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Principal Component Pyramids using Image Blurring 

for Nonlinearity Reduction in Hand Shape Recognition 

By 

Mohamed Farouk Kheir Eldin, M.Sc. 

 

Abstract 

The thesis presents four algorithms using a multistage hierarchical strategy for hand 

shape recognition. The proposed multistage hierarchy analyzes new patterns by 

projecting them into the different levels of a data pyramid, which consists of different 

principal component spaces. Image blurring is used to reduce the nonlinearity in 

manifolds generated by a set of example images. Flattening the space helps in classifying 

different hand shapes more accurately. Four algorithms using different pattern 

recognition techniques are proposed. The first algorithm is based on using perpendicular 

distance to measure the distance between new patterns and the nearest manifold. The 

second algorithm is based on using supervised multidimensional grids. The third 

algorithm uses unsupervised multidimensional grids to cluster the space into cells of 

similar objects. The fourth algorithm is based on training a set of simple architecture 

multi-layer neural networks at the different levels of the pyramid to map new patterns to 

the closest class. The proposed algorithms are categorized as example-based approaches 

where a large set of computer generated images are used to densely sample the space. 

Experimental results are presented to examine the accuracy and performance of the 

proposed algorithms. The effect of image blurring on reducing the nonlinearity in 

manifolds is examined. The results are compared with the exhaustive search scenario. 

The experimental results show that the proposed algorithms are applicable for real time 

applications with high accuracy measures. They can achieve frame rates of more than 10 

frames per second and accuracies of up to 98% on test data. 
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Chapter 1 

Introduction 

1.1 Overview 

Computer Vision (CV) is a field that helps in understanding digital images. CV 

extracts from the visual appearance of the images enough information for decision 

making. Artificial systems are used to reach this goal by extracting the information from 

images through the steps of preprocessing, analysis and classification. The image data is 

usually taken from video sequences using single or multiple cameras. The images can 

also be gathered from medical scanners as multi-dimensional data. [1,2,3]  

CV has many applications. Medical computer vision concentrates on extracting 

information from images for patient diagnosis. It can be used for measuring the size and 

shape of organs. Also, image enhancement can be applied to images to reduce the effect 

of noise [51]. CV has some applications in the field of industry. It can be used as a 

quality control aid tool to automatically classify the category of manufactured products. It 

can also be used in safety support by monitoring the actions made by workers to control 

machines and avoid accidents [52]. Autonomous vehicle control is one of the recent 

applications in this area. CV-based systems can support drivers or pilots in various 

situations. It can be used for navigation, detecting obstacles and autonomous landing of 

aircraft [53].   
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Human Computer Interaction (HCI) is one of the areas where CV plays a great role. 

CV methods can be used to implement a new way of interaction. Hand shape recognition 

for gestures provides a natural interaction between humans and computers. Hand shapes 

hold the information about the meaning of the gestures. As the hand is a deformable 

object, it is a challenging task to build a recognition system that can classify the same 

hand shape under different orientations or different viewpoints of the camera. Some of 

these applications are human-robot interaction, smart environments and multimedia 

analysis. Gesture recognition can help in achieving these applications. By performing a 

gesture, a robot can indicate where an object is by pointing to it. Smart meeting rooms 

can use gesture recognition for controlling presentations. Activity recognition can be used 

to analyze and categorize the huge amount of available multimedia data for automatic 

retrieval systems. [4,5] 

Gesture recognition approaches can be divided into glove-based and vision-based. 

The first approach uses electronic gloves to gather the information via a set of sensors 

about the hand shape and its position. Data gloves give good information as they directly 

measure the pose of the hand and fingers. However, they are expensive and are 

cumbersome to use. On the other hand, vision-based methods use only a camera to 

capture the hand shape in a natural way of interaction. The input video is decomposed 

into a sequence of frames that pass through a pre-processing stage to remove the 

unnecessary data. For example, hand and arm can be segmented from other background 

objects. There are two categories of vision-based systems, model-based and appearance-

based. [6] 
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Model-based methods depend on the 3D kinematics of a hand model, which takes 

into account all possible different degrees of freedom. A model-based approach provides 

a rich description of the hand shapes. However, it is computationally expensive, as a 

large number of instances of the model have to be generated to compare with the target 

image. Appearance-based methods depend on extracting the features of the images from 

the input video frames. Generally these methods have the advantage of real-time 

performance. [7] 

There are different techniques used to build classifiers in the category of  

appearance-based methods for gesture recognition. Some of them are Principal 

Component Analysis (PCA), Multidimensional grids, Artificial Neural Networks and 

Support vector machines. PCA can be used as a feature extraction and dimensionality 

reduction method. The data are projected into the eigenspace defined by the principal 

axes calculated from the covariance matrix of the training data. These principal axes 

represent a set of eigenvectors that have the highest eigenvalues. PCA can be viewed as a 

manifold-visualisation method that reveals the low-dimensional structures, which are 

embedded in the high dimensional feature space. PCA usually works well if the 

embedded manifold is linear.  A disadvantage of PCA is that it is highly sensitive to 

position, orientation, scaling, and lighting effects, which can lead to non-linear manifolds. 

Some of these parameters can be solved through a pre-processing stage which sometimes 

is time consuming. [8,9,23] 

Example-based approaches, which are a type of appearance-based method, use a 

large database of hand images to cover the possible variations in hand shapes. Many hand 

shape recognition algorithms need to apply an alignment as a pre-processing step to 
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rotate or scale the hand shape in a new image in order to classify it. Example-based 

approaches can avoid this preprocessing step by building a large database for training 

purposes. Computer-generated images can be used to build this database, as it is possible 

to control the position and orientation of the hand at regular intervals to densely sample 

the space, which is not easy if we use natural images. These approaches are limited to the 

poses or motions used in the training set and an extension to a wider variation may cause 

data overlapping and make the classification process more difficult. Depending on the 

size of the example images, the performance speed can be improved by accelerating 

database queries through applying hashing as an indexing method to approximate the k-

nearest neighbour problem. However, the classification accuracy usually is sensitive to 

the choice of the hashing functions and the size of the hash tables as well. [10] 

1.2 The Proposed System 

This section gives an introduction to the proposed algorithms. The thesis discusses 

the design of four algorithms using hierarchical pyramids. Image blurring is applied to 

reduce the nonlinearity in manifolds. PCA is used for building a set of eigenspaces for a 

set of example images. The thesis discusses the acceleration of the search process, 

robustness to rigid transformations using PCA and the effect of nonlinearity reduction 

using image blurring on increasing the accuracy measure. 

This thesis discusses accelerating the classification process by using data pyramids 

consisting of PCA spaces based on example images for 20 shapes from the Irish Sign 

Language. PCA is used for dimensionality reduction and feature extraction. As a large set 

of manifolds are generated to cover the wide variations in the data, it is time consuming 



5 

to exhaustively search them in order to classify new patterns. The rendered images are 

generated using a computer graphics software package to form a large database of 

111320 objects. These objects represent the 20 shapes at different rotations and 

translations in order to densely sample the space and increase the robustness of the 

system. While PCA eigenspaces are sensitive to translation and rotation, the proposed 

algorithms are invariant to these rigid transformations.  

This thesis discusses the contribution of using data pyramids as a multistage 

hierarchical algorithm to organize the different eigenspaces that are generated by 

applying PCA on the set of example images. PCA is an unsupervised learning technique 

that builds eigenspaces based on the feature space of the original data without taking into 

consideration the different classes of the data, which represent the different shapes and 

poses for the hands. The data pyramid organizes the eigenspaces in a supervised manner, 

where different eigenspaces are generated with example images for the same shape or at 

the same rotation.  

The proposed algorithms explore the effect of image blurring on the manifolds. 

Image blurring has the effect of removing small changes between objects. It is possible at 

a certain blurring level to estimate the pose parameters for new incoming patterns based 

on labeling by the nearest neighbour object from the set of example images. The 

multistage hierarchy uses image blurring to help in estimating the pose parameters for the 

new patterns by focusing the search process within a small number of eigenspaces from 

one level to the next. A final decision on the pose parameters can be taken at the bottom  

level of the pyramid. 
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Based on our set of example images, the thesis discusses the effect of reducing the 

nonlinearity in the manifolds by using image blurring. Nonlinearity reduction in 

manifolds plays a great role in designing the different classifiers in this thesis to get high 

accuracy measures as will be discussed in Chapter (3). Four algorithms are discussed 

through the thesis using different techniques. The first algorithm depends on a 

perpendicular distance measure [30] in searching for the closest manifold. The 

perpendicular distance measure assumes that the manifolds are linear and so blurring the 

example images helps in increasing the accuracy of the measure. The second and the 

third algorithms use Multidimensional Grids (MDGs) [31] for grouping the training data 

into cells containing objects that have high similarity. The cells are hyper-cubes with 

linear sides and reducing the nonlinearity in manifolds with image blurring has the effect 

of better separation between the objects within the grid cells. The fourth algorithm is 

based on using Artificial Neural Networks. As the pyramid organizes the manifolds into a 

multistage hierarchy, this gives the algorithm the advantage of using simpler Multi-Layer 

Perceptrons (MLPs) architectures. Each MLP is trained with a subspace, that represents 

certain parameters, instead of training a big architecture with the original global space. 

Nonlinearity reduction has the effect of speeding up the training process for the neural 

networks using the Feed Forward Back Propagation algorithm. It also helps to design 

simpler MLP architectures because less nonlinear decision boundaries can be found to 

solve the classification problem as will be discussed in Chapter (3).  
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1.3 Thesis Contributions 

 Four algorithms are presented which can classify hand images at different in-

plane rotations and translations. The algorithms do not require pre-alignment of 

the images. Other variations, such as scale and lighting will be treated in future 

work. 

 A new way of organizing data pyramids is introduced in this thesis by analysing 

the example images using different PCA spaces throughout the hierarchy. Each 

level of the pyramid represents a different parameter of the hand image. This 

differs from most previous research, where typically data pyramids have been 

used to analyse images at different scales or resolutions.  

 Based on our set of example images, we demonstrate that image blurring can be 

used for nonlinearity reduction in manifolds. This can help in increasing the 

accuracy level of the classification process and speeds up training stage by 

building more linear decision boundaries. 

 The proposed PCA pyramids provide an alternative to the indexing method to 

accelerate the search process to approximate the k nearest neighbour problem. 

Indexing methods usually are sensitive to the choice of the hash functions. 

 The proposed PCA pyramids provide a method to design simple architectures for 

the classification process. The simplicity of the design can be expressed in terms 

of the size of the MDGs or the number of neurons and layers in the MLP 

architecture. 
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1.4 Thesis Outline 

The thesis contains five chapters that are organized as follows: 

 Chapter 1 introduces the area of Computer Vision. Human Computer 

Interaction is one of the areas, to which CV contributes. In particular, gesture 

recognition systems provide a natural form of interaction between human and 

computer. An introduction to the thesis is presented showing how PCA 

pyramids are used in the application of hand shape recognition. 

 

 Chapter 2 reviews the research area of gesture recognition including the 

different methodologies that have been applied. The related work section 

refers to some algorithms that use the same techniques, on which our thesis is 

based. 

 

 Chapter 3 discusses four algorithms that use PCA pyramids in conjunction 

with different classifiers. The first algorithm is based on a perpendicular 

distance measure to find the nearest manifold through the different levels of 

the hierarchy. The second and the third algorithm use multidimensional grids 

to divide the space into hyper-cubic cells in a supervised and un-supervised 

manner respectively. The fourth algorithm trains Multilayer Perceptrons on 

the different PCA subspaces using a Feed Forward Back Propagation 

algorithm to map the new patterns to closest class. 
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 Chapter 4 shows the experimental results for each algorithm based on three 

test sets. The first test-set is generated from the original images by rotating 

each image by a random angle filling the intermediate angles between the 

training images. The second test-set is generated by adding a deformation to 

each image of the previous set by randomly rotating the hand at the wrist. To 

examine the robustness of the algorithm to noise, the third test-set is 

generated by adding white Gaussian noise to the second test set. The 

experimental results show the accuracy of each aspect and the speed up over 

the exhaustive search method. 

 

 Chapter 5 concludes the thesis and mentions the future work. 
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Chapter 2 

Literature Review & Related Work 

2.1 Introduction 

Gestures are a useful way of communication between people to express what they 

want to say in everyday life. Hand shape recognition for gestures provides a natural 

interaction between humans and computers. As a new type of Human Computer 

Interaction (HCI), hand gesture recognition has attracted the interest of many researchers 

in recent years to bring ease and naturalness to cumbersome interface devices. HCI keeps 

moving closer towards natural user interfaces [11].  

The key problem in gesture interaction is how to make hand gestures understood by 

computers. An important aspect of gestures is the hand shape. Hand shapes hold 

important information about the meaning of a gesture.  Hand shape recognition is a very 

challenging task, where the orientation of the hand and the viewpoint of the camera can 

make the same hand shape look different [12]. This is the topic of this thesis. 

Gesture recognition has been used in many areas such as Human Computer 

Interaction, Virtual Reality, Robotic Control and Game Control [12,13]. Some of the 

applications in these areas are: 
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 Automatic sign language translators that facilitate communication for deaf people. 

These systems analyze the signer gestures and synthesize the sound for the 

corresponding word or letter for hearing people to understand.  

 Distant control of robots or vehicles in dangerous environments for humans, e.g. 

underwater, in space, etc. 

  Manipulation of endoscopic tools through surgical simulation or tele-surgical 

procedures.  

 Intelligent homes. Example of common functions that can be applied using 

gesture recognition are, Vol +, Vol -, Play, Stop and Power off. 

Automatic sign language recognition systems, in particular, reduce the barrier of 

communication for deaf people in everyday life so that hearing people can understand 

their expressions. In a sign language, gestures are used instead of sound to convey 

meaning by simultaneously combining hand shapes, orientations and movement of the 

hand. Gestures can be viewed as a series of postures, which represent static hand shapes 

within a certain period of time. Holding the hand with a specific pose is a posture, e.g a 

victory sign, pointing, or thumbs up. A gesture can be defined as a dynamic movement, 

such as waving good-bye. Sign language usually provides signs for whole words. It can 

also provide signs for letters of the alphabet to perform words that don’t have a 

corresponding sign in that sign language [14]. In automatic sign language recognition, 

signs can be considered as a continuous sequence of postures with different hand shapes 

and positions within a small interval of time under a certain gesture grammar as shown in 

Figure 2.1. The grammar describes the meaning of different sequence of postures. A 

feed-back can be applied to the system giving a prediction for the next posture as an error 
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correction technique [15]. The details of the internal structure are given in the next 

sections. Gesture recognition approaches can be divided into either glove-based methods 

or vision-based methods as shown in Figure 2.2. And vision-based methods can be 

further divided into model-based, appearance-based and Kinect-based. 

 

Figure 2.1, Hand gesture recognition process. 

