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Abstract  
 
A common activity carried out by healthcare professionals is to test various hypotheses on longitudinal study data 
in an effort to develop new and more reliable algorithms that might determine the possibility of developing certain 
illnesses. The In-MINDD project provides input from a number of European dementia experts to identify the most 
accurate model of inter-related risk factors which can yield a personalised dementia risk quotient and profile.  This 
model is then validated against the large population-based prospective Maastricht Aging Study (MAAS) dataset. 
As part of this overall goal, the research presented in this paper demonstrates how we can automate the process 
of mapping modifiable risk factors against large sections of the aging study and thus, use information technology 
to provide more powerful query interfaces.  

Keywords  Dementia, Modifiable Risk Factors, Ontology, Word Matching 

 
1. Introduction  
Dementia is a serious loss of cognitive ability beyond what might be expected from normal ageing. Worldwide, 

the number of people with dementia is currently estimated to be 44 million and expected to reach approximately 

76 million by 2030 and 135 million by 2050 [25]. While dementia is one of the most feared age-related 

conditions and a chronic and progressive illness with no cure, there is now strong evidence that dementia can 

potentially be delayed by adopting lifestyle changes in midlife aimed at improving cardiovascular health, 

addressing low mood and poor diet and increasing physical and cognitive activity. Given the huge social and 

economic costs of dementia, even a delay of one year would make such interventions cost-effective [2,4]. 

Increasingly, the importance of dementia prevention and the need to take prevention measures based on existing 

knowledge are being highlighted at an international level.   

 

The In-MINDD project [11], funded by the European Union (In-MINDD FP7/2009-2013), is taking place 

against this backdrop. It has three main objectives. First, it seeks to create a multi-factorial model for dementia 

risk, taking into account a broad spectrum of factors including cardiovascular risks, mood, physical and 

cognitive activity. A key element in creating this model is to test its validity against the Maastricht Aging Study 

dataset, which is a large population-based prospective dataset. Second, it aims to develop a state-of-the-art online 

profiler for use in primary care to assess the risk that individuals in mid-life (40-60 years) have of developing 

dementia in later life. The project will also develop personalised strategies to reduce risks to participants’ future 

cognitive health via a supportive online environment which has access to the best available on-line strategies and 

locally sourced options for delaying the onset of dementia. Third, it will evaluate the use of the In-MINDD 

profiler and online support environment with practitioners and patients. The article relates to the first of these 

three objectives.  

 

In some clinical research projects, sensors can be used to harvest data [27] with the effect of generating very 

large datasets. In other approaches large studies are compiled over significant periods of time [12] using a 

question and answer type system to compile knowledge on individuals with different demographics, lifestyles 

etc. In both cases, the next step is often to build the ontology to provide context and generate new knowledge 

from the existing dataset. Previous research efforts on constructing medical ontologies have provided 

frameworks for incorporating data from operational medical systems [22] or tackling the general issue of 
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interoperability across medical applications [26,1]. One of the requirements of our project is to develop and test a 

number of different dementia-risk hypotheses. Currently, testing must be performed manually using spreadsheets 

or statistical software but the role of data management researchers on the project is to automate this process.  The 

ontological approach has been shown to be effective in areas such as intensive care [3] and even in broader 

healthcare like the Lifeline project [6]. In terms of research into dementia, one of the earliest approaches that 

involved ontology construction was in [18] where they sought to formally describe concepts and the 

relationships between them. Each of these projects demonstrated the impact of a formal approach to classifying 

terms and relationships and how the ontologies can be exploited for a greater understanding of data in different 

domains. 

