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Abstract

With the fast development of high-throughput sequencing technologies, a new generation of genome-wide gene
expression measurements is under way. This is based on mRNA sequencing (RNA-seq), which complements the already
mature technology of microarrays, and is expected to overcome some of the latter’s disadvantages. These RNA-seq data
pose new challenges, however, as strengths and weaknesses have yet to be fully identified. Ideally, Next (or Second)
Generation Sequencing measures can be integrated for more comprehensive gene expression investigation to facilitate
analysis of whole regulatory networks. At present, however, the nature of these data is not very well understood. In this
paper we study three alternative gene expression time series datasets for the Drosophila melanogaster embryo
development, in order to compare three measurement techniques: RNA-seq, single-channel and dual-channel microarrays.
The aim is to study the state of the art for the three technologies, with a view of assessing overlapping features, data
compatibility and integration potential, in the context of time series measurements. This involves using established tools for
each of the three different technologies, and technical and biological replicates (for RNA-seq and microarrays, respectively),
due to the limited availability of biological RNA-seq replicates for time series data. The approach consists of a sensitivity
analysis for differential expression and clustering. In general, the RNA-seq dataset displayed highest sensitivity to differential
expression. The single-channel data performed similarly for the differentially expressed genes common to gene sets
considered. Cluster analysis was used to identify different features of the gene space for the three datasets, with higher
similarities found for the RNA-seq and single-channel microarray dataset.
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Introduction

Analysis of the gene expression process has been an important

topic for many years [1], as it can have outcomes important for

understanding the way in which genetic information is processed,

as well as the mechanisms involved in both natural and abnormal

processes. With the developments of microarray technologies,

which allow for gene expression quantification for a very large

number of genes at the same time, this analysis has moved from

gene to genome level [1]. Several pre-processing and analysis tools

such as machine learning and reverse engineering algorithms have

been tailored specifically for these data (e.g. [2,3] and references

therein). This, together with relatively low cost, has facilitated wide

usage of microarrays over the past years [4]. However, some

challenges still persist in working with these data, where these are

related to noise introduced at different experimental and analysis

stages, and/or limitation of probes to known genes [5].

Recent advances in high throughput sequencing technologies

(Next or Second Generation Sequencing) have introduced a new

alternative to microarrays, namely RNA-seq [4]. This quantifies

gene expression by sequencing short strands of cDNA, aligning

sequences obtained back to the genome or transcriptome, and

counting the aligned reads for each gene. This technology is

expected to overcome some of the disadvantages of microarrays.

For instance, it is able to identify transcripts that have not been

previously annotated [5] and it can quantify both very low

transcripts (unlike microarrays where there is background noise

interference) [4], and very high ones (where microarrays suffer

from hybridisation saturation, i.e. only a limited amount of cDNA can

hybridise to a microarray spot) [5]. At the moment, although

significant efforts have been made to modify algorithms and

technologies, problems still exist with obtaining quantified

transcription data. Some of these relate to read errors, short read

mapping, SNPs, RNA splicing and sequencing depth, which

particularly affect analysis of more complex transcriptomes [4].

Additionally, the experimental cost for these technologies is still

very high compared to microarrays [5]. However, improvements

are expected as the length of reads is increased [5] and new

algorithms and methods are developed, so that RNA-seq will

eventually become a more accessible tool for gene expression

analysis.
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Meanwhile, the objective must be to understand the nature of

these data, and what they add, or hope to add, to the gene

expression picture [6]. Efforts have been made to analyse

compatibility and complementarity of datasets with respect to

general expression patterns [4,7], splice junctions [8,9], and

differential expression [10]. Results from these studies show good

correlation between microarray (including exon arrays) and RNA-

seq expression levels (reported Spearman rank and Pearson

correlation values between 0.55 and 0.85 [8,11,12]). However,

RNA-seq experiments were shown to be more suitable than

microarrays for quantifying absolute gene expression levels, when

validated with mass spectrometry measurements [7]. RNA-seq

data have been found to display more sensitivity to differential

expression tests compared to microarrays, with the number of

identified genes generally larger [13,14]. Additionally, the new

platform was shown to display better discrimination of differen-

tially expressed genes with very large expression values, while

microarrays were reported better for very low transcript concen-

trations [10,14,15] (a somewhat surprising fact given that NGS

data have been postulated to have an advantage for low transcript

quantification). For sample classification it has been shown [16]

that no significant difference between Agilent and Illumina

technologies exists.

