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1.1 Background 

Over one billion people in the world have a shortage of drinkable water. In developing 

countries, a high percentage of people obtain water for drinking, cooking and washing from 

underground. The masterful technology of lifting water from underground is done by the use 

of a hand pump (Water Aid, 2006). Hand pump technology is capable of lifting water from 

underground to the surface of the ground (Reynolds, 1992). 

About 884 million people in the world do not have access to improved sources of drinkable 

water with sub-Saharan Africa accounting for over a third of this number. The Joint 

Monitoring Programme defines access to drinkable water as the availability of at least 20 

litres of drinking water per person per day within 1 km of that persons dwelling. Safe 

drinkable water can also be defined as water that meets accepted quality standards and poses 

no significant health risk (UNDP, Water in a Changing World, 2009). 

The first international water supply and sanitation decade (IWSSD) 1982-1990, stated that all 

member states of the United Nations would make a considerable effort to supply safe 

drinkable water for all people by 1991. However, their goal was not achieved and not 

everyone by that time had a source of safe drinking water, because the number of the people 

short drinkable water increases every year.  

According to the WHO/UNICEF joint monitoring programme for water supply and 

sanitation, worldwide nearly 780 million people use unimproved water supplies for drinking, 

cooking and hygiene. The lack of improved water sources in rural areas of sub-Saharan 

Africa has prompt governments, non-governmental agencies to invest in this sector. 
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In the last few decades, wells and bore holes with hand pumps were considered as the most 

applicable option for water supply in most of the developing countries and became the 

principal technology (Harvey and Reed, 2004). 

RWSN had lately published statistics on the functionality of hand pumps. The statistics show 

that the hand pump is being used in twenty countries in sub-Saharan Africa. The data is 

presented in Fig.1. It is clear that across sub- Saharan Africa and most of Asia the hand pump 

will continue to be the main contributor to provide safe drinking water in developing 

countries (RWSN, 2009). Madagascar, Guinea and Uganda have the highest functionality, 

while DRC, Cote d’lvoire and Sierra Leone have the lowest. 

 

 

Fig.1. Functionality of hand pumps in 20 African countries [RWSN, 2009].  
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Research Problem and objectives of this researches: 

Many hand pumps fail worldwide due to wear of the piston seals. Due to these failures of 

water hand pumps millions of people in developing countries cannot have safe water for 

drinking. This results in enormous costs for maintenance and installation of new water hand 

pumps. It is therefore important to analyse and find the reasons for these failures. One reason 

for these failures is wear of the NBR piston seal. Wear of the NBR piston seal is as a result of 

the influence of the contact stress generated within the pump cylinder.  Distribution of the 

contact stress for the NBR piston seal is a very complex topic.  

It is difficult to calculate and determine the contact stress and the contact area of the NBR 

piston seal. Therefore, an advanced numerical methods such as finite element analysis FEA 

will be used for analysis of wear of the NBR piston seal. There is to date no study was found 

related to the use of FEA to analyse the wear of NBR piston seals in water hand pump. Also 

there is no specific model or equation to calculate the wear rate of NBR piston seals in water 

hand pump.  

Aim of research 

This study will focus on: 1- developing a relationship for computing the friction force in 

NBR piston seal and for computing the wear rate of the NBR piston seal as used in the water 

hand pump. 2- Analysis of wear of the NBR piston seal using F.E.A method.3- analysis of the 

wear of NBR piston seal in wet and dry sliding conditions using experimental and FEA 

techniques. 

Objectives 

In order to increase piston seal life an understanding of the wear mechanisms and behaviour 

of piston seals wear is very important. To assist with this analysis a reciprocating hand pump 

test rigs will be developed to allow for various piston stroke lengths and different load 

conditions. FEA analysis will also be conducted on piston seals and a model developed to 

accurately analyse the complete wear mechanisms taking place.  
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2.1    Hand pump design, components and operation. 

The system of lifting water to the surface from underground needs a source of power. While 

human power may be used, various other sources of power are also capable of doing the job, 

for example wind, which is a natural and renewable source of power. 

There are also different types of pumps and choosing a pump is dependent, a mong other 

things, on the vertical distance between the surface of the ground and the surface of the water 

under the ground. The deeper the water underground is, the lesser choice of suitable hand 

pumps as not all types of hand pumps are capable of lifting water from long distances under 

the ground. These types of hand pumps are also more costly. Hence the deeper the water is, 

the higher the costs required for pumping [1]. Hand pumps are generally cheap and easy to 

operate and provide solution to millions of people around the world as a source of safe 

drinkable water. Hand pumps also reduce water contamination as water is easily 

contaminated when collected in any other ways. This is because water is completely sealed 

with in the pipe work when lifted. These reasons make hand pumps a very useful and suitable 

mechanism to supply clean water in the developing countries [2]. Hand pumps are widely 

used in areas where access to clean water is rare and where sources of financial investment 

are limited. The first generation of hand pumps were manufactured in the United Kingdom. 

They were released in the 1930s and were used for three decades. These pumps were made of 

hardened steel and cast iron and they were heavy duty pumps. However when the pumps in 

the colonial areas were broken, they were not repaired. The second generation of hand pumps 

were manufactured in India in the 1960s and was called the India “Mark II”. In 1986 the 

world water conference in Nairobi claimed that more than a million of these hand pumps in 

the subcontinent of India where not operational.  
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This indicated that the hand pumps were used in a large quantities and has poor maintenance 

[3]. Now a days, the hand pump design is no different from how it was decades ago. The 

basic principle of pumping water is the same. Hand pumps are simple in terms of their 

structure. However, high percentages (up to 68%) of the pumps break down easily [4].  The 

primary reason for over 25% of these failures was wear of the piston seal.Fig.1.2 show other 

reasons which cause break down of the hand water pumps.  

 

Fig. 1.2 Percentage of repairs on Hand pump components [10] 

There are different types of hand water pumps, most of them are reciprocating pumps, which 

means positive displacement pumps [5]. Table 1 present different pumps with their lifting 

capabilities. 

Tablle.1. Type of hand pumps and the range over which water can be lifted 

Pump type Lift         (m) Volume flow rate  

L/min 

Location of cylinder 

Suction pump               0 - 7            24-26 Above ground 

Direct action pump              0 - 25              26 Under ground 

Deep well pump          Up to 100            11-17 Under ground 
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Efforts were made over several decades on new designs. However, these new designs have to 

pass through VLOM (village level operation and maintenance) [6]. At the end of the first 

water decade, members of the community were sufficiently involved in the maintenance of 

the hand pump [7]. Therefore, they promoted the growth of new design of hand pumps. The 

design of these new pumps has to satisfy the VLOM criteria more strictly than others. As a 

result, markets were filled with different types of hand pumps, but with very little 

standardisation [8]. The reciprocating hand pump remains the most common type of hand 

pumps used. It works when water flows from a high pressure region to a low pressure region. 

An area of low pressure is created over the water; this leads the water to flow into this region. 

Fig.2.show a typical reciprocating hand pump, cylinder and various parts. It contains two 

valves: a foot valve located at the bottom of cylinder and a piston valve located in the piston. 

The piston valve splits the cylinder into two parts: upper and lower. The valves prevent 

backflow of water. When the piston moves up, the pressure of the water over the piston keeps 

the piston valve closed. Eventually, depending on the depth of the well and the number of 

strokes water then flows out of the pump. The cylinder is full of water when the piston moves 

down. This is due the closing of the foot valve. The piston has two seals, which have to 

always be sealed to prevent water leakage. These seals are called the piston seals, and play a 

major role in the functionality of the hand pump. They are also the main reason behind the 

failure of the hand pumps [9]. In Africa, new research showed that a lot of new hand pumps 

are broken shortly after installation. The main reason behind the hand pumps failure is wear 

of the piston seals. (Harvery, 2003).  This leads to reduction in water flow rates. However, 

little research tribological wear behaviour of these piston seals [10]. 
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(a) Reciprocating hand water pump parts 

 

(b) Sample of reciprocating hand water pump 

Fig.2. Reciprocating hands pump (a) reciprocating hand water pump parts (b) sample of 

reciprocating hand water pump [9].                       
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2.2     Types of seal and seal material. 

A seal is designed to control fluid leakage in pumps, for example reciprocating oscillating or 

rotary pumps. The most common material used for manufacturing seals is the Rubber (e.g., 

natural rubber, nitrile rubber, silicone and Viton). 

Seals are used for sealing purpose, in order to avoid the leakage or to avoid mixing between 

fluids operating under different working pressures [11]. Seal elements are also used to retain 

fluid under specific pressure [12]. Some design, include tolerance considerations requiring a 

large gap between two regions (or between two surfaces) which cannot, therefore, perform 

the sealing function autonomously. Such gaps can be reduced to small dimensions by 

introducing seals as extra components [13]. The sealing effect is obtained from the seals 

element deformation between the movable surfaces. Considerable friction forces result in 

unwanted consequences on the system efficiency through considerable wear on the sealing 

element itself [11]. 

Different types of seal are used in different applications e.g., sealing  in pneumatic and 

hydraulic equipment. Therefore, different types, shapes and designs of seals are available 

including O-ring, V, X, L, I and others [11, 12]. In general seals are classified as static, 

dynamic and rotary. 

Dynamic seals are more difficult to design and more expensive than others, and have 

different shapes and different dimensions. There are a lot of applications for dynamic seals. 

Due to the relative motion between the two surfaces which cause friction and wear, the 

design of dynamic seals are complex, and the problems caused by using dynamic seals are  
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greater than the problems caused by other seals. Dynamic seals are used in hydraulic and 

pneumatic equipment and their shapes are different compared to a typical O-ring design with 

complex geometries. In general, most of the seals are made of elastomer materials (Rubber). 

Dynamic seals when used with reciprocating movement are called reciprocating seals. There 

are two types of reciprocating seals, piston seal and rod seal. In industry, these seals are used 

in linear and rotational motions, for example linear hydraulic actuators and rotary actuators 

[14]. Fig.3. shows typical linear and rotary actuator seals . 

 

              a                                   b 

Fig.3. (a): piston seal and rod seal of linear actuator, (b): Aircraft wing control surface 

operated via classic linear hydraulic actuator and rotary actuator [14]. 
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Seals are sensitive elements in all machines and equipment. Failure of the seals results in high 

cost which may even exceed the machine cost. The safety risk is even greater in applications, 

such as seals used in actuators controlling air craft landing gear and wing flaps. Although not 

related to reciprocating motion, the sad catastrophe of NASA shuttle challenger in 1986 was 

officially attributed to the failure of astatic elastomeric O-ring seals, which was used to block 

hot gases from leaking through a joint during the propellant burn of the right rocket motor 

[15]. 

The first well notarized systematic research program related to seal wear was connected to 

projects of hydraulic actuation and control, made to order by the air force in the Second 

World War [16]. Through the next decades, industrial growth generated, fast expansions in a 

lot of fields of technology, including material processing technology and hydraulics and 

modification of operating parameters (velocity, pressure, temperature, capacity and accuracy) 

were required for these machines. All these needs made higher impacts on the growth and 

advancement of sealing technology, in particular on reciprocating seals, piston seals and rod 

seals. Changes regarding design, material, form, sealing lip shape and accuracy occurred. 

Piston seal followed three various major lines, which began with impregnated leather (U and 

V rings), and then with simple rubber O-rings, and finally seal design becomes advanced 

[17]. Seal design was at first an experimental process through trial and error. From the 1990s 

onwards, design became more advanced, based on the new- computational tools such as finite 

element analysis (F.E.A) [18]. A lot of experiments were carried out on friction of 

reciprocating seals Y.Kawahra [19] and Kaneta [21] and an study by Sayles [11] concluded 

seal friction for reciprocating seals to be dependent on rod speed for speed less than 100 

mm/s for smooth sliding.  
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The work of White and Danny [16] at the end of world II, which was an itemized 

fundamental testing work on reciprocating seals is still one of the ultimate sources of 

reference [19]. Most seals are made of elastomers (Rubber), because the rubber has a low 

modulus of elasticity, a large elongation- at break and high poisons ratio and incompressible. 

Rubber contains large chains of randomly oriented molecules, the chains are entangled and 

cross-linking, and have an impact on the viscoelastic properties, stress and relaxation. If the 

rubber is under the effect of stress or strain energy, internal rearrangements of rotation and 

extension of the polymer chain can occur. These changes are a function of the energy applied, 

time, rate application and temperature. Following the application of energy, rubber can 

become elastic (energy store) or viscous (energy dissipation). Elastic and viscous properties 

are very important parameters for seals. 

Stresses applied to the rubber seals can induce strain which creates a sealing force. This 

sealing force is due to the internal friction generated internal energy which then results in a 

sealing force [20]. 

A lot of seals work in the presence of lubricants. The sealing elastomer oil interaction plays a 

significant role in determining the tribological performance of the elastomers. Seals may also 

operate under dry conditions, hence. can be affected by high friction coefficient and wear 

[21]. Atypical piston seal is radial in shape and has a lip. The choice of piston seal is 

depending on the way in which the piston operates [22]. It is very important that the piston 

seal and its lip design have high accuracy. Stresses applied to the piston seals result in high 

squeeze between the seal surface and surface of the cylinder. This generates higher friction 

during operation which lead to higher wear [23]. 
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2.3       Wear of Seals 

There are many descriptions used to explain what seal wear is. Wear is sometimes 

investigated from the view point of the types of contact interaction of the solid surfaces [24]. 

In general wear is the gradual removal and loss of material from contacting surfaces as a 

result of relative motion. Seal wear is related to frictional processes. If solid surfaces in 

relative motion are not separated in some way, wear can occur [25]. Fig. 4. highlights the 

relationship between the number of cycles and percentage of the seals worn [26]. 

 

Fig.4. Piston Seal worn due to the number of cycles [26] 

The first experimental investigations on wear was carried out by Hatchett [11], Experiments 

and observations were carried out on the various alloys and on the comparative wear of gold 

being the substance of report made to the Right Honourable the Lord of the Committee of 

Privy Council, appointed to take into consideration the state of the coins of the Kingdom.  
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After that experimental investigations, further experiments on wear was carried out by Rinnia 

[11], on the friction and abrasion of the surface of solids. 

Wear can happen in different patterns and is dependent on the forms of contact and also on 

the way and how the materials is removed. Fig.5. highlights the descriptive keywords related 

to wear and their interrelations.  

 

Fig.5. Keywords related to wear and their interrelations [24] 

Normal compression and detachment, unidirectional sliding, unidirectional rolling, reciprocal 

rolling with slip, are all different contact configurations of wear, and wear in these contact 

types is explained as sliding wear. Rolling wear, impact wear, fretting wear, all those type of  
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wear are based on the contact type [24]. The main and basic wear mechanism are: adhesive 

wear, abrasive wear, fatigue wear, and corrosive wear Burwoll, [72] 

Archard [74], proved that, whenever surfaces rub against each other, wear always occurs. 

One of the assumptions for wear analysis is that the contact between the surfaces occurs at 

asperities and that the true contact area is the sum of the individual asperity contacts. Wear is 

not a material property, it is a system response, and wear changes drastically even with a 

relatively small change in atribosystem, which is composed of dynamic parameters, 

environmental parameters, and material parameters [27]. 

