
June 3, 2015 9:0 The International Journal of Parallel, Emergent and Distributed Systems
ijpeds

The International Journal of Parallel, Emergent and Distributed Systems
Vol. 00, No. 00, Month 2011, 1–25

RESEARCH ARTICLE

A distributed architecture for policy-customisable multi-tenant

Processes-as-a-Service

MingXue Wanga and Kosala Yapa Bandarab and Claus Pahlc∗

aEricsson Ltd, Athlone, Ireland; bSLIIT, Sri Lanka; cSchool of Computing, Dublin City

University, Dublin 9, Ireland
(Received 00 Month 200x; in final form 00 Month 200x)

Service-based business processes are often developed and deployed by single organizations.
In distributed, shared resource environments like the cloud on the other hand, consumers
share resources owned by cloud providers. This requires multi-tenancy capability for service
processes that provides customized behaviour for on shared process implementations to meet
the varying needs of different process consumers as tenants of the process resource. In this
paper, we define a distributed multi-tenant architecture for BPEL processes provided as a
service. A single-version BPEL process is deployed by a provider and offered for all process
consumers, combined with a customization and management functionality to create a unique
experience for different consumers (process tenants). We provide two core components: a pol-
icy model for consumers to express customization/business requirements of service processes
and a coordination framework for policy enforcement between consumers and providers to
achieve on-the-fly customization of service processes.

Keywords: Multi-tenancy; Services; Processes; Policy; Coordination; Governance

1. Introduction

A business process is a collection of interrelated tasks or activities, which are de-
signed to deliver a particular result or complete a business goal. In Service-Oriented
Architecture (SOA), business processes are often implemented as BPEL processes,
which are composed from individual Web services. Because of requirements such as
monitoring or security at service level and typically different business requirements
or policies of organisations with regard to business processes, processes generally
are scoped and reside within one organisation [1]. Consumers would also develop
and host business processes based on services from service providers. Business
processes are not available for sharing between cross-organisational, distributed
service consumers in SOA currently [2]. Shared ready-to-use business processes for
on-demand requirements of consumers is an important topic in the cloud com-
puting and software-as-a-service (SaaS) context. We propose a solution for BPEL
business-processes-as-a-service where part of the provided process service is the
process customization. Business requirements of processes are expressed as policies
by process consumers, and policies are enforced on process executions through for
on-the-fly process customization coordinated remotely by the process consumer.

The essence of multi-tenancy in a software system is sharing, but also isolating
resources between different tenants and their application users [3]. The tenants
are the contractual partners of the process providers. Multi-tenancy means higher

∗Corresponding author. Email: Claus.Pahl@dcu.ie

ISSN: 1744-5760 print/ISSN 1744-5779 online
c© 2011 Taylor & Francis
DOI: 10.1080/17445760.YYYY.CATSid
http://www.informaworld.com

June 3, 2015 9:0 The International Journal of Parallel, Emergent and Distributed Systems
ijpeds

2 Taylor & Francis and I.T. Consultant

levels of resource sharing, resulting in more economy-of-scale for providers [4].
These benefits also apply to the tenants in the form of lower service fees, quicker
access to new functionality, etc. [5][3][6]. Our work supports multi-tenancy capable
business processes. A single version BPEL process is assumed to be developed,
hosted and shared for all process consumers, but tenant customization functionality
is also offered at the same time to offer a unique experience for tenants to meet
their varying requirements. Thus, different and isolated process execution instances
are the result based on a customization of the same deployed BPEL process across
the organizational boundries between provider and consumer.

Our solution for multi-tenancy BPEL processes in a cloud-like architecture is
based on two core components: a policy model and a coordination framework.

• Business policies describe business requirements that are expressed as formal
policy statements and are focused on SOA governance. Technologies such as WS-
Policy [7] in the SOA governance domain do not address policies with respect
to services or tasks for cross-organisational consumers. SOA treats policies of
business processes as an internal organisational problem. Hence, we need a policy
model that can be facilitated for process consumers on shared business processes
as customization metadata.

• Defined policies of process consumers must be enforced on the process execu-
tion when consumers use the processes. For reasons such as policy centralization
and privacy concerns of cloud consumers [8][9][10], policies should reside at the
consumer side. Hence, governance directly from process consumers needs a co-
ordination protocol as the basis for a service contract between providers and
consumers to address the policy enforcement. However, WS-Coordination, WS-
BA and their extensions [11][12][13] cover only transactional activity control for
distributed Web services. They are not designed for transactions of BPEL pro-
cesses and other aspects arising from our policy model.

The remainder of the paper is structured as follows. After describing the problem
through a case study and related work in Sections 2 and 3, we give an architecture
overview in Section 4, then detail the policy model and coordination in Sections 5
and 6. Finally, we evaluate and conclude in Sections 7 and 8, respectively.

2. Use case scenario

There are many business processes which could be used across many application
domains and organisations. For example, a purchase order checkout process con-
tains order inspection, shipping, and payment business activities [14]. This could
be used in supply chain systems, online retail applications, etc. The services imple-
menting these business activities could come from the same or different external
providers. Service consumers can compose business services into composite services
or business processes themselves, such as the order checkout process. However, an
organisation as a process provider might like to develop and host such a business
process and to offer this to other external organisations as a process consumers.
The business process, which generally has an increased business capability, is diffi-
cult to use by a process consumer, if it does not meet unique detailed requirements
or business policies of a specific organisation [1]. For example, one organisation or
process consumer could have policies such as ”Free parcel shipping for orders with
a total over 2000 euro”; ”All payment transactions should be processed by Bank
of Ireland”; another process consumer could have very different policies, such as
”Credit card processing should be completed quickly (expected in less than 700 ms)
without fault”. These policies of different consumers can generally be easily ad-

June 3, 2015 9:0 The International Journal of Parallel, Emergent and Distributed Systems
ijpeds

Parallel, Emergent and Distributed Systems 3

dressed when consumers develop their own unique processes, but with a scenario
of a shared, ready-to-use business process offered by the process provider in a cloud
environment, it becomes a challenge that has not been sufficiently addressed.

We will return to the case study throughout the paper and also in a separate
evaluation section where the case study serves to support an emprical validation.

3. Related work

Policies for Web services, such as XACML [15] and WS-Policy [7], are not process-
centric policy languages. They only deal with independent Web services and do
not cover the range of aspects for process customization across individual service
invocations. XACML only covers security aspects. To offer a process-as-a-service
solution, policies are usually added for process consumers after the business pro-
cesses are defined. This makes the policy-first process development approach, such
as the conventional business rules approach [16][17], and tightly coupled process
and policy approaches, such as [18][19][20], not applicable for sharing processes
that are hosted outside an organisation with multi-tenancy capability. Generally,
organisation-internal processes only need to comply with single party policies.

Process adaptation is closely related to policy systems, as changing of processes
is normally realized by enforcing policies. [21] utilizes BPEL event handling to
provide adaptation by performing predefined alternative actions if certain events
occur. [22] propose a service relevance and replacement framework. The Dynamo
project [19] developed a supervision framework for the ActiveBPEL engine. Sim-
ilar frameworks such as [23][24][25][26][27][28] extend a BPEL engine for process
adaptation. However, these also suffer from the same problem as policy models.
Multi-tenancy requirements missing at the design stage are usually difficult to ex-
tend for multi-party policy enforcement on a single BPEL engine.

The Service Transaction (WS-TX) specifications contain a set of specifi-
cations – WS-Coordination [29], WS-AtomicTransaction (WS-AT) [30], WS-
BusinessActivity (WS-BA) [31] – for service transactions. WS-Coordination defines
an overall framework, and WS-AT and WS-BA are two protocols for atomic and
long-running transactions (LRT), respectively. These protocols are designed for
Web service transactions. However, there is no WS-BA-based interaction assumed
between a process and contained services. It is impossible for a BPEL process to
participate in a WS-BA coordination [32]. However, without standard protocols, it
is impossible to coordinate a transaction with various processes distributed in one
or many different providers. Still, different aspects of policies as requirements needs
a more comprehensive protocol rather than those that only deal with transaction
management. Such work on coordination with policy enforcement for consumers
and process providers is still lacking, but is needed for business process sharing in
the cloud paradigm. Additionally, the multi-tenancy capability needs to be taken
care of in a coordination framework implementation.

[33][6] aim to solve the problem for the cloud platform layer (PaaS) by providing
a shared BPEL engine rather than BPEL processes for consumers. Process con-
sumers still need to develop and maintain their own BPEL processes in that case.
At the SaaS layer, the Cafe project [34][35] offers a front-end ready Web-based ap-
plication for process consumers rather than software components, where the BPEL
process is wrapped in an end user-based application. QoS configuration is avail-
able at the provider side for consumers. This approach is limited with regard to
policy centralization and reuse, and concerns over confidentiality of policies exist
[8]. Currently, the multi-tenancy capability of BPEL processes is achieved by the
Web services dynamically bound to the process instances, resulting in different QoS

June 3, 2015 9:0 The International Journal of Parallel, Emergent and Distributed Systems
ijpeds

4 Taylor & Francis and I.T. Consultant

Coordinator p

Protocol
Service Xp

Consumer

Coordinator c

2. Process request
Containing Cc

6. Process response

Protocol
Service Xc

1. Create CoordinationContext
 Return Cc

Activation
Service

Cache
 Service

Provider

3.passing Cc

4 . Query and 6. Update
coordination cache

5. Protocol Y

Figure 1. Schematic coordination example

behaviour for different tenants. [33] [6] present the WSO2 Business Process Server
based on this idea. The Axis2 service engine intercepts and injects the message into
the extended ODE BPEL engine at runtime, which takes care of creating process
instances or routing messages to an already running instance.

