target inhibition of HtrA2/Omi (which correlates with survival of neurons) 

and reduction in neurite length by bortezomib in vitro, however these off-target 

effects do not occur with carfilzomib treatment.[50] Oprozomib is an orally 

bioavailable epoxyketone that maintains the same efficacy of carfilzomib in 

inhibiting the chymotrypsin-like catalytic site within the proteasome, however 

gastrointestinal side effects have been frequently reported in in vivo pre-clinical 

studies.[51] 

 

The novel boronates including ixazomib and delanzomib inhibit the proteasome 

reversibly, like bortezomib, and mainly act via inhibition of the beta-5 

proteasome subunit. They potently inhibit nuclear-factor-kappa-B activation, 
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exert an anti-myeloma effect, an anti-angiogenic effect, and suppress osteoclasts. 

Both are under investigation for their efficacy in parenteral administration, 

however can also be used intravenously, like bortezomib. Ixazomib (or 

MLN9708) converts to its active form MLN2238 when exposed to water.[51] This 

compound has successfully completed Phase 1 clinical trials in relapsed and 

refractory multiple myeloma as previously outlined.[26] 

 

Marizomib, an alternative novel proteasome inhibitor, is a naturally occurring 

substance extracted from Salinospora tropica marine bacteria. Marizomib has 

been shown to inhibit irreversibly all three proteolytic sites: chymotrypsin-like, 

trypsin-like and caspase-like activities in the proteasome. It has potential also for 

use as an oral therapy in cancer.[51] In a phase 1 clinical trial involving 22 

patients with non-small-cell lung cancer, melanoma or pancreatic cancer, 

marizomib in combination with the histone deacetylase inhibitor vorinostat was 

well tolerated by patients and resulted in disease stability in 61% and reduction 

in tumour burden in 39% of patients evaluated.[52] These results encourage 

assessment of marizomib for other malignancies including multiple myeloma, in 

which proteasome inhibitors are now well established as a successful therapy. 

 

Proteasome 

Inhibitor 
Class 

FDA- 

Approval 

Proteolytic 

Activity 

Inhibitory 

Effect 

Mode of 

Delivery 

Bortezomib Boronate Yes CT-L Reversible IV/SC 
Ixazomib Boronate - CT-L Reversible IV/PO 

Delanzomib Boronate - CT-L Reversible IV/PO 
Carfilzomib Epoxyketone Yes CT-L Irreversible IV 
Oprozomib Epoxyketone - CT-L Irreversible IV/PO 
Marizomib Beta-lactone - CT-L, T-L Irreversible IV/PO 

 

Table 1.3.3 Characteristics of proteasome inhibitors. Characteristics of first 
and second generation proteasome inhibitors, information courtesy of Lawasut 
et al, “New Proteasome Inhibitors in Myeloma”, Curr Hematol Malig Rep 2012.[51] 
(Note: CT-L= chymotrypsin-like; T-L= trypsin-like; IV= intravenous; PO= per 
oral). 
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1.3.4 The Immunoproteasome  

In the majority of cells in the body, stress caused by oxidative forces and 

inflammatory cytokines results in an increase in production of what is known as 

the immunoproteasome. For this reason, cells of the immune system express 

greater levels of immunoproteasome rather than constitutive proteasome. 

Immunoproteasomes have historically been documented for their pertinent role 

in the process of major-histocompatibility class-1 antigen presentation within 

cells in response to infections.[53]  

The immunoproteasome itself contains catalytic active sites that correlate to the 

catalytic active sites found in constitutive proteasomes. So, the β-5 subunit in the 

constitutive proteasome corresponds to β-5i immunoproteasome, β-1 to β-1i, 

and β-2 to β-2i respectively (see table 1.3.4 for summary of proteasomal 

subunits and their associated protein targets). 

 

Catalytic 

Activity 

Constitutive 

Subunit 

Uniprot 

Symbol 

Immuno-

proteasome 

Subunit 

Uniprot 

Symbol 

CT-L β-5 PSMB5 β-5i PSMB8/ LMP7 

C-L β-1 PSMB1 β-1i PSMB9/ LMP2 

T-L β-2 PSMB2 β-2 PSMB10/MECL1 

 

Table 1.3.4: Constitutive and Immunoproteasome Subunits. Constitutive and 
immunoproteasome subunits (with corresponding protein symbols) highlighted 
in red and blue respectively. (Note: CT-L= chymotrypsin-like; C-L= caspase-like; 
T-L= trypsin-like.) 

 

Immunoproteasome subunit generation can be induced in cells by the presence 

of the inflammatory cytokine interferon-gamma. Once generated, 

immunoproteasome subunits are introduced into newly generated proteasome 

20S cores instead of the constitutive subunits. Even though interferon- gamma 

abrogates incorporation of constitutive subunits into the proteasome structure, 

its presence does not appear to alter the overall content of β5, β1 or β2 mRNA 
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within cells. In fact following interferon-gamma stimulation of cells, cells are 

found to contain proteasomes with a mixture of β5, β1 and β2 subunits, or β5i, 

β1i and β2i subunits.[54] 

In 2005, Altun et al demonstrated that myeloma cell lines contain both 

constitutive and immunoproteasome subunits. At baseline, MM cell lines contain 

more constitutive than immunoproteasome subunits, however the latter is up-

regulated by interferon-gamma. By 2-dimensional gel electrophoresis the active 

catalytic subunits for β5, β1 and β2, or β5i, β1i and β2i were examined following 

their treatment with bortezomib, with and without interferon-gamma pre-

treatment. They found that pre-treatment with interferon gamma up-regulated 

the β5i subunit and that bortezomib had the ability to inhibit its catalytic activity, 

in addition to its better known mode of action, i.e. inhibition of the constitutive 

β5 active site.[55] 

 

Secondly, in 2008, another group suggested a role for use of interferon-gamma to 

ameliorate the effects of bortezomib in preclinical models of B cell neoplasms 

including Burkitt’s lymphoma, mantle cell lymphoma and myeloma. They found 

that pre-treatment with interferon-gamma of the B cell lymphoma cell line 

KARPAS422, and in 5 out of 6 bortezomib-sensitive B cell neoplastic cell lines 

tested (including RPMI8226 myeloma cell line) induced a marked increase in the 

sensitivity of these cell lines to bortezomib. The plasmacytoma cell line U266 

demonstrated the greatest increase in sensitivity to bortezomib when pre-

treated with interferon-gamma. These findings may be mediated at least in part 

by increased immunoproteasome assembly as demonstrated by RT-PCR subunit 

expression levels following interferon-gamma pre-treatment.[56] Interferon-

gamma however is also known to alter transcription of a large number of genes 

including caspase-8 that promotes apoptosis,[57] and Mitsiades et al have also 

demonstrated caspase-8 up-regulation by bortezomib.[40] Therefore we cannot 

assume that the synergistic effects of interferon-gamma with bortezomib are 

solely mediated by immunoproteasome subunit up-regulation. However these 

data support a role for interferon-gamma pre-treatment with bortezomib to 
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augment its potency, and in particular support a role for interferon-gamma pre-

treatment in the setting of bortezomib-refractory myeloma.  

 

1.3.5 Novel immunoproteasome inhibitors 

Following an era of first and second generation proteasome inhibitors, the 

immunoproteasome inhibitors are now coming to the forefront of research for 

their use in haematological malignancies. PR-924, a tri-peptide epoxyketone 

proteasome inhibitor has been shown to selectively inhibit PSMB8 (also known 

as LMP7). Singh et al have shown in particular how PR-924 suppress 

proliferation of and induce myeloma cell line apoptosis with subsequent 

upregulation of caspase-3, caspase-8 and caspase-9. The same group also 

demonstrated the efficacy of PR-924 in a human plasmacytoma mouse model in 

vivo with reduction in tumour burden and increase in overall survival of PR-924 

treated-mice over vehicle mice.[58] These findings pave the way for use of 

immunoproteasome inhibitors in multiple myeloma in the future. 

1.3.6 In Vitro Models of Bortezomib Resistance  

In order to investigate bortezomib resistance (BR) in vitro, a number of 

investigators have generated bortezomib resistant models of haematological and 

solid tumour cell lines. On 2008 Oerlemans et al initially produced an acute 

monocytic leukaemia BR-model (THP-1) exhibiting a 45-129 fold reduction in 

sensitivity to bortezomib.[59] In the same year, Lu et al described a bortezomib 

resistant T cell acute lymphoblastic leukaemia cell line (Jurkat), which 

demonstrated an increase in IC50 from parental to bortezomib-resistant-model of 

10nM to 268nM respectively after 24-hour treatment.[60] Both aforementioned 

models identified a common mutation (G322A substitution) in the PSMB5 

subunit as a causative factor for bortezomib resistance. Ri et al next described 

the first model of BR in multiple myeloma in 2010, again demonstrating marked 

resistance to the proteasome inhibitor, and confirming the previously published 

PSMB5 mutation delineated by Oerlemans, in both KMS-11 and OPM-2 BR 

models.[61] Perez-Galan et al in 2011 developed mantle cell lymphoma cell lines 

(JEKO, HBL-2) that acquired a 40-80 fold reduction in bortezomib sensitivity 
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secondary to undergoing plasmacytic differentiation, but the previously 

documented PSMB5 mutations were not detected in these models.[62] Suzuki et 

al, again in 2011, chose a colon cancer model (HT-29) to study bortezomib 

resistance and demonstrated further unique PSMB5 mutations.[63] Finally, Kuhn 

et al in 2012 demonstrated an additional model of BR in MM, which although it 

did not demonstrate PSMB5 mutations, underlined the efficacy of targeting the 

insulin-like growth factor receptor to overcome bortezomib resistance.  

1.3.7 Functional significance of PSMB5 mutations in vitro 

There remains limited clinical evidence for the role of PSMB5 mutations in 

bortezomib resistance in vivo to date. This can be perhaps explained by the 

limited number of samples obtainable from bortezomib refractory patients, as it 

is often not appropriate to repeat bone marrow biopsies late in the disease 

course, in particular at a stage when patients require only palliative and 

supportive care. An alternative explanation is perhaps the mechanisms of 

bortezomib resistance may differ between the in vitro and in vivo setting. Much 

functional evidence suggests that these mutations play a role in bortezomib 

resistance thus far in vitro. For example, Oerlemans, using a bortezomib-

resistant AML cell line encoding the mutant G322A substitution in the PSMB5 

gene, demonstrated that siRNA knockdown of the PSMB5 gene in the resistant 

clone re-sensitised the cells to bortezomib.[59] Furthermore, Lu et al, who also 

described the same G322A substitution in the PSMB5 gene in a T cell ALL model 

of BR, demonstrated how retroviral insertion of the mutant-PSMB5 into parental 

Jurkat cells rendered them resistant to bortezomib and also interfered with 

chymotrypsin-like inhibition.[60] In MM, similar findings were confirmed when 

this same PSMB5 mutation, found in a KMS-11 BR clone, was inserted into 

parental KMS-11 cells, which resulted in a marked reduction in bortezomib-

associated apoptosis in the parental cells.[61] Suzuki described a novel PSMB5 

mutation of particular interest, a Cys63Phe mutation, whereby Cys63 is a residue 

with known critical drug binding affinity for bortezomib, and it’s substitution 

with phenylalanine resulted in a change in the angle of the bortezomib active site 

binding-helix, with resultant change in the orientation and conformation of 

bound bortezomib within the active site, and thus may explain reduced 
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inhibition of chymotrypsin-like activity in the resistant clone.[63] Finally, Franke 

et al furthermore demonstrated, by 3D in silico modelling, a number of PSMB5 

mutations that alter the structural conformation of the bortezomib-binding 

pocket within the β5 subunit, and impair bortezomib binding in vitro.[64] In 

conclusion a vast body of evidence has outlined the potential role PSMB5 

mutations play in bortezomib resistance in the in vitro setting.[65] However it 

remains to be fully elucidated whether or not these findings translate clinically in 

the in vivo setting. 

 

1.4 GENETICS OF MULTIPLE MYELOMA 

 

1.4.1 Cytogenetics 

As part of their initial work-up, cytogenetic analysis of the CD138-positive 

monoclonal plasma cells of patients with multiple myeloma are examined as 

these anomalies can help assist in predicting outcome and this is examined by 

conventional cytogenetics or fluorescent in situ hybridisation. The malignant 

myeloma cells generally fall in into one of two groups: hypodiploid or 

hyperdiploid. Hypodiploidy is associated with translocations t(4;14) or t(14;16) 

and hyperdiploidy associated with t(11;14), the former of which is associated 

with a poorer overall prognosis. Later on in the disease secondary aberrations 

develop and these generally involve deletions such as del17p, del13q, del1p, or 

amplification of 1q. Del17p is associated with a very poor prognosis.[66] 

1.4.2 Whole genome mapping in MM 

A highly comprehensive sequencing analysis involving whole exome sequencing 

or whole genome sequencing of 38 MM patients in 2011, although did not focus 

on resistance to therapy, underlined the invaluable application of whole genome 

sequencing for determining pathogenesis mechanisms in MM. The previously 

established role of the NF-ĸB pathway was further expanded by this study, by 

demonstrating 11 distinct mutations implicated in its activation. Furthermore, 

additional sequencing studies demonstrated mutations of BRAF kinase in 4% of 

subjects, which have not been previously recognized in MM patients.[67] This 
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novel finding has high potential for rapid clinical translation as these patients 

may benefit from BRAF kinase targeting via BRAF inhibitors, which are now used 

in metastatic malignant melanoma.[68] 

1.4.3 Role of PSMB5 mutations in MM in the clinical setting 

Despite vast evidence for the role of PSMB5 mutations in bortezomib resistance 

in vitro, no evidence of these mutations have yet been implicated in bortezomib 

resistance in vivo. A recent study was undertaken whereby whole exome 

sequencing of 76 MM patients was completed to include the following groups: 10 

patients with reduced sensitivity to single agent bortezomib (where bortezomib 

insensitivity was defined as minimal response/ stable disease/ progressive 

disease) and 6 MM patients who relapsed on single agent bortezomib after 

having achieved a partial response. Alterations in the PSMB5 gene were not 

found to be associated with bortezomib refractoriness in these 16 patients. Also, 

the PSMB5 mutation previously described by Lu, Oerlemans and Ri was not 

identified in the in vivo analysis. However the sample size was somewhat limited 

(n=16). Therefore the question still remains unclear as to whether or not PSMB5 

mutations are implicated in bortezomib resistance in multiple myeloma in vivo. 

Larger studies are needed to clarify this question.[69]  

 

1.5 EXTRINSIC RESISTANCE MECHANISMS: ROLE OF THE BONE 

MARROW MICROENVIRONMENT 

1.5.1 The role of the bone marrow accessory cells in MM pathogenesis 

The role of the bone marrow microenvironment in MM pathogenesis has been 

studied in great detail and the protective effect it confers to clonal plasma cells in 

multiple myeloma patients has been well documented. The “seed and soil” 

hypothesis was first introduced in the late 1800s by a British surgeon, Dr. 

Stephen Paget, who proposed a neoplastic growth (the seed i.e. the myeloma 

cell) will proliferate in an environment (the soil i.e. the bone marrow 

microenvironment) that supports its survival.[70] Since then vast evidence has 

emerged demonstrating the role of the myeloma cells local environment in 

augmenting its survival, in particular in relation to the protective effects 

conferred to myeloma cells by bone marrow stromal cells and osteoclasts 
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(OCs).[71-73] In normal bones, osteoclasts function in bone remodelling or 

breakdown, so that osteoblasts can replace damaged bone with new healthy 

bone. In multiple myeloma, osteoclasts are activated and are responsible for the 

lytic lesions seen at clinical presentation and throughout the disease course. In 

contrast, MM cells suppress osteoblast (OB) activity that would normally allow 

bone remodelling following its reabsorption by activated OCs, compounding the 

burden of lytic bone lesions in patients with multiple myeloma. 

In relation to bone marrow stromal cells, direct interaction of these and clonal 

plasma cells via adhesion molecules on the cell surface of each has been shown 

to induce nuclear-factor-kappa-B activation and up-regulation of interleukin-6, 

both of which contribute to the survival of the malignant plasma cell clone.[74]  

In relation to osteoclasts, a vicious cycle of interactions between these accessory 

cells and myeloma cells allows co-operative survival of both entities. Firstly, 

myeloma cells attach to osteoclasts directly by numerous adhesion molecules 

such as vascular cell adhesion molecule-1 (VCAM-1), with resultant stimulation 

of osteoclastogenesis.[75] It has also been shown that reduction of 

osteoprotegerin (which normally allows bone remodelling via osteoblasts) 

occurs when myeloma cells are co-cultured with bone marrow stromal cells, 

with resultant increase in myeloma cell survival and increased production of 

osteoclasts.[76] A further study involving co-culture of osteoclasts with myeloma 

cells in vitro has demonstrated osteoclast-induced increase in myeloma cell 

viability, (compared to myeloma cells culture in isolation), in addition to 

reduction in myeloma cell apoptosis.[77] 

1.5.2 The role of osteoblasts in multiple myeloma 

Osteoblasts are large mononuclear cells found abundantly in bone and function 

to secrete and mineralise bone matrix. They arise primarily from pluripotent 

mesenchymal stem cells (MSCs) and when these progenitors over-express 

RUNX2 (Runt-related transcription factor 2) they become committed to the 

osteoblastic lineage of differentiation. The most immature form of osteoblast 

secretes low levels of osteopontin and very high levels of collagen type 1, and 

these are termed “pre-osteoblasts”. As they mature, they secrete additional 
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factors involved in bone formation in particular osteocalcin, osteopontin and 

alkaline phosphatase, (ALP) and can now produce osteogenic matrix, but at this 

stage RUNX2 expression is reduced compared to pre-osteoblasts. As they mature 

further their osteocalcin expression increases further allowing for bone 

mineralization.[78]  

The effects of MM cells on attenuation of osteoblastic activity can be explained 

partly by inhibition of pre-osteoblastic differentiation into mature OBs. The main 

pathway involved in inhibition of osteoblastogenesis is by direct cell-to-cell 

contact between the mesenchymal stem cells (MSCs) and MM cells. Adhesion of 

these two entities via VCAM-1 and very late antigen-4 (VLA-4) results in a 

reduction in RUNX2 expression, a critical factor involved in osteoblast 

maturation.[79] Secondly, MM cells secrete factors that inhibit differentiation of 

osteoblasts, such as Dickkopf 1 (DKK-1), soluble frizzled related protein-2 

(SFRP-2), tumour necrosis factor alpha (TNF-α) and Activin A. DKK-1 and SFRP-

2 act by inhibiting the Wnt pathway, a pathway that plays a significant role in 

osteoblastic maturation.[80, 81] More recently p38 mitogen-activated protein 

kinase (MAPK) has been identified as a major regulator of Wnt inhibition via 

DKK-1 by up-regulating DKK-1 secretion in MM cells.[82] TNF-α inhibits 

differentiation of MCSc into mature osteoblasts and also induces apoptosis of 

mature osteoblasts and this appears to be RUNX2-dependent, mediated by a 

RUNX2 transcriptional inhibitor, Gfi1.[83] Activin A (which is expressed at high 

levels in patients with lytic bone disease) has also been shown to attenuate 

osteoblastic differentiation, in addition to increasing osteoclastic activity, via the 

Activin type-2A receptor, and thus concurrently worsens myelomatous bone 

disease.[84] A pro-inflammatory chemokine, CCL3 (i.e. MIP-1α) that has known 

stimulatory effects on osteoclasts has also recently been implicated in inhibition 

of mature osteoblasts by suppressing osteocalcin secretion and thus abrogating 

bone mineralisation.[85] Thus not only do myeloma cells deter differentiation of 

immature osteoblasts into osteogenic cells, but also inhibit the essential function 

of bone mineralisation in mature osteoblasts. 

Research efforts to stimulate osteoblastogenesis and hence improve 

myelomatous bone disease have been at the forefront of myeloma research in 
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recent times, in an attempt to counteract the suppressive effect of myeloma cells 

on mature osteoblasts. It had not previously been anticipated that osteoblasts 

could in contrast confer a protective effect to myeloma cells until 2000, when 

Karadag et al demonstrated that co-culture of myeloma cell lines and hFob 1.19 

(a human foetal osteoblast-like cell line) resulted in a significant increase in MM 

cell viability. The protection conferred to MM cells by hFob 1.19 was found to be 

IL-6 mediated, mainly by direct cell-to-cell contact between the two entities.[86] 

More recently in 2009, Fu et al documented the role of TRAIL (tumour necrosis 

factor (TNF)-related apoptosis-inducing ligand)-induced apoptosis in MM 

pathogenesis and the interplay between OBs and myeloma cells in this setting. It 

had been previously documented that myeloma cells in monoculture are 

sensitive to TRAIL-induced apoptosis. hFob 1.19 and osteoblasts derived from 

normal donors in monoculture were not sensitive to TRAIL-induced apoptosis in 

this study. However when osteoblasts were in co-culture with MM cells, this 

resulted in TRAIL-induced apoptosis of the osteoblasts. Furthermore they 

demonstrated that while MM cells in monoculture are sensitive to TRAIL-

induced apoptosis, their co-culture with osteoblasts interestingly allows them to 

escape TRAIL-induced apoptosis and subsequently proliferate. This data 

demonstrates how osteoblasts have the potential to support myeloma cell 

growth by allowing MM cell escape of TRAIL-induced apoptosis, and also could 

explain why osteoblasts are reduced in number in MM patients,[87] (see table 

1.5.2 for summary). 

TRAIL-effect 
Myeloma cell 

monoculture 

Osteoblast 

monoculture 

Co-culture of MM 

cells and OBs 

MM cell 

apoptosis 
Yes - No 

OB apoptosis - No Yes 

 

Table 1.5.2: Effect of TRAIL on myeloma cells or osteoblasts in monoculture 

or co-culture. In monoculture, myeloma cells are sensitive to TRAIL-induced 
apoptosis, where as osteoblasts are not. However, when myeloma cells are in co-
culture with osteoblasts, myeloma cells appear to escape and osteoblasts become 
subject to TRAIL-induced apoptosis. (Note: MM= multiple myeloma; OB= 
osteoblast). 



31 

In summary, while the majority of previously published literature 

demonstrates MM cell suppression of osteoblast differentiation and 

function, some data exists to support the hypothesis that osteoblasts 

themselves may confer survival advantage to malignant plasma cells.  

1.5.3 Role of the microenvironment in drug resistance in multiple 

myeloma 

In general two forms of microenvironment-mediated drug resistance occur: (i) 

cytokine-mediated resistance and (ii) adhesion-mediated resistance.  

Cytokine-mediated drug resistance is mainly secondary to interleukin-6, which 

alone also contributes to myeloma cell survival even before treatment is 

commenced.[88] When myeloma cells and bone marrow stromal cells adhere to 

one another, interleukin-6 production is up-regulated and has been shown to 

contribute to bortezomib resistance, and subsequent blockade of IL-6 using a 

monoclonal antibody for IL-6 (CNTO 328) results in resensitisation of the cells to 

bortezomib.[89] 

Insulin-like growth factor-1 (IGF-1) has also been found to contribute to drug 

resistance in myeloma. In particular IGF-1 cytokine production (that is up-

regulated secondary to adhesion of bone marrow accessory cells and myeloma 

cells) has been shown to contribute to bortezomib resistance in both a 

bortezomib resistant cell line and myeloma cells taken from patients with 

bortezomib-resistant disease. Inhibition of IGF-1 or IGF-1R, (insulin-like growth 

factor-1 receptor) resulted in resensitisation of resistant cells to bortezomib.[65] 

Nuclear-factor-kappa-B has been found to be over-expressed in the bone 

marrow stromal cells of patients with multiple myeloma, in association with 

over-expression of interleukin-8, and contributes to drug resistance in multiple 

myeloma including resistance to bortezomib.[90] 

Finally adhesion-mediated resistance in multiple myeloma is mainly as a result 

of myeloma cells adhering to bone marrow stromal cells by beta-1 integrins. 

Noborio-Hatano et al in 2009 revealed VLA-4 as a pivotal adhesion molecule 

contributing to drug resistance to vincristine, doxorubicin and dexamethasone, 
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and bortezomib treatment appeared to down-regulated CD49d (or alpha4-

integrin, a subunit of VLA-4) and overcome adhesion-mediated resistance.[91] 

1.6 SUMMARY 

In summary, multiple myeloma is an incurable malignancy of terminally 

differentiated B-lymphocytes or plasma cells. Increased survival has been 

observed with the introduction of bortezomib. Patients present with 

hypercalcaemia, lytic bone lesions, renal failure or anaemia, and a monoclonal 

protein detected in the serum or urine. Induction therapy with a bortezomib-

containing regimen is recommended as first-line treatment, and bortezomib can 

also be used as part of consolidation or maintenance therapy. A number of other 

classes of novel therapies have also become available in recent years including 

panobinostat (HDAC inhibitor), carfilzomib (second generation proteasome 

inhibitor), and pomalidomide (immunomodulator).  

Relapsed and refractory myeloma is defined as a patient who has achieved at 

least a minimal response to treatment, then develops progressive disease, 

undergoes salvage chemotherapy, and either does not respond or relapses 

within 60 days of salvage therapy. Patients with multiple myeloma refractory to 

bortezomib or an IMiD have a 5-month event free survival and a 9-month overall 

survival. Relapsed and refractory myeloma chemotherapy regimens also 

incorporate bortezomib with a number of additional therapies such as another 

novel approved therapy or one as part of a clinical trial. The reasoning behind 

this is because bortezomib attacks malignant plasma cells by a number of means: 

inhibiting NF-ĸB which is pertinent to the survival of the cancerous clone, 

overcoming resistance to conventional therapies and improving myelomatous 

bone disease.  

Second generation proteasome inhibitors are now being investigated for their 

use in myeloma, and following the success of bortezomib, carfilzomib has also 

been recently approved for use in myeloma. A number of oral therapies are also 

being investigated such as oprozomib and ixazomib. The immunoproteasome is 

also known to be subject to proteasomal inhibition by bortezomib and its 

subunits can be up-regulated by interferon-gamma. Immunoproteasome 
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inhibitors such as PR-924 are also being investigated in preclinical studies for 

their use in myeloma. 

Resistance to bortezomib in the in vitro setting has been so far mainly attributed 

to mutations of the PSMB5 gene, through which bortezomib principally inhibits 

the proteasome. However mutations in PSMB5 have not yet been found to be 

clinically significant in the in vivo setting. Cytogenetic abnormalities such as 

hypodiploidy and translocations t(4;14) and t(14;16), in addition to del17p, 

del13q and del1p are associated with a poor prognosis in the in vivo setting. 

Genetic mutations of NF-ĸB and BRAF-kinase have been shown to contribute to 

multiple myeloma pathogenesis in the in vivo setting also. To further complicate 

things, myeloma is now known to express not just one but multiple clones with 

varying genotypes at diagnosis, each which can further mutate as the disease 

progresses. 

Extrinsic mechanisms of multiple myeloma pathogenesis induced by the bone 

marrow microenvironment include again NF-ĸB, but also increased secretion of 

IL-6. Cell-to-cell adhesion of MM cells and BMSCs occurs by the adhesion 

molecule VCAM-1. Osteoclasts also contribute to MM pathogenesis by increasing 

the proliferation rate of MM cells, contributing to drug resistance, and conversely 

MM cells promote osteoclastogenesis. Historically, osteoblasts were not assumed 

to contribute to MM pathogenesis as it has been shown that mature osteoblasts 

are suppressed by clonal plasma cells, mediated by interactions between 

malignant plasma cells and bone marrow stromal cells that results in 

suppression of RUNX-2, which is a major determinant of osteoblast maturation. 

However the osteoblast-like cell line hFob 1.19 has been shown to promote 

myeloma cell survival and this is thought to be mediated by TRAIL-induced 

apoptosis, whereby reciprocal TRAIL-induced apoptosis of mature osteoblasts 

occurs instead of apoptosis of myeloma cells when the two entities are in co-

culture. Drug resistance in the in vitro setting again has also been attributed to 

the over-expression of IL-6; in the case of bortezomib resistance specifically, IGF-

1 has been implicated. 
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The aetiology of proteasome inhibitor resistance is clearly multifactorial and is 

secondary to both intrinsic and extrinsic mechanisms. Given the complexity of 

multi-clonal plasma cells and their interaction with the bone marrow milieu we 

chose to further examine the potential intrinsic mechanisms of specifically 

bortezomib resistance by examining the genomic, proteomic and mutational 

profile of a bortezomib resistant cell line (termed VDR) developed in the 

laboratory of Dr Mitsiades. We next examined the effect of HS-5 bone marrow 

stromal cells on the sensitivity of this bortezomib resistant cell line to 

proteasome inhibitors and other novel therapies. We also examined the 

osteoblast-induced changes in proliferation rate and drug sensitivity in a number 

of myeloma cell lines, to ascertain whether not osteoblasts can contribute to 

myeloma cell survival and drug resistance. Finally, we examined the proteasome 

subunit expression of β-5 (PSMB5) and β-5i (PSMB8) in bone marrow trephine 

samples of patients with bortezomib-refractory myeloma, to determine whether 

or not a PSMB8 inhibitor might be useful in this setting. 
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1.7 AIMS OF THE THESIS 

 

To: 

• Examine the sensitivity of bortezomib-resistant VDR and parental MM.1R 
to conventional, novel and investigational therapies in vitro. 

 

• To determine if bortezomib sensitivity is restored in VDR by the 
combination of bortezomib with a p-glycoprotein inhibitor, elacridar. 

 

• Determine if our in vitro model retains its resistance to bortezomib in an 
in vivo mouse model. 

 

• By whole exome sequencing define mutations present in VDR compared 
to MM.1R. 

 

• Examine the gene expression profile of VDR compared to MM.1R to 
determine which genes or sets of genes in a given pathway are over-
expressed or suppressed in bortezomib-resistant VDR. 

 

• Examine the proteomic profile of VDR compared to MM.1R to determine 
which individual proteins or groups of proteins in a given pathway are 
over-expressed or suppressed in bortezomib-resistant VDR. 

 

• Determine the effect of HS-5 stromal cells and hFob 1.19 osteoblast-like 
cells on proliferation rate and drug sensitivity in VDR and other multiple 
myeloma cell lines.  

 

• Examine the expression of proteasome subunits PSMB5 and PSMB8 in 
bone marrow trephine samples of patients with newly diagnosed and 
relapsed and refractory multiple myeloma. 
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CHAPTER 2. MATERIALS AND METHODS 

2.1  Ultrapure H20, glassware and sterilisation procedures 

Ultrapure water was used when preparing media or any solutions or compounds 

requiring dilution. The water was purified to a standard of 12-18 MΩ/cm 

resistance by a reverse osmosis system (Millipore Milli-RO 10 Plus, Elgastat 

UHP), and the quality of the water was monitored continuously by a conductivity 

metre within the system.  

Sterile glass bottles were used for storing cells or solutions during experiments. 

These bottles were submerged in a 2% solution of RBS-25 (AGB Scientific) for 1 

hour, subsequently rinsed off with tap water, then further washed in an 

industrial dishwasher using Neodisher detergent and then twice rinsed with 

ultrapure water. Finally glass bottles were autoclaved at 121°C for 20 minutes, 

then allowed to dry completely. 

2.2  Preparation of cell culture media 

Roswell Park Memorial Institute medium (RPMI)-1640 purchased from Cellgro 

Mediatech, Manassas, VA, USA was used for culture of all myeloma cell lines. A 

1:1 mixture of Ham's F12 Dulbecco's Modified Eagle's Medium (DMEM), with 2.5 

mM L-glutamine (without phenol red) was used for culture of hFob 1.19 

osteoblast-like cell line, which was purchased from Sigma-Aldrich. Foetal calf 

serum (FCS) 10% (purchased from GIBCO/BRL, Gaithersburg, MD, USA), in 

addition to 100U/L of penicillin and 100ug/ml streptomycin (Cellgro) were 

added to media containers as needed. Media prepared as outlined were stored at 

4°C for up to a maximum of 2 weeks. 

2.3  Cells / cell culture/ subculturing / freezing / thawing / co-

culture studies 

The cell lines used in our studies were as follows: MM1S-mcl (here termed 

MM.1S), MM1R-gfp-luc (here termed MM.1R), MM.1VDR-gfp-luc (here termed 

VDR), RPMI8226-Dox40-mcl (termed Dox40), KMS11-mcl, OPM2-mcl, OCI-my-5-

mcl, KMS34-mcl, RPMI8226-mcl, luciferase-negative MM.1S, HS-5 and hFob1.19. 



38 

All multiple myeloma cell lines were stably transduced with lentiviral vectors 

that expressed M-Cherry (denoted “mc”) or green-fluorescent protein (denoted 

“gfp”), and a luciferase-containing vector (denoted “l” or “luc”), as previously 

described.[92, 93] Thus cell lines above with suffix “mcl” contain an M-cherry and 

luciferase vector; cell lines with suffix “gfp-luc” contain a green fluorescent 

protein and luciferase vector. Stromal cells HS-5 and osteoblast-like hFob 1.19 

were both negative for M-Cherry, GFP and luciferase. 

All myeloma cell lines and HS-5 stromal cell line were cultured in RPMI 1640 

media containing 10% foetal bovine serum, 100 U/mL penicillin and 100 μg/mL 

streptomycin at 37°C under sterile conditions. hFob 1.19 was cultured in Ham’s 

F12 DMEM containing 10% foetal bovine serum, 100 U/mL penicillin and 100 

μg/mL streptomycin at 37°C under sterile conditions. 

Cells were passaged twice weekly. For semi-adherent cell lines, cells were first 

scraped using a cell-scraper. Seventy-five percent of old media was removed and 

discarded, and replaced with an equal volume of fresh RPMI media, flasks were 

then placed back in the incubator.  

For hFob 1.19 and HS-5, cells were detached from the tissue culture flask as 

follows: all media was removed by suctioning, then 10mL of Trypsin EDTA 1x 

(Cellgro) was added, the flask replaced in the incubator for 10 minutes to allow 

cells to detach, then 50% of old media was removed and fresh Ham’s F12 DMEM 

(for hFob 1.19) or RPMI media (for HS-5) was added. Flasks were then placed 

back in the incubator.  

In order to preserve early passage numbers of cell lines, aliquots of cells were 

stored in liquid nitrogen for future use as follows: Cell lines were removed from 

tissue culture flasks as outlined above. Cells were next counted using a 

haemocytometer. Aliquots of 2 million cells were transferred to clean eppendorf 

tubes. Tubes were centrifuged and supernatant removed. Next, cells were 

washed with 20mL Phosphate-Buffered Saline 1X (PBS; from Cellgro), 

recentrifuged, and supernatant removed. This was repeated a second time. Then 

the cell pellet was re-solubilised in a solution of foetal calf serum containing 10% 

DMSO (Dimethyl sulfoxide, Sigma Aldrich) and transferred to a cryovial, which 
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was snap-frozen in liquid nitrogen. Then cells were transported to the liquid 

nitrogen tank on dry ice and stored in liquid nitrogen tanks up for up to 2 years. 

On thawing, media was heated to 37°C in the water bath prior to removal of the 

cryovial tubes from the liquid nitrogen. Tissue culture flasks were labelled with 

cell line name, passage number, cell line source, and date of thawing. Cryovials 

containing frozen cells were removed carefully from the liquid nitrogen tank and 

placed on dry ice. Cells were then quickly brought to the water bath and thawed 

at 37°C. Once cells were completely thawed, they were added to 20mL of fresh 

warm media (as described above) and washed twice with PBS (as described 

above) before adding them to tissue culture flasks (in order to remove any 

DMSO). Tissue culture flasks containing thawed cells were then transferred to 

the incubator. 

For in vitro tissue culture studies requiring subsequent drug treatment, aliquots 

of cells were removed from tissue culture flasks as described above. Cells were 

washed twice with fresh media, and then counted using a haemocytometer. Cells 

were diluted as necessary for plating on a 96-well or 384-well flat, clear-bottom 

tissue culture plate (Corning). For single cell line testing of sensitivity to 

compounds, cell lines were plated at all times at least 6 hours prior to drug 

treatment to allow the cells to re-adhere. In the case of co-culture with HS-5 or 

hFob 1.19, stromal cell to myeloma cell ratio used was 2:1 and 1:1 respectively 

(unless otherwise stated in results section). For all co-cultures, stromal cells 

were first plated at stated seeding densities, and allowed to adhere for at least 6 

hours. Then myeloma cells were added, and the conditions allowed to co-culture 

for at least 24 hours prior to drug treatment (unless otherwise specified in 

results section). Cells were cultured in a total volume of 100uL (50uL each for 

myeloma cells and accessory cells if co-cultured) in 96-well plates, or 40uL total 

volume when 384-well plates were used (20uL each for myeloma cells and 

accessory cells when in co-culture). 

2.4  STR analysis of cell lines 

The identification of our stock of cell lines were frequently examined as per 

departmental protocol by analysing their short tandem repeats (STR). QIAamp 
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DNA Mini Kit (Quiagen) was used to extract DNA from cell pellets as per protocol 

provided, and 5ng/uL of DNA in 10uL of AE Buffer was transported to the Dana-

Farber Cancer Institute Molecular Diagnostics core facility where routine STR 

testing as per departmental protocol was performed. 

2.5  Reagents 

Bortezomib was purchased from Millennium Pharmaceuticals; lenalidomide 

from Fisher-Scientific; dexamethasone, doxorubicin and elacridar from Sigma 

Aldrich; vorinostat from Merck; carfilzomib from Selleck; oprozomib from Onyx; 

pomalidomide from VWR; vorinostat and MLN2238 from Selleck; JQ1 was made 

available by the Bradner laboratory at DFCI; MLN4924 from Active-Biochem; 

and interferon-gamma from R&D Systems. FDA-approved datasets for high-

throughput screening were obtained from the Developmental Therapeutics 

Program of the National Cancer Institute (NCI). All compounds were 

reconstituted as per protocol provided under sterile conditions and stored as 

recommended on product datasheet. See table 2.5 below for complete list of 

compounds tested in high-throughput screen. 

In 96-well plates, compounds were added to plates containing cells in a total 

volume of 50uL at stated concentrations (or 25uL each when 2 compounds were 

added); or in 384-well plates compounds were added in a total volume of 10uL. 
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FDA Plate No. 4762 

Allopurinol Cytarabine;  Ara-C  Lapatinib Ditosylate   Quinacrine 

Altretamine Dacarbazine   Lenalidomide   Raloxifene HCl   

Aminolevulinic 

Acid   Dasatinib   Letrozole   Romidepsin   

Anastrozole   Daunorubicin HCl   Lomustine;  CCNU sorafenib 

Arsenic Trioxide   Decitabine   

Mechlorethamine 

HCl Streptozocin 

Axitinib Dexrazoxane HCl   Megestrol acetate Sunitinib Malate   

Azacitidine   Doxorubicin HCl   Mercaptopurine Tamoxifen Citrate   

Bendamustine HCl   Etoposide   Methotrexate   Temozolomide   

Bortezomib   Exemestane   Methoxsalen Teniposide 

Busulfan Floxuridine Mitomycin C Thalidomide   

Capecitabine   Fludarabine Phosphate   Mitotane;  o;p'-DDD Thioguanine 

Carboplatin   Fluorouracil  (5-FU) Mitoxantrone HCl Thiotepa 

Carmustine   Fulvestrant   Nelarabine   Topotecan HCl   

Celecoxib Gefitinib   Oxaliplatin   Tretinoin 

Chlorambucil   Gemcitabine HCl   Pazopanib HCl   Uracil mustard 

Cisplatin Hydroxyurea 

Pemetrexed 

Disodium valrubicin 

Cladribine Ifosfamide   Pentostatin vandetanib 

Clofarabine   Imatinib Mesylate Pipobroman Vemurafenib   

Crizotinib   Irinotecan HCl   Pralatrexate   Vismodegib 

Cyclophosphamide  Ixabepilone   Procarbazine HCl   Vorinostat   

FDA Plate No. 4763 

Abiraterone Docetaxel   Nilotinib   Vincristine Sulfate   

Amifostine Erlotinib HCl   Paclitaxel   

Vinorelbine 

Tartrate 

Bleomycin 

Estramustine 

phosphate Plicamycin Zoledronic Acid   

Cabazitaxel   Everolimus   

Sirolimus 

(Rapamycin)   

Carfilzomib Imiquimod   Triethylenemelamine   

Dactinomycin Melphalan Vinblastine Sulfate     

 

Table 2.5 Library of FDA-approved compounds tested in MM.1R and VDR. 

List of all compounds tested in high-throughput CSBLI screen for their toxicity to 

MM.1R or VDR. 
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2.6  Generation of a bortezomib resistant cell line. 

The bortezomib-resistant cell line was generated at the laboratory of Dr 

Mitsiades at the Dana-Farber Cancer Institute by Mr Joseph Negri as follows: 

MM.1R-gfp-luc cells were plated at a density of ~1 cell/well in 384-well-plates, 

and treated with Bortezomib 2.5nM. Resistant clones that survived in the 

presence of Bortezomib were collected and subsequently progressively exposed 

to increasing concentrations of bortezomib (5-40nM). Serial dose-response 

analyses confirmed the generation of several clones with variable reduction in 

bortezomib-sensitivity (IC50 range 80-100nM vs. <10nM for parental MM.1R). 

One of these clones termed VDR that displayed stable bortezomib resistance 

(IC50 60nM) was used for this study. 

2.7  In vitro toxicity assays measuring cell viability 

In vitro cell viability assays used in these studies included CTG (Cell Titre Glo), 

CSBLI (Compartment-specific bioluminescence imaging), or MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide).   

CTG (or Cell Titre Glo) purchased from Promega is a homogeneous method to 

determine the number of viable cells in culture based on quantitation of the ATP 

present, which signals the presence of metabolically active cells. At the end of 

drug treatment, CTG is added to each well in a ratio of 1:10. This results in cell 

lysis and the release of ATP that generates a luminescent signal proportional to 

the amount of ATP released. Luminescent signal is recorded by a luminometer. 

CSBLI was used to determine percentage cell viability of myeloma cell lines when 

treated with reagents alone or following co-culture. CSBLI is particularly useful 

in co-culture experiments because myeloma cells have been transduced with a 

luciferase-containing vector, and our stromal or accessory cells do not contain 

luciferase vectors. Following drug treatment luciferin (2.5 mg/mL stock, 

Xenogen Corp) is added at a ratio of 1:10 to each well and incubated for 30 

minutes at 37°C; then the bioluminescence signal is measured with a 

Luminoskan (Labsystems) or Envision (Perkin Elmer) luminometer. The degree 

of luminescence detected correlates to the relative number of viable cells in each 
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well, and this is reflective of luciferase-positive cells only; i.e. will detect relative 

viability of myeloma cells only despite their co-culture with accessory cells.[92, 93] 

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay is 

used to determine cell viability as a function of redox potential. Cells that are 

actively respiring convert water-soluble MTT to insoluble formazan, which is 

purple in colour. After drug treatment MTT is added at a ratio of 1:10 and plates 

are then incubated at 37°C for 4 hours. Then the plates are centrifuged for 

10mins at maximum speed and supernatant removed. Then DMSO is quickly 

added to solubilise the formazan and its absorbance determined by optical 

density. The absorbance calculated directly correlates with relative cell viability. 

2.8  In vivo mouse model treatment with bortezomib or 

carfilzomib 

This in vivo study including analysis of results was kindly completed by Ms. 

Amanda Christie at the Lurie-Family Imaging Centre at Dana-Farbcer Cancer 

Institute, under the supervision of Dr. Nancy Kohl. Seventy-five mice were 

injected intravenously with either MM1R (n=38) or VDR cells (n=37). All mice 

were imaged at least once weekly until disease burden was established by 

Xenogen imaging, which detects the bioluminescent signal of the MM.1R or VDR 

cells due to the presence of their luciferase-containing vectors. At this point mice 

from each cell line were divided into four treatment groups (n=7 or 8 per group):  

1.Velcade (bortezomib) 0.75mg/kg  

2.Carfilzomib 1.5mg/kg  

3. Carfilzomib 3mg/kg  

4. Vehicle.  

All treatments were administered intravenously (IV) twice weekly. The two 

weekly doses of Velcade/bortezomib were administered 72 hours apart, while 

doses for Carfilzomib and vehicle were administered 24 hours apart. Due to the 

declining condition of the tail veins that compromised IV dosing (especially 

noticeable in the carfilzomib-treated mice), starting with the 5th week of dosing 

for both cell lines Velcade/bortezomib was switched to subcutaneous dosing and 
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carfilzomib was switched to treatment with oprozomib (the oral analogue of 

carfilzomib). Oprozomib was dosed PO at 15mg/kg (for carfilzomib 1.5mg/kg 

mice) or 30mg/kg (for carfilzomib 3mg/kg mice) on the same dosing schedule. 

Mice were weighed and imaged weekly until all mice were sacrificed in the VDR 

group. At this point the few remaining mice in the MM1R group were imaged 

every 7-14 days until sacrifice. All mice were sacrificed when they became 

paralyzed or suffered from hydrocephalus, at which time whole mice were fixed 

in 10% formalin. Tukey’s multiple comparison test was used to analyse for 

statistical significance between treatment groups for reduction in tumour 

burden and overall survival. 

2.9  Immunoblot  

Whole cell pellets of MM.1S, MM.1R and VDR were collected at 4°C, centrifuged 

and supernatant removed, and stored at -80°C. The following day, cell pellets 

were lysed using a mixture of proteinase and phosphatase inhibitors. Protein 

concentration was determined using the Bradford curve and 20ug of protein 

loaded into 4-12% gels (Invitrogen). Once gel run was completed, proteins were 

transferred to methanol-activated PVDF membrane. Protein transfer was 

confirmed by Ponceau stain. Membranes were blocked in 5% milk and probed 

with primary antibody overnight. The following day, membranes were washed 

with TBST (Tri-buffered saline with 0.1% Tween), probed with secondary 

antibody for 1 hour and re-washed. Membranes were exposed to Pico 

Chemiluminescent Substrate (Thermo Scientific, 1:1 ratio) and films developed 

in the dark room.   