 

 

1.2 Research Focus and Contribution 
This paper describes our approach to linking knowledge from existing longitudinal studies to risk factors 

identified by health specialists for the area of dementia. What may appear as a relatively straightforward task 

(and currently performed manually) is in reality quite a difficult problem. When specialists devise a series of 

hypotheses to be tested using one or more longitudinal studies it requires the interaction and manipulation of 

potentially hundreds of questions from the original study. The problem is in the quick identification of those 

areas of the study that best test the hypothesis. Given the manual nature of this approach, it is often difficult to 

ensure that all the relevant questions and answers are used and thus, the accuracy of the results can be difficult to 

measure. Our method matches sections of the clinical study to defined ontology Risk Factors, in a four step 

process of Concept Name Match, Concept Property Match, Vocabulary Match and Structural Match. For the In-

MINDD project focusing on dementia, these risk factors are: Low Cognitive Activity, Physical Inactivity, 

Depression, Mid-life Obesity, Cholesterol, Alcohol, Hypertension, Coronary Disease, Renal Impairment, 

Diabetes, Diet, Smoking and Functional Impairment (which was later dropped). However, simple keyword 

matching between these risk factors and the keywords used in question-based studies results in a very low level 

of matching. While ideas such as ontologies for managing healthcare surveys as proposed in [23] could greatly 

assist in matching new concepts to older datasets, the reality is that this type of structured approach to medical 

studies does not exist. In earlier work [28], we used WordNet [20,31] to generate synonyms at three descriptive 

levels for Risk Factors: risk factor name, risk factor properties, vocabulary associated with a risk factor. These 

synonyms together with the original terms were matched against all questions in the clinical study. While there 

were a number of desirable outcomes that emerged from this approach, it resulted in a high number of false 

positives where inappropriate questions were matched to some risk factors. As a result a new approach was 

necessary where the goal was to reduce the false positives as much as possible, while still using the same 

methodology of matching in four iterations, our previous paper [28] can be referenced for what terms are used in 

each step.  

 

This focus on the creating links between any longitudinal studies focused on dementia and our ontology risk 

factors, has three broad contributions. 

 

 We provide a framework in which ontologies can be populated with data from clinical studies; 

 We introduce a new matching method which uses word stemming and comparison at the phrase level as 

opposed to single word matches; 

 We audit every comparison between the risk factors and questions in the clinical study so that we can 

record at which of the four steps, matching is found. This has the benefit that simple queries can detect 

the precise point at which a false positive occurred. This in turn, provides input for the next iteration of 

the algorithm to determine selection thresholds for links to the clinical study. The results are shown in 

the summary statistics of Tables 1, 2 and 3. 

 

1.3 Article Structure 
The paper is organized as follows: in Section 2, we discuss related work in this area; in Section 3, the In-MINDD 

architecture and ontology are presented; in Section 4, two mapping strategies are described; in Section 5, we 

discuss how the process can provide useful metrics for fine-tuning the process; in Section 6, we present an 

evaluation of both approaches and demonstrate why our current method outperforms the previous version; and 

finally, in Section 7, we offer some conclusions.  

 

 

2. Related Research  
Automating ontology construction [13,16,23], population [8,30], and reuse [7] have long been topics of research. 

There have been many different applications but none seem to have the overall aim of the creation of a system to 

quickly understand the scope of a longitudinal study and identify relevant areas of interest to a clinical specialist.  
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The MedLingMap tool [19] is built with a similar goal in mind to ours – finding sections of interest in a corpora 

– but instead of clinical trial data it is the published literature of a niche research area. 
 

There are research streams [16,24] that overlap with the goals of this research, but instead aim to construct and 

extend ontologies rather than semantically enrich and query them. The authors of the first project [16] take pre-

existing ontologies and use natural language processing (NLP) techniques, specifically semantic analysis and 

subject indexing, to completely overhaul existing ontologies and give them greater semantic depth. They process 

natural language (NL) descriptions of attributes and turn them into subject term descriptions for concept 

attributes. Through this semantic analysis and subject indexing they extract concepts from the NL description 

and create non-taxonomical links between concepts instead of only having inheritance links, we do not adopt this 

approach as we are enriching the ontology with external knowledge rather than enriching the links between 

concepts. Other work [24] links to external sources of information where they mine domain texts, glossaries and 

dictionaries to extract feature and glossary groups found through the input of a seed-ontology. This is a semi-

automated process as these groups aid an ontology creator in extending the ontology by presenting possible 

additions instead of automatically creating links to an external source. Again, this project is different to the work 

we have carried out in that it is mining domain corpora and linking them to an ontology rather than linking them 

to a clinical trial. They extract feature groups by stripping the stop words existent in the domain text as well as 

words irrelevant to the domain, and only after this do they extract features (words) depending on their lexical co-

occurrence within similar contexts 

 