Business policies might cover a wide range of requirements on business processes
in addition to common QoS properties addressed in current work on multi-tenant
business processes, e.g., WSO2 or the Cafe project. Adaptive processes are needed
so that processes can be changed to meet the various change requirements of tenant
customization, i.e., various business policies of process consumers, as the basis
of customization. However, the multi-tenancy problem is not covered in current
adaptive process approaches [19] [22].

4. Architecture overview

Organisations as process providers shall be able to offer a ready-to-use customizable
business process to be shared by multiple organisations or process consumers (ten-
ants) as a service. Consumers can then customize the process execution behaviour
according to their own business policies by defining a set of policies. Then con-
sumers can directly invoke or use the process which is hosted inside the provider,
without the need for new process development and execution environment main-
tenance. The overall architecture to enable this consists of (see Fig. 1):

• Process components at the process provider side offer business processes. They
execute the activities in the process logic to serve a particular goal, and hold
process runtime information resources needed for policy evaluation or weaving.

• Governance components govern processes at runtime for process consumers at
the consumer side. They hold the policies of process consumers and evaluate or
weave the policies.

• A coordination protocol within a service or process contract defines the connec-
tors and behaviour between any process and governance components.

4.1 Policy model and governance

Process customization is achieved by means of runtime governance of processes.
The policy modelling is a technique for consumers in our framework. The policy
model can be viewed as a customization language for prepared business processes.
The defined policies are enforced in business processes at the provider side on behalf
of the consumers. This is a high-level process contract between process consumers

June 3, 2015 9:0 The International Journal of Parallel, Emergent and Distributed Systems
ijpeds

Parallel, Emergent and Distributed Systems 5

and providers. The mechanism for process providers to carry out this contract
is a contract-defined coordination protocol. Hence, the development of the policy
model is based on a coordination protocol for runtime governance between process
consumers and providers to achieve on-the-fly customization. The process compo-
nents are not tied to any governance components, but comply with coordination
protocols, which define the provider capability of customization. One governance
component is responsible for one process consumer that has a separate set of poli-
cies. The connections from any governance component to any process component
are dynamic, created on demand through coordination protocols.

4.2 Coordination model and protocol

The coordination model is inspired by the WS-Coordination and XACML policy
frameworks, and is redefined for the specific need of our coordination protocol
and mechanism for policy enforcement. The coordination model defines two types
of subcoordinators for process consumers and providers (Figure 1). Thus, each
participant only interacts with its own type of coordinator. The model is defined
as < COOR,COORcontext >, where

• COOR = COORc ∪ COORp. coorc ∈ COORc is a coordinator associated with
the consumers or process governance component PG. coorp ∈ COORp is a co-
ordinator associated with the provider or business process BP .

• coorcontext ∈ COORcontext is coordinaton context information.

coorp∈ COORp is required for all process providers, including the subprocesses.
Figure 1 illustrates how coorc and coorp interact in a coordination conversion. The
process consumer initializes coorcontext (Cc) that contains information needed for
starting a coordination conversation, then sends a process request to the provider
or business process containing the coorcontext. The protocol X and services Xc and
Xp are specific to a coordination protocol. Cached coordination data is queried
and updated through the cache service if required (note that steps 4, 5 and 6
are not necessarily executed in sequence). The coordination conversation ends by
completing the process execution or the business transaction.

4.3 Coordination context

The COORcontext defines the data structure of the coordination message exchange
as an XML schema. All process consumers and providers must understand this in-
formation to enable coordination conversions. coorcontext ∈ COORcontext contains
data such as identification, protocol service reference, initialized by the consumer
at the start of a coordination conversation for a process request or business trans-
action instance. It can only be assigned by a coorc. For activities as subprocesses in
a business process, the coorcontext data is propagated to participants, i.e., the sub-
processes, whether they belong to the same process provider or different providers.
Providers do not initialize a new context for subprocesses. This is important for
multi-tenancy as the source of coorcontext symbolizes the source of the business poli-
cies, i.e., all processes include subprocesses that are governed by the policies defined
by the original process consumers, not by the policies from process providers. A
coorcontext can be initialized by a provider for subprocesses in a transaction, the
subprocesses would then be enforced with policies defined by the provider. Here,
the activities in the subprocesses of the overall process are Web services, i.e., atomic
activities for process consumers. This is different from the distributed coordination
of WS-Coordination, which is achieved by a chaining coordination [29].

June 3, 2015 9:0 The International Journal of Parallel, Emergent and Distributed Systems
ijpeds

6 Taylor & Francis and I.T. Consultant

pg component

Process instance graphProcess instance graph

Policy weaving
component

1. WeavingRequest

3. queries
activity

information

6.WeavingResponse

PoliciesPolicies

Activity
information
component

2. policies

4. query
responses

5.
information

update

Activity
State
 n-1

Activity
State

 n

Activity
State
 n+1

transition transition

Figure 2. Information model and framework elements

PolicySet Rule

1

0..*1

0..*

Policy

1

1..*

Figure 3. Core components of the policy language model

5. Policy model

The policy model for process consumers formalizes business policies as a user cus-
tomization of provider-side business processes. As discussed in Section 3, existing
policy models and approaches are not applicable for sharing pre-developed pro-
cesses in multi-tenant cloud environment. We need a new policy model for con-
sumers to formalize the business policies in pre-developed processes. The core of
our new policy model provides a language model for consumers to express business
policies for existing processes of providers as process customization metadata.

Before we describe the policy language model, we first introduce the basic in-
formation architecture (Figure 2). This also introduces the basic elements of the
framework with a component for policy weaving of process governance pg.

◦ Process instance graph - is an execution instance derived from an activity-based
process coordination protocol (Section 6). It sends a weaving request wrequest ∈
Wrequest to the policy weaving component for governance states of activities.

◦ Policies - the requirements or customization of processes are described in policies,
which will be carried out by both the process consumer and provider through a
coordination framework.

◦ Policy weaving component - weaves defined policies of the process consumer
at process runtime into governance states of process activities. The weaving
response wresponse ∈ Wresponse containing a policy decision is sent back to the
process instance as a part of a contract which needs to be implemented by the
provider of the business process.

◦ Activity information component - operates on information sources of processes
for policy weaving. Information sources cover the service profile SP - service
endpoint reference and service context information; the weaving history WH -
Wresponse history of policy weaving; user logs UL - recording user actions.

June 3, 2015 9:0 The International Journal of Parallel, Emergent and Distributed Systems
ijpeds

Parallel, Emergent and Distributed Systems 7

5.1 Rule categorisation

Our policy model is influenced by the XACML specification, which also influenced
other proposed SOA policy models [36][37]. We adopt the three-level structure
(Rule, Policy, PolicySet) to support nested policies for different administrative
levels (Figure 3). Still, XACML only focuses on access control, and extensions such
as [36] are not process-aware. Since rules are used as the basic policy elements of the
policy model, our policy modelling starts with different categories of rules needed
for different aspects of business policies. Business policies can be formalized as
business rules for SOA governance. Business rule classifications [16][17] only show
different types of formal expressions of business rules. The goal is formulating the
business policies in a formal rule language for rule engines. To develop our own
policy language, we need a classification to find a common connection between
rules and processes that can be used for our policy model and coordination protocol
development later on. Based on aspects of autonomic computing [38] and state-
action policy modelling [39], we have developed a categorization schema that allows
us to categorise rules RU for processes into four different categories based on the
safe, controllable boundary of a business process execution. The safe boundary
is defined in terms of rules, derived from business regulations and requirements
which the business must conform to. Figure 4 explains the rule categories. It shows
a process which has nine execution steps, represented by circles.

2

3

3 4 5 6 71

5

7

Acceptable

Inacceptable

8

Flexibility rule

Outside

safe

boundary

Within

safe

boundary

Safe boundary

Constraint rule Fault rule Default

Governed

9

Utility rule

Figure 4. Rule categorization related to process execution

We define rules RU = RUflexiblity ∪RU constraint ∪RUfault ∪RUutility with:
1) Flexibility rules (RUflexiblity) - this category expresses business decisions

within the safe boundary of the execution. The execution steps continue after the
decisions are made. It is used to specify variable business decision logic for various
expected business scenarios such as different customer types or frequently changing
strategies (e.g., different discount rates over times). The business dynamics is the
driving force. The purpose of this rule category is configuring business operations
for business versatility and different business conditions.

2) Constraint rules (RU constraint) - this category defines the safe (controllable)
boundary of the process execution to restrict business behaviour. Constraint rules
specify assertions that must be satisfied in all steps of the process execution, e.g.,
the availability of the payment service must be above 99%. The purpose of this
category is to ensure that the business complies with relevant laws or regulations.

3) Fault rules (RUfault) - this type defines system responses when a process
crosses the safe boundary and constraints are violated, i.e., outside the safe bound-
ary. Remedial strategies are required to avoid subsequential failure of the goal.
Since constraint violations are viewed as ’faults’ of process executions, this cat-
egory is the fault rule. The fault rule can be further divided for acceptable and
unacceptable business cases outside the safe boundary. Its purpose is handling the
violations of business regulation compliance that may have occurred.

June 3, 2015 9:0 The International Journal of Parallel, Emergent and Distributed Systems
ijpeds

8 Taylor & Francis and I.T. Consultant

4) Utility rules (RUutility) are rules that do not control or affect process execu-
tion. They define additional or utility actions that might need to be associated with
process execution. The purpose of utility rules are for instance event notifications.