These studies mostly concentrate on the same samples

measured with the different technologies, in order to eliminate

biases due to biological variability, which allows for a more robust

test of advantages and disadvantages of each platform. However,

in the context of large-scale integration, more heterogeneous

datasets, from different sources and samples, should also be

analysed and overlapping features identified in the more general

setting. Even if samples are different, it is expected that, if they

measure the same process, they should underline the same overall

features (e.g. differentially expressed (DE) genes, clusters). In

consequence, a discussion of overlapping features in a broader

setting, which may allow further integration of these data, is

presented here. A detailed analysis of the gene space structure (i.e.

clustering) is needed, which has not yet been performed to our

knowledge. This is important as, in principle, the space structure

should be similar for different technologies, since genes involved in

similar processes cluster together, regardless of what measurement

technology is used. However, each technology has its own

characteristics, which may interfere with the clusters formed. A

study of the overall space can help to identify both specific and

common features for each dataset. For this, three gene expression

time series datasets measuring embryo development for Drosophila

melanogaster (RNA-seq (NGS - Next Generation Sequencing),

single-channel (SC) and dual-channel (DC) microarrays), have

been studied for differential expression and results compared to

previous analyses focusing on more restrictive samples. Further, a

cluster analysis is presented, to identify the structure of the gene

space in the different datasets.

Table 1. Gene expression datasets for Drosophila melanogaster embryo development.

Dataset Number of time points Number of replicates Sampling interval Hours after egg laying

NGS 12 3–4 (technical) 2 h 2–24 h

DC 7 3 (biological) 1–3 h 2 h, 3 h, 6–10 h

SC 12 3 (biological) 1 h 1–12 h

doi:10.1371/journal.pone.0050986.t001

Figure 1. Calculation of gene length.
doi:10.1371/journal.pone.0050986.g001
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Methods

This section describes the methodology used for the analysis of

the three datasets. The scripts used can be found as supplementary

material to this paper (Scripts S1).

Datasets and Pre-processing
Three publicly available raw datasets have been downloaded

from online resources and used for the analysis. These consist of

time series measurements of the fruit fly (Drosophila melanogaster)

embryo development, and have been measured on three different

platforms: single-channel Affymetrix microarrays (referred to as SC

dataset, Berkeley Drosophila Genome Project [17]), dual-channel

microarrays (DC dataset, NCBI Gene Expression Omnibus,

accession number GSE14086 [18]) and RNA-seq (NGS dataset,

NCBI Sequence Read Archive, accession number SRP001065

[19]). Table 1 summarises features of these data. The raw data

have been pre-processed for differential expression analysis, as

follows.

Sequencing data. The Illumina Genome Analyzer II reads

were mapped to the April 2006 assembly of the Drosophila

melanogaster genome (dm3, BDGP Release 5) using Tophat (v

1.0.14). This tool also makes use of gene annotations to detect

reads that map across known and putative splice junctions. Release

5.12 annotations (Oct. 2008), provided by ‘Flybase’, was

downloaded from the UCSC Genome Bioinformatics website.

Default Tophat settings were used for mapping.

HTSeq, a Python package that provides infrastructure to

process data from high throughput sequencing experiments, was

used to ‘‘count’’ the number of reads mapping to each gene. Read

counts per gene was calculated to be the total number of reads,

which mapped uniquely to annotated regions (Release 5.12

annotations). Reads that mapped to more than one location were

considered ambiguous and not used. Unique reads, which mapped

to a locus with more than one annotated gene, were considered

ambiguous and not used (Figure 1).

Reads per kilo base per million reads mapped (RPKM) values

were calculated to be used for cluster analysis. Gene length was

defined to be the region that encompasses the union of all isoforms

of a gene, which do not overlap other genes (Figure 1). RPKM

values were log normalised, in order to remove the amplitude/

variance dependence in the data (as for microarray normalisation).

Clustering of RPKM values without taking logarithms was also

performed; but results differed significantly from those for

microarrays, with a hierarchical structure imposed on the gene

space, due to amplitude differences, so this approach was not

pursued here.

