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Abstract 

Chinese Hamster Ovary (CHO) cells are the most common mammalian cell line used 

around the world and are considered the “workhorse” for production of recombinant 

proteins in the pharmaceutical industry.  

Efforts have been made to optimise the production process through advancements in media 

formulation and improving process control strategies like bioreactor design, fed-batch 

feeding and temperature shift approaches, increasing batch titres from 50 mg/L to 5-10 g/L. 

However, it is believed that there is still room for improvement in the advent of media and 

process optimisation reaching a plateau. An alternative route to overcome this plateau is 

through engineering of the CHO host cells themselves.  

The overall aim of this PhD project was to identify and exploit endogenous CHO promoters 

to enhance heterologous protein expression.  

Having obtained ~ 30 CHO putative promoter sequences of varying length from 9 target 

genes from PCR, we screened and cloned 4 priority CHO promoter fragments into a variety 

of reporter vectors (GFP, Luciferase, p27 and EPO) to test their strength and utility. We 

have identified 3 novel temperature responsive promoters fragments from Cirbp SSu72 and 

Mdm2 genes and one constitutive promoter from a miRNA cluster [miR-17-92].  

These promoters can permit moderate to high expression of a desired protein similarly to 

viral commercial ones such as cytomegalovirus (CMV) and simian virus (SV40) as well as 

boost expression levels of reporter proteins upon a temperature shift to 31
o
C. As a result, 

these novel tools are particularly advantageous in a bioprocess where reduced temperature 

is used already to increase protein production. In addition, we reported a ~94% decrease in 

clonal GFP stability of a CMV viral promoter versus our endogenous promoters over a 3 

month timecourse experiment proving that viral promoters cannot sustain prolonged 

activity in culture like our novel endogenous promoter sequences. 

We have also shown that CHO clones overexpressing human XIAP exhibited 2/3-fold 

increased resistance to apoptosis and survival in extended culture settings compared to 

control cells. A secondary aim was to identify potential interacting miRNAs by utilising a 

novel pulldown method (miR-Capture), to isolate miRNAs targeting the anti-apoptotic 

XIAP mRNA in two different cell types, using a biotinylated anti-sense oligonucleotide 

capture affinity technique.  

Thus, identifying miRNAs which may impact on favourable phenotypes such as anti-

apoptosis and increased growth rate may provide a means of improving CHO cell lines 

used for biopharmaceutical production.  From the miR-Capture, there were 26 miRNAs 

detected in the human lysates and 14 in the CHO lysates. Four miRNAs (miR-124, miR-

526b*, miR-760 and miR-877) were shown to be common from parallel CHO and human 

miR-Capture’s, using oligos designed against XIAP. Functional validation provided further 

evidence that miR-124 targets XIAP mRNA in CHO and human cells and may be a suitable 

target for miRNA engineering in CHO. 
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In conclusion, we demonstrate the potential utility of novel endogenous, temperature 

sensitive promoters and the overexpression of XIAP in conjunction with existing 

production processes to ameliorate bioprocess performance further. 
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1.1: Introduction to Biotechnology in Bioprocessing 

The birth of recombinant DNA technology in 1973 by Cohen and Boyer made possible the 

emergence of Biotechnology and its continuation into mainstream business (Cohen et al. 

1973). Biotechnology bridged the gap between drug development and manufacturing of 

recombinant proteins as new therapeutic medicines by allowing the application of DNA 

cloning methods for commercial purposes.  

Over the last 4 decades, we have witnessed a change in genetic engineering from simple 

artificial plasmid constructs in microorganisms to more elaborate mammalian recombinant 

protein technology. Now recombinant protein therapeutics which are primarily produced in 

mammalian cells, constitute a $108 billion global market (Wuest, Harcum and Lee 2012). 

More recently the number of recombinant technologies has increased globally with Chinese 

Hamster ovary (CHO) mammalian host cells becoming the leading mammalian platform in 

the production of biopharmaceuticals. They account for over 60% or entire global 

production (Hernandez Bort et al. 2012) (Fussenegger et al. 1998) (Kim and Lee 2012). 

In the last few years we have seen the yield and titres of batch production reach record 

highs, going from milligrams to grams per litre (Zhou et al. 1997) (Lim et al. 2010). This 

was due to many factors such as; bioreactor design and improved materials, optimisation of 

media, improved expression systems and selection of high-producing CHO clones. As a 

result, some believe the maximum output of these little protein super factories has been 

reached whereby the cells can’t actually make anymore due to the limits of the cellular 

machinery.  

The next generation of improvements in bioprocessing may come from genetic engineering 

approaches such as; vector engineering, the use of endogenous promoters and anti-

apoptotic regulation (topics which will be covered in the succeeding introduction sections), 

as tools with the overall aim to allow more efficient protein production by overcoming this 

capacity bottleneck (Wurm 2004).  

Improving productivity may not be the only goal but infact, recent years have shown that a 

level of control is thought to be just as if not more desirable than maximum protein yield. 

This control is often dependant on the bioprocess in question, or the nature of a particular 
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protein (ex: protein product versus an engineering target or toxic versus non-toxic product) 

and represents another avenue to use engineering tools.  

The focus of the work described in this thesis is about identifying and implementing some 

novel genetic tools in the form of promoters to gain greater control over CHO cell 

behaviour and performance within a bioreactor. 

 

1.2: Chinese Hamster Ovary Cells 

Chinese Hamster Ovary (CHO) cells were derived from the ovaries of Hamsters as the 

name suggests. In 1957, Theodore T. Puck obtained a female Chinese Hamster from Dr. 

George Yerganian's laboratory at the Boston Cancer Research Foundation and used it to 

derive the original Chinese Hamster ovary cell line.  

Since then, CHO cells have become the workhorse cell-line of choice for recombinant 

protein production because of their rapid growth and high protein production capacity 

necessary for large scale biopharma production increasing production of the drug of interest 

(Jayapal et al. 2007) (Mead et al. 2009).  

A variety of cellular expression systems have been used over the years including; bacteria, 

yeast, insect and plant cells which can produce valuable recombinant proteins. The majority 

of new protein products are made in mammalian cells, in fact among the 58 biopharma 

molecules approved from 2006 to 2010, 32 are produced by mammalian systems (Walsh 

2010). This is due in part to the fact that only mammalian cells can facilitate post-

translational modifications (PTMs) such as folding and glycosylation on the protein of 

interest, to be fully biologically active in other mammalian cells.  

Take the three major therapeutic proteins on the market today, erythropoietin (EPO), tissue-

type plasminogen activator (t-Pa) and β-interferon. All require appropriate glycosylation 

made possible by the PTMs offered by CHO cells (Kim and Lee 2012).  

Furthermore, the first approval of t-Pa in 1986, paved the way for mammalian cells to be 

the emerging workhorses in an expanding field, with CHO cells being the most valuable 

due to the following characteristics; 
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 Easy to handle and robust in culture  

 Perform PTMs for full protein functionality 

 Relatively safe – (as they do not propagate most human pathogenic viruses) 

 Fast growing cell line (fast turnaround times) 

 Accept foreign/exogenous DNA readily when transfected 

 They can be grown and adapted in a multitude of medium types 

 A broad range of commercial sub clones exist 

 They can grow in suspension or adherent/attached cultures 

 

As CHO cells gained popularity for being safe hosts, FDA approval became more 

widespread, offering a big advantage to multinational pharmaceutical companies and of 

course the patients. In addition, CHO cells did not suffer from the disadvantage of a low 

specific productivity (Qp) like other mammalian expressers at the time, as it could be 

overcome with gene amplification systems such as dihydrofolate reductase (DHFR) and 

glutamine synthetase (GS) (Lim et al. 2010). 

 

1.3: Media Optimistation 

Before any genetic alterations were even conceived, media formulation and composition 

was of utmost importance in the maintenance and growth of mammalian cells. It was 

important because they are a more complex biological entity than bacteria and fungi and 

thus survival is harder outside a favourable environment. Once a basal growth medium is 

established additional amino acids, lipids, salts, vitamins growth factors etc can be added to 

satisfy all the nutritional needs of the cells in culture.  

Cellular productivity is proportional to biomass and cell viability/health of producer cells 

(Kumar et al. 2007). Each cell line will have a defined growth medium in which it performs 

best and in the case of CHO cells over the last 20 years, tweaking the media composition 

often through trial and error, has yielded excellent titer results up to a g/L scale (Jayapal et 

al. 2007). However, culture media should not increase the osmolality or encourage 

generation of excess metabolic waste products as these affect both quantity and quality of 

the protein product (Castro et al. 1992). 
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Three main categories for existing media formulation are; (1) Serum supplemented media, 

(2) Serum-free media and (3) Protein-free media. Ideally nutrient formulations totally free 

of exogenous proteins containing no materials of animal origin to be used for high density 

cell culture and biological production are the holy grail in media optimisation (Jayme 

1999). 

(1) Serum is an ill-defined non cellular portion of blood that remains after removal of blood 

cells and clotting proteins and is one of the most important basic requirements for 

mammalian cells during ‘in vitro’ culture. Serum can protect the cells from shear-stress and 

has been shown to delay the onset of apoptosis and increase viability in culture. Zanghi et 

al, report that using 5% FBS reduced the specific cell death rate by 65% during a 3-d 

lactate-consumption phase and a 10% FBS supplement increased cell viability to >99% 

during exponential growth from ~75-90% compared to protein-free media (Zanghi et al. 

1999). However, high batch-batch variations of isolated serum and risk of contamination 

from prions and viruses resulting in transmissible spongiform encephalopathy (TSE), have 

led to developments of formulations free of serum. 

(2) Eradication of serum from culture medium is necessary when a protein product is for 

therapeutic purposes, as mentioned to avoid cross contamination with pathogens and 

immunogenic responses. Also important are the costs of downstream processing to purify 

the target protein/drug once the process is complete, which otherwise can be complicated 

by the presence of protein-rich serum.  

(3) The elimination of proteins such as growth factors, from media is also beneficial in 

much the same way as elimination of serum, mainly allowing further reduction in 

downstream process costs in the pharmaceutical industry when producing recombinant 

proteins.  

However, care is needed when sourcing of non-protein additives (e.g., geographic location, 

endemicity and species) and then use trusted validation methods before supplementation 

(Jayme 1999) (Jayme and Smith 2000). An example of a chemically defined protein-free 

formulation would be the CDM-HD by FibercellSystems™ and is optimised for use in their 

hollow fiber bioreactor systems. 
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In conclusion, while media optimisation has been beneficial and a vital cog in improving 

bioprocess production using mammalian cells. Some believe improvements have reached a 

plateau and alternative means are being sought such as host cell and vector engineering 

(Lim et al. 2010) (Kim et al. 2012). Altering cell genetics through engineering approaches 

and using specific molecules/genes involved in certain pathways within the cell could 

influence proliferation and apoptosis for example, allowing the cells to perform beyond 

their natural characteristics and thus drive more beneficial protein production. 

 

1.4: Strategies in Mammalian Cell Engineering 

To improve characteristics of recombinant CHO (rCHO) cells in regard to cell growth and 

foreign protein production, numerous strategies have been targeted mainly to increase the 

time integral of viable cell concentration (IVCC) and/or specific productivity of each 

individual cell (Qp). Enhancing Qp is the common goal for biotechnologists with many 

engineering methods being used in various ways, which will be discussed over the course 

of this section. 

 

1.4.1: Stable recombinant clone generation in CHO (rCHO) 

The generation of a producing cell line is through the introduction of a transgene encoding 

the protein product into host CHO cells. This is usually followed by gene copy number 

amplification to increase its transcript level and subsequent intensive screening to isolate 

the high-producers capable of increased secretory capacity (Seth et al. 2006) (Kantardjieff 

and Zhou 2014).  

By transfecting a plasmid encoding a GOI, external DNA is incorporated into cells via 

transient (short term) transfection or integrated into the genome of the cells via stable 

transfection (permanent).  

Only the cells which contain the integrated GOI and selective marker in their genome can 

survive under selective pressure, this facilitates a high degree of heterogeneity where all 

resultant progeny to display the same behaviour characteristics. Routinely then, the next 

step is to identify the best performers over extended periods, often screening for 
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characteristics related to bioprocessing such as; high growth rate, slow death rate and high 

specific cell productivity (Qp). 

A common method to construct recombinant CHO cell lines is to transfect dihydrofolate 

reductase (DHFR) negative (dhfr
−
) CHO cell lines such as the DG44 (Urlaub et al. 1983), 

with the cDNA genes for DHFR and the protein of interest. Initial transformants are 

selected for growth in the absence of glycine, purines, and thymidine. The transfected genes 

are then amplified by stepwise increasing the concentration of methotrexate (MTX), a 

competitive inhibitor of DHFR, in the culture medium (Kaufman 1990). During this 

process the transfected genes are amplified several 1000-fold resulting in an increased 

production rate for the recombinant protein (Crouse et al. 1983). 

However, screening can be laborious and slow. In recent times other selection technologies 

to isolate production standard cell lines have come to fruition. See table 1.4.1, for an 

overview of these selection technologies. 

 

Table 1.4.1: Clonal selection methods coupled with their advantages/disadvantages. 

Selection Method Advantages Disadvantages 

Limited dilution single cell 

cloning 

Simple, cost effective Time-consuming, Isolation not 

guaranteed of high expressors, 

low throughput 

Fluorescent activated cell 

sorting (FACS) 

High throughput, common 

industrial method 

Toxicity issues from GFP 

expression, stressful to cells, 

expensive instrument 

ClonePix (Genetix) Automated / fully sterility Expensive / needs trained 

person 

Laser-enabled analysis and 

processing (LEAP) 

Automated / time saving Potential damage to cells 

(irradiation) 

Gel microdrop technology Safety from product diffusion 

over time 

Low frequency of bead 

occupancy (~15%) 

Matrix-based secretion assay Protein secretion measured on 

a cell by cell basis 

Difficulty in sorting/laborious 
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In conclusion, random integration and gene amplification still represent the standard 

approach in industrial application for generating production strains (Kramer, Klausing and 

Noll 2010). Additional avenues such as, introduction and overexpression of genes and site-

specific integration techniques which can facilitate insertion of a product gene in contrast to 

random integration are discussed in the coming sections. 

 

1.4.2: Overexpression engineering 

Probably the most traditional way to engineer cell lines is based on overexpression of 

certain genes. It usually involves the isolation of a native DNA sequence (often the cDNA 

of a full gene), this fragment is then subsequently cloned into a mammalian expression 

vector/plasmid for transfection into a host for propagation. The stable integration into the 

cell genomes is promoted by applying antibiotic selective pressure. Furthermore, it is 

possible to increase the expression of the amplified gene by raising the selective pressure 

(Kramer et al. 2010) (Klausing and Noll 2010). 

Studies have shown that overexpression of proliferative and anti-apoptotic genes can lead 

to improved bioprocess phenotypes, for example, overexpression of the bcl-2 and Beclin-1 

genes and their homologues represents a frequent overexpression strategy to increase 

viability and inhibit apoptosis in CHO (Figueroa et al. 2003)(Ifandi and Al-Rubeai 2005, 

Lee et al. 2013). While Omasa et al, report that overexpression of the growth arrest DNA 

damage inducible protein 34 (GADD34) could improve recombinant human antithrombin 

III product concentrations by ~40% (Omasa et al. 2008). Additionally, overexpression of 

HSPs (HSP27 and HSP70) was found to extended culture times and increase productivity 

in CHO cultures (Lee et al. 2009). 

Overexpression and manipulating genes or regulatory pathways can be a valuable approach, 

however, problems can arise. These modifications could destabilize the metabolic balance 

within the cells and impair other functions and cause unexpected side-effects (Kramer, et 

al. 2010). For example; overexpression of Bcl-2 resulted in down-regulation of DNA repair 

and NHEJ (non-homologous end-joining) leading to abnormal chromosomal formation in 

approximately 30% of cell divisions in metaphase (Wang et al. 2008). 
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Although site-specificity is not a prerequisite for introduction of transgenes into a host for 

overexpression, the success of integration can be boosted by more specific insertion 

methods, particularly into favourable areas of the genome permitting high transcription 

rates. Targeted integration also may avoid unwanted disruption of coding sequence. It is a 

powerful tool to have more control of targeted integration of an exogenous sequence into a 

predetermined genomic location. 

Methods such as site-specific recombination (SSRs) have come to prominence to tackle the 

issues of sub-optimal expression of transgenes at unfavorable chromosomal loci. Strategies 

such as using site-specific nucleases, recombinase-mediated cassette exchange (RMCE), 

for example the Cre/LoxP system, and cis-acting elements have all been shown to increase 

efficiency of site-specific insertion of a transgene. 

 

1.4.3: Site-specific targeting techniques 

1.4.3.1: Site-specific nucleases for genome editing 

Gene targeting and knockout are useful tools to study gene function and modify features of 

a cell. Early methods revolved around using chemical agents, radiation and transposons 

(Remy et al. 2010). The outcome of these non-targeting methods was based on chance and 

screening for cells with the desired mutation was time and labour intensive.  

Using more accurate methods like homologous recombination to induce mutations at 

specific locations was explored. To increase the occurrence of HR, double-stranded breaks 

(DSBs) can be introduced at certain sites within the genome (Kramer, Klausing and Noll 

2010).  

This can be achieved by using site-specific nucleases such as; Zinc-finger nucleases 

(ZFNs), Transcription activator-like effector nucleases (TALENs), Meganucleases and 

more recently the emergence of Clustered regulatory interspaced short palindromic repeats 

(CRISPRs) all comprise powerful classes of tools that are redefining the boundaries of 

biological research (Gaj et al. 2013), and could hold the key for improved gene therapy. 
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Chronologically, the first engineered nuclease technology, Zinc-Finger nuclease, was 

presented in a 1991 publication by Pavletich and Pabo (Pavletich and Pabo 1991). ZFNs 

recognise specific DNA sites in the genome based on a unique specifically designed zinc-

finger DNA binding motif attached to a cleavage domain (FokI restriction enzyme). The 

DNA is cleaved and then relies on the ability of cellular repair machinery to use extra-

chromosomal DNA (donor DNA) as a template to enhance homologous recombination 

(HR).  

The development of ZFN-mediated gene targeting provided molecular biologists with the 

ability to site-specifically and permanently modify both plant and mammalian genomes 

including the human genome via stimulation of homologous recombination (HR) (Durai et 

al. 2005). A study by Cost et al, in CHO ZFN engineering, recently where they reported 

that by knocking out the pro-apoptotic genes Bak and Bax in CHO cells, generated clones 

were more resistant to apoptotic stress induced by starvation, staurosporine, and sodium 

butyrate (Cost et al. 2010). 

As genome editing became more prominent in cell engineering, more cost effective 

competing technologies have arisen. A similar class of nucleases termed ‘TALENs’ 

(Transcription-Activator-Like Effector Nucleases), employ a similar FokI domain design 

and show promise in a range of species (Mussolino and Cathomen 2012) (Hockemeyer et 

al. 2011).  

Meganucleases, homing endonucleases capable of recognizing long DNA sequences 

(~45bp) are divided into five sub-families (Kramer, Klausing and Noll 2010) (Paques and 

Duchateau 2007). Limitations in recognition motifs are one concern, but engineered 

meganucleases can be constructed by domain swapping. An example of an engineered 

meganuclease is the knockout of RAG1 gene locus in 293H cells (Grizot et al. 2009). 

However, they have drawbacks such as lower mobility owing to being quite large compared 

to the more motile smaller ZFNs and TALENs (Epinat et al. 2003).  

CRISPRs were first discovered in the 1980s, but their function wasn’t confirmed until 2007 

by Barrangou and colleagues. They are a distinctive feature of the genomes of most 

bacteria and archaea. Termed RNA-guided endonucleases (RGENs), they are derived from 

the prokaryotic adaptive immune system involved in resistance to bacteriophages which 



17 
 

integrates a genomic fragment from an invading infectious agent into its CRISPR locus 

(Barrangou et al. 2007). Approximately 40% of sequenced bacterial genomes, and ~90% of 

those from archaea, contain at least one CRISPR locus, furthermore the availability of a 

public database which is regularly updated called ‘CRISPRdb’ is accessible at 

http://crispr.u-psud.fr/crispr (Grissa et al. 2007). 

Using CRISPR instead of the other site-specific nucleases eliminates the need to construct a 

completely customized endonuclease for each target, something that is still required by 

TALEN and Zinc Finger. As a result of this the entry barrier to genome editing has been 

lowered significantly, allowing for more users and more innovation (Gratz et al. 2013).  

Three types of CRISPR mechanisms have been identified (Figure 1.4.3.1), type II is the 

most studied to date. DNA from viruses or foreign agents are digested and incorporated 

into a CRISPR locus amidst a series of short (~20bp) repeats. These loci are then 

transcribed and processed into RNAs (crRNA), which is then used to guide effector 

nucleases to target invading DNA sequence further based on sequence complementarity 

(Jinek et al. 2012).  

http://crispr.u-psud.fr/crispr
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Figure 1.4.3.1: The 3 stages of CRISPR-Cas action. CRISPRs act in three stages: 

adaptation, expression and interference. In type I and type II CRISPR-Cas systems, but not 

in type III systems, the selection of proto-spacers in invading nucleic acid probably depends 

on a proto-spacer-adjacent motif (PAM) (Koonin and Makarova 2013). 

In summary, genetic engineering using the various methods above are useful for a number 

of applications. These include; targeted gene mutations, chromosomal rearrangement, and 

the creation of transgenic animals. While applications such as gene therapy, allele disabling 

and editing (editing an organisms DNA by altering, removing or adding nucleotides to the 

genome) are possible, however they can suffer from drawbacks such as; off-target 

effects/cleavage (wrong digestion site) and immunogenicity issues, as is the case with many 

foreign proteins/molecules inserted into a living organism. 
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 Recently, improvements in zinc-finger nuclease design (Ramalingam et al. 2011) and 

TALEN design (Joung and Sander 2013) are being sought to decrease immunogenicity, 

cytotoxicity and subsequently increase efficacy regarding genome editing. These 

mechanisms can contribute to the development of precise targeting within a cells genome 

and they all combine to expand the tailored engineering toolbox further. 

 

1.4.3.2:  Cre/LoxP system 

The Cre/LoxP site-specific recombinase method can also be used for gene targeting and 

DNA manipulation via insertions, deletions, and inversions. First reported by Kito et al, the 

system was utilised for reproducible monoclonal antibody production using CHO cells. 

They showed that after gene-targeting of loxP in clone MK2 with selective gene 

amplification with methotrexate (MTX), the MTX-resistant colonies showed high levels of 

antibody production (Kito et al. 2002). Placing Lox sequences appropriately allows genes 

to be activated, repressed, or exchanged for other genes. 

Kameyama et al described an accumulative gene integration system (AGIS), in which 

target gene cassettes could be repetitively integrated into a pre-determined site on a plasmid 

or cellular genome by recombinase-mediated cassette exchange (RMCE), using Cre and 

mutated LoxPs. The equilibrium and specificity of the recombination reaction can be 

controlled using mutated LoxPs (Kameyama et al. 2010). 

Two advantages of the Cre/LoxP technology include; insertion of a cassette in the correct 

orientation and it being of higher efficiency than random integration methods. The 

properties of site-specific recombinases in combination with other biotechnological tools 

(Inducible systems, shRNA/siRNA mediated gene silencing) make them useful instruments 

to induce precise mutations in specific cells or tissues in a time-controlled manner (Garcia-

Otin and Guillou 2006). 
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1.4.4: RNA interference engineering  

RNA interference (RNAi) is an evolutionarily conserved phenomenon for sequence-

specific gene silencing. RNAi was first described by Fire et al, 1998 in C. Elegans where 

dsRNA was introduced into worms and specific mRNA silencing was seen. After injection 

into adult animals, purified single strands had at most, a modest effect, whereas double-

stranded mixtures caused potent and specific interference (Fire et al. 1998).  

In the RNAi pathway (Figure 1.4.4), RNAi is induced by small interfering double-stranded 

RNA molecules (siRNAs) which are approximately 21 to 23 nucleotides in length and 

serve as the regulatory molecules that guide and induce sequence-specific gene silencing. 

This leads to negative regulation of gene expression at a post-transcriptional level and is 

termed post-transcriptional gene silencing (PTGS) (McManus and Sharp 2002) (Sakurai, 

Chomchan and Rossi 2010) (McManus and Sharp 2002) (McManus and Sharp 2002).   

RNAi-mediated gene silencing can be performed using artificially synthesised siRNA 

molecules (native siRNAs were originally found in plants) or via the endogenous 

expression of short hairpin RNA molecules (shRNAs) encoded by plasmids or viral vectors 

(Amarzguioui et al 2005). However, unlike chemically synthesised siRNAs which have 

been shown to only cause a transient knockdown of a target gene after transfection (3-5 

days), shRNA vectors can induce a longer term and more stable expression of RNAi 

silencing in target cells after transfection (Wu 2009). 
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Figure 1.4.4: Pathway of siRNA. ShRNA is processed by Dicer into siRNA duplexes that 

are then bound by the RISC. Each duplex consists of a guide strand (red) which remains 

bound to RISC and a passenger strand (blue) which is degraded. Target mRNAs are 

recognised by base pairing and are subsequently silenced by different mechanisms. The 

m
7
G structure of the mRNA depicts the eukaryotic 5′-Cap structure, (A)n stands for the 

polyadenylation of the 3′-end (Kramer, Klausing and Noll 2010). 

 

Furthermore, arising from shRNA vector-mediated silencing are another class of small non-

coding RNAs called microRNAs or miRNAs, which are produced by the cell naturally 

(unlike siRNAs which are generally artificially made by chemical synthesis), to further 

regulate gene expression. Both siRNA and miRNAs are commonly used to induce RNAi in 

mammalian cells for functional studies. 

Typically, RNA interference can be subdivided into three main pathways by the biogenesis 

of the small RNAs mediating the silencing: short interfering RNAs (siRNAs), microRNAs 

(miRNAs) and PIWI-interacting RNAs (piRNAs), respectively (Siomi and Siomi 2009). 

Despite their distinct functions, the boundaries between their pathways are not well 

defined; but the general mechanism is applicable to all three types. Additionally, the key 

role of the piRNAs seems to be the protection of the germ line genome (Choudhuri 2009) 

(Siomi et al. 2011). 

RNAi technology has become a novel reverse genetic tool for silencing gene expression in 

mammalian cells for a number of potential benefits including; developing new therapeutics 

for certain diseases like cancer (Takeshita and Ochiya 2006). Additionally, because of the 

ability of RNAi to silence disease-associated genes in tissue culture and animal models, the 

development of RNAi-based reagents for clinical applications such as HIV replication 
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inhibition (Berkhout and Liu 2014) and personalised cancer treatment is gathering pace, as 

technological enhancements that improve siRNA stability and delivery in vivo, while 

minimising off-target and non-specific effects, are developed (Leung and Whittaker 2005) 

(Wu et al. 2014). 

More related to the work presented in this project, is using siRNA-mediated silencing as a 

tool for investigating gene function. For example, the knockdown of pro-apoptotic factors 

using RNAi like Alg-2 and caspases 3 and 7 (caspase suppression has been shown to lead 

to increased viability and subdued autophagy). The zinc finger transcription factor 

‘Requiem’ has also been reported to improve cell viability and more importantly increase 

recombinant protein production such as interferon-γ in CHO cells by targeting the apoptosis 

cascade (Lim et al. 2010) (Wu 2009).  

Additionally, siRNAs are attractive to regulatory authorities as they have not induced any 

toxic reactions to date as shown in vivo studies in mammals and many have been developed 

as therapeutics over the last decade aiding in personalised cancer treatment (Hong et al. 

2007) (Rossbach 2010) (Wu et al. 2014). For example; Song et al showed that by silencing 

the Fas gene through intravenous injection of Fas siRNA with RNAi holds therapeutic 

promise to prevent liver injury by protecting hepatocytes from cytotoxicity (Song et al. 

2003). In addition, Brummelkamp et al reported that viral delivery of small interfering 

RNAs can be used to target the oncogenic K-RAS (V12) allele in human tumor cells 

allowing for tumor-specific gene therapy to reverse the oncogenic phenotype of cancer cells 

(Brummelkamp et al. 2002).  

In summary, small RNA molecules such as siRNAs and miRNAs were once deemed too 

small to impinge on large complex organisms. Ironically they are now considered as 

attractive biological tools to control regulation by sequence-dependent degradation of 

mRNA with more development being made in the area of small molecule engineering than 

any other field in genetics at present (Jadhav et al. 2012). 
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1.4.5: Cis-regulatory elements 

Other important cell engineering elements for augmenting gene expression include; 

S/MARs, UCOEs, and IRES elements. ‘Cis’ meaning “on the same side as” as derived 

from latin. They are essentially DNA/RNA regulatory sequences that are located generally 

in the same location or on the same chromosome and close to the coding sequence they 

regulate. 

 

1.4.5.1: Scaffold/matrix attachment regions (S/MAR)  

S/MARs are one of the most widely used cis-acting elements outside of native promoters; 

they organise the chromatin into structural domains and can be mapped to non-random 

locations in the genome by using stress-induced DNA duplex destabilization (SIDD) or 

when placed under negative superhelical tension (Bode et al. 2006).  

S/MARs do not have a clear-cut consensus sequence; the characteristics that define their 

activity are thought to be structural, they occur at the flanks of transcribed regions, in 5´-

introns, and also at gene breakpoint cluster regions (BCRs) (Benham, Kohwi-Shigematsu 

and Bode 1997). They are believed to define boundaries interfacing heterochromatin and 

euchromatin domains (two structural forms of chromatin, heterochromatin is more tightly 

packed than euchromatin and therefore euchromatin is more transcriptionally active) 

thereby acting as epigenetic regulators (Harraghy et al. 2011). 

Regarding use in CHO cells, S/MARs have been tested to evaluate their performance in 

rCHO cells, with Harraghy et al, reporting increases in recombinant antibody production 

and reducing the number of clones to be screened and time to production by as much as 9 

months after incorporating MARs into suitable expression vectors (Harraghy et al. 2012). 

Girod et al reported that the chicken lysozyme MAR interestingly mediates a dual effect by 

working as a cis-acting element as well as working as a trans-acting element for a separate 

co-transfected plasmid (Girod, Zahn-Zabal and Mermod 2005). 

 

http://en.wikipedia.org/wiki/Chromatin
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Locus control regions (LCRs) and Boundary elements (BEs) are two other chromatin 

elements and these were screened for their ability to augment the expression of 

heterologous genes in mammalian cells even though LCRs composition and locations 

relative to their cognate genes are different (Li et al. 2002). Of all chromatin elements 

assayed, the chicken lysozyme matrix-attachment region was the only element to 

significantly increase stable reporter expression (Zahn-Zabal et al. 2001).  

 

1.4.5.2: Ubiquitous Chromatin Opening Elements 

Similar in function to S/MARs, UCOEs are promoter-like elements associated with 

endogenous house-keeping genes. They contain extended CpG islands found to be resistant 

to methylation and the effects of transgene silencing (Nair et al. 2011). 

A study by Benton et al, showed the results of combining the cytomegalovirus (CMV) 

promoter with fragments derived from UCOE, a vector with 8kb UCOE sequence, resulting 

in a much improved number of clones expressing high levels of GFP after flow cytometry 

analysis – thus reducing the level of screening necessary to isolate such high producing 

clones perhaps (Benton et al. 2002).  

Additionally their mode of action has relative experimental ease of use, which is combined 

with vector engineering, which can subsequently be readily transfected into mammalian 

cells. UCOEs are useful additions to mammalian engineering to improve desirable 

phenotypes without using the more potentially disruptive and damaging genetic 

manipulations like directed mutagenesis for example. 

Where there were size concerns for transfection efficiency, smaller sequences of UCOE 

(1.5-4kb) from human were utilised by (Brooks et al. 2004) (Boscolo et al. 2012). Both 

have shown great potential regarding recombinant productivity increases with quick 

implementation into production systems.  
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1.4.5.3: IRES elements 

Internal ribosomal entry segments (IRES) are elements that affect the outcome of gene 

expression in a cell based on interaction with other elements present and have varying 

degrees of efficiency. These sequences allows for translation initiation to take place in the 

middle of a messenger RNA (mRNA), thus going against the convention where 5’cap 

recognition is need to initiate translation. They are typically of viral origin but recently 

found in the mRNA of the tumor suppressor p53 gene (Sharathchandra et al. 2014).  