5.2 Rules

Our policy model can now be modelled based on the different categories of rules. A
Rule element ru ∈ RU specifies the actual conditions under which defined gover-
nance actions are allowed to be performed. It follows the ECA paradigm like other
policy models [40] [27]. Each rule contains applicability predicates and/or condition
predicates as conditions to determine whether governance actions defined in the
rule will be performed for a weaving request wrequest. Rules are building blocks of
a policy. A rule is a tuple < os, ss, cs, acs, fh, ruid, pr, de > with:

◦ An Objects element os ∈ OS and an ActivityStates element ss ∈ SS define the
applicability predicates of the rule, i.e., the E part of the ECA.

◦ A Conditions element cs ∈ CS defines the condition predicates of the rule, i.e.,
the C part of the ECA.

◦ If either the applicability or the condition predicate evaluate to false or fault,
the governance actions contained in the Actions element acs ∈ ACS of the ru
will not be performed, i.e., the A part of the ECA.

◦ A fault handler element fh ∈ FH which contains actions when faults occur
during rule weaving.

In addition to the main elements, a ru has the following attributes and elements.
Rule-Id ruid is a string identifier. Priority pr assigns a positive integer denoting
the priority weight. Description de ∈ DE is provided by the policy developer.
Objects: An Objects element os ∈ OS defines the governance targets of the
business process. It specifies what the rule applies to. os = {(os′

k, sma)|k =

1, ..., n; os
′

k ∈ OS
′
; sma ∈ SMA}, where sma ∈ SMA is a SemanticMatchin-

gAlgorithm element, which will be described later. os
′

k ∈ OS
′

is a disjunctive

sequence element ObjectsAnyOf. os
′

k = {os′′

k , sma|k = 1, ..., n; os
′′

k ∈ OS
′′
; sma ∈

SMA}, where os
′′

k ∈ OS
′′

is a conjunctive sequence element ObjectsAllOf. os
′′

k =
{on, sma|k = 1, ..., n; on ∈ O , sma ∈ SMA}, where Object element on ∈ O repre-
sents a process element as a single governance target. O = A ∪ P ∪R ∪ V with:

◦ Activity a ∈ A is an implementation of a business task by a service, defined by
< na, sma >. a is identified by its name na. sma ∈ SMA is defined as above.

◦ Process p ∈ P contains a set of activities executed in a specific sequence, defined
by < wso,wsa, sma >. p is implemented by a composite service, identified by
WSoperation wso and/or WSaddress wsa of the service reference of the process
and sma ∈ SMA. A process itself could be an activity not different from other
activities, but here, it is used to specify the policy scope. A p-specific policy will
only apply to the process p itself, but not to subprocesses of p.

◦ Resource r ∈ R is a business object in a process for transferring data between
business partners or activities, and defined by a tuple < na, sma >. A resource
is identified by the Name na of the business object.

◦ Violation v ∈ V is an occurrence of violating constraints, defined by a tuple
< tp, sma >. A violation is identified by the constrained aspect of a business
process, i.e., tp ∈ TP , a violation type.

ActivityStates: An ActivityStates element ss ∈ SS defines the governance states
of activities of the process. ss = s1 ∨ ... ∨ sn for sk ∈ Sg and k = 1, ..., n is a

June 3, 2015 9:0 The International Journal of Parallel, Emergent and Distributed Systems
ijpeds

Parallel, Emergent and Distributed Systems 9

disjunctive set of elements. Sg = Sflexibility
g ∪ Sconstraint

g ∪ Sfault
g , where,

◦ Sflexibility
g = {smanprevalpre , smanprevalpost , smanpostvalpre , smanpostvalpost} is a set of

governance states for RUflexibility ∪ RUutility.
◦ Sconstraint

g = {svalidatingpre
, svalidatingpost

} is a set of governance states for

RU constraint ∪RUutility.
◦ Sfault

g = {shandlingpre
, shandlingpost

, scancelling} is a set of governance states for

RUfault ∪RUutility.

These states are defined as follows:

(1) svalidatingpre/post
is a state of an activity execution for a pg component which

enforces constraint rules defined for the activity. ’pre’ and ’post’ denote
validation before or after the activity execution.

(2) smanpre/postvalpre/post is a state of an activity execution for a pg which enforces
flexibility rules defined for the activity through message manipulation. It
contains a condition, ’pre’ and ’post’ denote that the manipulation happens
before or after a validating pre/post state.

(3) shandlingpre/post
is a state of an activity execution for a pg enforcing fault

rules defined for the activity when violations occur. ’pre’ and ’post’ denote
handling violations occurring at the svalidatingpre

or svalidatingpost
states.

(4) scancelling is a state of an activity execution for a pg enforcing the fault rules
defined for the process if it cancels its previous execution effect.

There are a number of states defined by the coordination protocol for a process
activity. Sg comprises the nine governance states for PG components. The remain-
ing activity states of the protocol are also associated with policies, but processes
do not interact with PG components in the remaining states.
Conditions: A Conditions element cs ∈ CS defines additional conditions for
triggering actions on business processes. cs = ce1 ∧ ... ∧ cen for cek ∈ CE and
k = 1, ..., n as a conjunctive sequence. A ConditionExpression element ce ∈ CE is
an XPath expression specifying a condition requirement on a data source ds ∈ DS.
It returns a Boolean value on its evaluation. ds =< wrequest, SP, UL,WH >.
Actions: An Action element acs ∈ ACS defines a sequence of governance actions
on processes. acs = {ack|k = 1, ..., n; ack ∈ {CA ∪ PA}; #{ack|ack ∈ PA} ≤ 1}.
An individual Action element ac ∈ AC defines a type of governance action. An ac
can be either a consumer action CA or provider action PA, but there can be at
most one provider action for an acs. These actions are designed for different rule
categories with different parties to offer compensative customization.

A ConsumerAction element ca ∈ CA is an action performed within PG compo-
nents or available on the consumer side for governance without directly controlling
process executions. They are needed for RUutility policies. For example, it is used
to collect data required for subsequence control or monitoring. All consumer ac-
tion elements as direct children of the acs will be weaved and executed immediately
within a pg component when the rule is weaved. CA = CAlog∪CAsuspend∪CAalert

is a set of supported consumer actions included in the policy model:

◦ A log action calog ∈ CAlog stores weaving request in the user log UL. A log level
is an attribute to specify how much information needs to be stored.

◦ A suspend action casuspend ∈ CAsuspend suspends the current service for the con-
sumer by updating the ActiveTime of the service in service profile SP . The Time
attribute t ∈ casuspend specifies a suspending time from the current time for the
service. If currentT ime+ t ≤ ActiveT ime, then casuspend is ignored.

June 3, 2015 9:0 The International Journal of Parallel, Emergent and Distributed Systems
ijpeds

10 Taylor & Francis and I.T. Consultant

◦ An alert action caalert ∈ CAalert notifies a relevant process stakeholder about
the situation. Its MailTo attribute specifies a stakeholder email address.

A ProviderAction element pa ∈ PA is an action to directly control process
executions on the provider side for governance needed for RUflexiblity, RUconstraint,

and RUfault policies. It also includes provider action types PA
′

resulting from
policy combination or weaving, but they are not part of the policy language model
for policy developers. PA and PA

′
comply with the coordination protocol.

PA contains a set of different provider action types in the policy model that are
designed for different rule categories, thus are expected for different activity states.
The activity states with rule categories are described above. The following table
defines expected provider actions for PA from policy developers.

Sg expected PA

Sflexibility
g PAmanipulate

Sconstaint
g PAvalidate ∪ PAviolate

shandlingpre
∈ Sfault

g PAignore ∪ PAreplace ∪ PAcancel∪PAskip

shandlingpost
∈ Sfault

g PAignore ∪ PAreplace ∪ PAcancel∪PAretry ∪ PAcompensate

scancelling ∈ Sfault
g PAcompensate

These provider action elements are described as follows:

◦ pamanipulate ∈ PAmanipulate is a manipulation action to prepare the Resource
data r in a wrequest for the message adaptation requirement of the flexibility rules.
The pamanipulate is executed immediately during rule weaving with the consumer,
but the manipulated resource will be sent back to the provider containing a
set of Copy operations to be executed in an all or nothing manner. The Copy
operation is the same as BPEL <copy>, which is used for manipulating XML
data. Exceptions caused by pamanipulate trigger the fault handler.

◦ pavalidate ∈ PAvalidate is a validation action for constraint rules to allow process
execution steps to continue, if the process instance is within the safe boundary.

◦ paviolate ∈ PAviolate is a violation action for constraint rules to guide the process
execution into a violated state, if the current process instance is outside the safe
boundary. paviolate contains a set of child elements denoting a set of violation
types TY of the current process being violated.

◦ paignore ∈ PAingore is a remedial action defined for fault rules to guide the
current process instance back to the business safe boundary without additional
recovery. It ignores specified faults which do not affect the overall business goal.

◦ pareplace ∈ PAreplace is a remedial action for fault rules to guide the process
instance to replace the service reference of the current activity by an alternative.
pareplace =< io, scs >, where the InstanceOnly io attribute denotes two types
of replace actions: 1) a process instance adaptation with temporary replacement
(service replacement is only applied for current activity in process instance)
and 2) a process adaptation action for continuous process improvement with
permanent replacement. The activity replacement is applied to the current and
following request instances in the current process. The ServiceConditions scs
element is used to specify a service reference for the activity implementation.