Researchers in [7] focus on automated ontology reuse instead of construction and enrichment, also using NLP to 

complete this task. Natural language web pages are evaluated to figure which bests fit their criteria through 

matching elements in the web-pages i.e. concept names and concept values, to those that are in the ontology. The 

process here is the reverse of the work that we have carried out. They use NLP to establish the link between 

concepts, relationships and attributes in documents with existing ontology sub-trees whereas we use NLP to link 

an ontology and a sub-section of the natural language elements in a longitudinal study to determine how the 

study can best be queried in order to test dementia risk hypotheses.  

 

There are two other bodies of work [8,30] whose aim is to populate ontologies with the use of NLP, but they 

differ to this research in that they are not linking the ontologies to external sources in order to find the best areas 

for domain specialists to query. Ontology population consists of instance identification and maintenance (adding 

new concepts to the ontology that were not previously present). The first [30], uses Hidden Markov Models 

(HMMs) to recognise instances of a particular ontological concept. The HMMs are trained on sparsely and 

semantically annotated corpora and the algorithm is used at runtime to identify matches. The second [8] 

combines two different techniques that are NLP - as previously mentioned – and information extraction (IE). 

These techniques are combined in the fashion that NLP identifies instance candidates and IE is used to construct 

a classifier and then classify the instances. 

 

In work most similar to that presented here, researchers [13] use existing ontologies (AMT – Australian Medical 

Terminologies, SNOMED CT) and link them to the Australian Imaging, Biomarker and Lifestyle (AIBL) study 

of ageing. Our goal was to enrich the ontology from an existing dementia study rather than enriching the clinical 

trial data itself. They identified instances of a class in the ontology, like that of the drug paracetamol via the 

OpenClinica data standard meta-data (used in the creation of the study to give meaning to the trial data) and a 

two phase mapping process. Also suggested in the paper was a Linked Clinical Data Cube for more exhaustive 

querying of the clinical trial data through its links with ontologies. Our approach used NLP to identify inexact 

matches as opposed to pre-existing meta-data inherent in the trial. Longitudinal studies are not always 

constructed in a framework with such exhaustive meta-data therefore we think the natural language approach is 

very pertinent. Also we do not link clinical trial concepts with other class instances to see how they interact, but 

instead to allow clinical specialists to explore if the clinical, and in this case dementia risk factors that were 

proposed in the literature are corroborated in the dataset. We also use a data cube in our validations, but we 

chose to develop in SQL rather than RDF, it contains the results of the matching instead of results in the trial for 

efficient exploration and validation.   

 

 

3. The In-MINDD Architecture and Ontology 
 

In this section, we provide an outline view of the In-MINDD ecosystem and briefly describe the main 

components.  While there are different approaches to constructing ontologies [5], a common approach is to 

identify the basic (dementia) concepts, describe the properties of these concepts, and generate a vocabulary of 

concept-related keywords. This process here is referred to as Ontology Initialization, see Figure 1, and the terms 
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in each stage of initialisation map directly to those used in each of our three stages of matching. As the In-

MINDD project is focused on dementia, these concepts are the associated (dementia) Risk Factors and the 

properties are those characteristics used to describe or measure a particular Risk Factor.  When a clinical study 

has been identified as a candidate for knowledge extraction or any form of query processing, it is first necessary 

to import all of the questions presented in the study into the system. In effect, this is a process of generating 

metadata. Most studies will have some form of structure where questions are asked in a specific order, or the 

study is sub-divided into identifiable sub-sections. This process is known as the Model Clinical Study phase as 

all questions are imported and are then sectioned into clusters as pre-determined by the study.  
 