 

 

Figure 2.2, Different approaches for hand gesture recognition. 
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2.2 Glove-based Gesture Recognition Methods 

Data gloves are electronic devices that have a set of sensors to digitize the hand and 

finger movements. It is possible to build a classifier to recognize the hand shape and its 

position according to the electronic data gathered from them. The set of sensors can give 

enough information to make it easy to get the hand configuration. Electronic gloves can 

determine various posture parameters, including the hand position, angle and the location 

of the fingertips. The major problem is that they are expensive and are cumbersome for 

the users. Wearing inconvenient devices, results in a less natural interaction.  

In [14], a wireless data glove is introduced as an electronic device that is used for 

sign language translation. The gestures are recognized and automatically translated to 

speech. The type of the electronic glove which is used by the system has flex sensors 

along each finger. These sensors change in resistance depending on the amount of stretch 

happens by the signer fingers. The sensor data are stored for different gestures for 

training and recognition. The system has a drawback of losing the ability of measuring 

and recognizing the shape or motion of the arm and elbows, so that only static gestures 

can be recognized by the system. The problem can be solved by attaching more sensors at 

the wrist, elbow and shoulder but this will increase the cumbersomeness for the users.  

In [16], data gloves and a nearest neighbour classifier are used to build a real-time 

HCI system for gesture recognition. The system recognizes five gestures, such as 

clicking, rotating, dragging, pointing and pause. These gestures are helpful in Virtual 

Reality and Augmented Reality where gesture recognition is considered as the main input 

device. The data glove used in this experiment is the DG5 VHand 2.0, which is a wireless 
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data glove based on Bluetooth technology. It has a working range of up to 10 meters to 

give more freedom to the user. Figure 2.3 shows how the system can be used in air-

writing and sketching. The system can also be used in 3D gaming and 3D animation. 

 

Figure 2.3, Air-writing and sketching using data gloves [16]. 

 

2.3 Vision-based Gesture Recognition Methods 

Computer vision (CV) techniques can generate intelligent and useful descriptions of 

visual appearance by performing processing on the signals received from video cameras. 

CV provides a more natural interaction and is less cumbersome for the user than data 

gloves. The challenge of computer vision is to recognize the visual representation in a 

flexible and robust way. Several challenges have to be achieved including accuracy, 

processing speed and generality.  
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The hand is a deformable object and recognizing the full degrees of freedom for a 

hand motion is a challenging problem, where data glove methods have an advantage. 

Vision-based methods use only a camera to capture the hand shape in a natural way of 

interaction. The input video is decomposed into a sequence of frames that pass through a 

pre-processing stage to remove the unnecessary data. For example, the hand and arm can 

be segmented from other background objects [17,18]. Figure 2.4 shows the sequence of 

steps that a vision-based system can pass through. There are two categories of vision-

based systems, model-based or appearance-based, as will be discussed in the following 

sections. 

 

Figure 2.4, Flow diagram for vision-based gesture recognition methods. 
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2.3.1 Model-based Methods 

Model-based methods depend on the 3D kinematics of the hand considering the 

possible different degrees of freedom (DOF). A model-based approach provides a rich 

description for the hand which can help in achieving a full DOF hand pose estimation. 

This approach can help in estimating all kinematic parameters of the hand skeleton to be 

able to achieve a full hand reconstruction. For the purpose of matching, a projection of 

the 3D model on the image plane is commonly used. However, it is a computationally 

expensive process due to the need to match with a very large set of 3D models covering 

all the characteristic hand shapes using high level features extraction methods like 

fingertips and line features. 3D features from stereo-cameras can also be used by these 

systems to obtain the 3D depth view parameters in the images for matching. Model-based 

approaches can effectively be used for hand tracking using multiple hypotheses by 

finding multiple pose estimation for each frame. The system can continue tracking in the 

case that the best estimate fails. Figure 2.5 shows an example for tracking results using a 

model-based approach in the presence of a considerable amount of hand shape occlusions 

[19,20]. 

 

Figure 2.5, Model-based hand shape tracking example [19]. 
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2.3.2 Appearance-based Methods 

Appearance-based methods depend on recognizing objects from their visual 

information by extracting image features to model their visual appearance. Classification 

is achieved by comparing these features with the extracted image features from the input 

video. It is a challenging task that can be applied to many problems in computer vision, 

especially to hand gesture recognition as the hand is a non-rigid object. These methods 

can give partial hand pose estimation parameters. This information can be used in 2D 

applications with a low DOF task like pointing or navigation. Generally these methods 

are used because of their simplicity and real-time performance. However, the learning 

algorithms in this category are always difficult and it is usually not easy to collect large 

training datasets. There are different techniques used to build classifiers in this category. 

Some of these techniques are Principal Component Analysis, Artificial Neural Networks, 

and Support Vector Machines. [17,18] 

2.3.3 Kinect-based Methods 

Kinect is a novel device that can help in building gesture recognition techniques. 

Kinect is a RGB camera with additional IR projector and IR sensor as a depth sensing 

input device as shown Figure 2.6. This device can be used to develop gesture recognition 

algorithms as an extension to the vision-based techniques. Kinect is offered by Microsoft 

to enable users to control and interact with computers through a natural user interface 

using gestures without the need for a game interface device. A version for Windows was 

released in 2012 with a software development kit to allow developers to write Kinecting 

applications in a number of high level programming languages. 
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Figure 2.6, Microsoft Kinect. 

The depth sensor consists of an infrared laser projector combined with a 

monochrome CMOS sensor, which captures video frames in 3D under any lighting 

conditions. The Kinect software is capable of automatically calibrating the sensor based 

on game play and the player's physical environment under the presence of obstacles. The 

software technology enables advanced gesture recognition and facial recognition. Kinect 

is capable of simultaneously tracking two active players for motion analysis with a 

feature extraction of 20 joints per player. [66] 

 

2.4 Related Work 

The algorithms proposed in this thesis fall into the category of appearance-based 

methods, using a set of example images. They use computer-generated images in order to 

ease the training process by creating large set of labelled images, which is hard for a 

human to do. In this section a review of the related techniques that are used to build the 

systems described in this thesis is presented. These techniques are listed in the following 

sub-sections according to the flow of the proposed ideas and the order in which they 

appear in the next chapter. 
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2.4.1 Data Pyramids 

A Data Pyramid is a data structure that represents image information in different 

ways at each level of the pyramid. Pyramid-based methods have been applied to image 

analysis, data compression and image manipulation. In [21], a data pyramid structure is 

introduced to solve the task of matching patterns, which may appear at any scale in an 

image. This image pyramid stores different versions of the images at different scales. The 

images are decreased in resolution in regular steps through the different levels. The target 

pattern can be found in the level that represents the best match by applying a convolution 

process between the target image and the sequence of images that are stored in the levels 

of the pyramid as shown in Figure 2.7.  

 

Figure 2.7, Searching for a target pattern over many scales using an image pyramid [21]. 
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This pyramid structure can be used as a coarse-to-fine search technique to provide a 

fast, coarse estimate of the possible location of the target pattern. The search begins at the 

top level of the pyramid by convolving a reduced resolution pattern with a reduced 

resolution version of the stored images. The search proceeds through the pyramid levels, 

at each level increasing resolution and position refinement. 

The same pyramid hierarchy can be used for image compression by providing a 

compact code. A Gaussian pyramid can be constructed by building a hierarchy of images 

reduced in sample density and resolution in regular steps by a factor of two. This can be 

achieved by convolving the images with a Gaussian function as a low-pass filter. Figure 

2.8 shows a four level Gaussian filter where the band limit is reduced by one octave at 

each new level. A Band-pass pyramid, which is referred to as a Laplacian pyramid, can 

be constructed by subtracting each two consecutive Gaussian pyramid levels. This 

process is reversible and can be used to reconstruct the original level. Figure 2.8 shows a 

four-level Laplacian pyramid. This pyramid can be applied in image compression using a 

compact code as the pixel values in these image samples tend to be near zero. A further 

compression can be gained through a vector quantization process. As shown in Figure 

2.9, the Laplacian pyramid has the advantage of enhancing the image features by 

extracting the edges of the individual objects in the image. 
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Figure 2.8, A four level Gaussian Pyramid [21]. 

 

Figure 2.9, A four-level Laplacian Pyramid [21]. 

The pyramid method was introduced as a data structure for image analysis in multi-

scale resolution. This pyramid hierarchy is applicable for other image processing tasks. In 

[22], a method for recognizing scene categories is presented using spatial pyramids for 

feature extraction and matching. The spatial pyramid method is more useful than other 

transformation representations when the spatial location of a pattern is critical. The 
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technique works by partitioning the image into sub-regions through the pyramid. From 

one level to another the image is increasingly subdivided. Histograms are computed for 

the local features inside each sub-region. Matching is calculated based on taking a 

weighted sum of the number of matches that occur between a new image and the training 

set at each level of the spatial pyramid where matches found at a higher resolution are 

weighted more.  

Figure 2.10 shows an example of a three-level spatial pyramid. The image analysis is 

based on three feature types. They are indicated by circles, diamonds, and crosses. Three 

histograms are calculated for each image cell in each level for the matching process. A 

histogram is calculated for each channel. At the top level the whole image is considered 

as one cell where the image is subdivided through the different levels to get more 

resolutions.  

 

Figure 2.10, An example for spatial pyramid image analysis considering three feature [22]. 
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2.4.2 Principal Component Analysis 

Principal Component Analysis (PCA) is a statistical technique which can be used as 

a feature extraction and dimensionality reduction method. PCA has been used in many 

applications to reduce a complex dataset to a lower dimensional space to discover the 

hidden and simplified structure that often underlies it. PCA reduces the dimensionality of 

data while preserving as much information as possible. This is achieved through 

maximizing the variance and minimizing the mean squared reconstruction error for the 

projected data [23]. Images can be considered as objects in a high dimensional space 

spanned by the values of the individual pixels. PCA is used to map these images to a low-

dimensional linear space that represents the images as shown in Figure 2.11. PCA 

assumes that the set of model images lies in a low-dimensional subspace spanned by the 

eigenvectors of the covariance matrix of a set of images. 

 

 

Figure 2.11, Applying PCA on 3D objects (a) Objects in 3D space (b) Computing the 

principal axes (c) Data projection onto the highest two components [23]. 
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PCA is a well-known method for feature extraction by calculating the eigenvectors 

of the covariance matrix of the original input data. In our case, the input data consists of a 

set of images of hand shapes. PCA linearly transforms a high-dimensional input vector 

into a low-dimensional one, whose components are uncorrelated [55]. Given a set of n 

images defined by Equation 2.1, where xi is the i
th

 image reshaped as a one-dimensional 

vector of length N, where N is the number of pixels in each image. 

T
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The covariance matrix is an N×N matrix whose elements can be computed by Equation 

2.2, where ka and kb are the i
th

 and j
th

 pixel values of the k
th

 image. 
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The eigenvalues and eigenvectors of the covariance matrix C can be found by solving the 

eigenproblem in Equation 2.3, where ku is the k
th

 eigenvector and k is the k
th

 

eigenvalue. The eigenvalue is a measure of the variation in the data along its eigenvector. 

kkk uCu    (2.3) 

Finding the eigenvectors of C we get N eigenvectors, each of length N. A subset W is 

retained from the set of eigenvectors representing the eigenvectors with the greatest 

variation. The new feature vector y for image x is computed as follows: 

xWy T   (2.4) 
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PCA is a linear method that can be used as a manifold visualisation technique by 

finding a low-dimensional structure that is embedded in a higher-dimensional space. 

Manifolds offer a powerful framework for dimension reduction. PCA usually is effective 

in constructing manifolds if the embedded data is linear. For example PCA is useful for 

the data in Figure 2.12 (a). However, it is not so good for nonlinear data in (b) and (c). 

Some of the techniques that can work with these nonlinear data are Locally Linear 

Embedding and IsoMap [24]. 

 

  (a)                                         (b)                                           (c) 

Figure 2.12, Manifold examples [50]. 

A manifold can be visualized in a low-dimensional space by projecting the original 

images into an eigenspace using a number of eigenvectors that have the highest 

eigenvalues. Some approaches use PCA as a pre-processing step to reduce the 

dimensionality of the data to reduce the computational complexity for a classification 

task. Some other approaches use PCA to extract features and then apply a learning 

algorithm for the classification process as will be discussed with examples later in this 

section [23].  
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A disadvantage of PCA is that it is highly sensitive to position, orientation, scaling, 

and lighting effects. For example, PCA cannot transform two identical postures with 

different hand sizes and orientation to the same point in the low-dimensional space. Some 

techniques therefore normalize each image to centre the hand, rotate, and scale it to fit the 

posture image. Another disadvantage is that the training set must contain all the 

variations for robustness and PCA requires training by more than one person for accurate 

results and user independence [25].  

In [26], a dynamic gesture recognition system is proposed based on Gabor features. 

PCA is used to reduce the dimensionality of Gabor filtered images where the Support 

Vector Machine method is used to carry out the recognition task. Gabor features have 

several advantages, such as localizability and orientation selectivity. However, Gabor 

features are inefficient to use due to high dimensionality. Gabor filters are used for pose 

estimation to apply a hand orientation correction as a next step. Different Gabor filters at 

3 different scales and 8 different orientations are used for the training stage. New images 

are convolved with 24 filters and the filter with the highest response in gray scale can 

give the closest pose of the incoming hand posture. The hand only is segmented for the 

classification process after the correction stage. The algorithm is robust to different 

illumination effects using an adaptive skin-color model switching method. Figure 2.13 

show the flow diagram for the system.  
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Figure 2.13, A SVM hand gesture recognition system using PCA for Gabor features 

dimensionality reduction [26]. 

In [27], the PCA technique is used to extract the features from human shape 

silhouettes to analyze and classify human body posture. Support Vector Machines are 

used for the classification task to classify either human standing posture or human non-

standing posture. The algorithm is built based on testing various combinations of two 

eigenpostures to get the highest accuracy considering the highest 6 eigenvectors. Figure 

2.14 shows a sample of images for the human body silhouettes used in training and 

testing the system. 
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Figure 2.14, Sample of various human body silhouettes [27]. 

 

In [28], a human-machine interface based on visual appearance of hand movements 

is presented. A statistical approach based on Hidden Markov Models (HMMs) is applied 

after using PCA for dimensionality reduction and features extraction from the input 

sequence. Figure 2.15 shows five gestures projected into a PCA space constructed from 

the highest three eigenvectors. For the recognition task, five HMMs, one for each hand 

movement, are trained using ten repetitions of each gesture. The probability for each 

model is computed for a new gesture and the largest probability corresponds to the 

recognized gesture. 
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Figure 2.15, A 3D PCA space for five sequences characterizing five gestures [28]. 
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2.4.3 Perpendicular Distance Measure 

A PCA eigenspace is constructed using a number of orthogonal eigenvectors that 

have the highest eigenvalues to maintain the maximum energy of the dataset. 

Perpendicular distance measures the residual between the original vector and its PCA 

representation. Perpendicular distance is a distance metric that is used to compute the 

distance between a projected object and an eigenspace. During the classification process, 

each class may be represented by a different eigenspace. An object can be classified by 

computing its perpendicular distance to each eigenspace. The class with the lowest 

perpendicular distance is the most likely to which the object belongs. Figure 2.16 

illustrates diagrammatically the perpendicular distance (Dp) of a point p to an eigenspace 

E where it is mathematically calculated using the Equation 2.5 [29,30].  
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Where De = Euclidean distance between p and the origin o. 