 The main wear pattern, adhesive wear and abrasive wear, are generated under plastic contact. 

If the contact is between similar materials, an adhesive wear will occur, and when the contact 

is between hard/sharp material and soft material an abrasive wear will occur. In the case of 

contact while operating, fatigue fracture is generated after repeated cycles. When the 

tribochemical reaction in corrosive media is brought about by material removal, the result is 

corrosive wear. Fatigue and corrosive wear can be generated in both plastic and elastic 

contacts [28]. The material removal in adhesive, abrasive, and fatigue wear in the contact 

region is governed by deformation and fracture, which generated by mechanically induced 

strain and stress. Therefore this type of wear is usually described as mechanical wear [24].  

Wear also occurs when surfaces are loaded and undergo to sliding or rolling or both Archard 

[74]. The reciprocating movement of a piston in a hydraulic cylinder can cause wear both on 

the piston rings and cylinder bore. Piston ring seal, a piston seal used to prevent leakage 

between the upper and lower champers of the pump cylinder at different fluid pressures [29].  
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There are two points that make dynamic seals required in tribological science. Firstly the 

dynamic seals block the clean lines of the lubricant external contamination. This contributes 

to repressing wear by three body abrasion caused by contaminant particles. Secondly, the 

counter surfaces of a dynamic seal work under the same tribological laws as any sliding 

couples, with the requirements of low friction and low wear and a long service life. Seals for 

linear movement are most affected by direction of sliding, speed and lubrication [30]. 

Piston seals are mostly made of elastomers (Rubber). If elastomers slide against a hard 

substrate, there are three various mechanisms of wear that can be identified. Firstly when 

elastomers sliding against a hard surface with acute synthesis, abrasive wear take place as a 

result of rupture of the elastomers sliding surface. Another type of wear called fatigue wear 

occurs on the surface of an elastomer sliding against hard substrate, fatigue wear. And when a 

highly elastic elastomers slide against a smooth surface, roll formation occurs. In this type of 

wear, and a high frictional force shears a projection on the rubber surface, then rupture and 

the edge will roll along the direction of sliding.  

If the shear stress is higher than the critical shear stress, roll formation occurs, and when the 

shear stress is lower than critical value, wear due to fatigue occurs [31]. The friction 

coefficient is one of the most important parameters governing this type of wear.  

Fatigue is a result of repeated deformation cycles, which take place when rubber slides 

against hard and blunt projections on the hard surface at low frictional force [32]. The surface 

of the rubber which is worn by frictional wear or roll formation, appears as bridges 

perpendicular to the direction of sliding. Fatigue wear may not have any visible bridges 

except pitting marks [33].  
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At low contact pressure the loss of the mass of the elastomers is low due to lower friction 

[34]. 

 A number of studies were performed on tribological performance of piston seal of nitrile 

rubber polyethylene and leather. These studies were performed at macro level and the state of 

the art at revise the time regarding piston seals was the used of leather as the material of 

choice. These studies found wear on the piston seals with abrasive material embedded in the 

seal. The wear rate in any tribological interaction varies depending on the contact conditions. 

The problem of the piston seals wear is compounded by the fact that the piston seal is 

expected to perform under dry lubrication condition. Most of the studies published on the 

behaviour of polymers have focused on sliding against steel under dry contact between the 

polymer and steel [35].  

The phenomena of wear can be carried out, not only by an experimental investigations, but 

also by using mathematical models and by using computer simulation.  

The first trials on numerical analysis of wear were given by Grib, 1982, Grib studied the 

Solutions of Tribological Problems with the aid of Numerical Methods. Table 2  highlights 

key trials conducted in simulating the wear. 

 

. 
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Table.2. Trials on numerical analysis of wear 

Author  

 

Hugnell 

A. B. J 

Year 

 

1996 

Study titel 

 

 

 

Simulation of the mild wear in a cam-follower contact 

with follower rotation, 

Ref  

 

[36] 

Stromberg 

N 

1997 Thermomechanical modelling of tribological systems [37] 

Szefer G 1998 Contact problems in terms of large deformations [38] 

Agelet and 

Chiumenti 

1999 Wear patterns and laws of wear [39] 

Franklin 

F. J 

2001 Computer simulation of wear and rolling contact fatigue [40] 

Koetal K 2002 Classi_cation of wear mechanisms/models [41] 

Shillor M 2003 Analysis of viscoelastic contact with normal compliance, 

friction and wear di_usion 

[42] 

Mc Coll I. 

R 

2004 Finite element simulation and experimental validation of 

freeting wear 

[43] 

Kim N. H 2005 Finite element analysis and experiments of metal/metal 

wear in oscillating contacts 

[44] 
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Finite element analysis was also applied to simulate the wear caused due to pitting 

phenomenaunder various operating conditions [45].  

From the literature it was found that a lot of previous studies were focused on reciprocating 

seals and some of these studies were on the piston seals of water hand pump. Some studies 

investigated the performance of piston seal and wear under dry sliding conditon. Few studies 

investigated the operation and performance of piston seals in water where water is used as a 

lubricant media, wear and coating of water piston seals were carried out recently by Michael 

Lubwama [10].   

Literature also reversed that limited number of studies and trials on the wear of rubber seals 

were carried out using finite element analysis furthermore. There was no research using finite 

element methods to analysis the wear of piston seals of water hand pumps. The current 

research will be focused on evaluating the performance of piston seals used water hand 

pumps under dry and wet sliding conditions. In addition, wear models and mechanisms of the 

piston seals will be evaluated by wear tests in a cu stern designed test rig and by finite 

element analysis   
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2.4        Friction 

2.4.1       Definition of friction. 

Friction is impedance to motion and occurs whenever solid surfaces slide over each other. 

The resistive force, which is parallel to the direction of motion, is known as the friction force. 

If the solid surfaces are loaded together and a tangential force F is applied, then the tangential 

force that is required to initiate sliding is the Static Friction Force (SFF). This force usually 

requires application over a few milliseconds before sliding is initiated at the interface static 

force (F static). The tangential force required to preserve sliding is the Dynamic Friction 

Force (DFF) or kinetic friction force. The dynamic friction force is less than or equal to static 

friction force [46]. Fig.6. highlights the static and dynamic (kinetic) friction forces. 

 

Fig.6. Static and dynamic frictions forces versus time [46] 
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2.4.2   Elastomers (Rubber) Friction:  

Friction forces in Rubber vary in many ways from the frictional properties of most other 

solids. That is due to low elastic modulus, and higher internal friction exhibited by rubber. 

The pioneering studies of Grosch [47] show that rubber friction is caused by internal friction 

and his experiments of the rubber sliding against glass and silicon carbide paper surfaces give 

coefficient of friction values independent of  force or  load [47]. Fig.7. shows the graph of 

coefficient friction versus logarithm of sliding velocity for NBR Rubber sliding on Glass and 

Silicon Carbide. 

 

Fig.7.Coefficient of friction of NBR rubber sliding on silicon paper (solid curve), and smooth 

glass surface (dashed curve) due to the log of the velocity [47]. 

The friction force between rubber and a hard substrate is generated due to adhesion and 

hysteric component, respectively. The hysteric component is due to internal friction as a 

result of sliding, through sliding the hardness of hard substrate exert fluctuating force on the 

rubber surface which leads to a cyclic deformation of rubber and energy dissipation via the 

internal damping of the rubber. Adhesion component is occurring for very clean rubber 

surface [48].  
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Fig. 8. highlights the experimental and simulated normal and friction forces for the 

EPDM_30CB under 170 N with 3 rpm of the ball in Orbital-RBOP [49]. 

 

 

Fig. 8. Rubber friction forces during the operating time [49]. 

The behaviour of sliding friction of rubber substrate is very complicated due to the influence 

of a number of factors including contact area and contact stress. Friction coefficient of rubber 

sliding against a hard substrate can be expressed in terms of the contribution of adhesive and 

deformation (hysteric). Adhesion component of friction originates from making and breaking 

of junctions at a molecular level, and the hysteric friction is a consequence of energy loss 

associated with internal damping within the viscoelastic surface [50].  
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The contact area and the contact pressure play an important role in rubbers internal friction 

through the adhesive and hysteric components. 

For elastically hard materials, adhesion does not appear itself on a macroscopic scale. The 

real contact area consists of randomly distributed contact areas and at higher sliding velocity, 

rubber become stiffer and the area of real contact is reduced, and then adhesive interaction 

between the substrate and rubber is also reduced [51]. 

As a result of the hysteresis of the deformation (by counterpart), an internal friction is 

generated. The hysteretic contribution which is caused by the viscoelastic properties of the 

materials depends on the time, temperature and frequency. Also sliding speed plays an 

important role for the hysteresis contribution [52]. Fig.9. Show the relationship between 

coefficient of friction and sliding velocity.  

 

Fig.9. Relationship between coefficient of friction and the sliding speed [52]. 
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When designing elastomers parts (Rubber) for tribological applications, explanation of 

friction is very important in order to determine the contact conditions. Through deformation 

of rubber or elastomer, and as a result of the viscoelastic material behaviour, a part of the 

applied strain energy is transformed to heat, caused by internal friction (hysteresis). The 

amount of this energy loss is the ratio of the loss and the stored moduli of the material [47]. 

When repeated loads are present, the hysteresis contribution to friction is more significant. In 

the case of sliding friction between an elastomer and rough rigid surfaces, the elastomer is 

subject to repeated cyclic deformation by the asperities of the rough surface. This generates 

heat at the surface internally and this type of internal heat generation can lead to fatigue wear 

[53]. Fatigue wear depended on the contact area of the elastomer with a hard surface, which 

decreases with an increase in sliding velocity. Fig .10. show the elastomer contact area as a 

function of sliding velocity.    

 

Fig.10. Rubber contact area of the counter surface as a function of sliding speed [53] 
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2.4.3   Rubber Friction Mechanism 

The area of actual contact of the elastomers is proportional to the load. For rubber, because of 

the low elastic modulus and because it is relatively incompressible, it exhibits elastic 

instabilities during sliding. The compressed rubber surface infront of contact area is subject to 

bulking and output detachment waves which propagate from the front to the back end of the 

contact area. These wave are known as a Schallamach waves and were first discovered in 

1971 [54]. When the substrate is a smooth surface the friction is due to local stick slip events 

at the sliding interface.  

Schallamach suggested a molecular mechanism for the local stick slip, where rubber polymer 

chains at the interface link and attach to the moving counter face , stretches, detaches, 

relaxes, and reattaches to the surface to iterate the cycle, and through each cycle, the elastic 

energy stockpiled in the polymer chain is wasted as a heat through friction [55]. 

Person and Vollokitin (2006) noted that Schallamach theory of the local stick slip of rubber 

molecules was not completely accurate. These state that the energy bulkheads for vertical 

detachment are generally much higher than the energy bulkheads for lateral sliding. 

Therefore it is not expected that any detachment will occur. Rubber is nearly incompressible 

and it is not easy that a single molecule robustly confined at the interface are able to move 

between an elongated state and relaxed state. 

In general, Schallamach waves and Stick slip waves are depended on kinetic friction 

coefficient  µ𝑘 and on the sliding velocity V. Schallamach waves occur when 
dµk

dV
 > 0, but 

stick slip observed when  
dµk

dV
 < 0  [56]. 



25 
 

Schallamach waves are continuous waves over distance or time. But if the friction force or 

sliding velocity does not continue (with constant value) as a function of distance or time, or 

produce a form of fluctuation it is called a stick slip phenomena. Fig.11. Shows stick slip 

waves and schallamach waves. For the stick slip phenomena, through the stick stage, the 

friction force increases to the nominated value, and then slip occurs at the interface. Stick slip 

usually increases whenever the coefficient of static friction is markedly higher than the 

coefficient of dynamic friction, and the stick slip occurs either repetitively or in a random 

manner [46, 56]. 

 

Fig.11. (a) Kinetic friction coefficient for rubber sliding on glass surface, (b) Kinetic friction 

coefficient for rubber sliding on Teflon surface [56]. 
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For small tracks, during the stick the shear stress at the interface increases continuously with 

time up to the local shear stress (critical stress) after which a fast local slip occurs in addition 

during the slip the elastic deformation energy stored in the rubber during the loading stage 

will be dissipated partly inside the rubber and partly at the interface [57, 58, 59].  

2.4.4       Friction, coefficient of friction and geometry of rubber seals. 

Tribological seal friction  can be assessed by analysing the friction and leakage performances, 

which can be obtained from endurance and friction testing related to operating parameters 

and conditions concerned [60]. Due to the motion, friction seals may be classified as 

reciprocating seals, rotary shaft seals, piston rod seals, and piston seals. The tribological 

behaviour of the seal, generally depends on the magnitude of losses (friction force, leakage, 

and wear) and on the operating parameters like contact area, contact pressure [61]. The 

necessity of using the sealing elements are strongly recommended, seals are exposed to 

higher stress through the sealing in order to avoid  leakage and to prevent fluid mixing and to 

protect the machines. Sealing effect occurs through the deformation of the seal, and when 

considerable friction forces occur unwanted consequences on the system efficiency or on the 

sealing element itself may result [60].  

Mofidi, and Prakash (2011) [62] carried out experiments to find out the influence of 

lubrication on two body abrasive wear of many types of sealing elastomers. Based on the 

experimental results they found that (1) at a normal load about 1.5 N and a speed of 10 r.p.m 

the friction coefficient decreased after a running-in period and the wear was insignificant (2) 

The longest running-in periods was observed during sliding against fine surface (3) speed 

dependence of friction was different for different elastomers (4) in presence of the oil, the 

elastomers could be in contact for longer duration. 
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Fig. 12. (NBR, HNBR, FKM, ACM) Friction coefficients during the operating times of 

elastomers [62] 

Many previous researchers analysed the friction of reciprocating rubber seals and they 

developed expressions for calculation of the seals friction force under sliding conditions, and 

their calculations were dependent on two factors: the seal contact surface length and the seal 

contact area. Determination and calculation of these two factors is key to calculation of the 

seal friction force.                  

Wendt (1971), examined stress distributions in O-rings and X-rings with emphasis of groove 

design. The most significant result of his work includes an expression for contact width of an 

unrestrained axially loaded O-ring. Molair (1973), who examined the contact surface and 

contact stress, lend credence to the finding of Wendt. AL-Ghathian (2005) [64], developed a 

relationship as practical and convenient option for computing the friction force in O-ring 

sealing elements as used in hydraulic and pneumatic equipment, and he developed an 

expression of the friction force (𝐹
𝑓
 ) as: 
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                           𝐹𝑓=2µΠ.D3rE (1-
𝐷3−𝑑4

4𝑟
)√1 −

(𝐷3−𝑑4)2

16𝑟2
                               (1) 

Where µ is coefficient of fiction, D3 is the diameter of seal contact surface (mm), d4 is ram 

inside diameter (mm), r is O-ring radius (mm) and E is the modulus of elasticity [64]. Due to 

the expression above the main factor is the seal contact diameter. 

 

Seal Diameter D3 mm 

Fig.13. Relationship between friction forces and the diameter of O-ring seal [64]. 