The result of this process is that all questions are given unique identifiers (many studies will already contain this 

information), and clusters are also given unique identifiers. In the case of clusters, many studies will already 

have these labels (e.g. Family History or Details of Activity/Exercise) although it is not necessary for the system 

to have meaningful labels. In other words, the system need not understand labels as they are merely used to 

classify questions into clusters.  

 

 

 
Figure 1: Ontology Population and Applications 

 

The final phase of matching the ontology to the target clinical study is the primary focus of this paper, and is 

described in depth in the following section and builds on previous work [28]. In brief, the goal is to link each 

ontological concept (Dementia Risk Factor) with all relevant questions in the clinical study. In Figure 1, a 

process for comparing Risk Factors with questions from the clinical study results in the generation of mappings 

or links between them. This removes the need for human pre-processing as required querying or data mining 

operations can now exploit the links to auto-generate query expressions. The In-Mindd apps pertain to an online 

profiler for dementia risk, a support environment for those with high risk, and the interface (not yet 

implemented) to the system described here to allow clinical researchers from the project to query dementia 

datasets in order to identify variables relevant to testing hypotheses.  

 

The In-MINDD ontology contains 12 major concepts which are Risk Factors related to dementia: alcohol; 

coronaryHeartDisease; physicalInactivity; chronicKidneyDisease; diabetes; cholesterol; smoking; 

midlifeObesity; midlifeHypertension;  diet;  depression; and lowCognitiveActivity. Each concept has a series of 

properties (measures), a method to calculate a score for each risk factor; and an associated vocabulary which 

helps with matching questions from clinical studies. Due to space limitations, the properties and vocabulary 

cannot be described here. There have been two cloud-based applications developed using Google App Engine 

and the ontology: the Profiler which populates the properties of each risk factor and computes the scoring, and 

the Support forum which offers a means of reducing the score for selected risk factors. 
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4. Mapping Risk Factors 
 

In this section, we present the two to match risk factors to clusters of questions in the clinical study. Method 1 

uses NLTK[21] and method 2 uses Lucene[17]. Both use the same four steps as outlined in our previous paper 

[28]. These are Concept Name Match, Concept Property Match, Vocabulary Match and Structural Match. The 

first three steps focus on matching ontology keywords to terms used in the questions in clinical studies, each at a 

different level in the ontology, while the fourth uses the structure of the study to match further questions. In 

essence, each step adopts the same approach but uses different keywords for matching with the questions. For 

step 1, we use the Risk Factor names (see Table 1); for step 2, we use the properties that describe the Risk 

Factor; and for step 3, we use all keywords that are contained in the vocabulary and are associated with the Risk 

Factor. 
 

4.1 NLTK Method Using Synonyms 
The NLTK approach was described in [28] and is briefly discussed again here for comparison with our more 

recent approach (discussed in Section 4.2). The method was to find synonyms for all keywords and use this 

larger keyword set to map to as much of the clinical study as possible. The underlying natural language 

technology used was WordNet[31] which allowed us to set thresholds for increasing or decreasing the matching 

proximity. For each iteration of keyword matching, we begin with a set of terms that represent the Risk Factor: 

 
RFi= {RFt1,RFt2,...,RFtn} 

 

Each term RFti is passed to the WordNet system [31] together with a threshold Tti which represents the level of 

synonym match to be used. Wordnet then returns set(s) of word matches, which are combined so that for each 

term RFti, there is now a set of terms. In some cases, this will be a singleton set where only the term itself is 

returned. 

 
RFt1= {RFt11,RFt12,...,RFt1n} 

RFt2= {RFt21,RFt22,...,RFt2m} 

… 

RFtp= {RFtp1,RFtp2,...,RFtpq} 

 

The goal at this point is to reduce multiple sets of synonyms to a single set for each Risk Factor as argument for 

the comparison algorithm. For Risk Factor RFi, we refer to the set of all possible synonyms as RFTi. A union 

operation is used to create a single set so that for Risk Factor RFi, all synonyms are present in RFTi: 

 

RFTi = RFt1 U RFt2 U RFt3 .. U RFtn 

 

At this point, we have a single set of terms to represent each Risk Factor RFi.  