 

Figure 2.16, Perpendicular distance illustration from a point to an eigenspace [30]. 
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2.4.4 Multi-dimensional Grids 

A multi-dimensional grid is a data structure that organizes the space around objects 

that are represented in multi-dimensional space. Clustering is one of the fundamental 

techniques in pattern recognition. Clustering can discover the relevant groups of data 

within the dataset for further analysis. Grid clustering applies block partitioning to the 

data through a neighbour search. Grid clustering is different from other clustering 

techniques as it does not organize the patterns but the feature space that represents them. 

The grid structure partitions the objects into buckets of data within hyper rectangular 

cells. The similarity is high for the objects within each cell and low for data in other cells. 

A fuzzy clustering technique can solve the problem of the objects on the boundaries. 

Figure 2.17 shows a block partitioning for a data set of 1000 objects for 3 classes.  [31] 

 

Figure 2.17, Grid clustering for 1000 patters in 3 clusters [31]. 



32 

In [32] grid clustering is used for clustering data streams. Grid clustering is fast and 

applicable for data streams as it depends on the number of cells and not on the data itself. 

It can map infinite data streams to finite grid cells that summarize the information of the 

data streams as shown in Figure 2.18. 

 

Figure 2.18, Grid clustering for data streaming [32]. 

 

Contemporary with our research but independently, in 2012, multidimensional grid 

structures are used in [33] for data classification in lower dimensional subspaces for 

small size data samples. The algorithm uses PCA and Multiple Discriminant Analysis 

(MDA) for dimensionality reduction. The projected feature space is divided equally along 

each eigenvector to build the grid structure. The algorithm generates 2D grids in 

subspaces constructed from the highest two eigenvectors. The first grid is generated 

based on a combination of PCA and MDA spaces using a grid size [5x5]. Another grid is 

constructed if a cell holds multiple classes. These fine grids are [10x10] in size. The fine 

grids use PCA in the second level and MDA in the third level.  
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The algorithm is tested with the IRIS benchmark data, which is described by 4 

attributes holding three classes. The data set holds 150 examples, 100 of them is used in 

training and building the hierarchy rules. Figure 2.19 illustrates the 2D grids in the three 

levels. 

 

Figure 2.19, Illustration of fine grid construction using 2 eigenvectors [33]. 
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MDA is a dimensionality reduction technique that is similar to PCA. However, 

MDA uses the class information to maximize the differences between the groups within 

the data. The separability is measured based on the mean values of all classes. This 

descriptive feature analysis can be achieved by maximizing the criterion function in 

Equation 2.6 [33]. 
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Where W is the weight vector of a linear feature extractor. SB measures the separability of 
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Where x is a set of feature vectors of training samples, C is the number of classes.           

Nj is the number of the samples of the j
th

 class. mj is the mean vector of the j
th

 class, and 

m is grand mean of all examples. 

MDA is better than PCA in some cases as it uses class information during building 

the lower dimensional space. However, PCA is better than MDA when the data is not 

uniformly distributed, as MDA uses the mean value of the classes assuming that the 

classes are spherical in shape [33].  
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2.4.5 Artificial Neural Networks  

Artificial Neural Networks (ANN) have been used in artificial intelligence to 

simulate some properties of biological neural networks. A neural network consists of 

multiple processing units linked to each other with weights. By training the network on a 

set of example images, a new incoming object can be classified. Once learning is 

completed, the network weight set and the mapping function from input to output are 

determined. One of the disadvantages of using ANNs is to know the best network 

configuration prior to the training stage, where different configurations can give different 

results. Another disadvantage is that for new images the network has to be trained      

again [34].  

Many different algorithms for supervised and unsupervised learning strategies have 

been proposed. The use of the Feed Forward Back Propagation (FFBP) training algorithm 

with a multilayer perceptron (MLP), which has one or more hidden layers, has been used 

by many algorithms for hand gesture recognition. Figure 2.20 shows an MLP network 

with one hidden layer. An MLP network with nonlinear activation functions can classify 

data which is nonlinearly separated using a hyper-plane as a decision boundary. 

 

Figure 2.20, A three layer MLP architecture [36]. 
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  In [36], an intelligent human posture recognition system is proposed based on 

training ANNs on the silhouettes of five human body postures in order to understand 

human body actions and behaviour. The system is trained and evaluated using two 

different types of ANNs. The first is a supervised learning algorithm using MLP with the 

FFBP training algorithm. The second is an unsupervised learning algorithm using self 

organizing maps (SOM). The experimental results of the proposed system show, that the 

design with an MLP has a higher accuracy over the SOM under the specified training set. 

In [37] ANNs are used for both preprocessing and the classification process for hand 

posture recognition. The system is able to recognize 15 static hand gestures, shown in 

Figure 2.22, using a data glove. The proposed system uses a FFBP supervised ANN for 

the preprocessing and SOM for the classification process as shown in Figure 2.21. ANNs 

are implemented using field programmable arrays (FPGA). 

 

Figure 2.21, A data glove posture recognition system using ANN [37]. 
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Figure 2.22, Fifteen postures using data gloves [37]. 

In [35], neural networks are used for real-time hand posture analysis based on a 

topological representation of the hand shapes to facilitate fingertip localization.  A neural 

GAS algorithm is applied on the segmented hand area to obtain the topological 

representation. This representation is defined by nodes and connections in order to 

optimize clustering the input data. The neural Gas algorithm is an alternative to k-means 

clustering. It is a vector quantization technique that maps the input from topologically 

arbitrary data to a codebook representation. In addition to quantization, the algorithm 

provides a connection graph described by the network itself where the connectivity 

between the neural units reflects a priori unknown topological structure of the input data 

[54]. 
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Figure 2.23 shows randomly selected nodes from a segmented hand as a start 

solution and the topological representation after applying the technique. This hand 

posture analysis algorithm is applied for a camera projector system shown in Figure 2.24.  

 

Figure 2.23, Topological hand representation using a neural GAS algorithm [35]. 

 

Figure 2.24, A camera projected system [35].  
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2.4.6 Support Vector Machine  

A Support Vector Machine (SVM) is a learning machine for binary classification 

problems. Support vectors are the training examples, which are close to the decision 

boundary that separates two classes of data. These objects are in a critical place, where 

removing them would change the location of the separating hyper plane in a 

multidimensional space. The algorithm tries to build a hyper plane that represents the 

decision boundary between the two classes by maximizing the possible margin that 

separates the two classes preserving the minimum number of errors for the classification 

process in the training data [38,41,27]. The decision boundary from the SVM classifier is 

a soft margin hyper-plane in high dimensional space that separates most of the points for 

two classes. Figure 2.25 shows a decision boundary in 2D PCA space separating two 

classes using a SVM Matlab solver. In the 2D PCA space the decision boundary is 

nonlinear but in the high-dimensional space using a kernel it is linear. 

 

Figure 2.25, SVM decision boundary for the classification of two classes [27]. 
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A SVM can be extended to a multiclass classification. It can be achieved through 

training using the one-versus-all rule. A SVM is built to separate each class from the rest 

of the data. A new test object can be classified according to the SVM that gives the 

highest response. [48] 

 The system in [39], presents a human computer interaction via hand gestures in real 

time performance. A multiclass SVM is used for the recognition task for hand postures. 

The system has a grammar to generate gesture commands to control an application. 

Figure 2.26 shows a flow diagram for the system. For classifying a new image, the skin 

region is detected and the face is subtracted from the product image. The Scale-invariant 

Feature Transform (SIFT) is used for feature extraction. SIFT is invariant to scale, 

orientation and partially invariant to illumination changes. These features are a set of key-

point descriptors extracted from the image for matching. However, SIFT features are 

inefficient to use due to high dimensionality. Another problem is that the numbers of key-

points are different from one shape to another where a SVM classifier requires a fixed 

size feature space.  

 

Figure 2.26, A gesture recognition system using multiclass SVMs [39]. 
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In order to solve this problem, a Vector Quantization (VQ) using the k-means 

algorithm is applied on the training examples as shown in Figure 2.27. This VQ maps the 

key-points of every test image into a unified dimensional histogram by encoding every 

key-point using the index of the cluster it belongs to. The size of the observed space is 

based on the number of clusters used in VQ. A multiclass SVM can be trained using the 

bag-of-words from the VQ for the training set with its class or label. SVMs are used to 

find the optimal hyper-plane that divides these vectors into the associative groups.  

 

  Figure 2.27, Key-points vectors quantization for SVM training [39].  
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In [40], multiclass SVMs are used for recognizing the pointing gesture on a 2D 

screen as shown in Figure 2.28. The SVMs are trained based on extracting the silhouette 

features of the video frames. The output from the SVM with the highest vote gives a 

location for a cell on the screen. Different SVM kernels are used during the training stage 

to adopt the best results. A radial basis function had the best results over the linear and 

quadratic polynomial kernels. The system uses one camera to capture the user position in 

front of the screen. Two positions for the camera settings are tested. The first is a side 

position to the right hand side of the user. And the second, which has a higher accuracy 

rate, is a frontal position to the top of the screen. The system has a restriction as the user 

and camera positions are fixed. 

 

Figure 2.28, Pointing gesture recognition using SVMs [40].  
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2.4.7 Example-Based Approaches  

Example-based approaches use a large database of hand images to represent the wide 

variations in the appearance of hand-shapes. Computer generated images can be used to 

provide training examples with known pose that densely sample the space of all possible 

orientations. These methods provide a powerful mechanism for directly estimating the 

pose by mapping the image to pose space by comparing a new image with a database of 

rendered samples. A limitation of current example-based approaches is the restriction to 

the poses or motions used in training. Extension to a wider variation of movements may 

cause difficulties due to data overlapping. Depending on the number of the examples, 

system improvements can be achieved by accelerating the search in the database [44].  

In [45], example images are used to map hand shapes to the closest rendered images 

for the application of virtual reality. The system uses a specially designed coloured glove, 

as shown in Figure 2.29, to facilitate the segmentation and recognition of different hand 

poses.  

 

Figure 2.29, A demonstration of an example-based hand shape recognition system using 

coloured glove in virtual reality [45]. 
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18000 finger configurations using a Cyber glove II are chosen as the sample for 

rendering the example images using a fixed hand model from the camera. The example 

images as well as the captured coloured glove image are rasterized and converted to a 

tiny image of size 40x40. Nearest neighbour search is applied on these tiny images to get 

the closest hand pose as shown in Figure 2.30. To accelerate the process of nearest 

neighbour search, a data compression is used to compress the database entries to a short 

binary code where Hamming distance is used as a distance measure. 

 

Figure 2.30, The retrieval of the nearest match using a database of tiny images for synthetic 

hand shapes [45]. 

In [46], a 3D hand pose estimation for cluttered images is achieved using a large 

database of 107,328 synthetic images for 26 shapes uniformly sampled at different 

viewpoints. The problem is considered as an indexing problem to retrieve the closest 

match, which the incoming image is labeled with. Database candidate matches are 

eliminated quickly using indexing. A database index is a data structure that improves the 

speed of the search process for information retrieval to prune the search space to a range 
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query. R-tree, is one of the data structures that can handle k-dimensional data for a 

database indexing. R-tree is a height balanced tree with index records in its leaf nodes as 

pointers to the data objects. The search algorithm descends the tree from the root for the 

searching purpose. An update for the tree is essential to examine only the relevant data 

close to the search area [57]. 

Image-to-model mapping is obtained using binary edge images based on a chamfer 

distance measure. Chamfer distance provides an efficient way to measure shape similarity 

between two images after applying edge detection as a feature extraction method to 

preserve the shape information discarding the gray scale information [58]. Finger line-

matching is appended as a second stage to improve the accuracy of matching. The feature 

vector for each edge image is represented by a set of points corresponding to edge pixels 

locations. The X-to-Y chamfer distance C(X, Y) is defined by Equation 2.9, where ba   

denotes the Euclidean distance between two pixel locations a and b. An example of the 

matching by the proposed system is shown in Figure 2.31. [46]. 
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Figure 2.31, 3D Hand pose estimation from cluttered images using an example based        

classifier [46]. 
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In [47], an example-based classifier is presented for 3D human body pose estimation 

as shown in Figure 2.32. The system assumes that the body is segmented from 

background, scaled and centred in the incoming image. The set of synthetic images 

contains 150,000 images generated by a computer animation package called ‘Poser’ using 

a model for the human body. Multi-scale edge direction histograms are used to represent 

the images. Hashing is used to solve the nearest neighbour search problem in a sub-linear 

time due to the large size of the database. However, the system performance and accuracy 

critically depend on the choice of the hashing functions. The training example images are 

hashed where collision is high for similar objects and small for dissimilar ones. For new 

images, an approximation to the k-nearest neighbour is achieved using hashing tables to 

retrieve the group of images that share the same index. 

 

Figure 2.32, Top Match examples for mapping observed images to 3D synthetic               

body poses [47]. 
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2.4.8 Image Blurring 

The convolution of a kernel described by a Gaussian function with the pixels of an 

image is commonly called a Gaussian blur. Image blurring can be applied by convolving 

the image with a square array containing a two-dimensional Gaussian function [56]. The 

convolution with the Gaussian kernel is usually used as a low-pass filter, to filter noise 

from images that is inherent in the physical process of acquisition. It reduces the high 

frequencies from images and smoothes the edges and reduces small details.  

Equation 2.10 is an equation for a Gaussian function in one dimension, where a is 

the height of the curve's peak, ox  is the position of the centre of the peak (also called the 

‘mean’) and   is the standard deviation, which can be regarded as a measure of the 

width of the bell function as shown in Figure 2.33. 
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Figure 2.33, One-dimensional Gaussian function example. 
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The equation of a Gaussian function in two dimensions can be expressed as in 

Equation 2.11, where ox  and oy   are the coordinates of the centre or mean, and x  and 

y  are the standard deviations of the Gaussian distribution in the x and y directions 

respectively. 
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A two-dimensional Gaussian function with equal standard deviations in each 

dimension produces a surface whose contours are concentric circles about the mean as 

shown in Figure 2.34.  

 

Figure 2.34, Two-dimensional Gaussian function example. 
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In image processing, values from a 2D Gaussian distribution are used to build a 

convolution matrix to be convolved with the original image. Each pixel's value is updated 

by the weighted average of neighborhood pixels. The original pixel's value receives the 

heaviest weight as it is convolved with the peak of the Gaussian function and the 

neighboring pixels receive smaller weights as they are far from the mean of the Gaussian 

distribution. A convolution function between an image and a Gaussian function can be 

defined by Equation 2.12 [67]. 
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In [42] a recognition / reconstruction architecture using an ANN is presented.  This 

system can recognize face images affected by various forms of blurring. The system uses 

a FFBP MLP network to classify and reconstruct the inputs. Networks are trained on 

original as well as Gaussian-blurred images to achieve a high robustness to different 

blurring effects. 