Immunoblot validation studies on proteins of interest were performed using the 

following antibodies:  

Primary Antibody Secondary  Source Catalogue Number 

GAPDH HRP-

conjugated (no 

secondary) 

Abcam 9482 

Anti-PSMB5 Rabbit Abcam 3330 
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Primary Antibody Secondary  Source Catalogue Number 

Anti-PSMB8 Mouse Abcam 58094 

Anti-NEDD8 Rabbit Epitomics 1571-1 

Anti-Poly-Ub Mouse Cell Signal 3936 

 

2.10 Whole exome sequencing  

Whole cell pellets of MM.1R and VDR were collected at 4°C and 600ng DNA 

extracted as previously described using QIAamp DNA Mini Kit (Quiagen). Whole 

exome sequencing on the 2 cell lines was performed at the Centre for Cancer 

Genome Discovery (CCGD) at DFCI as per departmental protocol. Prior to library 

preparation DNA was fragmented using Covaris sonication to 150 bp and further 

cleaned up to under 100 bp using Agencourt AMPure XP beads. 50ng of size 

selected DNA was then ligated to specific adaptors during library preparation 

(Illumina TruSeq). All the steps of library preparation were performed according 

to departmental standards and had sufficient yield to continue with hybrid 

capture. Each library was made with sample specific molecular barcodes and 

quantified by qPCR.  Capture was performed with the Agilent Sure-Select all exon 

v2.0 hybrid capture kit using 500ng input DNA per capture.  The minimum 

criterion for CCGD is that 80% of all targets are covered at least 30x times. This 

was reached for all samples.  Point mutation analysis was performed using 

MuTect v1.0.27200 developed by the Cancer Biology group at the Broad Institute 

(https://confluence.broadinstitute.org/display/CGATools/MuTect).    Functional 

annotation clustering tool (http://david.abcc.ncifcrf.gov/tools.jsp) from DAVID 

Bioinformatics Resources 6.7 was used to find statistically significant gene-

clusters with in the gene list obtained from the SNV and Indel reports. Whole 

exome sequencing and resultant statistical analysis were completed by the team 

at CCGD, and results interpreted with their expertise and the expertise of Dr 

Mitsiades. 
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2.11 Validation of mutPSMB5 in VDR cell line 

A PSMB5 (proteasome subunit, beta type, 5) mutation in exon 2 of the PSMB5 

gene was detected by WES in VDR cell line, that was absent in parental cell line 

MM1R and was validated by Sanger sequencing. DNA was extracted from freshly 

collected cell pellets of MM1R and VDR, and exon 2 of the PSMB5 subunit was 

amplified by polymerase chain reaction (PCR) using melting temperature of 50⁰C 

with the following primers purchased from IDT, Integrated DNA Technologies: 

PSMβ5 forward: 5'-CCTCTGATCTTAACAGTTCC-3', PSMβ5 reverse: 5'-

GTGGTTGCAGCTTAACTCAC-3'. The complete PCR product was separated in 2% 

agarose gel (with TAE buffer and ethidium bromide 0.5ug/mL), and the purified 

product extracted from the gel using Qiagen Gel Extraction kit (#28704). Sanger 

sequencing was then completed at the DF/HCC DNA Resource Core that 

confirmed the presence of mutPSMB5 that was originally identified by whole 

exome sequencing. 

2.12 Gene expression profiling  

Whole cell pellets containing 2x106 MM.1R and VDR cells were collected at 4°C. 

RNA was extracted as per protocol using RNEasy Mini kit (Qiagen) and 500ng 

RNA sent to Beth Israel Deaconess Medical Centre Genomics Core facility for 

oligonucleotide microarrray analysis using Human Gene 1.0 ST Gene Arrays, 

(catalogue # 901085). CEL files from Affymetrix Human Gene 1.0 ST Arrays 

(HuGene-1_0-st) were analysed by Gene Pattern using RMA method and 

collapsed probe set to maximum values, this analysis was kindly provided by Dr. 

Panisinee Lawasut. Expression values comparison (t-test) was made by d-Chip. 

Fold change of greater than 1.2 and p-values less than or equal to 0.05 were used 

as level of significance. 

(Gene Pattern: http://www.broadinstitute.org/cancer/software/genepattern) 

(dChip: http://www.hsph.harvard.edu/cli/complab/dchip/) 

2.13 shRNA knockdown studies  

27 genes were selected for shRNA knockdown studies to determine if their 

knockdown would resensitise VDR to bortezomib. 5 puromycin-resistant 

lentiviral hairpins were used for knockdown of each specific gene examined and 
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this study was undertaken at the DFCI RNA Interference (RNAi) Screening 

Facility under the supervision of Dr. Anna Shinzel. On day 1 cells were plated at a 

density of 400x103 cells/mL in 384-well-plates, in the presence of polybrene 

(8ug/mL), and allowed to adhere overnight. The following day small hairpins for 

each vector were added (5 hairpins for each gene analysed in triplicate in 

individual wells) and plates were then centrifuged at 2000rpm for 30 minutes at 

37°C. Twenty-four hours following lentiviral infection plates were centrifuged 

for 10mins at 2000rpm and media containing virus removed and discarded as 

per departmental protocol. Then fresh media containing puromycin 2.5ug/mL 

was added to each condition and incubated for 48 hours so that only cells that 

had been successfully infected with puromycin-resistant lentivirus were further 

analysed. Plates were then treated with bortezomib 50nM (i.e. the IC20 for 

MM1VDR), or vehicle (fresh media) for 24 hours and relative cell viability 

analysed by CTG. Empty vector and LacZ were used as control hairpins in this 

study. 

Given that PSMB5 is known to play a pertinent role in bortezomibs mode of 

action, and that we also identified a mutation in the PSMB5 gene in VDR, we 

chose to validate the successful knockdown of PSMB5 gene and completed same 

as follows: 

 Day 1: MM.1R and VDR cells were seeded in 12-well plates at a concentration of 

1 million cells/well in 2mL of fresh media. Polybrene (8ug/mL) was added to the 

media-containing cells prior to plating. Cells were allowed to adhere overnight. 

Two duplicate 12-well plates per cell line were set up as follows: one for 

treatment with bortezomib, and one for collection of cell pellets for validation of 

PSMB5 knockdown by immunoblot. 

Day 2: 300uL lentivirus containing 5x PSMB5 hairpins or 2x control hairpins 

were added to each cell line. Plates were then centrifuged at 2000rpm for 

30mins at 37°C. 

Day 3: 24-hours after infection: plates were centrifuged for 10mins at 2000rpm, 

then media containing lentivirus was discarded and 2mL fresh media added with 

puromycin 2.5ug/mL to each condition. 
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Day 5: One plate for each cell line was used for drug treatment: all wells scraped 

with a fresh cell scraper; 1mL fresh media added to each well; transferred to 96 

well plate for dose response curve using bortezomib 0-40nM for 24hours, and 

subsequently relative cell viability analysed using CTG. For duplicate plates: cells 

scraped using a fresh cell scraper for each well, cell pellets collected and 

prepared for immunoblot to determine PSMB5 expression in MM.1R or VDR for 

the following 7 conditions: 5x PSMB5 lentiviral hairpins and 2x control hairpins. 

2.14 Lentiviral infection of mutPSMB5 in bortezomib-sensitive 

cell lines 

We investigated whether or not mutant PSMB5 that was identified by the whole 

exome sequencing study, when introduced into bortezomib-sensitive cells, 

would render them resistant to bortezomib. On day 1, KMS11mcl cells were 

plated in a 12-well plate at a seeding density of 200,000 cells/mL in 400uL of 

RPMI media with polybrene 8ug/mL, with 3 biological replicates for each 

condition. The cells were subsequently allowed to adhere for 6 hours. Next 

122uL of lentiviral construct as provided by the DFCI RNA Interference (RNAi) 

Screening Facility of BFP-control, wild-type PSMB5 or mutant PSMB5 blasticidin-

resistant lentiviral vectors, were added. The solution within each well was mixed 

using a pipette briefly, then centrifuged at 2000rpm for 90 minutes each at 37°C, 

then placed back in the incubator. On day 3, the plates were again centrifuged at 

2500rpm for 10 minutes, the supernatant was removed and quickly replaced 

with fresh RPMI media containing blasticidin 10ug/mL. The plates were 

returned to the incubator and subsequently reviewed daily by light microscopy. 

Every 3 days 1mL of old media was removed and 1mL media containing 

blasticidin (10ug/mL) was added to each condition, until each well was 

approximately 75% confluent, therefore allowing sufficient number of cells to 

perform a dose response curve. As previously described, a dose response curve 

for each condition was performed to assess the sensitivity of the cell line to 

bortezomib (0-40nM for 24 hours) in the setting of BFP-control, wtPSMB5 and 

mutPSMB5 and cell viability was analysed by CTG. 

Lentiviral infection of MM.1S and MM.1R cell lines was also tried; however 

difficulty with lentiviral infection of above constructs proved technically 
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challenging most likely because MM.1S and MM.1R are semi-adherent cells, 

compared to KMS11 cells which are fully adherent, allowing a greater degree of 

lentiviral infection as the viral constructs and cells both rest at the bottom of the 

wells, thus allowing increased infection rate. 

2.15 Label-free mass spectrometry  

Triplicates of cell pellets containing 10x 106 cells each for MM.1R and VDR were 

collected at 4°C and stored at -80°C until time of mass spectrometry. Mass 

spectrometry was completed at the National Institute for Cellular Biotechnology 

in Dublin, Ireland, under the supervision of Dr Paul Dowling. Protein extraction 

was achieved by the addition of lysis buffer (6M urea, 2M thiourea, 10mM Tris, 

pH 8) to each sample, with subsequent removal of ionic contaminants using 2D 

Clean-Up Kit (BioRad) and stored in acetone overnight. The following day all 

tubes were centrifuged, the supernatant discarded, and pellet re-suspended in 

the aforementioned lysis buffer. 10ug of protein per sample was determined by 

Bradford curve and each was transferred to a fresh tube. Each sample then 

underwent reduction (using dithiothreitol at 37°C for 20mins), alkylation (using 

iodoacetamide in ammonium bicarbonate for 20minutes), and protein digestion 

(via Lys-C for 4 hours, and then trypsin overnight). Peptide purification was 

achieved using Pep-Clean C-18 Spin Columns as per protocol (Thermo Scientific). 

Finally, protein quantification was determined based on measurements of ion 

intensity changes and on spectral counting of identified peptides after MS-MS 

analysis. Fold change, Mascot scores (a measure of confidence for the identity of 

a given protein) and ANOVA scores for differentially expressed proteins were 

determined using the Progenesis LC-MS software (http://www.nonlinear.com) as 

previously described.[94-98] 

2.16 Transwell co-cultures of hFob 1.19 and MM.1S cells 

Transwell plates purchased from Westnet (HTS Transwell®-96 Permeable 

Support with 0.4µm Pore Polycarbonate Membrane, catalogue number 3881) 

and used to determine whether or not drug resistance in MM.1S, which appeared 

to be induced by hFob 1.19, required direct cell-to-cell contact for same to occur. 

In the Transwell system two different cell types can be co-cultured but without 

direct contact by placing one cell line in the lower chamber and the other cell line 
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in the upper chamber. The upper chamber sits into the lower chamber during 

culture, so that cytokines secreted by either cell line are free to move across the 

membrane that separates the two cell lines, however the cells are never in direct 

contact.  

On day 1, 2,000 MM.1S-mcl cells were added to the lower well in 200uL of media 

and 8,000 hFob 1.19 cells added to the upper chamber in 50uL of media, then 

upper chamber inserted into lower wells. Cells were allowed to culture without 

direct contact for 24hours. For comparison a duplicate experiment was 

performed where by MM.1S-mcl cells and hFob 1.19 cells were co-cultured in a 

single chamber 96-well plate system whereby the cells were in direct contact. 

Twenty-four hours later, doxorubicin 62ng/mL, vorinostat 0.5uM or 

lenalidomide 2uM, or fresh media as a control was added to each condition in 

both the direct co-culture plates and Transwell plates. When treatment was 

complete, plates were briefly centrifuged to ensure cells in the lower chambers 

of the Transwell had adhered. Then the upper chamber was removed from the 

Transwell plates and luciferase was added as previously outlined to determine 

viability of MM.1S-mcl cells by bioluminescence. Results of cell viability of 

MM.1S-mcl cells from Transwell versus non-Transwell co-cultures were then 

compared. 

2.17 Characteristics of bortezomib-refractory patients selected 

from Multiple Myeloma BioBank  

The clinical data pertaining to bone marrow trephine samples previously stored 

following patient consent and as per departmental protocol in the Mater 

Misericordiae University Hospital Multiple Myeloma biobank were kindly 

analysed by Dr. Kay Reen Ting and Dr. Colm Cosgrove. A number of samples 

were selected from patients for immunohistochemical analysis of PSMB5 and 

PSMB8 proteasomal subunits. Clinical response to treatment were as per IMWG 

response criteria (Introduction section 1.2.1). Samples were selected as follows: 

• 7 diagnostic samples of patients who achieved at least a VGPR following 

one bortezomib-based regimen (called “Diagnostic: Responder”) 
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• 6 diagnostic samples of patients who received a bortezomib-based 

regimen and subsequently relapsed (called “Diagnostic: Non-responder”) 

• 7 samples from patients who relapsed following a bortezomib-based 

regimen (6 of which correlate to aforementioned “Diagnostic: Non-

responders”, (called “Relapsed: Non-responder”). 

See tables 2.1.7.1 and 2.1.7.2 below that provides further clinical details for each 

sample tested. 
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Sample ID: % Plasma 

cells pre-

treatment 

Chemotherapy No of cycles of 

chemotherapy 

IMWG 

Response 

% plasma cells 

post-

treatment 

DNR 1 >10% Nil - Dignostic >10% 

PTNR 1 100% Bort/Thal/Dex 4 Relapse 100% 

      
DNR 2 >90% Nil - Dignostic >90% 

PTNR 2 >90% 
Bort/Dex and 

Len/Dex 

2 & 3 

(respectively) 
Relapse >90% 

      
DNR 3 Extensive Nil - Dignostic Extensive 

PTNR 3 Multifocal Bort/Dex 4 Relapse Multifocal 

      
DNR 4 70-80% Nil 

 
Dignostic 70-80% 

PTNR 4 Diffuse Bort/Dex 3 MR Diffuse 

      
DNR 5 80-90% Nil - Dignostic 80-90% 

PTNR 5 50% Len/Bort/Dex 6 Relapse 50% 

      
DNR 6 30% Nil - SMM 30% 

PTNR 6 60% Bort 6 Relapse 60% 

      
DNR not 

available 
- - 

 
- - 

PTNR 7 80-90% Bort 4 Relapse 80-90% 

      
Table 2.1.7.1 Clinical details pertaining to bone marrow trephine samples 

of bortezomib non-responders at time of diagnosis and relapse. 

DNR (blue)= Diagnostic Non-responder; PTNR (red)= Post-treatment non-

responder (otherwise known as “Relapsed: Non-Responder”); Bort= bortezomib; 

Thal= thalidomide; Dex= dexamethasone; Len= lenalidomide; MR= minimal 

response; SMM=smouldering multiple myeloma. 
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Sample ID: Plasma cells 

pre-treatment 

Chemotherapy No. of 
cycles 

Plasma cells 

post-

treatment 

IMWG 
Response 

RE 1 50-60% Bort/Dex 2 <5% VGPR 

      
RE 2 20% Bort/Dex 4 <5% VGPR 

      
RE 3 70% Bort/Dex 6 10% VGPR 

      
RE 4 20-30% Bort/Dex 4 <5% VGPR 

      
RE 5 90% Bort/Dex 4 <5% VGPR 

      
RE 6 25% Bort/Thal/Dex 4 <5% CR 

      
RE 7 60-70% Bort/Thal/Dex 4 1% VGPR 

      
Table 2.1.7.2 Clinical details pertaining to bone marrow trephine samples 

of bortezomib responders at time of diagnosis. 

RE= Bortezomib-Responder; (otherwise known as “Diagnostic: Responder”); 

Bort= bortezomib; Thal= thalidomide; Dex= dexamethasone; VGPR= very good 

partial response; CR= complete remission. 
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2.18 Immunohistochemistry 

5-micrometre sections of formalin-fixed paraffin-embedded bone marrow 

trephine biopsies were kindly prepared by the pathology team at the Mater 

Misericordiae University hospital pathology laboratory, in preparation for 

immunohistochemistry.  

The following reagents were utilised for the immunohistochemistry analysis: 

DAKO peroxidase blocking solution, DAB stain (containing 1mL of substrate 

buffer and 140mL chromogen), Real ENVision visualisation system (prepared 

according to manufacturer’s instructions); haematoxylin; PSMB5 primary 

antibody (Abcam catalogue no. Ab3330, at a dilution of 1:350), PSMB8 primary 

antibody (Abcam catalogue no. Ab58094, at a dilution of 1:300); negative control 

(DAKO antibody diluent) and DAKO wash buffer (10x solution diluted in 

deionised water). 

Slides were initially heat treated for antigen retrieval at 97°C in pH of 9 for 20 

minutes. Dako REAL EnVision Detection System (Dako) was used for 

immunohistochemical analysis of the bone marrow trephines according to 

manufacturer’s instructions. Briefly slides were blocked for endogenous 

peroxidase activity and subsequently washed with DAKO wash buffer. Next 

slides were treated with PSMB5 or PSMB8 primary antibody diluted in DAKO 

antibody diluent, or negative controls treated with DAKO antibody diluent alone. 

Slides were again washed with DAKO wash buffer. Slides were then stained with 

Dako Real Envision Detection system and stained with DAB chromogen. Finally 

slides were counter-stained using haematoxylin and glass coversliped. 

All slides were analysed by light microscopy, and images acquired at 20x and 40x 

magnification. Images depicted in results section 3.5.8 are those taken at 40x 

magnification. Slides were scored semi-quantitatively according to the intensity 

of the staining: negative, weakly positive, or strongly positive. 

2.19 Statistical Analysis 

Statistical analysis to determine statistically significant differences between 

treatment groups in in vitro studies was analysed using Prism GraphPad 
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software, (http://www.graphpad.com/scientific-software/prism/), whereby t-

test was used and a p value of statistical significance was set at <0.05 with a FDR 

(false discovery rate) set at 1%. Figures in results section with an overlying 

asterix (*) represent data-points with p values <0.05.  

Statistical analysis for in vivo mouse study was completed by Ms. Amanda 

Christie and Dr. Nancy Kohl at the Lurie Family Imaging Centre. Statistical 

analysis of whole exome sequencing was performed at the Centre for Cancer 

Genome Discovery (CCGD) core facility at DFCI. Statistical analysis for gene 

expression profiling was kindly provided by Dr. Panisinee Lawasut as outlined in 

methods section 2.12. Statistical analysis of label-free mass spectrometry data 

was completed by Dr. Paul Dowling using Progenesis LC-MS software as per 

departmental protocol at Dublin City University as outlined in section 2.15. 
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CHAPTER 3. RESULTS 

3.1  CHARACTERISATION OF AN ISOGENIC CELL LINE MODEL OF 

BORTEZOMIB RESISTANCE IN VITRO AND IN VIVO. 

3.1.1 Introduction 

As early as 2005, several groups of researchers have been investigating 

resistance to bortezomib in order to identify targetable molecules conferring 

resistance in both the in vitro and in vivo setting in MM, other haematological 

malignancies, and solid tumours.[59-61, 63-65, 99-102] A number of in vitro isogenic cell 

line models of bortezomib resistance revealed varying mutations in the PSMB5 

gene.[59-61, 63, 100] However, despite vast in vitro evidence, no such mutations have 

been demonstrated in vivo in clinical samples of either newly diagnosed or 

bortezomib-refractory patients with multiple myeloma.[67, 69, 103] We set out to 

examine a further MM-based model of bortezomib resistance generated in our 

laboratory, and further examine the potential mechanisms of proteasome 

inhibitor resistance.  

3.1.2 Generation of a cell line model of bortezomib resistance 

At the Jerome Lipper Centre for Multiple Myeloma a bortezomib-resistant 

isogenic cell line mode was generated by Mr Joe Negri by successive rounds of in 

vitro exposure of bortezomib-sensitive MM.1R-gfp-luc (termed MM.1R) cells to 

increasing bortezomib concentrations. We initially began with pulse exposures 

of bortezomib 2.5nM, monitoring the cells daily post-exposure for cell viability 

by direct visualization under light microscopy, in addition to trypan blue 

staining. Subsequently we incrementally increased bortezomib concentrations as 

tolerated to a maximum dose of 40nM. Bortezomib resistance for one clone, 

MM.1VDR-gfp-luc (termed “VDR”, i.e. Velcade- and Dexamethasone-Resistant), 

was confirmed even after extended in vitro culture without bortezomib. The 

toxicity of bortezomib in VDR was tested using MTT, CSBLI and CTG assays with 

comparable results for all three assays used (see Materials and Methods 2.7 for 

details). Figure 3.1.2.1 depicts bortezomib sensitivity data for VDR compared to 

MM.1R or MM.1S whereby a 12-fold increase in IC50 for bortezomib was 

observed in VDR cell line compared to either parental cell line. 



58 

(a) 

 

(b) 

Bortezomib sensitivity by CTG

Bortezomib(nM) x 24hrs

C
e

ll 
V

ia
b

ili
ty

 (
%

)

0 20 40 60 80 100

0

50

100

150
MM.1S-mcl

MM.1R-gfp-luc

MM.1VDR-gfp-luc*

Bortezomib sensitivity by CSBLI

Bortezomib (nM) x 24hrs

C
e

ll 
V

ia
b

il
it
y

 (
%

)

0 20 40 60 80 100

0

50

100

150
MM.1S-mcl

MM.1VDR-gfp-luc

MM.1R-gfp-luc

* *

R
e
la

ti
v
e

 
R

e
la

ti
v
e

 



59 

 (c) 

 

 

Figure 3.1.2.1 Sensitivity of isogenic cell lines to bortezomib.  

Following evolution of one bortezomib resistant clone that we termed VDR, we 

tested these cells using 3 separate assays. Figure 3.1.2.1a demonstrates cell 

viability of the 3 cell lines following a Cell Titre Glo Assay, and demonstrates the 

marked increase in IC50 for bortezomib in VDR cell line. A 12-fold increase in IC50 

in VDR (red) was observed, with an IC50 60nM, versus 5nM for parental MM.1R 

(blue) or MM.1S (green). This experiment was repeated using (b) a luciferase-

based assay (CSBLI) and (c) an MTT assay with comparable results regardless of 

the assay utilised. *p<0.05 when MM1R compared to VDR. 
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3.1.3 Response profile of VDR cells to conventional and novel therapies 

Given that the VDR cell line was derived from dexamethasone-resistant MM.1R, 

we examined the cross-resistance of VDR to dexamethasone. In addition, we 

investigated the sensitivity of this bortezomib-resistant clone to other 

conventional (doxorubicin, vincristine), novel (vorinostat, lenalidomide, 

pomalidomide) and investigational (JQ1) therapies. VDR retains its resistance to 

dexamethasone similar to its parent cell line MM.1R (figure 3.1.3.1.). Doxorubicin 

and vincristine display comparable toxicity in VDR and parental MM1R. The 

recently FDA-approved novel therapies lenalidomide and pomalidomide 

demonstrate similar toxicity in all 3 isogenic lines. MM.1S was slightly more 

sensitive to the HDAC inhibitor vorinostat compared to either resistant clone, 

suggesting histone deacetylation may be dysregulated in both MM.1R and VDR 

(figure 3.1.3.2). Finally the BET-bromodomain inhibitor JQ1 displays marked 

anti-tumour activity in all three cell lines (figure 3.1.3.2.). 

Next, a library of 101 compounds approved by the U.S. FDA for use in clinical 

oncology was examined by high-throughput CSBLI screening for their relative 

potencies in MM.1R and VDR. Similar toxicities for the majority of compounds in 

each cell line were observed (figure 3.1.3.3, a-d). However there were a small 

number of compounds of the same pharmacological classes that appeared to be 

more potent in VDR vs. MM.1R cells and these included  topoisomerase- (TOP) 1 

and -2 inhibitors and the taxanes (figure 3.1.3.4, a,b). While some TOP1 and 

TOP2 inhibitors were more potent in VDR vs. MM.1R, the TOP2 inhibitor 

mitoxantrone was highly potent in both cell lines, suggesting TOP2 dysregulation 

is probably not isolated to the bortezomib-resistant clone (table 3.1.3.2). The 

taxane, paclitaxel, at the lower concentration of 1nM displayed high potency in 

VDR compared to MM.1R, however paclitaxel 10nM, docetaxel 1/10nM, and 

cabazitaxel 1/10nM all induced greater than 90% cell death in both cell lines 

(table 3.1.3.3). In conclusion, by this large-scale screen, we did not identify a 

particular class of compounds with high potency solely in bortezomib-resistant 

VDR. 
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Figure 3.1.3.1 Sensitivity of isogenic cell line model to dexamethasone. 

MM.1VDR-gfp-luc retains its resistance to dexamethasone, similar to parental 

cell line MM.1R-gfp-luc. MM.1S-mcl remains sensitive to dexamethasone. Cell 

viability was determined by CSBLI. (*p<0.05 for VDR vs. MM.1S). 
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Figure 3.1.3.2. Sensitivity of isogenic cell lines to other therapies. 

The toxicity of conventional, novel and investigational reagents to all 3 cells lines 

is comparable (green=MM.1S, blue= MM.1R and red=VDR), with the exception of 

MM.1Smcl which displays a greater degree of sensitisation to vorinostat 

compared to either MM.1R or VDR (*p<0.05).  Relative cell viability was 

determined here by CSBLI in all assays demonstrated. 
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FDA plate 4763, 1nM
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Figure 3.1.3.3 High-throughput screening of FDA-approved compounds for 

use in oncology. 

(a-d) The majority of the 101 FDA-approved compounds tested displayed 

comparable toxicity in MM1R and VDR in a high throughput screen using CSBLI 

(results for 1nM and 10nM concentrations shown here). Fig. 3.1.3.3 (a, b): 

bortezomib was used as a control in FDA plate no. 4762, and again demonstrated 

resistance to bortezomib in VDR in comparison to MM.1R, highlighted by black 

circles in plate number 4762. 
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(b) 

 

Figure 3.1.3.4 Compounds with differential toxicity in VDR cells vs. MM.1R as determined by high-throughput CSBLI screening. 

Specific groups of compounds with similar inhibitor properties exerting a higher degree of cell death in VDR include (a) the 

topoisomerase (TOP) inhibitors (TOP1 inhibitor topotecan, and TOP2 inhibitors teniposide, daunorubicin, doxorubicin and 

mitoxantrone) in FDA-plate number 4762, and (b) the taxane paclitaxel in FDA-plate number 4763. 
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Drug MM1R  

Avg % 

viability +/-SD 

(1nM) 

VDR  

Avg % viability 

+/-SD 

(1nM) 

MM1R  

Avg % 

viability +/-SD 

(10nM) 

VDR  

Avg % 

viability +/-SD 

(10nM) 

TOPI 

inhibitor 

    

Irinotecan  87.9    +/-10.4 91.0    +/-15.2 81.7    +/-0.3 92.7    +/-3.1 

Topotecan 82.6    +/-2 79.8    +/-13.4 74.9    +/-6.2 50.4    +/-17.8 

TOPII 

inhibitor 

    

Etoposide 104.9   +/-5.7 99.3    +/-18 125.0    +/-16.4 105.4   +/-25 

Teniposide 96.6     +/-4.3 95.6    +/- 19 101.8    +/-3.4 65.3     +/-4.6 

Doxorubicin 112.4   +/-14.8 92.5    +/-5.9 128.3    +/-1.7 80.7     +/-14.1 

Daunorubicin 98.3     +/-9.1 96.0    +/-3.5 83.8      +/- 1.1 48.8    +/- 1.3 

Mitoxantrone 111.3   +/-2.8 67.2    +/-11.1 5.2       +/-0.3 5.5       +/- 0.0 

 

Table 3.1.3.2 Average cell viability by CSBLI of MM.1R or VDR cells 

following exposure to topoisomerase 1 (TOP1) or topoisomerase 2 (TOP2) 

inhibitors (1nM and 10nM concentrations). 

Both TOPI and TOPII inhibitors demonstrate increased toxicity in VDR compared 

to MM1R. Topotecan 10nM, teniposide 10nM, and daunorubicin 10nM exert a 

greater degree of cell death in VDR compared to MM.1R as demonstrated (red). 

The TOPII inhibitor mitoxantrone 10nM (blue) is highly toxic to both cell lines.  

 

Drug MM1R Avg % 

viability +/-SD 

(1nM) 

VDR Avg % 

viability +/-SD 

(1nM) 

MM1R Avg % 

viability +/-SD 

(10nM) 

VDR Avg % 

viability +/-SD 

(10nM) 

Cabazitaxel 3.95    +/-0.33 4.67   +/-0.31 3.30    +/-0.03 5.07    +/-2.06 

Docetaxel 7.51    +/-0.53 6.94    +/-0.24 3.61    +/-0.70 5.34    +/-2.05 

Paclitaxel 98.8    +/-1.99 58.1    +/-9.65 3.58    +/-0.26 5.91    +/-2.54 

 

Table 3.1.3.3 Average cell viability by CSBLI of MM.1R or VDR cells 

following exposure to taxanes. 

Paclitaxel 1nM exerted a markedly higher anti-tumour effect in VDR compared to 

MM.1R as observed (highlighted in red). However, cabazitaxel (1/10nM), 

docetaxel (1/10nM) and paclitaxel (10nM) all were highly potent inducers of cell 

death in MM.1R and VDR. 
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3.1.4 Sensitivity of VDR to novel proteasome inhibitors 

Previously documented models of bortezomib resistance in MM and solid 

tumours were sensitive to the novel and irreversible proteasome inhibitor 

carfilzomib.[48, 63] Therefore we next examined the toxicity of second-generation 

proteasome inhibitors in our model. Carfilzomib, which exhibits irreversible 

binding to multiple proteasome-associated catalytic subunits, was highly and 

equally toxic to both MM.1R and VDR cells. However, we observed a marked 

reduction in sensitivity to the investigational compound MLN2238, a novel orally 

bioavailable reagent that specifically targets the proteasome beta-5 subunit, 

suggesting that one mechanism of resistance to bortezomib in VDR can 

potentially be mediated through the beta-5 proteasome subunit (figure 3.1.4.1). 
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Figure 3.1.4.1 Sensitivity of MM.1R and VDR to second-generation 

proteasome inhibitors. 

MM.1R and VDR were examined for their sensitivity to novel proteasome 

inhibitors by CSBLI assay. (a) Both cell lines demonstrated exquisite sensitivity 

to carfilzomib. (b) However VDR demonstrated marked resistance to MLN2238, 

a novel reagent specifically targeting the beta-5 proteasome subunit, suggesting 

that resistance to bortezomib in VDR may be at least partially mediated by 

alterations in PSMB5, (*p<0.05). 
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3.1.5 The role of p-glycoprotein in bortezomib resistance in VDR. 

P-glycoprotein (P-gp) over-expression has been previously well documented for 

it’s pertinent role in drug resistance in cancer in the in vitro and in vivo setting. In 

particular, very recently the role of P-gp in bortezomib resistance has been 

delineated and clarified that bortezomib also is subject to pharmacokinetic 

resistance mediated by P-gp.[104] We compared the sensitivity of VDR (unknown 

P-gp expression) and MM cell line RPMI-8226-Dox-40 (also known as “Dox40” 

with known P-gp over-expression) to bortezomib, MLN2238 (active metabolite 

of the orally bioavailable proteasome inhibitor MLN-9708) and carfilzomib in 

combination with the P-gp inhibitor elacridar. 

In Dox-40, resistance to bortezomib, MLN2238 and carfilzomib single agent 

treatment was observed. When we individually combined these agents with the 

P-gp inhibitor elacridar, resensitisation of Dox40-mcl cells to bortezomib 40nM 

and carfilzomib 10nM was observed. This suggests that bortezomib and 

carfilzomib resistance observed in Dox40-mcl may be partially mediated by P-gp, 

and can be overcome by the addition of a P-gp inhibitor. However concomitant 

P-gp inhibition with MLN2238 did not induce cell death in Dox40-mcl, 

suggesting MLN2238 is not a P-gp substrate (figure 3.1.5.1). 

VDR again displayed resistance to single agent exposure of bortezomib and 

MLN2238, and was sensitive to carfilzomib. Bortezomib and elacridar in 

combination did not result in synergistic cell death in VDR. Similar results were 

observed for MLN2238 and elacridar in combination in VDR. These results 

suggest that resistance to bortezomib and MLN2238 in VDR are unlikely to be 

mediated by P-gp over-expression. Carfilzomib in combination with elacridar did 

not demonstrate synergistic activity, mainly because the concentrations of 

carfilzomib used in this assay are highly toxic to VDR cells even without the 

addition of elacridar (figure 3.1.5.2).  
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Figure 3.1.5.1 Concomitant P-gp and proteasome inhibition in Dox40-mcl 

Dox40-mcl, with known P-gp over-expression, displays resistance to bortezomib, 

MLN2238 and carfilzomib single agents. Combination of elacridar with 

carfilzomib 10nM or bortezomib 40nM results in synergistic cell death in Dox40-

mcl. However combination of MLN2238 with elacridar does not cause anti-

tumour activity in Dox40-mcl.  
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Figure 3.1.5.2 Concomitant P-gp and proteasome inhibition in VDR 

Bortezomib or MLN2238 combination with elacridar does not result in death of 

VDR cells. Synergistic activity of carfilzomib and elacridar in VDR is not 

observed, mainly because carfilzomib single agent is highly toxic to VDR cells. 

These results suggest bortezomib and MLN2238 resistance in VDR is not P-gp-

mediated. 
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3.1.6 Baseline proliferation rate of MM.1R and VDR cell lines 

To investigate if resistance to bortezomib in VDR was secondary to differences in 

proliferation rate of VDR compared to MM.1R, we undertook serial 

measurements of both MM.1R and VDR cell line proliferation rates. MM.1R or 

VDR cells were plated at a seeding density of 100 x 103 cells/mL in 100uL of 

RPMI media on a 96-well plate in triplicate for each of the following timeframes 

of culture: 0, 24, 48, 72 and 96 hours. The cell viability of each condition was 

measured by CSBLI at the appropriate timepoint (figure 3.1.6 (a)).  

In addition one week later, MM.1R and VDR cells were plated in 6-well plates at a 

seeding density of 250 x 103 cells/mL in biological triplicate and allowed to 

culture for 0, 24, 48 and 72 hours. In this experiment, at each timepoint the 

number of cells per condition were physically counted under light microscopy 

using a haemocytometer, and apoptotic bodies that stained positive for trypan 

blue were excluded (figure 3.1.6 (b)). 

No statistically significant increase in proliferation rate was observed by either 

means of measurement of proliferation rate in VDR cell line versus MM.1R. 

Therefore a greater proliferation rate in VDR does not explain its observed 

resistance to bortezomib. 
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Figure 3.1.6 Baseline proliferation rate of MM.1R and VDR cell lines 

(a) MM.1R and VDR were plated in a 96-well plate at a seeding density of 

100,000 cells/mL and the cell viability of each cell line measured serially from 0-

96 hours by CSBLI. 

(b) MM.1R and VDR were plated in a 6-well plate at a seeding density of 250,000 

cells/mL and the cells were serially counted using a haemocytometer (apoptotic 

bodies stained with trypan blue were excluded) from 0-72 hours. No statistically 

significant difference was found between the different conditions. 
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3.1.7 Sensitivity of isogenic cell lines MM.1R and VDR to bortezomib and 

carfilzomib in vivo 

We have demonstrated that VDR cells in vitro display resistance to bortezomib 

regardless of cell viability assay used, but are sensitive to carfilzomib. Therefore 

we further tested if VDR retains its resistance to bortezomib and sensitivity to 

carfilzomib in vivo, using MM.1R as a control for comparison. 1x106 MM.1R or 

VDR cells were injected via tail vein into SCID-beige mice (see materials and 

methods 2.8). Drug treatment with vehicle, bortezomib 0.75mg/kg (also known 

as “Velcade”), carfilzomib 1.5mg/kg or carfilzomib 3mg/kg commenced when 

whole body bioluminescence imaging studies showed consistent engraftment of 

luciferase-positive MM cells in the axial skeleton of mice with average signals of 

at least 106 photons/second, and treatment was continued until the mice fulfilled 

criteria for sacrifice.  

In mice bearing MM.1R tumours, there was no statistically significant difference 

in reduction of tumour burden in any of the drug-treated mice compared to 

vehicle mice, (figure 3.1.6.1.a). Similarly, in VDR-tumour-bearing mice no 

reduction in tumour burden was observed in drug-treated mice compared to 

control mice (figure 3.1.7.1.b).  

However, in MM.1R-mice, a statistically significant improvement in overall 

survival was seen in bortezomib-treated mice compared to vehicle mice or 

compared to carfilzomib-treated mice (figure 3.1.7.2).  

In addition, interestingly, even though there was no significant reduction in 

tumour burden in drug-treated mice in the VDR arm, both carfilzomib and 

bortezomib treatment in VDR-mice resulted in a statistically significant higher 

overall survival compared to control mice (figure 3.1.7.3).  
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 (a) 

 

(b) 

 

 

Figure 3.1.7.1 Effect on tumour burden in MM.1R or VDR tumour-bearing 

mice following proteasome inhibition in vivo. 

(a) In mice bearing MM.1R tumours, analysis of the data through treatment day 

28, the last day when all animals in each of the treatment groups remained on 
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study, using Tukey’s multiple comparison test indicates that none of the groups 

are statistically significantly different from each other.  

(b) In mice bearing VDR tumours, analysis of the data through day 29, the last 

day when all animals in each of the treatment groups remained on study, using 

Turkey’s multiple comparison test indicates that none of the groups are 

statistically significantly different from each other. 

(Note: Velcade= bortezomib) 
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(a) 

 

Overall p-value: 0.0006 (Log-rank test).  P values for pairwise comparisons are: 

MM1R Velcade 
Carfilzomib 
1.5mg/kg Carfilzomib 3mg/kg 

Vehicle 0.0048 0.1525 0.6929 

Carfilzomib 
1.5mg/kg 0.0006     

Carfilzomib 3mg/kg 0.0048 0.0702   

 

Figure 3.1.7.2 Survival of MM.1R-tumour-bearing mice. 

While there was no statistically significant difference in tumour volume among 

the treatment groups through treatment day 28, the Velcade/bortezomib group 

had significantly prolonged survival compared to all other groups. 
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Overall p-value: 0.0006 (Log-rank test). P values for pairwise comparisons are: 

MM1VDR Velcade 
Carfilzomib 
1.5mg/kg Carfilzomib 3mg/kg 

Vehicle 0.0004 0.0086 0.0063 

Carfilzomib 
1.5mg/kg 0.4621     

Carfilzomib 3mg/kg 0.5516 0.2661   

 

Figure 3.1.7.3 Survival of VDR-tumour-bearing mice. 

While there was no statistically significant difference in tumour volume among 

the treatment groups through treatment day 29, all three drug-treated groups 

had significantly prolonged survival compared to the Vehicle group. (Note: 

Velcade= bortezomib) 
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3.1.8 Summary of in vitro and in vivo studies 

In conclusion, VDR demonstrated marked resistance to bortezomib in the in vitro 

setting compared to MM.1R, in a number of toxicological in vitro assays tested. 

VDR retained its resistance to dexamethasone in vitro, similar to parental MM.1R.  

MM.1R and VDR displayed comparable toxicity in a number of conventional and 

novel therapies examined. Both MM.1R and VDR were more resistant to the 

HDAC inhibitor vorinostat compared to bortezomib-and-dexamethasone-

sensitive MM.1S.  

High-throughput screen of a database of compounds with FDA-approval for use 

in oncology demonstrated that VDR has marked sensitivity to the taxanes and 

topoisomerase-1 and -2 inhibitors. VDR is highly sensitive to the irreversible 

proteasome inhibitor carfilzomib but is resistant to another PSMB5-specific 

proteasome inhibitor MLN2238 in vitro.  

Bortezomib resistance in VDR did not appear to be mediated by p-glycoprotein. 

No difference in proliferation rate between MM.1R and VDR was observed, thus 

proliferation rate does cannot be accountable for the resistance observed. 

Finally, an in vivo study examining the effect of bortezomib or carfilzomib in 

MM.1R or VDR did not reveal a statistically significant reduction in tumour 

burden in either cell lines for any drug treatment or schedule used compared to 

vehicle mice.  However in MM.1R-mice, a statistically significant overall survival 

was observed in bortezomib treated mice compared to controls and compared to 

carfilzomib treated mice. In addition, VDR mice displayed a statistically 

significant improvement in overall survival in both bortezomib treated and 

carfilzomib treated mice compared to vehicle treated mice. 
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3.2  WHOLE EXOME SEQUENCING OF MM.1R AND VDR CELL LINES 

3.2.1 Introduction 

Whole exome sequencing has been used both in the in vitro and in vivo setting for 

detection of genomic aberrations and more recently in understanding the 

evolution of clonal heterogeneity in the setting of multiple myeloma.[105-108] In 

particular in recent times the identification of multiple clones in alternating 

patterns (e.g. linear, branching) and evolution of same clones in MM patients 

appears to arise not only during the natural course of the disease but also when 

patients relapse.[107] [109] 

We therefore performed whole exome sequencing analysis of the cell lines 

MM.1R and VDR. The sequencing result for the drug-resistant cell line was 

compared with the respective drug-sensitive isogenic parental cell line (see 

materials and methods section 2.10). Whole exome sequencing and resultant 

statistical analysis were completed by the team at CCGD, and the results 

interpreted with their expertise and the expertise of Dr Mitsiades. 

3.2.2 Frequency of single nucleotide variants observed between isogenic 

cell lines MM.1R and VDR 

There were 28 non-synonymous single nucleotide variants (SNV) observed in 

the MM.1R vs. VDR comparison, of which 26 were novel mutations. Figure 3.2.2.1 

plots the allele fractions of the common mutations between MM.1R and VDR cell 

lines. The “allele fraction” is a fraction of the sequenced reads from a region that 

contain a specific allele, which is an estimate of the frequency of this allele in 

total DNA tested (with no assumptions about copies per cell or number of cells in 

which the mutation is present). The points on the y-axis correspond to the 28 

non-synonymous SNVs present in VDR but not in its parental cell line MM.1R. 

The points on the X-axis correspond to mutations that were identified only in 

MM.1R. Finally, the points in the middle of the graph represent mutations that 

were found in both cell lines, and occur at varying frequency compared to the 

wild type. 

SIFT and Polyphen predictions were obtained for all 28 mutations that are listed 

in table 3.2.2.1. SIFT (Sorting Intolerant From Tolerant) software predicts 
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whether an amino acid substitution is likely to affect protein function based on 

sequence homology and the physico-chemical similarity between the alternate 

amino acids. The data provided for each amino acid substitution gives a 

qualitative prediction (either 'tolerated' or 'damaging').[110] Polyphen-2 is a tool 

that predicts possible impact of an amino acid substitution on the structure and 

function of a human protein using physical and comparative considerations.[111] 

Of the 28 SNVs detected in VDR but not MM.1R, 7 SNVs were found to be 

“damaging” by both algorithms, 6 SNVs were found to be “damaging” by one of 

the algorithms, and the remaining 15 SNVs were found to be “tolerated” by one 

or both of the algorithms.  
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Figure 3.2.2.1 Allele fractions of the common mutations between MM.1R 

and VDR cell lines. The points on the y-axis correspond to the non-synonymous 

SNVs present in VDR but not in its parental cell line MM.1R. The points on the x-

axis correspond to the non-synonymous SNVs present in MM.1R but not in its 

bortezomib-resistant counterpart VDR. (Note: “allele fraction” is a fraction of the 

sequenced reads from a region that contains a specific allele, which is an 

estimate of the frequency of this allele in total DNA tested). 
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GENE CHR POSITION AA CHANGE CODON_CHANGE 

SPARCL1 4 g.88415159T>A p.N265Y c.(793-795)AAC>TAC 

ZER1 9 g.131503072G>T p.S611Y c.(1831-1833)TCC>TAC 

TPH2 12 g.72366351G>T p.G221C c.(661-663)GGT>TGT 

MFGE8 15 g.89444941C>A p.K237N c.(709-711)AAG>AAT 

CCDC113 16 g.58292291A>T p.E137V c.(409-411)GAA>GTA 

FAM59A 18 g.29890224C>G p.V109L c.(325-327)GTG>CTG 

ATP5J 21 g.27102074G>A p.S11F c.(31-33)TCT>TTT 

TTLL1 22 g.43447822C>A p.K321N c.(961-963)AAG>AAT 

SARS 1 g.109756659C>A p.D15E c.(43-45)GAC>GAA 

H2AFV 7 g.44874131A>G p.I119T c.(355-357)ATT>ACT 

ROD1 9 g.114982551G>T - - 

MKL2 16 g.14312805C>G p.P215A c.(643-645)CCA>GCA 

PSMB5 14 g.23502844T>C p.T80A c.(238-240)ACA>GCA 

KCNN3 1 g.154698487C>A p.A536S c.(1606-1608)GCC>TCC 

TAF5L 1 g.229750100C>T p.A44T c.(130-132)GCC>ACC 

SEMA4F 2 g.74907071G>A p.R683H c.(2047-2049)CGT>CAT 

SLC6A18 5 g.1242940C>T p.P365S c.(1093-1095)CCC>TCC 

GCM2 6 g.10876129A>G p.S193P c.(577-579)TCC>CCC 

COL9A1 6 g.70992692C>T - - 

H2AFV 7 g.44874113T>C p.Q125R c.(373-375)CAG>CGG 

ZER1 9 g.131503073A>G p.S611P c.(1831-1833)TCC>CCC 

CDK2 12 g.56365357C>A p.A282D c.(844-846)GCT>GAT 

NCOR2 12 g.124856844T>C p.K844R c.(2530-2532)AAG>AGG 

C14orf177 14 g.99183598T>C p.M122T c.(364-366)ATG>ACG 

STAC2 17 g.37374251G>T p.A89D c.(265-267)GCT>GAT 

ITGB4 17 g.73745009G>A p.V1067I c.(3199-3201)GTT>ATT 

TMC6 17 g.76118778G>A p.H379Y c.(1135-1137)CAC>TAC 

ZNF579 19 g.56090288C>T p.A240T c.(718-720)GCC>ACC 

 

Table 3.2.2.1 Single nucleotide variants found in VDR but not MM.1R   

List of gene mutations identified in bortezomib resistant VDR but not 

bortezomib sensitive MM.1R. SIFT and Polyphen predictions were obtained for 

all 28 mutations listed in table 3.2.2.1. Of these, 7 SNVs were found to be 

damaging by both algorithms (blue), 6 SNVs were found to be damaging by one 

of the algorithms (red), and the remaining 15 SNVs were found to be tolerated by 

one or both of the algorithms (green). 
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3.2.3 Insertions and deletions identified in VDR vs. MM.1R 

Besides SNVs, 1 deletion was identified in VDR cell line using Indel Locator 

(https://confluence.broadinstitute.org/display/CGATools/Indelocator), when 

comparing MM.1R and VDR. No insertions were identified between the MM.1R 

and VDR comparisons. One deletion was identified in VDR in ABCA7 gene, i.e. 