Mofidi (2009) friction of sliding elastomer seals, he used a steel cylinder in contact with an 

NBR rubber substrate concluded that the diameter d of the contact region between the steel 

cylinder and the rubber substrate can be estimated using the Hertz contact theory for bodies 

with cylinder geometry [65]. 

 

                                               d =2(
𝟐 𝐅𝐧.𝐃

𝛑.𝐥.𝐄
)𝟎.𝟓                                              (2) 

Where Fn is the load acting on the cylinder, D is cylinder diameter, E is the rubber young 

modulus and l is the contact length. 
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The average pressure in the contact region is given by. 

 

                                                  P = 0.5(
𝛑 .𝐅𝐧.𝐄

𝟐.𝐋.𝐃
)𝟎𝟓                                          (3) 

From these two equations the seal friction force can calculated. And also from the above 

expression the main contributing factor is seal contact diameter. 

As a result, a lot of researches were focused on friction of elastomers seals, and few of 

previous researches focused on friction of the NBR piston seals used in water hand pumps. 

For the piston seals used in a hand pump, seal friction force depended on the contact area, 

contact stress and the squeeze percentage. The lip of the piston seal limits all these factors. 

Diameter of the piston seal and the deflections angle of the lip are the key to calculating 

piston seal contact area which plays an important role of seal friction. Fig.14. displays the 

relationship between the number of cycles and percentage of lip worn. 

 

Fig.14. Wear of the lip of the seal with the number of cycles [26]. 
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The coefficient of friction of elastomers are affected by changes in the contacting surface and 

contacting area. The friction coefficient decreases during running-in periods to reach steady 

state values.  

In the dynamic seals there is a difference between the frictions at the start up and running. At 

the beginning of operation or beginning of movement, the start-up friction must be overcome, 

while the running-in friction depends on countless working factors. By calculating and 

determining the amount of seal squeeze and the contact pressure the performance of sealing 

can be predicted. When the compression of seal contact is more than the working pressure the 

seal will seal the joint and there is no leakage. However when the compression of seal contact 

area is lower than the working pressure, there is leakage, which means the contact stress is 

lower than the required stress. On the other hand, the increase in the amount of seal squeeze 

above the established limits results in higher friction and then higher removal of rubber 

material leading to higher seal wear. The compression is the percent decrease in diameter of 

the seal. Seal diameter highlights the amount of the compression and the amount of seal 

squeeze can be calculated by equation (iv). 

 

Squeeze={1-
diameter of the seal before compression−diameter of the seal after compression

diameter of the seal before compression
}×100%  (4) 

Fig.15 shows seals friction force due to the % of the seal compression. As a result of the seals 

squeeze, the contact stress will increase [64, 65].  
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Fig.15. Friction due to seal compression [66] 

2.4.5           Lubrication and sliding seals  

During sliding of the rubber surface, interaction between the rubber molecules and the 

substrate will occur in most conditions. Through sliding it is probable that the rubber at the 

interface is subject to local stick slip motion, while the contamination layer fluctuates 

between a solid state at stick and a fluidized state through slip. This kind of local stick slip 

motion occurs for lubricated sliding systems at low sliding velocities [65]. Fig.16. shows the 

relationship between the coefficient of friction and sliding velocity for NBR rubber against a 

steel ring under lubricated condition. 

 Rubber friction under dry sliding condition is higher than that under wet or in the conditions 

presence of lubricant. The existence of fluid between rubber and a hard substrate reduces the 

adhesion and hysteretic components of friction. This is because the lubrication reduces the 

actual contact area between the rubber and hard substrate and this leads to a decrease in the 

rubber friction coefficient (fig.17) [54]. 
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Fig.16. Relationship between coefficient of friction and sliding velocity in lubricant 

condition, for NBR rubber materials [65]. 

 

Fig.17. Relationship between dynamic coefficient of friction and logarithm of velocity, for 

rubber (tire) sliding in dry and wet conditions [67]. 

Mofidi, Prakash, and Persson. (2008) carried out  experiments with rubber operating using 

eleven kinds of lubricants, and they found that the rubber friction coefficient were almost 

equal when sliding and operating in different lubricants, this indicates that rubber friction is 

not through shearing a thin viscous layer, but due to the internal friction of the rubber 

material [68]. 
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Many previous studies focused on sliding rubber in the presence of the oil as a lubricant. 

However, a number of researchers studied sliding rubber in the presence of water as a 

lubricant. The water effectively smooth’s the substrate surface, and thus reduces the 

viscoelastic deformation contribution of the rubber friction from the surface asperities. 

However there are problems in using water as a lubricant with some kind of rubber. Water 

has an effect on Nitrile butadiene rubber (NBR) when used as a seal in a lot of machines, 

similar to those used as a piston seals in water hand pump. 

Water changes the mechanical properties of NBR, because water molecules reduce forces 

between the polymer chains, and this lead to reduction in intermolecular force. This can result 

in easy material removal during sliding and quickly, increased wear of the seals [69]. 

Finally, it has been found for dry and wet sliding,  that with the lip shaped seal patterns, the 

friction force increase sharply near the end of the in-stroke and start of the out-stroke over a 

complete range of duty parameter. If the piston is used to lift or push fluid, and piston seal is 

a lip shaped pattern, the maximum pressure inclination on the out-stroke is much larger that 

on the in-stroke, therefore the leaks occur through the out-stroke [70]. 
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2.5      Piston seal of the Water Hand Pump  

The task of the piston in a water hand pump is to lift the water from underground to the 

surface. The piston in our rig divided the pump cylinder into two chambers, during the stroke 

the water flows through piston valves from the bottom chamber to the upper chamber. When 

the piston moves down, the valve opens, and when the piston moves up the valve close to 

raise water by the piston force. The piston seals function is to seal the gap between the piston 

and the cylinder bore, and also to prevent mixing of inlet and outlet water. This requires 

critical contact stress with complex design of the lip of the piston seal. During movement of 

the piston up and down, the piston seals will be under a friction force, and there is a 

fluctuating forces and stress also acting on the piston seals.  

The ideal and typical friction force on a piston seal of a water hand pumps during 

operating condition is shown in Fig.18. 

 

Fig.18. Variation of the load acting on the piston seal during one cycle of the hand pump  
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From fig.18, the solid line ABCD highlights the ideal friction loads, and the dashed curve 

EFGHIJ shows the typical friction loads through one cycle of the piston in a typical water 

hand pump. Point A; the piston is at the bottom of the cylinder (BDC-Bottom dead centre) 

before it starts to move, so the friction force acting on the piston seal is zero. When the piston 

starts to move up, there is a friction force acting on the piston seal until point B. From point B 

to point C, the friction force is constant as the piston reaches the top of its stroke (TCD-Top 

dead centre). At point C, the piston starts to move down, resulting in a friction force acting on 

the piston seal until point D. At point D the piston stops and return to the BDC to complete 

one cycle. From D to A, the friction is constant because the pistons stops before its second 

cycle. During the actual stroke as the piston accelerates up it requires a higher force to move 

up, and the friction force of the piston seal increases rapidly as from point E to point F. The 

inertial forces required to accelerate the water from rest cause the maximum friction force at 

point F to exceed the ideal at point B. From point F to point G a reduced external force is 

required. The problem from point G to point H is the closing of piston value. By point I the 

piston is decelerating and has reversed direction by point J. 

2.6   Wear rates  

A number of wear models and equations were studied to analyse their origin, content and 

applicability. There is no single predictive equation or group of equations that could be found 

for general analysis of water hand pumps. There are a number of wear models derived using 

solid mechanics, and most of these depend on material properties [71]. There are three 

general methods used between 1947 and 1992. Empirical equations up to 1970 are directly 

built with data taken from experiments. Barwell [72] proposed that the wear rate is a function 

of time.  
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Rhee [73] found that the total wear of friction material (elastomers) is a function of the 

applied load, speed and time.  Contact- mechanics based equations were common in the years 

between 1970 and 1980. They generally began as a model of a system, with account taken of 

topography of contacting surface in order to calculate the local region of contact. An example 

of this is due to Archard [74] who published well in advance of the later contact mechanics  

                                                      ( Vw= K.S.
N

P
)                                                          (5) 

where 𝐕𝐰 is the worn volume, S is sliding distance, N is the applied load and P is the pressure 

which is nearly equal to the hardness, and the ratio of  
N

P
  is given as the real contact area, K 

is a constant. It is rationalised, that the value of K is obtained from experiment and it is 

known as a wear coefficient [75]. Equations based on material failure mechanism are also 

common to  measure wear and are formulated with observance to (1) mass of removal 

material from the solid volume of removed material and (2) reduce dimensions of the solid 

[76].Burbor, 1974: propose that the wear rate is a function of the normal pressure, sliding 

velocity and temperature. Galin and Goryacheva, 1989: recognised elastic deformations of 

the surface connecting with rigid foundation. Anisotropic (having a physical property which 

has a different value when measured in different directions) wear has also been investigated 

by Zmitrowicz, 1993. Heterogenous wear and wear dependent on the sliding path curvature 

have been investigated by Zmitrowicz, 2005. The theory of wear rate begins by determing the 

rate of removal of materials as a function of the hardness of material, sliding velocity, and 

probability of material to produce a wear particle and also the forces applied [61]. In general, 

wear can occur in different forms which depend on contact between the surfaces of materials 

and the contact area, abrasion, adhesion, erosion and fatigue [77].  
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Fig.19 and Fig 20, show wear rate and wear coefficient versus sliding distance for some 

materials. 

                                      𝑚3 

m 

Fig.19. (a) Wear volume versus sliding distance, (b) Wear coefficient versus sliding distance 

[78]. 

 

Fig.20. Type I, a constant wear rate during the whole process, Type II. The transition from 

initially high wear rate to steady wear at low rate(this type is often observed in metals, Chiou, 

1985), Type III, catastrophic transition from initial wear of low rate to wear of high rate, such 

as a fatigue wear ( Cho, 1989), [79]. 
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Mofidi [63] and Mofidi. Braham Prakash [62] carried out experiments to find the influence of 

lubrication on two body abrasive wear of sealing elastomers. Based on their experimental 

results, they found that the presence the oil resulted in a decrease in coefficient of friction of 

the sliding elastomers. Fig.21. displays the relationship between elastomers friction 

coefficient and the sliding conditions. 

 

 

Fig. 21. Elastomers friction coefficients in dry and lubricant sliding conditions [62] 

Empirical testing is a very important step for the development of any mathematical model. 

During these tests the model can be verified and any difficulty or problems highlighted. 

However there are a lot of variables which effect the wear rate [80]. Reye in 1860, said that, 

the volume of removal of materials from any surface was proportional to energy dissipated 

into it by the relative motion of two connecting surface 

                                                                  (V= 𝐾𝑟.W)                                                        (6) 

 where V is the volume of removal materials, 𝐾𝑟 is Reyes wear constant, W is work 

dissipated into material. Reyes model evaluated wear of materials from an energy 

consideration stand point [81].  

 



39 
 

Tabor in 1939, considered that the real amount of contact between two surfaces is less than 

the apparent contact area. He developed two equations to predict behaviour of the contact 

area. Using an elastic assumption he stated that the contact area between the surfaces 

depended on the cubed root of the force applied At the same time, using a plastic assumption, 

he stated that the contact area between two surfaces dependant on the square root of the load 

applied. From these hypotheses, the findings showed that the actual contact area increase 

with increasing load [82]. Holm in 1946, posted that the singular atoms on opposing 

asperities were travel towards each other and then collide. By this hypothesis he stated that 

the amount of worn material during the atomic interactions was a function of the properties of 

the materials in contact and the load or the force acting on the contact 

                                                             (V = Z.P / 𝑃𝑚)                                                        (7) 

 where V is the volume of removed per unit sliding distance, Z is the probability of removal 

of an atom per atomic encounter, P is the load applied and Pm is the flow pressure of worn 

surface [80]. Archard [74] decided that key consideration must be used in a wear model. He 

endeavoured to apply some variables into one predictive equation, and these include: wear 

mechanism, sliding speed, contact area, contact pressure and material properties. Archards 

equation of the wear rate depended on a greater number of variables than Holms equation, 

and Archard equation is very important to analysis and determine the volume of removal 

materials. The period after 1953 saw a lot of studies applying Archard equations, and a 

number of wear rate equations derived from it, so Archard equation is still considered an 

excellent model for calculation of wear rates [83]. Therefore, according to all previous 

wear models, there is to date no formula or models found to calculate the material 

removal rate of NBR piston seals in water hand pumps. 
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Due to the frictional forces on rubber, elastic deformation of the specimen occurs. For most 

materials, the deformation is expected at the contact area under loading, but for rubber and 

elastomers the elastic deformations is expanded beyond the contact area, this phenomenon is 

particularly apparent when the reciprocating stroke length is short. 

Because of the difficulty in understanding rubber wear mechanisms and rubber deformation, 

little effort has been focused on the characteristics and wear of the rubber seals, piston seals 

and sealing systems [11]. Very limited research has been conducted on the wear of piston 

seals in the presence of water, and a very few has been reported regarding how to 

determine and calculate the wear rate of removal material of piston seals used in water 

hand pump. 
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2.7       Finite Element Analyses (FEA) of the wear 

Finite element analysis method F.E.A, is a technique for acquisition of numerical solutions to 

boundary value problems, which predict the response of physical systems subjected to 

external loads. Analysis of contact problems generally requires the determination of stresses 

and strains within the contacting surfaces, together with information regarding the 

distribution of displacements, velocity and stresses at the contact area [45]. Calculating the 

contact stress distribution is very complex; therefore advanced numerical methods must be 

used, such as finite element analysis F.E.A [84]. Fig.22. show the F.E.A of elastomer seal. 

 

Fig.22. Sample of analysis plots for original seal design. The plot for displacement response 

shows the seal in the unloaded condition (meshed shape) and the condition after application 

of pressure load and spool movement (colored shape)   [85] 

Early theoretical and numerical determination of  wear problems were carried out by;  Galine 

and Goryahevae  [47], Grib [69], Hugnell [36], Stromberg [37], Franklin [40], Ko Kato [41]  
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Shillor [42], Mc Coll [43), Kim [44] and Raczelt [39]. All discussed optimization problems 

with respect to the contact surface geometry generated wear [45]. 

Rubber is an unparalleled material as it behaves like a highly viscous liquid under fluctuating 

stress, and rubber can undergo large reversible deformations. The properties of rubber 

included: large deformation, nonlinear, load-extensions, viscoelastic and damper, nearly 

incompressible (volume does not change under stress), nonlinear response to stress or strain, 

exhibiting significant relaxation, and solid hyper-elastic. All these properties are required for 

F.E.A methods when rubber is in contact with a sliding surface on a hard substrate [87]. 

Fig.23. displays the stress effected on the O-ring seal after compressed. 

 

Fig.23. Forces and stresses on the O-ring seal as a result of cylinder pressure [66]. 
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The subject and theory of finite elasticity or non-linear elasticity was developed in 1940s, and 

is associated with Rivlin,and  afterward the development of continuum Mechanics associated 

with the Truesdell School during 1950s and 1960s.  