In [43] a Gaussian blur filter is used to help in the automatic segmentation of liver 

from CT images. The algorithm follows 4 steps. First the liver part is segmented from the 

original scan image by analyzing its histogram, and then the liver part image is converted 

into a binary image as shown in Figure 2.34. Second, the binary image for the segmented 

liver part is blurred by a Gaussian kernel in order to connect isolated pixel clusters. The 

third step converts the blurred image into a binary image and any holes are removed. At 

the end, this result image can be used as a mask to segment the liver part from the 

original CT image as shown in Figure 2.36. 
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Figure 2.35, Segmentation of liver part from abdominal slice [43]. 

 

Figure 2.36, Gaussian blurring for liver region extraction [43]. 
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2.4.9 Nonlinear Manifold Learning Techniques 

As linear PCA is not effective when the embedded data are nonlinear, in this section 

a review about nonlinear manifold learning techniques is presented including nonlinear 

versions from PCA, Locally Linear Embedding and Isomap. 

2.4.9.1 Nonlinear Principal Component Analysis 

Studying nonlinear manifolds using a manifold learning technique is an important 

issue in pattern recognition. A nonlinear phenomenon is characterised by a curve in the 

original data space. Nonlinear Principal Component Analysis (NLPCA) is a nonlinear 

generalisation of standard Principal Component Analysis, which can extract the principal 

components as curves rather than straight lines. NLPCA helps in visualising the nonlinear 

data as an aspect of data analysis by mapping the data from the original space to a 

component space using an artificial neural network [59]. 

 

Figure 2.37, Bottleneck neural network topology [60]. 
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NLPCA is based on learning a multi-layer perceptron with an auto-associative 

topology known as a bottleneck network to perform the mapping to the eigenspace. The 

network consists of five layers as shown in Figure 2.37. In the middle, the bottleneck 

layer consists of fewer units than the input or output layer where the data are compressed 

or projected into a lower dimensional space Z. The network can be considered to consist 

of two parts where a hidden layer in each part enables the network to perform the 

nonlinear mapping. The first part performs the extraction function Φextr :X →Z and the 

second part performs the generation or reconstruction function Φgen : Z → Xˆ. The 

learning strategy is based on enforcing the output 
^

X to equal the input X with high 

accuracy by minimizing the squared reconstruction error E in Equation 2.13 [59].  

2
^

2

1
XXE 

  (2.13) 

 

2.4.9.2 Kernel Principal Component Analysis 

Kernel Principal Component Analysis (KPCA) is a nonlinear PCA that is computed 

by applying linear PCA after using a kernel function to map the original inputs into a 

high dimensional feature space. The linear PCA in the high-dimensional feature space 

corresponds to a nonlinear PCA in the original input space. The covariance matrix can be 

computed by Equation 2.14, where jx  is the jth original input vector which is mapped into 

the high dimensional space using )( jx [55,61]. 
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KPCA solves the eigenvalue problem in Equation 2.15 where i  is one of the 

eigenvalues and iu is the corresponding eigenvector. 

iii uCu    (2.15) 

The set of eigenvectors can be computed by Equation 2.16 where 

),........,( 1 iNii    are found by solving the eigenproblem in Equation 2.17.  
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K is the Gram matrix defined by the dot product in the high dimensional space as 

described in Equation 2.18. 
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The principal components for ix  are calculated by 
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2.4 Locally Linear Embedding 

Locally linear embedding (LLE) is another approach which addresses the problem of 

nonlinearity in manifolds. LLE is a manifold learning technique that maps the high 

dimensional data points to a global coordinate system preserving the relationships 

between neighbouring points. Each data point and its neighbours are assumed to lie on a 

locally linear patch of the manifold. The high-dimensional coordinates of each 

neighbourhood can be mapped linearly to global coordinates on the manifold. The 

nonlinear structure of the data can be identified through three steps [62], as shown in 

Figure 2.38. 

1. Identify the neighbours of each data point. This can be done by finding the k-

nearest neighbours, or by choosing all points within some fixed radius. 

2. Compute a local geometry for each locally linear patch and finding the weights 

that best linearly reconstruct each point from its neighbours. 

3. Build the low-dimensional embedding space which is best reconstructed by the 

weights determined in the previous step.  

 

Figure 2.38, Locally Linear Embedding example [63]. 
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2.5 Isomap 

Isomap is a manifold learning technique that is based on computing the geodesic 

distances to represent the shortest paths between the different points along the curved 

surface of the manifold as if the surface is flat. The shortest paths can be approximately 

measured by moving through the curved surface by taking a sequence of short steps 

between neighbouring sample points. As in LLE, this can be performed by identifying the 

k nearest neighbours or by choosing neighbouring points within some fixed radius. A 

graph is constructed to represent the neighbourhood relations between the points. 

Dijkstra's algorithm [65] can be used to the find the shortest path distances in this graph 

to approximate the geodesic distances between all pairs of points on the manifold. Figure 

2.39 shows a visualization for a data embedding using Isomap [62]. 

 

 

Figure 2.39, Isomap manifold learning Example [64]. 
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Isomap applies MDS (Multidimensional scaling) as a dimensionality reduction 

technique in the geodesic space of the nonlinear data manifold to find a low-dimensional 

mapping that preserves these pair-wise distances. Isomap can be considered as a 

nonlinear generalization of classical MDS. Originally, MDS tries to minimize the error in 

Equation 2.20. MDS attempts to find t data points Y in a lower dimension space, such that 

D
(y)

 is similar to the original distance matrix D
(x)

 [62]. 
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2.4.10 Publications in which my work is cited 

In [49], our work is cited in this paper as one of the recent publications in the area of 

hand shape recognition. This paper uses the method of hierarchical pyramids in a 

different way from that presented in this thesis. It actually introduces a hierarchical 

pyramid sampling (HPS) method for sampling the hand images in order to reduce the 

effect of variations in the images of the same class and reduce the overlapping with 

images of different classes. At each sampling point, the proposed HPS gets the average 

window of pixels using a square and diamond as shown in Figure 2.34. The idea is tested 

under different variations in the test data including translation, rotation, and scale, giving 

a high accuracy measure up to 99% for the recognition task. 

 

Figure 2.40, Hierarchical pyramid image sampling [49]. 
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2.5 Conclusion 

In this chapter, we have presented the literature review and the related work, which 

was used in this thesis. Gesture recognition is viewed as a natural approach to human 

computer interaction, where computer vision techniques can be used for the recognition 

task. Hand shape recognition is an interesting task in this process as the hand is a 

deformable object. Gestures can be viewed as a series of postures, which represent static 

hand shapes within a certain period of time. Gesture recognition methods are classified as 

either glove-based or vision-based. Glove-based methods can give enough information 

about the pose and shape of the hands using electronic sensors. However, they are 

expensive and are cumbersome to the user. Vision-based methods are either model-based 

or appearance-based. Model-based approaches are built based on the 3D kinematics of 

the hand. They offer a well-defined model to capture the details of the hand shape like 

fingertips. However, these models are computationally expensive to use. On the other 

hand, appearance-based approaches depend on visual information by extracting image 

features. Classification is achieved by comparing these features with the extracted image 

features from the input video. 

The algorithms proposed in this thesis fall into the category of appearance-based 

approaches. Through this chapter, a review about the related techniques that are used to 

build the thesis is given. Data pyramids are used as a data structure to analyze images 

through a multi-scale resolution hierarchy. One of the applications for the data pyramids 

is a coarse-to-fine search for a pattern that may appear at any scale within an image. 

Principal Component Analysis is a statistical method that can be used for feature 
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extraction and dimensionality reduction. PCA is a linear method that can visualize 

manifolds by extracting the embedded low-dimensional data within a high-dimensional 

space. PCA has some disadvantages. It is not robust to transformations and does not work 

well with nonlinear manifolds. Perpendicular distance can be used to measure the 

distance between an image and a manifold in an eigenspace. However, this distance 

measure assumes that the surface of the manifold is flat. Multidimensional Grids can 

organize the space to cluster the data into groups of similar objects. The cells of a MDG 

are hyper-cubes in a multidimensional space. The information within these cells can be 

used for further analysis. Artificial neural networks are used to simulate biological 

neurons in order to achieve the learning process. ANNs are used for shape recognition. 

However, it is difficult to know the best architecture design prior to the training stage. 

Support vector machines are used to build binary classifiers. The decision boundary from 

the SVM classifier, is a soft margin hyper-plane that separates most of the points for the 

two classes. Image blurring can be used as a low-pass filter by convolving the images 

with a Gaussian function. Gaussian blur is commonly used for image smoothing and 

reducing details between images. Example-based approaches are reviewed as a method to 

build a large training set of computer-generated example images. This training set can 

densely sample the space to provide the variability in the hand shapes. The images can be 

easily generated to pre-defined orientations where each image can be labeled according to 

its pose parameters. Indexing is used by many example-based algorithms for accelerating 

the search process. However, it is sensitive to the choice of the hash functions and the 

size of the hash tables. 
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Chapter 3 

Proposed Algorithms 

3.1 Introduction 

In this chapter four algorithms are introduced to present different multistage 

hierarchical strategies for hand shape recognition using Principal Component Analysis as 

a dimensionality reduction and feature extraction method. The proposed algorithms are 

based on using image blurring to reduce the nonlinearity in the manifolds generated by 

applying PCA to a set of example images using a computer-generated model. Flattening 

the space helps in classifying different hand shapes images more accurately where the 

images in the original space are intersected at different orientations. The proposed 

algorithms present an example-based strategy where the training set contains 111320 

images for 20 shapes from the Irish Sign Language at different orientations.  

 The proposed multistage hierarchy analyzes new patterns by projecting them into 

the different levels of a data pyramid using different PCA spaces. Each PCA space is 

computed for a group of images that represent a certain shape or a certain pose. The four 

algorithms study the problem of hand shape recognition using different pattern 

recognition techniques. The first algorithm is based on using perpendicular distance to 

measure the distance between the incoming object and the nearest manifold. The second 

algorithm is based on using multidimensional grids to divide the space in a supervised 

manner into cells of similar objects according to the shape or pose of the hand. The third 
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algorithm uses unsupervised multidimensional grids to cluster the space into cells of 

close objects with different shapes and orientations. The fourth algorithm is based on 

training a set of simple-architecture multi-layer neural networks in each level of the 

pyramid using different PCA spaces by the Feed-forward Back-propagation training 

algorithm. 

3.2 Example-based Data Set 

A dataset of computer-generated images of a human arm and hand is used as a 

training set. The images were generated by a software called Poser [68]. The dataset 

represents 20 different hand shapes from the Irish Sign Language alphabet as illustrated 

in Figure 3.2. The images hold the hand and arm of a signer against a uniform black 

background. Computer-generated images are used as it is possible to control the position 

and orientation of the hand and arm at regular intervals. The whole space of possible 

hand shapes, translations, and rotations can be covered. For a living human being it is 

difficult to control the hand to this level of accuracy. The example images densely sample 

the space. The signer arm is rotated from +90 degrees to +180 degrees in increments of 2 

degreest. Figure 3.1 shows Sign ‘A’ in the horizontal and vertical position. In the dataset, 

each shape is translated 5 pixels in the horizontal and vertical position creating 121 

translated objects from the original position forming a data set of 111320 images. Poser 

can easily generate thousands of images for different shapes and poses labeled by their 

shape, rotation and translation position. The next figure shows Sign “A” in the horizontal 

and vertical positions. 
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Figure 3.1, Computer-generated images for sign “A” in the Irish Sign Language at the horizontal 

and vertical position. 



64 

 

Figure 3.2, Computer generated images for 20 shapes from the Irish Sign Language. 
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3.3 PCA Manifolds 

The proposed algorithms are based on calculating a series of manifolds to represent 

the different shapes, rotations and translations for the signer arm and hand. Applying 

PCA to the set of example images generates these manifolds. PCA is used as a 

dimensionality reduction and features extraction method. The eigenvectors with the 

largest eigenvalues represent the directions in feature space along which there is the 

greatest variation in the data. For example, three eigenvectors with the largest 

eigenvalues can be chosen to form the basis of a low-dimensional space. The images are 

projected into the eigenspace using the sufficient number of eigenvectors and each image 

is represented by a point in that eigenspace. As pre-processing usually is computationally 

expensive, the input to the PCA is the original images without any pre-processing  

“Translation manifolds” are generated by applying PCA on a set of 121 images that 

represent the translations 5 pixels in each direction for a certain shape at a certain rotation 

of the signer arm. At each rotation angle, a set of 20 translation manifolds are generated 

to represent 20 different hand-shapes. As the range of angles to be represented increases, 

the number of manifolds increases and consequently the space of manifolds to be 

searched becomes larger. Our objective is to classify the hand-shape and estimate the in-

plane rotation angle and the translation position in an efficient and accurate way. Figure 

3.3 shows an eigenspace for a translation manifold for sign “A” at a certain rotation angle 

using the highest three eigenvectors. 
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Figure 3.3, A 3D translation manifold for sign “A” 

A “rotation manifold” is generated by building one eigenspace for a certain shape at 

a range of different rotations. A rotation manifold is constructed by applying PCA 

directly to the images for a certain shape at a range of rotation angles and at a range of 

121 translations for each angle. These objects share the same eigenspace. Figure 3.4 

shows a rotation manifold for sign “A”.  

“Rotation sub-manifolds” can be constructed as separate manifolds within the 

rotation manifold eigenspace. A rotation sub-manifold is created for each rotation angle. 

The sub-manifold for a particular rotation angle is generated by applying PCA to the set 

of 121 points in the parent eigenspace for that angle. Figure 3.5 shows the pseudo-code 

for generating rotation sub-manifolds. 
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Figure 3.4, A rotation manifold for sign ‘A’ 

 

To Construct a Rotation Manifold 

R = set of rotation angles from horizontal to vertical position for shape S  

Z=[ ] 

for each rR do 

         z = set of 121 translated images of shape S at rotation angle r 

         Z = [Z;z] 

end 

apply PCA to Z to obtain eigenvectors V 

project Z onto V to obtain the set of points P, which represents the rotation manifold 

 

To Construct Rotation Sub-manifolds  

for each rR do 

         z = sub-set of points P at rotation angle r 

         apply PCA to z to obtain eigenvectors v 

         project z onto v to obtain the set of points p, which represents a rotation sub-manifold at r 

end 

 

Figure 3.5, Pseudo-code for constructing rotation sub-manifolds. 
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A “shape manifold” is a manifold that holds different shapes within the same 

eigenspace. It is constructed by applying PCA directly to the images of the 20 shapes at 

the same angle of rotation. Figure 3.6 shows a shape manifold for 2420 objects 

representing 121 translated objects for 20 shapes at the same rotation angle. These objects 

are projected into the same eigenspace.  

“Shape sub-manifolds” can be constructed as separate manifolds within a shape 

manifold eigenspace. A shape sub-manifold is constructed for each shape, as follows. 

PCA is applied to the set of 121 projected points within the parent eigenspace for a 

particular shape to get the sub-manifold for that shape. Figure 3.8 shows the pseudo code 

for generating shape sub-manifolds. 