ATP-binding cassette sub-family A member 7 gene however, that was not 

present in MM.1R (table 3.2.3.1).  

The ABCA7 gene belongs to a superfamily of ABC (ATP-binding cassette) 

transporters. The protein products of ABC genes are responsible for transporting 

numerous substances across cell membranes (both intra- and extra-cellularly). 

There are 7 ABC subfamilies, of which ABCA7 belongs to the ABC1 subfamily. 

The ABCA7 protein is expressed at the highest level in peripheral leucocytes, 

thymus gland, bone marrow and splenic tissue. Kaminski et al first described 

ABCA7 in 2000 when its role in lipid transport across macrophage membranes 

was elucidated.[112] 

In 2012 Meurs et al investigated the effect of macrophage ABCA7 knockdown in 

mice to determine its role in atherosclerosis, given its known involvement in 

lipid transport. While they did not find a correlation between ABCA7 knockdown 

and atherosclerosis in the mice, they revealed that concomitant knockdown of 

ABCA7 and ABCA1 (the promoter of initiating step in cholesterol transport) 

resulted in massive splenomegaly due to cellular fat accumulation, down-

regulation of number of CD3+ T cells, and promoted erythropoietic regulators. 

Their data suggested that ABCA7 might be involved in splenic proliferation of T 

cells and erythrocytes.[113] 

In relation to its potential role in cancer pathogenesis, in a cohort of 51 patients 

with colorectal cancer, a correlation between reduced transcript levels of ABCA7 

gene and shortening of disease free interval following treatment has been 

established (p=0.033, log rank test).[114] However neither ABCA7 gene down-

regulation nor deletion in this gene have been implicated in haematological 

malignancy in the in vivo setting to date.  
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Nucleotide 

change 

Deletion of 44 bases: CGCGG-

ctgcgggacaccatgcgcgccatggggctcagccgcgcggtgct-CTGGC 

 

Amino acid 

change 

KETRLrdtmramglsravlw...(+1554 amino 

acids)...*�KETRLarlvpqlpralpaqr...(+155 amino acids)...* 

 

Gene ABCA7 

 

Gene 

Description 

ATP-binding cassette sub-family A member 7 (Macrophage ABC 

transporter)(Autoantigen SS-N)(ABCA-SSN) [Source:UniProtKB/Swiss-

Prot;Acc:Q8IZY2] 

 

Protein 

Family 

Description 

 

ATP BINDING CASSETTE SUB FAMILY A MEMBER ALTERNATE NAME: 

ATP BINDING CASSETTE TRANSPORTER  

Causes 

Nonsense 

Mediated 

Decay 

 

Yes 

Reported in 

1000 

Genomes 

 

Yes: CTGCGGGACACCATGCGCGCCATGGGGCTCAGCCGCGCGGTGCT/- 

YRI allele frequency:0.08 

SIFT 

Prediction 

 

DAMAGING 

 

Table 3.2.3.1 Details of deletion in ABCA7 identified in bortezomib-

resistant VDR cell line. List of details pertaining to deletion in ABCA7 gene 

identified in bortezomib-resistant cell line VDR, which was not identified in 

parental MM.1R. This deletion results in a 1400 amino acid truncation of ABCA7. 
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3.2.4 Identification of PSMB5 mutation in VDR cell line 

Of the 28 SNVs identified in VDR cell line by whole exome sequencing, a gene 

mutation was noted in the PSMB5 gene. PSMB5 gene is present on chromosome 

14 and the SNV involved a threonine to alanine substitution at position 80 on 

exon 2 (figure 3.2.4.1). PubMed literature review of this mutation revealed that 

this gene mutation has also been previously identified in a bortezomib-resistant 

leukaemic cell line, which by 3D in silico modelling, appears to alter the 

bortezomib-PSMB5 binding pocket (see introduction 1.4.1).[64] MM.1R and VDR 

cell lines were prepared for Sanger sequencing (see materials and methods 

section 2.11) and Sanger sequencing that was performed at the Dana-

Farber/Harvard Cancer Centre DNA Resource Core confirmed the presence of 

the PSMB5 mutation in VDR cell line. 

 

 

Figure 3.2.4.1 Mutation in PSMB5 gene confirmed by Sanger Sequencing 

A threonine to alanine substitution in exon 2 of chromosome 14 initially 

identified by whole exome sequencing was subsequently validated by Sanger 

sequencing. 



90 

3.2.5 Sensitivity of KMS11 cell line to bortezomib following lentiviral 

infection with mutPSMB5 

Next to determine the potential functional significance of the PSMB5 mutation 

identified in VDR cell line, we undertook lentiviral infection of mutPSMB5 into 

bortezomib-sensitive cell lines, to ascertain if over-expression of mutPSMB5 in 

bortezomib sensitive cell lines rendered them resistant to bortezomib. 

We undertook mutPSMB5 lentiviral infection into bortezomib-sensitive cell line 

KMS11 (see materials and methods section 2.14) to ascertain if over-expression 

of mutPSMB5 in a bortezomib sensitive cell line could result in altered sensitivity 

of this cell line to bortezomib. KMS11 cells were infected with a control (BFP) 

lentivirus, wt-PSMB5 (wild-type), and mutPSMB5, and subsequently treated with 

bortezomib. We observed a modest reduction in sensitivity of KMS11 cells 

infected with wtPSMB5 to bortezomib, however an even greater degree of 

reduction in sensitivity to bortezomib was observed when KMS11 was infected 

with mutPSMB5 (figure 3.2.5.1). 

A trial of infection of both MM.1S and MM.1R cell lines was conducted on 2 

separate occasions; however due to exquisite sensitivity of these cell lines to 

blasticidin and their semi-adherent nature, lentiviral infection was unsuccessful. 

In conclusion, our data suggest that over-expression of mutPSMB5 in KMS11 cell 

line causes a marked reduction in sensitivity to bortezomib compared to KMS11 

infected with BFP-control lentivirus.  
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Figure 3.2.5.1 Sensitivity of KMS11 cell line to bortezomib following 

lentiviral infection 

KMS11 cell line was infected with either BFP-control, wild type PSMB5 

(wtPSMB5) or mutant PSMB5 (mutPSMB5) and subsequently exposed to 

bortezomib 0-40nM for 24hrs. Cell viability was subsequently analysed by Cell 

Titre Glo. (*p<0.05 when comparing BFP-control to mutPSMB5 conditions). 
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3.2.6 Summary of whole exome sequencing study 

We performed whole exome sequencing analysis of the cell lines MM.1R and VDR 

to determine SNVs, insertions or deletions that were present in bortezomib 

resistant VDR but not bortezomib-sensitive MM.1R cell line. 28 non-synonymous 

single nucleotide variants (SNV) were detected in VDR that were not present in 

MM.1R, of which 26 were novel mutations. SIFT and Polyphen predictions found 

7 SNVs to be “damaging” by both algorithms and 6 SNVs were found to be 

“damaging” by either SIFT or Polyphen algorithms. 

A deletion in ABCA7 gene was found in VDR but not MM.1R. The ABCA7 gene 

belongs to a superfamily of ABC (ATP-binding cassette) transporters. ABCA7 

protein is expressed at the highest level in peripheral leucocytes, thymus gland, 

bone marrow and splenic tissue. In 2012 Meurs et al outlined that concomitant 

knockdown of ABCA7 and ABCA1 resulted in massive splenomegaly in mice due 

to cellular fat accumulation, down-regulation of number of CD3+ T cells, and 

promoted erythropoietic regulators, suggesting that ABCA7 may be involved in 

splenic proliferation of T cells and erythrocytes.[113] In a cohort of 51 patients 

with colorectal cancer, reduced transcript levels of ABCA7 gene has been 

correlated with shortening of disease free interval in patients with colorectal 

cancer following treatment (p=0.033, log rank test).[114] However neither ABCA7 

gene down-regulation nor deletion in this gene have been implicated in 

haematological malignancy in the in vivo setting to date.  Of note, no insertions 

were identified between the MM.1R and VDR comparisons. 

Of the 28 SNVs identified in VDR cell line by whole exome sequencing, a gene 

mutation was noted in the PSMB5 gene involving a threonine to alanine 

substitution at position 80 on exon 2. This mutation has been previously 

described in a bortezomib-resistant leukaemic cell line model, and 3D in silico 

modelling of the mutation appears to alter the bortezomib-PSMB5 binding 

pocket.[64] We thus next undertook lentiviral infection of mutPSMB5 into 

bortezomib-sensitive cell line KMS11, to ascertain if over-expression of 

mutPSMB5 in KMS11 rendered these cells resistant to bortezomib. We observed 

a degree of reduction in sensitivity of KMS11 cells infected with wtPSMB5 to 
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bortezomib, however an even greater degree of reduction in sensitivity to 

bortezomib was observed when KMS11 was infected with mutPSMB5  

In conclusion, our whole exome sequencing results revealed a number of novel 

SNVs; a deletion of ABCA7 gene whose role in haematological malignancies in the 

in vivo setting is yet to be investigated; and finally that reintroduction of 

mutPSMB5 into bortezomib-sensitive KMS11 appears to cause a marked 

reduction in sensitivity of this cell line to bortezomib. The latter finding suggests 

that mutPSMB5 may play a role in bortezomib resistance in the in vitro setting. 
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3.3  GENE EXPRESSION PROFILING OF MM.1R AND VDR 

 

3.3.1 Introduction  

In order to determine the transcriptional profiles of the bortezomib sensitive 

(MM.1R) and bortezomib resistant (VDR) cell lines, each was cultured in 4 

biological replicates at 37°C at a density of 10x 106 cells per condition for 24 

hours, then the cells were collected at 4°C. RNA was extracted using miRNeasy 

Mini Kit (# 217004) as per protocol, and this was stored at -20°C. Affymetrix 

oligonucleotide arrays were undertaken at Beth Israel Deaconess Medical Centre 

Core Genomic Facility using GeneChip Human Gene 1.0 ST Whole Genome 

Cartridge Gene Arrays (catalogue # 901085), (see materials and methods section 

2.12). 

In total, 20,724 genes were compared between MM1R and VDR cell lines. Genes 

from this list were filtered to include only those whereby the difference in fold 

change between the two conditions was >1.2 and demonstrated a p value ≤ 0.01, 

of which 437 transcripts fulfilled these criteria. Of these transcripts, 353 were 

over-expressed in VDR compared to MM.1R. In comparison only 84 genes were 

down regulated in VDR compared to MM.1R. The reason for this difference 

between number of genes up-regulated versus down-regulated is unclear.  

Subsequently a number of target transcripts of interest were chosen for shRNA 

knockdown studies. Briefly, transcripts of particular interest underwent shRNA 

knockdown and subsequent treatment with bortezomib to determine which 

genes, following their shRNA knockdown, resulted in resensitisation of VDR cells 

to bortezomib. PSMB5 transcript was subsequently selected for validation 

studies, given the fact that bortezomib inhibits the proteasome mainly via 

PSMB5. 
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3.3.2 Transcripts over-expressed in VDR compared to MM.1R 

 

By applying the aforementioned cut-off criteria of a fold change >1.2 and an p 

value ≤ 0.01, 353 transcripts were found to be over-expressed in bortezomib-

resistant cell line VDR compared to its bortezomib-sensitive parental cell line 

MM.1R, see table 3.3.2.1. 

DAVID functional annotation tool (http://david.abcc.ncifcrf.gov/) was utilised to 

determine in which cellular processes transcripts up-regulated in VDR compared 

to MM.1R are involved, whereby adjusted p value ≤0.05 (here p value correlates 

with strength of association of gene to named cellular process); fold change 

between control and experimental genes in a given process was ≥1.2; and the 

“percentage of genes” equals the total number of genes over-expressed in VDR 

vs. MM.1R that are involved in a specific pathway. Table 3.3.2.2 reveals all 

cellular processes in which genes over-expressed in VDR compared to MM.1R 

are involved. Table 3.3.2.3 lists specific genes over-expressed in VDR involved in 

7 separate cellular processes, whereby at least 27 of a total 353 transcripts up-

regulated in VDR play a role in each pathway listed.  

Pathway analysis again via DAVID functional annotation tool revealed “cellular 

apoptosis” as a specific pathway in which 4 transcripts up-regulated in VDR play 

a role. These genes include CFLAR (CASP8 and FADD-like apoptosis regulator), 

caspase-8 (CASP8, apoptosis-related cysteine peptidase), caspase-10 (CASP10, 

apoptosis-related cysteine peptidase) and NFKBIA (nuclear factor of kappa light 

polypeptide gene enhancer in B-cells inhibitor, alpha), (figure 3.3.2.1).  Again p 

value equals ≤0.05 for strength of association of each specific gene to cellular 

apoptosis.  
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Gene Name 

MM.1R 

Mean 

Expression 

VDR Mean 

Expression 

Fold 

Change 
p value 

ALOX5AP 146.31 739.51 5.05 3.15E-04 

CALCRL 27.95 133.59 4.78 0.003 

SLC7A11 195.74 793.65 4.05 4.00E-06 

PSAT1 253.07 919.7 3.63 3.00E-06 

MYO1B 77.06 277.52 3.6 2.60E-05 

FN1 155.65 536.13 3.44 5.00E-05 

CX3CR1 167.41 553.23 3.3 9.00E-06 

ALDH1L2 320.77 984.2 3.07 9.00E-06 

SOS2 251.8 736.76 2.93 1.70E-05 

NLRP11 76.15 220.98 2.9 1.60E-05 

STAP1 271.81 776.99 2.86 1.70E-05 

CTAGE5 136.97 378.41 2.76 3.30E-05 

EML5 79.68 215.86 2.71 3.40E-05 

ACTR10 136.6 363.08 2.66 9.54E-04 

CD38 288.01 749.34 2.6 1.40E-05 

SARS 227.04 557.13 2.45 0.002 

DHRS7 172 407.54 2.37 2.34E-04 

IDH1 435.4 1031.6 2.37 1.80E-04 

PRSS2 98.9 234.49 2.37 3.40E-05 

FANCM 169.3 398.69 2.35 2.64E-04 

C14orf135 157.77 371.46 2.35 7.60E-05 

SEC23A 114.63 268.46 2.34 4.03E-04 

TMEM194B 220.88 498.39 2.26 1.42E-04 

TUBE1 140.16 314.68 2.25 4.20E-05 

STRN3 195.46 438.79 2.24 4.63E-04 

PSMC6 444.97 996.13 2.24 1.70E-04 

SRP54 320.9 709.69 2.21 2.00E-05 

OSBPL6 97.32 215.22 2.21 5.00E-06 

FAM172B 85.13 187.5 2.2 9.42E-04 

HECTD1 551.33 1211.6 2.2 5.92E-04 

PMAIP1 94.27 207.84 2.2 3.38E-04 

G2E3 125.73 276.01 2.2 1.59E-04 

NFE2L1 163.8 359.63 2.2 4.60E-05 

PLEK 126.35 275.22 2.18 0.001 

ZNF215 533.23 1160.18 2.18 5.90E-05 

RBM23 124.36 267.36 2.15 0.002 

CR2 216.88 466.5 2.15 1.60E-04 

NLRP14 97.2 206.81 2.13 2.21E-04 

TRAPPC6B 171.16 361.81 2.11 0.002 

NGDN 114.01 240.86 2.11 0.001 

CHMP4A 202.82 427.25 2.11 1.81E-04 

NEDD8 500.73 1051.85 2.1 7.03E-04 

B3GNT5 103.92 215.92 2.08 2.19E-04 

PSMA6 530.11 1095.54 2.07 0.004 
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Gene Name 

MM.1R 

Mean 

Expression 

VDR Mean 

Expression 

Fold 

Change 
p value 

ALS2CR8 114.85 236.97 2.06 0.002 

TMEM154 223.98 461.85 2.06 9.00E-06 

KLHDC2 268.3 548.07 2.04 1.76E-04 

ME1 453.2 924.22 2.04 1.14E-04 

SCFD1 214.14 430.08 2.01 9.70E-05 

ASNS 635.94 1274.82 2 1.12E-04 

CCPG1 448.05 896.15 2 1.80E-05 

MBIP 314.1 623.28 1.98 4.31E-04 

TXNDC16 120.49 239 1.98 3.82E-04 

FBXO34 248.76 487.83 1.96 7.39E-04 

C14orf101 172.88 339.68 1.96 2.36E-04 

SHMT2 495.49 963.81 1.95 3.39E-04 

ADAM23 363.12 703.4 1.94 1.58E-04 

PPM1A 191.13 370.98 1.94 3.40E-05 

ICAM3 122.86 236.92 1.93 4.00E-04 

NETO2 307.65 588.84 1.91 2.00E-04 

GALNT3 160 306.34 1.91 7.00E-05 

MUDENG 139.03 264.8 1.9 0.004 

MNAT1 157.74 299.74 1.9 6.10E-05 

PSMB5 188.83 357.69 1.89 4.14E-04 

RNASE6 135.81 255.37 1.88 0.005 

TIMM9 119.11 223.82 1.88 5.99E-04 

SKAP1 128.12 240.13 1.87 5.82E-04 

TINF2 189.14 354.1 1.87 1.70E-05 

EXOC5 525.64 981.33 1.87 9.00E-06 

DDIT4 132.83 247.58 1.86 4.12E-04 

HSPA13 548.22 1022.1 1.86 2.22E-04 

DDHD1 621.93 1155.6 1.86 1.01E-04 

C14orf166 390.9 721.46 1.85 8.70E-04 

WARS 191.83 355.78 1.85 1.12E-04 

NFKBIA 267.86 492.65 1.84 0.002 

FAM126B 364.55 670.49 1.84 5.19E-04 

MAP4K5 176.83 326.05 1.84 4.94E-04 

CIDEB 209.5 384.97 1.84 4.38E-04 

NFE2L2 469.64 862.62 1.84 1.92E-04 

SEL1L3 658.64 1210.35 1.84 1.59E-04 

GARS 1651.87 3043.57 1.84 3.00E-06 

C3orf52 150.91 275.94 1.83 0.002 

COQ10B 174.72 318.87 1.83 7.90E-04 

ACIN1 176.34 320.26 1.82 0.002 

STYX 496.64 904.58 1.82 1.95E-04 

COBLL1 173.33 314.08 1.81 7.14E-04 

ACSM3 127.44 228.16 1.79 0.008 

ARHGAP42 165.86 296.39 1.79 0.001 

PPIL5 162.08 290.27 1.79 0.001 
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Gene Name 

MM.1R 

Mean 

Expression 

VDR Mean 

Expression 

Fold 

Change 
p value 

IKZF1 161.27 288.75 1.79 0.001 

ALS2 166.31 298.18 1.79 0.001 

SV2C 185.14 330.24 1.78 0.003 

JKAMP 338.43 604.09 1.78 0.003 

PIKFYVE 310.91 550.55 1.77 5.36E-04 

RAB30 290.88 515.71 1.77 2.34E-04 

MAPRE2 453.06 802.35 1.77 2.31E-04 

TM9SF1 133.42 236.58 1.77 6.10E-05 

SLCO4C1 210.27 369.57 1.76 0.002 

B4GALT3 242.49 427.45 1.76 0.002 

BAZ1A 417.76 736.64 1.76 0.001 

F2R 138.26 243.56 1.76 9.66E-04 

GMPR2 308.19 542.72 1.76 6.12E-04 

ERO1L 462.43 815.82 1.76 9.70E-05 

RHBDD1 831.6 1465.99 1.76 3.30E-05 

DGKA 225.24 391.71 1.74 0.001 

WDHD1 787.99 1371.1 1.74 7.88E-04 

AIG1 267.4 464.83 1.74 4.20E-05 

ITGAV 251.91 435.11 1.73 0.004 

AVL9 195.91 339.34 1.73 0.002 

TMEM135 153.79 265.76 1.73 0.001 

HYOU1 222.19 383.48 1.73 0.001 

C14orf145 601.83 1041.27 1.73 0.001 

ARID4A 411.29 711.48 1.73 0.001 

KIAA0391 140.39 242.53 1.73 4.24E-04 

MARS 487.59 842.78 1.73 5.50E-05 

GMFB 212.27 366.02 1.72 0.004 

ATP6V0A1 367.86 633.05 1.72 0.004 

ZFAND1 483.57 833.57 1.72 8.44E-04 

AARS 741.12 1271.54 1.72 1.42E-04 

SLC1A5 384.23 661.61 1.72 4.50E-05 

MTHFD2 1234.19 2128.29 1.72 2.80E-05 

INPP5B 167.39 284.95 1.7 9.81E-04 

CFLAR 160.35 270.19 1.69 0.003 

ESYT1 158.76 267.77 1.69 0.001 

HAX1 442.4 747.74 1.69 7.58E-04 

CD28 1212.14 2044.23 1.69 6.80E-05 

LOC100128364 261.75 439.6 1.68 0.003 

ACACA 239.16 401.53 1.68 0.001 

DLGAP5 615.3 1036.3 1.68 6.20E-05 

TJP1 274.25 457.56 1.67 0.006 

SLC41A2 298.67 498.31 1.67 0.003 

NCOA7 155.23 259.48 1.67 0.002 

EDEM1 694.57 1156.66 1.67 0.002 

KIAA0586 266.57 445.64 1.67 8.52E-04 
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Gene Name 

MM.1R 

Mean 

Expression 

VDR Mean 

Expression 

Fold 

Change 
p value 

PPP2R3C 200.86 332.67 1.66 0.002 

ERV3 173.42 288.36 1.66 8.05E-04 

PSME1 659.04 1096.24 1.66 4.80E-04 

RASA2 567.12 943.19 1.66 1.49E-04 

CLK1 414.82 683.4 1.65 0.001 

GTF3C3 744.22 1225.52 1.65 4.75E-04 

MAPK1IP1L 263.45 433.95 1.65 1.42E-04 

ARHGAP5 167.57 274.65 1.64 0.002 

DCBLD1 403.56 661.76 1.64 0.001 

PRMT5 198.65 326.14 1.64 5.78E-04 

OAS1 267.7 439.78 1.64 3.91E-04 

RAB3GAP1 300.02 489.56 1.63 0.009 

OCLN 178.09 289.82 1.63 0.008 

GALNT1 320.47 522.07 1.63 0.001 

SNX6 338.13 552.4 1.63 3.03E-04 

ATIC 798.97 1303.35 1.63 1.04E-04 

DPY19L1 445.02 721.9 1.62 0.006 

ITGA6 451.31 729.28 1.62 0.005 

ZNF322A 290.22 469.47 1.62 0.004 

CREB3L2 300.65 486.25 1.62 0.002 

TES 617.33 998.86 1.62 7.07E-04 

SERPINE2 359.73 583.91 1.62 4.89E-04 

WIPI1 506.12 817.41 1.62 5.10E-05 

HIAT1 464.48 748.94 1.61 0.005 

CAMK2D 219.87 354.97 1.61 0.002 

RGS2 402.62 647.39 1.61 2.54E-04 

BZW1L1 788.19 1268.18 1.61 1.35E-04 

ALCAM 401.28 642.67 1.6 0.001 

ACSL3 477.98 765.59 1.6 1.16E-04 

DCLRE1A 205.46 326.5 1.59 0.013 

GOLGA6L5 376.37 599.75 1.59 0.009 

YARS 503.11 800.1 1.59 0.001 

HMGCS1 720.51 1142.74 1.59 3.69E-04 

SPATS2L 697.79 1109.16 1.59 4.90E-05 

PGD 537.22 847.89 1.58 0.003 

FASTKD2 212.39 336.12 1.58 0.001 

TTC35 432.94 678.25 1.57 0.007 

C2orf60 198.2 310.38 1.57 0.005 

NT5DC1 303.59 476.89 1.57 0.004 

NHEJ1 209.18 327.36 1.56 0.005 

CYP20A1 312.49 488.04 1.56 0.002 

SLC7A1 191.31 298.61 1.56 4.67E-04 

STRADB 235.38 363.96 1.55 0.008 

VPS41 644.04 1000.83 1.55 0.007 

LANCL1 276.65 428.8 1.55 0.004 
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Gene Name 

MM.1R 

Mean 

Expression 

VDR Mean 

Expression 

Fold 

Change 
p value 

AGA 221.22 342.24 1.55 0.002 

SLC7A5 314.07 485.69 1.55 0.002 

OR2D2 184.96 285.17 1.54 0.008 

CARS 200.22 308.21 1.54 0.004 

WDFY1 196.05 302.61 1.54 0.002 

WIPF1 1257.31 1932.86 1.54 0.001 

RPE 438.61 676.21 1.54 7.23E-04 

TSEN15 589.1 907.47 1.54 2.22E-04 

SEL1L 1329.39 2050.47 1.54 1.89E-04 

KIAA1598 231.23 352.97 1.53 0.013 

KLF3 355.45 542.93 1.53 0.002 

AP1AR 228.17 349.17 1.53 1.87E-04 

OS9 361.59 550.49 1.52 0.002 

KBTBD8 347.05 525.97 1.52 0.002 

ADAM9 580.77 879.34 1.51 0.003 

ANKRD44 251.95 380.62 1.51 0.002 

HCLS1 668.57 1009.03 1.51 0.001 

C4orf52 312.41 472.85 1.51 3.47E-04 

SCD 1517.8 2285.6 1.51 2.74E-04 

CWC22 570.43 857.44 1.5 0.007 

NR1D2 228.93 343.52 1.5 0.005 

KTN1 924.61 1384.68 1.5 0.005 

FAM171B 267.68 401.94 1.5 0.002 

MFSD6 231.1 346.89 1.5 0.001 

DNAJB9 255.26 381.91 1.5 9.89E-04 

DNAJC10 1463.37 2195.66 1.5 1.78E-04 

COPG 302.22 450.58 1.49 0.008 

SESTD1 276.47 412.09 1.49 0.008 

CASP10 354.25 528.85 1.49 0.004 

C5orf33 509.9 758.67 1.49 0.003 

METTL4 303.77 453.36 1.49 0.003 

PRKRA 322.36 479.95 1.49 0.002 

FKBP3 252.26 374.97 1.49 0.001 

PRPS1 422.07 628.16 1.49 9.37E-04 

PIK3CG 1030.47 1534.82 1.49 3.21E-04 

CDKN3 577.95 859.89 1.49 1.60E-05 

AP3M2 222.05 328.65 1.48 0.013 

CAPRIN2 301.91 447.84 1.48 0.011 

GDAP2 240.55 355.53 1.48 0.008 

C14orf106 536.38 795.72 1.48 0.003 

ZCCHC8 217.64 322.97 1.48 5.51E-04 

ITGA4 1369.17 2024.5 1.48 1.54E-04 

TAPT1 256.95 381.01 1.48 1.50E-04 

MCTP2 223.43 327.95 1.47 0.014 

PRMT3 304.07 446.35 1.47 0.007 
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Gene Name 

MM.1R 

Mean 

Expression 

VDR Mean 

Expression 

Fold 

Change 
p value 

PDIA4 945.12 1388.35 1.47 3.00E-04 

HIST1H1E 1505.06 2204.64 1.46 0.009 

CIR1 380.13 556.67 1.46 0.004 

CALCOCO2 411.33 599.24 1.46 0.003 

TMED10 602.28 882.02 1.46 0.002 

PSME2 557.51 813.72 1.46 9.79E-04 

ANLN 608.29 890.52 1.46 9.27E-04 

HERPUD2 266.41 388.55 1.46 8.28E-04 

PABPN1 378.64 554.44 1.46 2.08E-04 

TMX4 385.67 559.14 1.45 0.012 

CNIH 479.57 693.19 1.45 0.007 

KIDINS220 498.2 724.18 1.45 0.007 

SLC35A5 244.32 354.42 1.45 0.007 

KLHL5 315.53 458.09 1.45 0.006 

PRPF39 295.77 428.16 1.45 0.006 

WDR41 361.29 523.86 1.45 0.005 

FBXW7 313.16 453.21 1.45 0.003 

CCL3 3190.87 4614 1.45 0.002 

CYP2R1 242.84 351.08 1.45 0.002 

FNDC3A 819.76 1186.02 1.45 7.39E-04 

OXA1L 618.88 899.62 1.45 3.40E-04 

HMGCR 537.1 775.55 1.44 0.008 

LMBRD2 474.81 682.47 1.44 0.006 

RPL18AP3 723.35 1040.95 1.44 0.006 

WDR48 331.37 476.38 1.44 0.005 

ERGIC3 811.26 1166 1.44 0.005 

EXOC6 249.03 359.35 1.44 0.004 

CLIP1 254.23 365.53 1.44 0.004 

GLB1 255.16 367.78 1.44 0.003 

ZDBF2 993.17 1426.48 1.44 2.54E-04 

CTBS 280.24 401.82 1.43 0.013 

HUS1 433.64 619.03 1.43 0.009 

ERN1 307.62 440.49 1.43 0.006 

MAN1A2 427.35 611.44 1.43 0.006 

WDR12 895.54 1276.83 1.43 0.004 

OAT 245.11 350.04 1.43 0.004 

KLHL12 321.81 459.58 1.43 0.004 

KLHL2 341.32 487.84 1.43 0.003 

FDPS 522.5 749.36 1.43 0.002 

ERLEC1 362.36 517.95 1.43 0.002 

POLR3C 623.06 892.92 1.43 0.001 

BCL2L1 392.78 562.77 1.43 1.04E-04 

FAM18B2 330.17 469.78 1.42 0.009 

C17orf75 264.96 375.57 1.42 0.006 

ORC2L 492.57 700.59 1.42 0.004 
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MM.1R 

Mean 

Expression 

VDR Mean 

Expression 

Fold 

Change 
p value 

STRBP 943.71 1339.05 1.42 0.003 

ATF2 748.32 1061.12 1.42 0.002 

IRF4 1237.57 1763.01 1.42 8.10E-05 

ARIH2 245.45 346.22 1.41 0.011 

HIBADH 276.53 388.65 1.41 0.009 

TMEM19 365.81 516.2 1.41 0.008 

FAM107B 493.96 698.08 1.41 0.004 

CREB1 1094.32 1545.07 1.41 0.003 

HDDC2 282.67 399.43 1.41 5.35E-04 

RCN1 1220.99 1725.89 1.41 1.17E-04 

NIN 287.4 401 1.4 0.007 

PTER 290.5 406.15 1.4 0.006 

UFM1 480.8 674.92 1.4 0.006 

PSMA3 420.21 590.1 1.4 0.006 

ASAH1 569.6 799.59 1.4 0.005 

NCSTN 345.85 482.76 1.4 0.005 

NCOA2 454.92 636.79 1.4 0.004 

MLH1 410.86 576.2 1.4 0.001 

PMS1 683.35 954.58 1.4 6.57E-04 

SENP2 423.92 595.59 1.4 5.51E-04 

BARD1 756.77 1063.25 1.4 1.30E-05 

SAP130 502.36 699.49 1.39 0.012 

BAT1 490.94 680.76 1.39 0.004 

FNDC3B 584.45 815 1.39 0.003 

INSIG1 698.94 972.96 1.39 0.003 

TARS 1496.96 2082.91 1.39 0.002 

LMAN2 396.33 551.46 1.39 0.002 

SLC38A2 2149.68 2980.95 1.39 8.79E-04 

CCL5 571.54 791.8 1.39 3.21E-04 

MTO1 324.23 446.43 1.38 0.006 

RAD17 334.1 461.45 1.38 0.005 

DCPS 270.88 375.05 1.38 0.002 

CASP8 572.29 792.46 1.38 0.002 

PLDN 371.32 512.97 1.38 8.86E-04 

C7orf44 415.21 570.63 1.37 0.009 

GPBP1L1 452.68 619.62 1.37 0.008 

ATM 456.05 626.53 1.37 0.005 

NDUFS1 837.44 1144.37 1.37 0.004 

INO80D 361.48 496.26 1.37 0.004 

TRIP13 590.76 808.5 1.37 0.003 

JAK1 1011.64 1386.68 1.37 0.002 

APLP2 359.57 493.54 1.37 0.001 

XPOT 1225.84 1677.43 1.37 2.07E-04 

PRNP 409.23 558.39 1.36 0.014 

MACC1 885.59 1205.32 1.36 0.009 
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Mean 

Expression 
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Fold 

Change 
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MBNL2 587.92 797.49 1.36 0.006 

C11orf24 481.2 655.46 1.36 0.004 

ORMDL1 300.29 406.9 1.36 0.004 

UBE2Q2 303.3 413.56 1.36 0.002 

GLS 839.2 1140.48 1.36 7.81E-04 

HSD17B7 524.93 716.29 1.36 5.31E-04 

BICD1 290.55 394.06 1.36 2.24E-04 

TCEA1 1051.35 1427.66 1.36 4.50E-05 

FAM106A 352.65 474.78 1.35 0.004 

SSFA2 366.25 496.25 1.35 0.001 

CCL3L1 3665.55 4957.23 1.35 9.56E-04 

EDEM3 1354.23 1823.97 1.35 5.04E-04 

DPM1 842.22 1126.14 1.34 0.008 

KLHL6 1010.3 1357.64 1.34 0.007 

AAAS 412.74 554.69 1.34 0.005 

DOCK8 488.55 654.85 1.34 0.002 

FAIM3 502.66 672.47 1.34 8.16E-04 

ELMO1 1050.28 1403.05 1.34 7.21E-04 

NARS 1169.41 1567.76 1.34 6.69E-04 

HIVEP1 732.16 975.34 1.33 0.005 

PNN 2074.1 2750.5 1.33 9.99E-04 

C12orf45 861.63 1145.75 1.33 5.10E-05 

XPR1 649.33 855.69 1.32 0.002 

USP3 567.99 750.64 1.32 0.002 

RAPGEF2 329.65 435.28 1.32 0.001 

CALM3 366.16 478.61 1.31 0.009 

GOPC 616.89 810.61 1.31 0.008 

ABHD3 575.88 753.42 1.31 0.003 

CDK13 385.27 505.68 1.31 0.003 

AGPS 968.14 1271.59 1.31 0.002 

KIAA1715 466.52 609.36 1.31 7.95E-04 

NIF3L1 605.95 791.31 1.31 5.70E-04 

PDCD4 845.36 1100.12 1.3 0.002 

RQCD1 397.47 513.95 1.29 0.003 

CPT2 538.88 695.58 1.29 4.48E-04 

RPL36AL 2812.52 3613.56 1.28 0.001 

CLIC4 1277.77 1639.22 1.28 1.30E-04 

TMX1 1702.8 2153.85 1.26 4.82E-04 

PDK1 2165.14 2673.11 1.23 3.59E-04 

 

Table 3.3.2.1 Transcripts over-expressed in VDR compared to MM.1R. In 

total 353 transcripts exhibited a gene fold change >1.2 in VDR compared to 

MM.1R where p ≤ 0.01. 
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G.O. ID GO Term for Cellular Process 
Gene 

Count 

% of 

total 
P Value 

GO:0009057 Macromolecule Catabolic Process 34 9.66 5.724E-05 

GO:0008104 Protein Localization 33 9.38 0.001 

GO:0044265 Cellular Macromolecule Catabolic Process 32 9.09 7.884E-05 

GO:0006508 Proteolysis 32 9.09 0.025 

GO:0046907 Intracellular Transport 29 8.24 1.851E-04 

GO:0010033 Response To Organic Substance 28 7.95 0.002 

GO:0051603 
Proteolysis Involved In Cellular Protein Catabolic 

Process 
27 7.67 2.452E-04 

GO:0044257 Cellular Protein Catabolic Process 27 7.67 2.647E-04 

GO:0030163 Protein Catabolic Process 27 7.67 4.231E-04 

GO:0015031 Protein Transport 27 7.67 0.007 

GO:0045184 Establishment Of Protein Localization 27 7.67 0.008 

GO:0042981 Regulation Of Apoptosis 27 7.67 0.014 

GO:0043067 Regulation Of Programmed Cell Death 27 7.67 0.015 

GO:0010941 Regulation Of Cell Death 27 7.67 0.016 

GO:0007049 Cell Cycle 26 7.39 0.016 

GO:0043632 
Modification-Dependent Macromolecule Catabolic 

Process 
24 6.82 0.002 

GO:0019941 Modification-Dependent Protein Catabolic Process 24 6.82 0.002 

GO:0016192 Vesicle-Mediated Transport 24 6.82 0.002 

GO:0010605 
Negative Regulation Of Macromolecule Metabolic 

Process 
23 6.53 0.045 

GO:0033554 Cellular Response To Stress 22 6.25 0.006 

GO:0022402 Cell Cycle Process 21 5.97 0.012 

GO:0044093 Positive Regulation Of Molecular Function 20 5.68 0.032 

GO:0006915 Apoptosis 20 5.68 0.039 

GO:0012501 Programmed Cell Death 20 5.68 0.045 

GO:0006396 RNA Processing 19 5.40 0.032 

GO:0019220 Regulation Of Phosphate Metabolic Process 18 5.11 0.021 

GO:0051174 Regulation Of Phosphorus Metabolic Process 18 5.11 0.021 

GO:0043085 Positive Regulation Of Catalytic Activity 18 5.11 0.038 

GO:0070727 Cellular Macromolecule Localization 17 4.83 0.011 

GO:0042325 Regulation Of Phosphorylation 17 4.83 0.030 

GO:0034613 Cellular Protein Localization 16 4.55 0.022 

GO:0043066 Negative Regulation Of Apoptosis 15 4.26 0.014 

GO:0043069 Negative Regulation Of Programmed Cell Death 15 4.26 0.016 

GO:0060548 Negative Regulation Of Cell Death 15 4.26 0.016 

GO:0000278 Mitotic Cell Cycle 15 4.26 0.020 

GO:0044092 Negative Regulation Of Molecular Function 14 3.98 0.020 

GO:0045859 Regulation Of Protein Kinase Activity 14 3.98 0.025 

GO:0043549 Regulation Of Kinase Activity 14 3.98 0.032 

GO:0051338 Regulation Of Transferees Activity 14 3.98 0.042 

GO:0034660 Norma Metabolic Process 13 3.69 0.003 
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% of 
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GO:0006511 Ubiquitin-Dependent Protein Catabolic Process 13 3.69 0.004 

GO:0051726 Regulation Of Cell Cycle 13 3.69 0.040 

GO:0006399 Trna Metabolic Process 12 3.41 2.897E-05 

GO:0043086 Negative Regulation Of Catalytic Activity 12 3.41 0.027 

GO:0051247 Positive Regulation Of Protein Metabolic Process 11 3.13 0.027 

GO:0043161 
Proteasomal Ubiquitin-Dependent Protein Catabolic 

Process 
10 2.84 2.350E-04 

GO:0010498 Proteasomal Protein Catabolic Process 10 2.84 2.350E-04 

GO:0048193 Golgi Vesicle Transport 10 2.84 0.001 

GO:0007346 Regulation Of Mitotic Cell Cycle 10 2.84 0.004 

GO:0032940 Secretion By Cell 10 2.84 0.027 

GO:0043039 Trna Aminoacylation 9 2.56 3.613E-06 

GO:0006418 Trna Aminoacylation For Protein Translation 9 2.56 3.613E-06 

GO:0043038 Amino Acid Activation 9 2.56 3.613E-06 

GO:0051789 Response To Protein Stimulus 9 2.56 0.002 

GO:0006887 Exocytosis 9 2.56 0.002 

GO:0051186 Cofactor Metabolic Process 9 2.56 0.046 

GO:0006986 Response To Unfolded Protein 8 2.27 0.001 

GO:0006732 Coenzyme Metabolic Process 8 2.27 0.037 

GO:0070647 
Protein Modification By Small Protein Conjugation Or 

Removal 
8 2.27 0.046 

GO:0051351 Positive Regulation Of Ligase Activity 7 1.99 0.004 

GO:0051340 Regulation Of Ligase Activity 7 1.99 0.006 

GO:0010564 Regulation Of Cell Cycle Process 7 1.99 0.029 

GO:0031400 Negative Regulation Of Protein Modification Process 7 1.99 0.035 

GO:0051436 
Negative Regulation Of Ubiquitin-Protein Ligase 

Activity During Mitotic Cell Cycle 
6 1.70 0.010 

GO:0031145 

Anaphase-Promoting Complex-Dependent 

Proteasomal Ubiquitin-Dependent Protein Catabolic 

Process 

6 1.70 0.010 

GO:0051444 
Negative Regulation Of Ubiquitin-Protein Ligase 

Activity 
6 1.70 0.012 

GO:0051352 Negative Regulation Of Ligase Activity 6 1.70 0.012 

GO:0051437 
Positive Regulation Of Ubiquitin-Protein Ligase 

Activity During Mitotic Cell Cycle 
6 1.70 0.012 

GO:0007229 Integrin-Mediated Signalling Pathway 6 1.70 0.014 

GO:0051443 
Positive Regulation Of Ubiquitin-Protein Ligase 

Activity 
6 1.70 0.014 

GO:0032386 Regulation Of Intracellular Transport 6 1.70 0.015 

GO:0051439 
Regulation Of Ubiquitin-Protein Ligase Activity 

During Mitotic Cell Cycle 
6 1.70 0.015 

GO:0031397 Negative Regulation Of Protein Ubiquitination 6 1.70 0.018 

GO:0051438 Regulation Of Ubiquitin-Protein Ligase Activity 6 1.70 0.022 

GO:0034097 Response To Cytokine Stimulus 6 1.70 0.023 

GO:0031398 Positive Regulation Of Protein Ubiquitination 6 1.70 0.029 

GO:0006865 Amino Acid Transport 6 1.70 0.037 
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GO:0051640 Organelle Localization 6 1.70 0.040 

GO:0048278 Vesicle Docking 5 1.42 0.002 

GO:0022406 Membrane Docking 5 1.42 0.003 

GO:0034976 Response To Endoplasmic Reticulum Stress 5 1.42 0.005 

GO:0006984 ER-Nuclear Signalling Pathway 5 1.42 0.005 

GO:0051783 Regulation Of Nuclear Division 5 1.42 0.027 

GO:0007088 Regulation Of Mitosis 5 1.42 0.027 

GO:0006892 Post-Golgi Vesicle-Mediated Transport 5 1.42 0.030 

GO:0045454 Cell Redox Homeostasis 5 1.42 0.040 

GO:0006739 NADP Metabolic Process 4 1.14 0.004 

GO:0034620 Cellular Response To Unfolded Protein 4 1.14 0.009 

GO:0030968 Endoplasmic Reticulum Unfolded Protein Response 4 1.14 0.009 

GO:0006904 Vesicle Docking During Exocytosis 4 1.14 0.012 

GO:0051053 Negative Regulation Of DNA Metabolic Process 4 1.14 0.045 

GO:0046496 Nicotinamide Nucleotide Metabolic Process 4 1.14 0.048 

GO:0006769 Nicotinamide Metabolic Process 4 1.14 0.048 

GO:0048199 Vesicle Targeting, To, From Or Within Golgi 3 0.85 0.024 

GO:0034612 Response To Tumour Necrosis Factor 3 0.85 0.028 

GO:0045069 Regulation Of Viral Genome Replication 3 0.85 0.032 

 

Table 3.3.2.2 Cellular processes in which genes over-expressed in VDR 

compared to MM.1R are involved (genes included demonstrate fold change 

>1.2 and p value ≤ 0.01). Functional annotation analysis via DAVID literature 

mining software revealed 96 cellular processes in which genes over-expressed in 

VDR vs. MM1R are involved, (where p value for strength of association <0.05). 

Note: “% genes” equals the number of genes involved in stated cellular process 

expressed as a percentage of total 353 genes up-regulated in VDR. 

