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Abstract. This paper presents our third participation in the Video
Browser Showdown. Building on the experience that we gained while
participating in this event, we compete in the 2014 showdown with a
more advanced browsing system based on incorporating several audio-
visual retrieval techniques. This paper provides a short overview of the
features and functionality of our new system.

1 Introduction

In recent years, interactive audio-visual search techniques are playing a
paramount role within video retrieval systems. In order to enhance the user
search experience and outperform the current state-of-the-art, we embrace five
multi-modal retrieval methodologies in an advanced system which does not rely
on text retrieval approaches. In this paper we present our VBS Multimedia
Retrieval system incorporating HTML5 interface, that communicates with a
middle-ware layer utilizing the audio-visual search elements which are described
in the following sections.

2 System Features

2.1 Video Segmentation

We segment the video into shots based on techniques outlined by Pickering et
al.[5]. Further, we extract multiple key frames for each shot to represent the
shot in the graphical user interface. A segmentation into shots allows us to
provide a quick overview over different scenes within a video, a strategy which
proved successful in the TRECVid known item search task. It is likely that some
key frames will be very similar to other key frames of the same shot. To avoid
including these similar frames, we remove duplicates by comparing the global
color layout of all key frames within each shot.

2.2 Visual Concept Classification

We use trained models to classify the visual content based on concepts such as
person, landscape or buildings. We use the judgements from the classification to
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act as ranked list when used alone. We also use the concept lists to either filter
or boost content when used in tandem with other searches. The initial classifiers
were trained on TrecVid 2013 Semantic Indexing task (SIN) training set [7]. In
this task 60 concepts were requested to be identified in the shots of the SIN video
dataset. Three visual content descriptors were used: two types of Opponent SIFT
Bag of Visual words, the first is based on dense sampling, the second on sparse
sampling; the third descriptor is a concatenation of a normalized RGB Histogram
and a normalized Gabor transform. A Support Vector Machine (RBF-euclidean
distance kernel)[1] was trained for each of the three descriptor and each of the 60
concepts. To provide a judgement about the existence of a particular concept in
a shot, the correspondent three classifiers of that concept were used to evaluate
the visual features extracted from the shot, then a weighted sum of the three
judgement scores generated by the classifiers is performed to provide a final
score. An initial framework for feature extraction and classification parameter
evaluation and optimisation is developed and tested in this task; the framework
is designed to be extendible to work on a large scale data, it is installed on the
machines of the Irish Centre for High-End Computing (ICHEC)1.

2.3 Audio Concept Classification

We generate models to detect audio concepts such as explosions, gunshots and
screams. In a manner similar to the visual concept classification, we use audio
concept lists to either filter or boost content when used in tandem with other
searches. The classifiers are trained on the MediaEval 2013 Violent Scenes Detec-
tion task (VSD) training set using high-level audio concept annotations provided
in the VSD dataset. We employ Mel-Frequency Cepstral Coefficients (MFCC)
features as low-level audio features. For the representation of video shots, we use
a Bag-of-Audio Words (BoAW) approach based on MFCC with a sparse cod-
ing scheme. We adopt the dictionary learning technique presented in [4]. In the
coding phase, we construct the sparse representations of audio signals by using
the LARS algorithm [2]. In order to generate the final sparse representation of
video shots which are a set of MFCC feature vectors, we apply the max-pooling
technique. A Support Vector Machine (SVM) with an RBF kernel is trained
for each audio concept using sparse audio representations. In order to provide a
judgment about the existence of a particular concept in a shot, the probability
estimates of SVM models are used. Normally, in a basic SVM, only class labels
or scores are output. The class label results from thresholding the score, which
is not a probability measure. The scores output by the SVM are converted into
probability estimates using the method explained in [9].

2.4 Visual Similarity Search

The aim of visual similarity search is to offer our system the ability to find
the most visual relevant shots to a given shot query and then provide the most

1 http://www.ichec.ie/
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possible shots for users to identify. Supposing the searching topic is happened in
front of a special scene, we could easy filter out the shots which did not happened
in that scene.

Different from the approach of our previous participation using locally aggre-
gation descriptors (VLAD) and nearest neighbours searching, we followed the
route of [6] and built a linear discriminative object classifier for each query im-
age. The main benefit of this approach is that a unique weighting score will
be learnt to determine the most discriminative visual features for retrieval from
training data which contains one positive data and many negative data.

For each keyframe, local feature descriptors are extracted and an aggregation
descriptor is generated to represent it. A large size of negative training set is
created and reused for every classifier training. In the online process, the same
dimensional descriptor is extracted to the search query image and a linear classi-
fier is trained by using the open source library [3]. Finally, each video shot from
dataset can be sorted by calculating the inner product of weighting vector from
classifier and their feature vectors.

2.5 Face Browsing and Search

We anticipate that providing functionality to allow users to get a high-level
overview of all the human faces appearing in a video will be useful for queries
involving people. To this end, we provide a face view that shows all the faces
found in the video, and allows users to quickly navigate to the locations in
the video in which selected faces appear. We use the Viola-Jones face detector
[8] to first locate faces in the videos, and then to cluster these faces by using
agglomerative techniques. This clustering also allows face-based search to be
easily implemented: when the user chooses to search for similar faces on a given
key frame, all images associated with the clusters containing any faces that
appear in the key frame can be retrieved and displayed.

3 User Interface

Our user interface features a standard multi-modal platform powered by the
python based Django framework. Users will be presented with metrics for ac-
cessing each of the system features explained above and will allow for multiple
users to issue collaborative search for items of interest in the collection. As
an optional module to the system we will use a mobile device to capture live
screenshots of the example videos to use as input to a similarity based query.
Our interface will attempt to maximise the usable canvas to enable users to find
items as quickly as possible.

4 Conclusion

In this paper we present a technical overview of the system which will be pre-
sented at MMM Video browser showdown 2014. In this paper we outline the
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technologies used and the interaction with the system. Having come in second
place overall last year, we have made some modifications in order to have a more
rounded and better system which will challenge for the top spot this year.
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