◦ pacompensate ∈ PAcompensate is a remedial action for process instances to take a
compensation action for the current activity by executing a compensation activ-
ity. scs ∈ pacompensate is used to specify the service reference for the compensa-
tion. Services are implementations of activities that must be assigned for every
activity. A service should be specified with PAreplace or PAcompensate action type,
which contain service references of activities. A service selection mechanism is
used to specify a service through the ServiceConditions SCS element.

A scs ∈ SCS, scs = {scek|k = 1, ..., n; sce ∈ SCE} is defined as a conjunctive

June 3, 2015 9:0 The International Journal of Parallel, Emergent and Distributed Systems
ijpeds

Parallel, Emergent and Distributed Systems 11

sequence of conditions, which a service needs to satisfy for the activity to be
executed. A sce ∈ SCE is a ServiceConditionExpression, sce =< ex, foc > is
defined as a single condition on a service. The expression attribute ex is an
XPath 2.0 expression with the service profile SP as the data source. The Force
attribute foc indicates if this condition is mandatory for a service selection.

◦ pacancel ∈ PAcancel is a remedial action for fault rules to cause a current process
instance to cancel the process execution.

◦ paretry ∈ PAretry is a remedial action to wait a period of time before retrying the
current fault causing activity. It has a waitFor attribute complying with BPEL
time expressions. Immediate retry without waiting can be achieved by setting
zero as the waiting time of a paretry.

Provider action types of PA
′

are not defined in the policy language model, but
can result from policy rule combination and weaving. They are needed for the
coordination protocol to support additional, composite provider actions for a cache
mechanism and fault handling. More details will be provided later.

◦ pacom+ign ∈ PAcom+ign is a composite provider action which is composed of a
pacompensate and a paignonre action in a sequence.

◦ pacom+rep ∈ PAcom+rep is a composite provider action which is composed of a
PAcompensate and a pareplace action in a sequence.

◦ paundefined ∈ PAundefined indicates that no policy/rule is defined for the related
activity state of an activity on the policy weaving, i.e., all policies or rules fail
on an activity state evaluation for a wrequest.

◦ paunexpected ∈ PAunexpected indicates policies or rules which do not have any
expected provider action in policy weaving. Thus, all specified provider actions
in the rules or policies are not expected for a wrequest. A paunexpected becomes
the result provider action for a wrequest on weaving in this case.

◦ paundetermined ∈ PAundetermined indicates a situation which cannot determine
between paundefined, paunexpected and expected provider actions for a wrequest.

5.3 Fault handler

A FaultHandler element fh ∈ FH specifies what should be done if exceptions occur
when evaluating a Conditions element cs ∈ CS, or executing a pamanipulate ∈
PAmanipulate action. Since these elements involve XPath and XSLT expressions
defined by policy developers, exceptions may occur during rule weaving because
of incorrect expressions. If exceptions occur, the fault handler will be called and
involves the current rule weaving. A fault handler contains the Actions element
acs ∈ ACS, which specifies a set of actions for fault handling on policy weaving.
acs = {ack|k = 1, ..., n; ack ∈ {CA ∪ PAfh},#{ack|ack ∈ PAfh} ≤ 1}, where
PAfh ⊂ PA. The following table defines the expected provider actions for fault
handling with regard to different activity states of a weaving request.

Sg expected PAfh

Sflexibility
g ∪ Sconstraint

g PAvalidate ∪ PAviolate

shandlingpre
∈ Sfault

g PAignore ∪ PAreplace ∪PAcancel ∪ PAskip

shandlingpost
∈ Sfault

g PAignore ∪ PAreplace ∪ PAcancel∪PAretry ∪ PAcompensate

scancelling ∈ Sfault
g PAcompensate

A provider action of a fault handler of a rule is expected to be in the same rule
category as the provider action of the rule, except RUflexibility. PAmanipulate can
not be defined in a fault handler. For handling exceptions for PAmanipulate of a
rule, PAvalidate or PAviolate is expected in a fault handler.

June 3, 2015 9:0 The International Journal of Parallel, Emergent and Distributed Systems
ijpeds

12 Taylor & Francis and I.T. Consultant

If the fault handler is Absent, or an Expected provider action pafh is not included
in the defined fault handler of a rule, a paundetermined is the provider action when
the exceptions occur, i.e., a paundetermined is the default provider fault action.

5.4 Obligations

An Obligations element obs ∈ OBS contains a set of obligations obs = {obk|k =
1, ..., n; obk ∈ OB} with an Obligation element ob ∈ OB, ob = {(cak, pa t)| k =
1, ..., n; cak ∈ CA; pa t ∈ {typeOf(PA\PAmanipulate)}} specified as a set of con-
sumer actions, which is only executed on the consumer side when a type of provider
action is executed on the provider side for a policy weaving request. The type at-
tribute pa t specifies a type of provider action.

A rule component should have at most one obligation, as a rule can only have
at most one provider action. It cannot be associated with PAmanipulate provider
actions as they are executed on the consumer side. The obligation elements might
be merged when a Rule/Policy/PolicySet is weaved for a weaving request. For
example, if two obligations for logging details when a process instance is cancelled,
then the details are only logged once when the process is cancelled.

5.5 Policy and PolicySet

A Policy element po ∈ PO is a tuple < os, ss, RU, obs, sa, cca, rca, poi, pr, de >,
where RU is a set of Rules. A PolicySet element pos ∈ POS is used to combine
separate policies into a single policy. It allows policy developers to have nested poli-
cies. A policy set is a tuple < os, ss, PS, POS, obs, sa, cca, rca, posi, pr, de >, where
PS is a set of Policy elements and POS a set of PolicySet elements. For the above,
os ∈ OS is an Objects element, ss ∈ SS is an ActivityStates element, obs ∈ OBS is
an Obligations element, poi and posi are identifications, pr is the priority weight,
de ∈ DE is a description element. sa ∈ SA is a SequencingAlgorithm, cca ∈ CCA
is a ConstraintCombiningAlgorithm, rca ∈ RCA is a RemedyCombiningAlgorithm.
The algorithms SA,CCA,RCA will now be introduced.

5.6 Related algorithms

A set of algorithms, defined in the policy model, allow policy developers to specify
or configure the weaving behaviour. We briefly summarise algorithms of the policy
model (details are available in [41]).
Semantic matching algorithm sma ∈ SMA specifies the algorithms used for
semantic similarity measurement between policy objects and attributes of a weav-
ing request. A policy can target a wide range of objects without matching the exact
identification. For sma =< ty, de >, ty denotes the type of built-in algorithms for
semantic similarity and de denotes the matching degree.

Some policy objects, such as activities, can have similar or equal semantics, but
not the same identification with different process providers. Through a semantic
matching configuration, the policy can easily be applied to interesting objects of
all processes from different providers. For example, a new policy can be applied to
‘payment’ related activities. A semantic matching configuration could easily apply
the policy to ‘process payment’, ‘pay’ or ‘repayment’ activities.
Sequencing algorithm sa ∈ SA specifies the weaving sequence on a collection
of Rule/Policy/PolicySet components within a Policy/PolicySet component. This
allows to specify an action execution sequence in a governance state. A sa ∈ SA has
a type attribute indicating the type of algorithm for sequencing. Ordered (based

June 3, 2015 9:0 The International Journal of Parallel, Emergent and Distributed Systems
ijpeds

Parallel, Emergent and Distributed Systems 13

on the order they are listed in a component) and PriorityBased-QuickSort (based
on the priority attribute of each component) are two built-in algorithms.
Policy combining algorithms: For multiple policies (developed at different times
or by different developers) and nested policies, a potential problem are conflicting
action types from multiple rules on a weaving request. As a consequence, we need
algorithms to combine multiple provider actions into a single joint provider action.

The following table associates the algorithms to different activity states. The
algorithms are ignored for an unrelated activity state.

Sg Defined combining algorithm

Sflexiblity
g n/a

Sconstraint
g CCA

Sfault
g /scancelling RCA

scancelling ∈ Sfault
g default

One way of solving policy conflicts is to assign priority values to policies to define
a precedence [42]. This is done by two sets of combining algorithms in XACML for
constraint and fault rules, respectively. The policy combining algorithms allows to
give priority to different types of actions for constraint and fault rules.

The combining algorithm is not required for Sflexiblity
g , as PAmanipulate actions

are executed immediately when weaving the rules. For the scancelling state, since
there is only one type of a provider action (PAcompensate) that is expected, a sim-
ple default combining algorithm is assigned without policy developer involvement.
It does not combine different types of actions, but merges the same type of ac-
tions. In this case, the combination is based on the union of the child elements of
PAcompensate actions. Similarly, consumer actions of obligations are also merged
and executed when a provider action is decided for a weavingresponse.

The ConstraintCombiningAlgorithm cca ∈ CCA element is defined for combining
provider actions with constraint rules. A cca has a type attribute denoting the type
of built-in algorithms that have different behaviour resulting in different combining
conclusions. A cca is defined to be one of following types:

(1) Pa-Violate-Override-Through-All gives priority to PAviolate actions over
PAvalidate actions. The Through-All means that all of rules or policies are
weaved, even when the type of action has been decided. The purpose is a)
gathering complete violation information needed for violation handling and
b) making sure all necessary consumer actions are weaved.

(2) Pa-Validate-Override-Through-All is similar to the above, but gives priority
to a PAvalidate action.

(3) Pa-Violate-Unless-Pa-Validate-Through-All gives a final decision with
PAviolate as the default.