Microarray data. For the two microarray datasets, R

software (specifically the Limma package [20]) was used for

normalisation and expression value extraction. Background

subtraction, within-array and between-array normalisation was

performed for the DC dataset using the normexp and loess methods

in Limma, while for the SC dataset, the RMA method was

employed. The resulting normalised datasets were used for

differential expression and cluster analysis.

Differential Expression
Differential expression analysis was performed using R software,

i.e. the Limma package (lmFit and eBayes methods [21]), for the two

microarray datasets (SC and DC), and the DESeq package [22] for

the sequencing dataset (NGS). For each dataset, we retrieved the

set of differentially expressed (DE) genes for at least one time point,

compared to the initial one. Given that the data were sampled at

different time points and sampling intervals in the three datasets,

only those common to all datasets were used, resulting in a total of 4

experiments for each. This excluded 42% of the time points from

the DC dataset, and 66% from the other two, which was not ideal.

Nevertheless, the purpose of the current exercise was to find a

‘kernel’ comparison base, for which to examine all three

methodologies, and this is the basis for proceeding with the

truncated datasets. As more data become available, relative

performance may be assessed on more extensive and complete

datasets. (NOTE: in the NGS dataset, genes with null counts in all

time points (11% of genes) were removed before differential

expression analysis.).

The DE tests employed assume a linear model for the gene

expression levels in the two microarray datasets and a negative

binomial distribution for counts in the NGS dataset. Based on data

replicates, estimates of the expected mean and variance were

obtained. The differential expression test between two samples is

based on the null hypothesis that the expression values of a gene in

both come from the same distribution, with q-values (adjusted p-

values) obtained for each gene and sample pair ([21,22] for more

detail).

The DE sets of genes corresponding to a q-threshold of 0.01

were retrieved and compared for the three datasets. Common and

uncommon genes were identified and properties studied. Due to

the fact that these sets were very different in size, further analysis of

DE sets was performed by selecting the top 4000, 3000 and 2000

genes as ranked by q-values in each dataset. This enabled analysis

of overlapping features of the three datasets, at different

granularity levels, without bias from the individual DE null

distributions. Firstly, DE genes common to all datasets were

studied. Given that some genes were not present in all datasets (as

microarray probes differ between platforms, with some having

missing values), these were removed from the analysis before each

pair-wise comparison. Thus, when comparing datasets DC and SC,

genes present in both datasets only were considered, whether or

Figure 2. Differentially expressed genes for qv0:01. The NGS
(Next/Second Generation Sequencing) and SC (Single-Channel) datasets
display the largest commonality, while the DC (Dual-Channel) and SC
the smallest.
doi:10.1371/journal.pone.0050986.g002
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not present in dataset NGS. This resulted in eliminating the

additional DE genes from the first dataset that were not sampled in

the second, to remove bias due to platform sampling range. On

average, 70% of genes were retained between the DC and the

other two datasets, while about 80% were retained for the NGS vs.

SC analysis. While the full data might reasonably be expected to

provide additional insight on the extended gene set by platform,

truncation was required for the current study with the aim of

identifying strictly overlapping data structures for eventual

integration, rather than to provide a ranking of technologies.

As indicated in Table 1, each of the three datasets contains at

least three replicates for each time point. The NGS replicates are

technical (i.e. obtained by sequencing the same sample many

times), while those from microarrays are biological (i.e. obtained

from different samples). Given that technical replicates differ only

in experimental setting (biological diversity is not present), the

number of differentially expressed genes in the NGS dataset may

be inflated, due to variance underestimation. However, using a

pooled approach [22] for variance estimation for these data

resulted in a very low number of differentially expressed genes. On

investigating the coefficient of variation for replicates in all

datasets, larger values were obtained for the NGS dataset. This

indicates that these technical replicates are not, in fact, very

similar. In consequence, the non-pooled approach was adopted,

although this may result in an increase of the number of DE genes

retrieved. However, this is expected to have a smaller influence on

the top ranked DE genes, which is a further reason to compare

these across datasets, and not only the DE sets determined by q-

value thresholds (as described above). From the literature, it

appears clear that, due to costs involved, RNA-seq experiments

are currently performed mostly with technical replicates, e.g.

[9,10,13,14], while biological replicates are standard for micro-

arrays [14,17,18]. This is due to large costs for library preparation

in the case of RNA-seq [23], resulting in a very large fraction of

published experiments having only technical or no replicates [24].