 

As each clinical study is imported into the system as a series of clusters (representing sub-sections) of questions, 

each cluster has an identifier Cm and within any cluster each question is identified by Qn. Thus, every question in 

the clinical study has a unique identifier provided by {Cm,Qn} where Cm represents the cluster identifier and Qn 

the question identifier. Each word in each question can then be addressed by the triple {Cm,Qn,Wo}. 

 

Every term RFij is matched against each word Wo (excluding stop words) in each question {Cm,Qn} contained in 

the clinical study. If any terms {RFij, CmQnWo} match, then that question Qn is linked to the Risk Factor RFi in 

the ontology.  

 
4.2 Lucene Method Using Stemming and Phrases 
Due to the high number of false hits [28] with NLTK, our second method did not use synonyms alone. Instead, 

we also adopted a stemming approach and used the Lucene library [17] to develop our algorithms. Lucene is an 

extremely rich and powerful full-text search library distributed by the Apache Software Foundation [17]. At 

Lucene’s core is the Analyzer, which was used to create an inverted index for the MAAS dataset. The algorithms 

selected were part of the SnowBall analyser and facilitated the usage of word stems (a search on the word 

'smoke' will return entries in the document for 'smoking', 'smoked' etc.) and will match whole word phrases like 

"average units per week". This led to fewer but more accurate synonyms found as well as different suffixes for 

each word. 

 

As with the WordNet approach, we performed the same four step matching process, although this time, with a 

far smaller set of terms per risk factor. We took the terms at each of the three levels of the ontology, stemmed 
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each term and found the appropriate synonyms, which lead to more accurate matching and better input for the 

structural matching phase. As part of the evaluation, the same audit of all matching operations was performed 

with one difference: with WordNet RFij was a single term, while with the Lucene method, RFij could be a set of 

terms. 

 
4.3 Structure-Based Mapping 
Due to the nature of the questions in clinical studies, there remain many unmatched questions after the first three 

rounds of word matching. Example 1 shows a sample question (a) and statement (b) for participants to provide 

input. However, there is no context with which to associate either with a particular risk factor. Our approach is to 

associate this type of question with other questions that are richer in context or have clear keywords and an 

existing match to a Risk Factor. The second phase in the matching process uses the inherent structure in clinical 

studies to attempt to match remaining questions.  
 

Example 1. No-Context Questions 

a. Did you ever feel that it is all a bit too much? Choose option 1/2/3/9 as described in item 1 

b. For most people it is easier to remember interesting facts than uninteresting facts. Answer from 1-9. 

 

This stage begins with the creation of a matrix of Clusters by Risk Factor. Recall that we use Clusters to group 

sets of questions. The matrix is populated with the percentage of questions matched so far, for each cluster 

against each Risk Factor. For example, if cluster Ci has a total of 10 questions of which 5 are matched for Risk 

Factor RF1 and 8 for RF2, then: 

 

RF1Ci = 0.5 

RF2Ci = 0.8 

 

The algorithm is simple in approach. If any pairing {Ci,RFj} exceeds a set threshold Ts, then all of the remaining 

questions in cluster Ci are mapped to RFj. For the purpose of this analysis, the setting was Ts = 0.3. 

 

5. Evaluation  
 

The In-MINDD project uses the MAAS dataset for hypothesis testing. MAAS is an epidemiological study into 

biological, medical and psychosocial aspects of normal and pathological cognitive aging [12], with 2,372 

questions spread across 79 clusters (or questionnaire sub-sections). Clusters had between 3 and 121 questions, 

with an average of 30 questions across each cluster. The In-MINDD Ontology was generated using Intel Core 2 

Duo processor CPU E8400 running at 3GHz on a 64 bit Ubuntu 12.04 LTS platform. The Natural Language 

Tool Kit (NLTK) [21] and WordNet [31] technologies were incorporated into a Python 2.7 application. We used 

the MySQL database with a data warehouse schema model to capture the result of every comparison operation 

and its result (matching status and threshold score).  