(4) Pa-Validate-Unless-Pa-Violate-Through-All gives a final decision with
PAvalidate as the default.

The RemedyCombiningAlgorithm rca ∈ RCA element is defined for combining
provider actions resulting from fault rules. For rca =< ty,DS >, ty is an attribute
denoting the type of algorithms which have different behaviour resulting from differ-
ent combining conclusions and DS specifies a defined sequence of provider actions
as an input parameter of one type of algorithm. A rca is of one of following types:

(1) Defined-Sequence-Overrides-Through-All gives a priority ranking according
to the sequence of the defined provider action types for fault rules. The first
action type in the sequence has the highest priority. Hence, when a list of
remedies is available from defined related policies, the one with the highest
priority is chosen. The Through-All denotes that all rules or policies are

June 3, 2015 9:0 The International Journal of Parallel, Emergent and Distributed Systems
ijpeds

14 Taylor & Francis and I.T. Consultant

weaved, even if the type of provider action has been decided.
(2) Pa-Ignore-Unless-Defined-Sequence-Through-All gives a strict final decision

with PAignore as default. In this case, if no remedy is found from defined
related policies or rules, the violations are ignored.

(3) Pa-Cancel-Unless-Defined-Sequence-Through-All is similar. It cancels the
process instance which has violations not covered by fault policies or rules.

6. Coordination

A coordination framework with protocols as contracts makes process consumers
and providers work together for governance to ensure that defined policies are
enforced in multi-tenant environments. We have already introduced the coordi-
nation model in the architectural overview. We now focus on message exchange
protocols for policy enforcement between participants and coordinators, and also a
cache mechanism to reduce the overhead of coordination conversations caused by
message exchange. BPEL templates are offered to implement the protocols with
multi-tenancy capability for providers.

6.1 Process activity protocol

The process activity protocol defines a coordination type for coordination con-
versations. It relies on our coordination model. A coordination conversation is
established upon coordination of all activities which are within the overall process
and subprocesses for the consumer. The conceptual modelling of the coordination
protocol is activity-centric, so it can be applied to any process regardless of the
flow logic and without losing aspects related to business processes. This coordina-
tion protocol applies to all activities of business processes. A coordination protocol
comprises three components that define coorcontext which re described in the fol-
lowing subsections: a protocol message schema, a Finite State Machine (FSM) of
COORc and COORp and a cache function specification of COORp.

6.1.1 Protocol message schema

The protocol message schema defines the message data structure for the commu-
nication between COORc and COORp for the extension element of COORcontext.
Two elements defined in the schema are PAP request and PAP response (request and
response of protocol services). A paprequest ∈ PAP request is defined as a tuple
< p, a, r, v′, s >, which extends the COORcontext to form the Wrequest, where

• process p ∈ P contains process name and a service reference for the process.

• activity a ∈ A contains its name and the service reference of the service which
implements the activity.

• resource r ∈ R contains the business object involved for the current activity
state, as a free extensible element (xsd:any) for any type of business objects.

• set of violations v′ ⊆ V contains available violation information for the activity.

• state s ∈ Sg is the current governance state of the activity. Sg is defined in the
FSM part of the protocol.

A papresponse ∈ PAP response extends COORcontext to formWresponse. It is defined
as a transition action ta ∈ TA, i.e. an abstract type of a set of concrete transition
actions mapped to provider actions, which are described in the policy model.

The Wrequest is defined for request messages of COORp, the Wresponse is defined
for response messages of protocol services of COORc (Figure 5). All messages are

June 3, 2015 9:0 The International Journal of Parallel, Emergent and Distributed Systems
ijpeds

Parallel, Emergent and Distributed Systems 15

Coordination protocol

 BP component BP componentPG componentPG component

Coordinator P

FSM of
CoordinatorP

Coordinator C

ProxyPolicy weaver
WeavingRequest

WeavingReponseWeavingReponse

WeavingRequest

PoliciesPolicies

FSM of
CoordinatorCWeavingResponse

WeavingRequest

WeavingResponseWeavingRequest

Figure 5. Message flow diagram

wrapped as coordination context information. The policy weaver can be viewed as
an implementation of a protocol service of a coorc depending on the coordination
protocol, because of the difference between the policy model and the coordination
message definition. The PA needs to be transformed to TA as the Wresponse before
sending out from the policy weaver. Still, the policy weaver does not directly com-
municate with a coorp, because the FSM of the coordination protocol is divided
into two parts. A proxy service sends a wrequest to a policy weaver or a FSM of
COORc depending on the activity state.

6.1.2 FSMs COORc and COORp of the protocol

The process activity protocol defines a given level of runtime governability for
processes and the responsibilities of process providers and consumers as a contract.
Governability should deal with all rule categories. We formalize this as a finite state
machine (FSM) for the protocol. We define a separate FSM for every activity in
a process and describe the behaviour of COORc and COORp in conversations.
FSMs help to instrument the governance states into the process flow.

A complete FSM is divided into two parts for a protocol, which are responsible
for COORc and COORp, respectively. The FSM of COORc is a submachine state
of the FSM of COORp. The process providers only follow the part of the protocol
which is defined for COORp. The consumers follow the FSM of COORc. Since
the implementation of the FSM will be executed at the consumer and provider
separately, the COORc must have sufficient information about the process exe-
cution for its part of the state machine execution, as the process executes on the
provider side. In our design of the entire FSM, the FSM of COORc defined for the
submachine state in the FSM of COORp is isolated from the business process. As
a result, the protocol message schema only covers the complete information about
the activity rather than the process state information. The execution of the FSM
of COORc does not require information other than the Wrequest, which is defined
in the protocol message schema. The execution of the FSM of COORp does not
require information other than Wresponse. The reason behind this design is that,
firstly, the same protocol message schema can be used for different coordination
protocols. A process consumer can customize the FSM of COORc for itself with-
out affecting the FSM of COORp and other process consumers. Secondly, it avoids
possible complexity in state machine implementation for both sides. One side does
not need to know the implementation details of the other side.

The purpose of the two-part design is that it reduces the number of governance
states in the FSM of COORp, hence reduces the protocol message exchange times
required between COORc and COORp for coordination conversations. It reduces

June 3, 2015 9:0 The International Journal of Parallel, Emergent and Distributed Systems
ijpeds

16 Taylor & Francis and I.T. Consultant

performance overhead caused by communication between the protocol services, as
network-based communication between a process consumer and providers can be
expensive. The disadvantage is that it increases the complexity on the consumer
side, because of the FSM of COORc is implemented by consumers. However, a
different protocol can be defined with COORp that has a complete FSM.

The FSM of COORp specifies the protocol which is responsible for COORp. It
is defined as a 5-tuple (S, sstart, F, TA, δ), where

• S = Sg
⋃
S¬g is a set of states. Sg are governance states {sman valpre ,

sman valpost , shandlingpre
, shandlingpost

, scancelling} directly involved with pro-

cess consumers or policies. S¬g is the set of non-governance states {sstart,
sviolatedpre

, sexecuting, sreplacing, swaiting, sskipping, sviolatedpost
, scompensating,

scom+rep, scom+ign, scompleted, send} not directly involved with process consumers.

• sstart ∈ S¬g is an initial state. The activity coordination can only be started by
the process provider, and is not directly involved with consumers.

• F ⊆ S¬g is a set of final states {send}.
• TA = TAg

⋃
TA¬g is a set of input symbols of transaction actions. TAg is a

set of transition actions {taviolate, tavalidated, taignore, tareplace, taskip, tacancel,
tacompensate, taretry, tacom+ign, tacom+rep} expected from process consumers.
TA¬g is a set of transaction actions, which are not expected from consumers
{0, 1}. The input stream of the FSM regarding TA¬g is decided by the process
provider based on the process state information which is not covered by the
FSM, as the FSM is only activity scoped.

• δ is a transition system δ : S × TA→ S (a transition graph, see Fig. 6).

The FSM of COORp introduces two submachine states: sman valpre before sexecuting,
and sman valpost after sexecuting. They contain the FSM for COORc. It enables
message adaptations and constraint validations before and after sexecuting.

The FSM for the sman valpre submachine state specifies the protocol which is
responsible for COORc. It is defined as a 5-tuple (S, sstart, F, TA, δ), where

• S = Sg
⋃
S¬g is a set of states. Sg is a set of governance states, {smanprevalpre

smanpostvalpre , svalidatingpre}. The S¬g is a set of non-governance states {sstart,
sreplacing, sviolatedpre

, sexecuting} from the parent FSM.

• sstart ∈ S¬g is an initial state from the parent FSM.

• F ⊆ S¬g is a set of final states {sviolatedpre
, sexecuting} from the parent FSM.

• TA = TAg
⋃
TA¬g is a set of input symbols of transaction actions. TAg is a set

of transaction actions {tavalidated, taviolate} expected from process consumers or
policies. TA¬g actions are not expected from process consumers TA¬g = {1}.

• δ is a transition system δ : S × TA→ S (a transition graph, see Fig. 7).

The submachine state consists of governance states allowing constraint rule valida-
tion before sexecuting, and message adaptation before and after svalidatingpre

. When a
coorc receives a wrequest, indicating that an activity of a process is in the sman valpre

state, the proxy service of coorc enters the submachine of the coorc implementation
defined for the sman valpre state. The FSM of coorc sends its wrequest to the policy
weaver. The s of wrequest received by the policy weaver is a governance state defined
in the FSM of COORc. After completing the FSM of COORc, the final wresponse

is sent to COORp. The FSM of COORc for the sman valpost submachine state is
identical to sman valpre , except Sg = {smanprevalpost , smanpostvalpost , svalidatingpost

}.