 

Figure 3.6, A shape manifold, the associated shapes are shown in Fig. 3.7. 
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The order of the shapes within this manifold is quite interesting. It illustrates how 

PCA extracts the underlying structure within the data. Hand shapes which are close 

together in the manifold have similar images. For comparison Figure 3.7 shows the 

images for the different hand shapes based on the sequence that appears in the shape 

manifold in Figure 3.6. The sequence starts with “O” which is a closed compact shape 

and ends with “L” which is a broad open shape. It is apparent that similar shapes are 

grouped together. 

 

 

Figure 3.7, Computer-generated images for 20 shapes in the Irish Sign Language in the order in 

which they appear in Figure 3.6. 
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To Construct a Shape Manifold 

S = set of 20 shapes at rotation angle R 

Z=[ ] 

for each sS do 

         z = set of 121 translated images for shape s at rotation angle R 

         Z = [Z;z] 

end 

apply PCA to Z to obtain eigenvectors V 

project Z onto V to obtain the set of points P, which represents the shape manifold 

 

To Construct Shape Sub-manifolds 

for each sS do 

         z = sub-set of points P for shape s 

         apply PCA to z to obtain eigenvectors v 

         project z onto v to obtain the set of points p, which represent the shape sub-manifold for s 

end 

 

Figure 3.8, Pseudo-code for constructing shape-sub manifolds. 

 

 

3.4 Nonlinearity Reduction using Image Blurring 

The proposed algorithms explore the effect of image blurring on the classification 

process using a Gaussian Kernel. A Gaussian blur can be used to reduce image noise and 

to reduce details from images. As blurring has the effect of removing small changes 

between objects, the generalization factor for the classification process increases and it 

becomes easier to classify new incoming objects. By blurring the training set as well as 

the incoming object at the same level, it is possible to classify it using a suitable distance 

measure. 
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The effect of blurring on a computer-generated image for sign ‘A’ is shown in Figure 

3.9. Although blurring removes some of the details of the hand shape (e.g. the thumb in 

Figure 3.9 is reduced, making it more similar to the sign ‘E’), this is compensated by the 

positive effects of blurring, such as making manifolds more linear and more separable 

which will be demonstrated in the rest of this section. 

 

Figure 3.9, The effect of blurring on a computer-generated image for sign ‘A’ in the                    

Irish Sign Language. 
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Figure 3.10 shows two translation manifolds for sign ‘A’ (projected onto the 2
nd

 and 

3
rd

 eigenvectors) before and after blurring. Each point in the figure is generated by a 

translated version of ‘A’. From the figure it can be seen that image blurring has an effect 

on the structure of the translation manifolds. Image blurring reduces the nonlinearity of 

the translation manifolds and makes the manifolds more flat.  

 

Figure 3.10, The effect of image blurring on flattening a translation manifold for sign ‘A’ as 

shown in Fig. 3.9.  
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It has also the effect of grouping objects together as the feature space of the data 

starts to shrink and small changes between objects are removed. Also, reducing the 

nonlinearity of the manifolds makes the manifolds more separated in the space. This 

makes the classification process more accurate as it is easier to differentiate between 

neighbouring manifolds.  Figure 3.11 shows two neighbouring manifolds before and after 

blurring (using the 1
st
 and 2

nd
 eigenvectors). 

 

Figure 3.11, The effect of blurring on separating the manifolds. 
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Figure 3.12 shows two rotation manifolds before and after blurring using three 

rotation angles from the whole range of the training images. The data objects are 

projected into the eigenspace using the second and third eigenvectors. The manifolds are 

more flat and less nonlinear decision boundaries are needed. 

 

 

Figure 3.12, The effect of blurring on flattening a rotation manifold. 
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3.5 Proposed Multistage Hierarchy  

 

Figure 3.13, The frame-work for a PCA classifier. 

A large number of translation manifolds are generated for the different hand shapes 

at different rotations of the signer arm, in order to be invariant to these linear 

transformations as shown in Figure 3.13. It is inefficient to apply an exhaustive search to 

search linearly through these manifolds in order to classify a new incoming object, when 

each manifold has its own set of eigenvectors that build its own eigenspace.  
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Figure 3.14, The proposed multistage hierarchy. 

 

A multistage hierarchical structure is used in the proposed algorithms to reduce the 

search space from one stage to another to find the closest manifold to search in and hence 

decide the shape, rotation, and translation position of an incoming sign object to the 

nearest neighbour. At the top level of the search pyramid, estimation of the rotation angle 

for the signer arm in a new pattern is done using rotation manifolds. Estimation of 

rotation is done first as it has the largest variation within the data. As blurring removes 

small changes between objects, different shapes start to be more similar and the dominant 

effect will be for the rotation of the signer arm using the suitable blurring level. So it is 

possible at the first stage to estimate a range of rotation angles for the new incoming 

object in an easy way. The second stage of the pyramid is classifying the hand shape for 

new patterns, as the hand shape has the second largest variation within the data. At this 

stage, shape manifolds are used. The incoming object is projected into the shape  
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manifolds that only cover the range of angles estimated in the first stage. A final third 

stage is done to estimate the translation position using a nearest neighbour search. The 

incoming object is projected into the translation manifolds that represent the classified 

shape at the estimated angle of rotation from the previous two stages. Figure 3.14 shows 

the different stages in the proposed multistage hierarchy.  

Originally, PCA is an unsupervised learning technique that builds the eigenspaces 

based on the feature space of the original data without taking into consideration the 

different classes which represent the different poses and shapes of the hands. In the next 

sections four algorithms are proposed to show how manifolds can be organized in 

different ways to help in building the proposed hierarchical strategy. The first algorithm 

is based on using perpendicular distance to measure the distance between the incoming 

object and the different manifolds to classify it by the nearest neighbour. The second 

algorithm is based on using supervised Multidimensional Grids to divide the eigenspace 

into cells of similar objects according to the rotation or shapes it has. An incoming object 

can be classified according to the information in the cells it is projected into. The third 

algorithm is based on using unsupervised Multidimensional Grids to build the hierarchy. 

The fourth algorithm is based on training simple-architecture multilayer neural networks 

at the different levels of the pyramid to map the incoming object to its nearest shape and 

orientation through the hierarchy. 
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3.6 A Multistage Hierarchical Algorithm for Hand Shape 

Recognition using Perpendicular Distance  

 

Figure 3.15, Multi-stage hierarchy using Perpendicular distance. 

 

The proposed algorithm is based on using the perpendicular distance to measure the 

distance between the incoming object and a set of translation manifolds. These translation 

manifolds are for blurred images that represent different hand shapes at different rotations 

of the signer arm. The same blurring level is used through the hierarchy. The algorithm 

follows the same hierarchy that has been discussed in Section 3.5. Figure 3.15 shows a 

summary for the first proposed multistage hierarchical structure.  
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3.6.1 Stage 1: Rotation Angle Estimation 

At Stage 1a we make an initial rough estimate of rotation angle for the incoming 

object, by constructing a rotation manifold for one of the 20 shapes. Sign “H” is chosen 

as it is the most centrally located within the range of shapes. Translation manifolds for 

“H” are constructed at a set of rotation angles at intervals of 10 degrees throughout the 

whole range. Perpendicular distance is used to compute the distance between the 

incoming object and each manifold to find the first and the second nearest manifolds. 

These two manifolds represent the start and the end of an interval for a smaller range of 

angles to search in at Stage 1b to find the closest estimated angle from the training data. 

As blurring removes only small changes between objects, a single selected shape is not 

enough to compare with in Stage 1b. Therefore, six objects from the 20 shapes are chosen 

to compare with. The value six was chosen experimentally, as will be discussed in the 

experimental results in Chapter 4. To pick the six objects, a k-medoid clustering 

algorithm [69] can be used with k = 6. Each medoid object represents the centre of a 

cluster. Figure 3.16 shows a pseudo-code for Stage 1 in the first proposed algorithm. 

3.6.2 Stage 2: Shape Classification 

After the angle of rotation has been estimated in Stage 1, a search through the 

translation manifolds for the 20 shapes at the estimated angle is needed. The 

perpendicular distances between the incoming object and the different manifolds for the 

20 shapes are computed. The shortest distance leads to the nearest neighbor shape. Figure 

3.17 shows a pseudo code for stage 2 and 3 in the first proposed algorithm. 
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3.6.3 Stage 3: Translation Position Estimation 

At Stage 1 and 2, the rotation angle and the shape for the incoming object are 

classified. At Stage 3, a search through the 121 objects that represent the translation 

manifold for the classified shape at the estimated angle of rotation is achieved. The 

nearest neighbour object from the 121 objects leads to the translation position of the new 

pattern. The incoming object is projected into that eigenspace where the Manhattan 

distance is used to compute the distance measure between it and the translated objects 

within that manifold. Manhattan distance is used as it is one of the fastest distance 

measures to compute.  

Classification Phase 

Stage 1_a 

 

P = new incoming image 

R = set of rotation angles for ‘H’ in increments of 10 degrees 

for each rR do 

         z = set of 121 translated objects at rotation r 

         v = set of eigenvectors(‘H’,r) constituting the translation-manifold of ‘H’ at r 

         find D(r) the perpendicular distance of P from v 

end 

find R1 the member of R with the lowest value of D 

find R2 the member of R with the second lowest value of D 

 

Stage 1_b 

 

S = set of k shapes given by the k-medoid algorithm 

R = set of rotation angles from R1 to midpoint(R1,R2) in increments of 2 degrees 

for each sS do 

         for each rR do 

               z = set of 121 translated objects for shape s at rotation angle r 

               v = set of eigenvectors(s,r) constituting the translation-manifold for s at r 

               find D(s,r) the perpendicular distance of P from v 

          end 

end 

find the values of s and r which minimize D 

Estimated Rotation Angle = r 

 

Figure 3.16, Pseudo-code for Stage 1 in the 1
st
 proposed classifier. 
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Stage 2 

 

P = new incoming image 

R = Estimated Rotation Angle form Stage 1_b 

 

S = set of 20 shapes at rotation angle R 

for each sS do 

         z = set of 121 translated objects for shape s 

         v = set of eigenvectors(s,R) constituting the translation-manifold of s at R 

         find D(s) the perpendicular distance of P from v 

end 

find the value of s which minimizes D, this is the classified shape of P 

 

Stage 3 

 

S = classified shape 

z = set of 121 translated objects for shape S at rotation angle R 

v = set of eigenvectors(S,R) constituting the translation-manifold of S at R 

find zp, the projection of z onto v 

find Pp, the projection of P onto v 

for i=1:121 do 

       find D(i) the Manhattan distance from zp(i) to Pp 

end 

find the value of i which minimizes D. this is the estimated translation of P 

 

Figure 3.17, Pseudo-code for Stage 2 and 3 in the 1
st
 proposed classifier. 

 

Figure 3.18, Variable separation at the third stage. 
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A variable separation technique can be applied, instead of searching linearly through 

the 121 objects as shown in Figure 3.18. The object with the cross sign represents an 

incoming object with translation 2 pixels to the right and 2 pixels up with respect to the 

origin, which is the central object. The variable separation is done first by searching 

through the 11 objects, which represent the horizontal translations with zero vertical 

translation. The nearest neighbour leads to the horizontal translation of the incoming 

object, where the vertical translation is detected by searching through the 11 objects that 

represent the different vertical translations at the classified horizontal translation as 

shown in the figure. The variable separation reduces the search from 121 objects to only 

22 objects.  

3.6.4 Fine Search 

When moving in a top-down direction or when moving from a higher to a lower 

level through the multistage hierarchical algorithm, the scope of the search narrows. 

Therefore, if the higher level decision is wrong there is no way to backtrack. Therefore, a 

fine search strategy is needed to increase the accuracy of the proposed algorithm. Instead 

of taking a hard decision about the angle of rotation, Stage 2 is applied for the k nearest 

estimated angles for the incoming object. The perpendicular distances between the 

incoming object and the 20*k manifolds for the 20 shapes of the k estimated angles are 

sorted. The manifold with shortest distance represents the top match for the shape of the 

incoming object. A decision about the translation position can be then taken at Stage 3. A 

discussion about the best choice for the parameter k is presented later in the experimental 

results section. 
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3.6.5 Variations on the Algorithm using Sub-manifolds 

Some variations on the proposed algorithm can offer improvements in its speed and 

accuracy. In the algorithm which has been presented, a separate manifold for each hand-

shape at each angle of rotation is generated offline. The number of eigenvectors used for 

the classification process is important as it can affect both efficiency and accuracy. The 

length of each eigenvector is also important as it has the same effect. In each separate 

manifold, the length of each eigenvector is actually the number of pixels in the original 

image. In order to reduce the length of the eigenvectors, the concepts of rotation sub-

manifolds and shape sub-manifolds are applied.  

At Stage 1 of the algorithm, which has been just presented, a set of separate 

translation manifolds at different rotations are used to estimate the angle of rotation for an 

incoming image. Instead of this, rotation sub-manifolds can be used in Stage 1. They are 

more computationally efficient, as the length of their eigenvectors is much shorter than 

the length of the eigenvectors in the separate translation manifolds. The length of the sub-

manifold eigenvectors is equal to the number of eigenvectors used in the parent 

eigenspace of the rotation manifold. See Figure 3.5.  

In Stage 2 of the algorithm, which has been presented, 20 eigenspaces are used 

representing the 20 shapes at the estimated angle of rotation to classify the shape of a new 

incoming image. Shape sub-manifolds could be used to enhance the performance in Stage 

2 as the length of the eigenvectors for the shape sub-manifolds is shorter. It is equal to the 

number of eigenvectors used for the parent eigenspace of the shape manifold.  
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3.7 A Multistage Hierarchical Algorithm for Hand Shape 

Recognition using Supervised Multidimensional Grids  

 

Figure 3.19, Multi-stage hierarchy using supervised MDGs. 

A Multidimensional Grid (MDG) is a structure that is used to store multidimensional 

data within a grid of cells, which are hyper-cubes. The second proposed algorithm 

extends the ideas of rotation manifolds and shape manifolds by using Multidimensional 

Grids that divide these different spaces into cells of hyper-cubes. The objects within each 

cell can give enough information to classify a new incoming object in an accurate and 

efficient way, as determined during the training phase by varying the grid size. This will 

be discussed in Chapter 4 in the section on experimental results. 
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The Multidimensional Grid structure can be built based on the set of eigenvectors 

that have the highest eigenvalues. The grid divides each direction of the space into equal 

intervals based on the range of feature values of the objects that is used to build that 

eigenspace. The eigenspace is divided by the grid into multidimensional cells of hyper-

cubes. Each cell can be labeled according to the information from the objects it holds. 

The algorithm follows a hierarchical strategy to classify the new patterns in an efficient 

and accurate way, as described in Figure 3.16. The new incoming object is projected into 

the eigenspace for the associated MDG at each level of the pyramid to analyze it. A study 

of the effect of blurring and the grid size on both accuracy and performance is given in 

the next chapter. 

3.7.1 Stage 1: Rotation Angle Estimation 

Stage 1.A: The first stage of the algorithm is to estimate a range of rotation angles 

for an incoming object. Rotation manifolds are used at the first stage to build the grid 

structures at this level. Each cell in the MDG is labelled according to the minimum and 

maximum rotation angles for the objects it holds. In order to classify a new incoming 

object it is blurred to the same level as the images of the MDG and projected into it. 