The impetus for the theoretical developments in finite elasticity came from the rubber 

industry because of the importance of rubber in many engineering components; one of these 

is the rubber seals. This impetus was maintained with an increasing use of rubber [86]. There 

are many types of non-linear elastic models available such as Blatz-ko, Mooney-Rivlin, Neo-

Hookean, and Ogden. The description of rubber materials tends to base itself on stretch ratio 

rather than strain, where stretch ratio λ is defined by    λ = 
𝐿

𝐿𝑜
  where; L is the deformed 

length of the sample and  𝐿𝑜 is the original length. The most widely used finite element 

model for non-linear elastomer is Mooney-Rivlin model. Mooney-Rivlin model was 

developed from the Neo-Hookean model. It is usually available in two parameters, although 

three, five, and nine parameters may provide better results at higher strains [88].  

 

Hyperplastic material (Rubber) has a very low modulus of elasticity and is almost 

incompressible, so the poisons ratio is very close to 0.5. Also for hyperplastic material 

loading changes the distance of the atoms with in the lattice of the material and so increase 

the internal energy, and during loading a stretching and un-balling appears. Loading may lead 

to deformation such as creeping [89]. Fig.24. shows Non-linear response of a hyperplastic 

material. 
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Most seals are made from the rubber and these may include reciprocating and dynamic seals, 

rod seals, piston seals, and O-ring seals. All of these seals during operation are in contact 

with the substrate surface, and there is a contact stress. The distribution of the contact stress 

can be calculated only by using F.E.A method. 

 

Fig.24. Non-linear response of  a hyperplastic material [89] 

Many studies has been performed to analysis the operation of reciprocating seals, starting 

with Kambayashi (1964) as well as Lawire and Dorrogue (1964). There were limitation in 

their outcomes by the way seals are designed and selected. However, the numerical model 

were able to determine friction, wear, and leakage within the area where the seal lip attach as 

to a surface and that resulted in reduction cost and time of design [90]. Sun and Alberson 

(1996), Peng (1994), their studies the performance of U-Cup hydraulic seals under static 

loading states and found the frictional forces, and stresses developed within the seal. In 2002, 
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 a study by Claus, discusses the development of a new heavy duty piston seal using F.E.A and 

comprehensive testing required. Over the years, F.E.A has assisted the designers to reform 

seals. In 2006, Nicholas discusses the reciprocating rod seals response to dynamic conditions, 

and how the numerical model competent of simulating the dynamic conditions for seal could 

be defined [91].  

Arthur Bullock in his study [92], combined a F.E.A seal model with dry boundary friction 

coefficient, and tribology simulations were produced based on the results of a FEA 

simulation of the rod-seal contact pressure. 

 

 

                              a                                                                      b 

Fig.25 .a-Parker-Hannifin single-lip seal and b- Seal dimensions (mm) assumed in single-lip 

seal FEA model [92] 

 

The contact pressure is critical in seal modelling, performance evaluation and failure analysis. 

It is difficult to find and calculate the contact pressure distribution of a lip seal due to the size 

of the contact area. 
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Arthur Bullock [92], carried out experiments to measure the constant velocity friction for 

single-lip and double-lip seals over a range of sliding speeds and sealed pressures with 

special consideration applied to the instroke-outstroke direction dependence. The results for 

different seals are presented in the following sections 

For the single –lip seal  

Increasing the sealed pressure creates an almost equivalent uniform increase in the pressure 

distribution across the contact above a critical value of sealed pressure (approximately 20 bar 

(Fig 26).  A significantly higher sealed pressure is required to completely flatten the seal 

against the rod at the change in geometry compared with the lowest sealed pressure required 

to first induced contact between the rod and main body of the seal. The pressure distribution 

across the main body of the seal is approximately constant. 

 

Fig.26. Pressure distribution from FEA of single-lip seal, 0.4 mm radius at the seal corners 

that form the inlet and outlet. Numerical labels indicate the sealed pressure (bar) [92] 
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For double-lip seal 

The secondary lip produces a region of significantly higher contact pressure than the 

remainder of the seal, resulting in correspondingly higher normal reaction forcers. At lower 

sealed pressures, the additional reaction created by the secondary lip is significant relative to 

the single-lip. For higher sealed pressures, the additional contact pressure along the full 

lengths of the seals reduce the proportional difference in normal reactions between the single 

lip and double-lip seals 

 

 

Fig.27. Pressure distribution from FEA of double-lip seal. Numerical labels indicate the 

sealed pressure (bar) [92] 
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For the O-ring seal 

 

Fig.28. Pressure distribution from FEA of O-ring. Numerical labels indicate the sealed 

pressure (bar) [92]. 

 F.E.A is a powerful tool to estimate the seal stress, strain, and contact pressure distribution. 

The amplitude and distribution of contact pressure of a seals is dependent on the contact area 

of the interface as the contact area changes continuously due to material wear. The contact 

area and seal deformation can be dramatically changed without considering the reduction in 

thickness of the seal due to wear. The worn off material (removed continuously) must be 

continuously accounted through the cycles to simulate seal wear [93]. 

Nandor Bekesi [94], in his study (friction and wear mechanisms of elastomers in dry and 

lubricated sliding conditions), a tribological tests were carried out tribological tests in order to 

study the dry sliding friction between an EPDM rubber specimen and a rotating steel shaft. 
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He found that after applying the normal load  the shaft begun to rotate. The contacting nodes 

were stuck to the shaft at first, then started to slip. The contact pressure values were 

considerably different in the contact area; in some regions the contacting surfaces separated 

(fig 29), the rubber became creased and a wrinkle appeared, which remained till the end of 

the simulation  

 

Fig.29. Deformed shape due to sliding time [94] 

  Nandor studied [94] sliding wear of a seal models of both numerical and experimental to 

analyse the behaviour of sliding seal experimentally and numerically, he carried out 

experiments and he investigated EPDM rubber seal are shown in Fig. 30 . 

 

Fig.30. FE model of the seal section before (left) and after mounting in the holder (right) [94] 

 



50 
 

In the test series, various lubrication conditions were investigated namely dry, boundary and 

fluid film lubrications. In the case of dry sliding, the specimen was torn into pieces after a 

few minutes and the test was stopped. When the specimen was fluid film lubricated, no trace 

of wear was visible on the surface. Based on the results of the researches, Nandor found that 

the ridges of the seal and the lip edge wear first, and the wear occurs not only in the top layer, 

but in several layers of elements. Fig. 31. Displays seal worn over the sliding time and due to 

the number of the cycles 

 

 

Fig.31. Worn seal area due to sliding time and sliding cycles [94]. 

The wear process of one ridge can be tracked in the successive images of Fig. 32. 

 

           0 min                 15 min                  30 min                45 min                60 min 

Fig.32.The wear process of one ridge of the seal.  
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The images show the left ridge of the seal model after 0, 15, 30, 45 and 60 minutes of sliding, 

respectively [94]. The specification of non-linear material properties for elastomers is very 

difficult. Theories for large elastic deformations based on strain energy density functions 

have been developed for hyperplastic materials. These theories, coupled with F.E.A, can be 

used effectively by design engineers to analysis and design elastomer products operating 

under highly deformed states. In the case of incompressible materials, the Mooney-Rivlin 

model remains the most widely used, and this model uses strain energy function in F.E.A 

modelling [95]. The engineering strain (change in length divided by the original length) is 

given by,  

                                                              Ɛ=
𝐿1− 𝐿0

𝐿0
                                                                  (8) 

the stretch ratio λ is another fundamental quantity, it is length after deformation divided by 

the original length  [96]      

                                              λ = 
𝐿1

𝐿0
 = 

𝐿1−𝐿0+ 𝐿0

𝐿0
 = Ɛ + 1                                                      (9) 

The pioneering Mooney-Rivlin model on finite elasticity, it is derived based on the elastic 

strain energy per unit volume (W), which is a function of the three principle stresses 

(stretches) of deformation, that is W=W(𝜆1,𝜆2,𝜆3), where 𝜆1 = 𝑙𝑖 / 𝐿𝑖 (i=1,2,3), and 𝑙𝑖 & 𝐿𝑖 

being deformed and reference length, respectively. It is assumed that the mechanical 

properties of rubber like solids can be represented in terms of the energy functions. Assuming 

isotropic solid and isothermal conditions, the energy must be independent of the coordinate 

system used.  Therefore it can be come-cross three strain invariants; I1= 𝜆1
2 + 𝜆2

2 +𝜆3
2, I2 = 

(𝜆1. 𝜆2)2 + (𝜆2. 𝜆3)2 + (𝜆3. 𝜆1)2 and  I3 =(𝜆1. 𝜆2. 𝜆3)2 ,  
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for incompressible solid such as rubber: 𝜆1. 𝜆2. 𝜆3=1, so I3= 1 for the rubber [97]. Mooney –

Rivlin function for hyperplastic can be displayed by; 

                                                 W = 𝐶1 (𝐼1- 3) + 𝐶2(𝐼2 – 3)                                                  (10) 

where 𝐶1 & 𝐶2 are material constants, and can obtained experimentally through tests, the 

initial shear and initial bulk modulus is; G=
𝐸

2(1+ʋ)
 , K=

𝐸

3(1−2ʋ)
 , where E is the material young-

modulus and ʋ is passion ratio. For Mooney-Rivlin the initial shear modulus is related to 

material constant by G = 2(𝐶1+𝐶2), and if the material is incompressible, then the initial 

tensile modulus is given by E= 6(𝐶1 +𝐶2). The stress-strain equation can be expressed as: 

                                             Ơ = 2{λ-
1

λ2
}{𝐶1+

C2

λ
}                                            (11) 

this equation can be rewriter as     

                                                          
Ơ

2{λ− 
1

λ2)
= 𝐶1+ 

C2
λ

                                                      (12) 

this equation is the equation for a straight line, and can be plotted as 
Ơ

2{λ− 
1

λ2)
 against  

1
λ

  

[88]. If the stress-strain curve is not available and only the modulus of elasticity E is known, 

then according to reference [71], a reasonable approximation to use is; 𝐶1= 4𝐶2 and  E = 

3(𝐶1+𝐶2), resulting in 𝐶1=
4E

15
 and 𝐶2=

E

15
 . Mooney-Rivlin model has been used for problem 

involving reciprocating seals [84]. Fig.33. Show stress-stretch equation for an incompressible 

two parameter Mooney-Rivlin model. 
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Fig.33.Relationship between uniaxial stress-stretch for two parameter incompressible 

Mooney-Rivlin Model [89]. 

Table 3.presented the studies which used the F.E.A method for rubber seals analysis: 

 

Author 

 

Albrson 

 

Year 

 

1994 

Study titel 

 

Analysed the performance of the U-Cap hydraulic seals under 

static loading condition.  

Ref: 

 

91 

 Claus 2002 Analysed the performance of heavy duty piston seals to confirm 

the seal design. 

90 

Brian  2005 Analysed dynamic O-ring seals friction in a hydraulic actuator. 66 

Nicholas 2006 Analysed the rod seals response to dynamic conditions 91 

Arthur 2010 Analysed rod seals: contact pressure, and boundary friction 

coefficient in dry moving, using a hydraulic actuator.  

92 

 

Nandos 

 

 

2011 

Analysed the tribological behaviour of sliding EPDM rubber 

seal, using aluminium plunger pressed against the seal specimen 

and moved in reciprocating way. 

 

94 
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3.    Theory 

3.1     NBR Piston seals contact area and its friction force  

Piston seals used for water pumping are characterised by the deflection angle of the lip (Ø) 

and by the diameters 𝐷1 and 𝐷2 as shown in Fig .34. These dimensions are very important, 

because 𝐷1, 𝐷2  and Ø define the function of the piston seal, and the seal compression. This 

influences the friction force acting on the piston seal. In general, any seal performance is 

considered to be primarily a result of the sealing force that develops when a seal is 

compressed. 

                                                              

                                                                       A                                 Cross section A 

Fig.34: Piston seal and its dimensions.  
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The initial sealing effect before the operating pressure is applied is produced by the 

interaction of the seal edges on the cylindrical contact surfaces for any type of seal, and when 

the operating pressure is elevated the sealing pressure is automatically increased. The 

evaluation of the NBR piston seal friction force and wear rate is dependent on the seal contact 

width and piston seal contact area. 

Following compression of the piston seal in the cylinder there is a deflection of the lip of the 

seal, and the distance of the lip deflection defined as X. Due to the lip deflection there is a 

contact surface (width) defined as Y at the inner wall of the pump cylinder. Fig.35. highlights 

the shape of the piston seal before and after the compression.                                                

             

             (a)                                                                            (b) 

 Fig.35 NBR piston seals shape (a) before compression and (b) after compression 
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The movement of the lip (X distance) causes a compression. The percentage of compression 

is different along the seal contact width Y. The amount of the compression depended on the 

deflections angle of the lip (Ø) and the slope of the seal edge. 

The maximum compression is at the top of Y (lips edge) and the minimum compression is at 

the bottom of Y.  

Piston seal compression can be calculated by the equation in the literature:  

Compression={1- 
diameter of the seal before compression−diameter of the seal after compression

diameter of the seal before compression
}×100%    

So the percentage compression of NBR piston seal is: 

                                  Compression %={ 1- 
𝐷1−2𝑋

𝐷1
} × 100%                                         (13) 

Due to equation (13) the maximum compression is at the top of Y (lips edge) and the 

minimum compression is at the bottom of Y.   

To compute the friction force and wear rate of the NBR piston seal it is necessary to find 

and calculate the contact area of the NBR piston seal. 

 

                                                                 Z=
𝐷1−𝐷2

2
                                                            (14) 

                                                                Ø = 𝑡𝑎𝑛−1 𝑍

𝐿
                                                          (15) 

                                                       X=
𝐷1−𝐷𝑐

2
                                                     (16) 

where Dc is Diameter of the cylinder bore  

 

                                                                   Y= 
𝑋

𝑡𝑎𝑛Ø
                                                             (17) 
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From equation (13) we can calculate the compression at any point along Y.  

The contact area CA of the NBR piston seal after compression is given by. 

                                                                   CA=π.𝐷𝑠.Y                                                    (18) 

Substituting equation (17) into equation (18), an equation for calculating the contact area of 

the NBR piston seal of the water hand pump is developed. 

 

                                                                 CA= 
π.𝐷𝑠.X

tanØ
                                           (19) 

Forces acting on the NBR piston seals through reciprocating motion up and down are the 

water load and the weight of (piston and pump rod). 

                                                     F = ρ.g.H ( Ac – Ar) + W.g                                         (20)       

F; is the total forces acting on the piston seal (newton), ρ is water density (kilogram per meter 

square), H is the water column (meter), Ac is the cross section area of the pump cylinder 

(meter square), Ar is cross section area of the pump rod (meter square), W is the total weight 

of piston and pump rod and piston seals (kilogram), g is gravity acceleration (meter per 

second square).  