6.1.3 Cache of the process activity protocol

The coordination cache mechanism is designed to improve coordination efficiency
by reducing protocol message communications between two types of subcoordina-

June 3, 2015 9:0 The International Journal of Parallel, Emergent and Distributed Systems
ijpeds

Parallel, Emergent and Distributed Systems 17

1

1

0

1

Ignore

1

Cancel

Ignore

Cancel

1Skip

1

Retry

1

0

Validated

Validated

1

Compensate

Ingore

Replace

Completed

Skipping

Waiting

Compensti
ng

Replacing

Handling
Pre

Handling
Post

Violated
Pre

Violated
Post

Cancelling

Manipulati
ng

Validating
Pre

Manipulati
ng

Validating
Post

Executing

startstart

EndEnd

Compensate+Replace

Violate

Replace

Violate

Compensti
ng+

Replacing

1

1

Compensate+Ignore

participant
generated

coordinator_p
generated

participant as activity
of process provider

Figure 6. Transition graph of FSM in COORp

tors. It caches message responses of a coordination protocol of coordination con-
versations. For a coorp, it remembers policy information defined or a final provider
action at a particular point of a business process by consumers to decide what
interaction pattern is needed between a coorc and coorc at the point.

There are three types of interaction patterns for the cache mechanism (Table
below). It results in three default extra transition actions for all coordination
protocols: TAc = {taundefined, taunexpected, taundetermined}. They are mapped to
PAundefined, PAunexpected, PAundetermined (Section 5). The three extra actions are
mapped to transition actions specified in the coordination protocol on governance.

Transition action - Interaction pattern and description
taundefined - No interaction
The protocol service of coorp does not try to communicate with coorc on a
governance state. A mapped transition action is applied.
taunexpected - One-way notification
The protocol service of coorp sends a message or wrequest to coorc using a
one-way interaction mode in a governance state. Then, the consumer actions
defined in the policies are executed. A mapped transition action is applied.
taundetermined and others from specific protocol TAg - Synchronous re-
quest/response
The protocol service of coorp communicates with coorc and waits for a
provider action. The cache is also updated with the provider action from
the consumer. A mapped transition action is applied if the returned transi-
tion action is one of taundefined, taunexpected, taundetermined.

In the first two cases of the table, the COORp does not interact with the COORc

or uses a one-way notification interaction mode. Thus, process execution is not
blocked to wait for the consumer to complete the weaving. Hence, the performance
overhead is reduced in these cases. Depending on the coordination protocol defined

June 3, 2015 9:0 The International Journal of Parallel, Emergent and Distributed Systems
ijpeds

18 Taylor & Francis and I.T. Consultant

su
b

m
ach

in
e state

Violate

Violate

Violate

1

Validated

Validated

Manipulating
Pre

Validating
 Pre

Violated
Pre

Validating
Pre

Manipulating
Post

Validating
 Pre

StartStart

Executing

Validated

coordinator_c
generated

participant
generated

participant as policy
weaver of process

consumer

Figure 7. Transition graph of FSM in COORc

for the coordination, a cache mechanism may be implemented in coorc. In this case,
it does not reduce the communication overhead between the coorc and COORp, but
the overhead of policy weaving. Since the weaving is not in the scope of coordination
protocols, the caching in the COORc is not defined in the coordination model.

The cache of the process activity protocol defines the cache function on COORp.
It includes a protocol-specific data set of cached data (PS ⊂ CAD) and an action
mapping table (TAc → TAg). PS specifies additional conditions for cached results.
These additional conditions are relevant for the elements of a request of a protocol
message of COORp (Wrequest). In this protocol, a pa ∈ PS is defined as <s> and
s ∈ Sg. In other words, a final provider action resulting from policy weaving is
expected to be of the same interaction type (described in the coordination cache
function) for any wrequest with the same s regardless of other elements when the
cache is enabled. More conditions can be added for different types of coordination
protocols, such as the activity name or a service reference for a activity.

In the FSM definition of the protocol, transition actions are explicitly defined for
transitions from governance states to governed states. However, process consumers
have three types of extra transition actions TAc (defined in the coordination cache)
for the cache function. They are not included in the TAg defined in the process
activity protocol. Hence, the protocol also defines the mapping (7→) from TAc to
TAg. In this protocol, the mapping for COORp is defined as follows:

∀s ∈ {sman valpre , sman valpost}, ta ∈ TAc.∃tavalidated ∈ TAg.(ta 7→ tavalidated)
∀s ∈ {shandlingpre

, shandlingpost
, scancelling}, ta ∈ TAc.∃taignore ∈ TAg.

(ta 7→ taignore)

June 3, 2015 9:0 The International Journal of Parallel, Emergent and Distributed Systems
ijpeds

Parallel, Emergent and Distributed Systems 19

The mapping for COORc is defined as follows:

∀s ∈ {smanprevalpre , smanpostvalpre , smanprevalpost , smanpostvalpost}, ta ∈ TAc.
∃tavalidated ∈ TAg.(ta 7→ tavalidated)

∀s ∈ {svalidatingpre
, svalidatingpost

}, ta ∈ TAc.∃tavalidated ∈ TAg.

(ta 7→ tavalidated)

The mapping for COORc is not restricted for a consumer, if coorc is on the
consumer side. The consumer can change at any time, as the process providers
does not need to be aware of changes and does not affect other process consumers.

For the protocol implementation, we designed a set of templates (Chapter 6.4 of
[41], [43]) for BPEL development to avoid platform dependency. In this case, the
protocol is implemented with a BPEL process as a coorp for activities. The BPEL
contains the flow logic to be executed and can be driven by protocol messages. A
process instance, not the BPEL process, is associated with a coordination conversa-
tion belonging to a consumer to enable multi-tenancy. The BPEL transaction scope
concept is applied for implementing the protocol with BPEL for supporting LRTs.
LRTs in BPEL are centred on scopes and scopes can be nested. Nested scopes can
be standalone BPEL subprocesses which are activities of the parent process. When
a fault occurs in a BPEL process, all previously committed activities can either be
compensated within the fault process, or compensated as an activity in its parent.

7. Use Case and Evaluation

The evaluation covers both the policy model and coordination framework, but with
different objectives.

7.1 Use case - Policy model evaluation

The objective is to demonstrate the validity of the policy model with use case
examples to show how business policies are expressed in our policy language, and
to evaluate if different aspects of business policies are covered for a comprehensive
customization. The aspects referred to here are aspects of autonomic computing
[38] – configuration, healing, optimization, protection – which can be specified as
policies here. These aspects are similar to functional areas in distributed system
management [18][44], i.e., configuration, fault, performance, security management,
and adaptive systems [28] with configuration, correction, optimization, prevention.

We briefly describe a simple business policy example for the optimization and
healing aspects: Credit card processing should be completed quickly (expected in
less than 700 ms) without fault. It demonstrates various aspects business policies
that are expressible in our policy language. We have three rules in a policy -
cardProcessingPolicy10 (Listing 1) for the business policy. The policy targets both
Visa and MasterCard Card Processing activities.

Listing 1 cardProcessingPolicy10

1 <p1:Policy policyId="cardProcessingPolicy10" priority="0">
2 <p1:Objects ><p1:ObjectsAnyOf ><p1:ObjectsAllOf ><p1:Activity ><Name>Visa Card

Processing </Name></p1:Activity ></p1:ObjectsAllOf ><p1:ObjectsAllOf ><p1:Activity >
<Name>MasterCard Card Processing </Name></p1:Activity ></p1:ObjectsAllOf ></
p1:ObjectsAnyOf ></p1:Objects >

3 <p1:ActivityStates/>
4 <p1:Rule priority="0" ruleId="constraintRule10">...</p1:Rule >
5 <p1:Rule priority="0" ruleId="retryRemedyRule10">...</p1:Rule >
6 <p1:Rule priority="0" ruleId="replaceRemedyRule10">...</p1:Rule >
7 <p1:ConstraintCombiningAlgorithm type="Pa -Violate -Unless -Pa -Validate -Through -All"/>

June 3, 2015 9:0 The International Journal of Parallel, Emergent and Distributed Systems
ijpeds

20 Taylor & Francis and I.T. Consultant

8 <p1:RemedyCombiningAlgorithm type="Pa -Cancel -Unless -Defined -Sequence -Through -All"><
DefinedSequenceElement >Pa-Retry</DefinedSequenceElement ><DefinedSequenceElement
>Pa-Replace </DefinedSequenceElement > ... </p1:RemedyCombiningAlgorithm >

9 <p1:SequencingAlgorithm type="Ordered"/>
10 </p1:PolicySet >

The first rule is a constraint rule - constraintRule10 (Listing 2), specifying a
condition to check the service performance of the current activity (line 3). If the
performance is slower than required, a paviolate action is executed to guide the
process instance to a performance violation state. A casuspend consumer action is
also defined to avoid the service to be selected for any activity or process for the
next 5 hours. The rule has a fault handler (line 6) specifying the performance
violation which is expected if condition checking of the rule is faulty, but the
casuspend actions is not performed, as this is not defined in the fault handler.