According to the label of the cell it is projected into, estimation for the range of angles for 

that object is done.  

A rotation manifold for sign “H” as the most centrally located object is used to 

compute the eigenvectors and cells of the MDG. Every fifth image from the training set is 

used. To densely fill all the cells of the MDG, other objects from different shapes at the 

same rotations are projected into the space to fill in some of the empty cells in that grid. 
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This improves the accuracy of the proposed algorithm as projecting an object into an 

empty cell will lead to incorrectly estimating its rotation angle and hence may cause a 

misclassification for the shape in the next stage of the proposed algorithm. The size of the 

MDG, in terms of the number of eigenvectors and the number of cells in each direction, 

has an effect on the number of objects within the cells and hence the range of angles 

within each cell. The blurring level also has an effect on the distribution of objects within 

the grid as it makes the manifolds more flat and reduces the distance between objects. A 

study of these factors and the effect on both accuracy and performance is given in the 

experimental results section in the next chapter.  

Stage 1.B: A sub-stage is applied by projecting the incoming object into a smaller 

MDG.  The goal of this sub-stage is to increase the precision by estimating a narrower 

range of angles while preserving the accuracy. Smaller MDGs are constructed using the 6 

angles from the training set representing the range of angles intermediate between the 

angles used for the bigger grid. The new incoming object is projected again into one of 

these smaller MDGs based on the range of angles that has been estimated from the first 

big MDG. The range of angles estimated from this small MDG is passed to Stage 2. 

Figure 3.20 shows a rotation manifold for objects that represent the signer arm from 

the horizontal to the vertical position and the MDG construction for it is of size [2x2] 

using the first 2 highest eigenvectors. The figure shows four different coloured regions 

that represents the four cells of the MDG.  
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Figure 3.20, MDG [2x2] for a rotation manifold at the 1
st
 stage in the 2

nd
 algorithm. 

3.7.2 Stage 2: Shape Classification 

In the second stage of the proposed algorithm, MDGs are constructed using shape 

manifolds. For each consecutive pair of angles, an eigenspace is constructed, which 

contains all shapes and translation at those two angles. Then a MDG is constructed 

around these data. According to the range of angles that has been estimated by Stage (1), 

a new incoming object will be projected into a number of MDGs in Stage (2) that cover 

that range. The smaller the number of angles from Stage (1) to be searched in, the fewer 

MDGs will be searched and the more speed is gained.  
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3.7.3 Stage 3: Final classification 

According to the cell, which the incoming object is projected into in Stage (2), a 

nearest neighbour search is performed in Stage 3 for the objects within that cell. If more 

than one MDG is used to cover the estimated range of angles from Stage (1), the nearest 

neighbour object among the all MDGs from Stage (2) will be used to classify the new 

incoming object to give a final decision about its shape, rotation, and translation. 

Manhattan distance is used as a distance measure in this stage, as it is one of the fastest 

distance measures. The number of eigenvectors used to compute the distance measure 

will affect the accuracy of the algorithm as will be discussed later in the experimental 

results in the next chapter. Figure 3.21 shows a pseudo-code for the second proposed 

algorithm. 

 

3.7.4 Handling Outliers and Empty Cells 

Some objects can be misclassified, if they are projected out of the range of the 

features for a MDG or projected into one of the empty cells. An enhancement to the 

accuracy of the classification process for the proposed algorithm can be achieved by 

labeling outliers and patterns which are projected into empty cells. Instead of labeling 

them with an arbitrary class value, they are labeled by the objects in the nearest nonempty 

cell. This is achieved by searching through the dimension that represents the eigenvector 

with the lowest eigenvalue that is used to build that eigenspace as it has the lowest effect 

on the data. 
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Classification Phase 

 

Stage 1_a 

 

P = new incoming image 

M = the MDG for the rotation manifold at increment of 10 degrees 

v = eigenvectors(M) 

p = projection of P onto v 

find cell in M that holds p 

R1 = StartAngle of cell 

R2 = EndAngle of cell 

 

Stage 1_b 

 

M = the MDG for a rotation manifold at increments of 2 degrees covering R1:R2 

v = eigenvectors(M) 

p = projection of P onto v 

find cell in M that holds p 

R1 = StartAngle of cell 

R2 = EndAngle of cell 

 

Stage 2 

 

for r = R1:R2 in increments of 2 degrees 

     M = The MDG for a shape manifold covering r and r+1 

     v = eigenvectors(M) 

     p = projection of P onto v 

     final cell in M that holds p 

     L = list of points within cell 

end 

 

Stage 3 

 

Compute Manhattan distance of p from each point in L 

Find the point with minimum distance from p 

Classify P with the rotation angle, shape and translation position of that point 

 

 

Figure 3.21, Pseudo-code for the 2
nd

 proposed classifier. 
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3.8 A Multistage Hierarchical Algorithm for Hand Shape 

Recognition using Unsupervised Multidimensional Grids  

 

Figure 3.22, Multi-stage hierarchy using un-supervised MDGs. 

The third proposed algorithm represents an unsupervised multistage hierarchy using 

Multidimensional Grids. The data is clustered into cells of similar objects according to 

the feature space computed by applying PCA on the blurred training images. The top 

level of the hierarchy uses a rotation manifold for sign ‘H’ as the most centrally located 

shape. That eigenspace is used to project the whole data set where a Multidimensional 

Grid can divide the objects into cells that hold different shapes and orientations according 
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to the similarity between objects. Each cell can build a new grid in the next level if it has 

number of objects exceeding a threshold. The value of the threshold is determined 

experimentally as will be discussed in Chapter 4. At a new level, a new PCA space is 

computed for the group of objects inherited from a cell in the parent grid. PCA is 

computed for these images in the original space where this new PCA space should reflect 

the distribution of these particular objects in more detail. The process can continue to 

build new levels of grids until the current cell is empty or holds a number of objects 

lower than a predefined threshold. These cells then form the leaf nodes in the hierarchical 

tree. Figure 3.22 shows the proposed hierarchy. 

For a new pattern, it is projected into the top grid and, according to the cell it is held 

by, it can be projected again to a grid in the next level. The process continues from one 

level to another. The new pattern can be classified by finding the nearest neighbour 

object in the cell it is projected into at the bottom level of that hierarchy. Manhattan 

distance is used to compute the distance measure between the new pattern and the objects 

in that cell. A sufficient number of eigenvectors is used in the distance measure in order 

to get the highest accuracy. The number of eigenvectors is determined during the training 

phase by finding the number, which maximizes the accuracy measure.  

A backtracking step can be applied for the classification process, if the new pattern is 

projected into an empty cell or a cell with a number of objects lower than a backtracking 

threshold. In that case this object is re-projected into the corresponding parent grid cell to 

find the nearest neighbour object to be classified with. Figure 3.23 shows the training set 

projected into the top-level eigenspace. Figure 3.24 shows objects for one of the cells in 

Figure 3.23 projected into the PCA space at the second level. Figure 3.25 shows the 
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objects for one of the cells in Figure 3.24 projected into the PCA space at the third level. 

The three figures illustrate how the data becomes sparser and more linear at lower levels. 

The green points in the figures fall into the eigenspace in the next figure. Figure 3.26 

shows pseudo-code for the third proposed algorithm. 

 

Figure 3.23, The top level eigenspace. 

 

Figure 3.24, An eigenspace for a cell at the second level. 

 

Figure 3.25, An eigenspace for a cell at the third level.  
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Classification Phase 

P = new incoming image 

Cell_Index = 1 

Level = 0 

Seq = [ ]  

do 

     Seq = [Seq;Cell_Index] 

     Level = Level+1 

     M = MDG(Seq) 

     v = eigenvectors(M) 

     p = projection of P onto v 

     find cell in M that holds p 

     Cell_Index = the index of that cell 

while (size(M(Cell_Index)) > MinObjs)); 

 

while (size(M(Cell_Index)) < Backtrack) && (Level > 1) 

           Level = Level-1 

           Seq = Seq(1:Level) 

end 

L = list of points within the final cell 

Compute Manhattan distance of p from each point in L 

Find the point with minimum distance from p 

Classify P with the rotation angle, shape and translation position of that point 

 

Figure 3.26, Pseudo-code for the 3
rd

 proposed classifier. 

3.8.1 An Extension to Real Hands 

The third proposed algorithm is capable of handling real images as it is an 

unsupervised classifier. For a real signer it is difficult to show the signs at specified pose 

parameters. Figure 3.27 shows the 20 shapes in the Irish Sign Language using a real 

hand. Real hand videos were recorded for each sign by performing a gesture by moving 

the hand shape from the vertical to the horizontal position. The videos were converted 

into 100 frames for each sign. Each image was translated 5 pixels in each direction 

forming 121 translations. The odd numbered frames were gathered for training forming 

96,800 objects as an example-based dataset. The even numbered frames were used for 
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testing representing the intermediate rotation angles as will be discussed in the 

experimental results chapter. 

 

Figure 3.27, Real hands for 20 shapes in the Irish Sign Language. 
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3.9 A Multistage Hierarchical Algorithm for Hand Shape 

Recognition using Artificial Neural Networks  

 

Figure 3.28, Multistage hierarchy using ANNs. 

The fourth proposed algorithm presents a data pyramid using a set of neural 

networks at the different levels. The data pyramid organizes the different eigenspaces in a 

supervised manner according to different pose and shape parameters. It follows a three 

stage pyramid as shown in Figure 3.28. At the first stage ANNs are used to map a new 

pattern to a range of in-plane rotation angles as estimation for the rotation of the signer 

arm.  At the second stage, ANNs are trained to classify the shape of the hand in the 

incoming pattern. At the third stage, the translation position is estimated based on a 

nearest neighbour search for the objects within the manifolds that represent the classified 

shape at the estimated rotation. 
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It is difficult to design or train a single neural network based on the eigenspace for 

the whole training set. Therefore we subdivide the global task by creating different neural 

networks for different sub-spaces. The algorithm follows a pyramid strategy to design 

and train simple neural networks architectures. At each level of the pyramid, different 

neural networks are trained on the PCA subspaces that represent a certain pose or shape 

from the training set. The output from the neural networks at each level gives an estimate 

for a different parameter for the classification process. Neural networks are used to map 

new patterns using the nearest class parameter. Therefore, a narrower range of 

eigenspaces can be used for the classification process throughout the hierarchy.  

The proposed pyramid is based on training multilayer neural networks with two 

hidden layers using a Feed-forward Back-propagation training algorithm. The hidden 

layers are trained with a sigmoid function and the output layers are trained with a linear 

function. The sizes of the input and hidden layers in terms of the number of neurons are 

chosen based on the number of eigenvectors used in the input space. The number of 

eigenvectors is chosen during the training stage in order to acheive the highest possible 

accuracy, as will be discussed later in the experimental results chapter.  

As image blurring has the effect of reducing the nonlinearity in the training 

manifolds, nonlinearity in the decision boundaries is reduced. Therefore, simpler neural 

network architectures can be designed to fulfill the requirements for the classification 

process. An improvement in the speed of training the neural networks can be achieved as 

it is easier to find the decision boundaries as smaller numbers of neurons are used in the 

design of the neural network architecture.  
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3.9.1 Stage 1: Rotation Angle Estimation  

Neural networks are trained with rotation manifolds at the first stage in order to 

estimate the rotation angle for new incoming patterns. Images for sign ‘H’ are used to 

construct the rotation manifolds at this stage. Shape ‘H’ is considered as the most 

centrally located shape where image blurring is used to remove small changes between 

objects.  

In Stage 1.A, a four-layer neural network is trained with a rotation manifold covering 

the range from the horizontal to the vertical position for the signer arm at intervals of 10 

degrees. The neural network at this sub-stage, maps a new pattern to the closest discrete 

angle of rotation from the training examples in that range of angles. The output layer for 

the neural network represents a binary valued code for one of these discrete angles. Each 

neuron in the output layer represents 1 bit in the binary valued code. 

In Stage 1.B, estimation for a narrower range of rotation angles is achieved. A search 

window of 10 degrees before and after the estimated angle from Stage 1.A is applied. 

Neural networks are constructed for each range of consecutive angles from the 

intermediate range in Stage 1.A and are trained with rotation manifolds for these 

narrower ranges. The output layer for the neural networks at this stage represents a binary 

code for the rotation angle sequence within the training range. For a new pattern, it is 

mapped using a pair of networks that represent the search window defined by the 

estimated angle from Stage 1.A. The output from this stage is considered as the output 

angle from the network that has the minimum mean square error between the desired and 

the actual output. 
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3.9.2 Stage 2: Shape Classification 

At the second stage, shape manifolds containing all 20 shapes are constructed at each 

pair of consecutive angles. A neural network is trained with each shape manifold where 

the output of the network represents a binary valued code for each of the twenty shapes. 

The shape for a new pattern can be classified after projecting it into the corresponding set 

of eigenvectors. The new pattern is mapped by the neural network that covers the 

estimated angle from Stage 1.B. To fine tune the results, a search window can be applied 

considering two more neural networks covering 2 more ranges on either side of the 

estimated angle. The output from this stage is considered as the classified shape from the 

neural network that has the minimum mean square error between the desired and actual 

output. 

3.9.3 Stage 3: Translation Position Estimation  

At the final stage, estimation for the translation position for a new pattern is 

achieved. Labeling is done according to the closest object using a nearest neighbour 

search to a pair of translation manifolds at the estimated pose and classified shape. The 

pair of manifolds covers the range of angles for the winning neural network from the 

second stage. The new pattern is projected into each eigenspace. A distance measure 

between it and the objects within each translation manifold is computed based on the 

Manhattan distance measure as one of the fastest distance measures. A sufficient number 

of eigenvectors is used to compute the distance measure in order to achieve the highest 

accuracy by varying the accepted number of eigenvectors during the training stage as will 



99 

be discussed in the experimental results chapter. Figure 3.29 shows pseudo-code for the 

fourth algorithm. 

Classification Phase 

 

Stage 1_a 

P = new incoming image 

A = The ANN for the rotation manifold in increments of 10 degrees 

v = eigenvectors(A) 

project P onto v to obtain point p  

input p into A and obtain estimate for the rotation angle R 

R1 = R-5 

R2 = R+5 

 

Stage 1_b 

for i = R1 : R2 in steps of 5 

     A = The ANN for the rotation manifold in increments of 2 degrees covering i:i+5 

     v = eigenvectors(A) 

     project P onto v to obtain point p  

     input p into A and obtain estimate for the rotation angle R and error E 

end 

find the value of R which minimizes E 

R1 = R-2 

R2 = R+2 

 

Stage 2 

for i = R1 : R2 in steps of 2 

     A = The ANN for the shape manifold covering i and i+1 

     v = eigenvectors(A) 

     project P onto v to obtain point p  

     input p into A and obtain estimate for the shape S and error E 

end 

find the value of angle i and shape S which minimizes E 

R=i 

 

Stage 3 

for i =R:R+1 do 

     z = set of 121 translated objects for shape S at rotation angle i 

     v = set of eigenvectors(S,i) 

     project z onto v to obtain points zp  

     project P onto v to obtain point p  

     for each point zp, find the Manhattan distance from p 

end 

find the point which minimizes the Manhattan distance from p 

Label P with rotation angle, shape and translation of that point 

 

Figure 3.29, Pseudo-code for the 4
th
 proposed classifier. 
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3.10 Conclusion 

The proposed algorithms are presented as an example-based hand shape classifiers. 