Even though replicate type may influence results, analysis of

heterogeneous sets for overlapping features is relevant to assessing

comparative state-of-the art of the technologies, in the context of

recent increased interest in the potential for data integration from

different platforms.

Clustering
To analyse the structure of the gene space in the three datasets,

clustering was applied to genes in the top 4000 as ranked by DE

analysis on the NGS dataset. Due to platform differences, only

2941 of these genes were measured on all platforms, so these were

used for clustering. This approach was selected in order to analyse

how the same subset of genes is distributed across the space for the

different datasets. Expression values for all time points available in

the datasets were used for clustering, i.e. values resulting from

Limma normalisation for microarrays, and log RPKM [4] values

for NGS data. Two clustering algorithms (provided by R software)

were employed: K-means with Euclidean distance, and bicluster-

ing using the Plaid algorithm; packages flexclust [25] and biclust [26]

respectively. K-means was applied with the preset number of

clusters ranging from 5 to 200 (with a step of 1 between 5 and 20

Figure 3. Common differentially expressed genes between dataset pairs with different rank thresholds. For each pair of datasets, only
the genes that exist in both datasets are considered. The NGS and SC datasets display the largest commonality, maintained over 50% even for the
most restricted DE sets, while the DC and NGS the smallest. However, percentages decrease instead of increasing when restricting the set of genes.
doi:10.1371/journal.pone.0050986.g003

Figure 4. Histogram showing the distribution of average count
values (from the NGS dataset) for genes commonly DE in the
NGS and SC datasets (6075 genes), versus those DE only in one
dataset (2805 for NGS and 356 for SC). Only genes probed on
both platforms were considered for this analysis. Uncommon genes
display lower counts compared to common. The NGS dataset also
identifies a few genes with very large counts.
doi:10.1371/journal.pone.0050986.g004

RNA-Seq vs Microarrays
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and a step of 5 between 20 and 200). This large range was chosen

to explore the structure of the gene space at different granularity

levels. The Plaid algorithm was applied 10 times for each dataset.

The three datasets were standardised by experiment (i.e. converted

to standard scores) prior to clustering, to remove biases related to

scale, that may differ from one time point to another, due to

experimental differences.

To evaluate clusters obtained from each dataset, several criteria

were used. For K-means, the Davies-Bouldin index (DBI) [27] was

computed for each run (with a different number of preset clusters),

as this indicates whether clusters are both well-defined and well-

separated (a lower DBI value indicates compact and distinct clusters).

For biclusters, the within-cluster variance was computed, using the

biclust package. This gives an indication of the bicluster compact-

ness, with lower variance corresponding to tighter groupings.

Additionally, for both K-means and biclusters, the Biological

Homogeneity Index (BHI) [28], based on Gene Ontology [29]

annotations for molecular function (MF), was computed for all

clusters (using package clValid [30]). The BHI represents the

percentage of gene pairs in a cluster with common annotation, and allows

for evaluation of cluster quality from the biological point of view,

complementing the other evaluation criteria based on expression

value distance measures alone. Additionally, clusters were

compared between datasets using the Adjusted Rand Index

(ARI) [31]. This computes a measure of cluster similarity, ranging

between 0 and 1, with 0 corresponding to similarity expected from

random clusters and 1 to identical clusters.

Results and Discussion

Differential Expression
In the first analysis performed, we studied the DE sets of genes

obtained from different datasets with q-value under 0:01. Ideally,

the gene sets should show significant overlap, and should be

similar in size; in reality, this depends both on the biological

variability, measurement parameters and on the DE test, so gene

sets vary from one dataset to another. Our aim here is to study the

extent of overlap between the three cases. Figure 2 shows the

number of differentially expressed genes in each dataset, and

overlapping areas. The NGS dataset identified the largest number

of genes, in agreement with previous study findings, followed by

SC and DC. Datasets SC and NGS show greatest similarity for the

Figure 5. Percentage of reference genes represented in the DE sets obtained from the three datasets. The NGS dataset identifies the
largest number of reference genes, and the DC dataset the lowest.
doi:10.1371/journal.pone.0050986.g005

Figure 6. K-means clustering evaluation. Graphs displays DBI values obtained for the three datasets with different k.
doi:10.1371/journal.pone.0050986.g006