The seal friction force (Fs) is given by 

                                                     Fs = µ (P ×  CA) = µ ( 
F

Ac−Ar
  ×  CA)                    (21) 

Where Fs is the seal friction force (newton), µ is the dynamic seal friction coefficient, P is 

the total pressure acting on the piston seal (newton per meter square), CA piston seal contact 

area (meter square). 
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Substituting equation (19) in to equation (21) and using Ac & Ar in term of D, the equation 

for calculating NBR piston seals friction force: 

                                                               Fs = µ ( 
F

π

4
(𝐷𝑐

2− 𝐷𝑟
2)

 × 
π.Ds.X

tanθ
)               (22) 

                                              Fs = 4.µ.F.X. 
Ds

(Dc
2− Dr

2) .  tanθ
               (23) 

Where Ds  is same 𝐷1 piston seal diameter (meter), Dc; is pump cylinder diameter (meter), 

and Dr; is pump rod diameter (meter). 

The friction force acting on the piston seal of a water hand pump is continually changing 

through the movement of the piston up and down during one cycle due to the weight of the 

water column during the piston stroke. 

3.2     Wear rate and Volume of removal material of lip shaped piston seal. 

Archard equation is still considered to be an excellent model for calculation of wear rates. 

Applying Archards adhesive wear equation (1953), a new wear rate model can be developed 

to calculate and determine the wear rate of NBR piston seal over the sliding time. 

Archards adhesive wear equation is: 

                                                 Vw=
1

3
 K.S.

N

P
                                      (24)                                   
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WhereVw is volume of removed material (𝑚3) , S is the sliding distance (m), N is the applied 

load (Newton), P is the pressure which is approximately equal to the hardness H (
𝑁

𝑚2). K is 

the wear coefficient and it is a constant. 

By rearrange Archards equation, the wear coefficient can be calculated by the following Equa 

                                                             K =3 
𝑉𝑤/𝑆

𝑁/𝑃
                                          (25) 

Vw

S
  is the area of removed material AW (𝑚2), and  

N

P
 is the real contact area AR (𝑚2). 

Therefore the coefficient of wear (K) is the ratio of the area of removal material per the real 

contact area, and it is constant: 

                                                                      K =3 
Aw

AR
                                    (26) 

For the NBR piston seal of the water hand pump, AW and AR   change with time of 

operation, and through the piston sliding distance. They also change due to the fluctuating 

load of the water acting on the piston seal. This can lead to the value of coefficient of wear 

(K) changing due to the change in contact area. 

 

 

 

 

 



60 
 

The area of the removed material is equal to the difference between the seal contact area 

before and after testing replaces equation (26) in equation (18) give 

                                                           K =3 
(π.Dsb.Yb)−(π.Dsa.Ya)

π.Dsb.Yb
                               (27) 

In general Y can be calculated from equation (17):  Y= 
𝑋

𝑡𝑎𝑛𝜃
 

Where (Dsb and Yb) are the piston seal diameter and length of piston seals contact surface 

before the test, and  Dsa and Ya) are the piston seal diameter and length of piston seals 

contact surface after the test. By removing π, the equation for calculating wear coefficient 

can be expressed by the following. 

                                                          K =3 
(Dsb.Yb)−(Dsa.Ya)

.Dsb.Yb
                                        (28)  

Substituting equation (28) in equation (25), results in the Equation for the Volume of 

removed material 

                                            Vw = 𝜋{(Dsb. Yb) − (Dsa. Ya)} × S                          (29) 

Equation of the Wear rate of NBR piston seal 

                                               Aw = 𝜋{(Dsb. Yb) − (Dsa. Ya)}                             (30) 

These equations will be applied for calculating wear volumes and wear rates. 
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4.     Experimental set up  

4.1   Rig Design  

The purpose of this research is to study and analyse the wear of NBR piston seals and to 

investigate the mechanisms of wear under sliding conditions in the presence and absence of 

water. To carry out this research, a custom built pump rig was designed and developed which 

operate similarly to the water hand pumps used in developing countries. Two similar hand 

pumps operate with the same stroke using pneumatic cylinders to reciprocate. Fig 36 shows a 

photograph of the test rigs. By used this rig and over operating time the wear will occur and 

increase with time of operation also by increase the stroke of the piston can find and 

determine its effect on wear of the piston seal. 

The pump rig has been designed to conduct experiments on frictional and wear behaviour of 

NBR piston seals first under dry condition with short stroke 56.74 mm and long stroke 200 

mm, and with different loads acting on the piston seals. Second, in wet condition with short 

stroke 56.74 mm and long stroke 200 mm, using water as a lubricant.  
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Fig.36   Wear test rigs 

In this study, an investigation of uncoated NBR piston seals were used to measure the seal 

friction and wear rate. For each pump, there are two NBR piston seals, one at top and one at 

bottom of the piston chamber dividing the pump cylinder into two areas. The motion of the 

pneumatic cylinders rig allowed the piston to move up and down at a specific stroke length. 
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4.2    Pump rigs components and specifications 

The Cylinder was made from cast iron with a Brass-lined inner wall.  The inner diameter of 

the cylinder was 63.03 mm, and there are upper and lower caps made from cast iron. The 

inner diameter of outlet of the upper cap was 39.68 mm, the inner diameter of the inlet cap 

was 39.68 mm, Fig.37. shows pump cylinder and caps. 

                                                                          

 

 

 

 

Cylinder cups                                       

 Cups seal 

 

Fig.37. Pump cylinder, caps and Cap seals 

 

Pump rod was the rod made from steel with a 12.05 mm diameter and 41 mm length. This 

connects the piston in the pump cylinder to the rod of pneumatic piston. The pump rod of the 

piston can extend and retract.  

Piston was made from brass and included a housing contains the piston seals and piston 

valve. The piston is connected to the pump rod. The piston lifts the water by the piston 

motion. Fig.38 shows the piston and piston valve. Piston valve is a one way valve and the 

water flows through the valve into the upper chamber of the cylinder. 
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Fig.38. Piston housing and valve assembly 

 

 

Fig.39: Top and bottom piston seals 

Foot valve: It is a one way valve and is located at the lower cap. The water flows through the 

foot valve up-ward into the lower cylinder. The foot valve is open on the up stroke and close 

sealed on the down stroke. Fig.36 show foot valve. 

 

Fig.40. Foot valve assemply 
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4.3    Pneumatic system  

The pump rig operates by using a pneumatic system which contains: 1-Double acting 

cylinder (Type 20×57 for the short stroke 56.74 mm and type 32×200 for the long stroke 200 

mm). 2- U- type guide unit of 20 mm DIA cylinder up to 57 mm for short stroke, and U-type 

guide unit of 32 mm DIA cylinder up to 200 mm for long stroke. 3. Reed switches two for the 

short stroke and two for the long stroke. The pneumatic system is supplied with air pressure 

to a maximum of 10 bars. The piston rod of the pneumatic piston connects with the pump rod 

of the rig, so when the pneumatic system operates, the pump rod moves with a reciprocating 

motion. The air supply is controled by using   5/2 solenoid operated valve. This pneumatic 

system allowed the pump rig to operate continuously simulating the operation of a hand 

pump used in developing countries. To calculate the pressure drop, the piston is provide with 

two pressure gauges, one at air inlet pipe and other at air outlet pipe. 

 

                                                                                                                           Control panel 

Fig.41.Schemetic diagram of the pneumatic circuit of the wear test rig                                            
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5.   Result and Discussions  

5.1 Experimental Results for Pumps Rig with Short Stroke (56.74 mm) 

In this study two methods were used for analysis of wear of the NBR piston seals of the water 

hand pump, under wet and dry sliding conditions. These methods are experimental analysis 

and Finite Element Analysis (F.E.A). The validity of the equations outlined in Chapter 5 for 

seal contact area, seal friction force, coefficient of seal wear, and volume of removed material 

from seal were tested using the experimental rig. Three experiments were carried out and 

each experiment included a number of tests. The first experiment was conduct under wet 

sliding and in the presence of water, where the pump rig ran to pump clean water, similar to 

the mode of operation of water hand pumps used in the developing countries. At the same 

time, the water played an important role as it acted as a lubrication fluid for the piston seals. 

This experiment was carried out with different piston speeds 115, 144, 153, 165, 189 

(mm/sec) each test at a constant speed and the operating time for each test was 3 hours. 

Forces acting on the piston seals were water loads and weight of piston plus pump rod. The 

second experiment was under dry sliding condition which included two tests. The same 

velocity (153 mm/sec) was used for these tests, operating times for the test was two hours and 

four hours respectively. Forces acting on the piston seal were weight of piston plus pump rod. 

Third experiment was also conducted under dry sliding condition with effect of a mass of 

0.5 Kg added (to increase the load on the piston seal and find its effect), this experiment 

included two tests. Same velocity was used for the tests and the operating time for test one 

was 2 hours and four hours for the second. Forces acting on the piston seal were: weight of 

piston plus pump rod and mass of 0.5 Kg was added to the pump rod. 
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Due to the deflection angle of the lip of the piston seal the compression of the seal after 

insertion into the cylinder is not homogeneous and not equal on all the regions of the seal 

contact surface (Y). To prove that the piston seal contact surface (Y) was divided into 5 equal 

regions (6 points), the diameter and the travel distance (X) of each point were evaluated. 

Table 4, presents the results of the NBR piston seal compression. The % compression along 

the contact surface was calculated and found that the % compression (starting from the lips 

edge) was 2.446% and at the remaining points was 1.939%, 1.460%, 0.977% and 0.489 

however at the bottom point of the contact surface (Y) the compression was zero because at 

the last point the seal diameter is 63 mm which is equal to the diameter of the pump cylinder 

(63 mm). 

Table 4. % Compression of the lip of the NBR piston seal due to the travel distance X and for 

a different points along the contact surface (Y). 

Contact surface  Y divided to 5 

regions (6 points) starting from 

the lips edge 

Seal 

Diameter  

mm 

Travel 

distance 

X      

mm 

% 

Compression 

Point 1 64.58 0.79 2.446 

Point 2 64.246 0.623 1.939 

Point 3 63.934 0.467 1.460 

Point 4 63.622 0.34 0.977 

Point 5 63.31 0.155 0.489 

Point 6 63 0 0 
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Fig.41 Piston seal before and after compression  

The compression of the piston seal is not homogeneous, and this influence on the behaviour 

of the piston seal during sliding conditions.  The maximum compression was at the top point 

(lips edge) of the piston seal contact surface (Y), The compression will reduced until the 

bottom point of seal contact surface which has the minimum compression. That mean higher 

wear will occur at the top of the seal edge. This is in a good agreement with research’s results 

of ALghathiam (2005) (64] and Nandor (2011) [94]. 

5.1.1    Wet sliding wear in presence of the water:  

The results obtained from this experiment confirm that the forces acting on the piston seal are 

fluctuating forces. During the reciprocating motion, the piston seal was influenced by the 

weight of the water. Due to the change in water column during the sliding distance, the 

influence of the loads acting on the upper piston seal changed throughout each cycle.   
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A change was noted when the piston was at the bottom of its stroke and started to move up, 

The load decreased when the piston was moving up, the water was forced out until the end of 

the half stroke (56.74 mm). Afterward the load increased during the downword stroke. Water 

will flow through piston valve from the lower chamber of the pump cylinder to the upper 

chamber until the end of the stroke (113.8 mm). This change of the loads is same and equal 

for each cycle. Table 5 shows the change of load acting on the piston seals during the first, 

second, and third cycles.  

 

Table 5. Loads acting on piston seal over sliding distance and through each cycle. 

 

 

 

      

    

 

 

 

                                                        

 

 

 

First Cycle Second Cycle Third Cycle 

Load acting 
on piston 
seal (N) 

Piston seals 
sliding 

distance 
(mm) 

Load 
acting on 

piston 
seal (N) 

Piston seals 
sliding 

distance 
(mm) 

Load acting 
on piston 

seal (N 

Piston seals 
sliding 

distance 
(mm) 

   19.289 0 18.985 124 18.985 252 

18.985 10 18.691 134 18.691 262 

18.691 20 18.397 144 18.397 272 

18.397 30 18.103 154 18.103 282 

18.103 40 17.603 171 17.603 299 

17.603 57 18.103 188 18.103 309 

18.103 74 18.397 198 18.397 319 

18.397 84 18.691 208 18.691 329 

18.691 94 18.985 218 18.985 339 

18.985 104 19.289 235 19.289 356 

19.289 114     
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Fig.42. Fluctuating load acting on the upper piston seal, for wet sliding in presence of the 

water. 

Fig.42. shows the maximum and minimum water loads acting on the upper piston seal and 

also shows the fluctuating load over the sliding time. This fluctuating load results in wear of 

the seal material, then removal of material and a fatigue wear.  The lower piston seal is not 

under the same fluctuating load because the water is acting only on the upper seal. 

It can be established that the: NBR piston seal under wet sliding condition and in presence of 

the water will be under the influence of fluctuating load and this will increase the oscillating 

stress at the top surface of the piston seal resulted in fatigue wear,  and higher wear rates than 

that focuses on the lower piston seal  

Table 6 (a), 4(b) and 4(c.) show the results which obtained from wet sliding experiment in 

presence of water. The loads acting on the upper piston seal are water load and piston plus 

pump rod weights. 
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Table 6 (a). Piston seal contact area under wet sliding conditions 

Piston 

seal Dia 

(mm) 

Operating 

hours 

(H) 

Load 

acting on 

the seal 

(N) 

θ 

lip seals 

deflection 

angle 

X 

Travel 

distance 

of the 

seal edge 

(mm) 

Y 

Contact 

surface 

(mm) 

CA 

Contact 

area 

(𝒎𝟐)×

𝟏𝟎−𝟒 

No of 

Cycles 

64.58 0 19.289 11.9 0.79 3.7 7.5 0 

64.19 3 19.289 11.51 0.59 2.9 5.8 11102 

64.09 6 19.289 11.47 0.54 2.6 5.4 22204 

64.05 9 19.289 11.41 0.51 2.5 5.1 33306 

63.99 12 19.289 11.36 0.48 2.4 4.9 44408 

 

 

Fig.43. Piston seal contact area for wet sliding conditions. 

 

 



72 
 

The contact area of the piston seal is large at the beginning of the experiment and then 

gradually (Fig 43). For the first 3 hours, the reduction was higher. This is due to the higher 

friction at start of the experiments. Water then acts as a lubricant fluid and formed a low 

friction layer. This reduced the seal friction and led to a decreases in the deformation of the 

uncoated NBR piston seal. This would eventually reduce the seal wear. This is a good 

agreement with the research results of  Mofidi [63] and Mofidi . Prakash [62]. 

Table 6 (b). Friction force and coefficient of friction of the piston seal for the wet sliding 

conditions 

Piston 
seal Dia 

(mm) 

Load 
(N) 

µ 
Coefficient 
Of friction 

Seal 
friction 

force (N) 

Total 
load 
(N) 

Strain Stress 

(
𝑵

𝒎𝟐) 

Operating 
hours 

(H) 

64.58 19.289 0.25 4.89 
 

24.5 
At start 

0.2069 25116 0.25 

64.19 19.289 0.19 3.78 23.3 0.1997 33862 3 

64.09 19.289 0.18 3.52 23.1 0.1989 35925 6 

64.05 19.289 0.17 3.3 22.9 0.1985 37039 9 

63.99 19.289 0.16 3.1 22.7 0.1971 40416 12 

 

.  

