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Abstract 

Over the last decade the progress in amorphous and nanocrystalline silicon (nc-Si) for 

photovoltaic applications received significant interest in science and technology.Advances in 

the understanding of these novel materials and their properties are growing rapidly. In order 

to realise nc-Si in the solar cell, a thicker intrinsic layer is required. Due to the indirect band 

gap in the crystallites, the absorption coefficients of nc-Si are much lower. In this work we 

have used electrochemical etching techniques to produce silicon nanocrystals of the sizes 3–5 

nm. Viable drop cast deposition of Si nanocrystals to increase the thickness without 

compromising the material properties was investigated by atomic force microscopy, optical 

microscopy, photoemission spectroscopy and optical absorption methods. 
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1 Introduction  

There has been a significant amount of recent research into the possible applications of 

silicon nanocrystals [1-5]. They provide the possibility of being able to manufacture efficient 

Si light emitting diodes due to their luminescence properties. However, the possibility of 

using these silicon nanocrystals in photovoltaic devices has also created enormous interests 

due to their multiple exciton characteristics. The efficiency can be increased beyond the 

Shockley—Queisser limit by creating a stack of junctions where the semiconductor 

comprising each junction has a greater bandgap than the succeeding junction [6]. This could 

be achieved by varying the size of the silicon nanocrystals to tune the band gap. In this 

investigation of alkyl-capped nanocrystalline silicon (nc-Si) was prepared and several 

depositions of nc-Si were onto fused quartz glass substrates were performed using drop cast 

deposition technique. Surface topography was studied using atomic force microscopy and 

optical microscopy. Soft X-ray photoemission spectroscopy used to understand the electronic 

structure of the material. The absorption spectra were measured using an integrating sphere 

and spectrometer setup. This was performed to better characterise the absorption 

characteristics of the Si-nc under broadband white light illumination. 

Our results suggest that silicon nanocrystals have good potential to replace conventional 

amorphous Si solar cells through integration into a multi junction stack, for example.  

 

2 Experimental  

2.1 Silicon quantum dot preparation  

Lumines-cent silicon nanocrystals were produced by electrochemical etching of silicon. 

Porous silicon (PS) with a nanoscale internal structure was produced by a standard etching 

procedure from silicon. The starting point was to remove the native oxide layer from a silicon 



chip by dipping it in hydrofluoric acid (HF) for a short time, washing with de-ionised water 

and blowing with a stream of nitrogen. The chip was then clamped between two 0-rings in a 

Teflon cell of diameter 6 or 10 mm, which contains a HF—ethanol (electrolyte) mixture in 

the ratio 1:1. Due to the hydrophobic character of the clean Si surface, absolute ethanol is 

usually added to the aqueous solution to increase the wettability of the silicon surface. In fact, 

ethanoic solutions infiltrate the pores, while purely aqueous HF solutions do not. This is very 

important for the lateral homogeneity and the uniformity of the PS layer in depth. Another 

important reason for adding ethanol is that during the reaction hydrogen evolution 

occurs,bubbles are formed and stick on the Si surface in pure aqueous solutions, whereas they 

are promptly removed if ethanol is added.  

The electrical contact was obtained via thin copper wire in the base of the Teflon cell. A 

coiled tungsten wire (0.5 mm) was used as the counter electrode. Silicon nanoparticles were 

obtained after 15 min etching at current density of (380-400 mA/cm
2
). The electrolyte was 

removed from the cell while the nanocrystals remained on the chip. These particles were 

dried in a Schlenk flask under vacuum. The dried nanocrystals were introduced into a flask 

containing a mixture of the 2 mL of toluene or mesitylene and 0.1 mL of undecenol solution. 

The solution was refluxed for 2-6 h under nitrogen atmosphere. During this refluxing process, 

the whole internal structure of the nanocrystals is modified. This process is termed alkylation. 

During this reflux only the smallest silicon nanoparticles broke off the PS matrices and 

dissolved in the solution. The particles have been called silicon nanocrystals due to their size 

(3-5 nm in diameter).  

 

2.2 Substrate preparation and deposition For optical absorption characterisation fused 

quartz glass was used as a substrate. This 1 mm thick glass was laser cut into 10 mm x 10 

mm square sections and cleaned using Piranha solution (3:1 mixture, concentrated H2SO4, 

30% H2O2) at 90 °C for 25 min. The nc-Si was dispersed in dicholoro-methane [7, 8] and 

then deposited using the drop deposition method. 4 mL of the solution was dropped per 

deposition, and the substrate allowed dry for 24 h in a clean environment. Three depositions 

were performed in total.  

 

2.3 Absorption measurement In order to measure the effect of the deposited nc-Si on the 

absorption of broadband light, an integrating sphere with spectrometer setup was designed, 

see Fig. 1. Integrating spheres have the ability to collect diffuse and specular reflections and 

transmissions from samples when irradiated with light [9]. 

As these specialised spheres are coated with highly reflective diffuse coatings, it is possible 

to average any transmission or reflection over the whole sphere. This makes it possible to 

obtain an accurate average of any transmitted or reflected light, regardless of the 

directionality of the light rays. The integrating sphere (Labsphere model 4P-GPS-040-SF) 

used in this setup was 100 mm in diameter with three 25.4 mm diameter ports at 0, 90° and 

north pole locations, and a 38 mm port at 180°. A baffle was located between the 90 and 180° 

ports to reduce measurement error due to light falling directly on the detector from the 

sample. To further improve the accuracy of the measurement a cosine corrector was utilised, 

which aids the elimination of any directionality from the measurement.  



 

 

Data below this wave-length are therefore not presented here. The detector integration time 

for the analysis was 12 s. 