RNA-Seq vs Microarrays
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DE sets obtained, with a large number of (mostly common) DE

genes involved. Compared to this, the DC dataset captures only a

restricted DE gene set, implying that the NGS and SC datasets are

more sensitive to the DE test. One possible explanation for this

may be cross-hybridisation that has been found to decrease the

number of DE calls in cDNA microarrays, compared to

Affymetrix [32]. The large number of DE genes in the NGS

dataset may also be partly due to use of technical replicates;

nevertheless, the SC dataset analysis (with biological replicates)

also retrieved many DE genes (common). The different samples

measure the same process (i.e. embryo development) at the same

time intervals, so the genes involved should be the same. Hence,

the results suggest that the variance estimation assumption for the

technical replicates is reasonably robust. The fact that findings for

the NGS dataset are in good agreement with those for the SC

dataset also indicates good potential for microarray and RNA-seq

data integration in future analysis. Similarity between RNA-seq

and the Affymetrix platform has been identified also in previous

studies [15].

Figure 7. Cluster size and BHI values for different k. The colour intensity of the spots indicates the number of points falling in the specific area.
The graphs show that the gene space is similar for the three datasets. For small k, clusters do not have a large BHI, which changes with increasing k,
as more clusters become relevantly differentiated.
doi:10.1371/journal.pone.0050986.g007

RNA-Seq vs Microarrays
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Since DE analysis based on q-value thresholds is influenced by

the DE null distribution of individual datasets, Figure 3 displays

the percentage of common genes for dataset pairs, when looking at

the top ranked genes for each dataset (i.e. top 4000, 3000 and

2000). The percentage of DE genes common across datasets is

expected to increase when the rank threshold decreases, since the

more stringent threshold should act as a filter for non common genes.

Unfortunately, as Figure 3 shows, this is not true for any of the

three datasets. This suggests that the DE information on some

genes is less precise for at least one dataset of the pairing, regardless

of thresholds used, probably due to different noise levels and/or

other platform differences. This behaviour also occurs when the

two microarray platforms are compared, however, so does not

necessarily preclude NGS and microarray data integration (not

least since dual- and single-channel data have been used in

common studies, [33]). It does indicate, however, that reducing

noise remains a persistent issue in gene expression analysis,

especially technical bias specific to each measurement technology.

This requires special attention when dealing with cross-platform

integration as it can amplify differences, which can be observed

even for one platform due to the intrinsic stochasticity of the gene

expression process and normal biological variability.

The genes recorded as differentially expressed in both the NGS

and the SC dataset, and those not common to both, were further

investigated, and Figure 4 displays the distribution of average

count values (number of reads mapping to the specific gene), for

differentially expressed genes in the common (6075 genes) and

additional categories (2805 for NGS and 356 for SC). The genes

specific to only one platform were removed. As the figure shows, in

general, a large fraction of uncommon DE genes have very low

counts, for both NGS and SC data. This indicates that on low-

count transcripts, the two technologies provide complementary

Figure 8. Cluster comparison for dataset pairs. The Adjusted
Rand Index (ARI) is displayed for each dataset pair for all combinations
of k (top to bottom: DC vs SC, NGS vs SC, DC vs NGS). The clusters
obtained from SC and NGS are more similar than when comparing the
DC dataset with the other two.
doi:10.1371/journal.pone.0050986.g008

Figure 9. Bicluster average additive variance distribution over
ten runs.
doi:10.1371/journal.pone.0050986.g009

RNA-Seq vs Microarrays
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information, with more low-count genes identified by the NGS

dataset. This can be explained by background noise interference in

microarrays hindering correct quantification of rare transcripts.

For RNA-Seq this problem does not exist, giving the latter

technology an advantage in handling low expression values. The

NGS dataset also identifies some highly expressed genes missed by

microarray analysis. This might be due to probe saturation in

microarrays, not present in RNA-seq. Previous studies have also

reported higher DE sensitivity of RNA-seq for large copy-number

transcripts (e.g. [14]). However, this property has not been

previously identified for low count transcripts also [10], although

supported by known characteristics of the different technologies.