 

5.1 Evaluation Methodology 
 

Recall that each sub-category or cluster has an identifier Cm and within any cluster each question is identified by 

Qn. Thus, every question in the clinical study has a unique identifier provided by {Cm,Qn} where Cm represents 

the cluster identifier and Qn the question identifier. A word or phrase is identified by the triple {Cm,Qn,Wo}. 

Every RFij is matched against each Wo (excluding stop words) in each question {Cm,Qn} contained in the clinical 

study. For all 4 steps (concept match, property match, vocabulary match and structure match) in the matching 

process, a Fact Table FTwm with details of each comparison {RFij, CmQnWo} is created inside the data warehouse 

with the structure shown in Definition 1.  

 

Definition 1. Fact Table Structure 

FTwm = {CID, QID, RFID, Step, RFti, CmQnWo, Tti, Result} 

 

CID is cluster identifier; QID the question identifier; RFID the Risk Factor identifier; Step has a value of 1,2,3 or 

4 depending on which step the comparison occurs; RFti is the Risk Factor; CmQnWo  is the word or phrase 

identifier; Tti, the threshold (used for synonym match only); and finally, Result is Boolean and indicates if the 

comparison was true or false. As the structure suggests, we adopt a purely relational approach to data mining 

queries for performance reasons and as we are dealing with a single relational style dataset. However, we also 

have an XML-based approach using [8] for web-based source data.  
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Risk Factor Step 1 

Q’s            C’s 
Step 2 

Q’s            C’s 
Step 3 

Q’s            C’s 
Step 4 

Q’s            C’s 

lowCognitiveActivity 72 52 141 60 290 65 633 65 

physicalInactivity 0 0 201 63 234 68 358 68 

depression 21 4 102 30 160 35 309 35 

midlifeObesity 0 0 92 16 272 70 625 70 

cholesterol 3 2 3 2 39 16 43 16 

alcohol 5 3 37 11 83 17 91 17 

midlifeHypertension 2 2 28 8 41 14 45 14 

coronaryHeartDisease 25 11 25 11 34 14 38 14 

chronicKidneyDisease 0 0 0 0 23 8 27 8 

diabetes 5 4 18 7 26 9 74 9 

diet 0 0 96 22 105 22 150 22 

smoking 3 2 16 11 23 13 30 13 

Table 1: Synonym based match with thresholds Tt1 = 0.3; Tt2 = 0.3; Tt3 = 0.3; Tt4 = 0.2 

 

Evaluation forms are automatically generated for all risk factors. The database of matched questions is queried 

using SQL with the rand() function to randomly select 16 questions per risk factor, together with details of 

which (and how many) of the four steps results in the match. This sample of questions matched to Risk Factors 

were presented to dementia experts and they were asked to indicate those matches which were relevant (true 

positives) and those which were not (false positives).  Our Fact Table can easily be queried to determine at 

which of the 4 steps, the question was matched. For those matched correctly, we would like it to be matched as 

early as possible; for those matched incorrectly, we must determine which step provided the false hit. 

 

5.2 Evaluation: Degree of Matching 
For the WordNet approach using synonyms, we set initial threshold low in order that Risk Factors could be 

linked to as many questions in the clinical study as possible. Clearly, this has the risk of a high number of 

questions incorrectly linked to Risk Factors but our analytical tools allow us to quickly identify the step at which 

the hit occurred and even the keyword. The purpose was to empirically determine the optimum thresholds for all 

four steps in matching links. The goal is to maximize matched questions to Risk Factors while minimizing the 

number of false hits. The results of the initial run are shown in Table 1. 