(http://david.abcc.ncifcrf.gov/) 
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G.O. ID 
Cellular 

Process 

Gene 

Count 

% 

Genes 
P Value Gene IDs 

GO:0009057 

Macromolecule 

Catabolic 

Process 

34 9.66 
5.724E-

05 

USP3, MLH1, NEDD8, EDEM3, 

EDEM1, ERLEC1, OS9, DCPS, 

PSMB5, G2E3, FBXW7, ARIH2, 

UFM1, CASP8, PPIL5, CTBS, 

ADAM9, HECTD1, AGA, RNASE6, 

UBE2Q2, ATM, WDR48, NCSTN, 

SENP2, MNAT1, PSMC6, PSMA6, 

PSME1, PSME2, PSMA3, KLHL12, 

FBXO34, BARD1 

GO 0008104 
Protein 

Localization 
33 9.38 0.001 

ALS2, OXA1L, PLDN, SNX6, AP1AR, 

HMP4A, NFKBIA, NEDD8, PDIA4, 

LMAN2, KLHL2, MUDENG, OS9, 

AP3M2, GOPC, PIKFYVE, TIMM9, 

TMED10, EXOC6, EXOC5, TINF2, 

SEC23A, SRP54, STAP1, PLEK, 

VPS41, STRADB, SENP2, SCFD1, 

RAB30, FBX034, COPG, F2R 

GO:0044265 

Cellular 

Macromolecule 

Catabolic 

Process 

32 9.09 
7.884E-

05 

USP3, MLH1, NEDD8, EDEM3, 

EDEM1, ERLEC1, OS9, DCPS, 

PSMB5, G2E3, FBXW7, ARIH2, 

UFM1, CASP8, PPIL5, ADAM9, 

HECTD1, RNASE6, UBE2Q2, ATM, 

WDR48, NCSTN, SENP2, MNAT1, 

PSMC6, PSMA6, PSME1, PSME2, 

PSMA3, KLHL12, FBXO34, BARD1 

GO:0006508 Proteolysis 32 9.09 0.025 

USP3, NEDD8, EDEM3, EDEM1, 

ERLEC1, OS9, PSMB5, G2E3, 

FBXW7, ARIH2, UFM1, PRSS2, 

CASP8, PPIL5, ADAM9, HECTD1, 

CFLAR, CR2, ADAM23, UBE2Q2, 

NCSTN, SENP2, WDR48, CASP10, 

PSMC6, PSMA6, PSME1, PSME2, 

PSMA3, KLHL12, FBXO34, BARD1 
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G.O. ID 
Cellular 

Process 

Gene 

Count 

% 

Genes 
P Value Gene IDs 

GO:0046907 
Intracellular 

Transport 
29 8.24 

1.851E-

04 

ALS2, TMX1, PLDN, CPT2, SNX6, 

NFKBIA, BCL2L1, KLHL2, 

MUDENG, AP3M2, GOPC, PIKFYVE, 

TIMM9, TMED10, WIPF1, EXOC5, 

XPOT, SEC23A, PABPN1, SRP54, 

STAP1, VPS41, STRADB, WIPI1, 

SCFD1, AAAS, COPG, BAT1, F2R 

GO:0010033 

Response To 

Organic 

Substance 

28 7.95 0.002 

ME1, HMGCS1, NFKBIA, 

CALCOCO2, NEDD8, ASNS, EDEM3, 

PMAIP1, BCL2L1, CCL5, EDEM1, 

ASAH1, PRKRA, CASP8, CREB3L2, 

IDH1, ERO1L, ADAM9, STRN3, 

HCLS1, CREB1, AARS, ACACA, 

HERPUD2, CD38, ERN1, NFE2L2, 

F2R 

GO:0051603 

Proteolysis 

Involved In 

Cellular 

Protein 

Catabolic 

Process 

27 7.67 
2.452E-

04 

USP3, NEDD8, EDEM3, EDEM1, 

ERLEC1, OS9, PSMB5, FBXW7, 

ARIH2, G2E3, UFM1, CASP8, PPIL5, 

ADAM9, HECTD1, UBE2Q2, NCSTN, 

SENP2, WDR48, PSMC6, PSME1, 

PSMA6, PSME2, PSMA3, KLHL12, 

FBXO34, BARD1 

GO:0044257 

Cellular 

Protein 

Catabolic 

Process 

27 7.67 
2.647E-

04 

USP3, NEDD8, EDEM3, EDEM1, 

ERLEC1, OS9, PSMB5, FBXW7, 

ARIH2, G2E3, UFM1, CASP8, PPIL5, 

ADAM9, HECTD1, UBE2Q2, NCSTN, 

SENP2, WDR48, PSMC6, PSME1, 

PSMA6, PSME2, PSMA3, KLHL12, 

FBXO34, BARD1 

 

Table 3.3.2.3 Cellular processes in which genes over-expressed in VDR 

compared to MM.1R are involved (genes included demonstrate fold change 

>1.2, p value ≤ 0.01). Specific genes up-regulated in VDR compared to MM.1R 

and their association with specified cellular processes.  Note: “% genes” equals 
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the number of genes involved in stated cellular process expressed as a 

percentage of total 353 genes up-regulated in VDR. 

(http://david.abcc.ncifcrf.gov/) 
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Figure 3.3.2.1 Genes up-regulated in VDR compared to MM.1R and their 

role in cellular apoptosis.  

DAVID functional annotation tool revealed 4 genes up-regulated in VDR 

compared to MM.1R that share an intracytoplasmic role in cellular apoptosis. 

These transcripts include CFLAR, CASP8, CASP10 and NFKBIA. 

(http://david.abcc.ncifcrf.gov/) 
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3.3.3 Transcripts downregulated in VDR compared to MM.1R 

 

In contrast to the 353 transcripts upregulated in VDR compared to MM.1R, only 

84 genes were downregulated in the resistant cell line compared to bortezomib-

sensitive MM.1R. The difference in the number of genes upregulated compared 

to downregulated comparative analysis is unclear. It is not due to a difference in 

proliferation rate between the two cell lines as none is evident (results section 

3.16). Again for all 84 genes downregulated in VDR cell line, the list includes only 

genes with a fold change difference <1.2 in VDR compared to MM.1R where p 

value ≤ 0.01, (table 3.3.3.1). 

Again the list of transcripts downregulated in VDR compared to MM.1R was 

analysed for their involvement in cellular processes in Homo Sapiens. 

Transcripts down-regulated in VDR are noted to participate in a number of 

cellular processes mainly concerned with the immune system for example 

antigen processing and presentation, immune response, T cell differentiation and 

T cell selection, (table 3.3.3.2).  

Table 3.3.3.3 demonstrates a list of specific genes down-regulated in VDR 

compared to MM.1R and their association with specified cellular processes 

where by at least 5% of genes down-regulated in VDR are involved in a common 

cellular process. Genes listed here are involved in cellular process of antigen 

processing and presentation (n=10 genes or 11.9% of total genes, p=3.98E-03), 

or the immune response (n=5 genes or 5.95% of total genes, p=5.61E-04).  

Finally figure 3.3.3.1 depicts the location of CD74 (CD74 molecule, MHC complex, 

class 2 invariant chain) and HLA-DRA (major histocompatibility complex, class 2, 

RD alpha) in the antigen processing and presentation pathway, both of which are 

also down-regulated in VDR compared to MM.1R. 
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Gene ID 

MM.1R 

Mean 

Expression 

VDR Mean 

Expression 

Fold 

Change 
P value 

THEMIS 147.37 31.82 -4.63 0.01 

ARHGEF6 337.95 74.04 -4.56 0.01 

AHNAK 190.53 62.87 -3.03 1.29E-03 

RNU4ATAC 453.17 153.06 -2.96 0.01 

HLA-DPA1 710.08 251.09 -2.83 0.01 

HLA-DRA 1274.44 473.54 -2.69 7.98E-04 

CDH2 318.44 123.57 -2.58 0.01 

HLA-DPB1 265.13 110.12 -2.41 0.01 

C21orf99   177.36 73.77 -2.4 9.99E-04 

CD74 2148.22 918.07 -2.34 1.12E-04 

CD52 590.79 270.07 -2.19 4.89E-03 

RPL31 406.9 189.37 -2.15 1.10E-05 

SNCAIP 204.72 96.25 -2.13 1.39E-03 

  CASP6 271.51 129.27 -2.1 1.52E-03 

NR3C1 298.54 148.13 -2.02 2.60E-03 

CCDC99 1029.95 514.94 -2 5.16E-04 

HBD  357.94 182.13 -1.97 0.01 

ADAM28 324.18 165.96 -1.95 0.01 

DHFR 1510.04 836.36 -1.81 0.02 

FOLH1 381.36 215.43 -1.77 0.01 

KDELC1 899.14 514.68 -1.75 6.82E-04 

CCDC29   312.23 178.57 -1.75 7.58E-04 

SULF1 508.46 290.37 -1.75 0.01 

PEG10 724.45 417.18 -1.74 0.01 

JAKMIP2 454.14 262.66 -1.73 0.01 

LCP2 1066.65 618.98 -1.72 2.19E-04 

TTC1 538.07 313.77 -1.71 1.59E-04 

CHRNA5 361.11 210.98 -1.71 0.02 

TEX15 371.39 220.38 -1.69 0.01 

ANXA6 662.62 393.45 -1.68 4.29E-03 

DUSP1 350.96 208.36 -1.68 0.02 

CNN2 316.26 189.14 -1.67 0.02 

GNPDA1 318.06 195.64 -1.63 3.82E-03 

SPARC 298.09 189.23 -1.58 0.02 

CLINT1 1229.64 790.27 -1.56 1.69E-04 

LILRB4 457.61 294.73 -1.55 0.01 

MAL2 782.55 510.6 -1.53 5.38E-04 

YBX1P2 1180.96 771.65 -1.53 0.01 

SNORD47  964.09 628.2 -1.53 0.01 

TNFAIP3 637.85 415.79 -1.53 0.01 

RASGRP3 1328.08 871.14 -1.52 1.08E-03 

TCF4 396.83 261.57 -1.52 0.01 

SLU7 299.57 198.61 -1.51 0.01 

PTTG1 541.21 360.42 -1.5 2.96E-03 

YIPF5 800.43 536.67 -1.49 1.97E-03 
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Gene ID 

MM.1R 

Mean 

Expression 

VDR Mean 

Expression 

Fold 

Change 
P value 

HEMGN 432.9 289.71 -1.49 0.01 

RPL26L1 505.79 344.62 -1.47 2.40E-03 

SCARNA9 2711.77 1861.79 -1.46 0.03 

MGAT5 341.12 233.13 -1.46 0.03 

SLC9A9 406.55 280.62 -1.45 0.02 

RARS 693.94 482.2 -1.44 0.02 

AKT3 371.64 258.73 -1.44 0.02 

SAMHD1   1702.67 1193.62 -1.43 1.63E-03 

HAPLN4 402.91 282.61 -1.43 0.01 

SNORD75 500.36 349.56 -1.43 0.02 

LRRFIP1 878.74 617.46 -1.42 0.01 

SSBP2 1153.5 816.48 -1.41 6.73E-04 

EIF2AK2 1047.85 744.38 -1.41 1.22E-03 

TRAM2 1126.94 801.62 -1.41 1.64E-03 

MAF 803.15 569.52 -1.41 0.01 

VIM 1566.36 1115.95 -1.4 2.05E-03 

 SLC17A7 4551 3265.07 -1.39 3.75E-03 

C20orf103 757 549.81 -1.38 1.86E-03 

ERGIC1 438.96 318.89 -1.38 1.97E-03 

WBP1   738.53 533.3 -1.38 0.01 

NBPF15   1655.5 1200.46 -1.38 0.01 

RBM27 699.25 507.4 -1.38 0.03 

FMN1 654.97 478.87 -1.37 4.18E-03 

UBLCP1 470.02 343.63 -1.37 0.01 

G3BP1 1085.28 789.47 -1.37 0.01 

LARP1 637.13 464.03 -1.37 0.01 

NFIL3 1328.63 969.84 -1.37 0.01 

ACTG1 1057.05 769 -1.37 0.02 

ARL6IP5 1527.02 1119.84 -1.36 6.57E-04 

DOCK2 480.24 353.36 -1.36 0.01 

UBE2E1 947.75 700.41 -1.35 4.64E-04 

LOC51152 1332.27 983.73 -1.35 4.23E-03 

IFNG 723.73 535.27 -1.35 0.02 

ATP6V0E1 1311.93 982.19 -1.34 1.74E-04 

BARX2 428.34 321.18 -1.33 1.83E-03 

C7orf11 5095.03 3855.56 -1.32 2.81E-03 

BASP1 527.27 401.79 -1.31 7.31E-04 

SLC30A1 510.86 392.15 -1.3 1.19E-03 

MGST3 1275.71 1013.36 -1.26 9.30E-05 

 

Table 3.3.3.1 Transcripts down-regulated in VDR compared to MM.1R  

84 transcripts were found to be down-regulated in bortezomib-resistant VDR 

compared to parental MM.1R. 
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G.O. ID GO Term for Cellular Process 
Gene 

Count 

% 

Genes 
P Value 

GO:0006955 Immune Response 10 11.90 3.98E-03 

GO:0019882 Antigen Processing And Presentation 5 5.95 5.61E-04 

GO:0002504 

Antigen Processing And Presentation Of 

Peptide Or Polysaccharide Antigen Via 

MHC Class II 4 4.76 4.53E-04 

GO:0043383 Negative T Cell Selection 3 3.57 7.29E-04 

GO:0043368 Positive T Cell Selection 3 3.57 7.29E-04 

GO:0045058 T Cell Selection 3 3.57 3.36E-03 

GO:0030217 T Cell Differentiation 3 3.57 0.04 

GO:0031641 Regulation Of Myelination 2 2.38 0.03 

GO:0045059 Positive Thymic T Cell Selection 2 2.38 0.03 

GO:0019886 

Antigen Processing And Presentation Of 

Exogenous Peptide Antigen Via MHC Class 

II 2 2.38 0.04 

GO:0045060 Negative Thymic T Cell Selection 2 2.38 0.04 

GO:0002495 

Antigen Processing And Presentation Of 

Peptide Antigen Via MHC Class II 2 2.38 0.04 

GO:0033574 Response To Testosterone Stimulus 2 2.38 0.04 

 

Table 3.3.3.2 Pathway analysis of transcripts down-regulated in VDR 

compared to MM.1R. Down-regulated VDR transcripts are noted to participate 

in the cellular processes listed. Note: “% genes” equals the number of genes 

involved in stated cellular process expressed as a percentage of total 84 genes 

down-regulated in VDR. (http://david.abcc.ncifcrf.gov/) 
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G.O. Term ID 

G.O. Term 

for Cellular 

Process 

Gene 

Count 

% of 

Total 

Genes 

P Value Gene IDs 

GO:0006955 
Immune 

Response 
10 11.90 3.98E-03 

THEMIS, LILRB4, 

IFNG, SAMHD1, 

HLA-DPA1, HLA-

DPB1, NFIL3, 

CD74, HLA-DRA, 

LCP2 

GO:0019882 

Antigen 

Processing 

and 

Presentation 

5 5.95 5.61E-04 

IFNG, HLA-DPA1, 

HLA-DPB1, CD74, 

HLA-DRA 

 

 

Table 3.3.3.3 Cellular processes in which genes down-regulated in VDR 

compared to MM.1R are involved (genes included demonstrated fold 

change >1.2, p value ≤ 0.01). List of specific genes down-regulated in VDR 

compared to MM.1R and their association with specified cellular processes 

where by at least 5% of genes down-regulated in VDR are involved in a common 

cellular process.  (http://david.abcc.ncifcrf.gov/) 
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Figure 3.3.3.1 Transcripts down-regulated in VDR involved in the cellular 

process “Antigen Processing and Presentation”. 2 transcripts that were found 

to be down-regulated in VDR were identified in the DAVID functional annotation 

tool analysis as having known involvement in the process of antigen processing 

and presentation. These transcripts include CD74 (CD74 molecule, MHC 

complex, class 2 invariant chain) and HLA-DRA (major histocompatibility 

complex, class 2, RD alpha). (http://david.abcc.ncifcrf.gov/) 
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3.3.4 Identification of transcripts of interest for shRNA knockdown 

screening 

Given the large number of genes over-expressed in VDR compared to MM.1R, an 

shRNA knockdown screen of genes upregulated in VDR was undertaken to 

determine which genes, following their shRNA knockdown, had the potential to 

desensitise VDR cells to bortezomib. The transcripts were selected from the list 

of genes up-regulated in VDR with fold change >1.2 (table 3.3.2.1). 

The transcript selection process for targeted shRNA knockdown was conducted 

as follows (see table 3.3.4.1 for complete list):  

1. We compared the following two lists: transcripts up-regulated in VDR vs. 

MM.1R compared to proteins up-regulated in VDR vs. MM.1R (see table 

3.4.2.1 “Individual candidate biomarkers over-expressed in VDR vs. 

MM.1R identified by label-free mass spectrometry” for transcripts; for all 

proteins fold change>1.2 and p value <0.05). Genes and transcripts that 

were concordantly over-expressed at both the transcriptional and 

molecular level in VDR vs. MM.1R were selected for shRNA knockdown 

screening, (n=8). 

2. Transcripts with at least > 2-fold mean expression in VDR versus MM.1R, 

(n=7).  

3. From the list of transcripts up-regulated in VDR vs. MM.1R, we identified 

3 target genes for which the chemical inhibitor of their molecular 

products are currently commercially available, (n=3). 

4. Finally, 9 additional transcripts up-regulated in VDR vs. MM.1R were 

selected from the complete list of genes over-expressed in VDR vs. MM.1R, 

as shRNA constructs for hairpins for these genes were already available in 

the laboratory (n=9) 

 



118 

 

 

Gene 

Name 

MM.1R Mean 

Expression 

VDR Mean 

Expression 

Fold 

Change 
P Value 

NEDD8 500.73 1051.85 2.1 7.03E-04 

PSMB5 188.83 357.69 1.89 4.14E-04 

HYOU1 222.19 383.48 1.73 1.18E-03 

PSME1 659.04 1096.24 1.66 4.80E-04 

HCLS1 668.57 1009.03 1.51 1.15E-03 

PDIA4 945.12 1388.35 1.47 3.00E-04 

PSME2 557.51 813.72 1.46 9.79E-04 

PSAT1 253.07 919.7 3.63 3.00E-06 

ALOX5AP 146.31 739.51 5.05 3.15E-04 

CALCRL 27.95 133.59 4.78 2.54E-03 

MYO1B 77.06 277.52 3.6 2.60E-05 

FN1 155.65 536.13 3.44 5.00E-05 

CX3CR1 167.41 553.23 3.3 9.00E-06 

ALDH1L2 320.77 984.2 3.07 9.00E-06 

PRSS2 98.9 234.49 2.37 3.40E-05 

PIK3CG 1030.47 1534.82 1.49 3.21E-04 

BCL2L1 392.78 562.77 1.43 1.04E-04 

SLC7A11 195.74 793.65 4.05 4.00E-06 

ASNS 635.94 1274.82 2 1.12E-04 

SKAP1 128.12 240.13 1.87 5.82E-04 

TINF2 189.14 354.1 1.87 1.70E-05 

NFKBIA 267.86 492.65 1.84 2.12E-03 

ERO1L 462.43 815.82 1.76 9.70E-05 

CEP128 601.83 1041.27 1.73 1.17E-03 

PRMT5 198.65 326.14 1.64 5.78E-04 

RGS2 402.62 647.39 1.61 2.54E-04 

SLC7A1 191.31 298.61 1.56 4.67E-04 

Table 3.3.4.1 Transcripts over-expressed in VDR compared to MM.1R that 

were selected for shRNA knockdown screening. 

Red= transcripts over-expressed in VDR with concordant up-regulation at the 

protein level in VDR (as identified by label-free mass spectrometry), compared 

to parental MM.1R respectively.  (Expression level, fold change and p value 

stated represent those at the transcript level). (n=8) 

Blue= transcripts with > 2-fold over-expressed in VDR vs. MM.1R. (n=7) 

Wine= chemical inhibitors commercially available for the molecular product of 

these transcripts. (n=3) 

Green= genes up-regulated in VDR vs. MM.1R where fold change >1.2 and p 

value ≤ 0.01 and constructs for these hairpins available in the lab (n=9) 
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3.3.5 Results of shRNA knockdown screen  

As described above, 27 genes were selected for shRNA knockdown studies 

(Table 3.3.4.1). 5 different hairpins were utilised for knockdown of each specific 

gene. The shRNA knockdown screen was completed at the DFCI RNA 

Interference (RNAi) Screening Facility. Cells were plated at a density of 400x103 

cells/mL in 384-well-plates, in the presence of polybrene, subsequently infected 

with lentiviral vectors and then selected using puromycin 2.5ug/mL (control 

wells). Additionally, duplicate plates were analysed for the response of VDR cells 

to bortezomib 50nM (the IC20 for MM1VDR, for 24hrs) following shRNA 

knockdown with selected gene targets (see materials and methods section 2.13). 

Table 3.3.5.1 lists target genes whereby shRNA knockdown of named gene and 

subsequent treatment with bortezomib 50nM resulted in >40% cell death (i.e. 

less than 60% cell viability) in VDR cells following their shRNA knockdown. Only 

genes whereby the latter criteria were fulfilled by 2 or > hairpins for a given gene 

are included. If ≤1 gene hairpin resulted in >40% cell death, these genes were 

not considered significant. 11 genes fulfilled these criteria. 

Figure 3.3.5.1 depicts the percentage cell viability of VDR following shRNA 

knockdown of 11 genes listed in table 3.3.5.1 for each individual hairpin 

compared to empty vector or Lac-Z control vectors. 11 out of a total 27 genes 

resulted in >40% cell death of VDR cells following their shRNA knockdown with 

above named gene and subsequent treatment with bortezomib. Empty vector 

and Lac-Z served as controls.  
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Clone ID Symbol 

NCBI 

Gene ID 

Relative 

% Cell 

Viability SD 

TRCN0000003920 PSMB5 5693 6.26 0.506 

TRCN0000352618 PSMB5 5693 11.14 1.093 

TRCN0000003916 PSMB5 5693 14.21 0.997 

TRCN0000003919 PSMB5 5693 72.73 4.972 

TRCN0000003917 PSMB5 5693 76.59 3.439 

TRCN0000150510 ALDH1L2 160428 15.14 7.212 

TRCN0000154597 ALDH1L2 160428 31.05 19.589 

TRCN0000179462 ALDH1L2 160428 63.29 3.838 

TRCN0000151018 ALDH1L2 160428 78.90 3.677 

TRCN0000155970 ALDH1L2 160428 88.55 4.441 

TRCN0000286357 FN1 2335 47.82 4.296 

TRCN0000293840 FN1 2335 48.16 6.404 

TRCN0000293839 FN1 2335 52.95 2.776 

TRCN0000293790 FN1 2335 55.39 6.240 

TRCN0000286356 FN1 2335 819.20 1502.732 

TRCN0000430313 PIK3CG 5294 43.61 2.373 

TRCN0000199330 PIK3CG 5294 44.21 5.673 

TRCN0000195574 PIK3CG 5294 58.38 3.286 

TRCN0000414541 PIK3CG 5294 73.25 5.201 

TRCN0000196870 PIK3CG 5294 79.87 2.669 

TRCN0000058080 PSME1 5720 47.10 2.490 

TRCN0000307152 PSME1 5720 48.23 48.596 

TRCN0000290074 PSME1 5720 54.97 0.851 

TRCN0000290008 PSME1 5720 72.29 3.894 

TRCN0000058082 PSME1 5720 81.02 3.429 

TRCN0000033499 BCL2L1 598 34.09 2.682 

TRCN0000299588 BCL2L1 598 50.09 6.195 

TRCN0000299586 BCL2L1 598 72.83 7.909 

TRCN0000033503 BCL2L1 598 95.52 15.252 

TRCN0000033502 BCL2L1 598 96.14 5.331 

TRCN0000430774 SKAP1 8631 33.30 4.725 

TRCN0000006372 SKAP1 8631 54.91 1.093 

TRCN0000006369 SKAP1 8631 83.12 1.281 

TRCN0000416504 SKAP1 8631 90.96 5.039 

TRCN0000435304 SKAP1 8631 107.99 5.851 

TRCN0000010448 TINF2 26277 39.59 1.009 

TRCN0000039988 TINF2 26277 48.09 3.268 

TRCN0000218178 TINF2 26277 67.37 3.484 

TRCN0000039990 TINF2 26277 76.79 2.344 

TRCN0000230466 TINF2 26277 82.93 5.436 
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Clone ID Symbol 

NCBI 

Gene ID 

Relative % 

Cell 

Viability SD 

TRCN0000078149 ALOX5AP 241 40.73 4.037 

TRCN0000078150 ALOX5AP 241 46.14 3.451 

TRCN0000078152 ALOX5AP 241 82.93 5.652 

TRCN0000078151 ALOX5AP 241 95.38 5.026 

TRCN0000078148 ALOX5AP 241 98.37 5.846 

TRCN0000142061 CEP128 145508 42.04 4.316 

TRCN0000141520 CEP128 145508 45.38 3.412 

TRCN0000144988 CEP128 145508 72.10 3.371 

TRCN0000145094 CEP128 145508 75.97 5.388 

TRCN0000144220 CEP128 145508 82.62 3.343 

TRCN0000356922 CX3CR1 1524 46.58 2.845 

TRCN0000011309 CX3CR1 1524 52.63 5.111 

TRCN0000356923 CX3CR1 1524 64.41 7.534 

TRCN0000011312 CX3CR1 1524 74.70 3.289 

TRCN0000356860 CX3CR1 1524 79.59 9.859 

TRCN0000000000 EMPTY -1 101.35 4.50 

TRCN0000000000 EMPTY -1 101.45 3.21 

TRCN0000000000 EMPTY -1 91.64 11.82 

TRCN0000000000 EMPTY -1 90.12 9.99 

TRCN0000000000 EMPTY -1 101.70 6.18 

TRCN0000072240 lacZ -15 93.14 7.02 

TRCN0000072236 lacZ -15 78.41 2.20 

TRCN0000072242 lacZ -15 84.85 2.75 

TRCN0000072242 lacZ -15 78.52 5.86 

TRCN0000072236 lacZ -15 85.73 10.27 

 

 

Table 3.3.5.1 Results of shRNA knockdown screen. List of 5 hairpins/clone 

IDs for individual genes, NCBI gene ID, and relative cell viability of VDR cells 

following their shRNA knockdown with each individual hairpin and subsequent 

bortezomib treatment. Note: blue text represents shRNAs that when 

incorporated into VDR cells and VDR subsequently exposure to bortezomib 

50nM for 24 hours, results in <60% cell viability of VDR cells (or >40% cell 

death). Relative cell viability of control (“empty” vector or lac Z also included). 
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Figure 3.3.5.1 Relative cell viability of VDR cells following shRNA knockdown of select target genes and subsequent treatment 

with bortezomib 50nM for 24 hours. Figure depicts the percentage cell viability of VDR following shRNA knockdown of 11 genes or 

control genes (those listed in table 3.3.5.1) for each 5 individual hairpins divided by untreated control. In total, 11 out of 27 genes 

resulted in >40% relative cell death of VDR cells following their shRNA knockdown with above named gene and subsequent treatment 

with bortezomib. Empty vector and LAC-Z served as control genes and are also depicted here. (Note: “relative cell viability” here 

represents the percentage of treated MM cells divided by percentage of untreated MM cells.) 
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3.3.6 Validation of shRNA knockdown of PSMB5  

 

Given the known inhibitory effect of bortezomib on PSMB5 specifically as it’s 

major mode of cell death of myeloma cells, and the success of PSMB5 shRNA 

knockdown in resensitising VDR cells to bortezomib, we chose to validate this 

gene knockdown. 

MM.1R and VDR cells again underwent shRNA knockdown of PSMB5 or control 

vector. First, cell lysates were collected following shRNA knockdown of PSMB5 

or control vector, and immunoblot confirmed the successful shRNA knockdown 

of PSMB5 gene in MM.1R and VDR for PSMB5- associated hairpins E, F, G and H 

(see materials and methods 2.13), (Figure 3.3.6.1). 

Figure 3.3.6.2 depicts the cell viability of MM1R and VDR following PSMB5 

knockdown with control hairpins or PSMB5 hairpins and subsequent 

bortezomib treatment (0-20nM). In MM.1R, shRNA knockdown did not alter 

sensitivity to bortezomib. In VDR, shRNA knockdown of PSMB5-hairpins E, H 

and G followed by treatment with bortezomib 20nM and 40nM resulted in 

significant increase in cell death of VDR cells compared to controls. 
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Figure 3.3.6.1: Validation of knockdown of PSMB5 in MM1R and VDR by 

Western Blot. MM.1R and VDR cell lysates were probed with anti-GAPDH 

(Control) and PSMB5 antibody and developed on film via chemiluminescence, 

which confirmed successful shRNA knockdown of PSMB5 gene in MM.1R and 

VDR for PSMB5- associated hairpins E, F, G and H. 
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Figure 3.3.6.2: Cell viability of VDR and MM1R following PSMB5 knockdown 

post-bortezomib treatment. (A) In MM.1R, shRNA knockdown did not alter 

sensitivity to bortezomib. (B) In VDR, shRNA knockdown of PSMB5-hairpins E, H 

and G followed by treatment with bortezomib 20nM and 40nM resulted in 

significant increase in cell death of VDR cells compared to controls. (Note: *= 

p<0.05 for PSMB5 hairpins E, G, H compared to control vector). 
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3.3.7 Conclusion of gene expression profiling studies 

 

In summary, 20,724 genes were evaluated in MM1R versus VDR cell lines. Genes 

whereby fold change between the two conditions was >1.2 and demonstrated a p 

value ≤ 0.01, of which 437 transcripts fulfilled this criteria, were included for 

further studies. 353 were over-expressed in VDR compared to MM.1R. In 

comparison only 84 genes were down-regulated in VDR compared to MM.1R. 

The reasoning for the discrepancy between number of genes up-regulated versus 

down-regulated is unclear. 

Pathway analysis again via DAVID functional annotation tool revealed “cellular 

apoptosis” as a specific pathway in which 4 transcripts up-regulated in VDR play 

a role. These genes include CFLAR, CASP8, CASP10, and NFKBIA. By comparison, 

VDR transcripts that were down-regulated compared to MM.1R were noted to 

participate in a number of cellular processes mainly concerned with the immune 

system for example antigen processing and presentation, immune response, T 

cell differentiation and T cell selection, with specific attention to the antigen-

presenting pathway that involved CD74 and HLA-DRA. 

A number of specific genes were selected for an shRNA knockdown screen, that 

included transcripts over-expressed in VDR with concordant up-regulation at the 

protein level in VDR (as identified by label-free mass spectrometry), transcripts 

with > 2-fold over-expressed in VDR vs. MM.1R, transcripts whereby chemical 

inhibitors are currently commercially available for the molecular product of 

these transcripts, and a set of transcripts for which shRNAs were available were 

selected from the complete list of all genes up-regulated in VDR vs. MM.1R where 

fold change >1.2 and p value ≤ 0.01. Of 27 genes investigated in the shRNA 

screen, which involved shRNA knock down of a specific target, with 5 hairpins in 

use for each target individually, 11 genes were found to, following shRNA 

knockdown and subsequent treatment with bortezomib (IC20), result in >40% 

cell death of VDR cells compared to control hairpins. 

Given that bortezomib specifically binds PSMB5 in myeloma cell lines and thus 

induces cell death secondary to inhibition of the proteasome pathway, we chose 
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to further validate the role of PSMB5 knockdown in resensitisation of VDR cells 

to bortezomib. First we demonstrated successful shRNA knockdown of PSMB5 in 

MM.1R and VDR by immunoblot. Secondly, we demonstrated that shRNA 

knockdown of PSMB5 and subsequent treatment of VDR cells (used at even 

lower concentrations of bortezomib compared to initial screen: 50nM vs. 20-

40nM), resulted in significant resensitisation of VDR to bortezomib. 

Our validation studies were somewhat limited by the technical challenge of 

shRNA knockdown of semi-adherent cell lines, which when not adherent to the 

surface of the tissue culture flask, prove to be much more difficult to successfully 

infect with lentivirus and then subsequent selection initially resulted in cell 

death of almost all cells. We overcame this difficulty by centrifuging the tissue 

culture plates following infection with lentivirus for 30 minutes post-infection, to 

allow both virus and cells to adhere to the base of the plates.  

Future work could include validation studies of the remaining 10 genes that, 

following their shRNA knockdown, resulted in a marked increase in sensitivity to 

bortezomib in otherwise bortezomib-resistant VDR cells. 
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3.4  PROTEOMIC PROFILE OF MM.1R AND VDR BY LABEL-FREE 

MASS SPECTROMETRY 

 

3.4.1 Introduction 

The role of gene expression profiling in MM patients for number of years as a 

highly valued predictor of clinical outcome and response to therapy has been 

well documented.[115, 116] More recently, advances in determining the proteomic 

profile of MM patients by label-free mass spectrometry has provided the field of 

haematology research with insight into biomarkers predicting response to 

therapy.[117] Therefore we next examined the proteomic profiles of the isogenic 

cell lines MM.1R and VDR, in addition to investigating the proteins differentially 

expressed following their treatment with bortezomib.  

We incubated MM.1R or VDR cells at equal cell densities over-night to allow the 

cells to adhere and subsequently exposed them to bortezomib 40nM for 8 hours 

in culture (or media only was added to the controls). Subsequently all conditions 

were collected, counted and stored as cell pellets at -80°C in preparation for 

label-free mass spectrometry (see Materials and Methods 2.15). We first 

compared the proteomic profiles of MM.1R vs. VDR without drug treatment, next 

each cell line following bortezomib treatment compared to its respective control, 

and finally comparison of both cell lines following bortezomib treatment (see 

table 3.4.1.1 for overview of comparative analyses). 
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Comparative Analyses 

MM.1R vs. VDR 

MM.1R vs. MM.1R + bortezomib 

VDR vs. VDR + bortezomib 

MM1R + bortezomib vs. VDR + bortezomib 

 

Table 3.4.1.1 Comparative analyses following label-free mass 

spectrometry. The conditions used for comparative analysis of VDR with and 

without bortezomib treatment compared to respective MM.1R controls, that 

allowed us determine which proteins were differentially expressed in the 

comparisons outlined in this table. 
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3.4.2 Proteins over-expressed in VDR vs. MM.1R 

3.4.2.1 Individual proteins over-expressed in VDR vs. MM.1R 

We identified 238 proteins differentially expressed in the MM.1R vs. VDR 

comparison. Of these, 106 proteins had the highest expression level in VDR 

compared to MM.1R (p<0.05), of which 36 of these had a fold change >2 (table 

3.4.2.1). Two proteins displayed very high protein fold changes in VDR compared 

to MM.1R (>200 fold change for each, p<0.05). These included: 

(a) Ubiquitin-conjugating enzyme E2 N (UBE2N/ Ubc13) displayed a 433-

fold change increase in VDR (p=0.04). This protein plays a major role in 

protein polyubiquitination in preparation for degradation, in addition to 

activation of NF- κB in vitro. A small molecule inhibitor specifically 

targeting this protein is presently commercially available and has been 

shown to be a successful anti-tumour agent in diffuse large B cell 

lymphoma in vitro. [118] However, it is important to note that the baseline 

expression level of this protein was almost zero in MM.1R, and thus the 

high protein fold change detected in VDR is potentially misleading as 

UBE2N levels are low also in VDR at baseline in comparison to other 

molecules detected by this method of quantification of protein 

abundance.  

(b) SH3 domain-binding glutamic acid-rich-like protein 3 (SH3BGRL3) had a 

215-fold increase in VDR vs. MM.1R (p=0.04), an anti-apoptotic molecule 

that safeguards both normal and cancer cells from tumour-necrosis-

factor (TNF)-induced apoptosis.[119] On review of the raw data of protein 

abundance, SH3BGRL3 has a very low expression level in MM.1R and 

markedly high expression levels in VDR, similar to the baseline 

expression levels of most proteins within this analysis, thereby 

encouraging the validity of this result. 

 

In relation to both proteins UBE2N and SH3BGRL3, an alternative explanation 

for the very high fold change observed in VDR may be that these proteins are not 

expressed at all in MM.1R however are expressed in VDR, which in contrast 

suggests a high potential for this protein in bortezomib resistance in VDR. Initial 
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examination into whether or not these proteins are implicated in bortezomib 

pathogenesis in VDR should be first initiated by validating their expression levels 

by immunoblot. 

 

CCL3/MIP1-α (C-C motif ligand 3/ macrophage inflammatory protein 1-alpha) 

was over-expressed in VDR compared to MM.1R with a 22-fold change 

(p=0.013). CCL3 has been well documented previously in its role as a stimulator 

of osteoclastogenesis, inhibition of osteoblastogenesis, and thus its contribution 

to myelomatous bone disease.[85, 120] This protein is highly expressed in myeloma 

cell lines and an inhibitor of CLL1, through which CCL3, is signals in currently in 

pre-clinical investigation and has shown promising anti-myelomatous and anti-

osteolytic effects in a MM in vivo mouse model.[121] In the setting of the bone 

marrow microenvironment in vivo, CCL3 could potentially markedly augment the 

proliferation capacity and pro-osteolytic activity of VDR cells given its marked 

over-expression compared to bortezomib sensitive MM.1R. 

In addition, other proteins which are well known for their role in MM 

pathogenesis, for example NEDD8, were found to be over-expressed 2.1-fold in 

VDR (p=0.003). The success of NEDD8 inhibition by its selective inhibitor, 

MLN4924 has been well documented and is now in phase 1 clinical trials for 

relapsed/refractory MM and lymphoma. [34] In addition, PSMB5 protein had a 

3.8-fold increase expression level in VDR vs. MM.1R (p=0.0004).  
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Accession 

Confidence 

score Anova (p) 

Max. fold 

change 

Uniprot 

Symbol 

P61088 103.07 0.048 433.75 UBE2N 

Q9H299 35.23 0.048 215.94 SH3BGRL3 

P10147 51.45 0.013 22.89 CCL3 

Q9Y4L1 194.58 0.026 14.12 HYOU1 

Q9BVA1 1284.26 0.001 8.17 TUBB2B 

P62304 36.51 0.028 7.30 SNRPE 

P04792 105.07 0.009 6.48 HSPB1 

Q9UKY7 295 0.026 5.46 CDV3 

P28074 229.32 4.36E-04 3.85 PSMB5 

P54868 41.02 1.84E-04 3.71 HMGCS2 

Q14697 181.31 0.046 3.44 GANAB 

P14314 132.46 0.043 3.17 PRKCSH 

P13667 450.83 0.024 3.06 PDIA4 

P55327 106.56 0.022 2.80 TPD52 

Q9Y2X3 70.75 0.004 2.77 NOP58 

P11021 1044.05 0.041 2.73 HSPA5 

P07237 643.13 0.031 2.71 P4HB 

P62333 31.69 0.001 2.59 PSMC6 

Q86V88 48.62 0.005 2.46 MDP1 

Q12906 155.64 0.013 2.42 ILF3 

P54819 84.55 0.021 2.39 AK2 

P28070 162.73 0.001 2.36 PSMB4 

Q15084 173.87 0.050 2.31 PDIA6 

P08670 199.19 0.046 2.29 VIM 

Q8NBS9 491.28 0.046 2.22 TXNDC5 

P63241 222.76 0.008 2.21 EIF5A 

Q00688 91.4 0.001 2.20 FKBP3 

Q14061 90.99 0.033 2.18 COX17 
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Accession 

Confidence 

score Anova (p) 

Max. fold 

change 

Uniprot 

Symbol 

P10809 942.81 0.010 2.16 HSPD1 

P27797 167.72 0.049 2.14 CALR 

Q15843 50.64 0.004 2.14 NEDD8 

Q9UL46 514.43 1.51E-04 2.11 PSME2 

P61604 235.75 0.001 2.07 HSPE1 

Q9BY43 118.65 0.001 2.06 CHMP4A 

O75874 97.43 0.003 2.02 IDH1 

P62937 840.02 0.009 2.00 PPIA 

 

Table 3.4.2.1 Individual candidate biomarkers over-expressed in VDR vs. 

MM.1R identified by label-free mass spectrometry. 106 proteins were over-

expressed in VDR compared to parental MM.1R and those with protein fold 

change ≥2 are shown (p<0.05).  UBE2N and SH3BGRL3 are markedly over-

expressed in VDR compared to MM.1R. NEDD8 and PSMB5, as anticipated, are 

also over-expressed in the VDR cell line.  
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3.4.2.2 Functional protein-association mapping of proteins over-

expressed in VDR vs. MM.1R 

In addition, functional protein association mapping of proteins with known 

direct interactions as demonstrated by STRING networking (“Search Tool for the 

Retrieval of Interacting Genes/Proteins”, http://string-db.org/) revealed the heat 

shock proteins (HSP) (HSPB1, HSPE1, HSPD1, HSPA5) as a highly interactive 

group of potential biomarkers that were over-expressed in VDR compared to 

MM.1R, that had direct protein-to-protein interactions with a number of other 

molecules that were concomitantly over-expressed in VDR (figure 3.4.2.2.1). The 

heat shock proteins have been well documented for their role in MM 

pathogenesis and specific inhibitors of HSP90AA1 (heat shock 90kDa AA1) 

protein have completed phase 1 clinical trials.[122-125] HSP90AA1 itself was not 

identified as having statistically significant over-expression in VDR, however 

over-expression of HSPE1, HSPD1 and HSPD5, which interact with HSP90AA1 

was observed (see figure 3.4.2.2.2 for interaction modelling). 

Using the DAVID functional annotation tool (http://david.abcc.ncifcrf.gov/) a 

number of proteins over-expressed in VDR compared to MM.1R were involved in 

a number of cellular processes implicated in the pathogenesis of malignancy 

including regulation of apoptosis, regulation of cellular metabolic processes, 

cellular homeostasis, cell cycle process, and proteasomal ubiquitin-dependent 

protein catabolic process, adjusted p value <0.05 (table 3.4.2.2.1). 

Finally, 4 proteins that have established involvement in the proteasome-

ubiquitination pathway are displayed in Figure 3.4.2.2.3, which again are over-

expressed in VDR compared to MM.1R by label-free mass spectrometry (with 

fold change >2, p<0.05) were found to be involved in the proteasome-

ubiquitination pathway, and these include PSME2, PSMC6, PSMB4 and PSMB5. 
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Figure 3.4.2.2.1 Overview of proteins over-expressed in VDR compared to 

MM.1R. 

A number of proteins demonstrated statistically significant over-expression in 

VDR compared to MM.1R. Functional protein association mapping of proteins 

with known direct interactions as demonstrated by STRING networking revealed 

the heat shock proteins (HSPB1, HSPE1, HSPD1, HSPA5) as highly interactive 

group of biomarkers that were over-expressed in VDR compared to MM.1R, that 

had direct protein-to-protein interactions with a number of other molecules that 

were concomitantly over-expressed in VDR, (www.string-db.org). 
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Figure 3.4.2.2.2 Know interactions of heat shock proteins 

While HSP90AA1 was not detected in our list of proteins over-expressed in VDR, 

3 heat shock proteins that are known to interact with HSP90AA1 were over-

expressed in VDR compared to MM.1R. These include HSPE1, HSPD1 and HSPA5, 

(www.string-db.org). 
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Cellular Process 
Protein 

Count 

Adjusted p 

value 

(Benjamini) 

Protein folding 6 0 

Positive regulation of ligase activity 5 0 

Regulation of ubiquitin-protein ligase activity 5 0 

Regulation of ligase activity 5 0 

Positive regulation of protein ubiquitination 5 0 

Regulation of cellular protein metabolic process 8 0.01 

Positive regulation of cellular protein metabolic process 6 0.01 

Positive regulation of protein metabolic process 6 0.01 

Cell redox homeostasis 5 0.01 

Positive regulation of ubiquitin-protein ligase activity 5 0.01 

Regulation of protein ubiquitination 5 0.01 

Cellular homeostasis 7 0.02 

Negative regulation of cellular protein metabolic process 5 0.02 

Positive regulation of protein modification process 5 0.02 

Negative regulation of protein metabolic process 5 0.02 

Anaphase-promoting complex-dependent proteasomal 

ubiquitin-dependent protein catabolic process 
4 0.02 

Negative regulation of ubiquitin-protein ligase activity 

during mitotic cell cycle 
4 0.02 

Negative regulation of ubiquitin-protein ligase activity 4 0.02 

Negative regulation of ligase activity 4 0.02 

Positive regulation of ubiquitin-protein ligase activity 

during mitotic cell cycle 
4 0.02 

Regulation of ubiquitin-protein ligase activity during 

mitotic cell cycle 
4 0.02 

Negative regulation of protein ubiquitination 4 0.02 

Positive regulation of catalytic activity 7 0.03 

Cell cycle process 7 0.04 

Proteasomal protein catabolic process 4 0.04 

Proteasomal ubiquitin-dependent protein catabolic 

process 
4 0.04 

 

Table 3.4.2.2.1 Proteins over-expressed in VDR vs. MM.1R that are involved in a 

common cellular processes as demonstrated by DAVID functional annotation tool. 

Proteins over-expressed in VDR compared to MM.1R are involved in a number of 

cellular processes including regulation of apoptosis and regulation of protein 

ubiquitination (adjusted p value <0.05). (david.abcc.ncifcrf.gov). 
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Figure 3.4.2.2.3: A number of proteins over-expressed in VDR compared to 

MM.1R by label-free mass spectrometry (with fold change >2, p<0.05) were 

found to be involved in the proteasome-ubiquitination pathway. These proteins 

include PSME2, PSMC6, PSMB4 and PSMB5. (david.abcc.ncifcrf.gov). 
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3.4.3 Proteins down-regulated in VDR compared to MM.1R 

We found 238 proteins in total differentially expressed in the MM.1R vs. VDR 

comparison. Of these 132 were down-regulated in VDR compared to MM.1R, of 

which 44 had a fold change ≥1.5 where p<0.05 (table 3.4.3.1).  