This might be due to the sequencing depth used in these previous

studies [14], which is very important for detecting low count

transcripts [6]. For instance, [10] report an average of

11.56 RPKM for their study, while the NGS dataset in this study

contains an average of 43.2 RPKM, significantly larger. Of

course, it is possible to argue that the low count genes, deemed

to be differentially expressed in this dataset, may be an artefact of

the use of technical replicates. This has necessitated some further

probing of content, and, while not all genes can be used to refute

the argument, we have looked at the list of low count (average

v100) differentially-expressed (DE) genes identified by the NGS

dataset, and found examples with strong likelihood of being true

positives. A reference set of genes, with high likelihood of being

differentially expressed during embryo development, was selected

in order to explore whether these were identified from the three

datasets, using the methods described. This set of genes consisted

of those annotated with the embryo development term in the Gene

Ontology database, having ‘gene model status’ with the value

‘Current’ in Flybase (481 genes). Thirteen of these genes are low

count genes identified only by the NGS dataset. Additionally, of

those low count genes identified by the NGS and not by the SC

dataset, 105 are also included in the DC set of DE genes,

providing other indication that these are true positives. A further

example is gene doublesex, known to have low expression values

and to be involved in sex differentiation [6]. This is identified by

the NGS dataset as DE and not by the others. These examples

indicate that, even if some low count DE genes are artefacts, true

positives are found and their identification by the NGS dataset is

useful.

Further analysis of the reference gene set is summarised in

Figure 5, which shows the proportion of these genes identified

from each dataset, together with the different DE sets that apply.

Genes that were missing from the three datasets were eliminated

before computing these proportions (which are thus based,

respectively, on 97, 89 and 98% of the 481 genes actually present

in the SC, DC and NGS datasets). This reduced reference set of genes

is expected to be highly represented in all datasets. In fact, the DC

dataset identifies the lowest percentage of reference genes,

decreasing further for lower rank thresholds, while the NGS

dataset identifies the highest, with over 40% of reference genes

present even in the most restricted set, again indicating an

advantage over the microarray data. When analysing DE genes

identified from the NGS and SC datasets (both low and high count

level), 394 reference genes are common to the two DE sets, while

59 and 15 are specific to each (NGS and SC, respectively). This

confirms that the two datasets provide complementary DE

information, while displaying a large overlap at the same time.

Clustering of Differentially Expressed Genes
Two clustering algorithms were applied to 2941 genes ranked in

the top 4000 by the NGS dataset, common to all three platforms.

Clusters are expected to be well-defined and well-separated (i.e. to

have small DBI and variance), and display good overlap (large

ARI). BHI scores should increase when a larger number of clusters

is obtained, as those DE genes included in the same cluster, under

these conditions, should share similar processes or function. The

rest of this section describes scores obtained for two alternative

Figure 10. Number of genes not included in biclusters and
number of biclusters obtained.
doi:10.1371/journal.pone.0050986.g010

Figure 11. MF BHI and cluster size for biclusters obtained in 10 runs.
doi:10.1371/journal.pone.0050986.g011

RNA-Seq vs Microarrays
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clustering methods, in order to investigate this hypothesis, and

provide insight on the data structure for the three datasets.

K-Means clustering. A first analysis of K-Means cluster

quality studied numerical separability of groupings obtained. The

DBI (Davies-Bouldin Index) values for clusters obtained with the

number of clusters (k) ranging from 5 to 200 are displayed in

Figure 6. This indicates better separability for the NGS and SC

datasets, compared to the DC dataset, with best values for SC.

This shows that the gene space is more structured for these two

datasets. At the same time, the figure shows that for all three cases,

cluster quality decreases with k, which means that large clusters

are better defined than small ones.

For a better view over the data space, the size of clusters and the

biological relevance of groups obtained (Molecular Function

Biological Homogeneity Index - MF BHI) was also analysed,

and is displayed in Figure 7 for different k values. In general the

gene space structure appears similar for the three datasets. For few

predefined centroids (kƒ15), cluster BHI is low, while cluster size

range is wide. Increasing k, small clusters with larger BHI are

differentiated for all three datasets, while large clusters become

smaller. This indicates a compact gene space structure, where

small relevant clusters become visible only when k is increased,

otherwise cluster relevance remains low. It is important to note

that BHI values for all datasets rarely exceed 0.3, which indicates

only moderate biological homogeneity of clusters. However, this is also

found for previous K-means clustering analyses for wild-type gene

expression data (e.g. [28,34]). A similar analysis has been also

performed with RPKM values instead of log normalised; however,

the approach is less stable for NGS compared to microarrays, for

small k - as noted earlier. Thus, due to large variance for gene

expression levels, genes with extreme expression values were

clustered together, forming isolated islands around the main gene

grouping. In consequence, only the log-normalised values are

discussed here.