IRES elements are particularly useful for creation of bicistronic mRNAs that encode both a 

gene of interest and a selectable marker for stable transfection (Martinez-Salas et al. 1996) 

(Koh et al. 2013). 

Fussenegger and co-workers created a technology called ‘pTRIDENT’, it involves a series 

of tricistronic vectors that utilise three IRES segments to link 3 genes which normally 

would not be expressed in unison (Fussenegger et al. 1998) (Fux et al. 2004). Although 

overall the process seems to be less efficient than natural cap-dependant translation, there is 

an argument that selection is actually improved due to impairment of the marker expression 

downstream whereby creating better-expressing transfectants and false positive clones may 

be reduced. 

On the contrary, targeting IRESs by silencing or knockdown can be a suitable avenue for 

therapeutic development as IRES-mediated hepatitis C (HCV) and polioviruses (PV) that 

infect humans use the IRES mechanism for synthesis of viral proteins (Dasgupta et al. 

2004).  

After critical examination of IRES publications over the last decade, flaws were uncovered 

leading to alternative interpretations, such as the possibility that IRES elements might 

function using other mechanisms such as cryptic promoters, splice sites, or sequences that 

modulate cleavage by RNases. In short, the focus on IRES-binding proteins has gotten us 

no closer to understanding the mechanism of internal initiation (Baranick et al. 2008). The 

uncertainty about these mechanisms might underlie what-appears-to-be internal initiation, 

and Kozak et al offer a temporary solution, where it might be beneficial to redefine IRES to 

mean "internal regulatory expression sequence.  

http://en.wikipedia.org/wiki/Translation_%28genetics%29
http://en.wikipedia.org/wiki/Messenger_RNA
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This compromise would allow the sequences to be used for gene expression studies, for 

which they sometimes work, without asserting more than has been proven about the 

mechanism (Kozak 2003). 

 

1.4.5.4: Other engineering strategies 

In addition to all engineering methods described previous, there are many more strategies 

that expand further than the scope of this project. Due to the increasing demand for quality 

recombinant proteins the interest in alternative strategies has grown in recent years.  

Other strategies used to engineer mammalian cells include; glycosylation engineering (Park 

et al. 2012), chaperone engineering, (Josse, Smales and Tuite 2012), unfolded protein 

response (UPR)-based engineering (Chien et al. 2014), metabolic engineering (Le et al. 

2013) and secretion engineering (Peng et al. 2010). 

 

1.5: The CHO Genome Project 

Until recently, the absence of a publicly available CHO genomic sequence was a hindrance 

to many researchers interested in studying CHO cell lines. Although genetic heterogeneity 

among CHO cell lines is well documented, a systematic, nucleotide resolution 

characterisation of their genotypic differences has been hindered by lack of a unifying 

‘Gold standard’ sequence resource for CHO cells as a whole. 

As the most common mammalian cell line used in biologic production processes, the CHO 

genomic sequence along with its mapping and annotating, became a research priority in the 

field of biotechnology. As a result of explicitly identifying the CHO genetic code, 

biotechnologists aimed to improve the efficiency and understanding of cell culture 

bioprocessing overall (Wuest et al. 2012). 

In 2010 there were only a few known institutes in possession of entire or at least partial 

CHO genome sequences or resources (Kramer et al. 2010). Among them were the 

“Consortium for Chinese Hamster Ovary Cell Genomics” group and they have amassed a 

sequence repertoire of more than 68,000 expressed sequence tags (ESTs), representing 
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more than 28,000 unique CHO transcripts (Kantardjieff et al. 2009). Furthermore, the 

Chinese Hamster genome database at http://www.chogenome.org/ is another online 

resource for the CHO communities (Hammond et al. 2012). 

In July 2011, a consortium group led by Beijing genomics institute (BGI) based in 

Shenzhen, China released the first draft of the CHO-K1 ancestral cell line (Xu et al. 2011). 

The assembly comprised 2.45 Gb of genomic sequence, with 24,383 predicted genes 

annotated from scaffold assembly’s and made available to the public on GenBank and the 

resource at www.chogenome.org. The information within will facilitate genome-scale 

science for the optimisation of biopharmaceutical protein production for years to come and 

in 2012 they were nominated for Upstream Collaboration of the Decade at the BPI awards 

in Rhode island, USA. 

More recently, Lewis et al reported their findings upon analysing six CHO cell lines 

derived from CHO-K1, DG44 and CHO-S lineages. More importantly, they published the 

Chinese Hamster sequence as a reference to compare all cell line sequences to. They 

identified genes missing in the different lines and detected >3.7 million SNPs, 551,240 

indels (an insertion or deletion event) and 7,063 copy number variations (Lewis et al. 

2013).  

Up until these sequences were released, the isolation and identification of promoter 

sequences and gene sequences in CHO was slow and tedious. Cross species alignments 

based on sequence comparisons in other rodent species such as rat and mouse were used to 

make educated guesses and roughly map the region of promoter upstream of the target 

genes used in this study (see results section 3.2). So with the advent of the fully assembled 

CHO-K1 sequence, this process was simplified approximately midway through the project. 

 

 

 

 

 

 

http://www.chogenome.org/
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1.6: Gene Promoters 

A promoter is a segment of DNA (usually occurring upstream from a gene coding region) 

that acts as a controlling element in the expression of that gene by initiating transcription. 

The typical organisation of a promoter and gene segment is shown in figure 1.6. Vectors 

used in bioprocessing and gene therapy require an expression cassette. The expression 

cassette consists of three vital components: promoter, therapeutic or product gene and 

polyadenylation signal. The promoter is chiefly responsible for controlling expression of 

the gene and is therefore a potential tool in driving protein production (Zheng and Baum 

2008) (Preker et al. 2008) 

Crucial to the activity of a promoter is its ability to recruit RNA polymerase (RNAP), to 

initiate transcription. RNA polymerase enzymes are essential to life and are found in all 

organisms and many viruses. There are 5 distinct types; each type is responsible for 

synthesis of a different molecule. RNAP I is involved in ribosomal synthesis (rRNA) 

(Grummt 1999). RNAP II is involved in synthesising precursors of mRNA (including 

snRNA and miRNA) and is the most studied type owing to its strong control over 

transcription (Hahn 2004). RNAP III synthesises transfer RNA (tRNA) present in the 

cytosol (Geiduschek and Tocchini-Valentini 1988). RNAP IV and V are less studied but are 

involved in siRNA-directed heterochromatin formation and synthesis in plants (Wierzbicki 

et al. 2009). 

All common polymerase II promoters share similar sequence structures; a core promoter 

consisting of either a conserved TATA box-enriched well defined region or more 

expansive, evolvable CpG islands, an initiator element and a downstream promoter element 

(Kadonaga 2004) (Carninci et al. 2006), and a proximal promoter (Heintzman and Ren 

2007). 

http://en.wikipedia.org/wiki/Virus
http://en.wikipedia.org/wiki/SiRNA
http://en.wikipedia.org/wiki/Heterochromatin
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Figure 1.6: DNA structure and configuration surrounding a TATA-based promoter locus. 

The regulatory proteins and specific transcription factors recruit the RNA polymerase II to 

the transcription start site (TSS) to initiate transcription. 

 

Promoters contain specific sequences and response elements which allow RNA polymerase 

and other transcription factors’ (TF’s) to bind securely to the transcription start site (TSS) 

of the DNA to begin transcription and ultimately protein synthesis. A promoter’s ultimate 

function is to facilitate expression of different gene products at various times in their 

biological pathways in order to maintain homeostasis (Gagniuc and Ionescu-Tirgoviste 

2012). 

Promoters can have proximal and distal regions, and the expression of a particular gene 

may be regulated by the concerted action of both cis and trans-acting elements related to 

that promoter. The boundaries between proximal and distal regions are ill-defined and the 

entire mapping of promoters and the interactions between proximal and distal sequences 

can be complex (Sanyal et al. 2012) (Davydova et al. 2011). 

Proximal sequence is taken to be adjacent to the gene of interest and usually embodies 250-

300 nucleotides (nt) upstream of the TSS, and contains all primary regulatory elements and 

transcription factor binding sites. The distal promoter region can be anywhere from 300 

base pairs (bp) to many Kilobases (Kb) away. Signal transduction occurs due to the 

foldable nature of DNA to bring distal elements into close proximity with complexes bound 

at the proximal region.  
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1.6.1: Types of Promoters 

Eukaryotic promoters are diverse and can be difficult to characterise, with the general 

consensus being that there are two major classes, namely TATA and CpG island based 

promoters. However, a recent study divided them into 10 sub-classes by analysing 

thousands of promoter sequences using novel methodologies termed the ‘Kappa index of 

coincidence’ method and a specialised data entry method based on an electronic conversion 

of images into electronic signals using a ‘Optical Character Recognition’ (OCR) neural 

network (Gagniuc and Ionescu-Tirgoviste 2012).  

However, here we have sub-classed the types of promoters into four more amenable types 

based on their mode of driving gene expression;  

 

1.6.1.1: Constitutive promoters 

These are promoters that can drive expression in almost all tissues and cellular 

environments; they are largely and oftentimes entirely independent of environmental 

factors and stimuli. Reports have shown functionality across species and those derived from 

viruses; CMV, RSV, LTR, adenovirus MLP and SV40 are examples of compact high-

expressing constitutive promoters frequently used in cell engineering (Mulligan and Berg 

1981) (Makrides 1999). 

Qin et al carried out a systematic comparison of eight commonly used constitutive 

promoters (SV40, CMV from viruses, UBC, EF1A, PGK and CAGG from mammals, and 

COPIA and ACT5C from Drosophila). They found that these promoters vary considerably 

from one another in their strength when tested in various cell lines from different species. 

While most promoters have fairly consistent strengths across different cell types, the CMV 

promoter can vary considerably from cell type to cell type (Qin et al. 2010). 

 

 

 

 

http://en.wikipedia.org/wiki/Eukaryotic
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1.6.1.2: Tissue-specific or development-stage-specific promoters 

More relevant to gene therapy and therapeutics are tissue-specific promoters. Gene therapy 

is used to correct genetic defects or to deliver new therapeutic functions to the target/patient 

cells. A tissue-specific promoter is a promoter that has functionality in only certain cell 

types. Use of a tissue-specific promoter in the expression cassette can restrict unwanted 

transgene expression as well as facilitate persistent transgene expression in the target organ. 

Therefore, choosing the correct promoter, especially a tissue-specific promoter, is a major 

step toward achieving successful therapeutic transgene expression (Zheng and Baum 2008). 

A tissue-specific promoter directs the expression of a gene in specific tissue(s) or at certain 

stages of development and can be useful tools to drive expression in combination with other 

expression strategies such as RNAi. For example, Wolff et al combined the use of tissue-

specific promoters with miRNA silencing expression in antigen-presenting cells (APCs) to 

increase the probability of long-term expression and establish transgene tolerance in liver 

and skeletal muscle (Wolff, Wolff and Sebestyen 2009). 

As different promoters have variable the optimal dose of a therapeutic transgene product 

over time may be achieved by varying the promoter utilised to avoid promoter activity 

attenuation and extinction post-delivery as reported by Qin et al. They also reported that the 

cytokines interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) 

inhibit transgene expression from certain widely used viral promoters/enhancers 

(cytomegalovirus, Rous sarcoma virus, simian virus 40, Moloney murine leukemia virus 

long terminal repeat) delivered by adenoviral, retroviral or plasmid vectors in vitro (Qin et 

al. 1997). 

Many tissue specific promoters are also seen in plants, promoters that control the 

expression of plant genes to improve areas such as tobacco manufacture and genetically 

modified foods. However, for the purpose of this literature review plant promoters are not 

discussed. A good database of promoter and cis-transacting elements from plants are on 

PLACE (http://www.dna.affrc.go.jp/PLACE/). 

 

 

http://www.dna.affrc.go.jp/PLACE/
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1.6.1.3: Inducible promoters 

As their name suggests, this type of promoter can be induced by various factors such as; 

small molecules, environmental stimuli aswell as artificially controlled by biotic and abiotic 

factors like oxygen levels, heat, cold, chemical compounds like biotin, copper, cumate, 

alcohol, gases, steroids which subsequently can facilitate control via induction.  

Pertinent to this entire study, by harnessing such induced control, fine tuning gene 

expression via inducible promoters may potentially improve biopharma processes. This 

might be achieved by regulating certain pathways like apoptosis and growth by controlling 

favourable or unfavorable genes involved in the pathway.  

Furthermore, the synthesis of difficult to produce or toxic proteins requires inducible 

expression systems with low basal expression strength and high induciblity after a triggered 

event/stimulus. Certain proteins, such as kinases, transmembrane receptors, or transporters 

are inherently toxic to the producer cell and can only be produced using transient or 

inducible expression systems (Boorsma et al. 2002). 

Another concern is clonal instability during CHO cell line development. There are several 

underlying causes, the most prominent of which are DNA copy number decrease and 

transgene silencing, while in some cases it has been shown that unstable cell lines are more 

prone to apoptosis (Dorai et al. 2012). Clonal instability can also manifest due to the 

toxicity of the therapeutic protein(s) that the cells express. To circumvent such product-

induced instability, Misaghi et al developed an inducible vector based on doxycycline 

induction.  Their findings suggest that this regulated expression system could be suitable 

for production of difficult proteins that would normally trigger instability (Misaghi et al. 

2014). 

Initial advances in inducible expression methodology were made using prokaryote cells, 

whereas more recently focus has been on mammalian cells. The E.coli lac promoter (lac 

operon) was the flagship mechanism for providing inducible gene expression via interplay 

between lactose substrate and IPTG induction (a lactose metabolite that binds to the lac 

repressor). However, due to it having relatively weak expression strength meant that very 

high levels could not be achieved as lac genes are not transcribed to a significant level in 

the absence of induction (Davies and Jacob 1968) (Gronenborn 1976).  
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Berkner et al identified a range of inducible and constitutive promoters to be used in S. 

acidocaldarius, where genetically modified stable shuttle vectors were developed based on 

low molecular weight carbohydrates that don’t impede the bioprocess (Berkner and Lipps 

2008). Findings showed that the most suitable inducible promoter was a maltose inducible 

promoter (266bp sequence), with induction feasible with either maltose or dextrin at 

concentrations of 0.2-0.4% (Berkner et al. 2010). 

In another example Valdez-Cruz et al, report the use of a temperature inducible expression 

system, based on the pL and/or pR phage lambda promoters regulated by the thermolabile 

cI857 repressor has been widely use to produce recombinant proteins in prokaryotic cells 

(Valdez-Cruz et al. 2010). 

Some of the bacterial based systems suffered irregular expression and relied on toxic 

inducer molecules when used in mammalian cells, however, the Tet-on/off system was 

shown to be exempt from these issues (again utilising E.coli via its tetracycline repressor). 

Inducible expression systems such as the tetracycline responsive system (Gossen and 

Bujard 1992) and early binary systems used chimeric transactivators from insect hormones 

to drive responsive target promoters. This typically involved the binding of a ligand-

dependant transactivator to its cognate promoter (Fussenegger 2001) (Vilaboa et al. 2005). 

Their use in bioprocess development strategies has been limited as a result of the 

combination of low or leaky expression, costs and side effects of chemical regulators, time-

consuming construction of stable cell lines, and difficulties in managing levels of the 

regulating agent. Furthermore, regulatory authorities such as the FDA, prefer bioprocess 

strategies that do not make use of antibiotics or hormones (Boorsma et al. 2002) (Weber et 

al. 2007). 

Boorsma et al developed the first novel temperature-regulated DNA expression system, 

designated ‘pCytTS’. This layered system based on Sindbis virus cDNA carries the gene 

for a non-cytopathic and temperature-sensitive replicase and a gene of interest. The titres of 

β-IFN were shown to be highly glycosylated while the β-IFN mRNA did not show any 

accumulation of mutations under viral replicase amplification even after 10 days in culture 

at 29
o
C. This highlighted that ‘pCytTS’ system has applicability in bioprocessing and has 

the ability to produce high-quality glycoproteins (Boorsma et al. 2002). 
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Other existing inducible based promoters include Heat-shock protein promoters, 

particularly the powerful human chaperones ‘hsp27’ and ‘hsp70’, which have been used for 

gene therapy strategies because of their efficiency and the possibility of induction by dose-

dependent external heat. (Garrido et al. 2006) (Rerole et al. 2011).  

Spatial and temporal control of transgene expression using hsp70 promoters provides a 

non-invasive method of accurate control using temperature (Rome, Couillaud and Moonen 

2005). Hsp70 was found to be strictly inducible having little or no basal expression levels 

in most cells. Noonan et al observed that Hsp70B' appeared transiently in response to heat 

stress whereas interestingly another heat-shock protein tested ‘Hsp72’ levels persisted for 

many days measured by a GFP-reporter and flow cytometry. Finally they showed that 

‘Hsp70B' was optimally induced by temperature when cell numbers were low, whereas 

‘Hsp72’ levels were greatest at higher cell number, so there is some ambiguity to the 

induciblity of heat-shock promoters even in the same protein family (Noonan et al. 2007). 

In addition, Rohmer et al reported on two novel adenoviral vectors designed with an 

insulated human ‘hsp70B' promoter and they showed stringent heat-inducible gene 

expression with induction ratios up to 8000-fold, but required an upstream insulator 

sequence to avoid sub-optimal performance of the promoter (Rohmer et al. 2008). 

Another useful inducible promoter is the mouse mammary tumor virus (MMTV) 

originating from murine models. Its control over gene expression has been shown to be 

regulated by glucocorticoids and its sequence contains a hormone response element (HRE) 

located between -202 and -59 upstream of the start of transcription in the long terminal 

repeat (LTR) region of proviral DNA and is necessary for this induction (Cato, Henderson 

and Ponta 1987). James et al engineered CHO cells to overexpress a secreted protein 

(SEAP) upon induction of the MMLV promoter using dexamethasone. They achieved ~10-

fold higher SEAP titres compared to the constitutive SV40 promoter after CHO cells were 

grown for up to 9 days (James et al. 2000).  

This again highlights a useful system of regulation control; however it still needs an 

external receptor to function fully and also it can it can be difficult to maintain 

reproducibility when using external components. 
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In 2004, Running-Deer and Allison reported the first use of CHO regulatory sequences (not 

called promoter as the sequences used were flanking on the 5’ and 3’ of the gene) from the 

Chinese Hamster elongation factor 1α (CHEF-1α) gene for use in the high level expression 

of proteins such as the CCR4 chemokine receptor. They cloned a 19kb fragment containing 

the gene as well as 12kb of the 5’ flanking sequence and 4kb of the 3’ flanking sequence 

into six reporter gene constructs and transfected into CHO-DG44 cells.  

As a comparison, CHO cells were also transfected with the same six reporter genes inserted 

into commercial vectors utilising either the immediate early promoter from 

cytomegalovirus (CMV) or the human EF-1alpha promoter and the average expression 

levels from pooled, stable transfectants were 6- to 35-fold higher in the CHEF-1 vectors. 

Finally they also used the CHEF-1α vectors to express a membrane-bound protein in stably 

transfected non-CHO cell lines such as Jurkat, K562 and HEK-293, suggesting that CHEF-

1α vectors may be useful for high-level protein expression not only in CHO cells, but also 

in a variety of other mammalian cell lines (Running Deer and Allison 2004). 

More recently, Thaisuchat et al identified one temperature sensitive promoter S100a6 

(Calcyclin) that was capable of temperature inducible transgene expression of luciferase. 

Calcyclin and its flanking regions were identified from a genomic CHO-K1 lambda-phage 

library and then various constructs were investigated for promoter activity at 37°C and 

33°C after transfection into DHFR-deficient CHO cells. Upon a shift to 33°C, a two to 

three-fold increase of basal productivity (already higher than SV40 promoter) was 

achieved. This CHO S100a6 promoter can be characterised as a cold-shock responsive 

promoter with the potential for improving process performance of mammalian expression 

systems, of particular advantage for a process with reduced expression during initial cell 

growth followed by the production phase at low temperature with a boost in expression 

(Thaisuchat et al. 2011). 

In conclusion, inducible promoters can serve as genetic switches for fine tuning gene 

therapy proteins or for maximal performance and productivity in bioprocesses. 
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1.6.1.4: Synthetic promoters 

Promoters can also be manufactured by synthetic means and combined to make a multi-

purpose promoter with all essential components to drive gene expression. Promoter 

engineering often uses components like transactivating proteins and enhancers (DNA 

sequence that controls the efficiency and rate of transcription of a specific promoter) to 

boost their potential for expression.  

The various configurations of transcriptional components have enabled the creation of 

genetic networks that are strongly analogous to the architectural design and functionality of 

electronic circuits. Toggle switches which possess "memory' so as to remember transient 

administered inputs and oscillatory networks which produce regularly timed expression 

outputs, are two examples of networks that have been constructed using such properties 

(Greber and Fussenegger 2007). 

Furthermore, many synthetic promoter systems are controlled and induced by using 

components that are responsive to external stimuli such as heat and many are generated to 

study gene function in plant and mammalian models (Venter 2007).  

Although synthetic promoters seem attractive in that you can pick and choose specific 

components to make a ‘super’ promoter, a drawback is that many regulatory bodies, like 

the FDA, do not like promoting such artificial gene therapy approaches. This is perhaps due 

to lack of data relating to the potential side-effects and immune response issues resulting 

from using exogenous synthetic sequences (Tigges and Fussenegger 2009) (Jain 2013).  

This gave rise to the construction of synthetic promoter libraries and it has represented a 

major breakthrough in systems biology. Systems biology represents an area of combined 

biology and mathematics, where all functional parts of cellular pathways and interactions 

are studied. It now enables the subtle tuning of important regulatory pathway activities. A 

number of tools are now available that allow the modulation of gene expression and the 

detection of changes in expression patterns (Mijakovic et al. 2005) (Hammer et al. 2006).  

More specifically for CHO engineering, Brown et al describe the first library of ~140 

synthetic promoters specifically designed, by harboring 7 repeats of discrete transcription 

factor binding site sequences upstream of a minimal CMV, to regulate the expression of 



37 
 

recombinant genes at varying levels in three CHO cell lines (CHO-S, CHO-K1 and CHO-

DG44) and offering precise control of recombinant transcriptional activity (Brown et al. 

2014). 

A successful example of a synthetic mammalian promoter construct was reported by 

Hartenbach and Fussenegger. They introduced specific mutations into a synthetic internal 

ribosome entry site (IRES(GTX)) derived from the GTX homeodomain protein creating a 

novel synthetic P(GTX) promoter, resulting in additional transcriptional activity. It 

mediated high-level expression of a variety of transgenes like SEAP and human vascular 

endothelial growth factor 121 (VEGF-121) in CHO-K1 cells, thus outperforming 

constitutive phosphoglycerate kinase (P(PGK)) and human ubiquitin C (P(hUBC)) 

promoters in comparison (Hartenbach and Fussenegger 2006).  

Precise regulation advancements in systems biology via inducible and synthetic sequences 

can assist other areas like drug discovery and therapeutics, plus they can generate biological 

meaningful in vivo data, that can be flexibly and repeatedly reproduced. Using 

combinations of synthetic and inducible regulatory sequences can benefit bioprocess 

productivity and allow control over complex host cells (Aubel and Fussenegger 2010). 

Other common mammalian expression systems used in industrial protein production are 

shown in table 1.6.1.4. 

Table 1.6.1.4: Existing CHO/mammalian promoter systems. 
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1.7: Promoter engineering  

So why the interest in promoter engineering? Based on current trends in bioprocessing, 

gaining control over protein production using inducible promoters is an attractive avenue 

for researchers. Some of the early developments utilised the Tet on/off inducible system, 

Mazur and colleagues reported on the cytostatic cell-cycle-arresting gene (p27) under 

control of a single tetracycline-repressible Tet (off) promoter system. They showed that the 

behavior of the engineered CHO cell lines could be controlled by the addition or 

withdrawal of the exogenous agent tetracycline to or from the cell culture medium (Mazur 

et al. 1998) (Mazur et al. 1999).  

Systems and synthetic biology have made significant leaps over the past decade, they 

enable rational and predictable reprogramming of cells to conduct complex physiological 

activities (Wieland and Fussenegger 2012). Weber and Fussenegger have reviewed ways to 

utilise metabolite, hormone, and light-triggered genetic switches to control cellular activity 

and gene circuits (Weber and Fussenegger 2010). 

Analogous to the engineering of electronic circuits, there now exists an extensive repertoire 

of artificial regulatory elements that has further enabled the ambitious reprogramming of 

cells to mimic spatiotemporal dynamics such as the oscillation of circadian clocks (Wieland 

and Fussenegger 2012), as well as the design of artificial ecosystems for implementation of 

time- and distance-dependent bioprocesses through ‘quorum-sensing’ (inducible responses 

correlated to population density) (Weber and Fussenegger 2011). 

There are potentially as many if not more promoters as there are genes. This cannot be fully 

elucidated owing to the complexity within cells but is partly due to discovery of 

bidirectional promoters (Trinklein et al. 2004) (Hartenbach and Fussenegger 2005). A 

‘bidirectional gene pair’ refers to two adjacent genes coded on opposite strands, with their 

5' ends oriented toward one another (Piontkivska et al. 2009). They are often functionally 

related, this can be beneficial and harmful as modifications of their shared promoter region 

allows them to be co-regulated and thus co-expressed.  
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In conclusion, thanks to the knowledge and insight resulting from the CHO-K1 draft 

sequence now being available, this will aid in identifying promoter sequences of more 

housekeeping genes for example, accelerating cellular promoter designs for more dynamic 

expression control (Datta, Linhardt and Sharfstein 2013). 

 

1.8: Exogenous Inducer Molecules (IMs) and building a promoter catalogue 

The design and construction of synthetic gene circuits with complex spatiotemporal 

dynamics was pioneered in bacteria, but it took almost a decade until biologists were able 

to construct synthetic genetic circuits with complex spatiotemporal dynamics in 

mammalian cells (Weber and Fussenegger 2010). In the next section we will discuss 

synthetic promoters further within the context of precise inducible expression for 

developing bioprocessing plus the broad area of synthetic systems biology providing scope 

for novel therapeutic strategies. 

There are existing technologies that utilise systematic inducer molecules (IM’s) researched 

and tested by a group headed by Martin Fussenegger, Wifred Weber and co-workers. They 

have published numerous articles documenting the use of synthetic switches and atypical 

combinations of interaction compounds (Ehrbar et al. 2008) (Weber et al. 2007, Weber and 

Fussenegger 2011, Weber et al. 2009a, Weber and Fussenegger 2007) (Kramer et al. 2004). 

For example, by using the induction of various molecules one can build a portfolio of 

mutually compatible systems that can adjust therapeutic transgene levels in response to 

antibiotics, hormone analogues, quorum-sensing messengers and secondary metabolites 

(Weber and Fussenegger 2004). Other compounds which have been explored include; 

gaseous acetaldehyde (Werner et al. 2007), Biotin (Weber et al. 2009b), Cumate (Gaillet et 

al. 2010), drug sensing hydrogels (Ehrbar et al. 2008), all of which have had varying levels 

of success.  

The IMs used to transmit information in their experiments have a multitude of isoforms, 

bioconjunctants, hybrid molecules of biology and metal ligands, vitamin H/Biotin, L-

arginine sensors, and even a food additive vanillic acid has shown to be capable of inducing 

transgene expression.  
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Furthermore, groups have devised methodology to design synthetic networks based around 

these interacting molecules (Greber and Fussenegger 2007) (Aubel and Fussenegger 2010) 

(Wieland and Fussenegger 2010) (Weber and Fussenegger 2009). 

In early publications, Weber and colleagues reported significant differences in the 

regulation performance in diverse cell lines using macrolide- (E.REX system) and 

streptogramin- (PIP system) responsive gene regulation systems in mouse and CHO cells 

(Weber et al. 2002). They also showed that the implantation of microencapsulated DT40 

cells engineered for TIGR-controlled expression of the human vascular endothelial growth 

factor A (hVEGF121) provided low-temperature-induced VEGF-mediated vascularisation 

in chicken embryos (Weber et al. 2003).  

However, they reported a more stringent tunable time-delay circuit where the tetracycline-

responsive transactivator (tTA) induced expression of the pristinamycin-responsive 

repressor PIP-KRAB representing a biologic building block for emulating a fundamental 

circuit topology in integrated artificial synthetic gene networks (Weber, Kramer and 

Fussenegger 2007).  

Huang et al showed the use of the metallothionein (MT) expression system as an inducible 

metal induction method producing recombinant human growth hormone (hGH) in CHO 

cells.  The setup was successful in increasing cellular productivity. It was shown that a fed-

batch process could increase the maximum cell numbers two-fold, from 3.3x10
6
 to 6.3x10

6 

cell/mL, over those obtained in normal batch fermentations. This, coupled with extended 

fermentation times, resulted in a fourfold increase in final hGH titer, from 135 +/- 15 to 670 

+/- 70 mg/L at a specific productivity q(hGH) value of 12 pg cell(-1)d(-1). The addition of 

NaBu further increased specific productivity of hGH in cells to a value of approximately 48 

pg cell(-1)d(-1) (Huang et al. 2004). But once again the use of a metal is not attractive for 

large scale industry bioprocessing. 
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1.9: Viral versus Endogenous CHO promoters in bioprocessing 

Although viral promoters are examples of strong promoters capable of robust constitutive 

expression, they can trigger the undesired silencing phenomenon due to DNA and histone 

methylation of the promoter region (Brooks et al. 2004) (Williams, Christensen and Helin 

2011). They can also induce stress responses which impact on the unfolded protein 

response (UPR) and Endoplasmic-reticulum-associated protein degradation (ERAD) 

pathways, leading to incorrect protein folding or even cell death in worst cases. Parkinson’s 

disease and cystic fibrosis both have been linked to ERAD malfunction as the pathways are 

no longer able to stabilize aberrant proteins and can accumulate and damage the cells 

(Vembar and Brodsky 2008) (Mehnert, Sommer and Jarosch 2010). 

Studies on viral promoters and enhancers began in the mid-80s and at an early stage were 

recognised as useful biological tools (Foecking and Hofstetter 1986). While Zarrin et al 

concluded that CMV and RSV promoter/enhancers contain stronger regulatory elements 

than do SV40 and V/lambda1 for expression of genes in lymphoid cell lines showing 10- to 

113-fold increases (Zarrin et al. 1999).  

Another issue seen commonly is the cell-cycle dependence of these promoters that causes 

high cell to cell variation in the amount of protein produced at a given time and 

heterogeneity in a population (Thaisuchat et al. 2011). They do not routinely allow 

induciblity or any control once the expression process begins. Further evidence showed 

these viral promoters having the greatest transcriptional activity during S Phase 

(replication) between G
1
 and G

2
, this may lead to undesired cell and protein heterogeneity 

(Pontiller et al. 2010). 

Due to some of these shortcomings, endogenous cellular promoters have been investigated 

for the purpose of recombinant protein expression aswell. The idea of using endogenous 

promoters is appealing from a regulatory point of view.  

As mentioned previously, examples of such endogenous CHO promoters at present are the 

constitutive CHO-derived elongation factor-1 (CHEF-1α) gene and the inducible S100a6 

(calcyclin). Both can drive high expression of several genes and in a variety of cell lines 

including CHO (Running Deer and Allison 2004) (Thaisuchat et al. 2011). More recently, 
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Le et al isolated a CHO-specific promoter (~800bp fragment) of the Thioredoxin-

interacting protein (Txnip) gene and demonstrated its ability to drive transgene expression 

synchronous with the CHO host cells natural rhythm. This gene was chosen by the group 

because it was previously shown to be dynamically expressed, based on transcriptome and 

proteome analysis of Chinese hamster ovary cells under low temperature and sodium 

butyrate treatment and subsequent gene set enrichment analysis (GSEA) (Kantardjieff et al. 

2010). 

Strong cellular promoters may also be sourced from housekeeping genes. Two other 

constitutive promoters Chinese Hamster Cofilin (CHCF) and the CHO CH1433e epsilon 

promoter confer high expression and outperformed a CMV viral promoter in driving GFP 

and luciferase expression (Chan et al. 2008) (Datta, Linhardt and Sharfstein 2013). 

Although displaying no inducible expression attributes, constitutive promoters like these 

have a niche in the genetic toolbox for recombinant protein production.  

 

1.9.1: Endogenous promoters responsive to temperature inducibility 

The previous section described numerous ‘artificial’ inducible systems that have been used 

in various biotech applications. Many of these require some sort of exogenous inducer 

molecule or trigger to be added to the system which may not always be possible or 

desirable. It is this challenge that led our group and others to consider the possibility of 

using endogenous gene expression patterns to design more ‘natural’ inducible methods of 

control to drive protein expression in response to a process-related 

trigger/signal/input/stimulus. 