Three proteins that were found to be down-regulated in VDR compared to 

MM.1R at the protein level by label-free mass spectrometry (fold change >2, 

P<0.05) were found to be involved in aminoacyl tRNA biosynthesis. These 

proteins include IARS (isoleucyl-tRNA synthetase), RARS (arginyl-tRNA 

synthetase) and LARS (leucyl-tRNA synthetase), (figure 3.4.3.1).  

Finally we additionally examined both proteins up-regulated and down-

regulated in VDR compared to MM.1R using DAVID functional annotation tool to 

determine which cellular pathways are involved in the complete list of 

statistically significant proteins both over-expressed and down-regulated in VDR 

compared to MM.1R. Table 3.4.3.2 lists the cellular processes potentially 

perturbed in VDR, either secondary to their over-expression or down-regulation 

compared to MM.1R. These processes involved the mitotic cell process, negative 

regulation of protein metabolic and protein modification processes, and both 

positive and negative regulation of ubiquitination. 
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Accession Confidence 

score 

Anova (p) Max fold 

change 

Uniprot 

P50224 51.33 7.85E-04 15.95 SULT1A3 

Q09666 513.52 2.60E-06 7.12 AHNAK 

Q9Y5X3 79.17 0.01 3.24 SNX5 

P82970 42.85 1.94E-04 3.10 HMGN5 

P46926 116.08 0.01 2.53 GNPDA1 

P24941 95.46 0.04 2.31 CDK2 

Q53GG5 44.86 8.29E-04 2.24 PDLIM3 

P78347 61.60 0.03 2.15 GTF2I 

O75461 30.94 3.12E-04 2.01 E2F6 

P41252 295.37 3.22E-04 1.93 IARS 

P21333 3263.52 4.63E-04 1.90 FLNA 

P48539 206.65 0.01 1.90 PCP4 

O14974 128.16 2.26E-03 1.89 PPP1R12A 

P54136 213.18 3.96E-04 1.86 RARS 

Q9H4M9 80.51 0.01 1.85 EHD1 

P36405 90.34 0.03 1.83 ARL3 

P51965 56.16 2.43E-03 1.80 UBE2E1 

P09525 40.73 0.05 1.79 ANXA4 

P80723 211.18 1.10E-03 1.79 BASP1 

P11413 92.65 0.01 1.79 G6PD 

O15247 82.44 1.28E-03 1.78 CLIC2 

P78417 172.01 0.01 1.77 GSTO1 

Q9P2J5 325.70 9.78E-04 1.74 LARS 

Q32MZ4 184.84 0.02 1.74 LRRFIP1 
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Accession Confidence 

score 

Anova (p) Max fold 

change 

Uniprot 

P50224 51.33 7.85E-04 15.95 SULT1A3 

Q09666 513.52 2.60E-06 7.12 AHNAK 

Q9Y5X3 79.17 0.01 3.24 SNX5 

P82970 42.85 1.94E-04 3.10 HMGN5 

P46926 116.08 0.01 2.53 GNPDA1 

P24941 95.46 0.04 2.31 CDK2 

Q53GG5 44.86 8.29E-04 2.24 PDLIM3 

P78347 61.60 0.03 2.15 GTF2I 

O75461 30.94 3.12E-04 2.01 E2F6 

P41252 295.37 3.22E-04 1.93 IARS 

P21333 3263.52 4.63E-04 1.90 FLNA 

P48539 206.65 0.01 1.90 PCP4 

O14974 128.16 2.26E-03 1.89 PPP1R12A 

P54136 213.18 3.96E-04 1.86 RARS 

Q9H4M9 80.51 0.01 1.85 EHD1 

Q99439 129.52 1.37E-03 1.71 CNN2 

Q8IXM2 177.80 2.06E-03 1.66 BAP18 

Q5JTH9 46.25 0.01 1.66 RRP12 

Q9Y3Z3 155.89 2.04E-03 1.63 SAMHD1 

Q14320 212.18 2.83E-03 1.62 FAM50A 

O43598 120.27 0.01 1.62 RCL 

Q5VW32 50.81 0.01 1.60 BROX 

Q13576 67.22 1.76E-03 1.60 IQGAP2 

P36873 123.85 0.01 1.60 PPP1CC 

P78406 67.08 0.02 1.59 RAE1 



144 

Accession Confidence 

score 

Anova (p) Max fold 

change 

Uniprot 

P50224 51.33 7.85E-04 15.95 SULT1A3 

Q09666 513.52 2.60E-06 7.12 AHNAK 

Q9Y5X3 79.17 0.01 3.24 SNX5 

P82970 42.85 1.94E-04 3.10 HMGN5 

P46926 116.08 0.01 2.53 GNPDA1 

P24941 95.46 0.04 2.31 CDK2 

Q53GG5 44.86 8.29E-04 2.24 PDLIM3 

P78347 61.60 0.03 2.15 GTF2I 

O75461 30.94 3.12E-04 2.01 E2F6 

P41252 295.37 3.22E-04 1.93 IARS 

P21333 3263.52 4.63E-04 1.90 FLNA 

P48539 206.65 0.01 1.90 PCP4 

O14974 128.16 2.26E-03 1.89 PPP1R12A 

P54136 213.18 3.96E-04 1.86 RARS 

Q9H4M9 80.51 0.01 1.85 EHD1 

O43252 81.58 0.01 1.56 PAPSS1 

Q9UM54 64.55 0.01 1.55 MYO6 

P35659 226.23 0.01 1.55 DEK 

Q9NT62 45.03 0.02 1.53 ATG3 

Q08209 62.44 2.75E-03 1.53 PPP3CA 

P30041 390.10 0.02 1.52 PRDX6 

P08133 914.79 1.36E-03 1.51 ANXA6 

P52701 30.94 2.76E-03 1.51 MSH6 

Q9NR46 61.24 0.03 1.50 SH3GLB2 

Q96C23 247.61 0.02 1.50 GALM 
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Table 3.4.3.1 Proteins down-regulated in VDR compared to MM.1R by label 

free mass spectrometry. 44 proteins were down-regulated in VDR compared to 

MM.1R with a fold change ≥1.5 (p<0.05). 
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  Figure 3.4.3.1: Proteins down-regulated in VDR vs. MM.1R by mass 

spectrometry. Three proteins that were found to be down-regulated in VDR 

compared to MM.1R at the protein level by label-free mass spectrometry (fold 

change >2, P<0.05) were found to be involved in aminoacyl tRNA biosynthesis. 

These proteins include IARS (isoleucyl-tRNA synthetase), RARS (arginyl-tRNA 

synthetase) and LARS (leucyl-tRNA synthetase), (david.abcc.ncifcrf.gov). 
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Cellular Process Protein 

Count 

Adjusted p 

value 

(Benjamini) 

Regulation of ligase activity 6 0.01 

Regulation of ubiquitin-protein ligase activity 6 0.01 

Positive regulation of protein ubiquitination 6 0.01 

Negative regulation of protein metabolic process 8 0.01 

Positive regulation of ligase activity 6 0.01 

Cell cycle 14 0.01 

Positive regulation of ubiquitin-protein ligase activity 6 0.01 

Cell cycle process 12 0.01 

Regulation of protein ubiquitination 6 0.01 

Cell redox homeostasis 6 0.01 

Positive regulation of ubiquitin-protein ligase activity 

during mitotic cell cycle 

5 
0.02 

Negative regulation of protein modification process 6 0.02 

Negative regulation of ligase activity 5 0.02 

Negative regulation of ubiquitin-protein ligase activity 5 0.02 

Negative regulation of cellular protein metabolic process 7 0.02 

Negative regulation of ubiquitin-protein ligase activity 

during mitotic cell cycle 

5 
0.02 

Anaphase-promoting complex-dependent proteasomal 

ubiquitin-dependent protein catabolic process 

5 
0.02 

Regulation of ubiquitin-protein ligase activity during 

mitotic cell cycle 

5 
0.02 

Negative regulation of protein ubiquitination 5 0.02 

Mitotic cell cycle 9 0.02 

Regulation of cellular protein metabolic process 10 0.02 

Negative regulation of macromolecule metabolic process 12 0.04 

Positive regulation of cellular protein metabolic process 7 0.04 
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 Table 3.4.3.2: Proteins both over-expressed and down-regulated in VDR 

compared to MM.1R. The cellular processes in which these proteins are 

involved are listed, with corresponding number of proteins involved in each 

given pathway, and associated adjusted p value (<0.05). 
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3.4.4 Individual biomarkers down-regulated in MM.1R or VDR following 

bortezomib treatment 

3.4.4.1 Overview of proteins downregulated following bortezomib 

treatment in MM.1R or VDR 

Following bortezomib treatment, 212 proteins in MM.1R and only 35 proteins in 

VDR were down-regulated post-treatment compared to their respective 

bortezomib-untreated controls (p<0.05). Furthermore, comparing bortezomib-

treated MM.1R to bortezomib-treated VDR, 109 proteins out of a total 323 were 

downregulated in bortezomib-treated-VDR compared to bortezomib-treated-

MM.1R (see table 3.4.4.1.1 for contrast in number of proteins suppressed in 

MM.1R compared to VDR following bortezomib treatment). 

Table 3.4.4.1.2 displays proteins downregulated in MM.1R following bortezomib 

treatment with protein fold change ≥1.5, (n=48 out of a total 212) compared to 

MM.1R control.  In contrast table 3.4.4.1.3 displays proteins downregulated in 

VDR following bortezomib treatment again with fold change ≥1.5 (n=20 out of a 

total 35) compared to VDR control. 

On review of proteins that were down-regulated in bortezomib-treated VDR 

compared to bortezomib-treated MM.1R, a total of 109 proteins were 

downregulated in bortezomib-treated VDR (table 3.4.4.1.4 highlights 63 of these 

proteins which had a fold change ≥1.5 where p<0.05). The remaining 46 proteins 

demonstrated a 1.20-1.49 reduction in fold change in bortezomib-treated VDR 

where p<0.05. 

DAVID functional annotation tool allowed us to review proteins down-regulated 

following bortezomib treatment in either cell lines.  A number of proteins 

involved in the proteasome structure were suppressed in both bortezomib-

treated MM.1R and bortezomib-treated VDR (see figure 3.4.4.1.1 and figure 

3.4.4.1.2). 
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Comparative Analysis 

Number of proteins 

up-regulated 

following bortezomib 

treatment 

No. of proteins down-

regulated following 

bortezomib treatment 

MM.1R vs. MM.1R + Bort. 161 212 

VDR vs. VDR + Bort. 79 35  

MM.1R + Bort vs. VDR + Bort 214 (VDR + Bort) 109 (VDR + Bort) 

 

Table 3.4.4.1.1 Total number of proteins differentially expressed in MM.1R 

or VDR following bortezomib treatment. 

 In MM.1R 212 proteins were down-regulated post-treatment with bortezomib in 

stark contrast to VDR, whereby 35 proteins were down-regulated post-

bortezomib, compared to their respective bortezomib-untreated controls 

(p<0.05). By comparing bortezomib-treated MM.1R to bortezomib-treated VDR, 

214 proteins out of a total 323 differentially expressed in this comparison 

remained elevated in bortezomib-treated-VDR compared to bortezomib-treated-

MM.1R. (D.E. = differentially expressed). 
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Accession Confidence 

score 

Anova (p) Max fold 

change 

Description 

P02765 64.74 8.74E-04 Infinity AHSG 

Q9UKY7 58.70 0.01 Infinity CDV3 

Q13492 32.34 0.01 Infinity PICALM 

P09382 36.27 0.05 947.70 LGALS1 

Q9Y6G9 70.28 2.03E-04 20.81 DYNC1LI1 

P28062 59.75 1.46E-03 8.37 PSMB8 

P10599 55.07 0.03 7.86 TXN 

P28074 229.32 7.47E-04 4.66 PSMB5 

P25788 165.92 6.88E-05 3.97 PSMA3 

P25787 158.03 4.78E-03 3.61 PSMA2 

P60900 460.16 1.68E-04 3.35 PSMA6 

Q6JBY9 43.43 2.63E-03 2.88 RCSD1 

Q07960 44.79 0.04 2.71 ARHGAP1 

O00193 45.80 0.01 2.51 SMAP 

P06730 48.87 4.66E-03 2.42 EIF4E 

P28066 253.11 8.73E-05 2.22 PSMA5 

P26583 225.32 1.97E-05 2.21 HMGB2 

O14818 244.26 4.43E-04 2.21 PSMA7 

P49721 239.73 1.22E-04 2.12 PSMB2 

P07384 89.88 0.03 2.06 CAPN1 

P25789 129.57 4.03E-03 2.04 PSMA4 

P20618 173.37 1.14E-04 1.97 PSMB1 

P25786 90.58 2.26E-03 1.87 PSMA1 

P78347 61.60 0.03 1.86 GTF2I 

P28072 113.95 1.47E-04 1.85 PSMB6 

P41227 47.58 0.02 1.84 NAA10 

Q9BPX5 70.88 0.01 1.78 ARPC5L 

Q9UNM6 45.13 0.01 1.73 PSMD13 

Q9UBW5 166.24 1.25E-03 1.71 BIN2 

P62899 42.76 6.78E-04 1.69 RPL31 

Q9BRA2 50.94 0.05 1.66 TXNDC17 

Q9UM54 64.55 0.01 1.64 MYO6 

P37837 100.71 0.04 1.64 TALDO1 

P13798 32.54 0.02 1.62 APEH 

P32969 142.28 0.02 1.61 RPL9 

P23381 112.78 0.01 1.59 WARS 

P48739 94.78 0.02 1.58 PITPNB 

P12081 47.24 3.77E-03 1.55 HARS 

O60232 132.48 0.01 1.54 SSSCA1 

P60228 37.07 0.01 1.54 EIF3E 

Q08J23 64.93 0.02 1.54 NSUN2 

P11766 31.90 0.02 1.51 ADH5 

Q92499 37.88 0.01 1.51 DDX1 
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Accession Confidence 

score 

Anova (p) Max fold 

change 

Description 

P14868 121.89 4.48E-03 1.51 DARS 

P15374 129.68 2.65E-03 1.51 UCHL3 

P55060 95.42 0.01 1.50 CSE1L 

Q8N1G4 33.07 0.04 1.50 LRRC47 

P62244 198.59 2.91E-03 1.50 RPS15A 

 

Table 3.4.4.1.2 List of proteins downregulated in MM.1R following 

bortezomib treatment compared to untreated control MM.1R. Proteins 

downregulated in MM.1R following bortezomib treatment with protein fold 

change ≥1.5, (n=48, out of a total 212 proteins where remaining protein fold 

change ranges from 1.2-1.49). 
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Figure 3.4.4.1.1 Proteins down-regulated in bortezomib-treated MM.1R 

compared to untreated MM.1R and their role in the proteasome structure. 

PSMD13, PSMA1, PSMA2, PSMA3, PSMA4, PSMA5, PSMA6, PSMA7, PSMB1, 

PSMB2, PSMB5, PSMB6, PSMB8 were all found to be down-regulated in 

bortezomib-treated MM.1R compared to untreated MM.1R (red circles).  

(david.abcc.ncifcrf.gov). 
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Accession Confidence 

score 

Anova (p) Fold 

change 

Description 

Q9P016 30.50 0.01 8.27 THYN1 

P28062 94.33 3.35E-04 8.03 PSMB8 

P25787 158.03 3.25E-03 3.47 PSMA2 

Q8NB66 31.28 0.04 2.99 UNC13C 

P36405 90.34 0.01 2.57 ARL3 

P17066 1623.81 0.02 2.25 HSPA6 

P23193 103.13 1.41E-03 2.16 TCEA1 

P62633 61.67 0.02 2.09 CNBP 

Q01469 200.21 3.59E-03 1.88 FABP5 

P09429 432.76 0.02 1.75 HMGB1 

P07339 77.68 0.02 1.74 CTSD 

P25788 165.92 0.01 1.74 PSMA3 

P25789 129.57 0.01 1.73 PSMA4 

P60900 460.16 0.01 1.70 PSMA6 

P28066 253.11 0.01 1.68 PSMA5 

P20618 173.37 0.01 1.63 PSMB1 

Q16576 45.39 1.33E-03 1.60 RBBP7 

Q06203 225.07 0.01 1.60 PPAT 

O14818 244.26 0.01 1.55 PSMA7 

Q14258 32.26 0.04 1.51 TRIM25 

 

Table 3.4.4.1.3 List of proteins downregulated in VDR following bortezomib 

treatment compared to untreated control VDR cells. Proteins downregulated 

in VDR following bortezomib treatment with protein fold change ≥1.5, (n=20, out 

of a total 35 proteins where remaining protein fold change ranges from 1.2-

1.49). 
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Figure 3.4.4.1.2: Proteins down-regulated in bortezomib-treated VDR 

compared to untreated VDR. 

It is interesting to note that many of the proteasome-alpha subunits again are 

down-regulated in bortezomib-treated VDR (similar to bortezomib-treated 

MM.1R). In addition PSMB8 (or beta-5-immunoproteasome subunit) was down-

regulated in bortezomib-treated VDR. PSMB5 however was not downregulated 

in bortezomib-treated VDR. 
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Accession Confidence score Anova (p) Fold change Description 

P20839 141.62 3.20E-03 Infinity IMPDH1 

P17066 1710.71 2.21E-06 132.16 HSPA6 

Q8IYS1 63.84 0.05 21.31 PM20D2 

Q9NX09 59.24 3.17E-04 8.67 DDIT4 

Q9P016 30.50 0.01 7.78 THYN1 

Q09666 513.52 4.71E-07 6.82 AHNAK 

P26010 702.26 2.14E-04 6.27 ITGB7 

P09496 35.72 0.02 4.53 CLTA 

P04792 105.07 0.02 4.51 HSPB1 

Q9Y5P6 36.83 2.57E-03 4.49 GMPPB 

Q96AQ6 293.23 0.01 4.38 PBXIP1 

P36405 90.34 0.01 3.54 ARL3 

P25685 615.68 8.00E-04 3.45 DNAJB1 

O95817 54.09 0.02 3.43 BAG3 

P08107 2066.62 3.43E-05 3.07 HSPA1A 

P01591 234.45 1.12E-03 2.78 IGJ 

P49916 48.71 0.03 2.75 LIG3 

P82970 120.54 0.01 2.67 HMGN5 

Q06413 43.61 4.03E-04 2.60 MEF2C 

P62979 389.92 2.86E-03 2.49 RPS27A 

O15247 82.44 0.01 2.45 CLIC2 

P42677 171.67 0.01 2.38 RPS27 

O14530 42.99 1.57E-05 2.15 TXNDC9 

Q9Y2S6 43.52 0.02 2.14 TMA7 

P14210 33.66 0.02 2.10 HGF 

Q14493 54.23 0.01 2.01 SLBP 

P46926 116.08 0.03 1.97 GNPDA1 

O75461 30.94 2.10E-03 1.93 E2F6 

Q07960 132.89 0.05 1.92 ARHGAP1 

Q13616 43.40 0.05 1.91 CUL1 

P13645 367.62 0.04 1.90 KRT10 

P19388 33.00 1.97E-03 1.87 POLR2E 

Q9H4M9 80.51 0.01 1.85 EHD1 

P78347 61.60 3.27E-03 1.84 GTF2I 

Q8IWV8 30.51 9.45E-04 1.84 UBR2 

P07900 2804.88 4.39E-06 1.81 HSP90AA1 

O95373 150.95 3.78E-03 1.77 IPO7 

P41252 295.37 5.53E-04 1.77 IARS 

Q99439 296.52 3.15E-03 1.74 CNN2 
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Accession Confidence score Anova (p) Fold change Description 

Q53GG5 44.86 0.04 1.74 PDLIM3 

P51965 56.16 2.52E-04 1.74 UBE2E1 

P11413 92.65 3.58E-04 1.72 G6PD 

Q16576 45.39 1.07E-03 1.71 RBBP7 

Q9Y3Z3 217.50 2.25E-04 1.70 SAMHD1 

Q712K3 31.74 0.03 1.70 UBE2R2 

P54136 213.18 0.02 1.68 RARS 

P50579 116.24 0.01 1.67 METAP2 

P80723 266.80 0.01 1.65 BASP1 

Q08209 62.44 0.02 1.65 PPP3CA 

Q8IXM2 177.80 0.02 1.64 BAP18 

P21333 3807.26 1.96E-03 1.64 FLNA 

Q9ULX3 31.58 0.03 1.63 NOB1 

Q8IWS0 34.76 0.01 1.63 PHF6 

P36873 123.85 1.29E-04 1.57 PPP1CC 

Q9Y265 32.86 3.49E-03 1.57 RUVBL1 

Q6PKG0 44.78 0.03 1.57 LARP1 

Q92598 854.52 0.01 1.57 HSPH1 

Q14974 102.94 0.01 1.56 KPNB1 

P62633 115.82 0.05 1.56 CNBP 

P22059 49.84 2.28E-03 1.55 OSBP 

Q01469 264.74 0.04 1.54 FABP5 

P08133 1077.65 1.28E-05 1.53 ANXA6 

P35908 395.74 0.03 1.52 KRT2 

 

 

Table 3.4.4.1.4 Proteins down-regulated in bortezomib-treated VDR 

compared to bortezomib-treated MM.1R. List of proteins down-regulated 

≥1.5-fold in bortezomib-treated VDR compared to bortezomib-treated MM.1R by 

label free mass spectrometry (p<0.05). 
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3.4.4.2 Functional annotation analysis of proteins down-regulated 

following bortezomib treatment in VDR compared to bortezomib-

treated MM.1R. 

Functional annotation analysis of the proteins downregulated in bortezomib-

treated VDR compared to bortezomib-treated MM.1R revealed 59 pathways in 

which these proteins are involved and included positive regulation of protein 

ubiquitination, negative regulation of programmed cell death, proteasomal 

protein catabolic process, cell cycle processes and positive regulation of 

ubiquitin-protein ligase activity. For all cellular processes identified the adjusted 

Benjamini p value was <0.05, (see table 3.4.4.2.1). 

Taking a closer look, we found 5 proteins that are down-regulated in 

bortezomib-treated VDR compared to bortezomib-treated MM.1R in the MAP-

kinase signalling pathway (figure 3.4.4.2.1). The MAP-kinase signalling pathway, 

when altered, is well documented for its role in carcinogenesis. These proteins 

including FLNA, HSP72/HSPA6, PPP3C, MEF2C and HSP27/HSPB1 may 

potentially contribute to bortezomib refractoriness in VDR. 
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Cellular Process Count 
Adjusted p value 

(Benjamini) 

Long-term strengthening of neuromuscular 

junction 
4 3.79E-04 

Regulation of synaptic growth at neuromuscular 

junction 
4 4.39E-04 

Anti-apoptosis 9 5.43E-04 

Cell cycle 14 8.86E-04 

Regulation of ubiquitin-protein ligase activity 6 9.63E-04 

Regulation of ligase activity 6 9.65E-04 

Mitotic cell cycle 10 9.74E-04 

Positive regulation of ligase activity 6 9.94E-04 

Regulation of ubiquitin-protein ligase activity 

during mitotic cell cycle 
6 1.01E-03 

Response to unfolded protein 6 1.01E-03 

Cell cycle process 12 1.04E-03 

Positive regulation of protein ubiquitination 6 1.06E-03 

Positive regulation of ubiquitin-protein ligase 

activity 
6 1.13E-03 

Positive regulation of ubiquitin-protein ligase 

activity during mitotic cell cycle 
6 1.23E-03 

Regulation of synaptogenesis 4 2.12E-03 

Regulation of protein ubiquitination 6 2.14E-03 

Response to protein stimulus 6 2.76E-03 

Regulation of synapse organization 4 2.82E-03 

Negative regulation of apoptosis 9 3.03E-03 

Negative regulation of cell death 9 3.07E-03 

Negative regulation of programmed cell death 9 3.17E-03 

Negative regulation of protein metabolic process 7 3.17E-03 

Negative regulation of protein modification 

process 
6 3.18E-03 

ER-associated protein catabolic process 4 3.29E-03 

Regulation of synapse structure and activity 4 3.29E-03 
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Cellular Process Count 
Adjusted p value 

(Benjamini) 

Anaphase-promoting complex-dependent 

proteasomal ubiquitin-dependent protein 

catabolic process 

5 3.35E-03 

Negative regulation of ubiquitin-protein ligase 

activity during mitotic cell cycle 
5 3.35E-03 

Regulation of skeletal muscle fibre development 4 3.42E-03 

Negative regulation of ubiquitin-protein ligase 

activity 
5 3.62E-03 

Negative regulation of ligase activity 5 3.62E-03 

Regulation of skeletal muscle tissue development 4 4.77E-03 

Negative regulation of protein ubiquitination 5 4.94E-03 

Regulation of striated muscle cell differentiation 4 0.01 

Positive regulation of synaptic transmission 4 0.01 

Ubiquitin-dependent protein catabolic process 7 0.01 

Positive regulation of transmission of nerve 

impulse 
4 0.01 

Regulation of muscle cell differentiation 4 0.01 

Positive regulation of neurological system 

process 
4 0.01 

Negative regulation of macromolecule metabolic 

process 
11 0.01 

Translational elongation 5 0.01 

Proteasomal protein catabolic process 5 0.01 

Proteasomal ubiquitin-dependent protein 

catabolic process 
5 0.01 

Negative regulation of cellular protein metabolic 

process 
6 0.01 

Regulation of developmental growth 4 0.01 

Positive regulation of protein modification 

process 
6 0.01 

Regulation of striated muscle tissue 

development 
4 0.02 

Regulation of muscle development 4 0.02 
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Cellular Process Count 
Adjusted p value 

(Benjamini) 

Regulation of protein modification process 7 0.02 

Protein ubiquitination 5 0.02 

Protein modification by small protein 

conjugation 
5 0.03 

Regulation of synaptic transmission 5 0.03 

Translation 7 0.03 

Regulation of synaptic plasticity 4 0.03 

Positive regulation of cellular protein metabolic 

process 
6 0.03 

Regulation of cellular protein metabolic process 8 0.04 

Regulation of transmission of nerve impulse 5 0.04 

Positive regulation of protein metabolic process 6 0.04 

Regulation of neurological system process 5 0.04 

Protein modification by small protein 

conjugation or removal 
5 0.04 

 

Table 3.4.4.2.1 Functional annotation analysis of proteins down-regulated 

in bortezomib-treated VDR vs. bortezomib-treated MM.1R 

A large number of pathways were identified by DAVID functional annotation 

analysis generated from the list of proteins that were down-regulated in 

bortezomib-treated VDR vs. bortezomib-treated MM.1R including a number of 

proteins involved in negative regulation of macromolecule metabolic process, 

cell cycle processes and anti-apoptotic processes. (david.abcc.ncifcrf.gov). 
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Figure 3.4.4.2.1 Involvement of proteins down-regulated in bortezomib-

treated VDR compared to bortezomib-treated MM.1R in the MAP-kinase 

signalling pathway. 

Five proteins were found to be suppressed in bortezomib-treated VDR compared 

to bortezomib-treated MM.1R and these are visualised in this figure as to their 

location in the MAP-kinase signalling pathway, which when altered, is well 

documented for its role in carcinogenesis. These proteins include FLNA, 

HSP72/HSPA6, PPP3C, MEF2C and HSP27/HSPB1. (david.abcc.ncifcrf.gov). 
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3.4.5 Proteins over-expressed in bortezomib treated VDR compared to 

bortezomib treated MM.1R 

3.4.5.1 Individual proteins over-expressed in bortezomib treated VDR 

compared to bortezomib treated MM.1R 

On review of proteins up-regulated in bortezomib-treated VDR compared to 

bortezomib-treated MM.1R we found 215 proteins up-regulated in bortezomib-

treated VDR, of which 78 proteins had a fold change ≥2 (p<0.05), (see table 

3.4.5.1.1).  

 Again PSMB5 was over-expressed in bortezomib-treated VDR compared to 

bortezomib treated MM.1R (13.04 fold change, p=3.90E-05). Additionally, the 

protein responsible for trypsin-like protein cleavage at the β2-subunit, PSMB7, 

was over-expressed in bortezomib-treated VDR and demonstrated a 16-fold 

increase compared to bortezomib-treated MM.1R (p=0.009).  Finally, the protein 

responsible for chymotrypsin-like proteolytic cleavage at the β-1 subunit, 

PSMB6, was also upregulated in by 2.32 fold (p=0.001) in bortezomib-treated 

VDR compared to bortezomib-treated MM.1R. 

While NEDD8 did not meet our cut-off criteria for inclusion of proteins of 

interest (i.e. fold change ≥2), on examination of the remaining 134 protein with a 

fold change between 1.20 and 1.99, NEDD8 was found to be over-expressed in 

bortezomib-treated VDR compared to bortezomib-treated MM.1R, fold change 

1.98 (p=0.008). This suggests that addition of a NEDD8-activating enzyme 

inhibitor may be useful in the setting of bortezomib resistant MM, however this 

would be dependent on bone marrow microenvironmental effects. We have 

demonstrated that the NEDD8-activating enzyme inhibitor MLN4924 was 

subject to HS-5 stromal cell induced drug resistance in the VDR cell line (figure 

3.5.3.1), and despite combination of MLN4924 with bortezomib, resistance to 

this agent persisted in the presence of HS-5 stromal cells (figure 3.5.3.2), (see 

chapter 5 results section). Therefore this point again emphasizes the need to 

consider the bone marrow environmental impact on drug sensitivity testing 

when considering novel therapies under investigation for the treatment of 

multiple myeloma. 
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Previously we demonstrated that CCL3 is up-regulated in VDR at baseline 

compared to MM.1R (table 3.4.2.1), a protein known to be involved in 

stimulating MM cell growth and worsening osteolytic bone disease. When MM.1R 

and VDR were treated with bortezomib, CCL3 remained markedly over-

expressed in bortezomib-treated VDR compared to bortezomib-treated MM.1R 

(fold change 3.55, p=0.016). Thus bortezomib resistance in VDR may potentially 

be augmented by its over-expression of CCL3, which remains elevated despite 

bortezomib treatment. 

GSTP1 (glutathione s-transferase pi 1) is an enzyme that detoxifies carcinogens 

and variances of its detoxifying ability can be altered further by the GSTP1 

rs1695 polymorphism,[126] although this polymorphism has not yet been 

demonstrated in myeloma cell lines. It has been shown to inhibit JNK1 (c-Jun N-

terminal kinase) and alter kinase signalling in vitro.[127] Over-expression of the 

GSTP1 gene has been implicated in progression of multiple myeloma and has 

been suggested as a target biomarker for treatment of both MM and acute 

myeloid leukaemia.[128, 129] We noted that GSTP1 was over-expressed in 

bortezomib-treated VDR compared to bortezomib-treated MM.1R (fold change 

2.76, p=0.004).  
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Accession Confidence 

score 

Anova (p) Max fold change Uniprot 

symbol 

P53041 61.35 0.008 672.24 PPP5C 

Q13442 47.1 0.029 307.61 PDAP1 

P05386 51.02 0.027 244.17 RPLP1 

Q96L21 49.53 1.970E-05 102.37 RPL10L 

P02765 237.58 3.160E-05 68.64 AHSG 

P68371 1806.16 0.023 47.22 TUBB4B 

P63241 328.31 0.008 24.98 EIF5A 

Q8IX21 31.4 0.011 19.41 FAM178A 

P06454 472.07 0.003 18.93 PTMA 

P60709 1076.4 0.001 18.63 ACTB 

Q9Y6G9 70.28 3.104E-04 17.91 DYNC1LI1 

O15355 107.34 0.024 17.09 PPM1G 

P07437 2236.97 4.535E-04 16.55 TUBB 

Q99436 59.41 0.009 16.43 PSMB7 

P84085 51.84 0.028 13.79 ARF5 

P28074 264.99 3.900E-05 13.04 PSMB5 

P29966 80.86 1.962E-04 12.20 MARCKS 

P33316 104.54 0.025 10.91 DUT 

Q7Z6G8 31.43 0.005 10.32 ANKS1B 

Q15121 50.98 0.040 9.76 PEA15 

P49207 90.9 0.001 9.58 RPL34 

Q9P2T1 39.43 0.003 9.48 GMPR2 

Q6P2Q9 44.64 2.229E-04 9.42 PRPF8 

P06733 1810.85 3.854E-04 8.90 ENO1 

Q9BVA1 1433.96 4.240E-05 8.05 TUBB2B 

P53999 300.23 0.044 7.91 SUB1 

P61978 407.98 0.009 7.25 HNRNPK 

P31949 83.22 0.001 7.05 S100A11 

P55327 167.97 0.020 7.01 TPD52 

O60841 77.7 0.017 6.98 EIF5B 

Q969Q0 91.64 0.009 5.73 RPL36AL 

O60493 53.96 0.002 5.59 SNX3 

Q16186 75.82 0.032 5.23 ADRM1 

P07384 89.88 0.008 5.17 CAPN1 

Q9BW85 47.41 0.023 4.95 CCDC94 

P61513 46.11 0.029 4.50 RPL37A 

P68366 733.08 0.028 4.37 TUBA4A 

Q6JBY9 43.43 0.003 3.91 RCSD1 

P25788 165.92 2.364E-04 3.73 PSMA3 

P35241 219.37 2.549E-04 3.72 RDX 

P46779 233.2 0.001 3.69 RPL28 

P35527 355.4 0.025 3.67 KRT9 

P31948 598.47 0.016 3.55 STIP1 
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Accession Confidence 

score 

Anova (p) Max fold change Uniprot 

symbol 

P10147 51.45 0.039 3.51 CCL3 

P52566 285.3 3.534E-04 3.46 ARHGDIB 

P60900 542.5 3.770E-04 3.41 PSMA6 

Q9BY43 165.87 2.773E-04 3.36 CHMP4A 

Q86V88 48.62 0.002 3.18 MDP1 

Q9Y5B9 30.97 0.011 2.99 SUPT16H 

P54868 41.02 2.510E-05 2.97 HMGCS2 

P31146 979.24 0.009 2.96 CORO1A 

P25787 203.79 0.004 2.88 PSMA2 

P52565 229.83 0.005 2.88 ARHGDIA 

Q00688 163.97 0.001 2.83 FKBP3 

Q14103 276.02 0.023 2.80 HNRNPD 

P09211 1156.32 0.004 2.76 GSTP1 

P20073 153.12 0.046 2.65 ANXA7 

P41250 320.35 0.030 2.62 GARS 

O75874 97.43 0.001 2.47 IDH1 

Q01081 76.53 0.006 2.42 U2AF1 

Q9UL46 603.72 5.380E-05 2.39 PSME2 

Q99959 62.08 0.004 2.33 PKP2 

P28072 238.37 0.001 2.32 PSMB6 

Q9NZB2 86.82 0.007 2.29 FAM120A 

Q15637 48.07 0.049 2.28 SF1 

P49721 239.73 3.156E-04 2.28 PSMB2 

Q06323 820.35 0.001 2.09 PSME1 

O15372 36.84 0.007 2.07 EIF3H 

P30043 104.8 5.770E-06 2.06 BLVRB 

P06744 430.26 0.036 2.03 GPI 

P28066 283.21 0.001 2.01 PSMA5 

O14818 244.26 0.001 2.00 PSMA7 

 

Table 3.4.5.1.1 Proteins upregulated in bortezomib-treated VDR compared 

to bortezomib-treated MM.1R by label free mass spectrometry 

Proteins listed include those with fold change ≥2 where p<0.05. Proteins with 

fold change >1,000 were excluded from this analysis. Of particular interest, 

PSMB5 and CCL3 remained upregulated in bortezomib-treated VDR compared to 

bortezomib-treated MM.1R. 
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3.4.5.2 Functional protein association mapping of protein classes over-

expressed in bortezomib-treated VDR compared to bortezomib-

treated MM.1R 

Functional protein association mapping of proteins identified by mass 

spectrometry over-expressed in bortezomib-treated-VDR compared to 

bortezomib-treated-MM.1R revealed 3 specific groups of molecules (figure 

3.4.5.2.1).  

EIF5A (eukaryotic initiation factor 5A) was over-expressed in bortezomib-

treated VDR compared to bortezomib-treated MM.1R and demonstrated multiple 

interactions with other proteins over-expressed in bortezomib-treated VDR. This 

molecule has been previously documented to play a major role in MM 

pathogenesis and a specific nanoparticle inhibitor has been developed to 

abrogate EIF5A expression, which results in concomitant NF-κB inhibition and 

demonstrated a significant reduction in tumour burden in two mouse models of 

multiple myeloma.[130] Not only was this protein up-regulated in bortezomib-

treated VDR compared to bortezomib-treated MM.1R, but also on review of 

baseline protein expression for each cell line, EIF5A is also up-regulated in VDR 

compared to MM.1R at baseline by a factor of 2.21 fold (p=0.008), (see table 

3.4.2.1). 

In addition, a number of 60S ribosomal-associated proteins were over-expressed 

in bortezomib-treated VDR (RPLP1, RPL34, RPL10L and RPL36AL). The exact 

role of these proteins in MM pathogenesis is not well documented, however 

RPLP1 appears to play a role in circumventing cellular senescence and is known 

to be over-expressed in human gynaecological and colon cancers.[131, 132] 

Finally, multiple proteasome-related subunits formed a core group of molecules 

with multiple direct protein interactions, in particular the β-proteasome subunit 

PSMB5, PSMB6 and PSMB7.  PSMB2, PSME1, PSME2, PSMA2, PSMA3 and PSMA7 

also formed central connections within these pathways. 

In addition, of the 72 proteins which were upregulated in bortezomib-treated 

VDR compared to bortezomib-treated MM.1R (where fold change ≥2), functional 

annotation analysis via DAVID revealed a number of cellular processes in which 
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these proteins are involved including negative regulation of protein 

ubiquitination, negative regulation of cellular protein metabolic process and cell 

cycle processes (table 3.4.5.2.1). 

Finally, 2 proteins with established involvement in the glycolysis pathway were 

found to be over-expressed in bortezomib-treated VDR compared to bortezomib-

treated MM.1R. These include glucose phosphate isomerase (GPI) and enolase 

(ENO1). GPI is an enzyme early on in the glycolysis cycle that converts glucose-6-

phosphate to fructose-6-phosphate (and vice versa). ENO1 plays a role in the 

second last step of pyruvate generation, by converting 2-phosphoglycerate to 

phosphoenolpyruvate (prior to conversion of the latter by pyruvate kinase to 

pyruvate), (figure 3.4.5.2.2), (david.abcc.ncifcrf.gov). 
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Figure 3.4.5.2.1 Direct protein-protein interactions of proteins over-

expressed in bortezomib-treated-VDR compared to bortezomib-treated 

MM.1R. Functional protein association mapping of proteins identified by mass 

spectrometry over-expressed in bortezomib-treated-VDR compared to 

bortezomib-treated-MM.1R. In particular, EIF5A demonstrated multiple 

interactions with other proteins over-expressed in bortezomib-treated VDR. 

Multiple proteasome-related subunit molecules formed a core group of proteins 

with multiple direct interactions. Finally a number of 60S-ribosomal proteins 

formed a third group of interacting molecules. (www.string-db.org). 
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Cellular process Count Adjusted p 

value 

(Benjamini) 

Regulation of ubiquitin-protein ligase activity during 

mitotic cell cycle 11 9.78E-11 

Positive regulation of ubiquitin-protein ligase activity 

during mitotic cell cycle 11 1.04E-10 

Positive regulation of ubiquitin-protein ligase activity 11 1.05E-10 

Negative regulation of protein ubiquitination 11 1.08E-10 

Positive regulation of ligase activity 11 1.09E-10 

Negative regulation of ubiquitin-protein ligase activity 11 1.33E-10 

Negative regulation of ligase activity 11 1.33E-10 

Regulation of ubiquitin-protein ligase activity 11 1.62E-10 

Negative regulation of ubiquitin-protein ligase activity 

during mitotic cell cycle 11 1.94E-10 

Anaphase-promoting complex-dependent proteasomal 

ubiquitin-dependent protein catabolic process 11 1.94E-10 

Regulation of ligase activity 11 2.13E-10 

Positive regulation of protein ubiquitination 11 2.79E-10 

Regulation of protein ubiquitination 11 1.50E-09 

Proteasomal protein catabolic process 11 1.68E-09 

Proteasomal ubiquitin-dependent protein catabolic 

process 11 1.68E-09 

Negative regulation of protein modification process 11 7.30E-09 

Positive regulation of cellular protein metabolic process 12 3.63E-07 

Negative regulation of cellular protein metabolic process 11 3.64E-07 

Mitotic cell cycle 14 4.29E-07 

Negative regulation of protein metabolic process 11 4.38E-07 

Positive regulation of protein modification process 11 4.38E-07 

Positive regulation of protein metabolic process 12 4.63E-07 

Cell cycle process 16 9.94E-07 

Ubiquitin-dependent protein catabolic process 11 4.51E-06 

Regulation of cellular protein metabolic process 14 5.95E-06 

Negative regulation of catalytic activity 11 1.43E-05 

Regulation of protein modification process 11 2.43E-05 

Cell cycle 16 4.66E-05 

Negative regulation of molecular function 11 6.84E-05 

Translation 10 4.66E-04 

Negative regulation of macromolecule metabolic process 13 2.65E-03 

Positive regulation of catalytic activity 11 2.73E-03 

Modification-dependent macromolecule catabolic 

process 11 5.86E-03 

Modification-dependent protein catabolic process 11 0.01 

Positive regulation of molecular function 11 0.01 

Proteolysis involved in cellular protein catabolic process 11 0.01 
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Cellular process Count Adjusted p 

value 

(Benjamini) 

Cellular protein catabolic process 11 0.01 

Cellular macromolecule catabolic process 12 0.01 

Protein catabolic process 11 0.01 

Macromolecule catabolic process 12 0.01 

Protein polymerization 4 0.02 

Positive regulation of macromolecule metabolic process 12 0.03 

 

Table 3.4.5.2.1 Functional annotational analysis of proteins upregulated in 

bortezomib-treated VDR compared to bortezomib-treated MM.1R. 

72 proteins were upregulated in bortezomib-treated VDR compared to 

bortezomib-treated MM.1R and functional annotation analysis revealed a 

number of cellular processes in which these proteins are involved. 

(david.abcc.ncifcrf.gov/). 
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Figure 3.4.5.2.2: Proteins over-expressed in bortezomib-treated VDR 

compared to bortezomib-treated MM.1R. 

Two proteins that were found to be over-expressed in bortezomib-treated VDR 

compared to bortezomib-treated MM.1R (p<0.05) included glucose phosphate 

isomerase (GPI) and enolase (ENO1), of which have known involvement in the 

glycolysis pathway. (david.abcc.ncifcrf.gov/). Red circles indicate proteins 

identified by label-free mass spectrometry i.e. “2”/GPI and “9”/ENO1. 
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3.4.6 PSMB5 protein expression in MM.1R and VDR with and without 

bortezomib treatment 

The proteomic expression of a number of the catalytic subunits of the 

proteasome, including the β5, β5i, β1 and β1i subunits, has been previously 

demonstrated by 2D-gel electrophoresis to be abolished following a 4-hour 

treatment with bortezomib in bortezomib-sensitive MM.1S cells (see 

introduction 1.3.4).[55] In our study, at baseline, PSMB5 was over-expressed in 

VDR compared to MM.1R (PSMB5 is over-expressed 3.85-fold in VDR compared 

to MM.1R, p=4.36E-04). Following bortezomib treatment PSMB5 was suppressed 

by a factor of 4.65 fold in MM.1R treated with bortezomib compared to untreated 

control MM.1R (p=7.47E-04), whereas VDR displayed only a 1.34 decrease in 

PSMB5 expression compared to untreated VDR control (p=0.03). Finally, by 

comparing bortezomib-treated MM.1R to bortezomib-treated VDR, PSMB5 

expression was down-regulated by 13 fold when directly comparing the two cell 

lines post-treatment (p=3.90E-05). These results suggest that bortezomib 

resistance in VDR may potentially be mediated through PSMB5, evidenced by 

over-expression of PSMB5 in VDR at baseline compared to MM.1R, and minimal 

reduction in PSMB5 expression in VDR despite bortezomib treatment (figure 

3.4.6.1).  
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Figure 3.4.6.1 Summary of PSMB5 protein expression at baseline and 

following bortezomib treatment in MM.1R or VDR. At baseline, PSMB5 is 

over-expressed 3.85-fold in VDR compared to MM.1R. When MM.1R is treated 

with bortezomib, PSMB5 is suppressed as demonstrated by a 4.66 reduction in 

fold change, however to a lesser degree when VDR is treated with bortezomib 

(reduction in fold change is 1.34-fold). By direct comparison of bortezomib-

treated VDR compared to bortezomib-treated MM.1R, a 13.04-fold difference in 

PSMB5 expression is observed, where PSMB5 remains markedly elevated in 

bortezomib-treated VDR, supporting the role of PSMB5 dysregulation in VDR as 

a potential mechanism for bortezomib resistance in this cell line. 
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3.4.7 Immunoblot validation of proteins differentially expressed in VDR 

compared to MM.1R 

Following review of our proteomic datasets a number of specific molecules of 

interest were validated by western blot analysis, including: 

• PSMB5 

• NEDD8 

PSMB5 was over-expressed in VDR compared to MM.1R at baseline, and this was 

validated by western blot for PSMB5. In addition, NEDD8 was found to be over-

expressed by mass spectrometry in VDR compared to MM.1R and again this was 

validated by immunoblot (table 3.4.7.1). 
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 Protein of interest GAPDH 

MM.1R vs. VDR           MM.1R vs. VDR  

PSMB5 

 
 

NEDD8 

  
 

Table 3.4.7.1 Validation of proteins of interest identified by label-free mass 

spectrometry. 