Listing 2 constraintRule10

1 <p1:Rule priority="0" ruleId="constraintRule10">
2 <p1:ActivityStates ><p1:ActivityState >Validating -Pre</p1:ActivityState ></

p1:ActivityStates >
3 <p1:Conditions ><p1:ConditionExpression >exists (// ServiceProfile/ServiceReference [(

child::Ws -address =// WeavingRequest/Activity //Ws-address and child::Operation
=// WeavingRequest/Activity // Operation) and descendant::Performance> ;700]) </
p1:ConditionExpression ></p1:Conditions >

4 <p1:Actions ><p1:Ca -Suspend Time="P0Y0M0DT5H"/><p1:Pa -Violate ><p1:Violation ><Type>
QoS:Performance </Type></p1:Violation ></p1:Pa -Violate >

5 </p1:Actions >
6 <p1:FaultHandler ><p1:Pa -Violate ><p1:Violation ><Type>QoS:Performance </Type></

p1:Violation ></p1:Pa -Violate ></p1:FaultHandler >
7 </p1:Rule >

The second and third rules are fault rules (Listing 3), defining remedy actions
for both effect violation and performance violations. The second rule retryRem-
edyRule10 targets the Functional:Effect violation (line 2). It specifies a paretry
remedial action for the violation with a condition, which specifies for a current
service that a paretry action is executed less than 5 times on the provider side
within the last minute. Otherwise, paretry is not expected. The third rule - replac-
eRemedyRule10 defines a pareplace for both Functional:Effect and QoS:Performance
violations. The replacement service is defined with a mandatory condition on the
context, a weak condition on preferred service performance for the activity. Hence,
a fast performance service would be selected. An obligation is also defined (line
10) to log the replacement event, if pareplace is executed on the provider side. The
remedy combining algorithm of the policy (Listing 1 line 8) specifies that pareplace
is the preferred remedy over the paretry if both remedies are applicable.

Listing 3 retryRemedyRule10 and replaceRemedyRule10

1 <p1:Rule priority="0" ruleId="retryRemedyRule10">
2 <p1:Objects ><p1:ObjectsAnyOf ><p1:ObjectsAllOf ><p1:Violation ><Type>Functional:Effect <

/Type></p1:Violation ></p1:ObjectsAllOf ></p1:ObjectsAnyOf ></p1:Objects >
3 <p1:Conditions ><p1:ConditionExpression >count (//Pa-ActionLog/Pa -Action[@type="Pa -

Retry" and @time > (current -dateTime ()- xdt:dayTimeDuration(’PT1M’)) and
descendant::ServiceReference])<=5</p1:ConditionExpression ></p1:Conditions >

4 <p1:Actions ><p1:Pa -Retry WaitFor="PT0M"/></p1:Actions >
5 </p1:Rule >
6 <p1:Rule priority="0" ruleId="replaceRemedyRule10">
7 <p1:Objects ><p1:ObjectsAnyOf ><p1:ObjectsAllOf ><p1:Violation ><Type>QoS:Performance </

Type></p1:Violation ></p1:ObjectsAllOf ><p1:ObjectsAllOf ><p1:Violation ><Type>
Functional:Effect </Type></p1:Violation ></p1:ObjectsAllOf ></p1:ObjectsAnyOf ></
p1:Objects >

8 <p1:Conditions/>
9 <p1:Actions ><p1:Pa -Replace InstanceOnly="false"><p1:ServiceConditions ><

p1:ServiceConditionExpression force="false" expression="/Context // Performance&
lt;700"/><p1:ServiceConditionExpression force="true" expression="/Context //
Trust>5"/></p1:ServiceConditions ></p1:Pa -Replace ></p1:Actions >

10 <p1:Obligations ><p1:Obligation Type="Pa-Replace"><p1:Ca -Log level="4"/></
p1:Obligation ></p1:Obligations >

11 </p1:Rule >

The examples demonstrate that our policy modelling can deal with thr issues
that affect policy modelling, such as different aspects of business policies or re-

June 3, 2015 9:0 The International Journal of Parallel, Emergent and Distributed Systems
ijpeds

Parallel, Emergent and Distributed Systems 21

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
1 2 0

1 2 5

1 3 0

1 3 5

1 4 0

1 4 5

1 5 0

1 5 5
Tim

e c
os

t (m
s)

N u m b e r o f p o l i c i e s

 M a n i p u l a t i n g - V a l i d a t i n g - P r e
 L i n e a r F i t (Y = 1 2 5 . 3 3 + 1 . 7 7 X)

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
1 2 0

1 2 5

1 3 0

1 3 5

1 4 0

1 4 5

1 5 0

1 5 5

Tim
e c

os
t (m

s)

N u m b e r o f p o l i c i e s

 M a n i p u l a t i n g - V a l i d a t i n g - P r e
 L i n e a r F i t (Y = 1 2 7 . 7 8 + 0 . 3 9 X)

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0

Tim
e c

os
t (m

s)

T e s t c a s e s

 I n s t a n c e a d a p t a t i o n
 I n s t a n c e a d a p t a t i o n (C a c h e e n a b l e d)

Figure 8. 1) Overhead with related policies, 2) Overhead with unrelated policies, 3) Overhead
with process instance adaptation

quirements, distributed to consumers and targeting business processes. Along with
other empirical evaluations [41], this confirms the comprehensiveness of the model.

7.2 Experiments - Coordination framework evaluation

Our discussion of the coordination framework focuses on evaluating the effective-
ness and performance overhead. Effectiveness means that the process can be gov-
erned in a distributed and multi-tenant environment, i.e., policies are enforced on
business process executions for multiple consumers while enabling business goals
to be achieved. We designed test cases involving two consumers on a process and
configuration. Our study of effectiveness is divided in two stages: first, we validate
effectiveness for a single process consumer; then, we validate effectiveness for two
concurrent process consumers, examining its multi-tenancy capability. The pur-
chase order checkout BPEL process is developed for the experimental setup. A set
of alternative services are also available for test cases related to PAreplace reme-
dies. The service context information required for constraint validation and service
selection is manually and randomly assigned. A test case comprises of five parts of
information (see Chapter 6 [41] for details).

(1) Process: target process of test case (some cases address a sub-process level).
(2) Defined input: a section of SOAP message of the business process input

that contains the business object information.
(3) Defined policies: policies defined for the business process.
(4) Expected process activity log: refers to expected activities and states infor-

mation log in a process instance.
(5) Expected output: SOAP message referring to output from process instance.

June 3, 2015 9:0 The International Journal of Parallel, Emergent and Distributed Systems
ijpeds

22 Taylor & Francis and I.T. Consultant

In the first step, we developed 21 test cases for Consumer 1 only. These cases
were designed to cover four categories of rules with different scenarios: e.g., a test
case with three constraints for validating the security context of activities. Then,
we compared process execution and coordination log following the execution with
the expected process activity log to verify whether the validations have occurred.
In another similar test case, we manually changed the security context information
for a constraint rule. We traced process execution to verify whether the defined
fault rules are weaved, and the final remedy is applied in the process execution.

In the second step, we developed 10 test cases that involved two consumers
(Consumer 1 and 2). Both had different defined inputs, policies, expected process
activity logs and expected outputs. For these test cases, we made two consumers
continually and simultaneously send a number of process requests to verify if the
policies of each consumer were enforced and whether there was interference be-
tween each other. We also forced the slowdown of the policy weaver on one of the
consumers and on one process request instance of one consumer to ensure messages
received by BPEL processes do not follow a particular sequence. With the successful
test cases, we can demonstrate that our approach provides an effective coordination
solution for governance in a distributed and multi-tenant environment.

The execution aspect of our approach is inherently time consuming, but a perfor-
mance overhead is also expected on coordination conversations. Once the activities
of a process instance are in a governance state, the process would be blocked and
wait for a provider action or policy decision from the process consumer. Two gover-
nance states (sman valpre/post) must be passed for all activities in the FSM of COORp

to reach the scompleted state. These two governance states are considered to be the
coordination overhead in violation-free situations. We used a local machine for an
in-lab experiment. The setup used a 3.0 GHz single core process with 1GB ram
WinXP VMware VM (ActivateBPEL server, JAX-WS XML web services). The
coordination overhead of the activity was around 245 ms with the cache disabled
and around 127 ms with the cache enabled in a violation-free situation. The actual
overhead also depends on the number of policies defined by consumers, as more
policies result in a greater overhead. It is less than 2 ms for a new related pol-
icy in this case (Figure 8.1). For a new policy unrelated to the governance state,
the overhead is even less (Figure 8.2). In a violation situation, the coordination
overhead mean value for instance adaptation is around 598ms with the cache dis-
abled (Figure 8.3). However, this is not expected to happen on a regular basis and
the overhead is then normally considered to be the necessary price to pay to fix
the problem in such cases [19]. The overall overhead can increase when we apply
it in real-world networks with consideration of the network latency. However, we
still consider the performance overhead as quite small, as long running business
activities take a few hours or even a few days for execution in a process with LRT.

8. Conclusion

Business processes are assets of enterprises. A shareable process would increase the
reuse potential for providers and would increase profits from external consumers
through customised business processes. Following the cloud computing principles,
these business processes could be offered as-a-service. Consumers benefit from a
customisation approach for these shared processes if they are offered in the form
of a service that they can manage and control themselves through policy-based
process customisation.

Consumer requirements in the form of business policies affecting the business
processes can be expressed in a formal policy language, which acts as customization

June 3, 2015 9:0 The International Journal of Parallel, Emergent and Distributed Systems
ijpeds

REFERENCES 23

metadata of business processes. We have provided a policy model to formalize four
categories of rules of policies, which we identified from different aspects related to
business process execution (flexibility, constraint, fault and utility rules).

On-the-fly process customization and adaptation can be achieved for process
consumers through process runtime governance based on process elements (business
activity). A coordination framework and protocol can be used for activities within
processes or subprocesses from different providers to work together on process
execution for business transitions within a multi-tenancy environment. We have
provided a coordination framework and protocol correlated with a policy model.