Fig.44. Seal friction force for the wet sliding conditions. 
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NBR piston seal friction was higher at start of the experiment and then decreases gradually 

over time. (Fig 44) The seal contact area was large at the beginning as a result of the piston 

seals compression. This led to a higher force during the initial running in period. After that 

over time the seal friction decreases because the water influence on sliding condition and 

formed low friction layer. 

 

 

 

Table 6 (C ). Volume of removed material and wear rates for the wet sliding conditions. 

Piston 
seal DIA 

(mm) 

Operating 
Hours 

(H) 

Sliding 
Distance 

(m) 

Vw 
volume of 
removal 
material 

(𝒎𝟑)×

𝟏𝟎−𝟔 

Total Vw 
Volume 

of 
removed 
material 

(𝒎𝟑) ×

𝟏𝟎−𝟔 

Aw 
Wear 
Rate 

(𝒎𝟐)×

𝟏𝟎−𝟒 

Total Aw 
wear rate 

(𝒎𝟐)×

𝟏𝟎−𝟒 

K 
Wear 

Coefficient 

64.58 0 0 0 0 0 0 0 

64.19 3 1252 19.21 19.21 1.7 1.7 0.68 

64.09         6 2808 4.52 23.73 0.4 2.1 0.206 

64.05 9 4514 3.39 27.12 0.3 2.4 0.166 

63.99 12 6555 3.39 30.31 0.3 2.7 0.117 
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Fig.45. Volume of the removed material of uncoated NBR piston seals for wet sliding in 

presence of the water. 

 

Fig.45 highlights gradual increase in the volume of removed material of uncoated NBR 

piston seal over time. The reason of this removal is the wear of the uncoated NBR piston seal 

through the wet sliding condition. The fluctuating load of the water on the top surface of the 

piston seal could lead to fatigue wear. Again the friction of the piston seal contact surface 

against wall of the pump cylinder could cause wear of the seal.  

. 
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                                                 1st test         2nd test        3rd test        4th test 

Fig.46. Wear rate of uncoated NBR piston seal in wet sliding conditions. 

 

The wear rate of the uncoated NBR piston seal was extremely high at the first test (first 3 

hours) than at the other tests, and the wear rate gradually decreased for 2nd, 3rd, and 4th tests 

(Fig 46). This is due to the higher removal seal material (through the first 3 hours of the 

operating), as a result of: initial large contact area of the piston seal, initial higher seal 

compression, higher seal friction at starting of piston movement and increased water 

penetration over time resulting in a reduction in piston seal friction. 

 

 

 

 



76 
 

5.1.2        Dry Sliding Wear and Dry Sliding wear with Added mass. 

Table 7, Table 8 and Table 9 presented the results obtained from the second and third series 

of experiments under dry sliding conditions without and with the added weight to the piston 

rod respectively. 

Table 7 (a) Piston seal contact area under Dry sliding conditions 

Piston 
seal Dia 

(mm) 

Operating 
hours 

(H) 

Load 
(N) 

θ 
Lip seals 

deflection 
angle 

X travel 
distance 

of the 
seal edge 

(mm) 

Y contact 
surface 
(mm) 

CA 
contact 

area 

(𝒎𝟐)×

𝟏𝟎−𝟒 

No of 
Cycles 

64.50 0 12.811 11.98 0.75 3.5 7.08 0 

64.20 2 12.811 11.36 0.6 2.98 6.01 6336 

63.21 6 12.811 9.82 0.105 0.602 1.194 19008 

 

Table 7 (b) Piston seal contact area under Dry sliding conditions with added mass o5 

Kg. 

Piston 
seal Dia 

(mm) 

Operating 
hours 

(H) 

Load 
(N) 

θ 
Lip seals 

deflection 
angle 

X travel 
distance 

of the 
seal edge 

(mm) 

Y contact 
surface 
(mm) 

CA 
contact 

area 

(𝒎𝟐)×

𝟏𝟎−𝟒 

No of 
Cycles 

64.19 0 17.716 11.99 0.59 2.801 5.64 0 

63.74 2 17.716 11.82 0.37 1.767 3.53 6336 

63.01 6 17.716 10.067 0.005 0.028 0.055 19008 
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Fig.47. Piston seal contact area of the uncoated NBR piston seal under dry sliding condition 

and during dry sliding condition with the effect of 0.5 kg mass added to the pump rod. 

The initial contact area was found to be 7.00 × 10−4 𝑚2 for dry sliding. This reduced to  

6.01 × 10−4 𝑚2 over the first 2 hours of operation. As a considerable drop, a real contact 

area was noted to be  1.194. × 10−4 𝑚2  after 6 hours of pump operation. 
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For the dry sliding condition with the influence of added mass of 0.5 kg to the pump rod 

mass, the reduction of the contact area of the piston seal was higher than that with no added 

mass. The added mass of 0.5 kg to the pump rod mass led to an increase in the load acting on 

the piston seal and that cause higher material removal. 

These results are in a good agreement with research results of A. D. Ropert [48] and M. 

Mofidi [63] and Mofidi. Prakash [62]. 

Table 8 (a) Friction force and coefficient of friction of the piston seal for the dry sliding 

conditions 

 

Piston 
seal Dia  
(mm) 

Operating 
hours 
(H) 

Load 
(N) 

µ 
Coefficient 
Of friction 

Seal 
friction 
force 
(N) 

Total 
load 
(N) 

Strain Stress 
Stress 

(
𝑵

𝒎𝟐) 

Young 
modulus 

E (
𝑵

𝒎𝟐) 

× 𝟏𝟎𝟔 
64.50 0.25 12.811 0.26 3.22 16.02 0.207 18094.6 0.0871 

64.20 2 12.811 0.201 2.575 15.38 0.196 21316.1 0.1082 

63.21 6 12.811 0.039 0.511 13.322 0.171 107294.8 0.6245 

 

Table 8 (b) Friction force and coefficient of friction of the piston seal for the dry sliding 

conditions with added mass of 0.5 Kg. 

 

Piston 
seal Dia 

(mm) 

Operating 
hours 

(H) 

Load 
(N) 

µ 
Coefficient 
Of friction 

Seal 
friction 
force 
(N) 

Total 
load 
(N) 

Strain Stress 
Stress 

(
𝑵

𝒎𝟐) 

Young 
modulus 

E (
𝑵

𝒎𝟐) 

× 𝟏𝟎𝟔 
64.19 0.25 17.716 0.1887 3.343 21.059 0.207 31383.5 0.151 

63.74 2 17.716 0.118 2.09 19.806 0.204 50186.9 2.45 

63.01 6 17.716 0.00185 0.032 17.748 0.174 3186330 18.23 
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Fig. 48. Piston seals friction force during dry sliding condition and dry sliding condition with 

the effect of 0.5 kg mass added to pump rod mass. 

Due to the seal diameter in dry sliding condition was higher than in dry sliding condition with 

added mass the friction force at the beginning of operation was higher under dry sliding 

condition as shows in (Fig 48) The seal friction force ranged from 3.22 N for dry sliding 

conditions to 3.34 N for dry sliding with increased load during the initial experimental phase. 

These figures dropped considerably after 2 hours of operation and rapidly following 6 hours 

of running. This can be explained due to: 

1-Areduction in real diameter due to wear. 

2-Adecrease in the piston seal friction coefficient. 

3-Areduction in the adhesion force between the real surface and pump cylinder. 
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The results obtained from the experiment show that the reduction of NBR piston seals friction 

force was higher in dry sliding condition with effect of 0.5 kg mass added than in dry sliding 

condition. 

Table 9 (a ) Volume of removed material and wear rates for the dry sliding conditions 

Piston 
seal Dia 

(mm) 

Operating 
hours (H) 

Sliding 
distance 

(m) 

Vw 
volume of 
removal 
material 

(𝒎𝟑)×

𝟏𝟎−𝟔 

Total Vw 
removal 
material 

(𝒎𝟑)×

𝟏𝟎−𝟔 

Aw Wear 
Rate 

(𝒎𝟐)×

𝟏𝟎−𝟒 

Total Aw 
Wear 
Rate 

(𝒎𝟐)×

𝟏𝟎−𝟒 

K 
coefficient 

of wear 

64.50 0 0 0 0 0 0 0 

64.20 2 720 12.09 12.09 1.07 1.07 0.453 

63.21 6 2180 54.4 66.49 4.816 5.88 2.403 

 

Table 9 (b ) Volume of removed material and wear rates for the dry sliding conditions 

with added mass of 0.5 Kg 

Piston 
seal Dia 

(mm) 

Operating 
hours (H) 

Sliding 
distance 

(m) 

Vw 
volume of 
removal 
material 

(𝒎𝟑)×

𝟏𝟎−𝟔 

Total Vw 
removal 
material 

(𝒎𝟑)×

𝟏𝟎−𝟔 

Aw Wear 
Rate 

(𝒎𝟐)×

𝟏𝟎−𝟒 

Total Aw 
Wear 
Rate 

(𝒎𝟐)×

𝟏𝟎−𝟒 

K 
coefficient 

of wear 

64.19 0 0 0 0 0 0 0 

63.74 2 720 23.89 23.89 2.115 2.115 1.12 

63.01 6 2180 39.25 63.14 3.474 5.58 2.95 
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Fig.49. Volume of removed material of the uncoated NBR piston seal during dry sliding 

condition and dry sliding condition with 0.5 kg mass added to pump rod. 

The initial volume of material removed was slow for both dry and dry plus 0.5 Kg additional 

mass experiments. However following 2 hours of operation the rate of volume removal was 

considerably higher when the o.5 Kg mass was added. This rate decreased towards the end of 

the experiments resulting in a value of removal of   63.14 × 10−6 𝑚3  ( Fig 49). 

Higher removal of material of uncoated NBR piston seal with operating hours for both sliding 

conditions, is because of higher fiction between the seal surface and cylinder surface. The 

results obtained from the experiment show that at dry sliding condition with the effect of 0.5 

kg mass added and after 6 hours of sliding the diameter of the NBR piston seal reduced to 

63.01mm  which is almost equal to the cylinders bore diameter (63mm). 

Comparison of the results obtained from the experiments under dry sliding and wet sliding 

showed that the volume of material removed during wet sliding was less than during dry 

sliding, the volume of material removed after 6 hours of operation for wet sliding was 23,73× 

10−6 𝑚3 while the volume of material removed during dry sliding after 6 hours operation 

was 66.49× 10−6 𝑚3, that is because of the water act as a lubricant in wet sliding condition 

which reduce the seal friction and that led to reduce removal material. 
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Fig.50. Presents the graph of the wear rate of uncoated NBR piston seals for each test due to 

the operating hours for Dry sliding condition and Dry sliding condition with the effect of 0.5 

kg mass added to pump rod mass.  

 

 

Fig.50. Wear rate of NBR piston seal during dry sliding condition and dry sliding condition 

with 0.5 kg mass added to pump rod. 

 

The wear rate of the piston seal was initially low. However this increase to 1.07× 10−4 𝑚2 

and 2.11× 10−4 𝑚2 respectively for non-loaded and loaded (0.5 Kg) experiments. The result 

was noted after 6 hours of operation was that the loaded dry sliding wear rate was 

considerably lower than that of the dry sliding experiment, this may be explained due  to 

fatigue wear during the experiments or to unbalanced loading of the piston rod.  
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 5.1.3.    Comparison of the Results obtained from the experiments of the 

three sliding conditions. 

Based on the results of my experimental tests on Analysis of the wear of uncoated NBR 

piston seal the following can be stated. It can be established that:  

1-The reduction in contact area of the uncoated NBR piston seal in wet sliding condition and 

in presence of the water is lower than in dry sliding conditions.  

Presence of the water has a contribution to decrease the reduction of the seal diameter. The 

uncoated NBR piston seals diameter decreased from 64.58mm to 63.99mm during 44408 

cycles of wet sliding condition in presence of the water. While the diameter of uncoated NBR 

piston seal decreased from 64.50mm to 63.21mm during 19008 cycles of dry sliding 

condition.  

The higher reduction of uncoated NBR piston seals diameter was in dry sliding condition 

with effect of 0.5 kg mass added to pump rod mass, the diameter decreased from 64.19mm to 

63.01mm during 19008 cycle, that mean the piston seal diameter become equal to the 

cylinder diameter after 19008  

A relationship was found between the contact area and travel distance (X) of the lip of 

uncoated NBR piston seal after compressed, and I found that the contact area increases when 

X increasing. 

2- The presence of the water in wet sliding reduced the friction of the uncoated NBR piston 

seal with roll of the edge of the piston seal formation. And the friction of the uncoated NBR 

piston seal in dry sliding was higher with parallel line on the piston seal contact surface 

formation and with higher worn of the lip. 
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The friction in dry sliding increases when increasing mass of the pump rod. 

A relationship exists between the friction force and the travel distance (X) of the lip of the 

uncoated NBR piston seals after compressed, and I found that the friction force decreases 

when X decreasing. 

3- Higher removed of material of uncoated NBR piston seal during operating hours of dry 

sliding, and lower removed of material of uncoated NBR piston seal during operating hours 

of wet sliding in presence of the water.  

4- Uncoated NBR piston seal  in dry sliding condition (with effect 0f 0.5 kg mass added to 

the pump rod mass) failed after 19008 cycles, while for the wet sliding in presence of the 

water the uncoated NBR piston seal not failed after 44408 cycles. 

6- In wet sliding condition and in presence of the water the wear rate decreases after each 

test, while in dry sliding condition the wear rate increases after each test. 

A relationship exists between the wear rate and the length of the contact surface(Y) of 

uncoated NBR piston seal, and I found that removed of material increases when Y is large, 

and the removed of material decreases when Y reducing. 
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5.2.     F.E.A of uncoated NBR piston seals. 

The study of wear has been conducted for many years. In material science, wear is defined as 

the material degradation generated when materials are in contact. This section will describe 

the process of simulating the mechanism of wear that occur when using an NBR piston seal 

by using finite element analysis. 

Finite element method (FEA) is a numerical technique for finding approximate solutions 

to boundary value problems for differential equations. It uses various methods  to minimise 

an error function and produce a stable solution. FEM encompasses all the methods for 

connecting many simple element equations over many small subdomains, named finite 

elements, to approximate a more complex equation over a larger domain. Finite Element 

Analysis is used in problems where analytical solution are not easily obtained. Mathematical 

expressions required for solution are not simple because of complex: geometries, loadings, 

and material properties. This study uses F.E for analysis 2D Rubber and dry contact, where 

an axisymmetric model of an NBR piston seal of the water hand pump is compressed by the 

cylinder surfaces and then the loaded uniformly with distributed pressure. The NBR piston 

seal has an inner diameter 42 mm and outer diameter of 64.5 mm, and is bounded by 4 

contact surfaces. The piston seal contact edge moves a total distance of 1.58 mm compressing 

the piston seal. A total load of 24 N was applied and this included water load of 6.24 N 

applied in the Y direction for wet sliding condition. For dry sliding conditions a total load 

was 17.76 N. Piston seal was analysed using 2-parameters Mooney-Rivilen model. The 

Mooney –Rivilen material parameters were assigned values of C1 (N/𝑚𝑚2) & C2 (N/ 𝑚𝑚2) 

and d = 2/k (𝑚𝑚2 /N) . Using stress-strain equation :Ơ = 2{λ – 
1

λ2
}{𝐶1+

C2

λ
}, this equation 

can be rewritten as,     

                                                     
Ơ

2{λ− 
1

λ2)
 = 𝐶1+ 

C2
λ

                                                          (31) 

this equation is the equation for a straight line, and can be plotted as 
Ơ

2{λ− 
1

λ2)
 against  

1
λ
 , 

and then coefficient 𝐶1 and 𝐶2 easily calculated.  