Over-expression of PSMB5 and NEDD8 was validated in VDR compared to 

MM.1R by immunoblot. 
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3.4.8 Summary of proteomic profiling studies 

 

We examined the proteomic profiles of the isogenic cell lines MM.1R and VDR, in 

addition to investigating the proteins differentially expressed following their 

treatment with bortezomib.  

We identified 238 proteins differentially expressed in the MM.1R vs. VDR 

comparison. CCL3 demonstrated a 22-fold higher expression level in VDR 

compared to MM.1R. This protein has been previously documented to contribute 

to myelomatous bone disease, and an inhibitor of CLL1 through which CCL3 

signals is currently in pre-clinical investigation that has shown promising anti-

myelomatous and anti-osteolytic effects in a MM in vivo mouse model. Further 

studies could include examining the sensitivity of VDR cells to bortezomib in the 

presence of a CCL1 inhibitor. In addition NEDD8 and PSMB5 were also found to 

be over-expressed in VDR when compared to MM.1R.  

Functional protein association mapping of proteins by String software revealed 

the heat shock proteins as a common subgroup of proteins over-expressed in 

VDR. DAVID functional annotation tool revealed a number of proteins over-

expressed in VDR that are involved in apoptosis, regulation of cellular metabolic 

processes, cellular homeostasis, cell cycle process and proteasomal ubiquitin-

dependent protein catabolic process.  

Of the 238 proteins in total differentially expressed in the MM.1R vs. VDR 

comparison, 132 were down-regulated in VDR compared to MM.1R. Three 

proteins that were found to be down-regulated in VDR compared to MM.1R were 

found to be involved in aminoacyl tRNA biosynthesis, and these included IARS, 

RARS and LARS.  

Following bortezomib treatment, 212 proteins in MM.1R and only 35 proteins in 

VDR were down-regulated post-treatment compared to their respective 

bortezomib-untreated controls. Furthermore, comparing bortezomib-treated 

MM.1R to bortezomib-treated VDR, 109 proteins out of a total 323 were 

downregulated in bortezomib-treated-VDR compared to bortezomib-treated-
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MM.1R, of which 63 demonstrated a fold change ≥1.5 (where p<0.05). DAVID 

functional annotation tool again allowed us to review proteins down-regulated 

following bortezomib treatment in either cell line. A number of proteins involved 

in the proteasome structure were suppressed in both bortezomib-treated MM.1R 

and bortezomib-treated VDR compared to their respective untreated controls. 

PSMD13, PSMA1, PSMA2, PSMA3, PSMA4, PSMA5, PSMA6, PSMA7, PSMB1, 

PSMB2, PSMB5, PSMB6, PSMB8 were all found to be down-regulated in 

bortezomib-treated MM.1R compared to untreated MM.1R; PSMB5 however was 

not down-regulated in bortezomib-treated VDR compared to untreated VDR 

control. 

Taking a closer look, we found 5 proteins that were down-regulated in 

bortezomib-treated VDR compared to bortezomib-treated MM.1R that are 

involved in the MAP-kinase signalling pathway, which when altered, is well 

documented for its role in carcinogenesis. These proteins including FLNA, 

HSP72/HSPA6, PPP3C, MEF2C and HSP27/HSPB1 that are differentially 

expressed in bortezomib-treated VDR compared to bortezomib-treated MM.1R 

warrant further investigation to establish if they play a role in bortezomib 

refractoriness in VDR. 

We found 215 proteins up-regulated in bortezomib-treated VDR compared to 

bortezomib-treated MM.1R, of which 78 proteins had a fold change ≥2. These 

included PSMB5, PSMB7 (responsible for trypsin-like protein cleavage at the β2-

subunit) and PSMB6 (responsible for chymotrypsin-like proteolytic cleavage at 

the β-1 subunit). In addition CCL3 was markedly over-expressed in bortezomib-

treated VDR compared to bortezomib-treated MM.1R. This again poses the 

question as to whether or not the addition of a CCL1 inhibitor may have the 

potential to overcome bortezomib resistance in VDR. Finally we noted that 

GSTP1 was over-expressed in bortezomib-treated VDR compared to bortezomib-

treated MM.1R, a protein whose over-expression has been implicated in both the 

progression of multiple myeloma, and has been suggested as a target biomarker 

for treatment of both MM and acute myeloid leukaemia. 
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EIF5A (eukaryotic initiation factor 5A) was over-expressed in bortezomib-

treated VDR compared to bortezomib-treated MM.1R. A specific nanoparticle 

inhibitor has previously been developed to abrogate EIF5A expression, which 

results in concomitant NF-κB inhibition, and also demonstrated a significant 

reduction in tumour burden in two mouse models of multiple myeloma.[130] Not 

only was this protein up-regulated in bortezomib-treated VDR compared to 

bortezomib-treated MM.1R, but also over-expressed in VDR compared to MM.1R 

at baseline. This raises the question whether EIF5A could act as an additional 

potential regulator for bortezomib refractoriness in the VDR cell line. 

Finally, PSMB5 is over-expressed 3.85-fold in VDR compared to MM.1R at 

baseline. When MM.1R is treated with bortezomib, PSMB5 is suppressed as 

demonstrated by a 4.66 reduction in fold change, however to a lesser degree 

(1.34-fold) when VDR is treated with bortezomib. By direct comparison of 

bortezomib-treated VDR compared to bortezomib-treated MM.1R, a 13-fold 

increase in PSMB5 expression is observed in bortezomib-treated VDR, 

supporting the role of PSMB5 dysregulation in VDR as a potential mechanism for 

bortezomib resistance in this cell line. 
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3.5  FUNCTIONAL STUDIES AND POTENTIAL ROLE OF THE BONE 

MARROW MICROENVIRONMENT IN THE PATHOGENESIS OF 

BORTEZOMIB RESISTANCE IN VDR 

 

3.5.1 Introduction 

While we have demonstrated the toxicological profile of the VDR cell line to 

conventional and novel therapies, and examined its genetic mutations, gene 

expression and proteomic profiles in comparison to parental MM.1R, we cannot 

consider the cell line model as an entity independent of its microenvironment. As 

outlined in the introduction (section 1.6), myeloma cells co-exist with 

surrounding accessory cells, many of which appear to stimulate their growth. 

The bone marrow microenvironment plays a major role in resistance 

mechanisms in MM by either direct or indirect interactions between bone 

marrow stromal cells and tumour cells.[73, 133] Bortezomib has been shown to 

abrogate protective effects conferred by stromal cells to tumour cells in vitro, in 

particular in relation to IL-6 signalling.[134] Therefore we examined the effect of 

HS-5 stromal cells in co-culture with our bortezomib-resistant clone, VDR. 

We examined the sensitivity of the isogenic cell line model to conventional and 

novel therapies in the presence and absence of HS-5 stromal cells. We examined 

the baseline proliferation rate of both MM.1R and VDR. We then investigated the 

effect of osteoblasts on the proliferation rate of the MM cell lines to ascertain if 

the stromal-induced effects were specific to HS-5 cells or merely a cell-to-cell 

ratio effect. We furthermore examined the effect of osteoblasts on the drug 

sensitivity of VDR cell line to a number of therapies. 

Finally, given that there was marked overexpression of PSMB5 at the proteomic 

and transcript levels, in addition to the finding of a PSMB5 mutation in the VDR 

cell, we hypothesised if bortezomib resistance could potentially be overcome by 

up-regulating the PSMB5 immunoproteasome counterpart, PSMB8. By pre-

treating VDR cells with interferon-gamma, we observed an increase in sensitivity 

of VDR cells to bortezomib, potentially by up-regulation of PSMB8 as 

demonstrated by western blot. While interferon-gamma did not completely 
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resensitise VDR to bortezomib, it appears to have the potential to play a role in 

over-coming bortezomib resistance in VDR. To test our hypothesis in the in vivo 

setting, we ran immunohistochemistry on bone marrow trephines of patients 

with bortezomib-refractory multiple myeloma, which revealed PSMB8 was 

present in the bone marrow of this patient group.  These data support a role for 

the use of PSMB8 inhibitors in the setting of bortezomib resistance in vivo. 

3.5.2 Effect of HS-5 stromal cells on sensitivity of MM1R and VDR to 

bortezomib and carfilzomib 

We first investigated the sensitivity of MM.1R and VDR cells to either bortezomib 

or carfilzomib following their co-culture with immortalised bone marrow 

stromal cells, i.e. HS-5 cell line. HS-5 cells were plated in a 96 well-plate and 

allowed to adhere for 6 hours. Next MM.1R or VDR cells were added and cultured 

in the presence or absence of HS-5 cells, and co-cultures were performed for 24, 

48 and 72 hours each. Finally each co-culture condition was treated with 

bortezomib 0-80nM or carfilzomib 0-20nM for 24hours. Then cell viability was 

analysed by CSBLI, (see materials and methods 2.7). 

We observed no change in the sensitivity of MM.1R to bortezomib despite its co-

culture with HS-5 stromal cells. VDR retained the same degree of resistance to 

bortezomib following HS-5 co-culture, (figure 3.5.2.1). Interestingly MM.1R cells 

appeared to display resistance to carfilzomib following their co-culture with HS-

5 cells, and the degree of resistance to carfilzomib increased with duration of 

preceding co-culture time. The mechanism for this observation is not clear. 

Finally VDR cells retained their sensitivity to carfilzomib despite their co-culture 

with HS-5 cells, (figure 3.5.2.2). 
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Figure 3.5.2.1: Co-culture of MM.1R and VDR with HS-5 stromal cells and 

subsequent bortezomib treatment. 

No change in the sensitivity of MM.1R to bortezomib was observed despite its co-

culture with HS-5 stromal cells. VDR retained the same degree of resistance to 

bortezomib following its co-culture with HS-5 cells. (Note: c= monoculture; 

cc=co-culture).
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Figure 3.5.2.2: Co-culture of MM.1R and VDR with HS-5 stromal cells and 

subsequent carfilzomib treatment. 

MM.1R cells appeared to display reduced sensitivity to carfilzomib following 

their co-culture with HS-5 cells, and reduced sensitivity to carfilzomib was 

observed with increased duration of co-culture time. VDR cells retained their 

sensitivity to carfilzomib despite their co-culture with HS-5 cells (Note: c= 

monoculture; cc=co-culture, CFZ= carfilzomib). 
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3.5.3 Investigation of the role for combination therapies to overcome 

bortezomib resistance in VDR cells in co-culture with HS-5 stromal 

cells 

We next examined the effect of HS-5 stromal cells on the sensitivity of VDR cells 

to novel therapies. We found that the presence of HS-5 stromal cells in co-culture 

with VDR caused resistance to both the novel FDA-approved HDAC inhibitor 

vorinostat, and resistance to NEDD8-activating enzyme inhibitor MLN4924, (a 

reagent in which a phase 1 clinical trials for multiple myeloma and lymphoma 

has been completed with results pending), (figure 3.5.3.1). We next tested the 

combination of these two agents with bortezomib in our in vitro model in co-

culture with HS-5 stromal cells. The protective effect conferred to the VDR cells 

by HS-5 stromal cells was not overcome by combination of either vorinostat or 

MLN4924 with bortezomib, (figure 3.5.3.2).  
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Figure 3.5.3.1 Effect of HS-5 stromal cells on efficacy of novel and 

investigational reagents in VDR. 

The presence of HS-5 stromal cells in co-culture with VDR cells for 24 hours 

prior to treatment with either (a) vorinostat or (b) MLN4924 causes a reduction 

in sensitivity of VDR cells to vorinostat 1/2uM and MLN4924 (62.5-500nM) as 

demonstrated by CSBLI analysis .  
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Figure 3.5.3.2 Effect of HS-5 stromal cells on efficacy of novel and 

investigational reagents in combination with bortezomib. 

VDR cells were cultured alone or in the presence of HS-5 stromal cells for 

24hours with subsequent 72-hour treatment with either MLN4924 or vorinostat  

alone, and each in combination with bortezomib 0-80nM for 24hours. Again by 

CSBLI a marked reduction in sensitivity of VDR cells in co-culture for either 

reagent is observed despite their combination with bortezomib, suggesting that 

the bone marrow microenvironment also confers resistance to bortezomib-

containing combination regimens in VDR cells in vitro. 
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3.5.4 Effect of osteoblasts on proliferation rate and sensitivity of MM.1S, 

MM.1R and VDR to therapies in vitro 

In order to examine further bone marrow accessory cells involvement in 

bortezomib resistance we next undertook a series of experiments to examine the 

potential role that osteoblasts play in the pathogenesis of bortezomib resistance.  

We first examined the baseline effect of osteoblast-like cell line hFob 

(immortalised human foetal osteoblast-like 1.19 cells) on the proliferation rate 

of a number of multiple myeloma cell lines (n=8). On day 1 hFob was plated at a 

seeding density of 40,000 cells/mL and allowed to adhere overnight. The 

following day MM cell lines were added in triplicate at a seeding density of 

20,000 cells/mL and cultured alone or in the presence of hFob cells for 24 and 

48-hours. The bortezomib resistant cell line VDR displayed a marked increase in 

cell viability when co-cultured in the presence of hFob cell line at both 24 and 

48-hour timepoints (figure 3.5.4.1), (see Materials and Methods 2.3 and 2.7 for 

further information of co-culture methods). 

Next we examined the sensitivity of MM.1S, MM.1R and VDR to novel and 

conventional therapies following their co-culture with hFob cells. Again hFob 

cells were plated and allowed to adhere for 6 hours, before the addition of 

MM.1S, MM.1R or VDR to the plates, and each of the 3 cell lines were cultured 

alone or in the presence of hFob cells for 24 hours prior to treatment with either 

conventional (dexamethasone, doxorubicin), novel (bortezomib, lenalidomide, 

vorinostat) or investigational (JQ1) therapies. For this experiment the cells were 

plated in a 1:1 ratio to avoid MM cell overgrowth in the plates. We made a 

number of observations from these studies: firstly MM.1S appeared to be the cell 

line that was most susceptible to changes in drug sensitivity when co-cultured 

with hFob cells, and this was observed in treatments with dexamethasone, 

doxorubicin and vorinostat. In addition resistance to doxorubicin was evident in 

MM.1R and VDR cells in co-culture with hFob also. No change in sensitivity of 

any cell line to lenalidomide, JQ1 or bortezomib was observed when in co-culture 

with hFob (figure 3.5.4.2). 
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Figure 3.5.4.1: Relative cell viability of MM cell lines following their co-

culture with immortalised human foetal osteoblast-like cell line hFob. VDR 

cell line in co-culture with hFob 1.1.9 revealed a marked increase in relative cell 

viability compared to VDR in culture alone after 24 and 48 hours. 
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Figure 3.5.4.2: Sensitivity of MM.1S, MM.1R and VDR to novel and 

conventional therapies following co-culture with hFob cells. MM.1S, MM.1R 

and VDR cells were cultured in the presence and absence of hFob cells and 

subsequently treated with bortezomib, dexamethasone, doxorubicin, 
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lenalidomide, vorinostat or JQ1. (Note 1: Black= MM.1S, Blue= MM.1R, Red= VDR; 

Solid=no hFob; Stripes= Plus hFob). (Note 2: black squares indicate observations 

of drug resistance in MM.1S cell line in co-culture with hFob).  
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3.5.5 Role of direct cell-to-cell contact in osteoblast-like cell-induced drug 

resistance in MM.1S 

As we observed a change in the drug sensitivity in MM.1S to a number of 

reagents following their co-culture with osteoblast-like cells hFob, we next 

determined whether or not direct cell to cell contact was necessary for this 

observation to occur.  

Transwell plates were used to culture MM.1S cells in the presence and absence of 

hFob cells, those in co-culture were not however in direct contact (see Materials 

and Methods section 2.16). The cellular compartments were treated with 

doxorubicin, vorinostat or lenalidomide as previously described. Once treatment 

was complete, the viability of the MM.1S cells was analysed by CSBLI.  

We again observed a significant reduction in sensitivity of MM.1S to doxorubicin 

when MM.1S was in co-culture with hFob but without direct cell-to-cell contact, 

suggesting that direct cell-to-cell contact is not essential for hFob-induced 

doxorubicin resistance in MM.1S. No change in sensitivity was observed in 

MM.1S cells treated with vorinostat when in co-culture with hFob, suggesting 

that direct cell-to-cell contact is necessary in osteoblast-induced resistance to 

vorinostat. Finally, as a control, MM.1S cells were co-cultured without direct cell-

to-cell contact also with hFob, and treated with lenalidomide. Our previous 

observation, i.e. no change in sensitivity to lenalidomide when the cells are in 

direct contact with hFob, was confirmed in the transwell experiment (Figure 

3.5.5.1).  
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Figure 3.5.5.1: Assessment of sensitivity of MM.1S cells to doxorubicin, 

vorinostat or lenalidomide in co-culture with hFob in Transwell System. 

MM.1S cells were co-cultured with hFob in a transwell system without direct 

cell-to-cell contact and the cell viability of MM.1S examined by CSBLI following 

treatment with doxorubicin, vorinostat or lenalidomide. (*=p<0.05). Previous co-

cultures without transwell are depicted here on the right for comparative 

purposes.  
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3.5.6 Role of cell-to-accessory cell ratio and protein content in observed 

osteoblast-like cell-induced resistance 

To determine if resistance observed in MM.1S cells co-cultured in the presence of 

osteoblasts is secondary to local mass effect or MM cell to accessory cell ratio, we 

further tested the validity of the previous results by adding luciferase negative 

MM cells to luciferase positive MM.1S-mcl cells instead of osteoblasts to 

determine whether or not the prior results could be replicated simply by adding 

the same number of myeloma cells to the co-culture condition that equals the cell 

volume of osteoblasts. 

In order to achieve this we first determined the protein content of myeloma cells 

and osteoblasts. Equal numbers (1 x 106) of RPMI-8226 myeloma cells and 

osteoblasts were counted, and stored as described at -80°C in cell pellets in 

preparation for protein quantification (see materials and methods 2.9). The 

protein content of osteoblast-like hFob 1.19 cells was approximately 5 times 

greater than that of RPMI8226 MM cells (figure 3.5.6.1).   

Next we determined if luciferase negative myeloma cells, plated in a ratio of 

equal protein content to hFob, replicated the resistance observed in MM.1S-mcl 

cells in co-culture with hFob. Therefore we plated either 1,000 hFob cells or 

5,000 luciferase negative MM.1S cells in 96-well plates, and as before allowed 

MM.1S-mcl (luciferase positive) cells to co-culture with hFob or non-luciferase 

MM.1S, and subsequently treated each condition with doxorubicin or vorinostat.  

We found that MM.1S-mcl cells again displayed resistance to vorinostat or 

doxorubicin when co-cultured in the presence of hFob, however these results 

were not replicated when co-cultured in the presence of non-luciferase MM.1S 

cells. These results suggest that the observation of hFob-induced resistance to 

MM.1S is not secondary to local mass effect (figure 3.5.6.2).  
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Figure 3.5.6.1 Protein content of RPMI8226 myeloma cells and hFob cells 

1 x106 RPMI8226 MM cells and hFob cells were counted in biological triplicate, 

and the protein content of each biological triplicate was measured in technical 

replicate. Values shown represent the average protein content in ug/uL per 

equal cell number of technical triplicates for each respective biological replicate. 
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Figure 3.5.6.2: Determining if local mass effect of luciferase-negative cells 

can replicate the resistance observed in MM.1S following its co-culture 

with hFob. 

MM.1S-mcl positive cells were co-cultured with luciferase-negative MM.1S cells 

(i.e. “Non-luc MM) or hFob cells at equal protein volumes and subsequently 

treated with doxorubicin or vorinostat. The resistance observed to doxorubicin 

or vorinostat in MM.1S-mcl in co-culture with hFob was not replicated when 

MM.1S-mcl cells were co-cultured with luciferase-negative cells. (*=p<0.05 when 

comparing MM.1S-mcl control to MM.1S + hFob). 
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3.5.7 Upregulation of PSMB8 by interferon-gamma increases the 

sensitivity of VDR cell lines to bortezomib 

Bortezomib principally inhibits the proteasome by binding the PSMB5 subunit of 

the 20S core particle. Given that there is marked over-expression of PSMB5 in 

VDR cells, in addition to an inherent mutation of PSMB5, we speculated as to 

whether or not upregulation of the immunoproteasome subunit PSMB8 (or 

LMP7 or β5i) that is analogous to PSMB5 proteasome subunit could result in 

resensitisation of VDR cells to bortezomib.  

The immunoproteasome has been well documented for its role in MHC Class-I 

antigen presentation. Immunoproteasome subunit generation is induced in cells 

by the presence of interferon-gamma. Once generated, immunoproteasome 

subunits are introduced into newly generated proteasome 20S cores instead of 

constitutive subunits. Even though interferon- gamma results in replacement of 

constitutive subunits with immunoproteasome subunits into the proteasome 

structure, its presence does not appear to alter the overall content of β5, β1 or β2 

mRNA within cells. In fact following interferon-gamma stimulation of cells, cells 

are found to contain proteasomes with a mixture of β5, β1 and β2 subunits, or 

β5i, β1i and β2i subunits.[54] We investigated whether or not we could overcome 

bortezomib resistance in VDR cells by inducing the immunoproteasome subunit 

PSMB8 via interferon gamma, and allow proteasome inhibition in the VDR cells 

to occur through the β5i subunit, namely PSMB8. 

On day 1 MM1R and VDR cells were plated in 96-well plates in the absence or 

presence of interferon-gamma (0 or 200U/mL for 48hours). After 48 hours the 

cells were treated with bortezomib for 24 hours and the cell viability measured 

by CTG. 

We found that the addition of interferon gamma to MM.1R cells did not change 

its sensitivity to bortezomib. In VDR we noted an increased sensitivity for 

bortezomib at dose concentrations of 20, 40 and 80nM when the cells were pre-

treated with interferon-gamma 200IU/mL, (figure 3.5.7.1). Subsequent western 

blot of the aforementioned conditions confirmed up-regulation of PSMB8 in VDR 

cells pre-treated with interferon gamma, consistent with the possibility that the 
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increased sensitivity of VDR cells to bortezomib that were pre-treated with 

interferon gamma may be in part mediated by PSMB8 up-regulation. We also 

observed down-regulation of PSMB5 in MM.1R and VDR following interferon-

gamma treatment. We assessed whether or not accumulation of 

polyubiquitinated proteins occurred in MM.1R and VDR cell with interferon-

gamma pre-treatment prior to bortezomib treatment. We observed a modest 

degree of accumulation of poly-ubiquitinated proteins in VDR cells following 

treatment with bortezomib when they were pre-treated with interferon gamma, 

suggesting that the proteasome-ubiquitination pathway is at least partially 

activated in VDR cells when PSMB8 is up-regulated (figure 3.5.7.2). 
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Figure 3.5.7.1 Pre-treatment of VDR cells with interferon gamma results in 

increased sensitivity of VDR cells to bortezomib. 

MM.1R or VDR cells were pre-treated with interferon gamma 200IU/mL and 

subsequently treated with bortezomib as illustrated for 24 hours. Pre-treatment 

of VDR cells with interferon-gamma resulted in increased sensitivity of VDR cells 

to bortezomib as demonstrated, however p value for “- IFN-gamma” vs. “+IFN-

gamma” were not statistically significant. 
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Figure 3.5.7.2: Interferon gamma results in up-regulation of PSMB8 and 

down-regulation of PSMB5 in both MM.1R and VDR cell lines. 

MM.1R or VDR cell lines were treated alone or in combination with interferon 

gamma or bortezomib. Interferon gamma, both in the presence and absence of 

bortezomib (20nM for MM.1R, 80nM for VDR) resulted in modest up-regulation 

of PSMB8 and down-regulation of PSMB5. Additionally, an increase in poly-

ubiquitinated protein accumulation was observed following bortezomib 

treatment in VDR cells that had been pre-treated with interferon gamma. 

Figure legend: 

R= MM.1R; Con= Control; I/ IFN= Interferon gamma; B/Bort= Bortezomib 



200 

3.5.8 PSMB5 and PSMB8 expression in vivo 

Our previous results suggest that PSMB5 is over-expressed and mutated in vitro 

in VDR cells. By pre-treating VDR cells with interferon-gamma, which appears to 

upregulate the immunoproteasome counterpart PSMB8, we observed partial 

resensitisation of VDR cells to bortezomib. In order to investigate the importance 

of this observation in the in vivo setting, we performed immunohistochemistry 

(IHC) on a number of samples from patients with multiple myeloma for PSMB5 

and PSMB8 expression levels.  

Clinical data and bone marrow trephine slides from the multiple myeloma 

biobank were kindly provided by Dr. Kay Reen Ting and Dr. Colm Cosgrove at 

Dublin City University. Patient samples selected were as follows: 7 diagnostic 

samples of patients who achieved at least VGRP following a bortezomib-based 

regimen; 6 diagnostic samples of patients who received a bortezomib-based 

regimen and subsequently relapsed, and finally 7 samples from patients who 

relapsed following a bortezomib-based regimen (6 of which correlate to the 

latter diagnostic samples), (see materials and methods section 2.1.7). Response 

criteria were defined by IMWG response criteria in multiple myeloma. 

Immunohistochemistry was performed as per departmental protocol (materials 

and methods section 2.18). 

A number of interesting observations were made. PSMB5 is expressed in both 

diagnostic samples of bortezomib-responders and bortezomib-non-responders. 

In this matched comparison, in 3 out of 7 samples tested, PSMB5 expression is 

reduced at time of relapse in bortezomib-non-responders compared to the 

corresponding diagnostic samples (table 3.5.8.1). PSMB8 was expressed in all 

diagnostic samples of bortezomib-responders and in 5 out of 6 diagnostic 

samples of bortezomib-non-responders. PSMB8 expression was markedly 

reduced in relapsed samples of bortezomib-non-responders compared to their 

correlating diagnostic sample. However in 2 out of 7 samples, PSMB8 was still 

expressed at time of relapse in bortezomib non-responders. In one of the latter 

samples, PSMB8 expression was negative at diagnosis and positive at time of 

relapse (table 3.5.8.2). 
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In summary PSMB5 was over-expressed and PSMB8 suppressed in bortezomib 

refractory patients at time of relapse. In VDR we demonstrated over-expression 

of PSMB5 at the protein level, have outlined its potential role in bortezomib 

resistance in vitro, and the potential to overcome this resistance by up-regulation 

of PSMB8 using interferon-gamma. Therefore perhaps pre-treatment with 

interferon gamma and subsequent bortezomib treatment would increase the 

efficacy of bortezomib in bortezomib-refractory myeloma in vivo.  

In addition PSMB8 appears to be strongly expressed at diagnosis in both 

bortezomib-responders and bortezomib non-responders supporting the role for 

a PSMB8-specific inhibitor in vivo. PSMB8 inhibitors are now currently 

commercially available and under investigation in the pre-clinical setting, for 

example PR-924 has been documented for its efficacy in multiple myeloma in the 

in vitro and in vivo setting in a SCID-hu mouse model of plasmacytoma 

xenografts.[58] Our in vivo data support the suggestion by Singh et al to assess the 

efficacy of PSMB8 inhibitors in the in vivo setting for treatment of newly 

diagnosed multiple myeloma, alone or perhaps in combination with bortezomib, 

to achieve dual PSMB5 and PSMB8 inhibition. In two of the bortezomib-

refractory samples at time of relapse, PSMB8 was over-expressed, also 

supporting a role for PSMB8 inhibitors in relapsed and refractory disease. 
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Anti-PSMB5 Diagnostic: Responder Diagnostic: Non-Responder Relapsed: Non-Responder 

Sample 1 

   

Sample 2 

 
 

  

Sample 3 

 
 

  

Sample 4 

 
 

  

Sample 5 

 
 

  

Sample 6 

   

Sample 7 

 

Sample not available. 
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Table 3.5.8.1: Immunohistochemistry of bone marrow trephines of 

multiple myeloma patients stained for PSMB5. 

PSMB5 expression was examined in known bortezomib responders on 

diagnostic bone marrow trephine samples, and also on diagnostic samples of 

known bortezomib non-responders with paired samples at time of relapse. A 

comparative diagnostic sample was not available for sample 7 non-responder.  
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Anti-PSMB8 Diagnostic: Responder Diagnostic: Non-Responder Relapsed: Non-Responder 

Sample 1 

 
 

  

Sample 2 

 
 

  

Sample 3 

 
 

  

Sample 4 

 
 

  

Sample 5 

 
 

  

Sample 6 

   

Sample 7 

 

Sample not available. 
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Table 3.5.8.2: Immunohistochemistry of bone marrow trephines of 

multiple myeloma patients stained for PSMB8. 

PSMB8 expression was examined in known bortezomib responders on 

diagnostic bone marrow trephine samples, and also on diagnostic samples of 

known bortezomib non-responders with paired samples at time of relapse. A 

comparative diagnostic sample was not available for sample 7 non-responder.  
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3.5.9 Summary of functional studies 

 

As previously outlined, the bone marrow microenvironment plays a major role in 

resistance mechanisms in MM by either direct or indirect interactions between 

bone marrow stromal cells and tumour cells. We thus undertook a number of 

functional studies to further explore the mechanism of bortezomib resistance in 

VDR. 

 

We examined the sensitivity of the isogenic cell line model to conventional and 

novel therapies in the presence and absence of HS5 stromal cells. In relation to 

the sensitivity of MM.1R or VDR to proteasome inhibitors, we observed no 

change in the sensitivity of MM.1R to bortezomib despite its co-culture with HS-5 

stromal cells, VDR retained the same degree of resistance to bortezomib 

following its co-culture with HS-5 cells, MM.1R cells appeared to display reduced 

sensitivity to carfilzomib following their co-culture with HS-5 cells, (the 

mechanism for which remains unclear) however VDR cells retained their 

sensitivity to carfilzomib despite their co-culture with HS-5 cells. VDR cells were 

found to demonstrate resistance to vorinostat and MLN4924 when co-cultured 

in the presence of HS-5 cells, and combination of bortezomib with either agent 

was not sufficient to overcome the resistance observed. These data emphasise 

the potent effect of the bone marrow microenvironment in drug resistance to 

bortezomib when it is used alone or in combination with other novel therapies. 

 

We then investigated the effect of osteoblasts on the proliferation rate of the MM 

cells lines to ascertain if the stromal-induced effects were specific to HS5 cells or 

merely a cell-to-cell ratio effect. The bortezomib resistant cell line VDR displayed 

a marked increase in cell viability when co-cultured in the presence of hFob cell 

line compared to all other cell line tested. We furthermore examined the effect of 

osteoblasts on the drug sensitivity of MM.1S, MM.1R and VDR cell lines to a 

number of therapies. Interestingly MM.1S appeared to be the cell line that was 

most susceptible to changes in drug sensitivity when co-cultured with hFob cells, 

and this was observed in treatments with dexamethasone, doxorubicin and 
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vorinostat. In addition resistance to doxorubicin was evident in both MM.1R and 

VDR cells in co-culture with hFob. Transwell system was subsequently used to 

determine whether or not the observed resistance in MM.1S required direct cell-

to-cell contact; we observed direct cell-to-cell contact appeared to be necessary 

for osteoblast-induced resistance to vorinostat in MM.1S, but was not necessary 

for osteoblast-induced resistance to doxorubicin in MM.1S. The resistance 

observed to doxorubicin or vorinostat in MM.1S-mcl in co-culture with hFob was 

not replicated when MM.1S-mcl cells were co-cultured with luciferase-negative 

cells, suggesting that this phenomenon is not a mass related effect secondary to 

the size of the osteoblast-like cells. 

 

Given that there was marked overexpression of PSMB5 at the proteomic and 

transcript levels, in addition to the finding of a PSMB5 mutation in the VDR cell, 

we hypothesised if bortezomib resistance could potentially be overcome by up-

regulating the PSMB5 immunoproteasome counterpart, PSMB8. By pre-treating 

VDR cells with interferon-gamma, we observed an increase in sensitivity of VDR 

cells to bortezomib and an increase in poly-ubiquitinated proteins, potentially by 

upregulation of PSMB8 as demonstrated by western blot. While interferon-

gamma pre-treatment and subsequent PMSB8 over-expression did not 

completely resensitise VDR to bortezomib, it appears to have the potential to 

play a role in over-coming bortezomib resistance in VDR.  

 

Finally, we ran immunohistochemistry on bone marrow trephines of patients 

with bortezomib-sensitive (diagnostic samples) and bortezomib-refractory 

(diagnostic and relapsed samples) multiple myeloma. PSMB5 was over-

expressed and PSMB8 suppressed in bortezomib refractory patients at time of 

relapse. Thus perhaps pre-treatment of multiple myeloma patients with 

interferon gamma and could resensitise these patients to bortezomib, as 

demonstrated by our in vitro model. In addition PSMB8 appears to be strongly 

expressed at diagnosis in both bortezomib-responders and bortezomib non-

responders supporting the role for use of PSMB8 inhibitors in vivo. 
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CHAPTER 4. DISCUSSION 

4.1  CHARACTERISATION OF AN ISOGENIC CELL LINE MODEL OF 

BORTEZOMIB RESISTANCE IN VITRO AND IN VIVO. 

4.1.1 Introduction  

Multiple myeloma is an incurable malignancy characterised by uncontrolled 

proliferation of terminally differentiated B-lymphocytes, or plasma cells. The 

spectrum of abnormal plasma cell differentiation ranges from monoclonal 

gammopathy of uncertain significance, to smouldering myeloma, to fully active 

myeloma requiring treatment with chemotherapy. Major advances have been 

made in the past 10 years in particular in relation to the FDA approval of a 

number of novel therapies for the treatment of myeloma. Bortezomib now forms 

the cornerstone of combination therapies for the management of newly 

diagnosed and relapsed and refractory myeloma. However once patients develop 

resistance to bortezomib-containing regimens, the overall survival is dismal. 

Therefore for the purpose of this thesis we undertook a study of a cell line model 

of bortezomib resistance in order to further decipher potential intrinsic and 

extrinsic mechanistic pathways implicated in bortezomib resistance. We 

examined the toxicological profile of bortezomib-resistant VDR at baseline. We 

examined the sensitivity of VDR to bortezomib in vivo. We undertook whole 

exome sequencing, gene expression profiling and label-free mass spectrometry 

to identify mutations, genes or proteins respectively that may contribute to 

bortezomib resistance intrinsically. We examined extrinsic factors that may 

contribute to bortezomib resistance by examining the effect of bone marrow 

accessory cells on drug sensitivity in VDR cell line. Finally we examined bone 

marrow trephine samples of specific proteasome-associated subunits for their 

expression levels in patients with bortezomib-refractory myeloma. Overall, 

bortezomib resistance appears to be multifactorial, and intrinsic resistance 

mechanisms are further compounded by extrinsic factors in the local bone 

marrow microenvironment. Efforts to overcome these mechanisms of drug 

resistance will likely require the use of target-specific combination regimes to 

overcome specific resistance pathways that are altered. 
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4.1.2 The use of cell line models to examine bortezomib resistance in vitro 

and in vivo 

As outlined in the introduction, patients with myeloma who relapse following 

treatment with novel therapies, have a very poor overall survival. This was 

outlined very explicitly by Kumar et al in their informative study of the prognosis 

of multiple myeloma patients when they no longer respond to novel therapies 

such as lenalidomide or bortezomib, whereby the overall survival in this group is 

approximately 9 months.[4] It is essential that we continue in our efforts to 

provide our patients with better treatment options once they reach the 

inevitable drug-refractory stage of their illness, and given bortezomib forms the 

cornerstone of myeloma combination regimens, we chose to study resistance to 

bortezomib. Preclinical investigation of a bortezomib-resistant cell line, VDR, 

which had been generated in the laboratory of Dr Mitsiades therefore formed the 

cornerstone of this thesis. 

We and others have used in vitro cell line models to study bortezomib resistance 

in multiple myeloma, and many groups have used cell line models to investigate 

drug resistance to other therapies for use in myeloma, such as lenalidomide and 

vorinostat.[65, 135-137] Indeed a cell line model of carfilzomib resistance has also 

been developed from human lung and colonic adenocarcinoma cell lines to 

examine carfilzomib-resistance mechanisms in solid tumours.[138] While these 

cell line models provide us with vast information pertaining to resistance 

mechanisms in the in vitro setting, one must take into account the pertinent role 

of the bone marrow microenvironment in multiple myeloma pathogenesis and 

drug resistance, in addition to factors in the bone marrow that attempt to deter 

myeloma cell growth.[139-145] All in all, clonal myeloma cells and their bone 

marrow microenvironment should for all intents and purposes, be considered a 

collective entity in our efforts to study resistance mechanisms, as previously 

outlined by Schuler et al.[146] Perhaps a more efficacious mode of investigating 

drug resistance in myeloma should involve the co-culture of myeloma cell lines 

on HS-5 stromal cells, or alternatively co-culturing myeloma cell lines on bone 

marrow stromal cells isolated from patients with multiple myeloma, and then 

exposing these cells to successive rounds of incremental doses of bortezomib. 
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Alternatively one could extract CD138-positive cells from bone marrow aspirates 

of multiple myeloma patients rather than using a cell line model, and 

successively expose these cells to bortezomib. However the latter may prove 

technically challenging, as CD138-positive plasma cells from patients do not 

proliferate readily in the in vitro setting, likely because they lack the supportive 

network of the bone marrow microenvironment.  

Perhaps an in vivo model would be more efficacious in order to more truly reflect 

the bone marrow microenvironmental changes. A number of models may be 

suitable, such as the SCID-hu model that reflects bone disease similar to patients, 

or xenogeneic models in humanized mice that appropriately mirror the human 

bone marrow microenvironment. However these models do not come without 

their own limitations, such as restricted availability of human bone chips and 

huge laboratory expense for these preclinical models respectively.[146]  

Despite recent advances in preclinical models of multiple myeloma, cell line 

monoculture models remain the gold standard for preclinical studies of multiple 

myeloma pathogenesis and drug resistance mechanisms, and while they have 

their own set of limitations, their use in myeloma research has lead to the 

identification of a number of novel therapies for use in multiple myeloma 

patients.[147] 

4.1.3 Variations in the sensitivity of bortezomib-resistant cells to other 

therapies in vitro 

As outlined in results section 1, VDR displays a 12-fold increase in IC50 for 

bortezomib compared to parental MM.1R, and retains its resistance to 

dexamethasone similar to MM.1R (figures 3.1.2.1 and 3.1.3.1). Given that both 

cell lines are resistant to dexamethasone one could argue that biomarkers 

identified in both cell lines as potential targets of bortezomib resistance may in 

fact represent dexamethasone resistance biomarkers, and this is one limitation 

of our study. Therefore in all biomarker studies, we compared the differences in 

VDR compared to MM.1R cell line. Biomarkers that were present in both cell 

lines were not selected for further studies as these were assumed to be 

dexamethasone-resistance-associated targets. 
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On examining the cell line model for differences in sensitivity to other novel and 

conventional therapies, we made a number of interesting observations (figure 

3.1.3.2). All three cell lines (MM.1S, MM.1R and VDR) displayed similar efficacy in 

the in vitro setting to the immunomodulators lenalidomide and pomalidomide, 

conventional therapies such as doxorubicin and vincristine, and the novel BET2-

bromodomain inhibitor JQ1. In contrast, both MM.1R and VDR were less 

sensitive to the HDAC inhibitor vorinostat compared to MM.1S. By inhibition of 

HDAC1 and HDAC2, cellular apoptosis results.[148] However in MM.1R and VDR it 

is unclear if responsiveness to HDAC inhibitors is due more so to HDAC1, HDAC2 

or both equally. 

4.1.4 Potential FDA-approved compounds that overcome bortezomib 

resistance in VDR 

In order to examine a broader range of compounds for their toxicity to VDR cells, 

we chose to run a larger scale toxicity assay involving the use of FDA-approved 

data sets (figure 3.1.3.3). The purpose again here was to identify compounds that 

were more efficacious in VDR compared to the MM.1R cell line. 101 compounds 

in total were examined. While the majority of compounds demonstrated 

comparable toxicity in both cell lines, two specific groups emerged as 

demonstrating a higher relative percentage cell death in the VDR cell line 

compared to MM.1R. These included the taxanes and the topoisomerase 

inhibitors and each will be discussed in more detail. 

Taxanes exert their anti-cancer effects principally by interrupting normal 

microtubule structure. A number of taxanes have been FDA-approved for their 

use in cancer treatment and those tested in this assay included cabazitaxel, 

docetaxel and paclitaxel. Paclitaxel and docetaxel are widely used in cancer of 

the ovary, stomach, lung, breast and prostate. Resistance to the taxanes is 

thought to be principally mediated by p-glycoprotein.[149] Paclitaxel inhibits the 

G2/M stage of normal cell cycle and thus cells cannot form a normal apparatus of 

mitosis.[150] Docetaxel works by similar means to paclitaxel by promoting the 

stabilisation of microtubules and ultimately also causing G2/M cell cycle arrest. 

However docetaxel is much more potent than paclitaxel, i.e. smaller doses of 
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docetaxel cause a greater degree of cell death that an equivalent dose of 

paclitaxel. This is reflected in our FDA-dataset results: 1nM of docetaxel results 

in >90% cell death of both VDR and MM.1R cells, whereas paclitaxel 1nM causes 

<50% cell death of either VDR or MM.1R cells. The reason why the taxanes were 

identified as a specific group with higher toxicity in VDR than MM.1R: 1nM of 

paclitaxel caused a much greater reduction in relative percentage viability in 

VDR (58.1%; SD9.65) compared to MM.1R (98.8%; SD 1.99). However 10nM 

paclitaxel caused >90% cell death in both cell lines, thus the taxanes are in fact 

efficacious to both bortezomib-sensitive MM.1R and bortezomib-resistant VDR 

(table 3.1.3.3). 

Cabazitaxel, a novel taxane that functions similarly to docetaxel, is a poor p-

glycoprotein substrate and thus is less susceptible to p-glycoprotein mediated 

drug resistance. Cabazitaxel has recently been documented for its efficacy in 

phase 1 clinical trials in castration-resistant prostate cancer.[151, 152] In our cell 

line model, MM.1R and VDR were both highly sensitive to the novel taxane 

cabazitaxel, at both 1nM and 10nM concentrations.  

In summary, while VDR appears to be more sensitive to paclitaxel 1nM than 

MM.1R, paclitaxel 10nM, cabazitaxel 1nM and 10nM, and docetaxel 1nM and 

10nM all appear to be highly potent to both MM.1R and VDR cell lines. While we 

cannot conclude that the taxanes may overcome bortezomib resistance (i.e. they 

appear to be overall equally toxic to both MM.1R and VDR), we have 

demonstrated that the taxanes exert a high degree of relative reduction in cell 

viability in both myeloma cell lines, and support the use of taxanes in multiple 

myeloma treatment. Paclitaxel in combination with gemcitabine for example has 

been investigated in phase 2 clinical trials in patients with relapsed multiple 

myeloma. This was a small study involving 12 patients only; interestingly one 

patient achieved a complete remission with 98% reduction in serum M protein 

and percentage plasma cells in the bone marrow, and furthermore achieved a 6 

month complete remission. While this study was quite limited in terms of 

numbers, the overall result concluded that this combination regimen was 

tolerated well by patients and is an active regimen in relapsed and refractory 

myeloma.[153]  
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The topoisomerase inhibitors also appeared to exert a greater reduction in 

relative cell viability in VDR compared to MM.1R cell line, therefore this finding 

was also examined in greater detail. Topoisomerase 1 (TOP1) causes relaxation 

of DNA coils in replicating cells, and when TOP1 is inhibited, excess torsional 

strain within the DNA template results in arrest of the movement of the 

replication fork, DNA double-strand breaks and sequential cell death.[154] 

Topoisomerase 2 (TOP2) is an enzyme that untangles DNA which involves a 

transient DNA break in order to achieve successful DNA unknotting. Inhibition of 

TOP2 occurs whilst TOP2 attempts to untangle knotted DNA at the point of 

transient DNA breakage, with subsequent generation of permanent DNA double-

strand breaks in the genome, next resulting in the formation of further 

insertions, deletions and genomic aberrations, and finally initiation of apoptotic 

events which cause cell death.[155] In our set of drugs analysed for their toxicity 

in MM.1R and VDR, TOP1 inhibitors included irinotecan and topotecan. TOP2 

inhibitors included etoposide, teniposide, doxorubicin, daunorubicin and 

mitoxantrone.  

No differences in toxicity between MM.1R and VDR were observed in treatment 

with irinotecan, etoposide, doxorubicin or mitoxantrone at either 1nm or 10nM 

concentrations tested. Topotecan, teniposide and daunorubicin at a 10nM 

concentration exerted a much greater reduction in relative cell viability in VDR 

compared to MM.1R, (74.9% +/-6.2 versus 50.4% +/-17.8 for topotecan; 101.8% 

+/-03.4 versus 65.3% +/-4.6 for teniposide; and 83.8% +/-1.1 vs. 48.8% +/-1.3 for 

daunorubicin), (table 3.1.3.2). Therefore topoisomerase inhibitors as a group 

appeared to display greater toxicity in VDR compared to MM.1R at 10nM 

concentrations. However, it is important to note that mitoxantrone was highly 

toxic to both MM.1R (5.2% cell viability post treatment), and VDR (5.5% cell 

viability post treatment). Mitoxantrone was created in the 1980s as a 

doxorubicin analogue with reduced cardiac side effects compared to 

doxorubicin. It has a prolonged half-life ranging from almost 9 hours to 9 days. It 

intercalates DNA, similar to doxorubicin, but also exhibits additional modes of 

action such as altering the immune response by suppressing cytokine 

secretion.[156] This may in part explain its toxicity in myeloma cell lines MM.1R 
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and VDR. In conclusion, topotecan, teniposide and daunorubicin were identified 

by our screen as drugs that appear to exhibit greater reduction in relative cell 

viability in VDR compared to MM.1R, however topoisomerase inhibitors as a 

whole do not appear to be more efficacious in their toxicity in VDR over MM.1R. 

