

Orthopaedics and Sport Injuries

Athletic Groin Pain: A Biomechanical Diagnosis Brendan Marshall PhD

Introduction

Chronic groin pain is prevalant in football

(Werner et al. 2009; Hawkins et al. 1999)

Rapid change-of-direction/cutting associated with groin injury

~723 cutting actions per game

(Bloomfield et al. 2007)

Traditional groin pain assesment:

Lack of Sports Specificity

SSC SPORTS SURGERY CLINIC Specialists in Joint Replacement, Spinal Surgery,

Orthopaedics and Sport Injuries

Biomechanical factors associated with time to complete a change of direction cutting maneuver.

Marshall BM1, Franklyn-Miller AD, King EA, Moran KA, Strike SC, Falvey EC.

No studies have examined the biomechanics of change of direction cutting in groin pain patients

Christip Amalysis

Movement patterns in groin patients are likely to exhibit inter-individual variability, due to:

- Source and severity of the pathology
- Neuromuscular capacity

Training history

Anthropometrics

Study Aim

Apply statistical clustering procedures to identify distinctive features in the cutting mechanics of groin pain patients

Methods

382 field sport athletes diagnosed with AGP

- 3 trials
- Symptomatic side examined
- Vicon motion capture

Specialists in Joint Replacement, Spinal Surgery, Orthopaedics and Sport Injuries

Statistical Methods

pecialists in Joint Replacement, Spinal Surgery Orthopaedics and Sport Injuries

- Hierarchical cluster on kinematic data
- Independent measures ANOVA
- P < 0.05

Results

3 distinct subgroups were created C1 (40% of participants); C2 (45%), C3 (15%);

Movement Plane	Variable
Sagital	Hip flexion
	Knee flexion
	Trunk flexion
Transverse	Pelvis external rotation
	Trunk external rotation
	Hip internal rotation
Frontal	Ipsilateral trunk side flexion
	Contralateral pelvis dro
	Hip abduction angle

Results

Cluster 1 (40%)

Trunk external rotation
Hip internal rotation
Hip flexion

Discussion

Cluster 1

- associated with an increase in pubic symphyseal motion (Birmingham et al 2012)
- associated with femeroacetabular impingement particularly in the presence of abnormal hip morphology
- Trunk external rotation
 - Likely to have an effect on the hip and groin region

Trunk Vs. Hip: r = 0.74, p < 0.01

Cluster 2

- Thip abduction and trunk side flexion
- Dynamic hip abduction controlled by eccentric action of the adductors
- Greater hip abduction angles appear to be exacerbated by increased trunk side flexion

Hip Vs. Trunk: r = 0.70, p < 0.01

Cluster 3

Trunk flexion, as well as

Thip abduction and trunk side flexion

Due to a reduced posterior chain utilisation/ capacity?

Conclusion

- 3 distinct movement patterns identified biomechanical diagnoses
- 3D assessment provides additional information to tailor rehabilitation – Groin Rehab Workshop, Pickwick Suite, 2.30pm
- Poor trunk control effects hip and groin mechanics in dynamic movements
- Clustering analysis warranted

Future Work

Clinical relevance of the clusters

- prospective study in at risk groups (e.g. elite football players)
- rehabilitation RCT

Clustering with kinematic data only

- our classifications could potentially be identified in typical sports medicine practises with 2D cameras
- possible to accurately cluster groin patients based on two dimensional video?

Acknowledgements

Orthopaedics and Sport Injuries

Dr Éanna Falvey, Dr Andy Franklyn-Miller, Enda King, Dr Kieran Moran, Dr Chris Richter, Dr Siobhán Strike, Shane Gore

@benny marshall

@SSCSantry