A discrete process trigger that can be capitalised on is the use of temperature shift to adjust 

protein expression and will be detailed further in section 1.11.2. There are several well 

characterised genes whose expression is responsive to temperature called CSPs. They are 

known to increase their genetic expression in response to moderate, but not severe drops in 

temperature. The first and best characterised one of these is Cirbp. 
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1.9.2: Cirbp – The classical temperature inducible gene 

Cirbp the first cold-shock protein identified in mammalian cells (Fujita 1999)(Nishiyama et 

al. 1997) has been extensively studied. Although its exact function is not known, it is 

believed to operate as a RNA chaperone (Al-Fageeh and Smales 2009). It facilitates mRNA 

translation upon exposure to cold stress. Being composed of one consensus carboxyl-

terminal region containing several AGG motifs, it is structurally very different to bacterial 

CSPs (Sumitomo et al. 2012). 

Although the Cirbp gene sequence is well characterised in mouse and human models, 

Nishiyama et al demonstrated that Cirbp expression is down-regulated at elevated 

temperature (37
o
C) in male germ cells of mice and humans. Additionally, a high level of 

Cirp protein was detected immunohistochemically in the nucleus of primary spermatocytes. 

(Nishiyama et al. 1998). Furthermore, De Leeuw et al showed that Cirbp modulates cell 

cycle progression to protect the host from various stresses and possibly acts as an 

oncoprotein as it shuttles from the nucleus to the cytoplasm, and affects the stability and 

translation of its target mRNAs (De Leeuw et al. 2007). 

Interestingly, the Cirbp gene has alternative promoters, as shown in mouse NIH-T3T cells 

(Al-Fageeh and Smales 2009), which result in splice variants which can impact on the 

promoter’s sensitivity and strength. Alternative splicing results in three major CIRP 

transcripts varying in size due to different transcription start sites. Two of these transcripts 

showed varying levels of expression, with the longest transcript (detected at 32
o
C) showing 

a discrete expression and stability profile under mild hypothermic conditions and exhibited 

internal ribosome entry segment (IRES)-like activity (Al-Fageeh and Smales 2009).   

Another well reported CSP is Rbm3 which is another member of the glycine rich RNA 

binding family. It has been suggested that Rbm3 is involved in regulation via the alteration 

of miRNAs (Dresios et al. 2005). The 5’UTR of Rbm3 has been extensively investigated 

by Mauro and co-workers and they have identified 13 ORFs from a 720nt cDNA leader 

sequence and an IRES element, both of which may contribute to cold stress responsiveness 

(Chappell et al. 2001) (Chappell and Mauro 2003). 

The presence of an IRES element was revealed after deletion and mutation studies and 

demonstrate 4 cis-acting elements within this 5’UTR that most likely bind different 
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cyotoplasmic proteins. When comparing IRES activity between 37
o
C and 33

o
C it was 

shown to be enhanced up to 5-fold depending on the cell line. They also showed that Rbm3 

enhanced cap-dependant mRNA translation at 33
o
C compared to 37

o
C (Chappell et al. 

2001).  

 

1.10: Promoter Analysis – Bioinformatics 

Integrated genome databases--such as the UCSC, Ensembl and NCBI MapViewer 

databases - and their associated data querying and visualisation interfaces (e.g. the genome 

browsers) transformed the way that molecular biologists, geneticists and bioinformaticists 

analyse genomic data (Schattner 2009) (Teufel et al. 2006).  

As sequence entries in the major genomic databases currently rise exponentially, the gap 

between available, deposited sequence data and analysis by means of conventional 

molecular biology is rapidly widening, making new approaches of high-throughput 

genomic analysis necessary. At present, the only effective way to keep abreast of the 

dramatic increase in volume of sequence information is to apply bio-computational 

approaches (Ecker et al. 2012).  

How DNA regulation can be accomplished over long distances has long been intriguing. 

Current data indicates that although the mechanisms by which these diverse regulatory 

elements affect gene transcription may vary, an underlying feature is the establishment of 

close contacts or chromatin loops (Dean 2011). These elements were shown to be often 

separated from target genes by distances that can reach 100 kb (Dean 2011), therefore it is 

difficult to analyse promoter sequences that have no defined boundaries.   

When subjecting a promoter sequence to experimental scrutiny, whether it is a putative 

promoter segment, enhancer or any proposed regulatory sequence, subsequent analysis 

revolves around finding out answers to various questions.  

Some examples include; why and how does it drive expression, which important 

transcription factors (TFs) bind to the promoter sequence, why does that arrangement work 

in one organism and not in another, why do some promoters regions have TATA boxes 

while some have CpG islands architecture. 
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When a protein is needed the cell machinery signals transcription, this is facilitated by 

transcription factors. As TFs play an essential role in promoter regulation a natural question 

to ask is what transcription factors (TFs) bind to a promoter sequence to gain an insight into 

promoter-TF interactions and functionality (Stewart et al. 2012). We now know that the 

tissue-specific expression of a particular gene is the result of the presence of a particular 

constellation of TFs in the cell nucleus.  

But how do the transcription factors themselves come to be expressed in a tissue-specific 

manner? In many cases, the genes for transcription factors are activated by other 

transcription factors and now we know that transcription factor cascades are responsible for 

coherent expression (Nagore et al. 2013) (Handstad et al. 2012). 

The aim in deciphering the landscape of the promoter is to establish what the minimal 

sequence is, that allows functionality, or can mutations be introduced along the promoter 

region to hinder or indeed increase transcriptional rates and can these promoters and their 

cognate TFs be further engineered. 

Traditional methods like gel retardation, electrophoretic mobility shift assay (EMSA) or 

DNA footprinting have been used to identify a region of DNA which a transcription factor 

can bind, but they suffer due to TFs binding to ill-defined sites/motifs. One way to 

circumvent this is through Chromatin Immunoprecipitation (ChIP), in which a cross-

linking fixing agent such as formaldehyde is used to covalently-link proteins and DNA 

complexes. After cross-linking, cells are sonicated and sheared to generate ~500bp 

fragments which can be separated using a specific antibody. Then these antigen-antibody 

interactions can then be precipitated using beads with an affinity to the chosen antibody. 

Lastly, reversing the cross-links with a heat step 65
o
C for 12-18 hours typically releases the 

DNA (Handstad et al. 2012). 

Ding and co-workers have developed novel approaches such as (ChIPModule and 

SIOMICS) to systematically discover transcription factors and their related cofactors from 

ChIP-seq data. Some methods heavily rely on well annotated motifs even though the 

number of established motifs is limited. Interestingly, de novo motif discovery methods 

often neglect underrepresented motifs in ChIP-seq peak regions. To address this the group 

created SIOMICS and it was shown to be advantageous in terms of speed, increasing the 
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number of known cofactor motifs predicted in experimental data sets and reducing the 

number of false-positive motifs predicted in random data sets. The SIOMICS software is 

freely available at (http://eecs.ucf.edu/∼xiaoman/SIOMICS/SIOMICS.html) (Ding et al. 

2013) (Ding, Hu and Li 2014). 

Other previous web-based tools such as MEME and DREME, that can process large 

eukaryotic datasets in a timely manner, were described by Bailey and Machanick and they 

run two complementary motif discovery algorithms on the input data and use the motifs 

they discover in subsequent visualisation platforms, binding affinity and identification 

steps. DREME is available as part of the MEME Suite of motif-based sequence analysis 

tools (http://meme.nbcr.net) (Machanick and Bailey 2011) (Bailey 2011). 

Many genes have been extensively studied and co-regulated gene networks have been 

experimentally and computationally researched in the ways mentioned. Now entire 

websites and software packages exist whereby genes and indeed more importantly for this 

project, their adjacent promoters can be analysed. Furthermore, there are only two 

promoter-specific landscape studies (Carninci et al. 2006) (Sanyal et al. 2012), they report 

extensively across various mammalian cells, however, neither were CHO specific. 

Performing comparisons between these unknown sequences against known regulatory 

motifs, putative cis-elements and consensus sequences can aid the mapping an unknown 

promoter region.  

See table 1.10 for a list of existing bioinformatic tools. This is all made possible by the 

revolutionary ChIP-seq and Ref-seq strategies (Mimura et al. 2014). 
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Table 1.10: List of existing online bioinformatics tools available. 

Motif Search Tools Promoter analysis databases 

Motiffinder from TAIR UCSC  

Weeder Web AGRIS 

MotifSampler AtProbe 

GeneSprings AthaMap 

MEME/DREME DoOP 

TAIR Pattern Match PlantCare 

Genomatix PLACE 

BioProspector Transfac 

Improbizer CBRC 

Toucan 2 CSHL 

ALGEN:PROMO RSAT 
 

 

1.10.1: Identifying and locating transcriptional elements 

Enhancers, silencers, insulators and transcription factors are DNA elements that play 

central roles in regulation of the genome that are crucial for appropriate control of gene 

expression but unfortunately, as mentioned, can be located many kb from the genes that 

they regulate (Raab and Kamakaka 2010, Bondarenko et al. 2003), making it difficult to 

identify these elements. 

Building or mapping a framework for promoter architecture can identify conserved 

sequences and may constitute vital regulatory sequence. The aim in searching the promoter 

landscape for transcription factor bind sites (TFBS) is to establish what sequence confers 

functionality. In silico programs look for TFBS motifs in DNA sequence from several 

species, upstream of the start codon ATG.  

The specificity of a transcription factor can be described by pattern matching. Two 

alternative formats are currently used to describe regulatory signals: strings (including the 

IUPAC alphabet for ambiguous nucleotides) or position-specific scoring matrices (PSSM) 

(van Helden 2003). 
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A particular program can identify common TFBS in those sequences using their specific 

search tools and algorithms. The common TFBS must obey various criteria e.g.: be on the 

same strand or be within a certain distance of other TFBS in order to constitute a possible 

promoter framework (Figure 1.10.1 A). 

 

 

Figure 1.10.1: (A) Illustration of bioinformatic framework building for promoter regions, 

by cross-referencing other species to identify common consensus sequence motifs 

facilitated through ChIP-Seq/Ref-Seq strategies. Conserved sequences identified may 

constitute essentially regulatory sequence. (B) Examples of four well-established consensus 

elements with annotation and sequence are shown. 

 

Many elements can be present either proximally or distally while the configuration of these 

elements can vary greatly among species. Imperative to discerning full promoter 

functionality is locating important regulatory elements such as; 



49 
 

 CAAT box - A consensus sequence close ~80 bp from the TSS start point (+1). It 

plays an important role in promoter efficiency, by increasing its strength, and it 

seems to function in either orientation. This box is replaced in plants by a consensus 

sequence called the AGGA box 

 TATA box - A sequence usually located ~25 bp upstream of the TSS. The TATA 

box tends to be enclosed by GC rich sequences and binds RNA polymerase II and a 

series of transcription factors (TFII and TBP) to form an initiation complex 

 GC box - A sequence rich in guanidine (G) and cytosine (C) nucleotides, is 

regularly found in multiple copies in the promoter region and the ubiquitous SP1 TF 

usually binds to it  

 CAP/TSS site - A transcription initiation sequence or start point defined as +1, at 

which the transcription process actually starts 

 Enhancers – No defined locus and orientation independent but crucial to full 

functionality and activity diversity by binding to multiple TFs at any given time.  

There is currently an interest in studying and isolating enhancers, which can be 

attached to heterologous promoter regions to augment transcriptional activity and in 

some cases to provide additional levels of control (for example; to confer tissue-

specific or stage-specific expression of a gene) 

 

The sequencing of a large number of genomes has greatly stimulated the development of 

computational methodology (in silico) for the identification of signals and patterns in DNA 

preserved over evolution as they can be indicative of functionality (Farre et al. 2003). 

The web resource Regulatory Sequence Analysis Tools (RSAT) (http://rsat.ulb.ac.be/rsat) 

offers a collection of software tools dedictated to the prediction of regulatory sites in non-

coding DNA sequences. These tools include sequence retrieval, pattern discovery and 

genomic scale matching, map drawing, random sequence generation plus many more. It 

currently holds >100 fully sequenced genomes which are updated regularly from Genbank 

(van Helden 2003).  

 

1.11: Engineering of important cellular pathways 

Having explored the various means of controlling gene expression using promoters, 

regulatory elements and exogenous inducible molecules, we now explore the pathways they 

can be used to control. 

 

http://rsat.ulb.ac.be/rsat
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1.11.1: Engineering of cellular proliferation and cell cycle arrest 

It has been shown that recombinant protein yields from CHO cell fermentations are 

correlated to cell number and longevity (Sunley and Butler 2010). The four phases of 

growth for any cell in culture [lag, log, stationary, decline] can be targeted to increase the 

longevity of batch cultivation. Ideally, a short lag phase where cells are acclimatise to the 

environment, followed by a rapid log/exponential growth phase, where the cells grow to 

maximum density as fast as possible so that you get a longer stationary phase. During this 

extended stationary phase they can concentrate their metabolic energy to increasing specific 

protein productivity and not on other cellular functions.  

Care must be taken to monitor the possibility of uncontrolled proliferation beyond a certain 

density where nutrient depletion and toxic metabolite waste can cause cell death and 

degrade the valuable protein product (Zeng, Deckwer and Hu 1998). The transfer of a 

population of cells from a typical cell cycle to a temperature shifted biphasic cycle (Figure 

1.11.1) involves reducing the lag and exponential phases, getting to high cell density 

(HCD) quickly. This extends the stationary phase, which is the main production phase, as 

cellular energy is being utilised for protein synthesis and not cellular growth (Fox et al. 

2005) (Fogolin et al. 2004) (Tan et al. 2008) (Kim and Lee 2007) (Schatz et al. 2003). 

 

 

Figure 1.11.1: Typical and more idealistic biphasic growth curve of cells in culture.              

[1=Lag, 2= Exponential, 3= stationary and 4= Decline/death phases].  
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Sunley et al, reported an increase in volumetric titer of beta-interferon in stationary cultures 

and furthermore more than twofold after application of a temperature-shift strategy 

involving a switch from growth to production phase (Sunley, Tharmalingam and Butler 

2008).  

Furthermore, productivity can be linked to cell cycle stage (Table 1.11.1). G1 phase is 

considered to be an ideal time to increase production and subsequent studies have shown 

G1 arrest to contribute to increased protein production in hybridoma cells and CHO cells 

(Sonna et al. 2002) (Al-Fageeh and Smales 2006). 

 

Table 1.11.1: Typical Eukaryote/Mammalian cell cycle summary. 

 

 

Researchers first developed proliferation control strategies to enhance protein production 

over extended stationary phase over a decade ago (Mazur et al. 1999) (Kaufmann et al. 

2001). For example; Mazur et al, used a multicistronic expression unit encoding the product 

gene and a cytostatic cell-cycle-arresting gene (p27) under control of a single tetracycline-

repressible (Tet-(off)) promoter. This allowed induction of p27 expression and subsequent 

growth control during a well-defined, highly viable physiological cellular state resulting in 

enhanced heterologous protein production (Mazur et al. 1998).   

Cell cycle regulating factors such as p27 and p21 have been used in CHO cells to induce 

cellular arrest (Fussenegger et al. 1997) (Sunley and Butler 2010) (Fussenegger, Mazur and 
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Bailey 1997) (Fussenegger, Mazur and Bailey 1997). Bi et al, reported that in p21 (CIP1)-

arrested cells production of antibody from a stably integrated lgG4 gene was enhanced 

approximately fourfold more than in proliferating cells (Bi et al. 2004). Conversely, factors 

such as E2F-1 and the oncogenic protein c-myc responsible for cell cycle progression have 

been successfully applied to develop rCHO cell lines capable of robust growth and 

maximum IVCC (Kuystermans and Al-Rubeai 2009). 

In addition to the cell cycle genes mentioned, other gene targets such as; valosin-containing 

protein (VCP) knockdown was shown to be detrimental to cell viability in CHO and has 

since been used as in in-house control when testing cellular viability (Doolan et al. 2010). 

Whereas overexpression of malate dehydrogenase II (MDH II) in CHO cells resulted in 

increases in intracellular ATP and NADH, and up to 1.9-fold improvement in integral 

viable cell number (IVC) (Chong et al. 2010).  

Van Opstal et al reported that addition of a growth inhibitor during mitosis and up to 2 

hours after mitosis resulted in arrest of CHO cells in early G1 phase. This was deduced 

from the expression of cyclins A and D post-addition. After 24 h of cell cycle arrest, cells 

highly expressed the cleaved caspase-3, a central mediator of apoptosis. These results 

demonstrate that protein kinase B (PKB) activity in early G1 phase is required to prevent 

the induction of apoptosis (van Opstal et al. 2012). This leads us onto the next potential 

engineering pathway. 

 

1.11.2: Programmed cell death (PCD) engineering 

Another strategy in mammalian engineering is the manipulation of programmed cell death 

(PCD) which is important, as it affects the viable cell concentration as well as the product 

quality and quantity (Arden and Betenbaugh 2004).  

Cellular turnover and death occurs as either necrosis (more sudden and passive) or two 

types of PCD; apoptosis (PCD type I) and autophagy (PCD type II). However, inhibition of 

apoptosis does not necessarily guarantee the blocking of autophagy-mediated cell death due 

to the independency between both processes (Kim, Kim and Lee 2012) (Nikoletopoulou et 

al. 2013).  
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Mammalian cells often undergo programmed cell death upon exposure to stresses 

encountered in bioreactors. Cell death is triggered by numerous factors like nutrient 

depletion, shear stress, elevated osmolarity and accumulation of toxic by-products. The 

implementation of strategies to control PCD through apoptosis, prevent the onset of these 

stresses and enhance culture productivities represents a major goal of biotechnologists. 

Research in apoptosis has increased substantially since the early 1990s and is highly 

examined strategy at present (Krampe and Al-Rubeai 2010). 

Apoptosis is a biochemical process of programmed cell death (PCD type I). It is a natural 

process whereby cellular population homeostasis is maintained by eradicating damaged or 

ill-functioning individual cells. Approximately 50-70 billion cells undergo apoptosis in a 

human adult daily, which involves complex signaling pathways. This apoptotic signaling is 

mediated by a caspases-cascade system in two main networks, which is a series of 

proteolytic cascades activated by cleaved caspases (Figure 1.4.2). Caspases can be divided 

into two types, effector caspases and initiator caspases (Kim, Kim and Lee 2012). 

Apoptotic engineering, be it pro or anti-apoptotic based continues to be a highly desirable 

method to control via the various pathway proteins (caspases, Bcl-proteins) and is linked to 

mitochondria permeability. The pro-apoptotic Bcl-2 proteins Bad, Bid, Bax, and Bim may 

reside in the cytosol but translocate to mitochondria following death signaling, where they 

promote the release of cytochrome c (Ow et al. 2008).  

Links between cancer and apoptosis have been apparent for some time, the discovery of an 

agent that selectively kills tumor cells and not normal cells is the holy grail for cancer 

researchers. Even links between transcription factors and apoptosis have been made. For 

example, more recently the role of Pokemon (POK erythroid myeloid ontogenic actor), 

transcription factor with proto-oncogenic activity was identified. Zhang et al, demonstrated 

that it might serve as an important mediator of crosstalk between intrinsic and extrinsic 

apoptotic pathways in hepatocellular carcinoma (HCC) cells (Zhang et al. 2013).  

Gillissen et al reported that XIAP targeted therapy can be used to overcome TRAIL-

resistant (after the loss of Bak/Bax function) carcinoma cells. This can be achieved by 

direct or indirect inhibition of XIAP by RNAi, Mithramycin A or by the SMAC mimetic 

LBW-242 as well as inhibition of the proteasome by the drug Bortezomib (Gillissen et al. 
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2013). With all this considered, pathway knock-outs, not just the apoptosis pathway, is 

obviously a viable avenue for manipulation and has the potential to create new stable cell 

line specific phenotypes post screening. For example APAF-1, COX-2, Akt and p300 have 

all been manipulated to observe different phenotypes such as decreased proliferation using 

the anticancer properties of melatonin to modulate pathways (Wang et al. 2012).  

There are a lot of subsidiary components and molecules involved in apoptosis and just as 

much scope for engineering improvements relating to these components. Mimicking the 

internal signaling without alerting the host cell to trigger any kind of abnormal behavior 

would be a key advantage in maintaining cellular homeostasis. 

 

 

Figure 1.11.2: Schematic diagram illustrating the caspase-cascade in the apoptotic 

pathway. Two pathways can be initiated to complete apoptotic PCD, all molecules within 

these pathways can be potential engineering targets in order to manipulate bioprocess 

relevant apoptosis cellular behaviour. 
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Because caspases play a vital role in apoptosis regulation including induction, transduction 

and amplification of these signals, then suppression of caspase activation is a promising 

strategy. We will discuss in more detail the role of various apoptotic–related genes and 

single gene specific engineering targets in section 1.9.  

In addition, defective apoptotic processes have been implicated in an array of diseases 

(Eschenburg et al. 2012) (Saleem et al. 2013) (Ndozangue-Touriguine et al. 2008). 

Disproportionate apoptosis levels causes atrophy (partial wearing of bodily components), 

while a deficient amount results in uncontrolled cell proliferation, leading to cancer in 

extreme cases.  

Autophagy is a catabolic process that takes place through a caspase-independent lysosomal-

mediated degradation pathway and is distinguished from apoptosis (Kim and Lee 2012). It 

is a conserved pathway that delivers intracellular materials into lysosomes for degradation, 

is involved in development, aging, and a variety of diseases. Up until recently, the focus of 

cell death engineering was on apoptosis solely, whereas now more studies involving 

engineered CHO cells are being explored, for example; Hwang et al observed the 

accumulation of a common autophagic marker, a 16 kDa form of LC3-II and was found to 

take place in two antibody-producing CHO cell lines, Ab1 and Ab2 (Hwang and Lee 2008). 

They also show that overexpression of Bcl-xL or Akt could delay the autophagic cell death 

induced by nutrient exhaustion (Hwang and Lee 2009). 

Hyperosmotic stress was found to trigger autophagy also. Han et al studied two rCHO cell 

lines, producing antibody and erythropoietin and both were subjected to hyperosmotic 

stress resulting from NaCl addition (310-610 mOsm/kg). They found elevated amounts of 

caspases 3 and 7, fragmented chromosomal DNA. Concurrently, hyperosmolality increased 

the level of accumulation of LC3-II, a widely used autophagic marker measured by western 

blot analysis and confocal microscopy (Han et al. 2010).  

In summary, by combining information on the interplay between necrosis, apoptosis and 

autophagy so we can obtain more specific data of their interwoven roles which can perhaps 

prove useful to increase CHO cell performance in future studies. For example, a recent 

report by Zou et al reveal a previously unidentified role for autophagy in protection against 

necrosis triggered by pathogenic bacteria in C. Elegans and implicate that such a function 

http://en.wikipedia.org/wiki/Atrophy
http://en.wikipedia.org/wiki/Cancer
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of autophagy may be conserved through the inflammatory response in diverse organisms 

(Zou et al. 2014). 

 

1.11.3: Effect of low Temperature on culture performance 

It has been well documented that cultures grown at 37
o
C and are then shifted to mild 

hypothermic temperature of 32-28
o
C, slows growth and metabolism of CHO cells, which 

permits extended viable culture times. As a result, the cellular machinery can direct its 

energy on protein synthesis and thus potentially increase productivity (Lim et al. 2010, 

Fussenegger, Mazur and Bailey 1997, Kaufmann et al. 1999) (Recillas-Targa 2006). 

Additionally, improved cell viability, specific productivity and reduced nutrient uptake rate 

are other beneficial culture traits that have been reported (Furukawa and Ohsuye 1998) 

(Yoon, Hwang and Lee 2004) (Schatz et al. 2003) (Fogolin et al. 2004). Although, some 

early reports did demonstrate the opposite or no significant increase at all. For example; the 

cultivation of hybridoma cells at low temperatures resulted in a decrease of specific 

monoclonal antibody productivity (Sureshkumar and Mutharasan 1991). 

Although this may appear to be a clear cut mechanism of control over cellular growth and 

consequently productivity, it can vary hugely depending on cell type/line and the protein 

product being expressed. The underlying effects of temperature shift at a cellular and 

molecular level remain poorly understood (Recillas-Targa 2006) (Recillas-Targa 2006). 

The effects caused to cell from lowering temperature on CHO culture performance which 

doesn’t require any additional genetic engineering on the cell, makes it an attractive from 

the outset in improving mammalian cell bioprocesses. Many cells respond favourably in 

culture, even before any genetic manipulation is undertaken. Two studies on protein 

productivity showed that, at reduced temperature CHO cells exhibited a state close to that 

of growth arrest and increased protein production levels in SEAP and EPO were 

reproducible (Kaufmann et al. 1999) (Yoon, Song and Lee 2003).  

Mammalian cells respond to low temperature (mild hypothermia) by synthesising/up-

regulating cold-shock proteins (CSPs) to aid in cellular function. During this change in 

environmental temperature, other proteins that work at the customary physiological 
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temperature of 37
o
C, have been shown to have their transcription and translational 

machinery suppressed (Underhill and Smales 2007).  

Cold-shock proteins (CSPs) such as CspA, Rbm3, Cirbp, RecA, quickly became targets for 

biotechnologists. Two notable CSP genes from the glycine-rich protein (GRP) family are 

CIRBP (cold-inducible RNA binding protein) and RBM3 (RNA binding motif protein 3) 

which showed upregulation at low temperature (Nishiyama et al. 1997). CSPs share the 

cold-shock domain (CSD) as a common motif and are believed to function as RNA/DNA 

chaperones, assisting replication and translation via protein folding at low temperatures 

(Jiang et al. 1997). 

As mentioned in section 1.9.2, Cirbp has since become a standard model for inducible 

expression strength in reduced temperature culture experiments and thus could be used as a 

tool to assess the prospective temperature induciblity of other genes (Underhill and Smales 

2007) (Hong et al. 2007) (Al-Fageeh and Smales 2009). However, CSPs are not fully 

conserved across species and their effects are quite variable between cell lines. There are 

~30 identified CSPs in E.coli (Gualerzi et al. 2003).  

Fox et al hypothesised that improving total production of recombinant protein should be 

achieved by stimulating cells to actively grow at low temperature. They reported 7.7 and 

4.9-fold increases in total interferon-gamma protein production in CHO cells grown under 

stimulated (fibroblast growth factor or insulin supplemented in the serum) hypothermic 

conditions compared with the control cultures grown at 37
o
C (Fox et al. 2005). In another 

study by the same group, Tan et al, report that following stable overexpression of Cirbp, 

final IFN-gamma titre by production CHO cells was increased by 40% compared with 

current temperature-based strategies alone. Furthermore, there was no decrease in cell 

growth or recombinant-protein glycosylation quality (Tan et al. 2008).  

Much still remains to be discerned about cold adaption at a molecular level. Recent efforts 

topics include; measuring the effects of different acclimation periods (duration of cold-

adaption), the effects of lower temperature on aggregate formation in cultures of IgG 

producers and how an irregular unfolded protein response (UPR) caused by cold-shock 

correlates to misfolding of proteins (Gomez et al. 2012).  
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The response of cells at a genomic level, although poorly understood, dominates the 

literature rather than studies into the proteome of a cell. Kaufmann et al were one of the 

pioneers in examining the CHO proteome. They saw distinct changes in protein expression 

by 2-D polyacrylamide electrophoresis of cells grown at 37
o
C and 30

o
C. These changes in 

the proteome suggest that mammalian cells respond actively to low temperature by 

synthesizing specific cold-inducible proteins and support the hypothesis that stress signals 

must be converted into biochemical signals to alter gene expression patterns of CSPs, 

presumably resulting from changes in post-translational protein modifications (Kaufmann 

et al. 1999).  

Recent studies from researchers within the NICB have reported a number of differentially 

expressed proteins and RNAs involved in temperature shift culture over timecourse 

experiments (Kumar et al. 2008b) (Kumar et al. 2008a). The resulting dataset has been very 

useful for creating target lists for follow up functional validation of important temperature 

related proteins.  

In parallel with these findings, we aim to combine the already positive intrinsic attributes of 

mild hypothermic shifting of culture temperature shift seen above with the isolation of 

temperature-sensitive CHO specific promoters in this project, which can be used in parallel 

for increased bioprocess performance. In conclusion, although poorly understood, interest 

in the cold-shock/temperature shift as a method of increasing bioprocessing, therefore is 

really heating up. 

 

 

 

 

 

 

 



59 
 

1.12: MicroRNA roles in gene regulation and engineering potential 

1.12.1: Background and scope 

Since the discovery of RNAi (section 1.5.4) major attention has focused on studying 

miRNA (microRNA) and siRNA (small interfering RNA). Basically hidden in the genome 

until recently, miRNAs like siRNAs are non-coding small RNAs and are typically 19-25 

nucleotides long. MicroRNAs have a major impact on most biological processes and their 

ability of to influence gene expression is now recognised as a fundamental layer of 

regulation within the cell (Barron et al. 2011).  

MicroRNAs (miRNAs) are strongly implicated in the global regulation of gene expression, 

and, in this regard, they consequently affect metabolic pathways on every regulatory level 

in different species.  

This characteristic makes miRNAs a promising target for cell engineering, while a key 

advantage of miRNAs, in contrast to most cell-engineering approaches that rely on 

overexpression of regulatory proteins, is that they do not compete for the translational 

machinery that is required to express the recombinant product (Muller, Katinger and 

Grillari 2008) (Hackl et al. 2011). Furthermore, Maccani et al showed that mature 

microRNAs were predominantly upregulated in the producing cell lines compared to non-

producer lines (Maccani et al. 2014). 

MicroRNAs with their ability to regulate complex pathways that control cellular behavior 

and phenotype have been proposed as potential targets for cell engineering in the context of 

optimisation of biopharmaceutical production cell lines and for improving understanding of 

mammalian cell physiology.  

They are also attractive because of the ability of a single miRNA to influence more than 

one target gene. This is due to imperfect base-pairing exempt of seed region; the seed 

region constitutes 2-7 nucleotides from the 5’ end of the miRNA which binds with full 

complementarity to a target mRNA. It has become apparent that the miRNA molecules 

themselves are subject to sophisticated control during biogenesis and degradation (Jadhav 

et al. 2013). 
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At present, around 16,000+ miRNAs have been identified across all species. These are 

documented in online databases such as ‘mirBase’ and ‘mirWalk’ and used in a plethora of 

software algorithms for miRNA:mRNA binding prediction in silico such as; ‘TargetScanS’ 

and ‘miRNAnda’. There are ~1700 miRNAs in the human genome estimated to be 

targeting approximately 60% of genes.  

In parallel, CHO miRNA identifications have been growing (Wu 2009)(Hernandez Bort et 

al. 2012, Gammell et al. 2007) (Doolan et al. 2012). Furthermore, Hackl et al identified 387 

miRNAs in CHO after extensive profiling and next-generation sequencing and  numbers 

are sure to increase in the future (Hackl et al. 2011).  

An interesting feature of miRNA genomic structure (Figure 1.12.1) is that many miRNAs 

exist in clusters that are co-expressed. miRNAs are predominantly transcribed by RNA 

PolII though some are PolIII-dependent with A/B boxes being identified upstream. It is 

estimated that ~50% of all miRNAs are located within introns of protein encoding genes 

with the remainder residing in intergenic regions (Barron et al. 2011).  
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Figure 1.12.1: Genomic organisation of miRNA genes. There are four classes of 

organization. (1) Intergenic miRNAs, are located in isolation from other genes and occur as 

either a monocistronic (a) or polycistronic unit (b). Their transcription is driven by their 

own promoter upstream and may be either RNA PolII- or PolIII-dependent. (2) Intronic 

miRNAs are located within an intron of a protein-coding gene, again as monocistronic or 

polycistronic units. They may be under the control of their own independent promoter or 

may be co-transcribed with the host gene. In the latter case they are processed into pre-

miRNAs by the microprocessor complex subsequent to intron splicing. (3) Mirtrons exist in 

short introns and differ from other intronic miRNAs in that they by-pass processing by 

Drosha and are exported directly to the cytoplasm to engage Dicer. They are co-expressed 

with the host gene. (4) Exonic miRNAs are located in an exon and are independently 

transcribed from their own promoter. [Black arrow = host gene promoter start site, Black 

arrow with lines = miRNA promoter start site, Diamond-shapes with lines = introns, E1/2 

= exons] (Barron et al. 2011). 