Mitoxantrone appears to be the most potent TOP inhibitor of all drugs tested, 

suggesting a role for its use preferentially to other TOP inhibitors in multiple 

myeloma.  

4.1.5 The efficacy of novel proteasome inhibitors in the setting of 

bortezomib resistance in vitro 

VDR cell line demonstrated marked resistance to bortezomib in the in vitro 

setting. Therefore we examined 2 further proteasome inhibitors available in the 

laboratory for their toxicity to VDR cells, carfilzomib and ixazomib (MLN2238), 

(figure 3.1.4.1). Carfilzomib is an irreversible panproteasome inhibitor and has 

been FDA-approved for use in multiple myeloma therapy. Ixazomib is a novel 

orally bioavailable proteasome inhibitor which reversibly inhibits the beta-5 

subunit specifically, similar to bortezomib, and is currently in phase 3 clinical 

trials for treatment of multiple myeloma.[51] Carfilzomib displayed marked 

toxicity to VDR cell line, as well as parental MM.1R. Interestingly, VDR displayed 

significant resistance to ixazomib (MLN2238). Stessman et al reported on a 

bortezomib resistant cell line in 2013, which displayed cross-resistance to both 

carfilzomib and MLN2238. Their cell line, termed BzR, displayed increased levels 

of PSMB5 compared to parental bortezomib-sensitive cell line, similar to VDR, 

however no mutations of the PSMB5 gene were detected.[101] Therefore perhaps 

resistance to bortezomib and MLN2238 in VDR is mediated by mutPSMB5 gene 

in VDR, however this remains to be fully elucidated. 

4.1.6 P-glycoprotein does not mediate bortezomib resistance in VDR 

P-glycoprotein (P-gp) acts as an efflux pump to shunt drugs out of the cell as a 

mechanism of drug resistance. Recently our group published on the role of P-gp 

in bortezomib resistance in myeloma, and demonstrated that bortezomib is 

subject to pharmacokinetic resistance mediated by P-gp. This work suggested a 

role for the combination of a P-gp inhibitor with bortezomib in P-gp positive 



216 

myeloma.[104] Therefore we wanted to ascertain whether or not a P-gp inhibitor 

in combination with bortezomib would resensitise the VDR cells to bortezomib. 

We therefore compared the sensitivity of VDR (unknown P-gp expression) and 

Dox40 (known to over-express P-gp) myeloma cell lines to combinations of 

bortezomib or carfilzomib or MLN2238, with the P-gp inhibitor elacridar (figure 

3.1.5.1 and figure 3.1.5.2). In Dox40 cell line, sensitisation to bortezomib and 

carfilzomib were observed when either agent was used in combination with 

elacridar. Concomitant P-gp inhibition with MLN2238 did not cause any relative 

reduction in cell viability in Dox40, suggesting MLN2238 is not a P-gp substrate, 

or perhaps Dox40 is also resistant to MLN2238 and the mechanism of resistance 

is not P-gp mediated. In the VDR cell line, we observed no change in sensitivity of 

VDR to bortezomib or MLN2238 when combined with elacridar, suggesting 

resistance to either agent is not P-gp mediated. Finally carfilzomib resulted in 

marked reduction in relative cell viability again in VDR, however no synergistic 

effect was observed in combination with elacridar. These results suggest that the 

drug efflux pump P-glycoprotein does not mediate bortezomib resistance in VDR. 

4.1.7 The in vivo efficacy of bortezomib and carfilzomib in bortezomib-

resistant VDR cell line 

As previously outlined in this section, while cell line models are the gold 

standard for investigating drug resistance mechanisms in the present day, we 

further explored to sensitivity of VDR to bortezomib in the in vivo setting, in 

order to establish how these cells respond to bortezomib when bone marrow 

microenvironmental changes are taken into account. SCID-beige mice were 

injected with MM.1R or VDR cells, allowing them to home their natural 

environment, the bone marrow, and this was confirmed by whole body 

bioluminescence imaging prior to commencement of treatment with bortezomib 

or carfilzomib(section 3.1.7).  

Bortezomib displayed the greatest reduction in tumour burden compared to 

vehicle or carfilzomib in MM.1R mice, however unusually the degree of reduction 

in tumour burden with MM.1R was not found to be statistically significant. 

Carfilzomib appeared to cause a greater reduction in tumour burden than vehicle 



217 

in MM.1R mice however again this reduction was not statistically significant. 

Interestingly, the overall survival for bortezomib-treated MM.1R mice 

significantly exceeded overall survival in MM.1R mice treated with either vehicle 

or carfilzomib, (bortezomib vs. vehicle: p=0.0048; bortezomib vs. carfilzomib 

1.5mg/kg: p=0.0006; bortezomib vs. carfilzomib 3mg/kg: p=0.0048). This is 

quite interesting in light of the fact that we also observed HS-5 stromal cell-

induced resistance to carfilzomib in MM.1R cell line (Results section 3.5.2, figure 

3.5.5.2), whereby 24hour co-culture of MM.1R with HS-5 cells reduced the 

sensitivity of MM.1R to carfilzomib, and prolonged co-culture with HS-5 by up to 

48 and 72 hours prior to treatment with carfilzomib resulted in even greater 

reduction in the sensitivity of MM.1R to carfilzomib. The efficacy of carfilzomib in 

the in vitro setting, in preclinical mouse models and in clinical trials have been 

well documented and lead to the rapid FDA approval of this drug for the 

treatment of multiple myeloma.[20, 47, 48, 157-160] It is unclear why in our study 

MM.1R cell line did not show comparable toxicity to carfilzomib compared to 

bortezomib in the setting of HS-5 stromal cell co-culture or in the in vivo mouse 

model. It may be worthwhile exploring the possible reason for this finding in 

future studies. One possible explanation may be that the MM.1R cell line, over 

time, developed a clone resistant to carfilzomib, that is only apparent when the 

cells are in a co-culture system with HS-5 stromal cells or grown in the bone 

marrow of mice in vivo. Clonal heterogeneity is becoming a more and more 

apparent factor in myeloma disease progression, and perhaps our findings 

represent this phenomenon. Further studies may help to explain these findings. 

In VDR, while both carfilzomib and bortezomib appeared to induce a greater 

reduction in tumour burden in VDR compared to control, again the p value for 

degree of reduction in tumour burden with either treatment was not significant. 

This data suggests that VDR is likely somewhat resistant to bortezomib in the in 

vivo setting, and possibly also resistant to carfilzomib. However in contrast, both 

carfilzomib and bortezomib treatment in VDR mice resulted in a statistically 

significant increase in overall survival in VDR mice (vehicle vs. bortezomib: 

p=0.0004; vehicle vs. carfilzomib 1.5mg/kg: p=0.0086; vehicle vs. carfilzomib 

3mg/kg: p=0.0063). No significant difference in overall survival was observed 
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between bortezomib-treated and carfilzomib-treated VDR mice (for both 

1mg/kg and 3mg/kg dosing regimens). Overall, the resistance of VDR to 

bortezomib was not as pronounced in the in vivo setting. These data suggest that 

perhaps elements of the bone marrow microenvironment that are present in the 

in vivo setting can overcome, to a certain degree, resistance mechanisms that are 

at play in the in vitro setting.  
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4.2  MUTATIONAL ALTERATIONS IN MM.1R AND VDR AS 

IDENTIFIED BY WHOLE EXOME SEQUENCING 

4.2.1 Introduction to whole exome sequencing 

Whole exome sequencing has been used both in the in vitro and in vivo setting in 

the investigation of multiple myeloma pathogenesis as outlined in the 

introduction. Quite interestingly, yet not surprisingly, the evidence for clonal 

heterogeneity in myeloma has recently been documented by a number of groups. 

The clonal evolution in myeloma in any given patient helps explain why patients 

relapse in myeloma; the majority of the malignant plasma cells initially respond 

to treatment, with a small number of resistant cells remaining indolent in the 

bone marrow, until such time when this residual clone proliferates and the 

patient relapses and is refractory to drugs to which they initially responded. In 

fact Melchor et al demonstrated that at diagnosis, between 2 and 6 clones are 

present in myeloma patients, and clonal heterogeneity can occur either by a 

branching (subclone) or linear (new clone) patterns.[107] This new finding helps 

explain how resistant clones are generated. It is not clear however in our model 

of bortezomib resistance, whether repetitive exposure of MM.1R to bortezomib 

resulted in the generation of a new (linear) clone, i.e. VDR, or whether the VDR 

clone was present at baseline in MM.1R and following recurrent bortezomib 

treatment, a VDR clone that was present but not apparent at baseline 

subsequently emerged.  

Whole exome sequencing is used to capture the coding regions of a particular 

genome, called the exome. It is anticipated that genetic mutations resulting in 

disease for the most part are associated with mutations of the exome, i.e. 

variants in protein-coding regions of the genome. A large group of sequence 

reads consisting of varying lengths and arrangements are produced by whole 

exome sequencing runs. The sequence reads are aligned to known sequence 

references and abnormal alleles are recognised and recorded. Filters are applied 

that characterise the variant alleles identified and these include qualitative 

scores (based on coverage depth), and criteria that imply significance (such as 

frequency of alleles, anticipated consequences on protein structure). Given the 

vast quantity of information provided by whole exome sequencing many new 
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technologies are currently being developed to interpret the results. The first 

occasion in which next generation sequencing was used to correlate a gene 

mutation with a disease process was in 2010, when mutation of DHODH gene 

was found to cause postaxial acrofacial dysostosis syndrome, a rare familial 

disorder characterised by abnormalities of the face, limbs and eyes. Whole 

exome sequencing was used in the next 12 months to identify the genetic causes 

of 12 further disorders of Mendelian inheritance.[161] 

Whole exome sequencing has also been used to seek out genetic mutations in 

multiple myeloma patients that contribute to disease pathogenesis. Chapman et 

al revealed a number of important findings in their study in 2011. Eleven distinct 

mutations of genes involved in the NF-κB pathway were found to play a role 

initiation of this pathway in patients with multiple myeloma. Mutations of BRAF 

kinase were also identified in 4% of patients, suggesting a novel role for BRAF 

inhibitors in multiple myeloma.[67] 

We therefore undertook whole exome sequencing of our cell line model of 

bortezomib resistance, which was completed at the Centre for Cancer Genome 

Discovery Core Facility at Dana-Faber Cancer Institute in order to identify which 

gene mutations were present in bortezomib-resistant VDR cell line but absent in 

MM.1R. 

4.2.2 Single nucleotide variants identified in bortezomib-resistant VDR 

but not MM.1R 

As outlined in results section 3.2.2, 28 non-synonymous single nucleotide 

variants were identified in bortezomib resistant VDR that were not identified in 

MM.1R. A non-synonymous variation involves a nucleotide mutation that 

changes the amino acid sequence of a protein. Single nucleotide variants (SNVs) 

differ to single nucleotide polymorphisms (SNPs), in that SNPs are 

polymorphisms that by definition are variable sites within or between 

populations, whereas SNVs make no assumption about degree of polymorphism.  

Of the 28 SNVs identified in VDR but not MM.1R, 26 of these mutations were 

identified as novel mutations by COSMIC (Catalogue of Somatic Mutations in 

Cancer) database. Two mutations were identified by dbSNP (Single Nucleotide 
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Polymorphism Database) database (hosted by the National Centre for 

Biotechnology Information (NCBI) in collaboration with the National Human 

Genome Research Institute (NHGRI)), and these included two distinct mutations 

of H2AFVgene (dbSNP IDs: rs114398265 and rs1802437). SIFT and polyphen 

predictions were obtained for all SNVs identified as outlined in table 3.2.2.1. 

Seven SNVs were found to be “damaging” by both SIFT and PolyPhen predictions 

and these genes will now be discussed in detail. Note all seven of these genes 

were classified as novel mutations based on search criteria in dbSNP and 

COSMIC databases. Each gene was researched in PubMed under the terms 

“”gene, cancer”, “gene, myeloma”, “gene, mutation”. 

SPARCL1 (secreted protein, acidic and rich in cysteine-like 1) gene was found to 

bear a mutation in VDR that was not present in MM.1R. This missense mutation 

involved an asparagine to tyrosine substitution in the gene and has not been 

previously identified. SPARCL1 wild type has been shown to reduce cellular 

adhesion and prevent migration of fibroblasts. The way in which SPARCL1 

controls migration and adhesion has not been fully elucidated. We do know that 

SPARCL1 binds to type 1 collagen, a constituent of extracellular matrix that 

promotes migration of tumour cells and tumour cell invasion.[162-164] SPARCL1 

gene has been recently cited in relation to a number of cancers. In colorectal 

cancer, Yu et al in 2011 suggested that the combination of high p53 levels and 

low SPARCL1 levels collectively could provide a valuable tool as a prognostic 

indicator as an adjunct to TNM (tumour-metastasis-node) staging in colorectal 

cancer.[165] Zhang et al in 2011 demonstrated that SPARCL1 is poorly expressed 

in normal colorectal tissue, strongly positive in primary colorectal tumour sites 

and again at very low levels in distant lymph node positive for metastatic 

disease, suggesting that SPARCL1 upregulation in colorectal cancer is an early 

event in the development of this type of cancer, and possibly has oncogenic 

characteristics that contribute to disease progression.[166] It has previously been 

documented also that SPARCL1 is markedly suppressed in a number of cancer 

cell lines including colon cancer (SW480), lymphoblastic leukaemia (Molt 4), 

chronic myeloid leukaemia (K-562), lung cancer (A549) and melanoma (6361) 

compared to normal tissues, and that SPARCL1 negatively regulates cellular 
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proliferation.[167] More recently however, SPARCL1 expression in human gliomas 

has been shown to correlate with tumour grade, whereby no more than 25% of 

normal brain, grade 1 or grade 2 astrocytomas express SPARCL1, whereas >75% 

of grade 3 astrocytomas or glioblastomas (aggressive brain tumour with very 

poor prognosis) were positive for SPARCL1 expression.[168] Again in contrast to 

this latter study, low levels of SPARCL1 were found to correlate with 

development of lymph node metastases and poor tumour grade in breast cancer, 

this data was published more recently in 2013.[169] More interestingly, in 

prostate cancer, SPARCL1, which is known to be suppressed in prostate cancer, 

in the in vivo setting over-expression of SPARCL1 resulted in suppression of 

prostate cancer metastasis in an in vivo mouse model.[170] In conclusion, low 

levels of SPARCL1 appear to occur in a number of cancer cell lines, in colon 

cancer levels are high in the primary tumour and low in lymph node metastases, 

and in prostate cancer SPARCL1 over-expression in an in vivo model appears to 

suppress prostate cancer migration and metastases in vivo. The role of the 

SPARCL1 mutation in VDR is not yet known. However one should consider the 

role of SPARCL1 in multiple myeloma pathogenesis. One could hypothesise that 

if SPARCL1 mutation in VDR is present in patients with multiple myeloma, 

perhaps the mutated form of SPARCL1 no longer functions normally to bind 

collagen type 1 in the bone marrow microenvironment, potentially promoting 

myeloma cell invasion in vivo. This hypothesis could be further explored in 

future work. 

ZER1 (Zyg-11 Related, Cell Cycle Regulator) gene was also found to have a novel 

mutation in VDR cell line, another missense mutation involving a serine to 

tyrosine substitution. ZER1 is thought to be involved in encoding a subunit of the 

E3 ubiquitin complex. ZER1 has been documented to be up-regulated at early 

stage of bladder cancer and down-regulated at later stage bladder cancer.[171] 

The role of the ZER1 mutation in VDR is not clear. 

TPH2 (tryptophan hydrozylase) gene is mutated in VDR cell line involving a 

serine to tyrosine substitution (similar to ZER1 mutation). THP2 gene encodes a 

protein that catalyses the rate limiting step in the biosynthesis of serotonin, an 
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endogenous neurotransmitter. Little to no information is available in relation to 

the role of this gene in cancer pathogenesis or multiple myeloma. 

MFGE8 (Milk Fat Globule-EGF Factor 8 Protein, or lactadherin) gene was also 

mutated in VDR cell line. This mutation involved a cysteine to alanine 

substitution. Following PubMed literature review, MFGE3 appears to play a role 

in promotion of dietary triglyceride absorption and obesity.[172] Tibaldi et all 

recently showed by immunohistochemistry that MFGE8 is over-expressed in 

45% of ovarian cancer samples tested in their study, and also over-expressed in 

triple negative breast cancer. Furthermore this group identified antibodies to 

MFGE8 that inhibited survival, migration and adhesion of cell line models of 

ovarian cancer and triple-negative breast cancer, suggesting a role for MFGE8 

antibodies in solid tumour cancer of the ovary and breast.[173] MFGE8 has also 

recently been found to promote osteoclastogenesis.[174] Osteoclasts are well 

documented for their role in myeloma cell promotion in the bone marrow 

microenvironment. The potential role of mutated MFGE8 in myeloma should be 

further examined. 

CCDC113 (Coiled-Coil Domain-Containing Protein) gene also harboured a 

missense mutation in VDR cell line involving an alanine to threonine 

substitution. CCDC113 appears to play a role in cilia formation and does not 

appear to play a role in cancer pathogenesis or in multiple myeloma. 

FAM59A (GRB2 associated, regulator of Erk/MAPK1, or GAREM) gene was found 

to have a mutation in VDR that involved a cysteine to glycine substitution. 

FAM59A gene encodes a protein that functions in the epidermal growth factor 

receptor (EGFR) pathway. The EGFR pathway is known to regulate normal cell 

proliferation but also has been implicated in the development of many types of 

malignancies. The protein product of FAM59A promotes signalling of the 

MAPK/ERK (mitogen-activated protein kinases/extracellular signal related 

kinases) pathway.[175] The MAPK/ERK pathway allows signalling from the cell 

surface via a cell surface receptor that is transmitted to the DNA of the cell 

nucleus. Essentially a molecule binds a receptor on the cell surface and triggers a 

message to be sent to the DNA that results in the expression of a protein, causing 
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an alteration in the cell, such as cell division. If one of the proteins in 

this pathway contains a mutation then the message being transferred to the DNA 

can become fixed in an “on” or alternatively “off” state, and this step is 

sometimes an initiation step in cancer development. Interestingly, in our 

proteomic analysis of MM.1R plus bortezomib vs. VDR plus bortezomib 

treatment, we found a number of proteins that were suppressed in bortezomib-

treated VDR compared to bortezomib-treated MM.1R (figure 3.4.2.1) suggesting 

that the MAP-kinase signalling pathway is perturbed between the two cell lines 

after they have been treated with bortezomib. Further studies are required to 

determine whether or not the mutation of FAM59A/ GAREM gene contributes to 

bortezomib resistance in VDR, hypothetically by altering the EGFR and/or MAP-

kinase signally pathway in VDR cells. 

ATP5J (ATP Synthase, H+ Transporting, Mitochondrial Fo Complex, Subunit F6) 

gene also harboured a mutation in VDR cell line that was not present in MM.1R. 

This involved a point mutation, with the substitution of a guanine for an alanine 

at position g.27102074 in chromosome 21. The amino acid substitution involved 

a serine to phenylalanine exchange. ATP5J gene is known to function as a subunit 

of a complex structure (the mitochondrial ATP synthase Fo complex) that is 

responsible for synthesis of ATP. A recent study of the STAT (Signal Transducer 

and Activator of Transcription) pathway, which is known for its role in the 

pathogenesis of many haematopoietic malignancies, revealed ATP5J is one of a 

number of STAT-p53 target genes with altered platelet expression in patients 

with myeloproliferative disorders compared to platelets from healthy 

donors.[176] This study concluded that these target genes, including ATP5J, via 

recruitment of p53, could represent a novel molecular means of abnormal 

transcription in haematological cancers. Again, it is unclear if the ATP5J mutation 

in VDR cell line could also alter STAT-p53 signalling, however this could be 

considered in future studies.  

4.2.3 Deletion in ABCA7 gene identified in VDR cell line 

While no insertions were identified in VDR compared to MM.1R, a deletion in 

ABCA7 gene was identified in VDR cell line that was not present in MM.1R (table 
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3.2.3.1). The ABCA7 gene belongs to a superfamily of ABC (ATP-binding cassette) 

transporters. The protein products of ABC genes as outlined in the results 

section 3.2.3 are responsible for transporting numerous substances across cell 

membranes (both intra- and extra-cellularly).  

There are 7 ABC subfamilies, of which ABCA7 belongs to the ABC1 subfamily. 

The ABCA7 protein is expressed at highest levels in peripheral leucocytes, 

thymus gland, bone marrow and splenic tissue. Kaminski et al first described 

ABCA7 in 2000 when its role in lipid transport across macrophage membranes 

was elucidated.[112] 

In 2012 Meurs et al investigated the effect of macrophage ABCA7 knockdown in 

mice to determine its role in atherosclerosis, given its known involvement in 

lipid transport. While they did not find a correlation between ABCA7 knockdown 

and atherosclerosis in the mice, they revealed that concomitant knockdown of 

ABCA7 and ABCA1 (the promoter of initiating step in cholesterol transport) 

resulted in massive splenomegaly due to cellular fat accumulation, down-

regulation of number of  CD3+ T cells, and promoted erythropoietic regulators. 

Their data suggested that ABCA7 might be involved in splenic proliferation of T 

cells and erythrocytes.[113] 

In relation to its potential role in cancer pathogenesis, in a cohort of 51 patients 

with colorectal cancer, a correlation between reduced transcript levels of ABCA7 

gene and a reduction in disease free interval following treatment has been 

established (p=0.033, log rank test).[114] However neither ABCA7 gene down-

regulation nor deletion in this gene have been implicated in haematological 

malignancy in the in vivo setting to date.  

In conclusion, it may be worthwhile examining CD138-positive cells in multiple 

myeloma patients for deletions in ABCA7 gene and suppressed transcript levels 

as, in the in vitro setting in VDR, deletion in ABCA7 is associated with bortezomib 

resistance, and one could hypothesise that low transcript levels may also 

associated with a shorter disease-free interval in myeloma, similar to what has 

been observed in colorectal cancer. 
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4.2.4 In vitro and in vivo significance of mutPSMB5 identified in VDR 

Of the 28 SNVs identified in VDR cell line by whole exome sequencing, a gene 

mutation was noted in the PSMB5 gene involving a threonine to alanine 

substitution at position 80 on exon 2 (figure 3.2.4.1). Initially, this gene mutation 

was reported by COSMIC database as a “novel” mutation, however it 

subsequently transpired that this mutation has been previously described in a 

bortezomib-resistant leukaemic cell line model.[64] The reason for this false call 

as a “novel” mutation was that when this mutation was published in the 

literature, the cleaved version of PSMB5 was documented, rather than the 

complete gene, therefore mutPSMB5 in VDR was called as “novel” by COSMIC 

rather than known. All SNVs detected by whole exome sequencing were 

reviewed in collaboration with CCGD core facility to ensure all other mutations 

documented as “novel” were truly novel. No further SNVs reported in the list 

generated by WES required revision of terminology in terms of their novelty or 

lack thereof. 3D in silico modelling of the PSMB5 mutation identified by Franke et 

al in their leukaemic cell line model was shown to alter the bortezomib-PSMB5 

binding pocket.[64]  

We thus next undertook lentiviral infection of mutPSMB5 into bortezomib-

sensitive cell lines. We initially attempted to over-express mutPSMB5 in MM.1S 

and MM.1R cell lines, given these are the parental and grand-parental cell lines 

respectively of VDR. However these cells were remarkably sensitive to 

blasticidin, which was used to select the clone infected with muPSMB5 lentivirus. 

Also, given the semi-adherent nature of these cells, difficulty with lentiviral 

infection was also thought to play a role in poor infection rates in these cell lines 

given the poor cell-to-lentivirus contact of the non-adherent cells.  

 Instead KMS11 was infected with mutPSMB5 to ascertain if over-expression of 

mutPSMB5 in KMS11 rendered these cells resistant to bortezomib. We observed 

a degree of reduction in sensitivity of KMS11 cells infected with wtPSMB5 to 

bortezomib. However an even greater degree of reduction in sensitivity to 

bortezomib was observed when KMS11 was infected with mutPSMB5 (figure 

3.2.5.1). The latter finding suggests that mutPSMB5 may play a role in 
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bortezomib resistance and may partially explain the resistance of VDR to 

bortezomib in the in vitro setting. 

4.3  TRANSCRIPTIONAL PROFILE OF ISOGENIC CELL LINE MODEL 

OF BORTEZOMIB RESISTANCE 

4.3.1 Introduction to gene expression profiling 

Gene expression profiling as outlined in the introduction section has lead major 

advances in deciphering the pathogenesis of cancer, allowing specific pathways 

to be targeted so that novel therapies can be developed for the treatment of a 

multitude of cancers, in addition to identifying which genes when their 

expression is altered correlate with a worse or better prognosis. We therefore 

undertook gene expression profiling of MM.1R and VDR cell lines to determine 

which genes were differentially expressed between the bortezomib-sensitive 

and bortezomib-resistant clone (section 3.3). Affymetrix oligonucleotide arrays 

were undertaken at Beth Israel Deaconess Medical Centre Core Genomics facility. 

20,724 genes were differentially expressed between MM1R and VDR cell lines. 

Genes whereby fold change between the two conditions was >1.2 and 

demonstrated a p value ≤ 0.01 were included for further studies. In total 437 

transcripts fulfilled these criteria. Of these, 353 were over-expressed in VDR 

compared to MM.1R (table 3.3.2.1). In comparison only 84 genes were down-

regulated in VDR compared to MM.1R (table 3.3.3.1). The reasoning for the 

discrepancy between number of genes up-regulated versus down-regulated is 

unclear. Genes that were over-expressed or down-regulated were analysed by 

DAVID functional annotation tool to determine which pathways were implicated 

in groups of transcripts that were differentially expressed.  

4.3.2 Pathways associated with genes over-expressed in VDR compared to 

MM.1R 

Pathway analysis via DAVID functional annotation tool revealed “cellular 

apoptosis” as a specific pathway in which 4 transcripts up-regulated in VDR play 

a role. These genes include CFLAR, CASP8, CASP10, and NFKBIA (figure 3.3.2.1). 

NF-kappaB proteins are involved in immune responses, cell proliferation and 

cellular apoptosis in normal cells. NF-kappaB itself is well documented for its 
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role in multiple myeloma pathogenesis in particular by protecting malignant 

plasma cells from apoptosis and promoting myeloma cell proliferation. One 

suggested mechanisms of action of the proteasome inhibitor bortezomib is 

through the NF-κB/IκB complex by hindering degradation of IκBα and thus 

augmenting myeloma cell apoptosis.[177] I-kappa-B-alpha, the gene product of 

NFKBIA, is known to bind NF-kappaB, which prevents activation of NF-kappaB 

and suppresses apoptosis in B-cell neoplasms. It is not clear why caspase 8 

(CASP8) and caspase 10 (CASP10) are also concomitantly upregulated in VDR, as 

this suggests a greater degree of apoptosis in VDR compared to MM.1R. CFLAR 

(CASP8 And FADD-Like Apoptosis Regulator, or c-FLIP) gene is also upregulated 

in VDR compared to MM.1R and also involved in the apoptosis pathway. CFLAR 

(also known as c-FLIP) was recently found to play a pertinent role in acute 

promyelocytic leukaemia, whereby PML–retinoic acid receptor α (PMLRARα) 

joins with Fas and inhibits Fas-associated apoptosis by generating an inhibitory 

complex of apoptosis with c-FLIP (i.e. CFLAR).[178] C-FLIP (CFLAR) has been 

shown to inhibit caspase-8 and promote cell survival,[179] but has also been 

shown to activate caspase-8 to induce cellular apoptosis.[180] In VDR, one could 

hypothesise that c-FLIP plays a role in stabilising caspase-8 and promoting VDR 

survival. Further studies are warranted to determine the role of these genes in 

multiple myeloma, and whether or not they contribute to drug resistance to 

bortezomib in vivo. 

4.3.3 Pathways associated with genes down-regulated in VDR compared 

to MM.1R 

Transcripts that were down-regulated in VDR compared to MM.1R were noted to 

participate in a number of cellular processes mainly concerned with the immune 

system for example antigen processing and presentation, immune response, T 

cell differentiation and T cell selection. In particular 2 genes, CD74 and HLA-DRA, 

were identified by DAVID functional annotation tool to be involved in “antigen 

processing and presentation”, (p=5.61E-04), (table 3.3.3.3).  

The protein product of CD74 (CD74 Molecule, Major Histocompatibility Complex, 

Class II Invariant Chain) gene is known to play a pivotal role in MCH class II 
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antigen presentation, acting as a chaperone that helps regulate the immune 

response. The protein product also acts as a receptor on the cell surface for the 

MIF (macrophage migration inhibitory factor) cytokine that promotes cell 

survival and proliferation.[181] Interestingly, PubMed search of “CD74” and 

“myeloma” revealed that a CD74 monoclonal antibody, milatuzumab, has been 

developed and has recently completed phase 1 clinical trials for use in relapsed 

and refractory multiple myeloma. The novel agent was well tolerated, and while 

no tangible responses (measured by criteria of European Group for Blood and 

Marrow Transplantation) were observed, disease stabilisation was observed in 

26% of patients, suggesting its role for use in refractory myeloma, in particular 

in combination with other therapies.[182] In VDR cell line, CD74 was down-

regulated suggesting that perhaps CD74 expression is lost later on in the disease 

process by the time resistant clones have evolved.  Perhaps this is why no 

quantifiable response was detected in the aforementioned phase 1 clinical trial, 

as perhaps malignant plasma cells later in the disease potentially loose CD74 

expression. It is not clear why it would be beneficial to malignant clones to loose 

a cell surface marker that promotes cell survival and proliferation, presumably 

later in the disease alternative means of survival are at play. While CD74 does 

not appear to be associated with bortezomib resistance, it appears to be over-

expressed in MM.1R clone compared to VDR, suggesting perhaps that 

milatuzumab should preferentially be utilised in newly diagnosed myeloma. 

 

4.3.4 shRNA knockdown studies of genes up-regulated in VDR 

A number of specific genes were selected for a shRNA knockdown screen, to 

determine which genes, following their shRNA knockdown, might resensitise 

VDR to bortezomib. This included the following: (i) transcripts over-expressed in 

VDR with concordant up-regulation at the protein level in VDR (as identified by 

label-free mass spectrometry), (ii) transcripts with > 2-fold over-expression in 

VDR vs. MM.1R, (iii) transcripts whereby chemical inhibitors are currently 

commercially available for the molecular product of these transcripts, and (iv) a 

number of transcripts for which shRNAs were available in the laboratory (table 
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3.3.4.1). All genes chosen were selected from the complete list of genes up-

regulated in VDR vs. MM.1R where fold change >1.2 and p value ≤ 0.01. Of 27 

genes investigated in the shRNA screen, 11 genes were found, following shRNA 

knockdown and subsequent treatment with bortezomib (IC20), to result in >40% 

cell death of VDR cells compared to control hairpins. These included PSMB5, 

ALDH1L2, FN1, PIK3CG, PSME1, BCL2L1, SKAP1, TINF2, ALOX5AP, CEP128 and 

CX3CR1 (figure 3.3.5.1). A number of these targets will be discussed in more 

detail including PIK3CG, BCL2L1 and PSMB5.  

4.3.4.1 Effect of shRNA knockdown of PIK3CG on VDR cells 

Following shRNA knockdown of PIK3CG, in 3 of 5 hairpins used, we observed 

resensitisation of VDR to bortezomib. Phosphatidylinositide 3-kinase (PI3K) 

signalling in recent years has been well documented for its role in multiple 

myeloma pathogenesis by promoting cell growth, survival and migration, and 

thus multiple PI3K inhibitors to various PI3K isoforms have been developed. 

CAY10505 has been developed as a specific inhibitor of PIK3CG. However a 

recent study revealed PIK3CA as the most successful PI3K target for inhibition in 

order to induce maximum cell death in myeloma cell lines, for which an inhibitor 

is also available.[183] However bortezomib-refractory cell lines were not used in 

this study, therefore perhaps the PIK3CG isoform holds greater importance later 

in the disease process. Our data suggest a role for PIK3CG inhibitor CAY10505 in 

combination with bortezomib in bortezomib-refractory myeloma, however 

further studies are warranted to validate this hypothesis. 

4.3.4.2 shRNA knockdown of BCL2L1 resensitises VDR to bortezomib 

BCL2L1 (Bcl2-Like 1) gene, following its shRNA knockdown, also resensitised 

VDR to bortezomib. The protein generated by BCL2L1 forms part of the Bcl2 

family of proteins. BCL2L1 in known to be a potent inhibitor of cell death by 

inhibiting caspase activation. A very recent study examining the gene expression 

profile of various stages of myeloma development (i.e. MGUS to SMM to MM) 

revealed BCL2L1 as a target gene upregulated on progression from MGUS to 

either smouldering myeloma or multiple myeloma.[184] Two small molecule 

inhibitors of BCL2L1, that also inhibit Bcl2, have been documented for their 

relative potencies in preclinical models of myeloma in vitro and in vivo. These 



231 

include ABT-737 documented for its efficacy in cell line models in vitro,[185] and 

gossypol acetate, a naturally occurring compound extracted from the cotton 

plant, documented for its potency both in vitro and in vivo in the pre-clinical 

setting. [186]  

 

4.3.4.3 shRNA knockdown of PSMB5 resensitises VDR to bortezomib 

Given that PSMB5 was found in our studies to be over-expressed at the 

transcript level (table 3.3.2.1), protein level (table 3.4.2.1), and harbours a 

genetic mutation (table 3.2.2.1), we chose to further validate PSMB5 knockdown 

and subsequent resensitisation of VDR cells to bortezomib. First we 

demonstrated successful shRNA knockdown of PSMB5 in MM.1R and VDR by 

immunoblot (figure 3.3.6.1). Secondly, we demonstrated that shRNA knockdown 

of PSMB5 and subsequent treatment of VDR cells (used at even lower 

concentrations of bortezomib compared to initial screen: 50nM vs. 20-40nM), 

resulted in significant resensitisation of VDR to bortezomib (figure 3.3.6.2b). 

shRNA knockdown of PSMB5 in MM.1R did not alter the sensitivity of MM.1R 

cells to bortezomib (figure 3.3.6.2a). 

Our validation studies were somewhat limited by the technical challenge of 

shRNA knockdown of semi-adherent cell lines, which when not adherent to the 

surface of the tissue culture flask, prove to be much more difficult to successfully 

infect with lentivirus, and subsequent selection with blasticidin initially resulted 

in cell death of almost all cells. We overcame this difficulty by centrifuging the 

tissue culture plates following infection with lentivirus for 30 minutes post-

infection, to allow both virus and cells to adhere to the base of the plates.  

Our data clearly indicate the potent role of PSMB5 in bortezomib resistance in 

the in vitro setting. Perhaps an alternative inhibitor of the proteasome such as a 

PSMB8 inhibitor may be useful in the setting of over-expression and mutation of 

PMSB5 gene. 
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4.4  PROTEOMIC PROFILING OF ISOGENIC CELL LINE MODEL OF 

BORTEZOMIB RESISTANCE 

4.4.1 Introduction to proteomic profiling in MM.1R and VDR 

We examined the proteomic profiles of the isogenic cell lines MM.1R and VDR, in 

addition to investigating the proteins differentially expressed following 

treatment of each cell line with bortezomib. Label-free mass spectrometry has 

been developed to determine the proteins differentially expressed in cell lines, 

tissue culture supernatant, solid tumours, cell lines of haematological 

malignancies and tissues derived from human samples including serum, to allow 

us to gain a greater understanding of cancer pathogenesis at the molecular level. 

Our group in particular have recently published on the use of label-free mass 

spectrometry in identifying biomarkers predicting response to thalidomide-

based therapy in multiple myeloma patients.[117] We identified 106 proteins 

over-expressed (table 3.4.2.1) and 132 proteins down-regulated (table 3.4.3.1) in 

VDR compared to MM.1R. 

4.4.2 Protein expression in VDR compared to MM.1R 

4.4.2.1 CCL3 is over-expressed in VDR vs. MM.1R at the protein level 

One protein of particular interest, CCL3, demonstrated a 22-fold higher 

expression level in VDR compared to MM.1R. CCL3/MIP1-α (C-C motif ligand 3/ 

macrophage inflammatory protein 1-alpha) was over-expressed in VDR 

compared to MM.1R with a 22-fold change (p=0.013). CCL3 has been well 

documented previously in its role as a stimulator of osteoclastogenesis, 

inhibition of osteoblastogenesis, and thus contribution to myelomatous bone 

disease.[85, 120] This protein is highly expressed in myeloma cell lines and an 

inhibitor of CLL1 through which CCL3 signals is currently in pre-clinical 

investigation and has shown promising anti-myelomatous and anti-osteolytic 

effects in a MM in vivo mouse model.[121] CCL3 is markedly over-expressed in 

bortezomib-resistant VDR, suggesting a role for this inhibitor in relapsed and 

refractory myeloma, if CLL3 is found to be over-expressed in malignant clones of 

multiple myeloma patients. Further studies could include examining the 

sensitivity of VDR cells to bortezomib in the presence of a CCL1 inhibitor.  



233 

 

4.4.2.2 The heat shock proteins are over-expressed in VDR vs. MM.1R 

A group of proteins identified by String software revealed the heat shock 

proteins as a particular group that are over-expressed in VDR compared to 

MM.1R (figure 3.4.2.2.1). The heat shock proteins are known to be expressed in 

response to external stimuli such as drugs and have been well documented for 

their role in multiple myeloma pathogenesis. Indeed a specific heat shock protein 

inhibitor of HSP90AA1 has undergone phase 1 clinical trials and shows 

promising results for its use in relapsed and refractory myeloma. [122-125] While 

HSP90AA1 was not over-expressed at a statistically significant level in VDR 

compared to MM.1R, over-expression of HSPE1, HSPD1 and HSPD5, all of which 

interact with HSP90AA1, are over-expressed in VDR compared to MM.1R, 

suggesting a potential role for HSP90 inhibitors in bortezomib-refractory 

multiple myeloma. 

4.4.2.3 Aminoacyl-tRNA biosynthesis-associated molecules are down-

regulated in VDR compared to MM.1R. 

Aminoacyl-tRNA is an amino acid bound to transfer RNA that is delivered to the 

ribosome for integration of the amino acid into a polypeptide during protein 

synthesis. Three proteins that were found to be down-regulated in VDR 

compared to MM.1R were found to be involved in aminoacyl-tRNA biosynthesis, 

and these included IARS, RARS and LARS (figure 3.4.3.1). PubMed search of 

“IARS”/ “RARS”/ “LARS” in combination with the term “myeloma” did not reveal 

any associations of these proteins with myeloma pathogenesis. However a large 

study involving 1064 cases of patients with breast cancer and 1073 cancer-free 

controls revealed that functional polymorphisms of LARS and RARS were 

associated with a risk of developing breast cancer. In particular for RARS, the 

finding was statistically significant (OR = 1.17, 95% CI = 1.02-1.35).[187] The role 

of these proteins in the pathogenesis of myeloma and/or resistance to 

proteasome inhibitors remains to be elucidated. 
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4.4.3 Protein expression in bortezomib-treated VDR and bortezomib-

treated MM.1R  

4.4.3.1 Proteasome-associated subunits are suppressed following 

bortezomib treatment in MM.1R and VDR 

Following bortezomib treatment, 212 proteins were down-regulated in MM.1R 

compared to untreated control (table 3.4.4.1.2), and in VDR 35 proteins were 

down-regulated compared to untreated controls (table 3.4.4.1.3). By comparing 

bortezomib-treated MM.1R to bortezomib-treated VDR, 109 proteins out of a 

total 323 were downregulated in bortezomib-treated-VDR compared to 

bortezomib-treated-MM.1R, of which 63 demonstrated a fold change ≥1.5 

(where p<0.05), (table 3.4.4.1.4).  

DAVID functional annotation tool revealed a number of proteins involved in the 

proteasome structure were suppressed in both bortezomib-treated MM.1R and 

bortezomib-treated VDR compared to their respective untreated controls. 

PSMD13, PSMA1, PSMA2, PSMA3, PSMA4, PSMA5, PSMA6, PSMA7, PSMB1, 

PSMB2, PSMB5, PSMB6, PSMB8 were all found to be down-regulated in 

bortezomib-treated MM.1R compared to untreated MM.1R (table 3.4.4.1.1). 

PSMA3, PSMA4, PSMA6, PSMA5, PSMB1 and PSMA7 were down-regulated in 

bortezomib-treated VDR compared to untreated VDR (table 3.4.4.1.3). However 

PSMB5, through which bortezomib principally acts, was not down-regulated in 

bortezomib-treated VDR compared to untreated VDR control, suggesting that 

PSMB5 dysregulation is also evident at the protein level in VDR cell line. 

4.4.3.2 Proteins of the MAP-kinase signalling pathway are down-

regulated in bortezomib-treated VDR vs. bortezomib-treated 

MM.1R 

We identified 5 proteins that were down-regulated in bortezomib-treated VDR 

compared to bortezomib-treated MM.1R that are involved in the MAPK 

(mitogen-activated protein kinases) signalling pathway (figure 3.4.4.2.1). The 

MAPK pathway is well documented for its role in carcinogenesis. At baseline, the 

MAPK pathway allows transduction of a message from outside the cell to be 

transmitted into the cell nucleus by a cell surface receptor that results in a 

change in the DNA in the nucleus, such as signalling a command to cause cell 
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division. This is of particular importance in cancer pathogenesis, whereby an 

alteration in the MAPK signalling pathway causes uncontrolled cell turnover. A 

large number of compounds have been developed to inhibit the MAPK pathway 

to overcome cancer, the first of which was sorafenib which was developed for 

use in numerous cancers including hepatocellular cancer[188] and renal cell 

carcinoma.[189]  

The proteins down-regulated in bortezomib-treated VDR compared to 

bortezomib-treated MM.1R that have known involvement in the MAPK signalling 

pathway include FLNA, HSP72/HSPA6, PPP3C, MEF2C and HSP27/HSPB1. The 

most important of these targets appears to be MEF2C (Myocyte Enhancer Factor 

2C). MEF2C has been shown to regulate differentiation of monocytes preferably 

to granulocytes, and the oncogene c-Jun is a pivotal downstream modulator of 

MEF2C.[190] Furthermore, another player in the MAPK pathway, ERK5, has been 

shown to direct haematopoiesis toward the malignant monocytic clone in acute 

myeloid leukaemia (AML), of which MEF2C is the direct downstream target, and 

this group have suggested further investigation of MEF2C as a target molecule 

for treatment in AML.[191] MEF2C is downregulated in bortezomib-treated VDR 

compared to bortezomib-treated MM.1R (2.60 fold change, p=4.03E-04). MEF2C 

was not identified as differentially expressed in VDR compared to MM.1R at 

baseline. It is unclear why MEF2C is down-regulated in bortezomib-treated VDR 

compared to bortezomib-treated MM.1R, a, if it is thought to act as an oncogene, 

then one would expect it to be upregulated. Further work may help outline the 

role of MEF2C in the pathogenesis of haematological malignancies.  

4.4.3.3 CCL3 is up-regulated in bortezomib-treated VDR compared to 

bortezomib-treated MM.1R 

We found 215 proteins up-regulated in bortezomib-treated VDR compared to 

bortezomib-treated MM.1R, of which 78 proteins had a fold change ≥2.  

Again CCL3 was significantly over-expressed in bortezomib-treated VDR 

compared to bortezomib-treated MM.1R (fold change 3.51, p=0.039), (we 

previously observed CCL3 at baseline is over-expressed in VDR compared to 

MM.1R, section 4.4.2.1). As bortezomib treatment does not appear to suppress 

CCL3 protein levels, this again poses the question as to whether or not the 
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addition of a CCL1 inhibitor (through which CCL3 signals) may have the potential 

to overcome bortezomib resistance in VDR.  

4.4.3.4 EIF5A is up-regulated in bortezomib-treated VDR compared to 

bortezomib-treated MM.1R 

EIF5A (eukaryotic initiation factor 5A) was over-expressed in bortezomib-

treated VDR compared to bortezomib-treated MM.1R (24.9 fold change, p=0.008, 

table 3.4.5.1.1). EIF5A is known to be subject to post-translational modification 

to hypusine from a conserved lysine. Hypusinated EIF5A has been documented 

to be involved in cancer cell proliferation, promotion of oncogenes and 

neoplastic change in cells of the haematopoietic system. A specific nanoparticle 

inhibitor, SNSO1, has previously been developed to abrogate hypusinated EIF5A 

expression, which results in concomitant NF-κB inhibition, and also 

demonstrated a significant reduction in tumour burden in two mouse models of 

multiple myeloma.[130] Not only was this protein up-regulated in bortezomib-

treated VDR compared to bortezomib-treated MM.1R, but also over-expressed in 

VDR compared to MM.1R at baseline (2.21 fold change, p=0.008, table 3.4.2.1). 

Given the over-expression of EIF5A in VDR at baseline, and its persistent over-

expression despite bortezomib treatment, in comparison to these conditions in 

MM.1R respectively, one could hypothesis that in myeloma, EIF5A plays a role in 

bortezomib refractoriness. It may be worthwhile examining the potency of 

SNSO1 nanoparticle in VDR cell line for its relative toxicity to VDR cells, in 

addition to examining the expression level of EIF5A in bone marrow biopsies of 

patients with bortezomib-refractory multiple myeloma, in order to clarify its 

potential role on the treatment of bortezomib refractory myeloma in vivo. 