A large training set of 111320 images is used to cover the variability of 20 hand shapes 

from the Irish Sign Language covering the possible translations and rotations. The 

proposed algorithms are invariant to these rigid transformations. PCA is used for feature 

extraction and dimensionality reduction. In comparison with nonlinear manifold learning 

techniques, the proposed pyramids can help in applying linear PCA to nonlinear data. 

Although PCA doesn’t work well with nonlinear data, the proposed pyramids provide a 

solution by applying PCA to subspaces which are approximately linear. A hierarchical 

pyramid strategy is used to accelerate the search process by approximating the k-nearest 

neighbor algorithm by analyzing the new patterns using different PCA spaces through the 

pyramid hierarchy. Estimation of the rotation angle of the signer arm is achieved at the 

first level of the hierarchy using rotation manifolds, as rotation has the highest variation 

within the data. Then shape manifolds are used for classifying the shape at the second 

stage. A final decision can be made at the bottom end level of the pyramid to label the 

incoming pattern with the nearest neighbour object from the training set. Image blurring 

is used to remove small changes between objects to increase the generalization factor. 

The proposed algorithms explore the effect of image blurring on flattening the manifolds. 

Image blurring has the effect of reducing the nonlinearity in manifolds and making data 

more separable as discussed in Section 3.4. Four pattern recognition techniques are used 

to implement the proposed hierarchy. 
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 The first algorithm is based on finding the nearest neighbour manifold in each 

level using the perpendicular distance measure. linearising the manifold helps in 

measuring the distance more accurately where it assumes that the manifolds are 

ideally flat. Sub-manifolds are used to get more dimensionality reduction by 

applying PCA a second time to rotation and shape manifolds. 

 The second algorithm is based on organizing the eigenspaces using 

Multidimensional Grids in a supervised manner. MDGs are used to divide the 

eigenspaces into cells of hyper-cubes, which are labeled by the range of rotations 

at the first level and shapes at the second level. Using a suitable level of blurring, 

manifolds are separable enough to be clustered using MDGs. 

 The third algorithm is based on building a hierarchy of MDGs in an unsupervised 

manner. PCA is applied to each nonempty cell from a parent space to build a new 

level in the pyramid. New patterns are classified based on a nearest neighbour 

search among the objects of the cell it is projected into at the bottom end level. 

 The fourth algorithm is based on training a set of ANNs by different eigenspaces 

of the training data at each level. ANNs can map new patterns to the parameters 

space of the training set. The ANN with the highest response in each level leads to 

the closest class. 
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Chapter 4 

Experimental Results 

4.1 Introduction 

In this chapter four sets of experimental results are presented to examine the 

accuracy and performance of the proposed algorithms under the different aspects 

discussed in the previous chapter. The proposed algorithms have been implemented in 

Matlab under the Windows 7 operating system. All the experiments are done on Intel i5 

CPU @ 2.3 GHz, 2.00 GB of RAM. All the images are 250x330 pixels and converted 

into gray-scale before blurring. Blurred images are created using a two-dimensional 

Gaussian low-pass filter of size [6,6] and with variance equal to 10. Table 4.1 shows the 

variations on the blurring level through this chapter. The performance target in the 

experiments is to classify 10 frames per second. 

 Size Variance 

B1 [6,6] 10 

B2 [12,12] 20 

B4 [24,24] 40 

B6 [36,36] 60 

B8 [48,48] 80 

B10 [60,60] 100 

 

Table 4.1, Different blurring levels and their filter size. 
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The results are based on a data sample of 111320 objects. The sample represents the 

20 shapes from +90 degrees to +180 degrees. The training examples are 2 degrees apart 

and each object is translated 5 pixels in the horizontal and vertical directions. The 

accuracy of the proposed algorithm is examined on three different test-sets. The first test-

set is generated from the original training images by rotating each image by an angle 

randomly generated from a uniform distribution over the interval [-1,1] filling the 

intermediate angles between the training images. The second test-set is generated by 

adding a deformation to each image of the previous set by rotating each hand at the wrist 

by an angle randomly generated from a uniform distribution over the interval [1,5] 

degrees. To examine the robustness of the algorithm to noise, the third test-set is 

generated by adding white Gaussian noise to the second test set. Normally distributed 

random numbers with a standard deviation of 20 and mean 0 are added to each pixel of 

the segmented arm of the signer. Figure 4.1(a) shows the superposition of two images for 

sign ‘A’ in the horizontal position and after rotating the arm and hand 1 degree anti-

clockwise and rotating the hand at the wrist 5 degrees anti-clockwise. Figure 4.1(b) 

shows the same sign after applying random noise to the skin region.   

    

Figure 4.1, The effect of rotation, deformation and noise on a computer generated image. 
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4.2 First Algorithm Experimental Results  

In order to examine the performance and the accuracy, the first algorithm has been 

tested using different manifold structures. The same blurring level (B6) was used 

throughout the hierarchy. Signs 'A', 'C', 'H', 'I', 'P', 'R' are selected at the first stage using a 

k-medoid algorithm. Different values of k were tested and it was found that the highest 

accuracy for Stage 1 was reached when k = 6. 

A study of the selected number of eigenvectors, performance and accuracy is given 

by varying the number of eigenvectors. The number of eigenvectors can affect the results 

for the proposed algorithm. It was interesting to find the best number of eigenvectors to 

use on the test data in order to reach the highest accuracy. Figure 4.2 shows the effect of 

the number of eigenvectors in Stage 2 on the classification process for the hand shape 

based on using shape sub-manifolds and rotation sub-manifolds. From the figure, the 

highest accuracy was reached at 16 eigenvectors. The experimental results show that as 

the number of eigenvectors increases, the accuracy increases monotonically until 

saturation. The highest 30 eigenvectors from the parent eigenspace were chosen in order 

to build the eigenspace for the sub-manifolds as discussed in the previous chapter in 

Section 3.6.5. The results in the figure are based on using only 4 eigenvectors to estimate 

the rotation angle at Stage 1.  Just 4 eigenvectors are enough at the first stage to let the 

dominant effect be for the rotation of the arm.  

 

 



105 

Figure 4.3 shows the accuracy measures versus different blurring levels where the 

best accuracy measure is gained at blurring level 6. Figure 4.4 shows the accuracy 

measures based on using shape sub-manifolds, rotation sub-manifolds with fine search. 

The highest accuracy is obtained when a fine search is applied at k equals to 3. 

 

Figure 4.2, Accuracy for the 1
st
 algorithm versus different number of eigenvectors at the 2

nd
 stage 

using Rotation sub-manifolds and Shape sub-manifolds. 

 

Figure 4.3, Accuracy for the 1
st
 algorithm versus different blurring levels. 



106 

 

Figure 4.4, Accuracy of the 1
st
 Algorithm under a fine search strategy. 

Table 4.2  lists the accuracy measure for the three test sets under the different PCA 

spaces discussed in Section 3.6.5. The table also gives information about the speed of 

each aspect. The experimental results show that there is an enhancement in the 

performance using sub-manifolds over separate manifolds but a decrease in accuracy.  

However, the accuracy can be improved by using a fine search strategy with k equal to 3.  

 

 Test set 1 Test set 2 Test set 3 Speed 

Separate Manifolds 94.20% 90.46% 89.21% 2.6 sec 

Shape Sub-Manifolds + 

Rotation Sub-Manifolds 
93.70% 89.43% 88.58% 0.087 sec 

Shape Sub-Manifolds + 

Rotation Sub-Manifolds + 

Fine Search 

98.81% 94.35% 93.46% 0.094 sec 

 

Table 4.2, Accuracy and performance of the 1
st
 algorithm under different PCA spaces. 



107 

Based on using shape sub-manifolds and rotation sub-manifolds with fine search, 

Figure 4.5 shows the error analysis of the 121 translation positions within the manifolds 

over all objects. From the figure, it is clear that the error of the outer translated objects is 

greater. This is because of the non-linearity in the surface of the manifolds. Although 

image blurring is used to reduce the non-linearity, the surface of the generated manifolds 

is not completely flat. 

 

Figure 4.5, Error analysis for the 1
st
 Algorithm. 

 

4.3 Second Algorithm Experimental Results  

To test the second proposed algorithm, different grid sizes under different blurring 

levels were used to examine the performance and accuracy. Different structures for the 

MDG in terms of the number of eigenvectors and the divisions along each direction are 

tested using different blurring levels. At Stage 1.A, the MDG size with the highest 

accuracy in estimating the rotation angle is chosen, subject to the constraint that the range 
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of angles within all non-empty cells should be not be greater than 6 as discussed in 

section 3.7.1. Table 4.3 shows the maximum number of angles within the cells using five 

different structures for the MDG and at different blurring levels as well. Table 4.4 shows 

the accuracy of estimating the rotation angle at the same grid structures.  

 

10x10 10x10x10 5x5x5x5 7x7x7x7 10x10x10x10 

B0 21 11 11 11 11 

B2 21 16 11 11 11 

B4 16 11 11 11 6 

B6 16 11 11 6 6 

B8 16 11 11 6 6 

B10 16 11 11 11 6 

B12 16 11 11 11 6 

 

Table 4.3, Maximum range of angles at Stage 1.A for the 2
nd

 algorithm. 

 

 10x10 10x10x10 5x5x5x5 7x7x7x7 10x10x10x10 

B0 98.2% 90.8% 94.9% 94.5% 85.8% 

B2 98.6% 94.1% 94.7% 93.2% 84.9% 

B4 99.0% 92.9% 94.2% 92.6% 82.8% 

B6 98.9% 91.9% 95.3% 91.2% 81.3% 

B8 99.0% 93.1% 92.9% 91.1% 80.5% 

B10 98.0% 89.7% 87.7% 82.0% 77.9% 

B12 98.5% 90.1% 93.8% 79.5% 76.0% 

 

Table 4.4, Accuracy at Stage 1.A for the 2
nd

 algorithm. 
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From the previous two tables, increasing the MDG size increases the number of cells 

and decreases the range of angles, as fewer objects are held by each cell. However, this 

reduces the accuracy of the process as more empty cells are generated within the MDG 

and the rotation angle of an incoming object can be misestimated in that case. Grid size 

of [7x7x7x7] with a blurring level of 6 is the best for constructing the MDG at stage 1.A. 

This grid size is based on the highest 4 eigenvectors where each direction is divided 

equally into 7 intervals. All the nonempty cells under this structure have a maximum of 6 

different angles and an accuracy of 91.2% for estimating the rotation angle. To reach a 

precision of 4 rotation angles within the nonempty cells at Stage 1.B, the MDG size of 

[7x7x7x7] is used under blurring level 6. The same process as for Stage 1.A was repeated 

for Stage 1.B to determine the optimum MDG size. The accuracy of estimating the 

rotation angle at this size reached 94.2%. At Stage 2, MDGs of size [4x4x4] and blurring 

level 6 are used to partition the data into groups of similar objects and accelerate the 

search process. Figure 4.6 shows the effect of using different numbers of eigenvectors on 

the accuracy of detecting different hand shapes at the third stage using the first test-set.  

 

Figure 4.6, Accuracy versus different number of eigenvectors for the 2
nd

 algorithm. 
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The following table shows the accuracy of the proposed algorithm in classifying 

different hand shapes using the three test-sets. At Stage 3, the first 30 eigenvectors were 

chosen to compute the Manhattan distance to find the nearest neighbour object, where 

each object takes up to 0.047 sec to be classified. 

2
nd

 Algorithm Accuracy 

Test set 1 98.46% 

Test set 2 93.56% 

Test set 3 92.39% 

 

Table 4.5, The Accuracy for the 2
nd

 algorithm. 

Figure 4.7 shows the error analysis of the 121 translation position within the 

manifolds over all objects. The error analysis is for the first test set under the 

classification process for the hand shapes using the 2
nd

 proposed algorithm. From the 

figure, it is clear that the error of the outer translated objects is greater. This is because of 

the non-linearity in the surface of the manifolds. Although image blurring is used to 

reduce the non-linearity, the surface of the generated manifolds is not completely flat. 

 

Figure 4.7, Error Analysis for the 2
nd

 Algorithm. 
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4.4 Third Algorithm Experimental Results  

In order to examine the third algorithm, different grid sizes at different thresholds are 

used in testing to get the highest accuracy. Table 4.5 shows the accuracy of three 

different structures at minimum number of objects of 350 to build a new grid level. The 

classification process is achieved by finding the nearest neighbour using Manhattan 

distance. The highest 30 eigenvectors are used in the distance measure from applying 

PCA on the group of objects for each grid at the different levels to reach the highest 

accuracy. Figure 4.8 shows the effect of using different numbers of eigenvectors on the 

distance measure for the classification process for the first grid structure. Table 4.6 shows 

the grid analysis in terms of the number of grids in each level of the pyramid for the three 

grid structures. From Table 4.6 and Table 4.7, the first grid structure has the highest 

accuracy measure however most of the grids are at level II. The number of objects within 

the cells of the grids affects the accuracy. The more objects each cell holds, the higher 

accuracy is gained but slower the speed of the search. 

 

Figure 4.8, Accuracy versus different number of eigenvectors for the 3
rd

 algorithm. 
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[7x7x7x7] 

[2x2x2x2] 

[2x2x2x2] 

[4x4x4x4] 

[2x2x2x2] 

[2x2x2x2] 

[4x4x4x4] 

[2x2x2x2] 

[2x2x2] 

Test set 1 97.75% 94.92% 95.45% 

 
Table 4.6, Accuracy using different grid structures for the 3

rd
 algorithm. 

 

 
[7x7x7x7] 

[2x2x2x2] 

[2x2x2x2] 

[4x4x4x4] 

[2x2x2x2] 

[2x2x2x2] 

[4x4x4x4] 

[2x2x2x2] 

[2x2x2] 

Level II 94 36 36 

Level III 13 149 149 

 

Table 4.7, The number of grids in each level of the pyramid for three different grid structures. 

To get a better pyramid hierarchy analysis, the grid size at the top level is reduced 

from [7x7x7x7] to [4x4x4x4]. The number of grids at the third level increases and fewer 

objects are held by each cell, Therefore, the accuracy drops. In order to enhance the 

results, the grid size in the third level was reduced from [2x2x2x2] to [2x2x2]. However, 

no enhancement in the accuracy was achieved. As each new level in this pyramid inherits 

the data objects from a cell in the parent grid, the number of dimensions used to build the 

new grid should be equal or greater than the dimensions used in the parent grid. Reducing 

the dimensionality causes a change in clustering the data which affects the accuracy.  