 

To study the role of miRNAs in the regulation of CHO cell growth, qPCR, microarray and 

quantitative LC-MS/MS analysis were utilised for simultaneous expression profiling of 

miRNA, mRNA and protein (Clarke et al. 2012). This was the basis for the sampleset used 

in this project, where 51 miRNAs were identified to be associated with increased growth 

rate (35 miRNAs upregulated and 16 miRNAs downregulated). For other specific miRNAs 

for used in engineering recently (Table 1.12.1).  
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Table 1.12.1: Functional roles of miRNA engineering targets (Barron et al. 2011). 
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1.12.2: The miR-17-92 cluster  

Clusters of miRNAs are perhaps a result of evolutionary duplication events (Lim et al. 

2003) (Yu et al. 2006), more specifically, they are closely linked to early evolution of the 

vertebrate lineage (Tanzer and Stadler 2004). Clustering and conservation patterns reported 

by Altuvia et al raised the proportion of clustered human miRNAs that are less than 3000 nt 

apart to 42%. This suggested that the clustering of miRNA genes was higher than currently 

acknowledged at the time (Altuvia et al. 2005). Identification of miRNA family members 

could be an important requirement for understanding the full mechanism of post-

transcriptional regulation as they share the same vital seed sequence. 

One of the better characterised oncogenic miRNAs is the polycistronic miR17-

92/oncomiR-1 (Olive et al. 2009). It has been identified as a powerful cancer driver that 

coordinates the activation of multiple oncogenic pathways, such as the PI3K and NFκB 

pathways (Jin, Lai and Xiao 2014).  

The pre-miR transcript contains 6 stem-loop hairpin structures that ultimately generate 6 

mature miRNAs: miR-17, miR-18a, miR-19a, miR-20a, miR-19b1 and miR-92-1, with 

miR-19a acting as an internal brake that opposes the oncogenic activity of the others in 

some cancer contexts (Zeitels and Mendell 2013). Furthermore, Olive and co-workers have 

done considerable work on this cluster and its molecular dissection in many oncogenic and 

apoptotic (interacts with PTEN and Bim apoptotic components) settings with results 

suggesting that miR-17-92 can be harnessed to enhance the efficacy of T cell-based tumor 

therapy (Olive et al. 2009) (Jiang et al. 2011) (Olive et al. 2013). 

Relating to this project Clarke et al, identified the miR-17-92 as differentially expressed in 

fast growing CHO cell lines compared to slow cell lines, each of the cluster members being 

positively correlated with increasing growth rates (Clarke et al. 2012). 
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1.13: XIAP is an important gene in apoptosis regulation  

1.13.1: Background 

There exists a family of apoptosis inhibitors called IAPs (inhibitors of apoptosis) that are 

well documented. During the process of programmed cell death or apoptosis, caspases 

become activated and cause a cascade of events that eventually destroy the cell. X-linked 

inhibitor of apoptosis or XIAP is the most potent caspase inhibitor encoded in the 

mammalian genome and has the most potential from a cellular engineering perspective in 

apoptosis prevention in mammalian engineering (Wilkinson et al. 2004).  

Recent evidence showed that inhibitor of apoptosis (IAP) proteins are frequently 

overexpressed in cancer and their expression level is implicated in contributing to 

tumorigenesis, chemoresistance, disease progression and poor patient-survival. 

In addition, Gyrd-Hansen et al showed that IAPs contain an evolutionary conserved 

ubiquitin binding domain that regulates NFκB (Gyrd-Hansen et al. 2008). Another example 

by Smolewski et al, found elevated cellular levels of cIAP1, cIAP2, XIAP and Survivin 

correlated with a progressive course of chronic lymphocytic leukemia. Thus, targeting IAPs 

with small-molecule inhibitors by their antisense approaches or natural IAP antagonist 

mimetics may be an attractive strategy of anti-cancer treatment (Smolewski and Robak 

2011). 

One of these IAPs became the focus of the second part of this thesis, XIAP. XIAP is 

translated by a cap-independent mechanism of translation initiation that is mediated by a 

unique internal ribosome entry site (IRES) sequence element located in its 5' untranslated 

region which facilitates its anti-apoptotic function during any kind of induced-cellular 

stress like radiation and chemotherapy, making it an attractive therapeutic target (Devi et al. 

2004). This also allows XIAP mRNA to be actively translated during conditions of cellular 

stress when the majority of cellular protein synthesis is inhibited (Holcik 2003).  
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1.13.1: Structure and Function 

The XIAP gene encodes a protein that belongs to a family of 8 apoptotic suppressor 

proteins. Members of this family share a conserved motif termed the baculovirus IAP 

repeat, which is necessary for their anti-apoptotic function. This protein was first shown to 

function through binding to tumor necrosis factor receptor-associated factors TRAF1 and 

TRAF2 and inhibits apoptosis induced by menadione, a potent inducer of free radicals, and 

interleukin 1-beta which is a converting enzyme (Song et al. 1996). 

The XIAP protein consists of 3 major types of structural domains. Firstly, there is the 

baculoviral IAP repeat (BIR) domain consisting of roughly 70 amino acids, which 

characterises all IAPs. Secondly, there is a UBA domain, allowing XIAP to bind to 

Ubiquitin (a regulatory protein found in most tissues and important regulator of 

degradation, promotion and prevention of interactions between molecules) (Blankenship et 

al. 2009). And lastly, there is a Zinc-binding domain, or a ‘Carboxy-terminal RING Finger’ 

(Duckett et al. 1998) (Deveraux and Reed 1999). 

XIAP stops apoptotic cell death that is induced either by viral infection or by 

overproduction of caspases. XIAP binds to and inhibits caspases 3, 7 and 9. The BIR2 

domain of XIAP inhibits caspase 3 and 7, while BIR3 binds to and inhibits caspase 9 

(Deveraux and Reed 1999). The UBA domain utilises E3 ubiquitin ligase activity and 

enables IAPs to catalyse ubiquination of innate caspase-3, or caspase-7 by degradation via 

proteasome mode of action (Delhalle et al. 2003).  

The most widely used strategy for targeting IAP proteins is based on mimicking the natural 

IAP antagonist, Smac/DIABLO. XIAP was shown to be inhibited by DIABLO (Smac) and 

HTRA2 (Omi), two death-signaling proteins released into the cytoplasm by the 

mitochondria (Eschenburg et al. 2012). Smac/DIABLO is a mitochondrial protein and has 

been shown to be a negative regulator of XIAP enhancing apoptosis by binding to XIAP 

and subsequently preventing it from binding to caspases (Wilkinson et al. 2004). 

Mutations in XIAP mRNA sequence have been shown to result in X-linked 

lymphoproliferative syndrome. X-linked lymphoproliferative disease (XLP) is an inherited 

immunodeficiency, involving primarily T and natural killer (NK) cells, which in the 

majority of cases exacerbates following exposure to Epstein-Barr virus (EBV)(Schuster and 

http://en.wikipedia.org/wiki/Baculoviral_IAP_repeat
http://en.wikipedia.org/wiki/Inhibitor_of_apoptosis
http://en.wikipedia.org/wiki/Ubiquitin
http://en.wikipedia.org/wiki/Apoptotic
http://en.wikipedia.org/wiki/Caspase
http://en.wikipedia.org/wiki/Caspase_3
http://en.wikipedia.org/wiki/Caspase_7
http://en.wikipedia.org/wiki/Caspase_9
http://en.wikipedia.org/wiki/Caspase_9
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Kreth 2000). Furthermore, alternate splicing resulted in multiple transcript variants while 

pseudogenes of this gene are found on chromosomes 2 and 11 (Bassiri et al. 2008). 

However, mutations affecting the RING finger do not noticeably affect apoptosis, 

indicating that the BIR domain is sufficient for the protein’s function. When inhibiting 

caspase-3 and caspase-7 activity, the BIR2 domain of XIAP binds to the active-site 

substrate groove, blocking access of the normal protein substrate that would result in 

apoptosis (Eckelman, Salvesen and Scott 2006, Huang et al. 2001). XIAP distinguishes 

itself from the other human IAPs because it is able to effectively prevent cell death due to; 

TNF-α, Fas, UV light, and genotoxic agents (Duckett et al. 1998). 

 

1.14: Identifying miRNAs that regulate bioprocess-relevant phenotypes 

Combining miRNA engineering with anti-apoptotic engineering is an attractive prospect in 

bioprocessing and therapeutics, especially considering the role of the XIAP gene within 

cancer disease states becoming more recently publicised (Ren et al. 2014). Developments 

combining both have been promising, for example Liu et al reported that miR-7 targeted 

and downregulated XIAP. Subsequent ectopic expression of XIAP then rescued the effects 

induced by miR-7 on HeLa and C-33A cells (Liu et al. 2013).  

Another study by Druz et al used nutrient depleted spent media, to induce apoptosis in 

order to identify resultant miRNA expression post-induction using microarrays and 

bioinformatics analysis. They reported up-regulation of the mouse miR-297-669 cluster and 

focused on the pro-apoptotic role of mouse specific miR-466h and its capability to 

modulate the apoptotic pathway in mammalian cells (Druz et al. 2011). 

In a separate study, it was found that expression of miR-23b was reduced in brain cancer 

Glioblastoma cells (GBMs). CHO cells were transfected with miR-23b mimics 

subsequently leading to down-regulation of XIAP. Combined exposure of GBM cells with 

Docetaxel and miR-23b mimics resulted in significantly increased apoptosis compared to 

the drug alone. Reduced expression of miR-23b in GBMs, and subsequent deregulated 

expression of XIAP may contribute to the ability of GBMs (especially faster growing lines 

like SNB-19) to evade apoptosis at least partially. This highlighted that miR-23b may be a 

http://en.wikipedia.org/wiki/Mutation
http://en.wikipedia.org/wiki/Apoptosis
http://en.wikipedia.org/wiki/TNF-%CE%B1
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promising candidate for the development of targeted treatment options in human Glioma 

(Griffith, Kinsella et al, in preparation). 

In summary, as a consequence of these findings plus other literature links between XIAP, 

miRNA and apoptosis in human disease states (Gillissen et al. 2013) (Saleem et al. 2013) 

(Ndozangue-Touriguine et al. 2008) (Smolewski and Robak 2011), we wanted to bridge a 

connection between XIAP and the miRNAs that control its regulation in both human and 

CHO as a means to improve bioprocessing based on anti-apoptotic engineering, in addition 

to using endogenous promoters to improve transgene expression and will be explored in a 

in the second part of this project.  

 

1.14.1: Methods for identifying mRNA:miRNA interactions 

A recent publication from Bort et al, detailed an extensive database of miRNAs. By using 

clustering analysis they revealed groups of genes with similar expression patterns, which 

were subjected to functional pathway analysis. In total, over 1400 mRNAs and more than 

100 miRNAs were differentially regulated (p<0.05) in the batch culture at the beginning 

relative to the end of the culture. Therefore, during batch or fed-batch cultivations it can be 

expected that the transcription pattern of genes will change and that such changes may give 

indications on the cellular state in terms of viability, growth, and productivity (Hernandez 

Bort et al. 2012).  

Although numerous bioinformatics tools exist (Watanabe et al. 2007) (Li et al. 2010) to 

predict possible miRNA:mRNA interactions, true experimental validation of such 

interactions can be difficult and laborious. See table 1.14.1 for a list of existing methods.  

Due to the low degree of complementarity between the miRNA and its target region of 

mRNA 3’UTR, in silico prediction programs are often imprecise and therefore not very 

reliable for validation. In order to bridge the gap, iterative interactions between in silico and 

experimental methods are being explored and are beginning to play a vital role in the 

biological study of miRNAs (Chaudhuri and Chatterjee 2007). 
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Table 1.14.1: Methodology, description and reference for current miRNA isolation and 

identification methods. 

Method Description References 

Gene Reporter Assays 
3’UTR analysis with transcriptome/proteome using pre-

miRs and anti-miRs after modulation 
(Orom and Lund 2010) 

IP of Ago2 proteins Pulldown using highly specific monoclonal antibodies (Beitzinger and Meister 2011) 

Let-7 - Approach 
Using an endogenous Let-7 to isolate cDNA via base pair 

complementary in vivo 
(Andachi 2008) 

Biotinylated tagged miRNAs 
Bead Affinity purification using tagged miRNAs and 

analysis with RT-qPCR  
(Orom and Lund 2007) 

Digoxigenin (DIG) labelled 

miRNAs 

Another in vitro LAMP method, using anti-DIG antiserum 

to isolate from Zebrafish and C.Elegans 
(Hsu and Tsai 2011) 

TAP-Tar 
Tandem affinity method where miRNA:mRNA complexes 

are IP’d using anti-Ago Ab and streptavidin beads in vitro 
(Nonne et al. 2010) 

HITS-CLIP 
In vitro cross-linking of miRNA:mRNA complexes and 

Ago2 proteins 
(Chi et al. 2009) 

PAR-CLIP 
Photoactivatable-ribonucleoside enhanced cross-linking 

and IP, can be used to assess regulatory impact of miRNAs 

(Hafner et al. 2010, Hafner et 

al. 2012) 

p21Cip1/Waf1 - 3’UTR 

targeting 

To try isolate a single mRNA of interest, but must be 

transfected into cell line leading to laborious complications 
(Wu et al. 2010) 

lncRNA:PAR-CLIP 

Systematic transcriptome wide analysis of lncRNA-miRNA 

interactions, combination of recently discovered lncRNA 

and PAR-CLIP technique 

(Jalali et al. 2013) 

miR-133a-HAND2  

MS2-GFP fusion tag approach to empirically identify 

miRNAs in the 3'UTR of the mRNA encoding cardiac TF 

‘Hand2’  

(Vo et al. 2010) 

 

Unexpectedly, besides 3’UTR binding sites, these above studies highlighted that a large 

proportion of miRNA targets were actually mapped within the mRNA coding sequence. 

Furthermore, miRNAs regulate target mRNA expression in a moderate way and can work 

synergistically or additively with other miRNAs. It is recommended that additional assays 

are implemented to independently confirm observations from any affinity capture (Hassan 

et al. 2013). 

The small size of miRNAs provides a limited amount of sequence information for 

specificity. Furthermore, as partial pairing between a miRNA and a target site is often 

sufficient, a wide net can be cast for genes that are subject to regulation. This property not 

only means that a single miRNA can regulate multiple mRNAs but also that predicting 

those targets is not straightforward (Pasquinelli 2012).  

As different degrees of base pairing mediate target recognition by microRNAs exist, 

Pasquinelli detailed these modes of binding across plants, mouse, C. Elegans and human 

(Figure 1.14.1). Prediction algorithms can be exempt from accounting for miRNA and 

target interaction via these 5 broad pairing criteria.  
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Most cases, in animal models involve duplexes that contain mismatches and multiple 

nucleotide bulges. The most common motif is perfect pairing between nucleotides 2 and 7 

at the 5′ end of the miRNA, which is called the 'seed' region, and the target site (Thomas, 

Lieberman and Lal 2010) (Shukla, Singh and Barik 2011).  

There are rare examples of near-perfect complementarity between a miRNA and a target 

site that enables cleavage of the mRNA, such as in the case of miR-196 and a sequence in 

the HOXB8 mRNA (Yekta, Shih and Bartel 2004). Like any rule of thumb in science there 

are exceptions, there are also numerous examples of functional miRNA target sites that do 

not readily fit any of the previously described patterns (Rigoutsos 2009), and follow the last 

example in figure 1.14.1. 
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Figure 1.14.1: The different degrees of base pairing mediate target recognition by 

microRNAs (Pasquinelli 2012). 
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1.14.2: MiRNA pulldown using biotinylated mRNA capture technique 

Despite their biologic importance, determining miRNA targets represents a major 

challenge. The problem stems from the discovery that functional mRNA regulation requires 

interaction with as few as 6 nucleotides (nt) of miRNA seed sequence (Lim et al. 2005). 

Bioinformatic analysis has greatly improved the ability to predict, however, different 

algorithms produce divergent results with high false positive rates commonly seen 

(Bentwich 2005) (Watanabe, Tomita and Kanai 2007) (Baek et al. 2008). 

First described by Hassan et al, ‘miR-Capture’ can be used to identify specific miRNAs 

that target any chosen mRNA (Figure 1.14.3). This involves a biotinylated anti-sense 

oligonucleotide (designed against any mRNA exonic sequence) that is captured on 

streptavidin beads along with its bound mRNA and associated bound miRNAs (Hassan et 

al. 2013).  

Beitzinger et al reported the first biochemical identification approach of miRNA targets 

from human cells using antibodies specific to the argonaute (Ago) protein complexes 

involved in the miRNA/RISC pathway (Beitzinger et al. 2007). They went on to generate a 

full protocol for isolation and immunoprecipitation validation a few years later (Beitzinger 

and Meister 2011).  

Interestingly, Zisoulis et al developed a similar biochemical method to identify on a large 

scale the target sequences recognised by miRISC in vivo using live animal models. The 

bound RNA molecules were trimmed to the regions protected by Argonaute, and subjected 

to a series of isolation and linker ligation steps and identified by high-throughput 

sequencing methods (Zisoulis et al. 2011). 

 



72 
 

 

Figure 1.14.2: MiR-Capture Affinity technique with miRNA:mRNA. (1) CHO adherent 

cell culture source. (2) GOI in cytoplasm and cellular environment, (3) MiRNA-n denotes 

any target miRNAs within the mRNA locality either latent (grey) or signalled (green). The 

capture oligo was designed against an exposed loop structure determined from M-Fold 

software. 

 

Although there is an abundance of other experimental methods see table 1.14.1, all have 

varying advantages and disadvantages, with none being the standard bearer. However, as 

most of the competitive techniques are limited to 3’UTR targeting, miRNAs within the 

5’UTR or coding region will not be identified. Thus, the miR-Capture technique has the 

added benefit of being able to target a single specific genes mRNA transcript but also to 

potentially identify miRNAs anywhere along the full length of an mRNA transcript, XIAP 

in this case (Hassan et al. 2013). 
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1.15: Thesis aims 

1) Identify CHO genes that exhibit difference in expression between 37
o
C and 31

o
C. 

2) Identify whether differential expression is a result of changes in mRNA 

transcription or stability. 

3) As a result then to generate temperature shift/inducible promoters that could be 

used in conjunction with a routine temperature shift phase in a bioreactor as a tool 

to control transgene expression. 

4) Manufacture a promoterless reporter GFP plasmid host to enable quantitative and 

qualitative promoter studies in a reproducible manner. 

5) Isolate constitutive promoters to drive expression at a defined level, not influenced 

by temperature and other external stimuli, in particular directing our efforts towards 

a novel miRNA cluster identified from microarray expression profiling. 

6) Test the utility of promoters which display inducible and constitutive expression as 

alternatives to CMV promoters to be used in bioreactor and protein production 

settings. 

7) Test stability of expression between viral and endogenous promoters over a 

timecourse of 3 months, using a GFP reporter stably transfected into CHO-k1 

parental cells. 

8) Characterise and map various transcription factor binding sites present in the CHO 

promoters using bioinformatic approaches. 

9) Based on a parallel study (undertaken in collaboration with Dr. Paula Kinsella), 

whereby we showed that XIAP/miR-23b influences proliferation of Glioblastoma 

cells, examine XIAP as a potential anti-apoptotic engineering target in CHO 

studies.  

10)  Creation of XIAP specific CHO-K1 stable clones, perhaps observing increased 

growth densities and reduced sensitivity to apoptosis and which may be used in 

protein production settings. 

11)  Utilise a novel pulldown method (miR-Capture) to isolate cell-specific 

microRNAs targeting XIAP messenger RNA using a biotinylated anti-sense 

oligonucleotide capture affinity technique 
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12)  Compare the CHO and human XIAP sequence and the milieu of miRNAs that bind 

to the full length mRNA from each species and see which miRNA are common, if 

any. 

13)  Validate the most promising miRNA candidates targeting XIAP from the miR-

Capture approach (12). 

14)  Identify potential miRNAs that may be used to facilitate beneficial phenotypes in a 

bioreactor for increasing protein production in the future. 
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Section 2.0  
 

 

 

 

 

 

Materials and Methods 
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2.1: Ultra Pure Water 

Ultra high purity (UHP) water was used, where applicable, in all media and preparation of 

solutions during this project. The water was purified in house by a reverse osmosis system 

(Elga USF Maxima water purification system) to a standard of 12-18MΩ/cm resistance.  

 

2.2: Sterilisation 

Water, glassware and all thermolabile solutions were sterilised by autoclaving at 121°C for 

20 mins under 15 p.s.i. pressure. Thermolabile solutions were filtered through a 0.22um 

sterile filter (Millipore, SL6V033RB), with low protein binding filters used for all protein-

containing solutions. 

 

2.3: Glassware 

All glassware was washed and sterilized routinely. A deproteinisation agent RBS-25 (AGB 

scientific, 83460) was used to remove proteineous material and eliminates cellular debris 

from glassware. UHP was then used to rinse meticulously with a final sterilisation 

performed using an autoclave.  

 

2.4: Preparation of cell media 

Using clean water and glassware, ATCC medium was routinely made by combining stock 

500ml DMEM and F-12 Ham basal media (Sigma, 56495C) containing glutamine and 

sodium pyruvate (Gibco-Invitrogen 11360-035). This was finally supplemented with either 

FBS or FCS to a desired concentration of usually 2-10% FBS/FCS, depending on 

experiment.  

In addition, sterility checks were done for all complete culture media and cell culture 

related solutions by incubating a small aliquot at 25-37
o
C for a period of 5-7 days to ensure 

that no bacterial or fungal contamination was present at the time of usage. 
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2.5: Routine Management of Cells 

2.5.1: Precaution measures 

All routine cell culture work was carried out in a class II laminar air-flow cabinet (Nuiaire 

Biological Cabinet) or (Holten). Strict aseptic techniques were adhered to at all times (see 

NICB SOP No. 000-01). Laminar flow-biological safety cabinets (BSCs) were switched on 

at least 15 minutes prior to use and swabbed with 70% IMS prior to and following all work. 

Additionally, IMS was used on all equipment placed within the BSC. Experiments were 

performed using only one cell line at any given time in the BSC to avoid cell line cross-

contamination. Each week, cell culture cabinets and any incubators that were used were 

cleaned with industrial detergents (Virkon), IMS and UHP. A separate lab coat was worn 

during aseptic work and nitrile gloves were worn at all times during cell culture work. 

 

2.5.2: Sub-culturing of cell lines 

Over the course off the project, cells where grown in either suspension or adherent formats. 

The following was how each where subcultured and grown continuously. 

2.5.2.1: Anchorage dependant cells 

Adherent cell lines were grown in T25cm
2
 or T75cm

2
 tissue culture flasks and typically fed 

every 2-3 days. The spent media was either discarded to waste or sterile filtered (0.22μm) 

to be used as conditional media for future experiments. Cell culture flasks were rinsed with 

pre-warmed (37°C) trypsin/EDTA solution (0.25% trypsin (Gibco, cat # 15090), 0.01% 

EDTA (Sigma, cat # E4884) solution in PBS in order to remove any naturally occurring 

trypsin inhibitors present in residual serum.  

Fresh trypsin was then aliquoted in volumes dependant on flask size (1ml – 3ml) and left in 

the incubator at 37
o
C for 5-10 mins, until cells were detached from the respective flask 

under the microscope. This cell suspension was then transferred to sterile 20ml universals 

(Greiner, cat # 201151) for centrifugation at 1000rpm for 4-5 mins. Cell pellets were 

resuspended in fresh ATCC media and counted (see section 2.5.3) and subsequently 

reseeded to desired concentration depending on experiment. 
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2.5.2.2: Suspension Cells 

Cell lines used throughout the project had been adapted to suspension growth were either 

grown in 250ml disposable flasks (Corning, cat # 431144) with a 50ml working media 

volume or disposable 50 ml spin-tubes (Sartorius, cat # DF-050MB-SSH) using a 5ml 

media working volume. 

When subculturing cells, typically a sample was counted (see section 2.5.3) and the 

necessary volume extracted and centrifuged at 1000rpm for 4-5mins in a 20ml universal 

(Greiner, cat # 201151). The resulting pellet was resuspended with fresh ATCC media and 

seeded as desired, depending on the experiment.  

 

2.5.3: Cell counting 

Prior to cell counting samples were taken from one of the sub-culturing methods described 

in section 2.5.2. Cell numbers and viability estimations were carried out using a method 

where the culture sample was mixed at a 1:1 ratio with trypan blue (Gibco, cat 525). The 

mixture was incubated at room temperature for a 2-3 minutes and then an aliquot (~10μl) 

was applied to a chamber of a haemocytometer.  

Within the haemocytometer, there are sixteen squares making up a grid. We calculated the 

cell number per mL in the original cell suspension flask by counting individual cells 

contained in four grids under the microscope. This was done by dividing the cell count by 

four to get the average cell number of a sample then multiplying the average by a factor of 

10
4
 (volume of grid) and finally multiplying by the dilution factor (if original ratio wasn’t 

1:1). 

The volume occupied by the sample chamber is 0.1cm x 0.1cm x 0.01cm (i.e. 0.0001cm
3
); 

therefore the average cell number was multiplied by 10
4
 which is equivalent to cells per 

mL. Viable cells were differentiated from non-viable based on their membrane remaining 

intact and healthy and not allowing uptake of the trypan dye. The percentage viability can 

be calculated then by dividing viable versus non-viable cells to get a percentage viability of 

a sample population. 
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2.5.4: Cryopreservation of cells/Cell freezing 

To allow long term storage of cell lines and stocks, cells were preserved with 5% DMSO 

(Sigma, cat # D8418), a known cryoprotectant and submersed in liquid nitrogen at a 

temperature below -180
o
C. Note: This can be done from plates or culture flasks. 

Cells for cryopreservation were harvested in the log phase to ensure they were in a healthy 

state and counted as per section 2.5.3. Samples were then centrifuged and the resultant 

pellet was resuspended with a suitable volume of fresh media. An equal volume of 2x 

freezing medium (10% DMSO and neat FBS) was added drop-wise (to prevent toxic shock) 

to the cell suspension providing a final concentration of 5% DMSO. Finally, aliquots of this 

suspension were placed into 1.5ml cryovials (Greiner, cat # 12279), labelled and 

immediately placed at -80
o
C, after 6-12 hours cryovials were transferred to liquid nitrogen. 

 

2.5.5: Reviving cell lines from cryopreservation/Cell thawing 

Prior to the removal of a cryovial from liquid nitrogen, fresh media was pre-warmed at 

37
o
C in a sterile container. The cryovial was removed, and working as quickly as possible, 

placed into a sterile water bath at ~35-40
o
C for 1 minute. The thawed cells were then 

transferred to the pre-warmed media and centrifuged at 1000rpm for 4 minutes. The 

supernatant was removed and the cell pellet was resuspended in additional pre-warmed 

fresh ATCC and transferred to a T25cm
2
 flask. Small aliquots of this sample were assessed 

for viability and sterility checked using tryptone soya broth (TSB) and thioglycollate broth 

(Thio) and incubated at 37
o
C for 7 days to ensure no contamination occurred during the 

cryopreservation or revival steps. 

 

2.5.6: Mycoplasma testing 

Routine mycoplasma examinations were carried out on all cell lines used in this study by a 

trained in-house technician. This was to ensure all experiments and cultures remained 

contamination free and results obtained were not affected by the presence of mycoplasma 

in any of the CHO cell cultures used during experimentation. 
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2.6: DNA manipulation and other techniques 

Throughout this project, many unique plasmids were generated with various inserted DNA 

fragments that were needed for further experiments; this DNA cloning forms part of the 

general project workflow (Figure 3.1.3.1). To incorporate a foreign DNA sequence into a 

plasmid requires the manipulation of a few techniques.  

Target sequences were amplified via PCR (section 2.6.2) using specific gene primers which 

bind to a complementary section within a genomic DNA template (section 2.6.10). These 

PCR products were then purified using agarose gel electrophoresis (section 2.6.3).  To 

facilitate insertion, restriction sites were manually designed on the 5’ and 3’ ends of primer 

sets (forward and reverse) as complementary sequences matching the corresponding 

reporter plasmids used for cloning. Both the PCR product and report backbone were 

digested via restriction endonuclease enzymes (section 2.6.4) to fashion ‘sticky’ ends for 

performing ligation reactions (section 2.6.5). This facilitated the creation of unique reporter 

plasmids which allowed insertion of any DNA inserts with complementary restriction sites 

for future work. 

Once these constructs were successfully cloned and sequenced (2.6.9), these plasmids were 

then transformed into bacteria cells (section 2.6.6). To generate more copies of these 

plasmids, Mini or Midi preps were used to generate the higher concentrations necessary for 

performing transfections into mammalian cells (section 2.6.7 and 2.6.8). 

  

2.6.1: Designing and Ordering Primers 

Primers are small (18-25nt) strands of nucleic acid, which serve as a starting point to DNA 

synthesis in PCR applications. They are required for DNA replication because the enzymes 

that catalyze this process, DNA polymerases, can only add new nucleotides to an existing 

strand of DNA. Primers and oligos can be used interchangeably. Primers were designed 

from sequence homology to either CHO or mouse. By using the software at 

(http://www.basic.northwestern.edu/biotools/oligocalc.html) this allowed us to check the 

melting temperature (Tm) and % GC content and ensure these sequences were kept within 

http://en.wikipedia.org/wiki/Enzyme
http://en.wikipedia.org/wiki/DNA_polymerase
http://en.wikipedia.org/wiki/Nucleotides
http://www.basic.northwestern.edu/biotools/oligocalc.html
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the general design criteria deemed good practice by molecular biologists. The sequences 

were then ordered from a company based in Germany called MWG Eurofins™.  

 

2.6.2: Polymerase Chain Reaction (PCR) 

This technique has become commonplace in molecular labs around the world ever since 

1983, when Kary B.Mullis developed the technique. It is a thermal cycling reaction, which 

can generate thousands of copies of a DNA sequence from a single piece of starting DNA, 

called a template. Using specific primers as mentioned in section 2.6.1, varying lengths of 

DNA sequence can be amplified based on primer location within the template and by 

following the typical reaction cycling show in table 2.6.2.1.  

Essential to the success of PCR is the ‘Taq polymerase’, a heat stable enzyme capable of 

assembling new DNA strands from single building blocks called nucleotides (nt), then as 

PCR progresses, the DNA generated is itself used as a template for replication.  

Many companies offer various PCR kits and master-mixes which can benefit the researcher 

in numerous ways, some reduce non-specific amplification, some are used as master-mixes 

to reduce reagent waste and errors from pippetting, while some have faster cycling 

capabilities.  

Three main PCR reagents used over the project were; a Redtaq
(TM)

 2x master mix (cat # 

BIO-25043) a Platinum
(R)

 high-fidelity Taq polymerase (cat #11304-011) and Velocity
(R)

 

DNA polymerase (cat # BIO-21098).  

Each PCR cycling protocol varies depending on PCR mix used and what size amplicon is 

to be generated. The general PCR reaction volumes and components can be seen in table 

2.6.2.1.  
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Table 2.6.2.1: Typical PCR components and volumes. 

Component Volume (μl) 

10x Polymerase buffer
 

5 

2mM dNTP 5 

Taq Polymerase 0.4 

Forward Primer
 
(10nM) 1 

Reverse Primer (10nM)
 

1 

Template DNA
 

1 

H20 9.5 

Total Volume 50 

 

PCR master-mixes were added to thin-walled 0.2ml PCR tubes and kept on ice till the 

thermal cycler was pre-heated and the general conditions were as follows; 

 

Table 2.6.2.2: Typical cycling conditions for a PCR run. 

Stage Temperature Time Cycle Number 

Initial Denaturation 95°C 2 mins  

Denaturation 94°C 30 secs 

25 cycles Annealing (primer specific) 30 secs 

Elongation 72°C 1 min/kb 

Final elongation 72°C 10 mins  

 

Throughout the project, PCR had to be modified from these general conditions due to 

efficiency issues and hard to isolate sequence targets. Having varied many conditions and 

cycler settings for optimisation, it was difficult to fully exemplify them all. However, we 

will describe the frequently used types of PCR and the theory behind them.  
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Nested PCR: 

This method involved using two sets of primers that were used in two rounds of successive 

PCRs. In the first reaction, one pair of primers were used to generate DNA products, which 

may additionally create non-specifically amplified DNA fragments, but ideally copies of 

the correct sequence to be amplified were also present. This first PCR reaction sample was 

then used as the template in a second PCR reaction with a set of primers whose binding 

sites are completely or partially different from each of the primers used in the first reaction 

but are located within the first amplified sequence and are thus nested within the first 

amplicon created from the PCR round 1. This allowed a more efficient PCR due to having a 

much more specific template in the second round of PCR Note: Nested PCR is often more 

successful in specifically amplifying long DNA fragments than conventional PCR, but it 

requires more detailed knowledge of target sequences. 