4.4.4 Potential significance of PSMB5 in bortezomib resistance 

Given that bortezomib specifically inhibits the proteasome through PSMB5 we 

summarise here the PSMB5 protein expression levels from all mass 

spectrometry results available in this study. PSMB5 is over-expressed 3.85-fold 

in VDR compared to MM.1R at baseline (p=4.36E-04), table 3.4.2.1). When 

MM.1R is treated with bortezomib, PSMB5 is suppressed as demonstrated by a 

4.66 reduction in fold change (p=7.47E-04), (table 3.4.4.1.2). However PSMB5 is 

suppressed to a much lesser degree in VDR following its treatment with 
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bortezomib (1.34-fold, p value is not significant). By direct comparison of 

bortezomib-treated VDR compared to bortezomib-treated MM.1R, a 13-fold 

increase in PSMB5 protein expression is observed in bortezomib-treated VDR 

compared to bortezomib-treated MM.1R (p=3.9E-05), (table 3.4.5.1.1).  

Furthermore, we previously noted PSMB5 is over-expressed also at the 

transcript level in VDR compared to MM.1R, (fold change 1.89, p=4.14E-04), 

(table 3.3.2.1); and shRNA knockdown of PSMB5 partially resensitised VDR to 

bortezomib (figure 3.3.6.2). PSMB5 gene in VDR cell line harbours a genetic 

mutation that has been previously documented for its potential role in altering 

the bortezomib-binding pocket in PSMB5 (section 3.2.4), and introduction of this 

mutant PSMB5 into bortezomib-sensitive KMS11 cells reduces the sensitivity of 

KMS11 to bortezomib (figure 3.2.5.1).  

In conclusion, PSMB5 appears to be over-expressed in VDR compared to MM.1R 

at baseline at the transcript and protein level. Bortezomib treatment does not 

appear to suppress PSMB5 protein in VDR compared to MM.1R. One could 

hypothesise that these findings are due to the mutation present in VDR that is 

absent in MM.1R. Interestingly, in our in vivo study the degree of refractoriness 

to bortezomib observed in VDR did not mirror the in vitro level of refractoriness, 

(i.e. no significant reduction in tumour burden was identified in VDR-mice 

between vehicle, carfilzomib and bortezomib treatments (figure 3.1.7.1), and 

overall survival in VDR mice treated with both bortezomib and carfilzomib was 

significantly greater than vehicle-treated VDR-mice (figure 3.1.7.3)).  

The in vivo study suggests that mechanisms of bortezomib-refractoriness 

observed in vitro can potentially be overcome in the in vivo setting, and perhaps 

this is why PSMB5 mutations have not been found to be significant in patients 

with multiple myeloma. One possible mechanism to explain this is the fact that 

immunoproteasome subunit PSMB8 is expressed in the in vivo setting in patients 

with multiple myeloma, therefore even if PSMB5 is over-expressed and mutated, 

then perhaps bortezomib can inhibit the proteasome through PSMB8. This 

hypothesis requires clarification by further studies examining specific 
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proteasome subunit expression levels in VDR cells following bortezomib 

treatment. 
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4.5  THE ROLE OF THE BONE MARROW MICROENVIRONMENT 

AND ITS FURTHER CONTRIBUTION TO DRUG RESISTANCE 

4.5.1 Introduction 

As previously outlined, the bone marrow microenvironment plays a major role in 

multiple myeloma pathogenesis by either direct or indirect interactions between 

bone marrow stromal cells and malignant plasma cells. One major blockade to 

advances in the study of multiple myeloma pathogenesis and drug resistance 

mechanisms is the difficulty of laboratory-based culturing of malignant plasma 

cells that have been extracted from the bone marrow of patients with multiple 

myeloma. Outside their natural bone marrow microenvironment they quickly 

cease to exist. Therefore in our cell line model we chose to mimic the effects of 

the local bone marrow microenvironment by examining the sensitivity of VDR 

cells to a number of therapies following their co-culture with HS-5 stromal cells. 

We furthermore explored the role of osteoblasts in multiple myeloma 

pathogenesis and drug resistance. Finally we examined the effect of interferon-

gamma, a cytokine secreted by the bone marrow microenvironment, on the 

sensitivity of VDR to bortezomib. We found that PSMB8 was upregulated by 

interferon-gamma in VDR cell line, with reciprocal depression of PSMB5. 

Furthermore we established that PSMB8 is expressed in the CD138-positive cells 

in bone marrow biopsies of multiple myeloma patients, supporting the role for 

the use of PSMB8 inhibitors in the treatment of newly diagnosed and potentially 

bortezomib-refractory multiple myeloma. 

  

4.5.2 VDR is subject to HS-5 stromal cell–induced drug resistance. 

 

We examined the sensitivity of MM.1R and VDR to conventional and novel 

therapies in the presence versus absence of HS-5 stromal cells. We tested the 

sensitivity of each cell line to the proteasome inhibitors bortezomib and 

carfilzomib, the FDA-approved HDAC inhibitor vorinostat and the preclinical 

BET2-bromodomain inhibitor JQ1, in the presence and absence of HS-5 

accessory cells. 
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We observed no change in the sensitivity of MM.1R to bortezomib when in co-

culture with HS-5 stromal cells. VDR again retained the same degree of 

resistance to bortezomib following its co-culture with HS-5 cells (figure 3.5.2.1). 

Unusually MM.1R cells appeared to display reduced sensitivity to carfilzomib 

following their co-culture with HS-5 cells and the reason for this remains 

unclear. However VDR cells remained sensitive to carfilzomib despite their co-

culture with HS-5 cells (figure 3.5.2.2).  

 

VDR cells were found to be resistant to vorinostat and MLN4924 when co-

cultured in the presence of HS-5 cells, (figure 3.5.3.1). In the in vivo setting 

vorinostat has proven activity in combination with bortezomib in phase 1 clinical 

trials of patients with relapsed and refractory myeloma.[15] Therefore we 

combined vorinostat and bortezomib to determine if the duo could overcome 

HS-5 induced resistance in VDR. Combination of bortezomib with vorinostat was 

not sufficient to overcome the resistance induced by HS-5 cells. Similarly 

combination of MLN4924 with bortezomib did not overcome stromal cell-

induced resistance (figure 3.5.3.2). These data emphasise the potent role of the 

bone marrow microenvironment in multiple myeloma pathogenesis, by adding 

an additional means of protection to an already drug resistant clone in 

supporting their survival. 

 

4.5.3 Osteoblasts promote myeloma cell proliferation and contribute to 

drug resistance  

 

We next investigated the effect of osteoblasts on the MM cell lines MM.1S, MM.1R 

and VDR to ascertain if the stromal-induced effects were specific to HS-5 cells 

alone. Historically osteoblasts have been thought play a protective role in the 

patient with multiple myeloma because osteoclasts, which act in direct 

opposition to osteoblasts, are highly supportive of myeloma cell growth and 

proliferation and survival, in addition to contributing to myelomatous bone 

disease. Osteoclasts result in bone breakdown and lytic lesions in myelomatous 

bone in comparison to osteoblasts which cause bone remodelling. Indeed an 
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inhibitor of activin A, a molecule which is secreted by myeloma cells to cause 

inhibition of osteoblasts, has been documented for its benefit in a preclinical 

model of myeloma by restoring osteoblast proliferation, improving bony disease 

and preventing myeloma cell growth in an in vitro model.[84] However very 

recently the role of osteoblasts in contributing to myeloma cell growth and 

proliferation has emerged. Orlowski et al recently outlined how malignant 

plasma cells appear to reside in osteoblastic-rich niches in the bone marrow 

microenvironment. Furthermore they found that in these osteoblast alcoves the 

malignant plasma cells gain the ability to form stem-like cells and are 

exceptionally tumorigenic and display resistance to a number of therapies.[192] 

We further studied the role of osteoblasts in myeloma cell lines by examining 

their effect on myeloma cell proliferation and alterations in drug sensitivity 

when these cell lines were in co-culture with an immortalized osteoblast-like cell 

line hFob.1.19. 

 

We tested 8 myeloma cell lines for their proliferation rate when in co-culture 

with hFob cells including MM.1S, MM.1R, VDR, OPM2, KMS34, RPMI8226, 

OCImy5 and Dox40. Interestingly the bortezomib resistant cell line VDR 

displayed a marked increase in cell viability when co-cultured in the presence of 

hFob cell line compared to all other cell lines tested (figure 3.5.4.1). We 

examined the effect of osteoblasts on the drug sensitivity of MM.1S, MM.1R and 

VDR cell lines to a number of therapies. Interestingly MM.1S appeared to be the 

cell line that was most susceptible to changes in drug sensitivity when co-

cultured with hFob cells, and this was observed in treatments with 

dexamethasone, doxorubicin and vorinostat. In addition resistance to 

doxorubicin was evident in MM.1R and VDR cells in co-culture with hFob (figure 

3.5.4.2).  

 

Since MM.1S appeared to be subject to hFob-induced drug resistance to a 

number of therapies, we further examined the potential mechanisms involved 

using MM.1S cell line. Transwell system was used to determine whether or not 

the observed resistance in MM.1S required direct cell-to-cell contact. We 

observed that direct cell-to-cell contact appeared to be necessary for osteoblast-
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induced resistance to vorinostat in MM.1S, but was not necessary for osteoblast-

induced resistance to doxorubicin in MM.1S, as resistance to doxorubicin was 

observed even when the cells were not in direct contact (figure 3.5.5.1). The 

reasoning for this difference has not been clarified but presumably is due to the 

fact that the osteoblast-induced resistance to doxorubicin is solely cytokine 

mediated, whereas osteoblast-induced resistance to vorinostat is likely by 

adhesion molecules between the two entities signalling resistance mechanisms.  

 

Finally we hypothesized that perhaps the resistance observed that was induced 

by osteoblasts was due to a cell volume effect. The osteoblasts, which are much 

larger cells with a 5 times higher protein content we hypothesized might account 

for the resistance observed (figure 3.5.6.1). Therefore we co-cultured MM.1S cell 

with luciferase-negative MM cells or hFob cell in a 5:1 ratio respectively to 

determine whether or not the resistance observed was merely due to a mass 

effect. The resistance observed to doxorubicin or vorinostat in MM.1S-mcl in co-

culture with hFob was not replicated when MM.1S-mcl cells were co-cultured 

with luciferase-negative cells, suggesting that this phenomenon is not a mass 

related effect secondary to the size of the hFob cells (figure 3.5.6.2). 

 

It is however interesting to note that in MM.1S, MM.1R and VDR, no resistance to 

the novel therapies bortezomib, lenalidomide or preclinical agent JQ1 was 

observed. With regards to lenalidomide, this IMiD has recently been documented 

for its ability to down-regulate osteoblast activity in the in vitro setting, by 

inducing osteoblast inhibitors and suppressing promoters of osteoblast 

differentiation. This may explain why osteoblast-induced resistance is not 

observed with lenalidomide treatment.[193] In contrast to this, bortezomib is 

known for its bone anabolic effects. Kaiser et al have shown that bortezomib 

stimulates differentiation of osteoblasts by inhibiting the breakdown of the 

vitamin D receptor and thus upregulating differentiation of osteoblasts.[194] 

Therefore it is not clear why in our bortezomib treatments osteoblast-induced 

resistance is not observed. JQ1 has not yet been documented for its effects on 

osteoblasts.  

 



243 

These novel findings present somewhat of a clinical conundrum for future 

treatment of multiple myeloma. Lytic bone lesions contribute greatly to 

morbidity and mortality in patients with multiple myeloma by causing severe 

bone pain, pathological fractures, even paralysis when vertebral fractures occur. 

Recent efforts have heavily focused on upregulation of osteoblastogenesis in 

multiple myeloma in order to promote bone strength and prevent such bone 

lesions and reduce morbidity and mortality in multiple myeloma patients. The 

evidence to date for osteoblasts protective effect on malignant plasma cells 

reflects our findings in the in vitro setting only and further studies are needed to 

confirm our findings. However if osteoblastogenesis is be found to contribute to 

myeloma cell survival and/or drug resistance in the in vivo setting the role for 

inducers of osteoblastogenesis in multiple myeloma may need to be re-

examined.  

 

4.5.4 Role of the immunoproteasome and interferon-gamma in 

bortezomib resistance in vitro 

 

For reasons outlined in results section 3.5.7 above, MM.1R and VDR cells were 

pre-treated with interferon-gamma for 48 hours and subsequently treated with 

bortezomib for 24 hours (0-80nM), and compared to a non-pre-treated control. 

No change in sensitivity of MM.1R to bortezomib was observed with interferon-

gamma pre-treatment. However in VDR pre-treatment with interferon-gamma 

resulted in increased sensitivity to bortezomib at concentrations of 40nM (mean 

difference=18.24% relative cell viability vs. no interferon-gamma pre-treatment 

control; p=0.03) and 80nM (mean difference=12.19% relative cell viability vs. no 

interferon-gamma pre-treatment control; p=0.01), (figure 3.5.7.1). As we had 

hypothesized that interferon-gamma pre-treatment would up-regulate PSMB8 

and down-regulate PSMB5 we next tested our hypothesis by examining to 

protein expression level of both proteasome subunits by western blot. Lysates 

from MM1R or VDR for the following conditions were examined for their 

expression levels of PSMB5, PSMB8 and poly-ubiquitinated proteins:  
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1. Control  

2. Interferon-gamma alone  

3. Bortezomib alone  

4. Interferon-gamma pre-treatment and subsequent bortezomib treatment. 

 

In both MM.1R and VDR, interferon-gamma-treated conditions (2/4 above) 

resulted in down-regulation of PSMB5 and up-regulation of PSMB8, as 

anticipated. In MM.1R, both bortezomib treatment alone (3) and interferon-

gamma pre-treatment with subsequent bortezomib treatment resulted in 

marked accumulation of polyubiquitinated proteins. In VDR, interferon-gamma 

alone (2) or bortezomib alone (3) did not result in accumulation of 

polyubiquitinated proteins. However pre-treatment of VDR with interferon-

gamma and subsequent bortezomib treatment (4) did result in an accumulation 

of polyubiquitinated proteins in VDR (figure 3.5.7.2). In summary, this data 

demonstrated that pre-treatment of VDR with interferon-gamma resulted in 

down-regulation of PSMB5, up-regulation of PSMB8, with resultant proteasome 

inhibition as suggested by accumulation of polyubiquitinated proteins.  

 

Further review of the literature revealed 2 important studies relating to this 

research. Firstly, in 2005, Altun et al demonstrated that myeloma cell lines 

contain both constitutive and immunoproteasome subunits. At baseline, MM cell 

lines contain more constitutive than immunoproteasome subunits, however the 

latter is up-regulated by interferon-gamma. By 2-dimensional gel 

electrophoresis the active catalytic subunits for β5, β1 and β2 subunits, or β5i, 

β1i and β2i were examined following their treatment with bortezomib with and 

without interferon-gamma pre-treatment. They found that pre-treatment with 

interferon gamma up-regulated the β5i subunit (i.e. PSMB8), and that 

bortezomib had the ability to inhibit its catalytic activity. Therefore in VDR cell 

line, PSMB8 up-regulation by interferon-gamma may allow bortezomib to inhibit 

the proteasome via β5i inhibition and this may explain why we see accumulation 

of polyubiquitinated proteins in bortezomib-treated VDR when pre-treated with 

interferon-gamma.[55] 
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Secondly, in 2008, another group have previously suggested a role for use of 

interferon-gamma to ameliorate the effects of bortezomib in preclinical models 

of B cell neoplasms including Burkitt’s lymphoma, mantle cell lymphoma and 

myeloma. They found that pre-treatment of the B cell lymphoma cell line 

KARPAS422 and 5 out of 6 bortezomib-sensitive B cell lines tested (including 

RPMI8226 myeloma cell line) markedly increased the sensitivity of these cell 

lines to bortezomib. The plasmacytoma cell line U266 demonstrated the greatest 

increase in sensitivity to bortezomib when pre-treated with interferon-gamma. 

These findings may be mediated at least in part by increased 

immunoproteasome assembly as demonstrated by RT-PCR subunit expression 

levels following interferon-gamma pre-treatment.[56] Interferon-gamma however 

is also known to alter transcription of a large number of genes including caspase-

8 that promotes apoptosis,[57] and Mitsiades et al have also demonstrated 

caspase-8 up-regulation by bortezomib.[40] Therefore we cannot assume that the 

effects of interferon-gamma are solely mediated by immunoproteasome subunit 

up-regulation. However our data and the data of others both support a role for 

interferon-gamma treatment with bortezomib to augment it potency, and in 

particular our study supports a role for interferon-gamma pre-treatment in the 

setting of bortezomib-refractory myeloma.  

 

4.5.5 Role of the immunoproteasome in the in vivo setting in bortezomib-

refractory myeloma 

 

We showed that PSMB5 was over-expressed in bortezomib-resistant VDR and by 

up-regulation of PSMB8 by interferon-gamma, we could increase the degree of 

accumulation of polyubiquitinated proteins in VDR and, to a certain degree, 

increase the sensitivity of VDR to bortezomib. However clinical samples of 

multiple myeloma patients have not been previously examined for their 

proteasome subunit expression levels, therefore we undertook 

immunohistochemistry on bone marrow trephines of patients with bortezomib-

sensitive (diagnostic samples) and bortezomib-refractory (diagnostic and 
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relapsed samples) multiple myeloma to determine which proteasome subunits 

are expressed at diagnosis and at time of relapse. 

 

The following samples were analysed by immunohistochemistry for their 

expression of PSMB5 and PSMB8: 

1. Diagnostic bone marrow biopsies of 7 patients who achieved at least a very 

good partial response (VGPR) to a bortezomib-containing regimen (termed 

“diagnostic: responder”). 

2. Diagnostic bone marrow biopsies of 6 patients who subsequently were found 

to relapse following a bortezomib-based regimen (termed “diagnostic: non-

responder”). 

3. Bone marrow biopsies of 7 patients at time of relapse to a bortezomib-

containing regimen (of which 6 correlate to diagnostic samples in no. 2 above), 

(termed “relapsed: non-responder”). 

We found that PSMB5 was strongly expressed in both bortezomib-responders 

and bortezomib non-responders at time of diagnosis in all samples tested.  At 

time of relapse PSMB5 expression was positive in 5 out of 7 relapsed samples 

tested (table 3.5.8.1). PSMB8 was expressed in all 7 bortezomib-responders at 

time of diagnosis, although the expression appeared reduced compared to 

PSMB5 expression. This may be secondary to differences in the two antibodies 

used, however would fit with current knowledge that PSMB5 is highly expressed 

in myeloma cell lines, and PSMB8 is also expressed but to a lesser degree 

compared to PSMB5. Similarly PSMB8 was expressed in 5 out of 6 bortezomib-

non-responders at time of diagnosis. Interestingly, at time of relapse, PSMB8 was 

expressed in only 2 out of 7 bortezomib-non-responders (table 3.5.8.2). 

Unusually, in “sample 5 non-responder”, PSMB8 was negative at time of 

diagnosis and positive at time of relapse following a bortezomib-containing 

regimen (table 3.5.8.2).  

In summary, in bortezomib-responders, PSMB5 and PSMB8 were expressed in 

100% of samples for both subunits. In bortezomib non-responders, PSMB5 and 

PSMB8 were expressed in 100% and 83% of samples respectively at time of 
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diagnosis. At time of relapse, PSMB5 and PSMB8 were expressed in 71% and 

29% of samples respectively (table 4.5.5.1). 

 Diagnosis: 

Responder 

Diagnosis:  

Non-Responder 

Relapse:  

Non-Responder 

PSMB5 100% (7/7) 100% (6/6) 71% (5/7) 

PSMB8 100% (7/7) 83% (5/6) 29%  (2/7) 

 

Table 4.5.5.1 PSMB5 and PSMB8 expression in patients with bortezomib 

sensitive (diagnostic samples) or bortezomib resistant (diagnostic and 

relapse samples) myeloma. Figures represent the percentage and number of 

samples (in brackets) of bone marrow biopsy samples tested in which PSMB5 or 

PSMB8 expression was found to be positive by immunohistochemistry. 

 

A number of conclusions can be drawn from this study. Firstly our in vitro model 

VDR mirrors the in vivo setting of bortezomib refractory patients, in that PSMB5 

is strongly expressed, this was demonstrated at time of diagnosis and at time of 

relapse in bortezomib-refractory patients. Similarly, PSMB8 levels are reduced in 

VDR and also reduced at time of relapse in bortezomib non-responders. In VDR 

we demonstrated over-expression of PSMB5 at the protein level, have outlined 

its potential role in bortezomib resistance in vitro, and the potential to overcome 

this resistance by up-regulation of PSMB8 using interferon-gamma. Niewerth et 

al have recently published their data on induction of the immunoproteasome 

subunit β-5i using interferon-gamma with subsequent resensitisation of a 

bortezomib-resistant leukaemia cell line to bortezomib, which mirrors our 

myeloma cell line model. Their data suggests inducing the immunoproteasome 

β-5i subunit using interferon-gamma and subsequently exposing the cells to a 

PSMB8 inhibitor, ONX0914 (PR-975), in order to overcome bortezomib 

resistance. Interferon-gamma pre-treatment also resensitised bortezomib-

resistant cell lines to bortezomib, however resensitisation to the 

immunoproteasome inhibitor ONY0914 was more pronounced that that of 

bortezomib.[195] Our in vivo study confirmed that PSMB5 is over-expressed at 

time of relapse and that PSMB8 is suppressed at time of relapse in known 

bortezomib-non-responders, therefore our in vivo data support the 
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aforementioned in vitro study, and further emphasises the need for examining 

the use of interferon-gamma in conjunction with bortezomib or ONX0914 in 

patients with relapsed and refractory multiple myeloma. 

Finally, PSMB8 appears to be strongly expressed at diagnosis in both 

bortezomib-responders and bortezomib non-responders supporting the role for 

a PSMB8-specific inhibitor in vivo. Another PSMB8 inhibitor, PR-924, is now 

under investigation in the pre-clinical setting for use in multiple myeloma. PR-

924 has been documented for its efficacy in multiple myeloma in the in vitro and 

in vivo setting in a SCID-hu mouse model of plasmacytoma xenografts.[58] Our in 

vivo data support the suggestion by Singh et al to assess the efficacy of PSMB8 

inhibitors in the in vivo setting for treatment of newly diagnosed multiple 

myeloma. Finally in two of the seven bortezomib-refractory samples examined at 

time of relapse, PSMB8 was positively expressed, also supporting a role for 

PSMB8 inhibitors in relapsed and refractory disease if patients are found to 

express PSMB8. 
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CHAPTER 5. SUMMARY, CONCLUSION AND FUTURE 

WORK 

5.1  SUMMARY AND CONCLUSION 

5.1.1 Characterisation of an isogenic cell line model of bortezomib 

resistance in vitro and in vivo. 

• VDR demonstrated marked resistance to bortezomib in the in vitro setting 

compared to MM.1R, and VDR retains its resistance to dexamethasone 

similar to its parent cell line. 

• Conventional compounds such as doxorubicin and vincristine have 

comparable toxicity in VDR and parental MM1R. 

• Recently FDA-approved novel therapies such as vorinostat, lenalidomide, 

and pomalidomide are highly toxic to both MM.1R and VDR. 

• The investigational reagent JQ1 displays marked anti-tumour activity in 

VDR as well as MM.1R. 

• VDR cells are also resistant to MLN2238, a novel orally bioavailable 

compound that specifically targets the proteasome beta-5 subunit, which 

is the same active site targeted by bortezomib. 

• While VDR cells are resistant to bortezomib and MLN2238, they are 

highly sensitive to the second generation, irreversible proteasome 

inhibitor carfilzomib. 

• High-throughput screen of a database of compounds with FDA-approval 

for use in oncology demonstrated that VDR has marked sensitivity to the 

taxanes and topoisomerase-1 and -2 inhibitors. 

• Bortezomib resistance in VDR does not appear to be PGP-mediated. 

• An in vivo study examining the effect of bortezomib or carfilzomib in MM 

did not reveal a statistically significant reduction in tumour burden in 

VDR compared to vehicle mice. 

• VDR-mice displayed a statistically significant improvement in overall 

survival in both bortezomib-treated and carfilzomib-treated mice 

compared to vehicle-mice. 
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5.1.2 Whole exome sequencing of MM.1R and VDR 

 

• We performed whole exome sequencing analysis of the cell lines MM.1R 

and VDR to determine SNVs, insertions or deletions that were present in 

bortezomib resistant VDR but not bortezomib-sensitive MM.1R cell line. 

• 28 non-synonymous single nucleotide variants (SNV) were detected in VDR 

that were not present in MM.1R  

• SIFT and Polyphen predictions found 7 SNVs to be “damaging” by both 

algorithms and 6 SNVs were found to be “damaging” by either SIFT or 

Polyphen algorithms. 

• A deletion in ABCA7 gene was found in VDR but not MM.1R. 

• Reduced transcript levels of ABCA7 gene has been correlated with 

reduction of disease free interval in patients post-therapy for colorectal 

cancer. 

• However neither ABCA7 gene down-regulation nor deletion have been 

implicated in haematological malignancy in the in vivo setting to date.  

• No insertions were identified between the MM.1R and VDR comparisons. 

• A missense mutation involving a single amino acid substitution in the 

PSMB5 gene was identified in VDR at chromosomal position g.23502844 

involving a threonine to alanine substitution at position 80 of exon 2 in the 

uncleaved (propeptide) version of PSMB5 gene, with 100% allelic 

frequency of mutPSMB5 in VDR, and 100% wtPSMB5 frequency in MM.1R. 

• Introduction of mutPSMB5 via lentiviral construct into bortezomib 

sensitive cell line KMS11 rendered these cells initially bortezomib-sensitive 

cells now resistant to bortezomib. 

• Additionally, over-expression of wtPSMB5 reduced the sensitivity of KMS11 

cells to bortezomib, however to a lesser degree than mutPSMB5. 
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5.1.3 Gene expression profiles of MM.1R and VDR 

 

• 353 genes were over-expressed in VDR compared to MM.1R. In 

comparison only 84 genes were down-regulated in VDR compared to 

MM.1R. (whereby fold change >1.2, p<0.01).  

• Pathway analysis revealed “cellular apoptosis” as a specific pathway in 

which 4 transcripts up-regulated in VDR play a role. These genes include 

CFLAR, CASP8, CASP10, and NFKBIA 

• Transcripts that were down-regulated in VDR compared to MM.1R were 

noted to participate in a number of cellular processes mainly concerned 

with the immune system. 

• An shRNA screen of 27 selected target genes was undertaken to 

determine if shRNA knockdown and subsequent bortezomib treatment 

resensitised VDR cell cells to bortezomib. 11 genes were found to cause 

>40% cell death of VDR cells compared to control hairpins following 

shRNA knockdown and subsequent treatment with bortezomib 50nM. 

• PSMB5 shRNA knockdown resulted in resensitisation of VDR to 

bortezomib 50nM. We validated successful shRNA knockdown of PSMB5 

in MM.1R and VDR by immunoblot. We furthermore demonstrated that 

shRNA knockdown of PSMB5 and subsequent treatment of VDR cells 

(used at even lower concentrations of bortezomib compared to initial 

screen: 50nM vs. 20-40nM), resulted in significant resensitisation of VDR 

to bortezomib. 
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5.1.4 Proteomic profiling of MM.1R and VDR by label-free mass 

spectrometry 

• 238 proteins were differentially expressed in the MM.1R vs. VDR 

comparison, of which 106 were over-expressed and 132 down-regulated 

in VDR vs. MM.1R. 

• CCL3 has known pathogenesis in myeloma and demonstrated a 22-fold 

higher expression level in VDR compared to MM.1R.  

• DAVID functional annotation tool revealed a number of proteins over-

expressed in VDR that are involved in apoptosis, regulation of cellular 

metabolic processes, cellular homeostasis, cell cycle process and 

proteasomal ubiquitin-dependent protein catabolic process.  

• Three proteins that were found to be down-regulated in VDR compared to 

MM.1R were found to be involved in aminoacyl tRNA biosynthesis. 

• We also analysed proteins differentially expressed in MM.1R and VDR 

following bortezomib treatment, of which the majority of proteins were 

down-regulated in bortezomib-treated MM.1R.  

• By comparing bortezomib-treated MM.1R to bortezomib-treated VDR, 

109 proteins out of a total 323 were downregulated in bortezomib-

treated-VDR compared to bortezomib-treated-MM.1R.  

• 5 proteins that were down-regulated in bortezomib-treated VDR 

compared to bortezomib-treated MM.1R are involved in the MAP-kinase 

signalling pathway, which when altered, is well documented for its role in 

carcinogenesis. These proteins include FLNA, HSP72/HSPA6, PPP3C, 

MEF2C and HSP27/HSPB1. 

• 215 proteins were up-regulated in bortezomib-treated VDR compared to 

bortezomib-treated MM.1R. Two target proteins of interest included CCL3 

and EIF5A. 

• PSMB5 is over-expressed 3.85-fold in VDR compared to MM.1R at 

baseline. A 13-fold increase in PSMB5 expression is observed in 

bortezomib-treated VDR compared to bortezomib-treated MM.1R, 

supporting the role of PSMB5 dysregulation in VDR as a potential 

mechanism for bortezomib resistance in this cell line. 
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5.1.5 Functional studies and potential role of the bone marrow 

microenvironment in the pathogenesis of bortezomib resistance in 

VDR 

• No change in the sensitivity of MM.1R or VDR to bortezomib was 

observed following their short term co-culture with HS-5 stromal cells  

• MM.1R cells appeared to display reduced sensitivity to carfilzomib 

following their co-culture with HS-5 cells, however VDR cells retained 

their sensitivity to carfilzomib despite their co-culture with HS-5 cells. 

• VDR cells displayed resistance to vorinostat and MLN4924 when co-

cultured in the presence of HS-5 cells, and combination of bortezomib 

with either agent was not sufficient to overcome the resistance observed. 

• VDR displayed a marked increase in cell viability when co-cultured in the 

presence of hFob cell line.  

• MM.1S appeared to be the cell line that was most susceptible to changes 

in drug sensitivity when co-cultured with hFob cells. Resistance to 

doxorubicin was evident in MM.1R and VDR cells in co-culture with hFob.  

• Direct cell-to-cell contact appeared to be necessary for osteoblast-induced 

resistance to vorinostat in MM.1S, but was not necessary for osteoblast-

induced resistance to doxorubicin in MM.1S.  

• By pre-treating VDR cells with interferon-gamma before bortezomib 

treatment, we observed an increase in sensitivity of VDR cells to 

bortezomib, and an increase in poly-ubiquitinated proteins and increased 

expression of PSMB8 as demonstrated by western blot.  

• Immunohistochemistry on 7 bone marrow trephines of patients with 

bortezomib-sensitive and bortezomib-refractory multiple myeloma 

revealed the following: 

1. PSMB5 was expressed at diagnosis in all bortezomib responders and 

bortezomib non-responders tested. 

2. At time of relapse, PSMB5 was expressed in 5 out of 7 samples tested. 

3. PSMB8 was expressed at diagnosis in all bortezomib responders and in 5 out 

of 6 bortezomib non-responders. 

4. At time of relapse, PSMB8 was expressed in 2 out of 7 samples tested. 
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5.1.6 CONCLUSION 

The main aim of this thesis was to examine the intrinsic and extrinsic 

mechanisms of bortezomib resistance in multiple myeloma based on our study of 

an isogenic cell line model of bortezomib resistance. VDR displayed stable 

resistance to bortezomib compared to parental bortezomib-sensitive cell line 

MM.1R. in a number of toxicological-based assays. VDR retained its resistance to 

dexamethasone similar to MM.1R. The toxicity profile of this cell line to other 

conventional, novel and investigational therapies was also comparable with 

MM.1R. Interestingly, VDR was also resistant to the orally bioactive alternative 

form of bortezomib, MLN2238, but was highly sensitive to the irreversible 

proteasome inhibitor carfilzomib. The resistance to bortezomib did not appear 

to be mediated by p-glycoprotein, and was secondary to a difference in 

proliferation rate between the two cell lines. An in vivo study examining the 

effect of bortezomib or carfilzomib in VDR did not reveal a statistically 

significant reduction in tumour burden in either cell lines compared to vehicle 

mice. In MM.1R-mice, a statistically significant improvement in overall survival 

was observed in bortezomib treated mice, compared to controls and compared 

to carfilzomib treated mice. VDR-mice displayed a statistically significant 

improvement in overall survival in both bortezomib-treated and carfilzomib-

treated mice compared to vehicle-mice. The in vivo study emphasises the 

pertinent role of the bone marrow microenvironment in multiple myeloma 

pathogenesis, and the reasons for the findings of this in vivo study should be 

clarified. 

Whole exome sequencing of MM.1R and VDR identified 28 non-synonymous 

single nucleotide variants found in VDR that were not present in MM.1R. A single 

amino acid substitution in the PSMB5 gene was identified in VDR involving a 

threonine to alanine substitution with 100% allelic frequency in VDR, and 100% 

wtPSMB5 frequency in MM.1R. This PSMB5 mutation was previously 

documented and has been shown by 3D in silico modelling to induce a 

conformational change in the bortezomib binding pocket. Introduction of 

mutPSMB5 via lentiviral construct into the bortezomib sensitive cell line KMS11 

rendered these cells resistant to bortezomib. Over-expression of wtPSMB5 
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reduced the sensitivity of KMS11 cells to bortezomib, but to a lesser degree than 

mutPSMB5. In addition a deletion in ABCA7 gene was found in VDR but not 

MM.1R. Reduced transcript levels of ABCA7 gene has been correlated with 

reduction of disease free interval in patients post-therapy for colorectal cancer. 

However neither ABCA7 gene down-regulation nor deletion have been 

implicated in haematological malignancy in the in vivo setting to date. 

Gene expression profiling revealed a number of genes differentially expressed in 

VDR compared to MM.1R. Pathway analysis revealed “cellular apoptosis” as a 

specific pathway in which 4 transcripts that are up-regulated in VDR play a role. 

These genes include CFLAR, CASP8, CASP10, and NFKBIA. Transcripts that were 

down-regulated in VDR compared to MM.1R were noted to participate in a 

number of cellular processes mainly concerned with the immune system. An 

shRNA screen of 27 selected target genes was undertaken to determine if shRNA 

knockdown and subsequent bortezomib treatment resensitised VDR cell cells to 

bortezomib. Here, 11 of 27 genes analysed were found to cause >40% cell death 

of VDR cells compared to control hairpins following shRNA knockdown and 

subsequent treatment with bortezomib 50nM. In particular, PSMB5 shRNA 

knockdown resulted in resensitisation of VDR to bortezomib 50nM. We validated 

successful shRNA knockdown of PSMB5 in MM.1R and VDR by immunoblot. We 

furthermore demonstrated that shRNA knockdown of PSMB5 and subsequent 

treatment of VDR cells (used at even lower concentrations of bortezomib 

compared to initial screen: 50nM vs. 20-40nM), resulted in significant 

resensitisation of VDR to bortezomib, suggesting PSMB5 as a major factor in 

bortezomib-induced resistance in VDR. 

By label-free mass spectrometry 238 proteins were differentially expressed in 

the MM.1R vs. VDR comparison, including a number of interesting targets such as 

CCL3 which has known pathogenesis in myeloma. Three proteins that were 

found to be down-regulated in VDR compared to MM.1R are involved in 

aminoacyl tRNA biosynthesis. By comparing bortezomib-treated MM.1R to 

bortezomib-treated VDR, we demonstrated 5 proteins that were down-regulated 

in bortezomib-treated VDR compared to bortezomib-treated MM.1R that are 

involved in the MAP-kinase signalling pathway, known for its role in 
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carcinogenesis. Proteins up-regulated in bortezomib-treated VDR compared to 

bortezomib-treated MM.1R included PSMB7, PSMB6, CCL3, GSTP1 and EIF5A. In 

addition PSMB5 is over-expressed also at the protein level 3.85-fold in VDR 

compared to MM.1R at baseline. A 13-fold increase in PSMB5 expression is 

observed in bortezomib-treated VDR compared to bortezomib-treated MM.1R, 

supporting the role of PSMB5 dysregulation in VDR as a potential mechanism for 

bortezomib resistance in this cell line. 

We examined a number of extrinsic factors that play a further role in bortezomib 

resistance in VDR. No change in the sensitivity of MM.1R or VDR to bortezomib 

was observed following their co-culture with HS-5 stromal cells. MM.1R cells 

appeared to display reduced sensitivity to carfilzomib following their co-culture 

with HS-5 cells and the mechanism for this observation remains unclear. 

However VDR cells retained their sensitivity to carfilzomib despite their co-

culture with HS-5 cells. Examining other novel therapies, VDR cells displayed 

resistance to vorinostat and MLN4924 when co-cultured in the presence of HS-5 

cells, and combination of bortezomib with either agent was not sufficient to 

overcome the resistance observed. We furthermore investigated the effect of 

osteoblasts on the isogenic cell line model. VDR displayed a marked increase in 

cell viability when co-cultured in the presence of hFob cell line. Again the 

mechanism for this finding needs to be clarified. MM.1S (rather than MM.1R or 

VDR) appeared to be the cell line that was most susceptible to changes in drug 

sensitivity when co-cultured with hFob cells, and was evident for 

dexamethasone, doxorubicin and vorinostat treatments. Resistance to 

doxorubicin only was evident in MM.1R and VDR cells in co-culture with hFob. 

Direct cell-to-cell contact appeared to be necessary for osteoblast-induced 

resistance to vorinostat in MM.1S, but was not necessary for osteoblast-induced 

resistance to doxorubicin in MM.1S. Finally by pre-treating VDR cells with 

interferon-gamma before bortezomib treatment, an increase in sensitivity of 

VDR cells to bortezomib, and an increase in poly-ubiquitinated proteins and 

increased expression of PSMB8 as demonstrated by western blot was observed. 

Immunohistochemistry on 7 bone marrow trephines of patients with 

bortezomib-refractory multiple myeloma revealed varied expression levels of 
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PSMB5 (100%) and PSMB8 (83%) in the bone marrow biopsies of these patients 

at diagnosis, whereas at time of relapse, 71% of samples were positive for 

PSMB5 but only 29% positive for PSMB8.  

These final studies of extrinsic mechanisms of drug resistance have provided a 

number of interesting conclusions. Panproteasome inhibition through 

carfilzomib could be considered a more effective means of myeloma cell death in 

the setting of bortezomib resistance and its efficacy does not appear to be 

abrogated by the presence of accessory HS-5 stromal cells. Osteoblast-like cells 

hFob appear to support the growth of VDR cells, and in grand-parent cell line 

MM.1S, appears to induce resistance to a number of novel and conventional 

therapies, and the mechanisms for these latter findings should be further 

investigated. Finally PSMB8 over-expression by interferon-gamma stimulation 

appears to induce a degree of resensitisation of VDR to bortezomib. PSMB8 

expression is lost in a number of bortezomib-refractory patients. Bortezomib 

resistance in vivo could potentially be overcome by upregulation of PSMB8 by 

pre-treatment of patients with interferon-gamma and subsequent treatment 

with bortezomib or a PSMB8 inhibitor. In addition, PSMB8 is expressed at 

diagnosis in bortezomib responders and non-responders supporting the 

proposal for clinical trials for use of PSMB8 inhibitors in patients with newly 

diagnosed multiple myeloma. If patients are found to over-express PSMB8 in 

bone marrow trephine samples at time of relapse, as was observed in a small 

number of our patients, a PSMB8 inhibitor may also be beneficial in patients with 

bortezomib-refractory disease.  
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5.2  FUTURE WORK 

5.2.1 Characterisation of an isogenic cell line model of bortezomib 

resistance in vitro and in vivo. 

• Generation of further models of resistance to novel therapies such as 

carfilzomib. 

• Longer follow-up of in vivo study to determine if VDR displays greater 

resistance to bortezomib in the in vivo setting that mirrors the in vitro 

setting. 

• Investigate reasoning for greater reduction in tumour burden in MM.1R-

mice treated with bortezomib compared to carfilzomib. 

• Generation of models of drug resistance in myeloma in the setting of the 

bone marrow microenvironment. 

 

5.2.2 Whole exome sequencing of MM.1R and VDR 

• Evaluate CD138-positive cells of bortezomib-refractory multiple myeloma 

patients for deletion in ABCA7 gene to determine if this finding in the in 

vitro models correlates in the in vivo setting 

• Evaluate a greater number of bortezomib-refractory patients for 

mutPSMB5 identified in VDR by our group and others, later in their 

disease stage, following multiple lines of bortezomib-based regimens. 

 

5.2.3 Gene expression profiles of MM.1R and VDR 

• Validation of further targets identified by shRNA knockdown screen as 

markers that when eliminated, increase the sensitivity of VDR to 

bortezomib. 

 

5.2.4 Proteomic profiling of MM.1R and VDR by label-free mass 

spectrometry 

• In vitro assay to examine the efficacy of a specific CCL3 inhibitor in 

bortezomib-resistant cell line VDR 
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• Validation of further biomarkers upregulated in VDR as identified by 

label-free mass spectrometry in particular those of the MAP-kinase 

pathway, and clarify their role bortezomib resistance.  

 

5.2.5 Role of the bone marrow microenvironment in the pathogenesis of 

bortezomib resistance in VDR 

• Investigate the mechanism for the observed stromal induced carfilzomib-

resistance in MM1.R by HS-5 cells that was not apparent in VDR. 

• Although not directly implicated in bortezomib resistance, one should 

investigate the mechanisms of osteoblast-induced increase in 

proliferation rate in VDR, and osteoblast-induced drug-resistance in 

MM.1S. 

• Analyse a greater number of bone marrow biopsies of patients with 

bortezomib-refractory myeloma at time of diagnosis and relapse to 

confirm the expression levels of PSMB5 and PSMB8 observed in our study 

• An in vivo mouse model of bortezomib-refractory myeloma examining the 

tolerability of interferon-gamma with subsequent bortezomib or PSMB8 

inhibitor in the in vivo setting, with a view to progressing to phase 1 

clinical trials in patients with bortezomib-refractory myeloma. 
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6. SCIENTIFIC WORK PUBLISHED OR PRESENTED 

 
Journal Publications: 

New proteasome inhibitors in myeloma.  

Lawasut P, Chauhan D, Laubach J, Hayes C, Fabre C, Maglio M, Mitsiades C, 

Hideshima T, Anderson KC, Richardson PG.  

Curr Hematol Malig Rep. 2012 Dec;7(4):258-66.  

 

Presentations to Learned Societies 

 

Poster Presentations: 

 

1. Human Proteome Organization (HUPO). Geneva, Switzerland, 

September 2011.  Hayes CA, O’ Gorman P, Ooi MG, Jakubikova J, Jacobs 

H, Delmore J, McMillin DW, Klippel S, Anderson KC, Richardson PG, Clynes 

M, Mitsiades CS, Dowling P. Osteoclasts in multiple myeloma: molecular 

characterization of the synergistic pathways involved. 

 

2. Haematology Association of Ireland Congress, Ireland, October 2011. 

Hayes CA, Jakubikova J, Ooi MG,  Jacobs H, Delmore J, McMillin DW, 

Anderson KC, Richardson PG, Clynes M, O’ Gorman P,  Mitsiades CS, 

Dowling P. Proteomic profile of the multiple myeloma cell line NCI-H929 

following osteoclast co-culture. 

 

3. American Society of Haematology Annual Congress, San Diego, CA. 

December 2011. Hayes CA, Dowling P, Negri J, Henry M, Buon L, 

Jakubikova J, Delmore J, McMillin DW, Klippel S, Jacobs HM, van de Donk 

N, Dhimolea E, Lawasut P, Richardson PG, Anderson KC, Clynes M, O’ 

Gorman P, Mitsiades CS. Proteomic characterization of an isogenic 

multiple myeloma cell line model of bortezomib resistance. 

 

4. American Society of Haematology Annual Congress, Atlanta, Georgia, 

December 2012. Catriona A. Hayes, Paul Dowling, Richard W.J. Groen, 

Douglas W. McMillin, Jake E. Delmore, Hannah M. Jacobs, Niels W.C.J. van 

de Donk, Eugen Dhimolea, Paul G. Richardson, Kenneth C. Anderson, 

Martin Clynes, Peter O'Gorman, Constantine S. Mitsiades. Cells of the 

Osteoblast Lineage Confer Myeloma Cell Resistance to Established and 

Investigational Therapeutic Agents. 

 

5. European School of Haematology International Conference on 

Multiple Myeloma, Dublin, October 2013. C Hayes, P Dowling, M 

Henry, S Madden, J Meiller, E Dhimolea, MBariteau, J Negri, B. Aftab, A. 

Schinzel, N Kohl, M Clynes, C Mitsiades, P O’Gorman. Characterisation Of 
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An Isogenic Cell Line Model Of Bortezomib Resistance In Multiple 

Myeloma. 

 

Oral Presentations: 

 

6. Haematology Association of Ireland Congress, Ireland, October 2011. 

CA Hayes, D McMillin, HM Jacobs, J Delmore, P Lawasut, E Dhimolea, M 

Clynes, P Dowling, PG Richardson, KC Anderson, P O’ Gorman, CS 

Mitsiades. Pre-clinical investigation of an alternative pathophysiologic 

role for osteoblasts in multiple myeloma. 

 

7. Haematology Association of Ireland Congress, Ireland, October 2013. 

C Hayes, P Dowling, M Henry, S Madden, J Meiller, E Dhimolea, MBariteau, 

J Negri, B. Aftab, A. Schinzel, N Kohl, M Clynes, C Mitsiades, P O’Gorman. 

Characterisation Of An Isogenic Cell Line Model Of Bortezomib Resistance 

In Multiple Myeloma. 
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