 

Risk Factor Step 1 

Q’s            C’s 
Step 2 

Q’s            C’s 
Step 3 

Q’s            C’s 
Step 4 

Q’s            C’s 

lowCognitiveActivity 0 0 99 17 99 17 216 17 

physicalInactivity 0 0 25 9 38 13 86 13 

depression 3 3 6 4 15 7 42 7 

midlifeObesity 0 0 11 3 14 4 35 4 

cholesterol 3 2 3 2 6 3 10 3 

alcohol 7 3 9 3 25 5 29 5 

midlifeHypertension 2 2 13 6 41 13 185 13 

coronaryHeartDisease 0 0 0 0 37 10 41 10 

chronicKidneyDisease 0 0 0 0 30 7 165 7 

diabetes 5 4 5 4 17 7 21 7 

diet 0 0 7 2 16 3 16 3 

smoking 12 2 47 2 51 4 55 4 

Table 2: Lucene Matching Results 

 

For Lucene, there were a smaller number of matches as the matching criteria was higher to some degree. While 

stemming was used to increase matches, no synonyms were used and where phrases were found in the ontology, 

phase-based matching was used. While thresholds were not required at steps 1 to 3, the threshold of 0.1 was used 

for structural matching, meaning that if 10% of the questions in a cluster were matched, then the entire cluster 

was matched. 

 

5.3 Evaluation: Quality of Matching 
Querying this fact table is used as part of the validation process that determines both the accuracy of the links 

created between Risk Factors and Clinical Studies, and in cases where false hits occurred, to quickly drill down 

and determine the process which resulted in the false hit.  
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Definition 2. Result Analytics Sub-expression 

select <Query Type> 

from Match_Fact_Table 

where RF = <Risk Factor> and 

(QID = <Query ID> | CID = <Cluster ID>)  

 

The expression in Definition 2 is a standard SQL expression with three variables automatically extracted from 

the validation results, depending on the type of analytics required. Query Type can be one of Step, 

Risk_Factor_Term, Question_Term or Threshold. For example if we wish to determine at which step a question 

was linked to a risk factor. The Risk Factor, Query ID, and Cluster ID variables are extracted from the report for 

those matches that are marked as “Not Appropriate”. The clause with QID provides more detailed analysis while 

the clause with CID provides a more abstract analysis. Example 2 shows a query expression generated by the 

system.  

Example 2. Result Analytics Sub-expression 

select Step 

from Match_Fact_Table 

where RF = ‘diabetes’ and QID = ‘loa_u’; 

Risk Factor Step 1 

Q’s            C’s 
Step 2 

Q’s            C’s 
Step 3 

Q’s            C’s 
Step 4 

Q’s            C’s 

low Cognitive Activity 72 52 97 58 277 64 807 64 

Physical Inactivity 0 0 162 62 183 67 537 67 

Depression 21 4 95 27 151 34 508 34 

Mid-Life Obesity 0 0 15 3 57 17 230 17 

Cholesterol 3 2 3 2 27 8 117 18 

Alcohol 5 3 12 7 52 11 86 11 

Hypertension 2 2 28 8 41 14 41 14 

Coronary 0 0 0 0 27 9 31 9 

Renal 0 0 0 0 23 8 27 8 

Diabetes 5 4 5 4 13 6 17 6 

Diet 0 0 2 1 11 3 11 3 

Smoking 3 2 3 2 4 3 8 3 

Functional Impairment 0 0 0 0 0 0 0 0 

Table 3: Synonym based match with thresholds Tt1 = 0.3; Tt2 = 0.8; Tt3 = 0.8; Tt4 = 0.1 

 

5.3.1 Wordnet/Synonym approach 

The system was used to run query expressions for all false positives found in the dementia expert’s validation 

report in order to conduct a high level analysis. In all, the number of false hits from the initial set of thresholds 

came to just over 70% for the matches shown in Table 1. The analysis of false hits can be summarized as 

follows: Step 1 had 11%; Step 2 had 42.5%; Step 3 had 46%; and Step 4 had no false hits. As a result of this 

process we modified the thresholds for 3 of the 4 steps as shown in the captions for table 3. The threshold for 

step 1 remained the same; thresholds for steps 2 and 3 were significantly higher; while the threshold for step 4 

was lowered. As Table 3 shows, although a lower number of matches were found, the number of false positives 

(found through random sampling and evaluation of a dementia expert) decreased to 23%. 