 

http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Boundary_value_problem
http://en.wikipedia.org/wiki/Differential_equations
http://en.wikipedia.org/wiki/Variational_methods
http://en.wikipedia.org/wiki/Domain_of_a_function
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The geometry and dimensions for the piston seal model used for this study is presented in fig 

51.a. 

 

Fig.51 a. Piston seal geometry before compression  

To obtain the contact pressure distribution for the piston seal the appropriate was modified 

and produced in ANSYS 12. (Fig 51 b) 

 

 

Fig .51 b.  Piston seal contact after compression  
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Constraints were applied to the geometry as shown in Fig (51.C). 

 

Fig.51.C Constrain applied to the geometry of piston seal. 

A uniform sealed pressure was applied to the piston seal edge on the lip of the piston seal to 

simulate the loading from the compression and a load of the water was applied to the top 

surface to simulate the loading from the pressurized water for the wet sliding condition. For 

dry sliding there is no loading from the pressurized water 

The material was assumed to be non-linear elastic with poissons ratio of  0.49. 

A mesh was used along the piston seal as shown in fig (51.d). This mesh had 169 nodes 

across the piston seal interface for respective geometries. 

 

Fig.51.d. Mesh of the geometry of piston seal. 

Plane 182 element was used to allow the use of solvers designed for rubber materials. 
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5.3.     Finite Element Analysis (F.E.A) Results and Discussion. 

5.3.1      Wet and dry sliding conditions. 

Distribution of the contact stresses is very complex and can be analysed only by using F.E.A 

method. The distribution of the stresses acting on the uncoated NBR piston seal in wet and 

dry sliding conditions was analysed. Also, the behaviour of the seal friction and the wear (in 

wet and dry sliding conditions) was analysed.  

Uncoated NBR piston seal is non-linear elastic (hyperplastic) material and it is 

incompressible (volume does not change significantly with increasing stress). This type of 

material is able to undergo large reversible elastic deformations and has unique damping 

properties. Its behaviour is time dependant. Because of these reasons and due to the sliding 

conditions, ANSYS 12 Mechanical APDL software was used and the suitable F.E.A model 

was 2D Mooney- Rivlin, hyper 4 node plan 182 with axisymmetric behaviour 

5.3.2      Results of the Wet sliding condition 

Finite element analysis was carried out by using load conditions, water loads and piston and 

Pump rod weight. Table.8. presents the stretch ƛ= (Ɛ+1), and engineering stress of the 

uncoated NBR piston seal 
Ơ(𝒔𝒕𝒓𝒆𝒔𝒔)

𝟐[ƛ−
𝟏

ƛ𝟐]
  through the wet sliding. Also, the table shows Mooney-

Rivlin constant values. 
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Table 10. Engineering strain (ƛ), engineering stress and Mooney-Rivlin constants for the Wet 

sliding condition in the presence of water. 

Piston seal  

Dia 

mm 

No of cycles ƛ 

= 

(Ɛ + 1) 

1/ ƛ 

= 

1 / (Ɛ + 1) 

Ơ(𝒔𝒕𝒓𝒆𝒔𝒔)

𝟐[ƛ −
𝟏
ƛ𝟐]

 

N/𝑚2 

64.58 0 1.2069 0.82856 24132.67 

64.19 11102 1.1997 0.83354 33532.82 

64.09 22204 1.1989 0.83409 35697.91 

64.05 33306 1.1985 0.83437 36868.21 

63.99 44408 1.1971 0.83535 40473 

 

Table 11. Mooney-Riviln constant  

C10 C01 
d =2/k          

𝒎𝟐

𝑵
 

12000 3834310.6 5.199× 𝟏𝟎−𝟏𝟎 

 

At the start of the stroke and over the operating time of wet sliding time, the NBR piston seal 

will be effected by the load of the water and by the weight of the piston and pump rod. This 

effect will remain till the end of the cycle and as a result the piston seal will deform. The 

deformation is dependent on the contact pressure values. 

5.3.2. 1.       NBR piston seal after 3 hours of the wet sliding time. 

Figures: 52 displays F.E.A of the an NBR piston seal after 3 hours of the wet sliding time in 

the presence of water.  
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Fig. 52. Von.mises stress distribution the NBR piston seal after 3 hours of the wet sliding 

time in the presence of water. 

The results of the analysis show that the Von-Mises stress was different in the seal contact 

area. Several layers of the piston seal were influenced by the stress. The higher was stress 

distributed at the lips edge of the piston seal and along the seal contact surface high stress 

values were also noted along the top surface of the seal.  This is because of (1) higher 

squeeze of the lip (2) higher friction along the seals contact surface, and (3) The influence of 

the fluctuating load of the water along the top surface.  
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The maximum von-mises stress (11.186 MPa) was at the top surface of the lip specifically at 

small distance from the lips edge. Von-mises stress along the seal contact surface (starting 

from the lips edge) gradually decreased further away from the cylinder wall. The 

measurement is taken also decreases along the top surface of the seal.  

 Table.10. presented Von mises stress values for the NBR piston seal after 3 hours of the wet 

sliding time. Table 12 (a). presents distribution of the von-mises stress along the contact 

surface of the NBR piston seal (starting from the lips edge), Table 12 (b). presents 

distribution of the von-mises stress along the top surface of the NBR piston seal (starting 

from the lips edge), and Table 12 (C). presents distribution of the von-mises stress along the 

horizontal depth from the piston seal contact surface. 

Table 12. Distribution of the Von-Mises Stress values in the NBR piston seal, after 3 hours 

of the wet sliding in the presence of water.  
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Fig. 53. displays graphs of the von-mises stress in the NBR piston seal  due to the distance 

along the: seals contact surface, seals top surface, and horizontal depth which start from the 

contact surface, after 3 hours of the wet sliding time. 

 

Fig 53. Von mises stress in NBR piston seal after 3 hours of the wet sliding time 
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5.3.2.2.     NBR piston seal after 6 hours of the wet sliding time. 

Figures 54 displays F.E.A of the uncoated NBR piston seal after 6 hours of the wet sliding 

time and in the presence of water.  

 

Fig. 54. Von mises stress distribution in NBR piston seal after 6 hours of the wet sliding time 

in the presence of water. 

The condition of the NBR piston seal after 6 hours of the wet sliding time is different than 

after 3 hours. Von-mises stress was different in the piston seal contact area and several layers 

of the NBR piston seal were influenced by the stress.  
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The higher von-mises stress was found to be distributed at the lips edge of the seal and along 

the seal contact surface also along the top surface of the seal.  

Along the top surface of the seal (starting from the lips edge) the von-mises stress was found 

to decreased away from the lip. The maximum von-mises stress (10.364 MPa) was found at 

the top surface of the seal. This illustrates that the fluctuating load of the water remained 

effected on the piston seal (at the top surface of the seal). While the effect of the seal 

compression and the effect of the seal friction decreased, and due to this reasons the von-

mises stress at the seal contact surface decreased.  

 

Table.13 presents Von mises stress values for the uncoated NBR piston seal after 6 hours of 

wet sliding time. Table 13 (a) presents the distribution of the von-mises stress along the 

contact surface of the NBR piston seal (starting from the lips edge), Table 13 (b). presents the 

stress distribution along the top surface of the NBR piston seal, and Table 13 (c) presents the 

stress distribution along the horizontal depth. 
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Table 13. Distribution of the Von-Mises Stress values responses for uncoated NBR piston 

seal after 6 hours of wet sliding time in the presence of water.  

 

 

Fig. 55. displays graphs of the von-mises stress for uncoated NBR piston seal due to the 

distance along the seals contact surface, seals top surface, and horizontal depth which start 

from the contact surface  after 6 hours of the wet sliding time 
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Fig.55.Graphs show the von-mises stress values in the NBR piston seal at the seal contact 

surface, seal top surface, and horizontal depth after 6 hours of wet sliding time. 

 

5.3.2 3.      NBR piston seal wear after 12 hours of the wet sliding time. 

Figures 56 displays F.E.A of the uncoated NBR piston seal after 12 hours of the wet sliding 

time and in the presence of water.  
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Fig.56. von mises stress distribution in the uncoated NBR piston seal after 12 hours of the 

wet sliding time in the presence of water. 

After 12 hours of the sliding time, the effect of the stress in the all regions of the piston seal 

contact decreased. The maximum von-mises stress (10.362 MPa) was found at the lips edge.  

The highest of stress was found only at the small region of seal edge. This is because of 

higher removal of seal material occurred over the 12 hours of the sliding time, and due to the 

decrease in seal contact area. Decreasing of the piston seal contact area led to a decrease in 

the seal squeeze and the seal friction. 
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Table.14 presented Von mises stress values for the uncoated NBR piston seal after 12 hours 

of the wet sliding time. Table 14 (a). presentes distribution of the von-mises stress along the 

contact surface of the NBR piston seal, Table 14 (b) present the stress distribution along the 

top surface of the NBR piston seal, and Table 14 (c) present the stress distribution along the 

horizontal depth which start from the piston seal contact surface. 

Table 14. Distribution of the Von-Mises Stress values in the uncoated NBR piston seal after 

12 hours of the wet sliding time in presence of the water. 

 

  

After 12 hours of the wet sliding, along the piston seals contact surface (starting from the lips 

edge) von-mises stress values decreased and then remained at a constant value, while along 

the top surface von-mises stress first decreased and afterward increases. At the horizontal 

depth which starts from the seal contact surface the von-mises stress decreased afterward 

increased. 
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Fig. 57. displays graphs of the von-mises stress in the uncoated NBR piston seal due to the 

distance along the seals contact surface, seals top surface, and horizontal depth start from the 

contact surface  after 12 hours of the wet sliding time. 

 

Fig.57.Graphs show the von-mises stress values for NBR piston seal following 12 hours of 

wet sliding time. 
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As a result, some regions of the piston seals contact area deformed after 12 hours of wet 

sliding time due to the influence of piston seals compression, coefficient of friction of piston 

seals, and fluctuating load of the water. The deformation was higher at the lips edge of the 

piston seals and that led to increased wear of the piston seals material. 

Fig. 58. presented the deformation conditions of the uncoated NBR piston seal over the time 

during the wet sliding in the presence of water. 

  

                                                                 a-Sliding time is 0 (no stress) 

                                                                 contact surface length 3.7 mm 

 

           b- Sliding time is 3 hours         c – Sliding time is 6 hours            d- sliding time is 12 hours 

       contact surface length 2.9 mm   contact surface length2.6 mm    contact surface length 2.4 mm     

Fig. 58. Deformed shapes of the uncoated NBR piston seal after 0, 3, 6 and 12 hours of 

operation. 
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Fig.59. The contact surface length of the NBR piston seal in the presence of water. 

There was a reduction in seal contact surface length over sliding time which means that there 

was a wear in the seal. 

The F.E.A results on the contact surface length of the NBR piston seal over the wet sliding 

time are in a good agreement with the experimental results of my experiments and also with 

research results of  Bullock [92], and Bekesi  [94]. 

5.3.3     Dry sliding condition. 

Finite element analysis was carried out by using different loading conditions, (piston + Pump 

rod) weight under dry sliding condition. Table.13. presented: (stretch) ƛ= (Ɛ+1), and 

engineering stress   
𝑺𝒕𝒓𝒆𝒔𝒔 Ơ

𝟐[ƛ−
𝟏

ƛ𝟐]
 , of the piston seal through the dry sliding. Also the table shows 

Mooney-Rivlin constants value. 
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Table 15. Engineering strain, engineering stress and Mooney-Rivlin constants. For the dry 

sliding condition. 

Piston seal  

Dia 

mm 

No of cycles ƛ 

= 

(Ɛ + 1) 

 

1/ ƛ 

= 

1/(Ɛ + 1) 

𝑺𝒕𝒓𝒆𝒔𝒔 Ơ

𝟐[ƛ −
𝟏
ƛ𝟐]

 

N/𝑚2 

64.50 0 1.207 0.82850 17379.03 

64.20 6336 1.196 0.83612 21448.96 

63.21 19008 1.171 0.85397 121447.4 

 

Table 16. Mooney Rivlin constants 

C10 C01 d =  2/k            
m2

N
 

4000 4085724.2 4.89× 𝟏𝟎−𝟏𝟎 

 

At the early stage of operation and over the dry sliding time, the piston seal will be influenced 

by the weight of the piston plus pump rod. This influence will remain till the end of the 

operating time and as a result of this influence the piston seal will deform. The deformation 

depends on the contact pressure values. 
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5.3.3 1.       Uncoated NBR piston seal after 2 hours of dry sliding time. 

Figures 60 displays F.E.A of the uncoated NBR piston seal after 2 hours of the dry sliding 

time. 

 

Fig. 60. Von mises stress distribution in the uncoated NBR piston seal after 2 hours of the dry 

sliding time. 

The results of the analysis show that the Von-Mises stress was different in the piston seal 

contact area and several layers of the piston seal were influenced by the stress. The higher 

stress was developed at the lip of the piston seals and also along the piston seal contact 

surface. The maximum Von-Mises stress (4.927 MPa) was found at the tip of the seal. This is 

due to the higher squeeze of the lips seal and due to higher friction of lips seal.  
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The von-Mises stress gradually decreased along the contact surface and the top surface of the 

seal. Table 17 presented Von-Mises stress values for the uncoated NBR piston seal after 2 

hours of the dry sliding time.  

Table 17. Distribution of the Von-Mises Stress values in the uncoated NBR piston seal after 

2 hours of the dry sliding time 

 

. 

                            

.  
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Fig.61. displays graphs of the von-Mises stress after 2 hours of the dry sliding time 

 

Fig.61.Graphs show the von-Mises stress values in the uncoated NBR piston seal after 2 

hours of dry sliding time. 

Cooperation the von –Mises stress under dry sliding condition and wet sliding condition:  

Von Mises stress was highest on the top surface of the seal under wet sliding condition due to 

the fluctuating load of the water acting on the top surface of the seal, but under dry sliding 

condition the highest von-Mises stress was on the edge of the lip of the seal because there 

was no water and there was higher friction between the contact surfaces of the vseal and 

cylinder. 
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5.3.3.2.      Uncoated NBR piston seal after 6 hours of the dry sliding time. 

Figures 62 displays F.E.A of the uncoated NBR piston seal after 6 hours of the dry sliding 

time.  

 

Fig. 62. Von-Mises stress distribution in the uncoated NBR piston seal after 6 hours of the 

dry sliding time. 