Touchdown PCR:  

Touchdown PCR was another variant of PCR that was used to reduce non-specific bands 

being generated/amplified. This was achieved by gradually lowering the annealing 

temperature as PCR cycling progressed. The annealing temperature in the initial cycles was 

usually a few degrees (3-5°C) above the Tm of the primers used and although this sounds 

excessive, it has been shown that PCR’s can be successful with exaggerated temperatures. 

Even if only a few copies are initially created at higher temperatures, then in later cycles, as 

the temperature drops below the Tm, the few copies generated previously are subsequently 

used as templates in the lower temperature rounds of cycling. In other words, the higher 

temperatures give greater specificity for primer binding, and the lower temperatures permit 

more efficient amplification from the specific products formed during the initial cycles. 

While the above two types of PCR were used in the generation of promoter fragments used 

in this study other types were also utilised such as; In-silico PCR, Inverse PCR and reverse-

transcriptase PCR (RT-PCR) at different stages. 

 

 

 

http://en.wikipedia.org/wiki/Touchdown_PCR
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2.6.3: Analysis of DNA samples using agarose gel electrophoresis 

After a PCR run, we wanted to test and visualise the target fragments created. We 

performed agarose gel electrophoresis and the protocol used was as follows; 

1. First, a stock of 50x TAE buffer was created (242g Tris Base, 57.1ml Glacial Acetic Acid, 

100ml 0.5M pH8.0 EDTA, to 1L with UHP water). This was diluted to 1x stock with UHP 

water and Agarose (Sigma, cat # A9539) added to a final concentration of 1% w/v. This 

percentage was chosen to run and visualise most fragments on the gel matrix, however this 

percentage could be increased or decreased to achieve better resolution on smaller or larger 

fragments respectively. 

2. This solution was then heated in a microwave until dissolved; Ethidium Bromide was then 

added to a final concentration of 0.5 µg/ml and poured into the appropriate mould with a comb 

to allow for sample wells. 

3. Once solidified the gel was placed in an electrophoresis tank filled with 1x TAE buffer. DNA 

samples, mixed with a suitable loading buffer, were then added to the wells and current applied 

to the gel. 90-100V was generally used for visualisation; however greater resolution could be 

achieved at a lower voltage applied for a longer period. 

4. A reference DNA ladder sample was also generally run alongside samples to measure and 

compare visualised band sizes. 

5. Once sufficiently separated, bands could be visualised in a UV light box at a 254nm 

wavelength. If the reaction has non-specific bands along with the correctly sized one, it was cut 

it out of the gel with a scalpel and purified.  

 

 

2.6.4: Cloning of DNA: Endonuclease restriction digestion of DNA 

Two combined molecular methods were used in the cloning of nucleic acids as needed over 

the course of the project. Restriction enzyme digestion was performed using specific 

endonucleases and ligation using a T4 ligase (Roche cat: 10481220001) enzyme. From the 

outset of primer design, suitable restriction enzymes (Acc65i + Xho1) were chosen. The 

complementary sequence for these restriction sites to allow DNA cleavage was included 

with every primer set ordered. As a result, when PCR generated the correct fragment, they 

contain sticky ends to permit cloning via the T4 ligase in a ligation reaction.  

Primers were designed with ‘Acc65I’ restriction sites on all forward primers and an ‘Xho1’ 

on all reverse primers (with additional bases to allow for anchorage of enzyme). This 

allowed us to perform a restriction digest to create ‘sticky ends’ at 5’ and 3’ ends of the 

amplified PCR fragments. These fragments were then ligated into two reporter 

plasmids/vectors (pEGFP + pGL3). These plasmids in parallel were also subjected to 

restriction digestion using the same enzymes (thus generating compatible ends for ligation).  
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A standard restriction digest reaction is outlined below; 

 

This reaction was incubated at 37°C for at least 3-4 hours and often up to 24 hours to 

ensure complete digestion. Furthermore, multiple restriction enzymes can be used in single 

reactions, provided a suitable NEB buffer was available. There are four existing NEB 

buffers and all have varying efficiencies depending on the restriction enzymes used. For our 

needs, the Acc65i and Xho1 enzymes were found to function best in NEB buffer 3 and 

therefore was used in all restriction digests, as it has 100% activity for both enzymes. Note: 

Keeping the volume of enzyme below 5% of the total reaction volume is important for full 

reaction activity also. 

 

2.6.4.1: Alkaline Phosphatase (AP) treatment  

Before any ligation there was an intermediary step performed. After digestion and 

purification of the plasmid backbone and the PCR product (eluted with nuclease-free water 

into ~45μl), we wanted to prevent the re-circularisation of digested plasmid backbone 

samples.  

The purified plasmid samples were treated with alkaline phosphatase (AP) which 

dephosphorylates the phosphodiester bonds in DNA decreasing the probability of sticky 

ends (generated from restriction digests) from re-joining undesirably. This was performed 

to improve the efficiency of future ligation reactions.  

 

 

 

 

 

Component Volume 

DNA 1μg 

NEB Buffer (10x) 2μl 

Bovine Serum Albumin 0.2μl 

Restriction Enzyme(s) 1μl 

H20 to 20μl 

Total volume 20μl 
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The following reaction was performed at 37
o
C for 1 hour: 

 

 

Finally, to remove any traces of enzyme that may damage DNA or inhibit further reactions; 

we purified samples using the MinElute
TM

 PCR Purification Kit (Qiagen, cat # 28006). 

 

2.6.5: Cloning of DNA: Ligations 

Once plasmid backbones and inserts were ready to be ligated, an enzyme called ‘ligase’ 

was used to anneal the DNA fragment insert to the backbone. We used a T4 ligase from 

Roche, (cat: 10481220001). 

Next, we used an open source ligation calculator found online (http://www.insilico.uni-

duesseldorf.de/Lig_Input.html), which uses the following formula to work out amounts of 

nucleic material (in nanograms) needed for preparing efficient ligation concentrations;  

 

 

Table 2.6.5: Typical ligation components and volumes. 

 

*Note: The insert DNA volume was variable depending on the sample concentration. Volume used was 

sufficient in each case for a minimum of 1:5 vector: insert ratio. 

Component Volume 

Purified Plasmid 44.6μg 

AP Buffer (10x) 5μl 

AP (Roche, cat. 11097075001) 0.4μl 

Total volume 50μl 

 

 

                        Insert length (bp) 

Insert mass (ng) =     Vector length (bp)  x  Vector Mass (ng) x 5 (ratio) 

 

 1:5 Insert Ratio Control (No insert) Control (No ligase) 

Ligase Buffer (10x) 1.5 1.5 1.5 

Plasmid Backbone 
(60ng) 

1 1 1 

Insert DNA variable* 0 0 

Ligase Enzyme 0.5 0.5 0 

H2O to 20l to 20l to 20l 

Total Volume 20 20 20 

 

http://www.insilico.uni-duesseldorf.de/Lig_Input.html
http://www.insilico.uni-duesseldorf.de/Lig_Input.html
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The reagents were placed in thin-walled PCR tubes and positioned in a beaker of ice water 

and left for 6-10 hours or overnight in some cases. By using ice water, the reaction was 

subjected to a gradient of temperature, as opposed to a single temperature. Gradually 

overnight the temperature would increase up to room temperature (~21
o
C). This allowed a 

more efficient ligation, as only using a single temperature can often be the rate-limiting step 

of ligation. Finally, the enzyme was inactivated by incubation for 10 mins at 65°C and the 

resultant ligated mixture was then used for bacterial transformation (section 2.6.6). 

 

2.6.6: Transformation into bacterial cells 

The introduction of foreign DNA into a bacterial cell was performed to increase the copy 

number of these plasmids by using the bacteria’s rapid doubling times. The protocol was as 

follows; 

1. A vial (200μl) of competent cells (DH5, Invitrogen, cat # 18263-012) was removed 

from storage at -80°C and thawed on ice. Transformation tubes Falcon, cat # 352059) 

were also chilled on ice during this time. 

2. Once thawed 50μl of the bacteria was added to a transformation tube along with 2.5μl 

(5% total volume) of plasmid sample or ligation reaction mixture. 

3. This mixture was left on ice for 10-15 mins, heat shocked in a 42°C waterbath for 30-

40 secs then placed back on ice for a further 1-2 mins. 

4. 500μl of SOC media (Invitrogen, cat # 15544) was immediately added, and this 

mixture incubated at 37°C for 1 hour at 200rpm agitation speed. 

5. The sample was then transferred to a fresh 1.5ml tube (Costar, cat # 3620) and spun 

at 3000rpm in a bench top microfuge (Hettich Mikro 120) for 3 mins to pellet the 

bacterial cells. 

6. The majority of the supernatant was removed and the pellet resuspended in 40μl 

SOC.  

7. This was then spread on LB agar plates (10g Tryptone (Sigma, cat # T7293), 5g 

Yeast Extract (Oxoid, cat # LP0021), 10g NaCl (Sigma, cat # S7653), 20g agar select 

(Sigma, cat # A5054), to 1L with UHP water, autoclaved before use) containing 

Ampicillin or Kanamycin depending on plasmid used in ligation (100ng/ml working 

concentration) and incubated overnight at 37°C. 
 

 

2.6.7: Small scale preparation of plasmid DNA (Miniprep) 

Once transformations were completed, the next step was to generate more copies of the 

plasmids generated. Commercial kits exist for small and large scale preparation of plasmids 

from bacterial cells and the following protocol was performed as outlined in the operating 

manual; 
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1. After successful generation of transformed bacterial colonies (see 2.6.6), a single 

colony was picked and grown overnight at 37°C, 170rpm in a 5-10ml aliquot of LB 

broth (autoclaved before use) containing appropriate antibiotic. 

2. This culture was then processed using a Qiagen QIAprep Spin Miniprep kit (Cat # No. 

27106, see manufacturers protocol for details), with a final DNA elution step carried 

out using 30-50μl of TE buffer. 

3. The concentration (ng/μl) of this DNA prep was determined using a NanoDrop 1000® 

spectrophotometer. This could then be used in subsequent DNA manipulation reactions 

or stored at -20°C. Typical yields were ~200-450ng/μl. 

 

 

This miniprep sample was then used in downstream processes; typically small scale 

minipreps were suitable and used in initial tests to ensure cloning was successful and for 

sending a sample away for sequencing to Eurofins MWG™. This was followed by 

restriction digestion to cleave the insert out of the plasmid, thereby verifying that the 

correct fragment went in to the respective plasmid.  

 

 

2.6.8: Large scale preparation of plasmid DNA (Midiprep) 

For generating larger quantities of cloned plasmids, a Midiprep kit was used. This had the 

added benefit of being a more stringent purification process as the kit contained endotoxin-

free buffers and materials to ensure a cleaner (free from endotoxins) final plasmid sample.  

A larger volume of Luria broth (LB) media was used to facilitate larger scale proliferation 

of the bacterial cells. The LB recipe was: (10g Tryptone (Sigma, cat # T7293), 5g Yeast 

Extract (Oxoid, cat # LP0021), 10g NaCl (Sigma, cat # S7653), to 1L with UHP water, then 

autoclaved.  

Midipreps were used when high plasmid concentrations were required. Furthermore, the kit 

removes harmful endotoxins often from bacterial debris such as lipopolysaccharide (LPS) 

in order not to affect or be detrimental to healthy cells during transfections. The following 

protocol was performed as outlined in the operating manual; 

 

1. After successful generation of transformed bacterial colonies as before, a starter culture 

of LB and single colony, equivalent to a miniprep (5-10ml universal) was made. 

2. This starter culture was then added to a further 200ml of LB broth containing 

Ampicillin or Kanamycin and incubated overnight at 37°C, 170rpm. 

3. After incubation this culture was then spun at 6000g for 15 mins, 4°C, and the 

supernatant discarded. 
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4. The resulting cell pellet was then processed using a Qiagen Plasmid Maxi kit (Cat # No. 

12362, see manufacturers protocol for details), with a final DNA resuspension step 

carried out using 250-500μl of TE buffer. 

5. The concentration of this DNA prep was determined using a NanoDrop 1000 

spectrophotometer. This was then used in subsequent DNA manipulation reactions or 

stored at -20°C. 

 

 

2.6.9: Sequencing and Verification 

Once all the above steps were completed, the resulting samples containing the previously 

prepared DNA (plasmids + inserts), needed to be sequence verified. This was to ensure that 

the correct fragment insert was ligated into each reporter plasmid in the correct orientation 

and with no sequence mutations. Aliquots of each sample to be sequenced were sent to 

Eurofins MWG™ along with the forward and reverse primers specific to each PCR 

fragment isolated. Thus, they could sequence it base by base using the same specific 

primers. Resulting sequence information was sent back in FASTA format for analysis to 

ensure full confidence that the plasmids contained the inserted promoter sequences 

upstream of each reporter gene. 

 

2.6.10: Genomic DNA Extraction 

From actively growing CHO cell cultures, an aliquot containing approximately 1x10
6
 cells 

was removed and centrifuged at 1000rpm for 5 mins. The supernatant was aspirated and the 

cell pellet was lysed and genomic DNA extracted as per the guidelines of the Promega 

Wizard™ SV Purification kit (cat # A2360). DNA was eluted into ~150μl of RNase free 

water from the resin column into a 1.5ml eppendorf. Yields of genomic DNA were 

typically in the range of 200-450ng/μl. 

 

2.6.11: RNA Extraction  

Purification of RNA (mRNA) from biological samples was a fundamental technique used 

during this project, and in particular when studying genetics and gene expression. It can be 

done in two ways, if the total RNA was needed including microRNAs, then an isolation kit 

MirVana™ (Ambion cat # AM1561) was used, again as per kit guidelines. 
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For experiments not requiring the full complement of miRNAs, then, a Tri-Reagent® 

solution (Ambion.cat # AM9738) was used to extract RNA. This solution was used along 

with the following reagents; isopropanol (Sigma.cat # W292907), chloroform (Sigma.cat # 

C2432) and ethanol (Merck.cat # K41392783). Eluted RNA was stored in the -80
o
C 

freezers in-between experiments. RNA is easily degraded due to the abundance of 

ribonuclease enzymes in cells and tissues, so storage at -80
o
C was essential for ensuring 

RNA integrity. RNA degradation was checked by running the samples using agarose gel 

electrophoresis to visualise both ribosomal subunits (Figure 2.6.11).  

 

Note: Sometimes RNA can degrade over extended periods of time even in -80
o
C, and 

indeed when the samples are exposed to multiple freeze-thaw cycles. 

 

 

 

Figure 2.6.11: (A) An agarose gel showing gradual degradation of RNA samples from left 

(high quality) to right (degraded/poor quality). (B) An agarose gel showing the ideal quality 

of RNA samples, where the ribosomal subunits (28s and 18s) are shown. 

 

 

2.6.12: Determination of RNA purity with Bioanalyser 

The Agilent 2100 Bioanalyser® (cat # G2940CA) is a micro-fluidics based platform for the 

analysis of proteins, DNA and RNA. The supplied 12-well chip (Figure 2.6.12) contains 

interlinked channels and reservoirs allowing the analysis of samples containing minute 

amounts of starting RNA material.  

Once the wells and channels were filled, the chip becomes an integrated electrical  

circuit. The 16-pin electrodes of the cartridge are arranged so that they fit into the  

wells of the chip. The channels were first filled with a polymer gel matrix on the chip 

priming station and vortexed to fix the matrix to the chip surface. A RNA ladder (RNA 
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6000 Nano) was included for RNA size comparison and was loaded, along with the RNA 

samples to be tested, into the appropriate wells. To each well, 1μl of each sample was 

loaded with a fluorescent dye (marker) included in the Nano RNA 6000® kit (cat # G2938-

90034).  

When all samples were loaded, the chip was briefly vortexed at 2400 rpm and loaded into 

the Agilent 2100 Bioanalyser® machine. Because of a constant mass-to-charge  

ratio and the presence of a sieving polymer matrix, the molecules were separated by  

size and smaller fragments migrated faster than larger ones. The machine is fully automated 

and separates samples by injecting the individual samples into a separation chamber were 

components are electrophoretically separated and detected by their fluorescence. These 

signals are translated into gel images and electropherograms for in silico analysis. The 

software automatically compares unknown samples tested to the generated ladder 

fragments, to determine the concentration of the unknown samples and to identify the 

ribosomal RNA peaks. 

 

 
 

Figure 2.6.12: The RNA 6000 Nanochip used in the Agilent 2100 Bioanalyser®. 

 

2.6.13: DNase treatment 

After RNA extraction, it was common practice to use an enzyme called deoxyribonuclease 

(RQ1), (Promega.cat #M6101). It catalyses the hydrolytic cleavage of double and single 

stranded DNA. This was essential and beneficial for maintaining the integrity of the RNA, 

because typically after RNA extraction there may be DNA carryover and in some cases this 

could affect and hinder subsequent enzymatic experiments such as reverse transcription and 

qPCR. DNase treating the biological samples degraded any potential DNA carried over and 

thus prevent non-specific amplification.  
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Figure 2.6.13 illustrates the difference between 10 RNA purified samples at 3 different 

stages of treatment. In the original samples, we performed a PCR run on the 10 extracted 

samples which produced DNA amplicons when they shouldn’t. Then after DNase treatment 

the same PCR run yields no amplified DNA bands which were indicative of a successful 

DNase step. We performed a final PCR on the samples after a reverse transcription-cDNA 

generation step (section 2.6.14) and got clean amplified bands, indicating that the RT 

worked and qPCR can be used to calculate gene expression accurately with no DNA 

contamination present.  

 

Figure 2.6.13: The effect of DNase treatment on DNA carryover post RNA extraction to 

ensure samples could be used for future applications. 

 

2.6.14: Reverse Transcription PCR and cDNA generation 

Now that RNA material was ready to be used in downstream applications, the next step was 

to create double stranded cDNA from single stranded RNA, using the Taqman® Reverse 

Transcription kit (Applied Biosystems.cat # 4387406). This kit uses a special enzyme 

common in retroviruses called ‘reverse transcriptase’ the resulting cDNA then is amplified 

by specific PCR steps.  

By performing these steps we created a cDNA sample to be used in follow on qPCR 

experiments to measure the absolute or relative expression of gene targets between different 

samples or in comparison to an endogenous (house-keeping) gene control.  
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All reaction components were thawed on ice and if performing more than one RT reaction, 

then we scaled up as required and added 10% volume surplus extra (n+1) allowing for 

pippetting errors and volume loss of liquid when dispensing. A typical reaction can be seen 

in the table 2.6.14 and cycler conditions were as follows; 

Table: 2.6.14: Components for RT reaction. 

 

The following thermocycler conditions were programmed for this reaction; 

 

 

2.6.15: Real-Time Quantitative PCR (RT-qPCR) 

Although similar to the PCR section 2.6.2, RT-qPCR needed its own section due to its 

importance in this project and its complexity and because its follows on from the previous 

sections in the workflow. Like routine PCR, it is a technique that amplifies up a template 

portion of DNA, however, at each step a quantitative reading can be taken simultaneously 

while amplification proceeds.  

Unlike regular PCR which only allows quantification at the end point (band on a gel), 

qPCR can be used to determine whether a gene is currently over-expressed or knocked 

down in a particular sample in real-time (ex: cell line grown at a certain temperature), as 

well as comparing its relative expression between controls and other samples.  

 

Component                       Volume (μl) 

                   x1 RT reaction  

10x RT Buffer          

25x dNTPs 

10x Random Primers 

RNA inhibitor 

2 

0.8 

2 

1 

1 

3.2 

          10 (2 μg) 

RT Enzyme (MultiScribe)
 

Nuclease-free H20 

RNA sample 

Total Volume                     20 μl  

Stage Temperature Time 

1 25°C 10 mins 

2 37°C 60 mins 

3 85
o
C 5 mins 

4  4°C/ -20
o
C - 
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qRT-PCR was used to measure this expression level by using computational software on 

the Applied Biosystems® 7500 Fast thermal cycler to obtain cycle threshold (Ct) values 

(values above a cycle threshold of fluorescent detection). We subsequently calculated 

mRNA transcript copy numbers. The quantity can be either an absolute number of copies or 

a relative amount when normalised to DNA input or a house-keeping normalising gene like 

GAPDH. 

Two main ways of detection are probe-based methods (FRET) and reporter binding dyes 

(SYBR green). The probe method relies on a DNA-based probe with a fluorescent reporter 

at one end and a quencher of fluorescence at the opposite end. The proximity of both, 

determines the detection of fluorescence in a given run. Where exonuclease activity of Taq 

polymerase separates both, unquenched emission of fluorescence occurs, creating a signal 

to be detected by the software.  

Most frequently we used the dye based method involving the binding of a double stranded 

(ds) DNA and a dye which allowed detection due to increasing amounts of fluorescence 

with each cycle completed. The abundance of the SYBR green (Applied Biosystems, cat 

#4309155) signal detected dye then allowed quantification.  

One drawback is that non-specific primer dimmers (where annealing of primers to one 

another) can create small ds DNA molecules which also incorporates the dye giving false 

positive results. This was accounted for by performing dissociation/melting curve analysis 

after the initial qPCR run. The melt curve run heated the sample from 60
o
C to 95

o
C by 

increasing in increments of 1
o
C every minute till the amplicon dissociates; sharp peaks 

indicated a clean amplified product (Figure 2.6.15).  

Note: In some cases experiments needed to be run again with improved primer design. 
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Figure 2.6.15: Dissociation/Melt curve extrapolation and images. 

 

A main advantage of qPCR is the fact that it can determine the expression of a gene at a 

given point in time or under the influence of a condition such as temperature as long as it is 

a controlled. For example, you can determine the absolute expression of mRNAs or relative 

expression in comparison with endogenous control, we used either beta-actin or GAPDH 

house-keeping genes to normalise because their expression remains relatively unchanged, 

regardless of cellular state. 

A typical reaction setup was set up on ice in a Micro-Amp optical 96-well plate (Applied 

Biosystems, cat # 4346906) for qPCR, and was as follows;  

 

 

 

 

 

Component Volume x1 well (μl) 

2x SYBR/Taqman Mix 10 

Forward Primer (10nM)
 

1 

Reverse Primer (10nM)
 

1 

cDNA 1 

H2O 7 

Total Volume 20 
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Reactions were then carried out on an Applied Biosystems® 7500 Fast Real-Time PCR 

System under the following cycling conditions; 

 

 

Finally, results were analysed in excel and exported using the corresponding Applied 

Biosystems® software.  

 

 

2.6.16: Transfection of Mammalian Cells 

A common technique used by molecular scientists is transfection, where one can introduce 

foreign DNA/vectors into mammalian cells for testing and mimicking expression much like 

the in vivo environment. Transfection of cells typically means the opening of ‘pores’ on the 

cells membrane, which allow the uptake of genetic material.  

During this project we used either Lipofectamine 2000® (L2000) (Invitrogen.cat #18324-

111) or TransIT®-2020 reagent (Mirius.cat #MIR-5404) for transfection experiments.  

Transfections can be transient (short term) or stable (long term). In transient experiments, 

the DNA material is not incorporated into the cells nuclear genome and after a few cell 

cycles, is diluted by natural cell division (mitosis). However, often short term is desirable 

for what the scientist is trying to analyse.  

In stable transfections, the DNA material is integrated into the genome, due to the presence 

of a selectable marker (e.g.: G418/geneticin drug or toxin marker) routinely contained 

within a plasmid. Therefore, all subsequent progeny will have taken up the foreign DNA 

aswell. Stable clones were generated after 3-6 weeks of selective pressure and passages and 

can be used indefinitely if stored via cryopreservation in liquid nitrogen.  
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The following protocol was used for transfections in 24-well format;  

1. Approximately 18-24 hours before transfection, plates cells so that at time of transfection 

confluency is ~50-80%, I often use seeding density of 2-5x10
5
 for adherent cells and 5-

8x10
5
 for suspension cultures. 

2. Incubate overnight at 37
o
C in 5% CO2 incubator. 

3. Next day warm TransIT®-2020 reagent to RT and vortex gently 

4. Place 50μl serum free media per sample well in sterile tubes 

5. Add 500ng stock plasmid DNA and gently mix 

6. Add 1.5μl of TransIT®-2020 to the mixture and gently mix 

7. Incubate at RT for 15-30 mins to allow sufficient time for complexes to form 

8. Add this mix drop-wise random areas of the sample well 

9. Gently rock the plates to create a evenly distributed environment in the wells 

10. Inoculate for 24-72 hours and it is not necessary to replace with fresh media 

11. Harvest and assay as required. 

 

2.7: SEAP assays 

A functional assay was used to determine the secreted alkaline phosphatase (SEAP) 

producing capability of cells grown in culture and is called the SEAP assay. It is an 

enzymatic colorimetric detection assay and is advantageous due to it being much less 

expensive than other techniques, can be setup quickly and can be performed using a 

conventional ELISA plate spectrophotometer.  

To determine the amount of SEAP produced by CHO cells, we utilised the adapted CHO-

K1-SEAP cell line (adapted by Dr. Niraj Kumar in-house), which were grown in SFM-II 

media. Depending on the kind of experiment undertaken, sample aliquots were taken at 

appropriate time intervals (days 1-12 for our time-points) during culture growth and 

centrifuged at 13000rpm for 10 minutes and supernatant transferred for storage. Samples 

were used in the assay straight away or placed at -20
o
C storage to be used at a later date. 

For example, when all timepoints samples were collected and therefore all samples were 

ran together on the one plate.  

To perform the assay, 50μl of this supernatant media was transferred to individual wells of 

a flat-bottomed 96 well plate (Costar. cat # CLS3595). To each well, 50μl of a 2x SEAP 

buffer (10.5g diethanolamine, 50μl of 1M MgCl2 and 226 mg of L-homoarginine in a total 

volume of 50ml) was added. Plates were then incubated for 10 minutes at 37
o
C to prime the 

http://www.sigmaaldrich.com/catalog/product/sigma/CLS3595?lang=en&region=US
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reaction; during those 10 minutes SEAP substrate solution was made up (158 mg of p-

nitrophenolphosphate (Sigma, cat # P4744) in 5ml of 1x SEAP buffer in a universal 

wrapped in tinfoil (to avoid light exposure). Then just prior to placing the plate into the 

BioTek® plate reader, 10μl of the SEAP substrate solution was added to each well with a 

multi-channel pipette. The change in absorbance per minute (OD405/min) was the indicator 

of the amount of SEAP present in each sample and calculated in excel. 

 

2.8: Flow cytometry and cell imaging using Guava® Easycyte systems 

Using a microcapillary Guava® flow cytometer in-house we were able to utilise two assays 

for the project, The Viacount® Assay and the ExpressPlus® Assay. The Viacount was used 

for cell counting and to calculate the percentage viability of cells in a given culture sample.  

The Viacount assay is regarded as more accurate than using a standard haemocytometer 

coupled with higher throughput. For example, 96 samples could be multiplexed on the one 

plate. The Viacount assay distinguishes between viable and non-viable cells based on 

differential permeabilities of two DNA binding dyes in the Viacount reagent (Guava 

Technologies. Cat # 4000-0041). The nuclear dye only stains nucleated cells, while the 

viability dye brightly stains cells undergoing apoptosis (programmed cell death).  

To perform cell counts, a volume of cells in culture was processed by taking old media out 

and trypsinising the cells (no need for trypsin in suspension cultures), viacount reagent was 

allowed to equilibrate to room temperature and was aliquoted 1:1 with the sample volume 

to be tested. Samples were placed in a round-bottomed 96-well plate and incubated at RT 

for 10 minutes before reading on the Guava® flow cytometer. Cell numbers and % viability 

values were exported into excel for analysis. 

As a means to calculate promoter activity the ExpressPlus® program was used to measure 

the GFP intensity within a population of cells, and involves gating negative and positive 

GFP cells and allocating a Y-mean expression value to each sample.  

In promoter studies, transfection, as described in section 2.6.16, was carried out using the 

constructed plasmids (reporter gene and promoter fragment inserts) and attached CHO-K1 

cells grown in 24-well format. The cellular machinery then promotes protein synthesis and 
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thus GFP expression strength of our promoters of interest which were detected from their 

excitation peak at a wavelength of 395 nm when exposed to ultraviolet light in the Guava® 

flow cytometer.  

After 24-48 hours, samples were taken. Media was removed and cells were treated with 

trypsin. The sample is diluted with nuclease-free water as required depending on cell 

density and aliquoted into a round-bottomed 96-well plate and read using flow cytometry 

again. Y-mean values were indicative of GFP fluorescence intensity and values were 

exported to excel for analysis. 

Unlike the Viacount® reagent and program, the ExpressPlus® program only required cells 

to be in suspension with no additional reagent needed; therefore pippetting well after 

trypsinisation to ensure no clumping was imperative.  

 

2.9: PCR based miRNA Taqman Low Density Arrays (TLDA) 

Taqman® Low Density Arrays (Applied Biosystems.cat #4334812) are 384-well micro-

fluidic cards designed for multiplex analysis of gene expression patterns of up to 8 samples 

in parallel across a defined set of gene targets (Figure 2.9.2). TLDA arrays are highly 

sensitive and reproducible which involves PCR amplification and simultaneous 

quantification of a DNA molecule based on a similar technology to qPCR as mentioned in 

section 2.6.15.  

The arrays contain complementary probes for all known mouse miRNAs as the mouse 

genome is sequenced while the CHO genome was not fully sequenced at the time of testing. 

Homology to another rodent species was the best viable option.  

The probes are divided into two primer pool sets (A+B) with A containing the more 

common miRNAs and B having more rare, less characterised ones.  
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2.9.1: Reverse Transcription 

The RT reaction to create the full complement of cDNA prior to TLDA is described below; 

 

 

A volume of 7μl of RT mix was added to each labelled thin-walled PCR tube (as required), 

then to each tube 2μl of RNA sample (100ng) and 1μl of Multiplex RT rodent Primer Pool 

A or B were added. The sample was mixed gently and incubated on ice for 10 mins. The 

reverse transcription reaction was performed using the G-Storm thermal cycler under the 

following conditions; 

Step Type Time (mins) Temperature (
o
C) 

HOLD 30 16 

HOLD 30 42 

HOLD 5 85 

HOLD ∞ 4 

 

 

Two separate RT reactions were performed (A+B primers), on the RNA extracted from the 

cells being tested. Analysis of miRNA expression was done in two separate experiments; 

one was based on temperature shift causing differential expression pattern shifts and thus 

identified candidate miRNAs for further study and functional validation related to 

temperature inducibility in the project.  

Another study, involved the ‘Mir-Capture’ approach (section 1.14.2), where cells 

underwent targeting by a biotinylated anti-sense oligonucleotide capture affinity technique 

(section 2.19). RNA was extracted with the MirVana™ (Ambion cat # AM1561) isolation 

kit to ensure miRNAs were kept intact. This RNA was then loaded into the micro-fluidic 

cards and loaded into the Applied Biosystems® 7900HT thermal cycler for analysis. 

Component Volume x1 RT (μl) 

100mM dNTPs 0.20 

MultiScribe™ RT enzyme (50 U/μl)
 

2 

10x Reverse Transcription Buffer
 

1 

RNAse Inhibitor (20 U/μl) 0.125 

Nuclease free H2O 3.675 

Total Volume 7 
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2.9.2: PCR using 2x TaqMan® Master mix 

After the RT step, the reaction tube was diluted 62.5 fold by adding 615μl of nuclease-free 

water to the 10μl RT reaction mix and each individual sample for PCR was prepared as 

follows; 

Component Volume (μl) per reservoir port 

Diluted RT reaction 50 

TaqMan 2x Universal Master mix (No 

AmpErase® UNG) 

50 

Total Volume 100 

 

This 100μl sample specific RT was then loaded into the large fill hole in the card with the 

smaller hole allowing air to escape and not cause bubbles and hinder the filling process (see 

figure 2.9.2). The card(s) are then centrifuged at 2000rpm for 1 minute to allow every well 

to be loaded equally. 