Two wider concerns can be identified behind the two core solution components
we identified. The first contribution, the policy model, is a vehicle that allows
business domain-specific concerns to be captured as policies and a service process
implementation to be instrumented and governed through the policies beyond the
usual more technical quality aspects. Consequently, more effort shall be put into
developing domain-specific policy templates. The second contribution is the remote
coordination protocol, which causes challenges in terms of interoperability between
consumer and provider, but also between service and process providers, in partic-
ular if a migration from one provider to another is considered by the consumer.
Future work will also focus on high-level policy modelling and enhancements of the
coordination protocol for deeper, but also interoperable process customization in
multi-tenancy environments.

References

[1] Yi Wei and M. Brian Blake. Service-oriented computing and cloud computing:
Challenges and opportunities. IEEE Internet Computing, 14(6):72–75, 2010.

[2] Alessio Gambi and Cesare Pautasso. Restful business process management in
the cloud. In Principles of Engineering Service-Oriented Systems (PESOS),
2013 ICSE Workshop on, pages 1–10. IEEE, 2013.

[3] Frederick Chong and Gianpaolo Carraro. Architecture strategies for catch-
ing the long tail, 2006. http://msdn.microsoft.com/en-us/library/

aa479069.aspx.
[4] Stefan Walraven, Dimitri Van Landuyt, Eddy Truyen, Koen Handekyn, and

Wouter Joosen. Efficient customization of multi-tenant software-as-a-service
applications with service lines. Journal of Systems and Software, 91:48–62,
2014.

[5] George Reese. Cloud Application Architectures - Building Applications and
Infrastructure in the Cloud. O’ Reilly, 2009. pages 3.

[6] Milinda Pathirage, Srinath Perera, Indika Kumara, and Sanjiva Weerawarana.
A multi-tenant architecture for business process executions. In IEEE Inter-
national Conference on Web service, 2011.

[7] W3c web services policy 1.2 - framework (ws-policy). http://www.w3.org/

Submission/WS-Policy.
[8] MingXue Wang, Kosala Yapa Bandara, and Claus Pahl. Process as a service

- distributed multi-tenant policy-based process runtime governance. In IEEE
International Conference on Services Computing, pages 578–585, 2010.

[9] MingXue Wang and Claus Pahl. User-customisable policy monitoring for
multi-tenant cloud architectures. In European Conference on Service-Oriented
and Cloud Computing, 2012.

[10] MingXue Wang, Kosala Yapa Bandara, and Claus Pahl. Integrated constraint
violation handling for dynamic service composition. In IEEE International
Conference on Services Computing, 2009.

June 3, 2015 9:0 The International Journal of Parallel, Emergent and Distributed Systems
ijpeds

24 REFERENCES

[11] Sanjay Dalal, Sazi Temel, Mark Little, Mark Potts, and Jim Webber. Coor-
dinating business transactions on the web. IEEE Internet Computing, 7(1),
2003.

[12] Michael von Riegen, Martin Husemann, Stefan Fink, and Norbert Ritter. Rule-
based coordination of distributed web service transactions. IEEE Transactions
on Service Computing, 3(1):60–70, 2010.

[13] Frank Leymann and Stefan Pottinger. Rethinking the coordination models of
ws-coordination and ws-cf. In IEEE European Conference on Web Services,
2005.

[14] Lakshmi Ramachandran, Nanjangud C. Narendra, and Karthikeyan Pon-
nalagu. Dynamic provisioning in multi-tenant service clouds. Service Oriented
Computing and Applications, 6(4):283–302, 2012.

[15] Oasis extensible access control markup language (xacml) 3.0, 2010. http://

docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.html.
[16] Barbara von Halle. Business Rules Applied - Business Better Systems Using

the Business Rules Approach. John Wiley and Sons, Inc., New York, 2001.
pages 33-35, 15.

[17] Florian Rosenberg, Christoph Nagl, and Schahram Dustdar. Applying dis-
tributed business rules - the vidre approach. IEEE International Conference
on Services Computing, 2006.

[18] Abdelkarim Erradi. Policy-Driven Framework for Manageable and Adaptive
Service-Oriented Processes. PhD thesis, 2008. Computer Science and Engi-
neering, The University of New South Wales.

[19] Luciano Baresi and Sam Guinea. Self-supervising bpel processes. IEEE Trans-
actions on Software Engineering, 37(2):247 – 263, 2011.

[20] Soumaya Marzouk and Mohamed Jmaiel. A policy-based approach for strong
mobility of composed web services. Service Oriented Computing and Applica-
tions, 7(4):293–315, 2013.

[21] Yunzhou Wu and Prashant Doshi. Making bpel flexible adapting in the con-
text of coordination constraints using ws-bpel. In IEEE International Con-
ference on Services Computing, 2008.

[22] Kareliotis Christos, Costas Vassilakis, Efstathios Rouvas, and Panayiotis
Georgiadis. Exception resolution for bpel processes: a middleware-based
framework and performance evaluation. In International Conference on In-
formation Integration and Web-based Applications and Services, 2008.

[23] Danilo Ardagna, Marco Comuzzi, Enrico Mussi, Barbara Pernici, and Pierluigi
Plebani. Paws: A framework for executing adaptive web-service processes.
IEEE Software, 24(6):39–46, 2007.

[24] Danilo Ardagna and Barbara Pernici. Adaptive service composition in flexible
processes. IEEE Transactions on Software Engineering, 33(6):369 – 384, 2007.

[25] Adina Mosincat and Walter Binder. Transparent runtime adaptability for bpel
processes. In International Conference on Service-Oriented Computing, 2008.

[26] Gerhard Friedrich, Mariagrazia Fugini, Enrico Mussi, Barbara Pernici, and
Gaston Tagni. Exception handling for repair in service-based processes. IEEE
Transactions on Software Engineering, 36(2):198 – 215, 2010.

[27] Sattanathan Subramanian, Philippe Thiran, Nanjangud C. Narendra,
Ghita Kouadri Mostefaoui, and Zakaria Maamar. On the enhancement of bpel
engines for self-healing composite web services. In International Symposium
on Applications and the Internet, pages 33–39, 2008.

[28] Abdelkarim Erradi, Piyush Maheshwari, and Vladimir Tosic. Policy-driven
middleware for self-adaptation of web services compositions. In ACM/I-
FIP/USENIX International Middleware Conference, 2006.

June 3, 2015 9:0 The International Journal of Parallel, Emergent and Distributed Systems
ijpeds

REFERENCES 25

[29] Oasis web services coordination (ws-coordination) - accessed online, 2014.
http://docs.oasis-open.org/ws-tx/wscoor/2006/06.

[30] Oasis web services atomic transaction (ws-atomictransaction) - accessed on-
line, 2014. http://docs.oasis-open.org/ws-tx/wsat/2006/06.

[31] Oasis web services business activity (ws-businessactivity) - accessed online,
2014. http://docs.oasis-open.org/ws-tx/wsba/2006/06.

[32] Stefan Pottinger, Ralph Mietzner, and Frank Leymann. Coordinate bpel
scopes and processes by extending the ws-business activity framework. In
International Conference on Cooperative Information Systems, 2007.

[33] Afkham Azeez, Srinath Perera, Dimuthu Gamage, Ruwan Linton, Prabath
Siriwardana, Dimuthu Leelaratne, Sanjiva Weerawarana, and Paul Fremantle.
Multi-tenant soa middleware for cloud computing. In IEEE International
Conference on Cloud Computing, 2010.

[34] Christoph Fehling, Frank Leymann, and Ralph Mietzner. A framework for
optimized distribution of tenants in cloud applications. In IEEE International
Conference on Cloud Computing, 2010.

[35] Tobias Unger, Ralph Mietzner, and Frank Leymann. Customer-defined service
level agreements for composite applications. Enterprise Information Systems,
3(3):369–391, 2009.

[36] Anne H. Anderson. An introduction to the web services policy language (wspl).
In IEEE International Workshop on Policies for Distributed Systems and Net-
works, 2004.

[37] Hamdi Yahyaoui, Azzam Mourad, Mohamed Almulla, Lina Yao, and Quan Z.
Sheng. A synergy between context-aware policies and aop to achieve highly
adaptable web services. Service Oriented Computing and Applications,
6(4):379–392, 2014.

[38] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
IEEE Computer, 36(1):41–50, 2003.

[39] Jeffrey O. Kephart and William E. Walsh. An artificial intelligence perspective
on autonomic computing policies. In IEEE International Workshop on Policies
for Distributed Systems and Networks, 2004.

[40] Liangzhao Zeng, Hui Lei, Jun-jang Jeng, Jen-Yao Chung, and Boualem Be-
natallah. Policy-driven exception-management for composite web services. In
IEEE International Conference on E-Commerce Technology, 2005.

[41] MingXue Wang. A policy based governance framework for cloud service process
architectures (Dublin City University). Phd thesis, 2012.

[42] Emil Lupu and Morris Sloman. Conflicts in policy-based distributed systems
management. IEEE Transactions on Software Engineering, 25(6):852 – 869,
1999.

[43] Kosala Yapa Bandara, MingXue Wang, and Claus Pahl. An extended
ontology-based context model and manipulation calculus for dynamic web
service processes. Service Oriented Computing and Applications, 2013.

[44] Morris Sloman. Policy driven management for distributed systems. Journal
of Network and Systems Management, 2(4):333–360, 1994.