In order to compare the clustering results from the three

datasets, the Adjusted Rand Index (ARI) was computed for dataset

pairs, and Figure 8 displays the resulting values for all k. In general

ARI values for the SC and NGS dataset are larger than those of

the other two pairs, again confirming the similarity between the

two datasets. For all three pairs, similarity decreases when k

increases, showing that although the cluster-space structure is

maintained, cluster content may differ.

Plaid. Average within-cluster variance for biclusters found over

ten runs are displayed in the form of boxplots in Figure 9. This

indicates that the SC and NGS datasets display the lowest within-

cluster variability, and DC the largest. Given that the Plaid

algorithm may not include all genes in clusters, the number of

genes not taken into account and the number of clusters identified

in each corresponding run are displayed in Figure 10. For the DC

dataset the number of clusters is smaller than for the other two,

while many genes are not included in clusters. This, together with

the higher variance, indicates less separability for this dataset, as

shown also by DBI values presented earlier for K-Means analysis.

Additionally, Figure 11 displays cluster size and MF BHI values

for the biclusters. BHI values are modest for all three datasets, with

the highest obtained for moderate cluster sizes, and no significant

differences detectable between the three cases. This shows that

even for the datasets that apparently have better separability and

tighter clusters (SC and NGS), biological relevance of clusters is

reduced when analysing gene expression levels. However, similar

to the K-Means analysis, these results are in agreement with other

studies focusing on BHI values for clustering gene expression data

([28]).

Conclusions
An analysis of three types of gene expression data for Drosophila

melanogaster embryo development time series was presented; these

include both dual- and single-channel microarrays, and RNA-seq.

The aim was to identify similar and complementary features of

these datasets, with a view to investigating the potential for future

data integration from the three platforms. For this, some

truncation of the datasets was needed (genes common to the

different platforms, common time points). Although the data

eliminated provide further information on the process studied,

truncation was required in order to obtain a common comparison

base. As more datasets become available, a more extensive analysis

of the different criteria can be performed. A sensitivity analysis was

employed to study the sets of differentially expressed (DE) genes

obtained with q-values under 0.01 and different rank thresholds,

and, subsequently, to assess cluster quality on applying two

clustering algorithms: Euclidean K-means and Plaid biclustering.

Differential analysis indicated, in agreement with the literature,

that the NGS and SC datasets are more sensitive to the DE test,

with large numbers of DE genes identified, in contrast to findings

for the DC dataset. Although the three datasets contain different

samples, they measure the same process of embryo development,

so they should identify similar DE genes. However, agreement on

which genes are DE between the three datasets is not complete,

even when looking at top ranked genes. The highest commonality

is found between the NGS and SC datasets, with lowest between

NGS and DC. These findings are in agreement with previous

studies of differential expression (e.g. [14]), although those have

been performed in a less broad setting, i.e. by using the same

sample for all experiments. This suggests that integration of highly

heterogeneous datasets may be feasible. Many of the uncommon

DE genes (NGS vs SC dataset) have relatively low expression

values, with a larger number of such genes identified by RNA-seq

data. Additionally, some very abundant genes have been identified

only by RNA-seq data. This suggests that, as postulated, the new

technology has an advantage in quantifying extreme transcription

levels.

K-Means clustering indicated similarities between the structure

of the data space for the three datasets, with less separability for

the DC data compared to the other two. However, BHI values

showed clusters to be comparable, in terms of biological relevance,

for all three datasets. When cluster assignment was compared, the

SC and NGS datasets showed smallest differences (larger ARI).

Clustering with the Plaid algorithm confirmed the similarities

between the SC and NGS datasets and the better separability of

clusters.

In conclusion, results suggest that the three datasets provide

both overlapping and complementary information on the gene

space: for DE analysis, the NGS and SC dataset are mostly similar,

but provide complementary information on extreme expression

values; for clustering, the NGS dataset appears to display a gene

space structure similar to the SC, while the DC data are less

separable.

Supporting Information

Scripts S1 This file contains example R scripts used for the

study presented here. The several sections in the file correspond to

the different DE and clustering analyses performed.
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