 

Figure 2.9.2: Schematic representing the loading of the Taqman® Low Density Array 

(TLDA) micro-fluidic cards to analyse miRNA expression. 
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Arrays were incubated on ice for 10 minutes and subsequently run on an Applied 

Biosystems® 7900HT real time PCR machine using the following cycle conditions; 

 

 

2.9.3: TLDA data analysis 

The resulting data from two TLDA runs generated Ct values at each cycle similar to regular 

qPCR but within the TLDA software each miRNA probe is annotated with 518 miRNAs on 

card A and 303 miRNAs on card B. Analysis was carried out using specialist software 

Statminer® from Integromics™ for the temperature-shift profiling experiment as this 

generated a huge dataset. Within each card, a set of endogenous control miRNAs are 

present, the U6 endogenous control was used for normalisation to calculate the ΔCt while a 

cycle threshold of ≤35 and p-value ≤0.05 were used as standard cut off criteria for 

identifying differential expression miRNAs.  

For the ‘MiR-Capture’ experiment, expression values were calculated using the 

comparative Ct method as previously described (User Bulletin No. 2, Applied Biosystems). 

Briefly, this technique uses the formula 2
−ΔΔCt

 to calculate the expression of target genes 

normalised to a calibrator. The threshold cycle (Ct) indicates the cycle number at which the 

amount of amplified target reaches a fixed threshold. Ct values range from 0 to 40 (the 

latter representing the default upper limit PCR cycle number that defines failure to detect a 

signal).  

ΔCt values [ΔCt = Ct (target gene) – Ct (RPLP0)], were calculated for the scrambled 

mismatch capture oligo sample and subsequently used as the calibrator. All gene expression 

values were assigned a relative value of 1.00, to determine comparative gene expression 

such that ΔΔCt = ΔCt (mismatch oligo sample) – ΔCt (XIAP capture oligo sample). PCR 

amplification efficiency was calculated by analysing the standard curves from each gene 

amplification, a slope of the line close to -3.3 was indicative of a 100% efficient 

amplification run. 

Stage Temperature Time Cycle Number 

Enzyme Activation 95°C 20 sec 1 cycle 

Denaturation 95°C 3 secs 
40 cycles 

Annealing/Elongation 60°C 30 secs 

 



103 
 

2.10: Functional analysis (FA) of selected gene and miRNA targets 

RNA interference (RNAi) was carried out using small interfering RNA (siRNAs) to silence 

the expression of specific genes mainly the valosin containing protein (VCP cat #4390555)) 

and X-linked inhibitor of apoptosis (XIAP cat #4390824) plus a double stranded duplex 

negative control siRNA (PM- cat #4090975). 

Other chemically synthesised small RNAs (pre-miR mimics or antagomirs) were used to 

suppress or induce the expression of selected miRNAs. We used the following pre-miR 

mimics (miR-124, miR-222 and miR-19b cat #AM17100) to validate suppression of 

endogenous XIAP in CHO-K1 and GBM SNB-19 cells. 

The siRNAs and miRNAs used in this project were purchased from Ambion/Life 

Technologies®. The siRNAs were from the Silencer® range and the miRNAs were from 

the MirVana™ range, while all were transfected into mammalian cells using NeoFX™ 

transfection reagent (Ambion.cat #AM4511). All transfections were carried out using 

sterile 1.5mL eppendorfs or filter-cap spin tubes (Sartorius) in 2ml working volumes or in 

24-well format. 

 

2.11: Bradford Assay and Protein Quantification 

In order to calculate the protein concentration of samples, a spectroscopic and colorimetric 

assay called the Bradford Assay was used and is based on the absorbance shift of 

coomassie brilliant blue dye from red to blue under acidic conditions.  

Cells were grown in culture and underwent transfection of luciferase-promoter reporter 

plasmid constructs, after 48 hours the media was removed and cells were either trypsinised 

or centrifuged if using suspension cells just centrifuged. After centrifugation cell samples 

were washed 3 times with PBS and cells pellets were lysed with an in-house lysis buffer 

cocktail (7M Urea, 2M Thiourea, 4% CHAPS, 30mM Tris and adjusted with HCL to pH 

8.5) additionally a phosphatase inhibitor (Halt™ cat#78420), RNase inhibitor (Ambion 

cat#N8080119) and a protease inhibitor (Qiagen cat#19157) were added to the lysis buffer 

cocktail to protect the lysed proteins from the cellular nucleases and proteases. 
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BSA stock (2μg/ml) was diluted to a half with nuclease-free water or the same lysis buffer 

that the samples were processed in. Then serial dilutions from this 1000x working stock 

were made to create a standard curve [1000x-750x-500x-250x-125x-0] from which the 

protein concentrations of our unknown samples can be calculated from. 

Using 96-well plates, a 5μl volume of lysed sample and a 250μl volume of BioRad® 

Quickdye reagent (cat #500-0205) was added to each sample to be read in triplicate along 

with a zero/blank sample (lysis buffer only). The samples were read using KC4 software on 

a BioTek™ Synergy HT plate reader at 595nm absorbance. The intensity of the blue dye 

increases as the samples protein concentration increases. Due to the disadvantage of a short 

linear range of the Bradford assay, samples were usually diluted (1:10) before loading to 

ensure sample results are within the standard curve range.  

 

2.12: Western Blotting 

Western blotting is a widely accepted analytical technique used to detect specific proteins 

in a given sample of tissue homogenate or extract. Proteins within a sample were first 

separated based on molecular weight (M.W) or isoelectric point (Pl) on a polyacrylamide 

gel and then transferred to a membrane where they are probed with an antibody (Ab) 

complementary to a specific protein which allowed detection of a given protein. We used 

the following 6-step protocol; 

2.12.1: Western sample preparation 

 Cell pellets were resuspended in adequate volume of cell lysis buffer (same as 

bradford lysis buffer in section 2.11) 

 Bradford assay was performed to calculate protein concentrations to ensure all 

samples contain same amount of protein 

 2x Laemmli sample buffer (Sigma. cat #S3401) was added to all samples to 

ensure lane-to-lane consistency and reproducibility; all volumes were equal on 

same gel (10μg protein) 

 For lanes of the gel that were empty; 2x Laemmli and sample buffer was used 

only to ensure no empty wells are running 

 The samples were boiled at 95
o
C for 5 mins, centrifuged and stored at -20

o
C if 

not using immediately. Note: Re-boil if re-using previously frozen samples 

http://en.wikipedia.org/wiki/Analytical_technique
http://en.wikipedia.org/wiki/Proteins
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2.12.2: Preparation of gel 

 Pre-warm Invitrogen precast Bis-Tris 4-12% gels (Invitrogen.cat #EC6175BOX) at 

RT for at least 30 mins before use 

 Prepare 800mL of MOPS running buffer (NuPage 20x. cat #NP0001)) 

 Rinse wells three times and remove white label/comb 

 Load 4μl full range M.W marker (New England Biolabs. cat #P7708S) and protein 

samples into the wells 

 Add transfer buffer (BioRad. cat #161-0734) including NuPage antioxidant 

(Ambion. cat #NP0005) (inner chamber) 

 The gel was run at 200V for approx. 1 hour 

2.12.3: Transfer Preparation 

 Prepare transfer buffer (50mL per membrane) - kept on ice 

 Cut PVDF-membrane (approx same size as filter paper) 

 Equilibrate PVDF-membrane for approx 10-15 secs using methanol and rinse well 

with UHP and incubate in transfer buffer 

 Soak filter paper in transfer buffer before use  

 Cut the gel, removing the wells and thick part of gel and snip corner to keep track of 

orientation of gel 

 Equilibrate gel in transfer buffer for ~5mins on shaker platform 

2.12.4: Transfer 

 Set up semi-dry transfer as follows; 

5 sheets of Whatman 3mm filter paper (cathode plate) (Whatman. cat #1001824) 

Nitrocellulose Membrane (GE healthcare. cat #RPN3032D) 

Gel 

5 sheets of Whatman 3mm filter paper 

 Remove excess air after each layer by rolling a pipette along the surface to ensure 

no air bubbles remain 

 Transfer the proteins at 340 mA (constant), 15V max, >20mins (allow longer for 

higher MW proteins) 

2.12.5: Blocking / Antibodies 

 Stain membranes with Ponceau (Sigma. cat # P7170) to check equal loading and 

successful transfer 

 Destain with UHP water 

 Block unspecific binding for 2 hours at RT with 5% milk powder (Marvel) in 

TBS-T 
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 Add primary antibody (1
o
) and incubate o/n on shaker or 2 hours at RT is 

usually fine 

 Rinse membrane with TBS-T 

 Wash membrane (x3) in TBS-T, 10 mins each wash on shaker 

 Add appropriate secondary antibody (2
o
) and incubate for ~2hours 

 Rinse membrane again with TBS-T 

 Repeat x3 washes with TBS-T, 10 mins each on shaker 

 

2.12.6: Antibody detection 

 Prepare detection solution : ECL (Pierce®. cat #80196) 1mL solution A and 

1mL solution B (store in the dark) 

 Prepare developer (Kodak. cat #LX24) and fixer (Kodak. cat #FX-40) reagents, 

they can be reused several times, wrap bottles in tinfoil and store at RT and in 

the dark 

 Incubate membrane and detection solution for 1 min, remove excess fluid with 

tissue and cover with transparent material (poly pockets) and careful to avoid 

bubbles 

 In the dark room, using only the red light as it doesn’t damage the 

autoradiographic film (Roche. cat #11666916001) 

 Cut the film to size and place film on top of membrane (careful to mark position 

for orientation again) 

 ~2-5 mins exposure time for unknown protein samples and ~30-45 secs for 

Beta-actin and GAPDH controls 

 Careful not to over expose the film  

 After exposure, place film in developer (watch developing progress) and briefly 

immerse in water to rinse and transfer to fixer for a few minutes till film 

becomes transparent and rinse with water again  

 Air dried and observe gel image on film (scanned onto computer if necessary) 

 

2.13: Dual-Luciferase Reporter Assay (DLR) 

The dual-luciferase assay (Promega. cat #E1910 and E1960) was used for reporter studies. 

Segments of DNA (our promoter fragments of interest in this case) were placed upstream of 

a luciferase gene in promega’s pGL3-basic vector (cat #E1751) by ligation methods 

(section 2.6.5). These plasmid constructs were subsequently transfected into CHO-K1 cells 

for testing. 
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In addition to this, a pGL3-Control vector (Promega. cat # E1741) was also transfected as 

comparison control. Finally, to normalise discrepancies in transfection efficiency, a strong 

expression ‘Renilla’ luciferase pRL-CMV vector (Promega. cat #E226A) was used to co-

transfect alongside test samples.  

The DLR assay can be done from any vessel. Typically a 24-well plate format was used. 

The kit comes with all reagents necessary to complete assay and the protocol was as 

follows; 

DLR Protocol:   

Sample preparation: 

1. Cells were transfected with 0.5μg of test (Basic pGL3 + promoter fragments) vector 

and 400ng of Renilla  

2. After required time post transfection (24-48 hours typically), growth media was 

removed from wells 

3. Washed cells with cold PBS (1x) and subsequently removed 

4. 200μl of 1x PLB lysis buffer was dispensed into all wells for testing 

5. Gentle shaking of the plate for 15-20 mins on a belly dancer until all cells became 

detached and lysed 

6. Transferred to suitable vial/tubes for freezing or testing straight away on BioTek® 

Synergy™ HT multimode plate reader (prod #7091000) and performed as per 

operators manual (Bulletin #TM040) 

Dual-Luciferase Assay: 

1. The BioTek® reader has injector capabilities, so the injectors 1 and 2 were set to 

dispense 100μl of LARII and Stop & Glo® reagent respectively 

2. For measurement readings, a 1-2 second delay and 5-15 second read times were 

used 

3. Using special black flat bottomed (to avoid auto-luminescence) 96-well plates 

~20μl of each PLB lysate sample was loaded per well 

4. The software was setup and run, 100μl of LARII was dispensed and firefly-

luciferase activity was measured in kinetic reads over 10 seconds. This was 

followed by 100μl of Stop & Glo® which quenched the first firefly signal and 

triggered the Renilla-luciferase control to be measured over 10 second kinetic reads 

also 

5. All figures for firefly were normalised to Renilla values and were expressed in 

relative luciferase units (RLU) 
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Figure 2.13: Schematic representing the 3 step dual-luciferase (DLR) assay workflow 

using specific black flat-bottom coated 96-well plates. Detection signal in the KC4 

spectrophotmeter. 

 

2.14: Apoptosis/Nexin® Assay 

Proliferation and viability assays are fundamental experiments in cell culture settings while 

equally informative in cell culture techniques are apoptotic assays. As more studies and 

molecules are being shown to be involved in internal pathways such as apoptosis 

(programmed cell death), it represents another means to analyse cellular behaviour.  

Here we describe the Guava Nexin® Assay (Millipore. cat #4500-0450), during cell 

culture, as cells respond to specific induction signals they initiate intracellular processes 

that result in characteristic physiological changes. Among these are externalisation of 

phosphatidylserine (PS) to the cell surface which leads to cleavage, compaction and 

fragmentation of specific proteins leading to loss in membrane integrity. 
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Annexin-V is a calcium-dependent binding protein with a high affinity for PS, as molecules 

of PS are localized to the cell membrane where Annexin-V can readily bind them. The 

Nexin® Assay was then utilised to detect levels of PS on the external membrane of a 

population of cells in a sample and a built in dye 7-AAD give an indication of cell health 

and structural integrity and ultimately its stage of apoptosis, as three populations can be 

distinguished from the assay in tandem;  

 Non-apoptotic cells: Annexin V (-) and 7-AAD (-) 

 Early apoptotic cells: Annexin V (+) and 7-AAD (-) 

 Late stage apoptotic/Dead: Annexin V (+) and 7-AAD (+) 

 

Cells were seeded based on vessel used, frequently, 6-well plates we seeded 1x10
5
 cells per 

well and included suitable positive (sodium butyrate to induce apoptosis) and negative 

(fresh media) controls. Cells were incubated over a timecourse of usually 7-14 days. The 

Guava Nexin® reagent was equilibrated to RT prior to addition to cell samples.  

Note: Cell samples must contain at least 1% BSA or FBS for the Nexin reagent to bind to 

the cell surface. This was of no concern, as our samples were typically grown in 1-5% 

serum.  

A 100μl volume of sample was removed from each well after trypsinisation and mixed 

well. Samples were placed into round bottomed 96-well plates with 100μl of Nexin® 

reagent (1:1 ratio) and incubated at room temperature for 20 minutes in the dark before 

acquiring and running the Guava software. 

A typical output from a Nexin run is shown in figure 2.14; the software divided the plots 

into 4 quadrants: 

 Upper left: Cell debris/nuclear debris (-) (+) 

 Upper right: cells in late stage apoptosis and necrotic integrity (+) (+) 

 Lower left: Viable cells, not undergoing detectable apoptosis (-) (-) 

 Lower right: cells in early stage apoptosis (+) (-) 
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Figure 2.14: Illustration of software output file after Nexin® Assay, breakdown of 

4 quadrants post-acquisition of cell samples. 

 

2.14.1: Spent media and sodium butyrate (NaBu) treatment for apoptosis studies 

To induce apoptosis for apoptosis studies in this project, two conditions were used. One 

was the use of late culture conditional spent media (after 9 days) and based on findings 

from Druz et al, where they used spent media to induce apoptosis (Druz et al. 2011). CHO-

K1 cells grown in ATCC or SFM-II media for 9 days in culture were harvested and passed 

through 0.22 micron filters to remove cells and cellular debris. The media was then 

supplemented into healthy cell populations to trigger an apoptosis environment. 

Additionally, sodium butyrate (NaBu) was used to trigger apoptosis also. This method was 

less novel as for the last three decades, at millimolar concentrations, NaBu was added to 

cell cultures, many morphological and biochemical modifications have been reported 

(Kruh,J. 1982). However, more recently it has been used to increase monoclonal 

productivity at low concentrations (Yoon et al. 2004), but at higher concentrations it 

induces autophagy and apoptosis (Lee et al. 2012). It is the latter that we utilised NaBu for 

our work. 

A 1M stock of NaBu was made up in PBS. 1/2mM was deemed sufficient for induction of 

low level apoptosis, while 5/10mM was needed to trigger a noticeable apoptosis effect. 

Therefore from our stock we typically used 120μl in 12mLs of ATCC media to add to cells 

grown in 6 or 24-well plates.  
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2.15: EPO Assay and Quantification 

EPO (Erythropoietin) is a glycoprotein hormone and cytokine and is responsible for red 

blood cell signalling and formation. It has a predicted molecular weight of ~34kDa. 

Using a recombinant form of human EPO, a well known biopharmaceutical product, we 

cloned it into the reporter plasmid constructs.  

Extracellular and Intracellular levels of this protein were measured using western blotting 

and reverse transcriptase qPCR in order to infer that the promoters used in this thesis can be 

used to drive expression of an industrial strength important protein. EPO is secreted into the 

media aswell as having intracellular levels. 

For detection in western blotting, a primary polyclonal EPO antibody was given to our 

group by Dr. Paul Barham, and a similar anti-EPO antibody was ordered from Abcam PLC 

Cambridge (cat #Ab30545) during the later stages of the project. The EPO antibody was 

diluted to 1/1000 before use and the western protocol then was followed as described in 

section 2.12. 

Assays were performed in 24-well suspensions and adherent plate formats to keep 

concentrations of protein high and to allow for multiplexing in the same experiment.  

For extracellular detection, transfection was carried out as outlined in section 2.2.16, after 

4/5 days post-transfection, a 20μl volume of media was taken off and centrifuged to ensure 

no cellular carryover and processed as before. Note: qPCR cannot be done on extracellular 

protein.  

For intracellular detection, media was removed 4/5 days post-transfection and washed twice 

with 1x PBS, lysis buffer was added to cells and protein content measured via Bradford 

Assay. 10μg of protein was loaded onto a Bis-Tris 4-12% SDS gel as before. Additionally, 

this time replicates were left to be treated with Trizol® reagent to isolate the total RNA 

from each sample to generate cDNA for qPCR analysis and EPO mRNA transcript levels. 
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2.16: p27 Assay and Quantification 

Using an enzyme inhibitor called CDKN1B, also known as p27, was cloned into the 

promoter-plasmid constructs in order to test the promoters of interest from a more growth 

related phenotypic viewpoint. The encoded protein binds to and prevents the activation of 

cyclins A-CDK2, E-CDK2 and cyclin D-CDK4 complexes, and thus controls the cell cycle 

progression from G1 to S phases, therefore acting as a cell growth suppressor.  

This phenotypic effect was used as a proof of concept reporter while showing that the 

promoter of concern can be used in an established cell regulatory pathway scenario. 

Reduction in cell numbers were indicative of p27 expression strength and proliferation 

inhibition caused by the overexpression of p27, therefore by calculating the cell numbers 

and growth profiles in p27 positively transfected samples we could analyse the promoters 

further. 

Readings were achieved by using the Guava Flow Cytometry system and Guava Viacount® 

Assay once again to count the cell population numbers and viability as described in section 

2.8 and values exported to excel for analysis. 

 

2.17: Other Essential Techniques of Cell Culture 

2.17.1: Single Cell Cloning via Serial Dilution 

Obtaining single cell clones is an important aspect in many molecular experiments, in order 

to derive a single cell and all subsequent progeny can perform identically during a certain 

experiment. Cells can have differing rates of growth, gene expression and apoptosis for 

example therefore by performing single cell cloning we can circumvent any variability seen 

in heterogeneous mixed populations. 

In 96-well plates, we used attached cells at ~90% confluency. Cell stocks were rinsed with 

PBS and detached by incubation at 37
o
C with pre-warmed trypsin for 5-10 mins. Addition 

of fresh warm media containing serum stopped the trypsin action and samples mixed well 

to disrupt any possible cell clumping. An aliquot of these cells were then centrifuged and 

resuspended and then the following protocol from Corning Inc™ was followed;  

http://en.wikipedia.org/wiki/Cyclin_E
http://en.wikipedia.org/wiki/Cyclin-dependent_kinase_2
http://en.wikipedia.org/wiki/Cyclin_D
http://en.wikipedia.org/wiki/Cyclin-dependent_kinase_4
http://en.wikipedia.org/wiki/Cell_cycle
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1. Fill the reagent dispensing tray with 12mL of the appropriate culture medium, then 

using an 8-channel micropipettor add l00μL medium to all the wells in the 96-well 

plate except well A1 (see diagram below) which is left empty.  

 

 

 

 

2. Add 200μL of the cell suspension to well A1 (See Figure 1.) Then using a single 

channel pipettor quickly transfer a 100μL aliquot from the first well to well B1 and 

mix by gently pipetting being careful to avoid making bubbles. Using the same tip, 

we repeated these 1:2 dilutions down the entire column, discarding the original 

100μL from H1 so that it ends up with the same volume as the wells above it.  

 

3. With the 8-channel micropipettor add an additional l00μL of medium to each well 

in column 1 (giving a final volume of cells and medium of 200μL/well). Then using 

the same pipettor quickly transfer l00μL from the wells in the first column (A1 

through H1) to those in the second column (A2 through H2) and mix by gently 

pipetting. Avoiding bubbles!! 

 

4. Using the same tips, repeat these 1:2 dilutions across the entire plate, discarding 

l00μL from each of the wells in the last column (A12 through H12) so that all the 

wells end up with 100μL of cell suspension.  

 

5. Bring the final volume of all the wells to 200μL by adding 100μL medium to each 

well. Then label the plate with the date and cell type. Adding filtered conditioned 

medium (medium in which cells have been previously grown for 24 hours) to the 

wells can increase the success rate (cloning efficiency) for difficult to grow cells.  

 

6. Incubate plate undisturbed at 37°C in a humidified CO2 incubator.  
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7. Clones should be detectable by microscopy after 4/ 5 days and be ready to score 

after 7 to 10 days, depending on the growth rate of the cells. Check each well and 

mark all wells that contain just a single colony. Typically the number of single 

clonal events was around 10 clones per plate. 

 

8. After 1/2 weeks, these clones should have spread out into larger single colonies 

visible under the microscope. These colonies can then be subcultured from the wells 

into larger vessels. Usually each clone is transferred into a single well in a 12 well 

or 24-well plate for further growth.  

 

2.17.2: Cell Sorting / FACS 

A Fluorescence-activated cell sorter (FACS) can separate cells based on size and 

fluorescence intensity. Unlike the Guava flow cytometry the FACS can sort cells aswell as 

measure fluorescence. Cells transfected with a GFP gene can then be sorted by expression 

strength in real time and placed straight into a 96-well plate to proliferate from a single 

clone. Cells are directed into a stream that forms miniscule droplets after a laser is directed 

at the stream, the idea is that in one of every two or three droplets will contain a single cell. 

CHO cells were sorted based on fluorescence in the top 25% range, as detected by the FITC 

(fluorescein isothiocyanate) channel in the software and directly placed into 96-well plates. 

Pre-loaded in these plates were equal amounts of conditional and fresh ATCC media 

supplemented with 2.5% FCS. Additionally, 1x Penicillin/Streptomycin solution (to avoid 

bacterial contamination) plus 500μg/mL of G418 was also added. A stringent fluorescent 

gating cut-off was applied using untransfected/GFP negative cells (representing basal auto-

fluorescence), this facilitated the software to discriminate between positive and negative 

GFP expressing cells in the populations to be sorted.  

 

2.18: IgG ELISA Quantitation Set 

We used the Bethyl Laboratories Inc® kit (Cat#: E80-104) for the detection of human 

version of the IgG antibody in supernatant from media, plasma serum and other biological 

fluid samples in a convenient 96-well plate format (Cat#: E105).  
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Samples and control standards were diluted in suitable ELISA diluents (Blocking buffer + 

Tween 20) as required to ensure samples were all within range of a standard curve for 

concentration calculations. We used the following daily timepoints and dilutions; Day1 

1\100, Day2 1\200, Day3 1\400, Day4 1\600, Day5 1\600, Day6 1\800, Day7 1\800, Day 8 

1\1000.  

 

ELISA Procedure Overview: 

  

1. Add 100 l of standard or sample to designated wells.  

[Note: Run each standard or sample in duplicate.] 

 

2. Cover the plate and incubate at room temperature (20-25C) for 1 hour.  

  

3. Wash the plate FOUR times.  

 

4. Add 100 l of anti-human IgG Detection Antibody to each well.  

 

5. Cover the plate and incubate at room temperature for 1 hour.  

 

6. Wash the plate FOUR times.  

 

7. Add 100 l of HRP Solution A to each well.  

 

8. Cover the plate and incubate at room temperature for 30 minutes.  

 

9. Wash the plate FOUR times.  

 

10. Add 100 l of TMB Substrate Solution to each well.  

 

11. Incubate the plate in the dark at room temperature for 30 minutes.  

 

12. Stop the reaction by adding 100 l of Stop Solution to each well.  

 

13. Measure absorbance on plate reader at 450 nm ABS within 30 mins of addition of stop 

solution. 

 

See the technical sheet PDF (E80-104) supplied in the kit for all other protocol information, 

such as precautions, troubleshooting and calculation aids. 
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2.19: MicroRNA-mRNA moiety capture using biotinylated oligos 

As mentioned in the introduction, miRNAs are responsible for the regulation of gene 

expression via translational repression or messenger RNA degradation. Although numerous 

bioinformatic prediction models exist to identify miRNA-mRNA interactions, experimental 

validation of bona fide interactions from in vivo samples can be very difficult and 

laborious.  

Here we present a full microRNA ‘Mir-Capture’ affinity technique protocol which was 

used to experimentally extract cognate miRNAs that target a specific mRNA. Streptavidin 

beads were used along with an anti-sense capture oligonucleotide which was 

complementary to a specific gene of interest. In our case, the X-linker inhibitor of apoptosis 

(XIAP) gene or more specifically it’s mRNA was chosen as the target.  

 

2.19.1: Biotinylated DNA oligo design 

The secondary and tertiary structures of the CHO and Human XIAP mRNA transcript 

variants were modeled with M-Fold, which is found here; 

http://mfold.rna.albany.edu/?q=mfold/RNA-Folding-Form2.3.  

The most thermodynamically stringent structures were selected in each case. Exposed 

single strand regions were identified and used as attachment points for the oligos for each 

cell line. For Human (SNB-19), two oligos were designed due to the XIAP 3’UTR being 

unusually long in order to capture full length of the transcript and not miss prospective 

bound miRNAs.  

See table 2.19.1 for a list of the capture oligos used over the project. Two control capture 

oligos were designed, one fully scrambled sequence oligo as negative control (should not 

target anything) and one oligo with a 3-base mismatch to accentuate the sensitivity of the 

miR-Capture assay compared to the affinity of the true capture oligo targeting XIAP. 

 

 

 

http://mfold.rna.albany.edu/?q=mfold/RNA-Folding-Form2.3


117 
 

Table 2.19.1: List of Capture oligos used for miRNA pull-down. 

 

 

Each oligo was designed with a 5’ biotin modification (5’BITEG) using canonical Watson-

Crick RNA and DNA base-pairing, by MWG Eurofins (http://www.eurofinsgenomics.eu/).  

 

2.19.2: MiR-Capture full protocol 

General Considerations: 

As it is important to isolate ‘high-quality RNA’ and reduce the chance of RNAase 

contamination, special precautions to avoid RNA degradation must be carried out. This 

included wearing gloves, routine use of nuclease-free water or DEPC-treated water, 

addition of RNasein to all buffers and use of RNase-free microcentrifuge tubes and pipette 

tips. 

1. Formaldehyde Cross-Linking 

i. Prepare three T-75 flasks of confluent cells suspended in 20 ml PBS (RT°). 

ii. Centrifuge cells at 1000g for 3 minutes and resuspend well in 10 ml cell 

medium (RT°). 

iii. Add 10 ml 2% methanol-free formaldehyde and incubate on a rocker for 10 

minutes. 

iv. Add 1.33 ml 3 M glycine for a final concentration of 0.2 M and incubate for an 

additional 5 min at room temperature.  

Note: Glycine stops the cross-linking by reacting with formaldehyde 

2. Wash cells 

i. Centrifuge cells for 4 minutes at 2000g @4°C and decant supernatant. 

ii. Wash cells twice in 50 ml ice-cold PBS by resuspending cells in a 50 ml falcon 

tube, centrifuging at 2000g for 5 minutes @4°C and decanting supernatant. 

iii. Aspirate off the remaining supernatant and resuspend in 0.6 ml ice-cold PBS. 

http://www.eurofinsgenomics.eu/
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iv. Transfer to screw-cap tube and wash 50 ml falcon tube with an additional 0.6 ml 

ice-cold PBS. 

v. Transfer this to the screw cap tube and centrifuge for 2000g @4°C for 5 

minutes. 

vi. Aspirate off all supernatant and flash-freeze for 1 minute in Liquid nitrogen,  -

80°C long-term storage or proceed straight to lysis step. 

 

3. Lyse cells 

i. Re-suspend cells in 0.4 ml ice cold FA lysis buffer per ~100 mg pellet.  

ii. Add 0.4 ml 0.5 mm glass beads. 

iii. In a screw-cap microtube, lyse cells by using a FastPrep cell disrupter 4 times 

for 30 sec at speed 5.5, incubating sample on ice between each treatment.  

iv. Puncture a hole in the bottom of the tube with a sterile 0.45 mm needle. 

v. Place the tube into another microtube in a 15-ml centrifuge tube. Centrifuge for 

5 minutes at 3500 g @4°C. 

vi. Add 0.6 ml FA lysis buffer to the beads and centrifuge the sample for 5 minutes 

at 3500g @4°C. 

vii. Optional Add 0.4 ml FA lysis buffer to lysate to dilute sample. 

Can store at -80
o
C.  

Can check RNA fragment size on a polyacrylamide gel. 

 

4. DNase Treatment 

i. Mix the lysate by pipetting. 

ii. On ice add the following to 1.4 ml lysate: 

25 mM MgCl2 

5 mM CaCl2 

120U Rnasein 

120 μg RNase-free DNase I. 

iii. Mix by flicking the tube, centrifuge and incubate at 37°C for 15 minutes. 

iv. Add 20 mM EDTA to stop the reaction. 

v. Centrifuge the lysate for 5 minutes at 18,000g at 4°C. 

vi. Transfer the supernatant to a new screw-cap tube. 

This is potential stopping point when the lysate is flash-frozen and stored at -

80°C. However, this is unadvisable. 

 

Magnetic Separation 

5. Bead Preparation 

i. Re-suspend beads in the original vial by rotation or vortexing. 

ii. Transfer 0.2 ml beads per sample to Eppendorf tubes. 

iii. Mix in 1 ml of 1X B&W Buffer to each tube and place on a Dynal magnet for 2 

mins. If >0.4 ml beads, pellet them first for 2 minutes on the magnet and 

remove supernatant prior to adding 1 ml 1X B&W Buffer. 

iv. Remove supernatant by aspiration with a pipette while the tube is on the 

magnet 

v. Remove the tube from the Dynal magnet and add 1 ml 1X B&W buffer. 

Consolidate samples to one tube if possible. 
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vi. Repeat steps iii-v x 2 (total washes 3 times) 

vii. Wash the beads twice in 1 ml Solution A (RT°) for 2 minutes and pellet beads 

for 2 minutes. 

viii. Wash the beads once in 1 ml Solution B (RT°), pellet beads for 2 minutes and 

remove all supernatant. 

 

6. mRNA:microRNA Capture 

i. Resuspend beads in twice the original volume of 2X B&W buffer (pH 7.5) (i.e. 

: 400 μl per 200 μl beads). 

ii. Add the same volume of oligonucleotides resuspended in 1X TE buffer at 0.8 

μmol per oligonucleotide per sample (8 μl of 100 μM oligo). 

iii. Incubate on the tube rotator for 15 minutes at RT° to allow the oligos to bind to 

the beads. 

iv. For each sample, take 800 μl bead mix, remove buffer/oligo mix and wash 

them twice in 1 ml of 1X B&W buffer (pH 7.5) @RT°. 

v. Resuspend beads in 0.7 ml Hybridisation Buffer @ 37°C. 

vi. Add 0.5 ml 1X TE (pH 7.5) @ 37°C and add 0.2 ml of the cell lysate. 

vii. Incubate, while rotating in the hybridisation oven for 1.5 hours at max speed at 

37°C. 

viii. Resuspend the beads in 1 ml Washing Buffer A @37°C and rotate in the 

hybridisation oven at 37°C at max speed for 5 minutes. During pelleting make 

sure that beads stuck to the cap of the tube are also washed down. 

ix. Repeat step viii another 3 times (total of 4 times). 

x. Resuspend the beads in 1 ml Washing Buffer B @37°C and rotate in the 

hybridisation oven at 37°C at max speed for 5 minutes.  