To get a comparable accuracy with a better grid hierarchy, the second grid hierarchy 

is tested under different thresholds for the minimum number of objects needed to build a 

new level. Table 4.9 shows the accuracy measure for the second grid structure under 

three different conditions using the first test set and Table 4.8 shows the pyramid grid 

analysis for them. 
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Min Objs = 400 Min Objs = 600 Min Objs  = 800 

Test set 1 95.09% 98.50% 98.91% 

 

Table 4.8, Accuracy measure under different thresholds for the second grid structure. 

 
Min Objs = 350 Min Objs = 600 Min Objs  = 800 

Level II 36 33 29 

Level III 149 40 11 

 

Table 4.9, The number of grids in each level of the pyramid for the second grid structure under 

different thresholds. 

 

From the previous two tables, the best accuracy at the best analysis is at a threshold 

of 600 as the minimum number to build a new grid at the next level. To enhance the 

results, a backtracking step can be done if an object is projected into an empty cell or at a 

cell with number of objects less than 100. The backtracking is achieved by projecting that 

object into the cell it was held by in the parent grid at the previous level. Table 4.10 

shows the accuracy measure with backtracking for the three test sets using the second 

grid structure with a threshold of 600 to build a new level. Each object needs 0.055 sec to 

be classified using this proposed algorithm. 
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3r
d
 Algorithm Accuracy 

Test set 1 99.04% 

Test set 2 95.14% 

Test set 3 94.13 % 

Real Hands 98.91 % 

 

Table 4.10, Accuracy for the 3
rd

 algorithm. 

 

For the real data set, all the images are 250x330 pixels in size. The same grid 

structure is used to build the pyramid for the acquired images. The algorithm is tested 

with even frames from 100 frames per shape where the odd frames are used in 

constructing the grid structures through the hierarchy. The real hand training set is a 

dataset of 96,800 example images which is near to the size of the synthetic training set 

which is 111320. So the same grid structure is suitable to distribute the real hand images 

into the MDGs through the hierarchy where each cell can hold enough data to get a high 

accuracy measure. 

From Table 4.10, the accuracy rate for the real data is almost as high as for the 

synthetic test set1 and actually higher than test set2 and test set3. The real data contains 

noise and deformation due to the fact that a human signer cannot keep his hand in exactly 

the same pose throughout the experiment. From the fact that the accuracy for the real data 

is comparable to that for the computer-generated data at this proposed algorithm, we can 

suggest that the proposed algorithms can be generalized to real-world data. 
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Figure 4.9 shows a surface for error rates of the 121 translated positions within the 

manifolds over all test objects using the 1
st
 test set. From the figure, it is clear that the 

error of the outer translated objects is greater. This is because of the non-linearity in the 

surface of the manifolds. Although image blurring is used to reduce the non-linearity, the 

surface of the generated manifolds is not completely flat. 

 

 

Figure 4.9, Error Analysis for the 3
rd

 Algorithm. 
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4.5 Fourth Algorithm Experimental Results  

To measure the accuracy and performance of the ANN pyramid, multilayer neural 

networks are trained with a FFBP algorithm based on the architecture shown in Table 

4.11. The table shows the different neural network architecture in the different levels of 

the pyramid. The number of input neurons in the input layer is equal to the number of 

eigenvectors that are chosen to build the input eigenspaces, where each neuron 

corresponds to an eigenvector. In-order to choose the best number of eigenvectors, the 

training stage is repeated varying the number of eigenvectors. Figure 4.10 shows the 

effect of using different numbers of eigenvectors on the accuracy of estimating the hand 

shape by a neural network at the second stage where blurring level 6 is applied for the 

training and test sets. From the figure, 16 eigenvectors are sufficient for the classification 

process in-order to reach the highest possible accuracy. 

 Stage 1.A Stage 1.B Stage 2 

Input layer 4 4 16 

Hidden layer 1 15 15 25 

Hidden layer 2 7 7 20 

Output layer 6 3 5 

 

Table 4.11, Neural networks architecture designs at the different stages. 

To investigate the effect of nonlinearity reduction using image blurring on training 

the ANN pyramid, the ANNs are trained using different blurring levels. Figure 4.11 

shows the error rate after 1000 epochs in training the same neural network architecture 

under different blurring levels. It is apparent that increasing the blurring level helps in 
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speeding up the training process because manifolds are more linear and therefore less 

nonlinear decision boundaries are needed. However, over-blurring may cause a loss in 

information and hence a drop in the accuracy measure. 

 

Figure 4.10, Accuracy versus different no. of eigenvectors at the 2
nd

 stage for the 4
th
 algorithm. 

 

Figure 4.11, Training error rate versus different blurring levels. 

Table 4.12 shows the accuracy of the proposed algorithm for the different test sets. 

Under the specified neural networks design and using 30 eigenvectors at the third stage to 

compute the Manhattan distance, the results show that neural networks based pyramid 

can classify different hand shapes with high level of accuracy. However, it is more 

sensitive to hand deformation and noise. The proposed algorithm achieves real-time 

performance where each object needs 0.062 seconds to be classified. The results come 
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from the simplicity of the neural networks architecture, which is an advantage of using 

the proposed multistage hierarchy. Also, using PCA spaces has the advantage of low 

computation. New patterns need only matrix multiplication to be projected into the 

eigenspaces for features extraction and dimensionality reduction. 

4
th

 Algorithm Accuracy 

Test set 1 95.39% 

Test set 2 85.36% 

Test set 3 81.83% 

 

Table 4.12, Accuracy for the 4
th
 algorithm. 

Figure 4.12 shows a surface for error rates of the 121 translated positions within the 

manifolds over all test objects using the first test set. From the figure, it is clear that the 

error of the outer translated objects is greater. This is because of the non-linearity in the 

surface of the manifolds. Although image blurring is used to reduce the non-linearity, the 

surface of the generated manifolds is not completely flat. 

 

Figure 4.12, Error Analysis for the 4
th
 Algorithm. 
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4.6 Experimental Results for the Nearest Neighbour Classifier 

using Exhaustive Search  

The original problem involves finding the nearest neighbour object by searching 

through the whole range of manifolds of the training set using the perpendicular distance 

measure. A PCA space is generated for each shape at every specified rotation angle from 

the training range described before. The total number of PCA spaces is 920 where each 

eigenspace has its own set eigenvectors. The experimental results show that each test 

object needs 76.58 sec to be classified using the exhaustive search strategy. And it is time 

consuming to test with the whole test set. Instead, 10,000 random objects as a sample test 

set is used to test the accuracy of the exhaustive search strategy versus the different 

proposed classifiers under the settings discussed before. Table 4.13 shows the accuracy 

for the exhaustive search using the highest 30 eigenvectors. The results are compared 

with the four proposed algorithms using the specified random sample using three test 

sets.  

 
Exhaustive 

Search 
1

st
 Algo 2

nd
 Algo 3

rd
 Algo 4

th
 Algo 

Test set 1 99.98 % 99.03 % 96.97 % 98.93 % 95.32 % 

Test set 2 97.28 % 94.18 % 92.76 % 94.96 % 83.94 % 

Test set 3 96.45 % 93.03 % 91.70 % 94.20 % 80.69 % 

Speed 76.58 sec 0.094 sec 0.047 sec 0.055 sec 0.062 sec 

 

Table 4.13, Accuracy and Performance for the exhaustive search versus all proposed techniques 

based on a random sample of 10,000 test objects. 
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Table 4.14 shows the speed up factor for the proposed algorithms against the 

exhaustive search strategy.  

 1
st
 Algo 2

nd
 Algo 3

rd
 Algo 4

th
 Algo 

Speed Up 814.68 1629.36 1392.36 1235.16 

 

Table 4.14, The speed up factor for the proposed algorithms against the exhaustive search. 

 

4.7 Experimental Results - Conclusion 

From the previous results, we can conclude that the proposed algorithms are 

applicable for real-time applications under the assumption that the classification rate 

should be at least 10 frames per second. The proposed algorithms accelerate the search 

process by a high speed-up factor reaching 1629.36 times over the exhaustive search 

process. The test results show a high level of accuracy for the recognition process. 

However, the ANN pyramid has the lowest robustness to deformation and noise. From 

the results, the best performance is for the second algorithm using supervised 

Multidimensional Grids. And the best accuracy measure is for the third algorithm using 

unsupervised Multidimensional Grids. The third algorithm also is applicable for real hand 

images where the experimental results show that the accuracy rate for the real data is 

almost as high as for the synthetic test sets. 
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Chapter 5 

Conclusion and Future Work 

7.4 Introduction 

In this thesis, we have introduced four algorithms for hand shape recognition using a 

large set of example images. The example images are computer generated to ease 

collecting a large training dataset with known pose parameters. The dataset represents 20 

different hand shapes from the Irish Sign Language at different rotations and translations. 

PCA is used as a feature extraction and dimensionality reduction method. A large number 

of eigenspaces are constructed using PCA. To accelerate the search process to classify 

new patterns, a data pyramid is used in a multistage hierarchy to approximate the k 

nearest neighbour problem. Through the pyramid, the new image is analysed with 

different PCA spaces. Estimation for a parameter of the hand shape is made at each level 

of the pyramid where a final decision is taken at the bottom end level. The new pattern is 

labelled according to the nearest neighbour object from the training set which represents 

the top match. Four pattern recognition techniques are used to implement the proposed 

pyramid hierarchy viz. perpendicular distance measure, supervised multi-dimensional 

grids, unsupervised multi-dimensional grids and artificial neural networks. The 

experimental results showed that the technique is applicable for real-time applications 

under a high degree of accuracy.  
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7.5 Summary of Contributions 

In this section a brief summary is given for the main contributions that have been 

discussed in this thesis through the previous chapters. 

 The proposed algorithms do not require a pre-alignment of the images as a pre-

processing step. Image alignment is required in many techniques, which are found 

in the literature, to rotate the hand shape or scale it to pre-defined position to ease 

the classification process. The proposed algorithms fall under the category of 

example-based approaches. They depend on the strategy of building a training set 

using computer-generated example images as it is possible to control the position 

and orientation of the hand and arm at regular intervals, which is difficult for a 

human being to do. The example images densely sample the space to cover 

different translations and rotations. The proposed algorithms overcome the 

disadvantage of PCA as they are invariant to these rigid transformations where 

PCA originally is not. 

 A new way of organizing data pyramids has been discussed through the thesis. 

The proposed PCA pyramids analyse the example images using different 

eigenspaces throughout the hierarchy. Usually, data pyramids are constructed 

under different image resolutions or scales. Estimation for a hand shape parameter 

can be achieved at each level using the related eigenspaces. Originally, PCA is an 

unsupervised learning technique that builds the eigenspaces based on the feature 

space of the original data without taking into consideration the different classes, 

which represent the different poses and shapes of the hands. Different PCA spaces 
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were introduced in this thesis. Rotation manifolds are generated by building one 

eigenspace for a shape at different rotations. A shape manifold is a manifold that 

holds different shapes at a certain rotation angle within the same eigenspace. Sub-

manifolds are generated by applying PCA a second time to each eigenspace in-

order to get a further dimensionality reduction. Estimation for the rotation angle 

of the signer arm is achieved at the first level of the hierarchy using rotation 

manifolds as rotation has the highest variation within the data. Then shape 

manifolds are used for classifying the shape at the second stage. 

 Nonlinearity reduction in manifolds using image blurring has been introduced in 

this thesis and tested on our set of example images. Image blurring is used to 

remove small changes between objects to enhance the generalization factor with 

respect to new images. However, image blurring has the effect of making the 

manifolds more flat and more sparable within the eigenspaces. This helps the 

different classifiers to reach a higher level of accuracy. The first algorithm, which 

uses perpendicular distance, originally assumes that the manifolds are completely 

flat and reducing the nonlinearity gets more accurate distance measures. In the 

second and third algorithms, multi-dimensional grids can be used to cluster the 

data into groups of similar objects using hyper-cubic cells. At a certain level of 

blurring, the data is separable enough to label the MDG cells with the class of 

data they hold. In the fourth algorithm, artificial neural networks can be trained 

faster with a simpler design, when nonlinearity reduction is achieved using image 

blurring as fewer nonlinear decision boundaries are needed to solve the problem. 

 



124 

 

 Acceleration for the search process in the example images over exhaustive search 

strategy is discussed through the thesis. The proposed PCA pyramids provide an 

alternative to the indexing method to approximate the k nearest neighbour 

problem. Indexing methods usually are sensitive to the choice of the hash 

functions. Through the hierarchy, the search focuses on a group of images 

according to the estimations of the parameters for the new hand shape which are 

made in each level. 

 The proposed PCA pyramids provide a method to design simple architectures for 

the classification process. As the PCA eigenspaces are organized into groups of 

objects sharing the same parameter, simple design architectures can achieve the 

learning stage. The simplicity of the design can be expressed in terms of the size 

of MDGs or the number of neurons and layers in the MLP architecture. 

Nonlinearity reduction in manifolds helps also in finding a simpler design to solve 

the recognition problem, as less nonlinear decision boundaries are needed to 

separate the data. 
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7.6 Directions for Future Research 

In this section a suggestion is made to demonstrate the future work based on the 

research which is made in this thesis. 

 The proposed pyramids are parallel by nature. A pipeline can be established using 

multi-core processors to enhance the speed of the system. The number of pipeline 

stages is equal to the number of levels the pyramid has. Figure 5.1 show a 

suggestion for a 3 stage pipeline. The speed of the system can be enhanced to be 

equal the speed of the slowest stage. 

 

Figure 5.1, Pipeline design for a pyramid hierarchy. 

 

 The proposed pyramid hierarchy is upgradable. The pyramid structure can be 

appended by extra levels at the start to study and analyze the effect of other 

factors like scale. This has the effect of increasing the robustness of the proposed 

algorithms. 
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 A different implementation for the proposed PCA pyramid hierarchy can be 

achieved using support vector machines. The nonlinearity reduction in manifolds 

can help in speeding up the training process of SVMs as less nonlinear decision 

boundaries can easy be established by the support vectors. 

 

 Towards achieving a user-independent framework, a preprocessing stage can be 

established for mapping a real signer segmented arm and hand to a computer 

generated image to be classified by the system. The fact that the accuracy for the 

real data is comparable to that for the computer-generated data at the third 

algorithm, we can suggest that the proposed algorithms can be generalized to real-

world data. To extend the real-world evaluation, the training and test data can be 

drawn from different people, separate sequences and over a wider population of 

transformations. 

  

 A study can be made for checking and generalizing the effect of image blurring 

on reducing the nonlinearity in manifolds on other nonlinear data sets eg. face 

recognition, behavior tracking, and vehicle tracking.  

 

 The proposed multistage hierarchy can be applied for different applications of 

pose estimation eg. head pose estimation and body postures recognition. 
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Publications arising from the research in this thesis 

 Farouk M., Sutherland A. and Shokry A. "A multistage hierarchical algorithm for 

hand shape recognition." IEEE 13th International n Machine Vision and Image 

Processing Conference IMVIP'09., 2009, pp. 105-110. 

 

 Farouk M., Sutherland A. and Shokry A., "Nonlinearity Reduction of Manifolds 

using Gaussian Blur for Handshape Recognition based on Multi-Dimensional 

Grids" , 2nd International Conference on Pattern Recognition Applications and 

Methods ICPRAM 13, 2013, pp.303-307. 
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