 

5.3.2 Lucene Stemming/Phrase approach 

The Lucene approach had a superior quality of matching as a lower number of false positives were found and a 

second run was not required.. Less than 1% of the matches were found to be false positives in most of the 

factors, although within some this was not the case. Some risk factors had a significant (> 60 %) number of false 

positives, i.e. questions having no direct relation to the risk factor. When these were examined it was found that 

some of the words used for the match did relate to concepts that were close to the risk factor but not directly 

while a small number were not all related. An example of the latter were words like 'intelligence', 'thinking', 

'remembering' that were used when searching for questions related to the risk factor 'low cognitive activity'. 

These words were matched against many questions, but these questions related to 'cognitive ability' and 

'cognitive testing' but not necessarily the stated dementia risk factor, i.e. cognitive inactivity. Similar situations 

were found in other risk factors and this was found to be the cause of many false positives throughout the 

application. 

 

Removing these types of keywords from the vocabulary eliminated most of the false positives in the risk factors 

where they were present. Similarly, use of words like 'activity' when searching for matches against the risk factor 
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'physical inactivity' produced matches against questions concerning the concept of 'social activity' or 'physical 

health'. It was harder to eliminate words from the vocabulary that produced such false positives in this case. 

 

When searching for questions related to risk factors such as diet and obesity, we initially identified some 

questions found as false positives, but as the question did not have to be strictly related to the risk factor, many 

of these false positives became positives. For example, searches for questions related to obesity resulted in 

questions about weight, physical activity, lists of conditions that include those associated with obesity, appetite 

and food consumption. Whereas weight is strictly related to obesity, the rest are broadly related to obesity and 

once both types of questions were identified as positives, the number of false positives dropped sharply. 

 

As the quality of matching was superior for the Lucene-based approach, it is worth examining each of the results 

for the risk factors in this case. After making modifications to the rules and vocabulary, the matching was as 

follows: Depression, Obesity, Cholesterol, Alcohol, Renal, Diabetes and Diet had no false hits; Smoking and 

Coronary had less than 10%; while Low Cognitive Activity and Physical Inactivity had almost 50% false hits 

due to the reasons provided above. To reduce the false hits for the poorest performing risk factors, we adopted a 

system which looks at how matching occurred at each of the four levels. A threshold was set for specific risk 

factors whereby unless matching was made at three steps or more, the match was removed. This has the effect of 

removing a significant number of the false hits for the two worst risk factors.  

 

7. Conclusions  
Many of the clinical studies into the various effects of aging commenced ten or twenty years ago. As a result, 

they are not well suited to modern approaches of defining risk factors and ontologies as a mechanism for better 

processing data and extracting knowledge. As these studies provide a wealth of information, a strategy for 

matching older clinical studies with new representations for knowledge is necessary. In this paper, we presented 

an approach which maps older clinical studies to modern ontologies by building a small set of algorithms on top 

of existing natural language utilities. Using our evaluation framework, we compared an approach used in earlier 

work [28] with a new approach and different technology, presented in this paper. Unlike [28] where a high 

volume of false positives were identified, our current approach (with results in Tables 2 and 3) creates a high 

level of matching between the ontology’s risk factors and knowledge in clinical studies. Together with clinical 

experts, we demonstrated a low level of false matches through a system of automated evaluation forms and easy 

detection of where erroneous matches occurred.  

While our ontology also provides an opportunity for interoperability across clinical studies and for an XML-

based integration with online clinical data, we do not present a discussion here. Instead this forms part of current 

research building upon the optimization strategies presented in [14,15]. While only a brief description of the In-

MINDD Ontology was discussed here, it has evolved from the initial ontology in [28] and is now stable to the 

point where it is used as a foundation for the Profiler and Support Forum Cloud-based apps. This forms part of a 

second stream of current research [23] where Cloud-based medical data is anonymised.  
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