 

 

7. Elution of mRNA:microRNA complex 

i. Place the microfuge tube into the Dynal Magnet. Ensure that the tubes are 

properly inserted. 

ii. Allow the microfuge tube to remain in the Dynal for 2 minutes. Gently shake 

while the microfuge tubes are held in position 

iii. Remove Wash Buffer B by aspiration with a pipette while the tube remains in 

the Dynal Magnet. Avoid aspiration along the wall where the dynabeads are 

attracted by the magnet 

iv. Resuspend the beads in 200 μl 1X TE buffer (pH 7.5) @80°C by flushing the 

desired volume of medium along the side of the tube where the target material 

is attracted. Resuspend well.    

v. Heat to 80
o
C for 5 minutes (this will elute the sample and partially reverse 

crosslinks).  

vi. Place the tube immediately on the Dynal magnet for 10 seconds and transfer 

the eluted mRNA in the supernatant to a new RNAase free tube. Carefully 

ensure no beads have been transferred. This can be checked by centrifuging 

and observing a brown pellet. Can store at -80
o
C 

    

 8.  Reverse cross-link and Purify RNA 

i. Incubate the samples at 70°C for 45 minutes to reverse the formaldehyde 

crosslinks. 
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ii. Purify the sample using Trizol-chloroform-ethanol precipitation or column-

based purification (High pure miRNA isolation kit – Roche cat # 

05080576001). 

iii. Measure RNA yield, and proceed to Reverse Transcription qPCR (See section 

2.6.15). 

iv. Samples ready for TLDA expression analysis. TLDA (A+B) Human specific 

micro-fluidic cards were used for all processed samples and run on the Applied 

Biosystems® 7900HT fast thermal cycler (section 2.9).  

v. Enrichment analysis using the ΔΔCT method in excel was performed. 

 
 

2.20: Bioinformatic and Regulatory Web-based software 

Over the course of this project, many web-based software programs were utilised, for a 

plethora of reasons; to identify genomic data, to design primers, to check melting 

temperatures, to predict important regulatory sequences of DNA, sequence retrieval and 

searching gene nomenclature etc.  

The web resource Regulatory Sequence Analysis Tools (RSAT: http://rsat.ulb.ac.be/rsat/) 

offers a collection of these tools dedicated to processing the above enquiries. RSAT 

currently holds >100 fully sequenced genomes, and continually updated by GenBank. 

Table 2.20: List of all existing bioinformatic programs that were used during the project, 

including all hyperlinks and a brief description of the programs function. 

Web Tool: Hyperlink: Description: 

UCSC http://genome.ucsc.edu/ Genome browser for 

mammals/BLAT/In silico work 

MWG Eurofins http://www.eurofinsgenomics.eu/ Oligo and small molecule 

ordering/Sequencing checks 

Genomatix http://www.genomatix.de/ Generation of genome wide 

transcription factor data 

OligoCalc http://www.basic.northwestern.edu/biotools/oligocalc.html Oligonucleotide Properties 

Calculator/ Tm 

calculator/Hairpin loop 

formations/primer design 

M-Fold http://mfold.rna.albany.edu/?q=mfold/RNA-Folding-

Form2.3 
2

o
/3

o
 structure folding 

pattern/Visual interpretation 

CHO consortium http://www.chogenome.org/ Expansive CHO sequence 

database/BLAST 

ClustalW/Omega http://www.ebi.ac.uk/Tools/msa/clustalw2/ Multiple sequence alignment 

program for DNA/RNA or 

proteins 

CGCDB http://www.cgcdb.org/ Transcript database for CHO 

coexpression gene patterns and 

correlation maps 

 

http://mfold.rna.albany.edu/?q=mfold/RNA-Folding-Form2.3
http://mfold.rna.albany.edu/?q=mfold/RNA-Folding-Form2.3
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Section 3.0  
 

 

 

 

 

 

Results 

Project 1 

Endogenous CHO promoters as tools to drive transgene 

expression. 
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3.1: Identification, Isolation and Verification of CHO gene Promoters  

3.1.1: Introduction 

The aim of this project was to identify and exploit endogenous Chinese Hamster Ovary 

(CHO) gene promoters to enhance heterologous protein expression and in turn improving 

cell lines used for biopharmaceutical production. To date ~70% of genetically engineered 

proteins for human therapy (arthritis, cancer, diabetes etc) are produced in mammalian cells 

and more specifically CHO cells. 

The cost of manufacturing biopharmaceuticals needs to be reduced in the interests of both 

patient welfare and sustaining an innovative research and development ethos. By finding 

ways to optimise the production of these drugs and minimise the costs involved, the 

research described herein may play a role in lowering the overall costs of these therapies. 

Initial profiling undertaken in the NICB collaboration with Pfizer generated an expansive 

detailed dataset with 300+ expression profiles, which have been compiled using a unique 

2
nd

 generation Wyeth proprietary (WyeHamster3a) microarray chip. In generating this 

dataset, the cell samples used covered numerous cell-lines growing in different process 

scenarios, at different temperatures, at different stages of cell culture progression, Qp, 

lactate/ammonia production, and protein products produced. These samples were then 

profiled from a transcriptomics viewpoint via the said microarray chips.  

This extensive dataset was then mined for example to identify target genes linked to cell 

lines with advantageous phenotypes [cells capable of reaching high density, high 

productivity, fast growth, tolerance to lactate or ammonia waste]. This created a sample 

matrix giving a sizable bioinformatics dataset to tackle the original aim to identify CHO 

genes with potential as cell engineering targets. 

To identify genes that are temperature responsive, the dataset was analysed based on 

differential between 37
o
C (regular culture temperature) and 31

o
C (mild hypothermic 

culture). Thus promoters from promising candidate genes could be targeted for cloning and 

analysis.  

Viral promoters have been well documented as highly active in driving transgene 

expression in different cell types and many are used commercially (SV40, CMV, RSV and 
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LTR) (Walther and Stein 1996) (Zarrin et al. 1999). As viral genomes are much smaller 

than mammalian genomes, the architecture of promoters is easier to study. Eukaryotic gene 

expression is more complex and requires precise coordination of complex regulatory 

architecture (promoters, enhancers, silencers). Recognition and binding of these promoter 

sequences by transcription factors occurs within the context of chromatin, whose dynamic 

structural characteristics play a significant role in regulating gene expression (Mellor 2005). 

A central dichotomy in industrial protein production revolves around the control between 

converting cellular metabolic energy for biomass generation versus product secretion. 

Many processes nowadays incorporate an initial growth phase quickly followed by a switch 

to production phase whereby cell growth ceases and cellular machinery resources are 

directed to protein synthesis. This is achieved most readily via temperature shift, and 

although highly useful can present logistical challenges in large bioreactors. Genes can be 

antagonistic during this biphasic setup, for example overexpression of proliferation-

enhancing genes would be advantageous earlier in the growth phase, but undesirable later 

in the production phase, it is this aspect that this project addresses.  

By undertaking this study, firstly, we aim to identify promoters capable of driving 

expression of various protein products to test their applicability and to expand the CHO 

metabolic engineering toolbox. And secondly, to assert temporal control over bioprocess-

engineering transcripts (for example; growth, viability, productivity and apoptosis related 

genes) that can be switched on or off at the appropriate times to maximise their effects in 

the production process. In doing so, we intend to investigate whether endogenous inducible 

promoters are more attractive than viral and other existing inducible systems. 

 

3.1.2: Identification of Temperature-sensitive genes in ‘Omics dataset 

3.1.2.1: Choosing target genes for study 

The original transcriptional profiling used to identify potential promoters, generated over 

300 expression profiles, covering numerous CHO cell lines grown at various stages during 

a wide series of time points.   
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This gene expression analysis, carried out on the proprietary CHO-specific WyeHamster2a 

microarray, enabled the study of ~3,500 sequences, representing approximately 10-15% of 

the CHO transcriptome (Melville et al. 2011).  

All microarray data were processed as described previously and analysis was conducted 

with the help of Dr. Colin Clarke a bioinformatician for the NICB/NIBRT (Clarke et al. 

2011). Weighted gene coexpression network analysis (WGCNA) was utilised to explore 

CHO cell transcriptome patterns associated with bioprocess relevant phenotypes. Cells 

were sampled for gene expression analysis at various stages of the culture and bioprocess-

relevant characteristics including cell density, growth rate, viability, lactate, ammonium and 

cell specific productivity (Qp) were also determined.  

A probe set is a collection of probe sequences designed to interrogate a given 

complementary sequence. The dataset used consisted of 295 microarrays from 121 

individual CHO cultures producing a range of biologics including monoclonal antibodies, 

fusion proteins and therapeutic factors. Non-producing cell lines were also included in the 

study consisting of CHO-K1 and CHO-DUX cell types (Clarke et al. 2011). The complete 

sampleset can be found online at (ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3032). 

We wanted to identify genes from the dataset whose expression changed from high to low 

or vice versa in response to a temperature shift to 31
o
C. We then analysed the fluorescent 

expression readings to discern values most positively or negatively correlated with culture 

temperature – in this case either 37
o
C or 31

o
C (Table 3.1.2.1). 
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Table 3.1.2.1: List of genes most highly correlated or anti-correlated with culture 

temperature. The list represents the resulting directory of genes up-regulated at 31
o
C (blue) 

and genes down-regulated at 31
o
C (red) temperature shift, the closer the correlation is to -1 

or 1 the more differentiated it is. Additionally, logarithmic and linear fluorescence 

expression (Exp) units and Fold change (FC) were shown for each temperature. 

 

 

Table 3.1.2.1 showed the correlation values and expression fold-change (FC) plus the 

fluorescence units from the probe sets, while the p-values indicated how significant the 

result was. As expected Cirbp (a well known cold-shock protein (CSP) and discussed 

further in section 1.9.2) is top of the dataset as it was upregulated at 31
o
C. Interestingly 

PPID showed slightly higher correlation but in the opposite direction, i.e: down-regulated 

at 31
o
C. Full gene nomenclature can be found in table 3.1.4. 

Figure 3.1.2.2, illustrates a theoretical correlation between gene expression and 

temperature. The closer the (PCC) Pearson correlation coefficient (a measure of the 

strength and direction of the linear relationship between two variables that is defined as the 

sample covariance of the variables divided by the product of their standard deviations) is to 

-1 or 1, the better differentiated it is between 37
o
C and 29-31

o
C and thus indicative of 

potential induciblity strength. 

 

Fluorescence Exp Units from Probes

Probeset ID Gene ID Correlation p value log2 37C log2 31C Lin 37 Lin 31 FC

AF022942_at Cirbp -0.8300 2.84E-76 5.0580 6.4685 33.3 88.6 2.66

WAN013I2Q_at SSU72 -0.8156 1.41E-71 6.3503 7.4743 81.6 177.8 2.18

WAN013I96_at MDM2 -0.7859 4.10E-63 5.8465 6.8534 57.5 115.6 2.01

WAN008E3Q_at Zfp180 -0.7835 1.69E-62 5.0642 5.5602 33.5 47.2 1.41

WAN008CFZ_at HSBP1 -0.7772 6.73E-61 6.8876 7.5605 118.4 188.8 1.59

WAN0088WY_at RBBP9 -0.7614 4.20E-57 5.0998 5.3787 34.3 41.6 1.21

WAN008E1S_at PPID 0.8826 4.57E-98 6.0474 4.9556 66.1 31.0 2.13

WAN013HVE_at NARS 0.8363 1.85E-78 6.9074 6.0437 120.0 66.0 1.82

WAN013I1P_at HNRPA2B1 0.7923 7.66E-65 8.1388 7.0289 281.9 130.6 2.16

WAN008CX4_at MCM5 0.7690 6.96E-59 6.1437 5.0653 70.7 33.5 2.11

WAN008DZY_at MCM7 0.7511 8.94E-55 6.9750 6.0094 125.8 64.4 1.95
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Figure 3.1.2.2: Graphical representation of the theory behind the correlation analysis. Two 

genes were chosen for illustration purposes. 1 and -1 represent perfect correlation or anti-

correlation between gene expression and temperature.  

 

This approach was based on the hypothesis that genes whose mRNA levels closely 

correlate to temperature changes, are likely to be under the transcriptional control of 

temperature-sensitive promoters. These promoters, in turn, could be utilised for driving 

expression of choice transgenes, to engineer particular CHO phenotypes in a process 

parameter-dependant manner, temperature in this case. 

 

3.1.2.2: Identification of constitutive genes 

In addition to temperature sensitive genes, we also looked for constitutively highly 

expressed genes within the dataset whereby the expression level stayed constant (ideally at 

a high level) regardless of process stage (Exponential, Lag), temperature and irrespective of 

cell line.  

The premise being that, strong endogenous promoters might be useful alternatives to viral 

promoters for transgene expression. Constitutive expression ideally should be independent 

of any exogenous stimulus or response, compared to inducible expression which can be 

controlled by exogenous signals (Williams, Christensen and Helin 2011).  
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Figure 3.1.2.2.1: Graphical representation depicting the expression level between 

temperature change samples across the entire dataset. Some genes can have higher 

expression values but large variability; PPIA and UBA52 have the highest mean expression 

across the sampleset value while maintaining relatively low variance.  

 

All genes below the expression threshold of 100 fluorescent units were discounted from 

subsequent study as they would not be expected to drive transgene expression to an 

adequate level and were identified as having high mean fluorescent expression detected by 

the microarray probes while those highly expressed with the lowest variance (cut-off of 

0.06 was applied) were deemed most suitable for further study and cloning (Figure 

3.1.2.2.1).
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Table 3.1.2.3 (A): List showing the least variable genes across the entire dataset at 37
o
C. Fluorescence mean denotes the log2 mean 

intensity of the fluorescent probe for a particular gene. Variance accounts for the standard deviation of the genes mean intensity across 

all probes. 

 

 

 

  

 

 

37oC Gene Fluorescence

Probeset ID Symbol Gene Name: MEAN Variance

WAN013I1V_at NA POSSIBLE UNIGENE 11.6565 0.0477

WAN013I9I_at PPIA Peptidylprolyl isomerase A (cyclophilin A) 11.3494 0.0598

WAN008DXW_at RPLP1 Ribosomal protein, large, P1 11.1367 0.0579

WAN0088IV_x_at Mm.393149 Transcribed locus, moderately similar to XP_223768.3 PREDICTED: similar to OTTHUMP00000060196 10.7009 0.0533

WAN013HXJ_at NA Cluster includes WAN008D0Z 10604B-D01 10.6103 0.0600

AF081142_at UBA52 Ubiquitin A-52 residue ribosomal protein fusion product 1 10.5659 0.0569

WAN013I40_at Mm.309697 PREDICTED: Mus musculus similar to ribosomal protein S14, transcript variant 2 (LOC545121), mRNA 10.5620 0.0474

WAN013I1R_at CHCHD2 Coiled-coil-helix-coiled-coil-helix domain containing 2 10.1004 0.0459

WAN008COL_at RPL29 Ribosomal protein L29 9.7244 0.0580

WAN013I0F_at RPL4 Ribosomal protein L4 9.6603 0.0577

WAN008EDB_at COX4I1 Cytochrome c oxidase subunit IV isoform 1 8.9102 0.0482

WAN008D39_x_at AUP1 Ancient ubiquitous protein 1 8.6597 0.0175

X13175_f_at NA X13175 Hamster KG4 mRNA related to cellular proliferation 8.5803 0.0400

WAN00OGTM_x_at NKX6-1 NK6 transcription factor related, locus 1 (Drosophila) 8.5116 0.0546

U62588_x_at SDC1 Syndecan 1 8.4345 0.0532

WAN008D42_at HSPB8 Heat shock 22kDa protein 8 8.4132 0.0587

WAN008EXK_x_at Uqcrc1 Ubiquinol-cytochrome c reductase core protein 1 8.3798 0.0419

WAN013I9C_at SDHC Succinate dehydrogenase complex, subunit C, integral membrane protein, 15kDa 8.3225 0.0531

L00366_x_at TK1 Thymidine kinase 1, soluble 8.2619 0.0438

WAN008E36_at PSMB5 Proteasome (prosome, macropain) subunit, beta type, 5 8.2396 0.0455
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Table 3.1.2.3 (B): List showing the least variable genes across the entire dataset at 31
o
C. Fluorescence mean denotes the log2 mean 

intensity of the fluorescent probe for a particular gene. Variance accounts for the standard deviation of the genes mean intensity across 

all probes. 

 

 

31oC Gene Fluorescence

Probeset ID Symbol Gene Name: MEAN Variance

WAN014IYJ_at NA WAN014IYJ Internal ribosomal entry site (IRES) from AR135605 Sequence 1 from Wyeth patent US 6136536. 12.8454 0.0521

WAN013I14_at NA POSSIBLE UNIGENE 12.2278 0.0531

WAN013I1V_at NA POSSIBLE UNIGENE 11.5927 0.0206

WAN014IYS_f_at DHFR Dihydrofolate reductase 11.4824 0.0436

WAN013I9I_at PPIA Peptidylprolyl isomerase A (cyclophilin A) 11.3603 0.0523

WAN013HV1_at RPS8 Ribosomal protein S8 11.1138 0.0583

AF081143_at Rps18 Ribosomal protein S18 11.0390 0.0515

WAN0088IV_x_at Mm.393149 Transcribed locus, moderately similar to XP_223768.3 PREDICTED: similar to OTTHUMP00000060196 [Rat] 10.7042 0.0509

WAN013I40_at Mm.309697 PREDICTED: Mus musculus similar to ribosomal protein S14, transcript variant 2 (LOC545121), mRNA 10.6191 0.0487

AF081142_at UBA52 Ubiquitin A-52 residue ribosomal protein fusion product 1 10.5677 0.0547

WAN013I06_at NA Cluster includes WAN008E0Q 11229C-H06 10.3438 0.0504

WAN013I1E_at 1810064F22Rik RIKEN cDNA 1810064F22 gene 10.1183 0.0499

WAN013I1R_at CHCHD2 Coiled-coil-helix-coiled-coil-helix domain containing 2 10.0775 0.0430

WAN013HXA_at Gnb2l1 Guanine nucleotide binding protein (G protein), beta polypeptide 2 like 1 10.0269 0.0480

WAN013I3Q_at RPS19 Ribosomal protein S19 9.8787 0.0441

WAN008COL_at RPL29 Ribosomal protein L29 9.7988 0.0447

WAN013I1Y_at EIF3S2 Eukaryotic translation initiation factor 3, subunit 2 beta, 36kDa 9.6027 0.0589

WAN008EDB_at COX4I1 Cytochrome c oxidase subunit IV isoform 1 9.0282 0.0434

WAN008ENW_at TKT Transketolase (Wernicke-Korsakoff syndrome) 8.8994 0.0573

WAN013HZU_at Sdhc Succinate dehydrogenase complex, subunit D, integral membrane protein 8.7338 0.0468
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The four genes highlighted in blue table 3.1.2.3(A+B), were prioritised for isolation of their 

respective promoter sequences; PPIA, UBA52, COX4l1 and Sdhc. As can be seen from the 

fluorescence values for these four genes, there was very little fluctuation between their 

expression at 37
o
C and 31

o
C.  

In contrast, DHFR was highly expressed with low variance seen across all samples cultured 

at 31
o
C (Figure 3.1.2.3 B), however it was not found amongst the list of most highly 

expressed genes at 37
o
C (Figure 3.1.2.3 A). DHFR was a transgene from a plasmid cloned 

into CHO cells and driven by a viral promoter, so high expression levels were expected as 

viral promoters generally drive high expression levels of genes they precede.  

In addition to the mRNA expression profiling dataset mentioned, we also had access to a 

microRNA profiling dataset generated in the lab previously. This dataset contained 

expression data on approx 350 miRNAs across 30 CHO samples with varying growth rates. 

Upon similar analysis, as performed on the mRNA dataset, the miR-17-92 cluster was 

found to be highly expressed and constitutive across samples. Therefore, we also prioritised 

isolating the promoter of this miRNA cluster to investigate its potential to drive constitutive 

transgene expression. Independent of this profiling, the cluster has been shown to be 

involved in highly proliferative cell types such as; Neuroblastoma and lung epithelial 

progenitor cells reported by (Mestdagh et al. 2010) (Lu et al. 2007) respectively. 

 

3.1.3: Target gene summary 

Now that priority gene targets were identified, the next step with our investigation was to 

validate these CHO-specific target genes from tables 3.1.2.2 and 3.1.2.3 above.  

Figure 3.1.3, shows all gene targets extrapolated from expression profiling regarding 

inducible and constitutive expression. In 2011, Xu et al released a draft CHO-K1 genome 

assembly comprising of 2.45 Gb of genomic sequence, with 24,383 predicted genes 

arranged in scaffolds after whole genome shotgun sequencing. The availability of this 

genomic sequence facilitated us in identifying the CHO-specific target gene sequences 

which were arranged on assembly scaffolds (Xu et al. 2011). 
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Table 3.1.3: Full Cricetulus griseus (CHO) Gene names, NCBI/GenBank scaffold ID and 

common functions they are involved in. 

Gene Full Name Scaffold ID Function 

Cirbp Cold inducible RNA 

binding protein 
Scaffold 881_79 

 

 SSU rRNA binding 
 mRNA 3'-UTR binding 
 nucleotide binding 
 poly(A) RNA binding 
 Translation repressor activity 

SSu72 RNA Polymerase II 

CTD Phosphatase 

Homolog 

Scaffold 2657_20 

 

 CTD phosphatase activity 
 Protein binding 

 

MDM2 Mouse 3T3 double 

minute 2 homolog 
Scaffold 

414_104+414_105 

 Enzyme binding 
 Identical protein binding 
 Ligase activity 
 Metal ion binding 
 p53 binding 

PPID Peptidylprolyl 

isomerase D 
Scaffold 1479_109  Estrogen receptor binding 

 Heat shock protein binding 
 Peptidyl-prolyl cis-trans 

isomerase activity 
 Protein binding 
 Transcription factor binding 

 

Nars asparaginyl-tRNA 

synthetase 
Scaffold 1555_74 

 

 ATP binding 
 asparagine-tRNA ligase activity 
 Nucleic acid binding 

HNRPa2b1 Heterogeneous nuclear 

ribonucleoprotein 

A2/B1 

Scaffold 291_30 

 

 RNA binding 
 Nucleotide binding 
 poly(A) RNA binding 
 pre-mRNA intronic binding 

 

PPIA peptidylprolyl 

isomerase A 

(cyclophilin A) 

Scaffold 750_45  Peptidyl-prolyl cis-trans 
isomerase activity 

 Poly(A) RNA binding 
 Protein binding  
 Unfolded protein binding 
 Cyclosporin A-mediated 

immunosuppression 
 Virion binding 

UBA52 ubiquitin A-52 residue 

ribosomal protein 

fusion product 1 

Scaffold 1845_23  Targeting cellular proteins for 
degradation by the 26S 
proteasome 

 Maintenance of chromatin 
structure 

 Regulation of gene expression 
 Regulation of stress response 

 

miR-17-92 

cluster 
[miR-17, miR-
18a, miR-19a, 
miR-20a, miR-
19b, and miR-

92a] 

miRNA polycistron 

consisting of also 

known as oncomir-1 or 

host gene [MIR17HG] 

Scaffold 3425_6  Found in several human B-cell 
lymphomas (non-Hodgkin's) 

 Regulates cell proliferation and 
collagen synthesis 

 Over expressed in Lung cancers 
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In light of the dogma regarding promoters being located adjacent/upstream to the genes 

they control, in order to isolate sequence, the location of each promoter and the ATG start 

codon was determined. The CHO sequence was identified using cross-species alignments 

from mouse, human, and rat sequence conservation. We implemented an arbitrary range of 

~5000bp upstream of this determined ATG start site (+1) in order to optimistically capture 

all putative regulatory sequence. First we will present the validation of these genes as 

suitable targets, the workflow and isolation of putative promoters will be expanded further 

in sections 3.1.7 and 3.1.8. 

 

3.1.4: Real Time-qPCR validation of target genes 

The first objective was to differentiate between target genes that exhibit temperature shift 

dependant expression versus mRNAs that are simply more stable and thus remain in the 

cells cytoplasm for longer. High mRNA transcriptional turnover rather than increased 

mRNA stability should be indicative of a more active/responsive promoter. 

First RT-qPCR was performed on these genes in the original RNA samples from the 

previous profiling experiment (Table 3.1.4.1), to verify the array-detected levels of the 

priority genes and provide further evidence for choosing them as targets.  

 

Table 3.1.4.1: RNA sampleset tested via qRT-PCR for the expression levels of all 

identified target genes. Note: miR-17-92 was determined in a separate sample set profile 

including small RNAs. 

 

Sample 

ID Cell Type

Time 

Point

Culture 

Temp oC

Cell Density 

(x10
6 

cells/ml)

Culture 

vessel type

Culture 

volume

135 CHO DG44 3 Days 37 1.19 Shake Flask 50 mls

244 CHO DUX 3 Days 37 2.54 Shake Flask 50 mls

294 CHO DUX 3 Days 29.5 10.4 Bioreactor 1 liter

204 CHO DUX 4 Days 37 2.37 Shake Flask 30 mls

336 CHO DUX 5 Days 31 9.23 Shake Flask 50 mls

309 CHO DUX 7 Days 37 2 Bioreactor 1.6 liters

209 CHO DUX 8 Days 31 3.27 Shake Flask 30 mls

20 CHO K1 3 Days 37 3.19 Bioreactor 1 liter

265 CHO K1 5 Days 31 7.57 Shake Flask 200 mls

99 CHO K1 7 Days 37 2.64 Shake Flask 60 mls

175 CHO K1 9 Days 31 8 Bioreactor 1.8 liters

442 CHO K1 10 Days 31 9.93 Bioreactor 2 liters
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By choosing a diverse RNA sampleset for validation, including wide variation in culture 

growth timepoints, different CHO cell types and of course different culture temperatures, 

the aim was to have as wide a scope as possible.  

The first step was to order specific qPCR primers (see appendices) for the same targets. 

Some considerations were needed here. These qPCR-specific primers differed from cloning 

primers seen in section 3.1.6. All qPCR primers were designed as stringently as possible to 

each other with respect to melting temperature (~56-61
o
C), nucleotide size and GC content, 

to allow analysis of more than one gene set per 96-well reaction plate. Also by ensuring the 

primers spanned intron-exon boundaries, provided assurance that the mRNA target only is 

detected after reverse transcription. Additionally, by designing the primers to produce small 

amplicons (~100-250bp) this promotes efficient amplification to ensure they are accurately 

quantified.  

In order to perform absolute qPCR analysis to calculate the mRNA copy number for each 

gene target, first we needed to generate material for a standard curve. In parallel, the 

sampleset RNA quality was verified on an agarose gel to ensure the samples were of 

suitable quality (Figure 3.1.4.1).  

 

 

Figure 3.1.4.1: Agarose gel electrophoresis to perform a RNA quality check on the CHO 

sampleset extrapolated from Table 3.1.4.1. Sample ID labels are shown on the gel image 

(Black). Both large and small ribosomal subunits (28S and 18S) were shown to be intact 

across sampleset and the 28S subunit was approximately double the intensity of the 18S. 
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Traditionally, the intensity of these rRNA bands on denaturing agarose gels have been used 

to calculate a ratio that served as an indication of RNA integrity. A 28S/18S gradient of two 

is considered to be indicative of good quality RNA. The RNA samples were all deemed to 

be sufficient quality for proceeding to qPCR validation, with very little smearing, which is 

often an indication of RNA quality (Figure 3.1.4.1). 

Next the RNA samples from Table 3.1.4.1 were reverse transcribed to convert RNA to 

cDNA; 1μg in total was used in a 20μl reaction with a DNase treatment step beforehand to 

ensure no DNA carryover into the qPCR reaction. 

Separately, standard PCR and agarose gel extraction were performed to isolate and purify 

all gene amplicons for the standard curve generation. Absolute quantification relates the 

PCR signal to input copy number using a calibration curve.  

To generate material/transcript copies of each gene for this standard curve, we generated 

the amplicons using regular PCR and subsequently analysed them using Agilent 

technologies Bionalyzer 2100® to ensure a single amplicons that were contamination free 

and of good quality (Figure 3.1.4.2). 
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Figure 3.1.4.2: Agilent 2100® Bioanalyzer results on extracted DNA amplicons prior to 

RT-qPCR. 9 genes were tested plus ‘Beta-actin’ and ‘GAPDH’ house-keeping genes in 

order to have a choice of reference genes for qPCR. (A) ‘Single peaks’ in between both 

upper and lower markers are indicative of a pure amplicon. (B) Artificial gel image 

generated by the software to visualise any contaminating bands and size calculation. 

Additional table containing amplicon details such as sizing, concentration and migration 

time in the gel also shown. Note: HNRPa2b1 repeated (label: HNRP pcr) twice. 
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For creation of the standard curve we calculated the copy number for each gene amplicon, 

to generate a stock DNA concentration in [ng/μl]. These stocks were used to generate a 

standard curve via serial dilution for each gene after using a dsDNA copy number 

calculator found here http://cels.uri.edu/gsc/cndna.html.  

 

 

This calculation is based on the assumption that the typical weight of a base pair (bp) is 

650Da. This means that one mole of a bp weighs ~650g and that the molecular weight of 

any double stranded DNA template can be estimated by taking the product of  its length 

(in bp) and 650 and by using Avogadro's number, 6.022x10
23

 molecules/mole, the number 

of molecules of the template per gram can be calculated.  

Next serial dilutions were performed to represent the exponential dilutions based on each 

order of magnitude (10^). Ideally, having ~3.3 PCR cycle difference between each genes 

10-fold dilution is indicative of efficient amplification cycles. By pre-calculating all copy 

numbers of the stock gene amplicons as shown in table 3.1.4.4, the CTs calculated from 

each run can be cross referenced to the standard curve for each gene to establish the copy 

number. In this way we can evaluate if there is a difference in mRNA copy number across 

the sampleset in response to temperature change. 

Note: Only three genes were prioritised from here onwards, Cirbp, MDM2 and SSu72 and 

are representative of the analysis done on the entire gene target list (Table 3.1.3). Post-

validation, these 3 genes were highlighted as the best candidates (based on initial GFP 

screen performance) and became the main focus of this project and encouraged us to avoid 

displaying repetitive results. 

 

 

 

 

http://cels.uri.edu/gsc/cndna.html
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Table 3.1.4.4: Total copy number per 20μl stock for Cirbp, MDM2 and SSu72 genes with 

exponential dilution concentration and their respective copy numbers per 20μl calculated 

from a standard curve. Figure representative of all genes tested, however, only three genes 

with the highest priority for the next phase of analysis were shown.  

 

 

Gene

Total Copy (per 

20μl) Sample dil Conc [ng/ μl]

Copy No per 

20μl:

Cirbp 10 -1 17 9.55E+10

Stock Conc: 170ng/ul 9.55E+11 10 -2 1.7 9.55E+09

Amplicon size: 165bp 10 -3 0.17 9.55E+08

10 -4 0.017 9.55E+07

10 -5 0.0017 9.55E+06

10 -6 0.00017 9.55E+05

10 -7 0.000017 9.55E+04

10 -8 0.0000017 9.55E+03

10 -9 0.00000017 9.55E+02

10 -10 0.000000017 9.55E+01

Gene

Total Copy (per 

20μl) Sample dil Conc [ng/ μl]

Copy No per 

20μl:

MDM2 10 -1 1.6 1.6E+10

Stock Conc: 31ng/ul 1.60E+11 10 -2 0.16 1.6E+09

Amplicon size: 180bp 10 -3 0.016 1.6E+08

10 -4 0.0016 1.6E+07

10 -5 0.00016 1.6E+06

10 -6 0.000016 1.6E+05

10 -7 0.0000016 1.6E+04

10 -8 0.00000016 1.6E+03

10 -9 0.000000016 1.6E+02

10 -10 0.0000000016 1.6E+01

Gene

Total Copy (per 

20μl) Sample dil Conc [ng/ μl]

Copy No per 

20μl:

SSu72 10 -1 6.6 6.1E+10

Stock Conc: 66ng/ul 6.11E+11 10 -2 0.66 6.1E+09

Amplicon size: 100bp 10 -3 0.066 6.1E+08

10 -4 0.0066 6.1E+07

10 -5 0.00066 6.1E+06

10 -6 0.000066 6.1E+05

10 -7 0.0000066 6.1E+04

10 -8 0.00000067 6.1E+03

10 -9 0.000000067 6.1E+02

10 -10 0.0000000067 6.1E+01
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Figure 3.1.4.5: Standard curve values and plot for absolute copy number calculation for 

three genes [Cirbp, SSu72 and MDM2] out of the nine tested. Triplicates of each 10
5
 to 

10
10

 serial standard dilution used. A slope of -3.3 indicates a PCR efficiency = 100%. 