The results of the analysis show that the Von-Mises stress after 6 hours of dry sliding time 

were less than that after 2 hours of dry sliding time. There was a higher reduction of the seals 

contact surface which lead to more wear and less in contact surface then less in stress. The 

maximum von-Mises stress (1.151 MPa) was found at the tip of the piston seals.  
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Table 18 presented Von Mises stress values for the uncoated NBR piston seal after 6 hours of 

the dry sliding time.  

Table 18. Distribution of the Von-Mises Stress values in the uncoated NBR piston seal after 

6 hours of the dry sliding time. 

 

                      a                                                  b                                                c 
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 Fig. 63. displays graphs of the von-Mises stress for NBR piston seal after 6 hours of the dry 

sliding time. 

 

Fig.63.Graphs show the von-Mises stress values in the uncoated NBR piston seal after 6 

hours of dry sliding time. 
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As a result, some regions of the piston seal contact area deformed in the uncoated NBR 

piston seal after 6 hours of dry sliding time due to the influence of the piston seals squeeze 

and the friction coefficient of the piston seals. The deformation was higher at the lips edge 

and along the piston seal contact surface. This deformation led to wear of the piston seal 

material and afterward removal of seal material. The higher removal of seal material causes 

higher reduction in piston seal contact area (Fig.64). 

 

Fig. 64. Presents the deformation conditions of the uncoated NBR piston seal over the time of 

the dry sliding. 

     

             

 a-Sliding time is 0 (no stress)       b-Sliding time is 2 hours          c-Sliding time is 6 hours 

contact surface length 3.5 mm        contact surface length 2.9 mm         contact surface length 0.6 mm 

 

Fig. 64. Deformed shapes of the uncoated NBR piston seal over the time of dry sliding,  
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Fig.65. The contact surface length of the uncoated NBR piston seal over the dry sliding 

cycles. 

The reduction in seal contact surface length over the time of dry sliding was higher than that 

in the wet sliding. This confirm that the wear of the piston seal during dry sliding operation 

was more than during wet sliding operation and that may be due to the higher seal friction. 

The F.E.A results on the contact surface lengths of the uncoated NBR piston seal over the dry 

sliding time are in a good agreement with the experimental results and also with the research 

results of  Bullock [92], and Bekesi [94]. 

5.3.4.      Dry sliding condition with effect of mass of 0.5 kg added to pump rod mass. 

Finite element analysis was carried out by using different loading conditions, {(piston + 

Pump rod) weight + a mass of 0.5 kg }. Table.17. presented: stretch ƛ = (Ɛ+1), and 

engineering stress 
Ơ(𝒔𝒕𝒓𝒆𝒔𝒔)

𝟐[ƛ−
𝟏

ƛ𝟐]
 , of the uncoated NBR piston seal through the dry sliding. Also the 

table shows Mooney-Rivlin constants values. 
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Table 19. the engineering strain, engineering stress, and Mooney-Rivlin constants, for the dry 

sliding condition with effect of a mass of 0.5 kg added to the pump rod mass. 

Piston seal  

Dia 

mm 

No of cycles ƛ= (Ɛ+1) 1/ ƛ = 

1/(Ɛ+1) 

Ơ(𝒔𝒕𝒓𝒆𝒔𝒔)

𝟐[ƛ −
𝟏
ƛ𝟐]

 

N/𝒎𝟐 

64.19 0 1.207 0.82850 30142.4 

63.74 6336 1.204 0.83056 48804.5 

63.01 19008 1.174 0.85178 3552556.5 

 

Table 20. Mooney-Rivlin constants 

C10 C01 d = 2/k         
m2

N
 

26000 9059143.2 2.201× 𝟏𝟎−𝟏𝟎 

 

 

5.3.4 1.       Uncoated NBR piston seal after 2 hours of the dry sliding time with the effect 

of a mass of 0.5 kg added to the pump rod mass. 

Figures 66 displays F.E.A of the uncoated NBR piston seal after 2 hours of the dry sliding 

time with the effect of a mass of 0.5 kg added to the pump rod mass.  
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Fig. 66. F.E.A of the NBR piston seal, and the condition after 2 hours of the dry sliding time 

with effect of mass of 0.5 kg added to the pump rods mass. 

.  
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The maximum Von-Mises stress (3.721 MPa) was at the tip of the seal. Von-mises stress 

gradually decreased along the contact surface, along the top surface of the seal, and along the 

horizontal depth of the seal. 

Table 21 presents Von Mises stress values in the uncoated NBR piston seal after 2 hours of 

the dry sliding time with the effect of a mass of 0.5 kg added to the pump rods mass.  

Table 21. Distribution of the Von-Mises Stress values in the uncoated NBR piston seal after 

2 hours of the dry sliding time with the effect of a mass of 0.5 kg added to thepump rod mass. 
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Along the contact surface (starting from the lips edge) von-Mises stress values gradually 

decreased and afterward remained constant. Also along the top surface (starting from the lips 

edge) von-Mises stress varies in a similar way. However along the horizontal depth starting 

from the seal contact surface the von-Mises stress continually decreased. 

Fig. 67 displays graphs of the von-Mises stress in the uncoated NBR piston seal along the 

seals contact surface, seals top surface, and horizontal depth starting from the contact surface, 

after 2 hours of the dry sliding time with the effect of a mass of 0.5 kg added to the pump rod 

mass. 

 

Fig.67.Graphs show the von-Mises stress values in the uncoated NBR piston seal due to the 

distance along the (a) seals contact surface (b) seals top surface, and (c) horizontal depth 

starting from the contact surface, after 2 hours of dry sliding time with the effect of a mass of 

0.5 kg added to the pump rod mass. 
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5.3.4.2.     Uncoated NBR piston seal after 6 hours of dry sliding time with the effect of a 

mass of 0.5 kg added to the pump rods mass. 

Figures: 68 displays the von-Mises stress distribution in the uncoated NBR piston seal after 6 

hours of dry sliding time with the effect of a mass of 0.5 kg added to the pump rod mass.  

 

Fig. 68. Von-Mises stress distribution in the uncoated NBR piston seal, and the condition 

after 6 hours of the dry sliding time with effect of the mass of 0.5 kg added to the pump rod 

mass.The maximum von-mises stress (0.090255 MPa) was at the lips edge of the piston seals. 

Von-mises stress gradually decreased along the contact surface of the piston seal (starting 

from the lips edge), along the top surface of the piston seal (starting from the lips edge), 
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 and along  the horizontal depth starting from the seal contact surface. There was a higher 

reduction in piston seal contact surface (it was nearly to zero). This indicated that there was a 

higher amount of material removed through the 6 hours of the sliding time. 

Table 22. presents Von-Mises strress values for the uncoated NBR piston seal after 6 hours of 

the dry sliding time with effect of the mass of 0.5 kg added to the pump rod massTable.20. 

Distribution of the Von-Mises Stress values in the uncoated NBR piston seal after 6 hours of 

the dry sliding time with the effect of the mass of 0.5 kg added to the pump rod mass.(a) 

along the contact surface (b) along the top surface. 

Table 22. von-Mises stress distribution 
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.Fig. 69 displays graphs of the von-Mises stress in the uncoated NBR piston seal along the 

seals contact surface and seals top surface, after 6 hours of the dry sliding time with effect of 

the mass of 0.5 kg added to the pump rod mass. 

Along the contact surface of the NBR piston seal (starting from the lips edge) von-mises 

stress values gradually decreases and afterward remained constant. However along the top 

surface (starting from the lips edge) von-Mises stress sharply decreased and afterward 

remained constant 

 

Fig.69.Graphs show the von-Mises stress values along (a) seal contact surface (b) seal top 

surface after 6 hours of dry sliding time with the effect of the mass of 0.5 kg added to the 

pump rod mass. 
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Fig. 70. Presented the deformation conditions of the uncoated NBR piston seal over the time 

of the dry sliding with effect of the mass of 0.5 kg added to the pump rod mass. The 

deformation was higher at the lips edge and at the piston seal contact surface.  

 

             

 a-Sliding time is 0 (no stress)      b-Sliding time is 2 hours          c-Sliding time is 6 hours 

contact surface length 2.8 mm        contact surface length 1.7mm        contact surface length 0.02 mm 

 

Fig. 70. Deformed shape of the uncoated NBR piston seal over the time of dry sliding with 

the effect of a mass of 0.5 kg added to the pump rod mass (a) sliding time = 0 hours (b) 

sliding time = 2 hours (c) sliding time = 6 hours. 
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Fig.71. The contact surface length of the uncoated NBR piston seal over the dry sliding 

cycles with the effect of mass of 0.5 kg added to pump rod mass. 

Higher wear of the piston seal during the dry sliding operation with 0.5 Kg added, there was 

no seal compression after 19008 cycles of the piston seal (Fig 71).  

The F.E.A results on the contact surface lengths of the uncoated NBR piston seal over the dry 

sliding time with effect of the mass of 0.5 kg added to the pump rod mass are in a good 

agreement with results of the experimental and also with the research results of Bullock [92], 

and Bekesi [94]. 

Fig. 72. displays the contact surface lengths over the sliding time of the uncoated NBR piston 

seal during wet and dry sliding conditions. Over the wet and dry sliding time the length (mm) 

of the contact surface of the NBR piston seal decreases. This decrease was different due to 

the sliding condition. The decreasing contact surface lengths occurred as a result of the wear 

of NBR piston seal. 
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Fig.72. contact surface lengths with different sliding conditions 
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6.1 Conclusion. 

Based on the results of the experimental tests carried out on the Analysis of the wear of 

uncoated NBR piston seal can be drawn, the following can be stated. It can be established 

that:  

1-The reduction in contact area of the uncoated NBR piston seal in wet sliding condition in 

the presence of water is found to be lower than that in dry sliding conditions.  

The presence of water contributes to a decrease in the seal diameter. The uncoated NBR 

piston seals diameter decreased from 64.58 mm to 63.99 mm during 44408 cycles of wet 

sliding condition in the presence of water. While the diameter of uncoated NBR piston seal 

decreased from 64.50mm to 63.21mm during 19008 cycles of dry sliding condition.  

 Higher wear of the uncoated NBR piston seals diameter was found during dry sliding 

conditions with the effect of 0.5 kg mass added to pump rod mass. The diameter decreased 

from 64.19mm to 63.01mm during 19008 cycle. This resulted in the piston seal diameter 

becoming equal to the cylinder diameter after 19008 cycles. Leakage across the seal would 

result following this level of wear 

A relationship was found between the contact area and travel distance (X) of the lip of 

uncoated NBR piston seal after compression. The relationship indicates that the contact area 

increases when the travel distance increases. 

2- The presence of the water during wet sliding reduced the friction of the uncoated NBR 

piston seal and also caused rolling of the edge of the piston seal. The friction of the uncoated 

NBR piston seal during dry sliding was higher resulting in the formation of parallel line on 

the piston seal contact surface and higher wear of the lip. 
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The friction during dry sliding increases with the increasing mass of the pump rod. 

A linear relationship exists between the friction force and the travel distance (X) at the tip of 

the uncoated NBR piston seals after compression. 

3- Higher removal of material of uncoated NBR piston seal occurs during operation under dry 

sliding conditions, and lower removal of material occurs during wet sliding in the presence of  

water.  

4- Uncoated NBR piston seal in dry sliding condition (with addition 0.5 kg mass added to the 

pump rod mass) failed after 19008 cycles. During wet sliding in the presence of water the 

uncoated NBR piston seal had not failed over 44408 cycles. 

5- In wet sliding condition and in presence of the water the wear rate decreases after each 

test. In dry sliding condition the wear rate increases after each test. 

A relationship exists between the wear rate and the length of the contact surface(Y) of the 

uncoated NBR piston seal. The volume of remove material increases when Y is large, and 

decreases as Y is decreasing due to wear. 

6- A good agreement was found between the results obtained from experiments and FEA of 

the NBR piston seal over the time for both wet and dry sliding conditions, 
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6.2 Future Work 

1-Further development of the pump rig system can be carried out to analysis the wear of NBR 

coated and uncoated piston seals. 

2- Testing and analysis of wear of NBR coated piston seal using experimental methods with a 

short piston stroke.  

3-Test and analysis of wear of NBR coated and uncoated piston seal using experimental 

methods with long and short piston strokes. 

4-Analysis of the wear of NBR coated piston seal using finite element analysis (F.E.A) 

methods. 

5-Validation of finite element analysis (F.E.A) methods by comparing with experimental 

results for NBR coated and uncoated piston seals.  
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Abstract 

The use of Nitrile Butadiene Rubber NBR as seal in machines has increased in recent years. 

NBR is considered as the standard material for sealing and NBR owes its many applications 

to a range of special mechanical properties. However, the non-linear mechanical properties 

and incompressible behaviour of NBR make the analysis of NBR very difficult. The literature 

review highlighted the fact that the most common technical cause of hand pump failures was 

the wear of the piston seals. The contact surface of the piston seals with the bore surface 

(Brass) of the cylinder and the piston seal contact area are the key to calculating and 

determining seal friction force and seal wear rate.  

Several researchers carried out modelling of friction and wear processes, though little of these 

focused on the wear of NBR seals, and very limited research has been conducted on the wear 

of piston seals in the presence of water, and a very few has been reported regarding how to 

determined and calculating the wear rate of removal material of piston seals used in water 

hand pump. 

In the major part of this research I have studied the friction and wear processes of NBR 

piston seals – Brass sliding pairs by experimental and numerical methods. Also, in the present 

study, the focus was on developing relationships as a practical and convenient option for 

computing: piston seals contact area and piston seals friction force and piston seals wear rate. 

The developed relationships were applied for a different diameters of the NBR piston seals in 

wet and dry sliding conditions, by investigating the obtained results from the experiments. 

 Carried out experimental tests at Dublin City University, DCU (Mechanical and 

Manufacturing Engineering School), Dublin, Ireland, and using pump rigs system, which 

operates similar to the water hand pumps, which used in developing countries. The rig was 

used from a previous master’s project, use of the system for different cases the previous 
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pump rig was develop to: two similar pump rigs operating in the same time with same stroke 

and used pneumatic cylinder with two metalwork reed switches for each rig to move the 

pump rod up and down. The results obtained from the experiments show (i) the effect of wet 

and dry sliding conditions and (ii) the effect of time operation on the seal contact area and 

(iii) how the wear increase over the time. 

The distribution of the stress in the contact area of NBR piston seal over the time of sliding is 

very complex. By using experiment method it is impossible to analysis the seal contact stress 

along the distance of the seal contact surface. Due to this reason and to analyse the contact 

stress and the wear of the NBR piston seal over the time of dry and wet sliding used finite 

element analysis (F.E.A) method in this research. 

The literature review highlighted that there was no study to date about using F.E.A method to 

analyse: the contact stress, friction behaviour and wear of NBR piston seals under wet and 

dry sliding conditions. And to date no study exists using F.E.A method to analyse the effect 

of fluctuating loads of the water acting on the NBR piston seals during the extension and 

retraction of the strokes of the piston.  

In this study, a good agreement has been observed through the comparison between the 

obtained results from experimental and F.E.A methods of the NBR piston seal over the time 

under wet and dry sliding conditions. 
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