 To accurately measure the light absorption in the laser processed fused quartz, the samples 

were held inside the closed sphere with the illumination source incident at 8° to the normal of 

the sample. This allowed all the scattered light to be collected including transmitted and 

reflected, diffuse and specular. By measuring the amount of light collected and subtracting a 

baseline reference measurement of clear fused quartz with a thin 4 mL layer of 

dichloromethane deposited, the absorption could be calculated using Eq. (1).  

Absorption = 1— ( T + R) (1) 

Where T is the transmitted light and R is the reflected light.  

 

2.4 XPS analysis  

Soft X-ray photoemission was performed at beam 1511, Max-Lab, Lund. The Si 2p 

photoemission spectrum was taken in normal geometry with 145 eV photons. The total 

energy resolution is 0.2 eV. Binding Energy was referred to the 4f spectral lines of gold foil, 

which was in direct contact with the sample, with the binding energy of 84 eV [10]. For XPS 

measurements Si nanocrystals were drop cast onto the graphite or mica surface and rapidly 

introduced into the vacuum chamber.  

 

2.5 AFM analysis  

Surface topography analysis of the Si nanocrystals was performed using CII Veeco atomic 

force microscopy in Tapping Mode. Silicon nanocrystals were drop cast on the surface of the 

mica/glass substrates and introduced for AFM analysis. Details of the sample preparation for 

AFM are discussed elsewhere [7].  



3 Results and discussion  

Figure 2 shows the optical microscope image of the silicon nanocrystals taken immedi-ately 

after the third repetition of the drop deposition technique. 

 

The silicon nanocrystals appear to be about 1 [Am in diameter, significantly larger than 

shown by other topographical characterisation methods, such as AFM (Fig. 3). This could be 

attributed to the formation of clusters of nanocrystals on the surface of the substrate after 

subsequent depositions [8]. It is clearly visible from this image that the Si nanocrystals do not 

form a continuous layer on the substrate material. It can also be observed that there are 

varying degrees of uniformity of Si-nc presented. Some areas are sparsely populated while 

others are evenly distributed (not shown in the picture). 

 



In order to understand the morphology of surface, AFM in tapping mode was performed. 

Figure 3a represents the double layer deposition of nc-Si on mica/glass. Our previous study 

on the surface topography by AFM on the similarly produced sample indicated a uniform 

nanocrystal size distribution of between 3 and 5 nm [7, 8]. STEM analysis on the same 

sample has also been previously performed to verify the dimensions of these silicon 

nanocrystals [8]. Layer-by-layer deposition methods by drop casting the solution on to the 

surface were attempted. The drop cast deposition technique was used to populate the surface 

of the mica/glass with two or more layers. 

 Figure 3b shows the cross-sectional analysis of the surface. The size of the nanocrystals is 

approximately 5 nm which is consistent with the double layer coating. Clusters of 40 nm size 

can also be seen suggesting inhomogeneous evaporation of the solvent.  

In order to find the sample composition, element specific X-ray photoemission experiments 

were carried out. Figure 4 shows the normalised Si 2p spectrum. The spectrum is normalised 

to incident photon flux. The peak at binding energy 99.5 eV corresponds to the Si—Si bonds 

and the peak at 102 eV corresponds to the silicon—oxygen bonding [7]. In previous work [8] 

more than two layers were evaporated resulting in a different line shape Si 2p in nc-Si.  

 

 

 

Figure 5 shows the absorption characteristics of the silicon nanocrystals after they were 

bonded to the glass substrate. The absorption measurement was performed after each 

repetition of the drop deposition technique and subsequent drying time. It can clearly be seen 

that there is a small increase in absorption of the incident broadband light by the deposited 

nanocrystals between 420 and 520 nm. Increases in absorption in the same wavelength range 

have been found in studies where Si nanocrystals are embedded in a SiO2 matrix [11, 12]. 

Other studies on alkyl-capped Si nanocrystals have found an increase in absorption only from 

approximately 325 nm and below [13, 14]. Vasiliev et al. [15] simulated the effect of oxides 

on the optical absorption of Si nanocrystals using a confinement model revealing that for 

certain oxide configurations, the optical absorption gap was further lowered to 2.4 eV (520 

nm), which correlates well with our results. 



 

 

This indicated that it is the presence of oxides in our nanocrystals, as indicated by the XPS 

analysis shown in Fig. 4, was causing absorption at lower photon energies. However, it was 

not possible to achieve a uniform coverage of the substrate with the Si nanocrystals, which 

may have lead to further inconsistencies in the absorption measurement in this preliminary 

investigation. It was estimated that in this measurement an experimental error of 

approximately 1% existed. The source of this error is due to inhomogeneous distribution of 

the nanocrystals, and is also due to the variation in the illumination source intensity in the 

integrating sphere setup. The low population of silicon nanocrystals on the substrate surface 

led to a lower signal to noise ratio during the measurements. By increasing the number of 

nanocrystals on the substrate between each measurement an improved signal would be 

obtained. The variation in light source intensity could be corrected by creating several 

samples with different nanocrystal popu-lations and performing all of the absorption 

measurement in one session.  

 

4 Conclusion  

The absorption of the alkyl-capped Si quantum dots drop deposited onto a fused quartz 

substrate was measured using an integrating sphere and spectrometer setup. Subsequent 

depositions indicated that there is an increase in absorption of broadband light in the 420-500 

nm range. However, the non-uniformity of the drop deposited layer may have lead to 

inconsistencies in the absorption measurement. Atomic force microscopy confirms the 

feasibility of double layer depositions and XPS indicates Si—Si bonding. Much work needs 

to be done in order to control the layer-by-layer depositions and to understand the properties 

of this novel material. By using other deposition techniques, such as evaporation, it will be 

possible to control the thickness of nanocrystals on the surface of the substrate, which may 

improve the understanding of the material properties.  
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