Generally 3.3 ±0.15 is considered acceptable for quantification purposes. 

 

Standard curves were generated by including triplicate standards (10
5
 to 10

10
) onto the 

same qPCR reaction plate as the sampleset RNAs which had been reverse transcribed 

previously (Figure 3.1.4.5).  

All 3 standard curve slopes in this case are within acceptable limits and the R
2
 values are 

relatively linear for all 3 across the concentration range also (all above 0.99). The standard 

triplicates used only ranged from 10
5
 to 10

10
, this was optimised to this range as lower than 

a 10
5
 dilution was shown to be too concentrated and led to inaccurate cycle threshold (Ct) 

readings of less than 12. 
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Next we wanted to investigate the copy number per 20ng of RNA per sample for each of 

the three priority genes between 37
o
C and 31

o
C samples from the RNA sampleset, denoted 

by the sample IDs. We performed qRT-PCR to get Ct values for each sample tested. The 

samples were grouped together based on original culture temperature from table 3.1.4.1.  

In all 3 cases the 31
o
C samples all have substantially more mRNA transcript copy numbers 

(Figure 3.1.4.6). MDM2 had much higher Ct values overall and therefore a much lower 

copy number range, all under 250 copies, than Cirbp and SSu72. However, the 37
o
C 

sample copy numbers were all calculated to be comparable being between 50 and 150 

copies for each gene. 

No obvious trend was seen from the analysis; however some interesting results were 

observed, for example; for all 3 genes, the 336 (5 days in culture) and 442 (10 days in 

culture) samples both being cultured at 31
o
C, showed that 442 samples had lower copy 

numbers overall compared to 336 samples.  

Furthermore, the 294 samples (also at 31
o
C) had more copy numbers than both 336 and 442 

samples, the only difference being that the 294 samples were only in culture for 3 days 

(Figure 3.1.4.6). This would indicate that as time in culture progressed, each genes mRNA 

levels decreased at 31
o
C; perhaps indicating that mRNA was degraded to some extent. This 

was encouraging because generally it is accepted that at 31
o
C transcripts can become more 

stable, and if this was the case here, then these target genes and their putative promoters 

would not be suitable for use as inducible transgene expression tools.  

This was further addressed in section 3.1.5. 
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Figure 3.1.4.6: Absolute copy number values for 3 priority genes measured by qRT-PCR 

per 20ng of RNA, across the sampleset panel. Sample ID labels represent the IDs from 

Table 3.1.4.1 and were grouped into 37
o
C and 31

o
C. Copy numbers were calculated from 

the triplicate average CT values.  
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3.1.5: Investigation of promoter activity versus transcript stability 

Having verified the microarray data for our genes of interest by qPCR, we wished to 

establish whether the change in the quantities of mRNA observed in each case was due to 

high transcriptional turnover of the mRNA (desirable) or if the mRNA of that particular 

gene was just highly stable (undesirable).  

In order to test this, cells were cultured at 37
o
C and 31

o
C in the presence or absence of 

actinomycin D (a transcriptional inhibitor) and total RNA was extracted at various 

timepoints. Transcripts exhibiting greater stability (half-life) would be expected to be 

detectable at higher levels by qPCR than more labile mRNAs post-actinomycin D 

treatment. 

Table 3.1.5.1: CHO-K1 cells cultured at 37
o
C and 31

o
C were treated with a 5mM 

concentration of actinomycin D. RNA was extracted after time (T) 0, 12 and 24 hours, 

reverse transcribed and the average CT results for the 3 respective genes were calculated by 

qRT-PCR. The copy number for each gene was calculated from the logarithmic (ln) 

standard curve. The % copy number values relative to the T0 values were also shown. 

 

Time Gene Avg CT Ln Copy No Copy No % of T0

37 T0 Cirbp 22.6 9.6031 14811 1.0

T12 Cirbp 24.3 8.2930 3996 27.0

T24 Cirbp 29.6 4.2221 68 0.5

31 T0 Cirbp 23.3 9.0821 8796 1.0

T12 Cirbp 23.4 9.0438 8466 96.2

T24 Cirbp 28.8 4.8478 127 1.4

Time Gene Avg CT Ln Copy No Copy No % of T0

37 T0 MDM2 29.8 3.1309 23 1.0

T12 MDM2 31.7 1.7731 6 25.7

T24 MDM2 32.7 1.0747 3 49.7

31 T0 MDM2 30.2 2.8452 17 1.0

T12 MDM2 32.4 1.2750 4 20.8

T24 MDM2 32.6 1.1260 3 86.2

Time Gene Avg CT Ln Copy No Copy No % of T0

37 T0 SSu72 22.1 10.6926 44031 1.0

T12 SSu72 24.0 9.2266 10164 23.1

T24 SSu72 30.9 3.8922 49 0.5

31 T0 SSu72 24.8 8.6273 5582 1.0

T12 SSu72 24.8 8.6016 5440 97.5

T24 SSu72 29.0 5.3814 217 4.0
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Figure 3.1.5.1: Absolute mRNA transcript copy numbers calculated for the 3 genes in 

CHO-K1 cells grown at 37
o
C (A) and 31

o
C (B). Copy numbers after ActD treatment (T24) 

versus no treatment control (T0) as determined from a standard curve. Copy number 

calculated as per 100ng of RNA, reverse transcribed to cDNA. Also shown is the fold 

change [x] between pre and post-ActD treatment. (C) Dissociation/melt curves for each 

gene qPCR amplicon is under its corresponding bar graph.  
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SSu72 was found to be the most abundant transcript at 37
o
C and Cirbp the most abundant 

at 31
o
C, while MDM2 was the least for both temperatures (Figure 3.1.5.1 A+B).  The fact 

that Cirbp was the most abundant transcript detected at 31
o
C was not surprising based on it 

being a well characterised cold-shock protein (CSP) and becomes up-regulated at lower 

culture temperatures. 

The cycle thresholds increase over time in the presence of ActD for each gene, so fewer 

transcripts are detected indicating that treatment was effective (Table 3.1.5.1A+B). 

Additionally, to optimise the concentration of actinomycin D to use, we assessed 3 

concentrations. We added [0-2-5mg/ml] ActD after 0, 12 and 24 hours in comparison to 

PBS/DMSO control samples (No treatment) also after 0, 12 and 24 hours. It was deduced 

that 2mg/ml of ActD was less inhibitory than the 5mg/ml concentration; therefore 5mg/ml 

was used in this experiment (data not shown).  

After calculating the copy number, the biggest differential was seen in the SSu72 samples. 

This would suggest that the SSu72 transcripts were less stable than Cirbp and that MDM2 

transcripts were the most stable. Finally the dissociation curves demonstrated specific 

amplification of the target; a single peak was indicative of a single product and thus no 

contamination during amplification steps (Figure 3.1.5.1 C).  

Note: The absolute mRNA copy number values shown in figure 3.1.5.1 were markedly 

more abundant than mRNA values seen in figure 3.1.4.1. We were unsure as to why this 

was observed, one possible reason is the fact that the RNA samples were archival from >6 

years and although we showed them to be relatively undegraded maybe less RNA was 

subjected to qRT-PCR analysis. In addition, we used a higher concentration of starting 

RNA (100ng) per sample compared to 20ng in the initial qRT-PCR validation. 
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Another point to consider was the ½ life of each transcript. Regulation of mRNA turnover 

in the cytoplasm is important for controlling the abundance of cellular transcripts and, in 

turn, the levels of protein expression (Ross 1995) (Parker and Song 2004) (Wilusz, 

Wormington and Peltz 2001). In mammalian cells, the first major step that triggers mRNA 

decay is deadenylation (i.e. removal of the 3′-poly(A) tail) (Chen et al. 2008).  

So by estimating the mRNA decay (Figure 3.1.5.2), for the purpose of further assurance 

that my gene promoters have a prominent decay rate, signifying that they are 

transcriptionally active rather than transcriptionally stable (Harrold et al. 1991). 

To determine the decay rate (–k) in hour
-1

 and subsequent half-life (t1/2) of the transcripts 

between no treatment controls and actinomycin D treatment at each timepoint the following 

formulas were used as described by (Chen, Ezzeddine and Shyu 2008);  

 

 

 

The turnover rate or stability of mRNA in vivo is usually reported as the time required to 

degrade by 50% of the original amount of mRNA molecules (i.e., the half-life of mRNAs). 

Additionally, it is important to note that the half-life of an mRNA (t1/2) is inversely 

proportional to its decay rate constant (kdecay), while the minus symbol indicates that the 

mRNA is being degraded rather than synthesized. 
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Figure 3.1.5.2: Copy numbers of each gene in order to compare decay (red lines) between 

times 0 (T0) and 24 hours later (T24) for 37
o
C (◊) and 31

o
C (◊). The 12 hour timepoint was 

disregarded for decay and half-life determination.  
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Figure 3.1.5.2 showed that there was a more appreciable change in copy number after 24 

hours than 12 hours after treatment with ActD. For this reason, we calculated decay rates 

based on differences between copy numbers at time zero (T0) and 24 hours (T24) for both 

temperatures (Table 3.1.5.2). 

 

Table 3.1.5.2: Decay rates and half-life (T1/2) of gene transcripts between 2 timepoints; 

Time 0 and Time 24, post-actinomycin D treatment of CHO-K1 cells. Values calculated 

from Figure 3.1.5.2 results.  

 

 

The decay rate was lower and mRNA half-life was higher at 31
o
C in all cases (Table 

3.5.1.2). Cirbp decay and stability appeared to be relative constant with only a marginal 

decrease in decay rate and as a result a marginal increase in mRNA half-life. Al-Fageeh and 

Smales also reported similar results for various Cirbp 5’ UTR leader sequences from NIH-

3T3 mouse cells. They showed that although Cirbp mRNA stability was increased at 31
o
C, 

half-life of 13.9 hr at 37
o
C versus 15 hr at 31

o
C, it was marginal compared to a beta-actin 

control which had a more substantial difference between 37
o
C (10.4 hr) and 31

o
C (15.8 hr) 

(Al-Fageeh and Smales 2009).  

MDM2 mirrored this observation; however the mRNA levels were much lower overall, 

based on higher CTs and it doesn’t appear to be as highly expressed in CHO-K1 cells at 

37
o
C or 31

o
C, unlike Cirbp and SSu72. SSu72 was a little over twice as stable at 31

o
C as at 

37
o
C, based on the decay rate being 2.44 hr

-1
 at 37

o
C and 5.12 hr

-1
 at 31

o
C. This could 

perhaps contribute partly to higher SSu72 mRNA detection from the original microarray 

profiling, but as it is known that at lower culture temperature mRNA transcripts do become 

more stable so this was not unexpected. 

 

37 31
Time (kdecay) h -1 t 1/2 Time (kdecay) h -1 t 1/2

Cirbp 24h-0h -0.2243 3.09 hr Cirbp 24h-0h -0.1761 3.97 hr

MdM2 24h-0h -0.0846 8.19 hr MdM2 24h-0h -0.0722 9.60 hr

SSu72 24h-0h -0.2833 2.44 hr SSu72 24h-0h -0.1353 5.12 hr
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In conclusion, the gene promoter targets identified and prioritised in this project are indeed 

promising candidates to drive temperature dependant gene expression. The most 

transcriptionally active gene appears to be SSu72, with post-actinomycin D treatment 

indicating high turnover rate and least stability. By calculating the copy number at the 

mRNA level, it would appear that the promoters of these genes were highly active. 

 

3.1.6: In silico identification of promoter sequences 

At the beginning of my project, the Chinese Hamster genome was not fully sequenced so 

laborious cross-species alignments between mouse, human and rat were used, until (Xu et 

al. 2011) published a draft of the genome in 2011 and generously uploaded it onto the 

GenBank public database. 

Having established that the higher mRNA levels of the target genes seen at 31
o
C were not 

due to excessive RNA stability, we progressed them for promoter cloning to test their 

utility. Before the CHO genomic sequence became publicly available in 2011, it was 

difficult to identify the putative promoter sequences upstream of the gene targets. Therefore 

the initial part of this project involved designing primers based on conserved regions 

between human/mouse and rat genomic sequence (Figure 3.1.8.1). 

The first step was to extract the correct CHO gene-coding sequence from the database at 

http://www.chogenome.org/. By first obtaining the mouse/rat ortholog coding sequence 

(CDS) for each gene in the list, then by using ‘BLAST’ (Basic Local Alignment Search 

Tool) as an algorithm for comparing primary biological sequence information, the 

sequences could be extrapolated from the CHO sequence information stored in assembly 

scaffolds and contigs within the database based on evolutionary conservation between these 

species. 

Using multiple sequence alignment software tools (Tcoffee and ClustalW) we were able to 

pinpoint the ATG start site, and from this point upstream obtain the putative CHO promoter 

regions for each target gene. Furthermore, although invaluable for this project to progress, 

the CHO draft sequences published by Xu et al had only arranged the sequences in 

scaffolds and contigs in FASTA format and were poorly annotated making extracting 

sequences difficult.  

http://www.chogenome.org/
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Primary_structure
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Because of this, even when the start codon (ATG) for each gene was located within a 

scaffold, sometimes the scaffold only contained a couple of hundred bases upstream before 

encountering the end of the scaffold. Both the MDM2 and miR-17-92 promoter cloning 

were affected in this way, making it challenging to design appropriate primers to amplify 

longer stretches of putative promoter sequence. 

 

3.1.7: Workflow of Isolation and Cloning of Gene Promoters 

The schematic in figure 3.1.7.1 represents a step by step workflow of how these promoter 

constructs were isolated and cloned into vectors to test their activity.  

To make this undertaking more manageable, the top three temperature sensitive genes from 

table 3.1.2.1 were chosen for further study. We focused on Cirbp, SSu72, MDM2 due to 

being up-regulated at 31
o
C and PPID, Nars and HNRPa2b1 for being down-regulated at 

31
o
C and finally *AUP1, PPIA, UBA52 and miR-17-92 cluster for showing constitutive 

expression across the array data.  

Note: *AUP1 was identified in the early part of this project as a target for constitutive 

expression based on least variance across the dataset. However after re-analysis of the mean 

expression values, where the mean fluorescence signal was found to be very low across the 

probe set when checked against the list generated in table 3.1.2.3 and was deemed not to be 

strong enough to drive transgene expression and excluded from this point on. 
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Figure 3.1.7.1: Experimental workflow for promoter cloning and functional assessment. [A] Performing BLAST on input sequence (ATG+ 

sequence for given gene) on whole genome shotgun (WGS) database from www.chogenome.org. [B] Cross-species alignments of CHO, 

mouse and rat using ClustalW® software suite to delineate the ATG start site. [C] Design of multiple forward primers and generally one 

reverse primer for cloning (with res sites) based on sequences analysis and conservation between rat, human and mouse. [D] Post-

transfection we conducted reporter assays to test activity of promoter fragments to drive transgene expression (for example; GFP and 

Luciferase). 

http://www.chogenome.org/
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3.1.8: Primer Design 

Having obtained the CHO specific sequence, next primers were designed to extract the 

putative promoter upstream of these genes by identifying regions of sequence conservation 

across mouse, rat and human orthologues.  

Note: Before the CHO sequence became available the project began with designing and 

screening mouse-specific primers against CHO genomic DNA. This proved futile for 

amplifying CHO promoter sequence; however by isolating the mouse sequences we 

obtained promoters capable of driving transgene expression as a back-up to the CHO 

promoters. This was based on the assumption that promoter sequences from another rodent 

species would be active in CHO cells if the endogenous CHO sequences were too difficult 

to obtain. Primer design across species was reliant on sequence conservation like the 

example shown in figure 3.1.8.1.  

The reverse primer was designed to bind upstream of the gene start codon [ATG] and a 

series of forward primers were designed to create a panel of progressive truncated promoter 

fragments for each prioritised gene. However, not all gene primers were shown in figure 

3.1.8.2, owing to cloning issues explained in later sections. 

 

 

Figure 3.1.8.1: Cross-species alignments between mouse, rat, and human to design CHO-

specific primer sequences for the target genes (forward and revere primers for the Cirbp 

gene shown for illustration purposes). The principle being, that if the primers were 

designed in highly conserved regions, then there was a high chance the primer would 

facilitate PCR amplification and extraction from CHO and mouse gDNA templates. 
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Figure 3.1.8.2: Primer maps designed for isolation of a panel of varying lengths of 

promoter regions upstream of each prioritised CHO gene. Also shown were the sizing and 

nucleotide positions. MDM2, SSu72 and Cirbp were categorised into inducible and the 

miR-17-92 cluster was categorised as constitutive. (Cirbp m) denotes the mouse version 

while (Cirbp C) denotes the CHO version.   

 

The 3 most promising gene promoters regarding temperature inducible differential 

expression (MDM2, SSu72 and Cirbp) can be seen here along with the truncated promoter 

primers for the Cirbp mouse orthologue control gene. The miR-17-92 mouse and CHO 

constructs were included with these prioritised gene promoters for further study as a 

comparison while the CHO-promoter sequence of this cluster is more novel.  

Mouse primers for all genes from the list were also designed as a backup if isolating the 

CHO sequences proved problematic (Appendices section 6.2.1), but were not included in 

figure 3.1.8.1, as they ultimately were not cloned due to the CHO isolation being 

successful. 
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3.1.9: Promoter amplification and isolation 

Having now generated a panel of primers for cloning, the next step was isolating the 

sequences upstream of each genes ATG start site from genomic DNA extracted from 

mouse and CHO cells. For the PCR template, total genomic DNA was extracted from 

CHO-K1 and mouse (min-6) cell pellets using the Promega Wizard® extraction kit. 

Post-extraction we wanted to check this DNA template to see if it was suitable and not 

degraded in order to proceed to PCR. Agarose gel electrophoresis using a low percentage 

gel (0.6%) was performed to visualise the quality of the high molecular weight gDNA 

(Figure 3.1.9.1) and the gDNA band was estimated to be approximately 23kb. This was 

followed by NanoDrop™ results to check DNA integrity, a 260/280 ratio = 1.8 – 2.0 was 

indicative of high-quality DNA. Genomic DNA that would be considered unusable would 

be indicated by a large smear in the gel lanes, and if it was sheared then bands less than 

12kb would be apparent. 

 

Figure 3.1.9.1: Quality checks of the different extracted mammalian genomic DNA used 

over the project. L = Ladder. Human SNB-19 gDNA (wells 1, 2), CHO-K1 gDNA (wells 3, 

4), CHO-K1-SEAP (well 5), min-6/murine gDNA (wells 6, 7).  

 

Having identified suitable template for mouse and CHO, next we wanted to isolate the 

various sizes of each genes promoter sequence by using the primers designed from figure 

3.1.8.2 and polymerase chain reaction (PCR). 0.8-1.2% agarose gels were run to identify 

the various sizes of fragment generated from PCR. As a representative example, MDM2-

specific primers were used to amplify products so they could be extracted using gel 

extraction kit and purified for downstream cloning (Figure 3.1.9.2). 

 



153 
 

 

Figure 3.1.9.2: Amplification and isolation of MDM2 promoter fragments via PCR using 

the designed primer sets. Band sizes were 4562bp, 3000bp, 2708bp, 1400bp and 370bp and 

matched primer maps and sizing shown in figure 3.1.8.1. 

 

 

Upon completion, several upstream promoter fragments were successfully amplified from 

CHO and mouse gDNA templates (Table 3.1.9.3). Ideally ~300-5000bp upstream was 

considered a good starting point to test regulatory regions. 

 

Table 3.1.9.3: Library of isolated putative promoter fragments specific to mouse and CHO 

amplified by PCR with amplicon size in base pairs. N/A denotes no achievable promoter 

fragments isolated for that target gene.  
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As mentioned briefly, halfway through the project our focus switched from mouse 

extraction to CHO once it was possible to obtain the CHO draft sequence from Genbank. 

As a result mouse experiments were sidelined to concentrate on extracting the CHO 

specific fragments (Table 3.1.9.3) and hence why there were numerically more CHO 

fragments isolated.  

Having now created a library of various promoter fragments, we decided to screen them 

initially using a GFP-reporter to see if they could drive detectable GFP expression (Table 

3.1.11). 

 

3.1.10: Cloning into Expression Vectors Design/Manipulation 

The promoter fragments isolated from table 3.9.1.3 were cloned using a pEGFP-C1 plasmid 

from Clontech Laboratories, Inc (USA) and a pGL3 Luciferase plasmid from Promega 

(USA) (Figure 3.1.10.1).  The CMV promoter was first removed from pEGFP-C1 to allow 

insertion of a synthetic linker (Figure 3.1.10.2), which in turn allowed cloning of the 

isolated promoter fragments (containing restriction sites from the primer design) upstream 

of the GFP-reporter gene. 
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Figure 3.1.10.1: Illustrated are the two reporter vectors used to test the activity of the 

isolated promoters (by driving a reporter gene). An enhanced GFP (pEGFP-C1) was altered 

to generate (pEGFP-altAL) containing a linker (synthetic MCS) and was placed upstream 

of a GFP gene. Additionally, a polyA tail termination sequence was included upstream of 

the promoter. Also shown was the commercially available Luciferase (pGL3-Basic) which 

did not undergo any alterations. 

 

 

Figure 3.1.10.2: Illustration of synthetic ‘linker’ sequence containing multiple cloning sites 

was designed based on the MCS from pGL3-basic vector to complement the design of the 

cloning primers. Contained within the linker, was a Nhe1 restriction site. It was altered so 

as not to have two sites that might impede cloning, as a Nhe1 was already present upstream 

of the GFP gene. AseI and NheI (pink) sites flank the linker which allowed an insertion 

point for the linker into the pEGFP-C1 vector. 
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Some restriction sites existed twice as a result of linker insertion, so further digestion by 

BamHI and BspEI restriction enzymes removed the downstream multiple cloning site 

(MCS) and klenow treatment was used to blunt and re-ligate the plasmid backbone.  

Additionally, to finalise the pEGFP vector for reporter work, a poly-A termination 

sequence was inserted upstream of the linker site to ensure background expression was 

quenched. First the poly-A sequence from the pGL3-basic was amplified by PCR and 

isolated. Then it was cloned with the following primers containing AseI and Acc65i 

restriction sites; 

5’- ggccattaatAAGGTACGGGAGGTACTTGG – 3’ Forward (Ase1 @ +4629bp from ATG) 

5’ – atatggtaccTTACCAACAGTACCGGAATGC – 3’ Reverse (Acc65i @ -55bp from ATG)       

 

 

Figure 3.1.10.3:  (A) Poly-A PCR gel electrophoresis result using the above primers at 

55
o
C and 60

o
C annealing temperatures, followed by ligation into pEGFP with digestion 

verification using Ase1 + Acc65i restriction enzymes. (B) Sequencing result aligned 

against original pEGFP-C1 vector backbone sequence using ClustalW software, 

highlighting the inserted poly-A, denoted in red.  
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In addition to these two reporter vectors, we wanted to construct two more vectors to 

compliment the promoter findings with GFP and Luciferase. Erythropoietin/EPO (34kDa) 

is a glycoprotein hormone that controls erythropoiesis and it is a well established 

recombinant protein that is commercially produced. 

We also chose to test a cyclin-dependent kinase inhibitor 1B (p27) a cell cycle inhibitor 

protein. In humans it is encoded by the CDKN1B gene. The encoded protein binds to and 

prevents the activation of cyclin E-CDK2 or cyclin D-CDK4 complexes, and thus controls 

cell cycle progression at G1. It is often referred to as a cell cycle inhibitor protein because 

its major function is to stop or slow down cell division.  

p27 and EPO coding sequences were amplified and isolated from in-house vectors and 

cloned into the pEGFP-altAL vector, to replace the GFP sequence previously cloned. 

Primers were designed using the following primer sets detailing the melting temperature 

(Tm), GC % content and nucleotide length (nt);  

 

p27 [597bp] 
  

Tm % GC nt 

For aatagctagcATGTCAAACGTACGAGTATCTAAC 60.3 38 24 

Rev aataggatccTTACGTCTGGTGTCTTCGGAG 61.2 52 21 

       EPO [585bp] 
  

Tm % GC nt 

For aatagctagcATGGGGGTGCACGAATGTC  59.5 58 19 

Rev aataggatccTCATCTGTCCCCTGTCCTG 59.5 60 19 

 

http://en.wikipedia.org/wiki/Glycoprotein
http://en.wikipedia.org/wiki/Hormone
http://en.wikipedia.org/wiki/Erythropoiesis
http://en.wikipedia.org/wiki/Enzyme_inhibitor
http://en.wikipedia.org/wiki/Gene
http://en.wikipedia.org/wiki/Cyclin_E
http://en.wikipedia.org/wiki/Cyclin-dependent_kinase_2
http://en.wikipedia.org/wiki/Cyclin_D
http://en.wikipedia.org/wiki/Cyclin-dependent_kinase_4
http://en.wikipedia.org/wiki/Cell_cycle
http://en.wikipedia.org/wiki/Cell_cycle
http://en.wikipedia.org/wiki/Cell_division_cycle
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Figure 3.1.10.4: Vector map detailing the creation of p27 and EPO vectors. The GFP gene 

was removed from pEGFP-altAL using NheI and BamHI and replaced by either the EPO or 

p27 CDS. In parallel, EPO and p27 primers were designed to clone out the EPO and p27 

CDS (585bp + 597bp respectively) from in-house vectors containing each gene. 

 

In summary, we successfully constructed a GFP and reporter vector (pEGFP-altAL) with a 

MCS and poly-A termination sequence to be utilised in promoter studies. EPO is an 

example of a protein product, while p27 is an example of an engineering target, both of 

which may benefit under temporal expression control from potential promoter sequences, 

which was next to be examined.  
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3.1.11: Promoter fragments - Initial expression screen 

The next step was to examine these promoter fragments by cloning into the pEGFP-altAL 

vector in order to test GFP transgene expression. Rather than progressing with ligations for 

all promoter fragments generated from the previous section into all four vectors, we used 

the pEGFP-altAL reporter vector to initially screen the fragments from table 3.1.9.3. This 

initial screen was used to identify gene promoter fragments which would be suitable 

candidates for further testing and cloning into the other reporter vectors. 

CHO-K1 cells were transfected in triplicate in 24-well format and GFP fluorescence 

measured 24-hours later, quantitatively on the Guava™ flow cytometry system and 

qualitatively using the Leica® fluorescent microscope. Four promoters, Cirbp, MDM2, 

SSu72 and miR-17-92, exhibited moderate to strong GFP expression when tested and 

followed the expected expression trend (Table 3.1.11). 

This large panel screen gave us an insight to the initial expression behavior of the various 

isolated gene promoters and was a good starting point for further study. Additionally, it 

may also serve as a guide in future promoter studies, as to progress with all fragments was 

not a viable option. Full GFP expression quantification is reported in section 3.2.2. 
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Table 3.1.11: Initial mouse and CHO promoter fragment panel screen. Summary of GFP expression (exp) reporter results, expected and 

observed effects, and fragment sizing ligated into pEGFP-altAL designed vector. N/A denotes not applicable due to no cloning. (+) denotes 

GFP strength with (+++) being strongest, (-) denotes no detectable expression.  
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After screening all gene promoters of various sizes, efforts became focused on 6 promoter 

fragments of interest from 4 gene sources [MDM2, SSu72, Cirbp, miR-17-92]. These were 

categorised into 4 inducible promoters, three being novel to CHO (MDM2, SSu72 and 

Cirbp) while a Cirbp-promoter from mouse was used as a control sequence as it was shown 

to be temperature inducible in previous studies. Additionally, 2 constitutive promoter 

fragments from the miR-17-92 cluster were included (one for CHO and one for mouse).  

We were disappointed that initial GFP reporter results showed no detectable expression 

from the other constitutive promoters investigated, namely UBA52 and PPIA which 

showed substantial expression from the array data (Table 3.1.2.3). We hypothesised that 

perhaps essential promoter and indeed any temperature sensitive sequence was located 

further upstream and thus not contained within the isolated fragments.  

Note: For these reasons, the fragment mapping seen in figure 3.1.8.2 contains all 6 of these 

promoters as representative of entire screen. 

There were no similar promoter studies found in the literature based on these four 

promoters in CHO, while only Cirbp has been explored in murine models (Al-Fageeh and 

Smales 2009). The miR-17-92 cluster was explored in various human models (Hayashita et 

al. 2005) (Lu et al. 2007) (Ji et al. 2011), however, the promoter was not. 

In conclusion, 6 promoter fragments from 3 different target genes plus one miRNA cluster 

were successfully identified and cloned. These promoter fragments were subsequently 

chosen for progression to further promoter studies using the 3 additional vectors described 

previously. The mouse equivalent promoter fragments were not pursued, only the Cirbp and 

miR-17-92 cluster mouse promoter fragments were progressed in tandem with their CHO 

orthologues. Furthermore, the miR-17-92 promoter fragments were included due to their 

novelty in CHO. 
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3.2: Driving reporter-gene expression in a temperature-dependant manner 

3.2.1: Introduction 

All promoter constructs were cloned into the respective vectors as described in section 

3.1.10. Some larger fragments were problematic to clone and coupled with the shorter 

sequences portraying good expression characteristics, shorter fragments were prioritised as 

being more attractive as regulatory tools. For this reason, the decision to halt further 

analysis of the larger variants was taken. 

As a result the following promoter fragments were utilised from this point onward; 828bp 

CHO Cirbp, 370bp MDM2 and 654bp SSu72 fragment sizes were chosen based on having 

a favourable size as well as being capable of high GFP expression. Additionally, an 889bp 

mouse promoter fragment from Cirbp was included in all experiments, this fragment can be 

viewed as a temperature-sensitive control based on previous reports and being the most 

correlated between 37
o
C and 31

o
C from microarray profiling. In addition, it was used as a 

comparison for the Cirbp-CHO fragment which has not been investigated for temperature 

induciblity before and holds novelty compared to mouse Cirbp, which have been reported 

(Al-Fageeh and Smales 2009) (Sumitomo et al. 2012).  

Furthermore, by including the mouse and CHO versions of Cirbp in all reporter 

experiments served two purposes, firstly it provided a control comparison for temperature 

induciblity for all other promoters and secondly to examine any potential differences 

between mouse and CHO, for which no reports currently exist for the latter in the literature.  

In conclusion, promoter choice influences the efficacy of specific gene expression, as does 

the cell type (Spenger et al. 2004). So ultimately the aim was to provide a complete 

representation of expression levels of these putative promoter fragments across all 4 

reporter vector platforms to investigate the candidate promoters’ utility in driving transgene 

expression. 
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3.2.2: GFP-reporter expression results 

Firstly, we wanted to investigate these constructs both qualitatively and quantitatively. 

Using a combination of microscopy and flow cytometry to detect GFP expression resulting 

from a GFP reporter vector driven by these isolated promoter sequences. CHO-K1 cells 

were transiently transfected with the 8 GFP-promoter constructs and cells grown at 37
o
C or 

31
o
C in parallel. GFP mean expression was typically measured 24-48 hours post-

transfection using the Guava™ flow cytometry modus operandi. For qualitative analysis, 

GFP fluorescence images were also taken using the Leica® Fluorescent microscope at 37
o
C 

and 31
o
C for comparison (Figure 3.2.2.1).  

The GFP expression results (pEGFP-altAL + 8 promoter fragments), included the inducible 

promoter constructs (Cirbp-mouse and CHO, SSu72 and MDM2) along with the miR-17-92 

promoter constructs from mouse and CHO. A positive control (CMV) vector, a 

promoterless negative control (pTATA (-)) plus the endogenous comparison control (Cirbp-

mouse) were also included (Figure 3.2.2.1). 
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Figure 3.2.2.1: GFP fluorescence of CHO-K1 cells transfected with 8 GFP-promoter 

[pEGFP-altAL+ promoter] constructs. Cells were grown in 6-well plate format and 

incubated at 37
o
C and 31

o
C. Images were taken using the Leica® Fluorescent microscope 

36 hours post-transfection.  

 

All novel CHO promoters (MDM2, SSu72 and Cirbp) gave an indication of being 

temperature sensitive promoters. Post-transfection into CHO cells, all 3 CHO promoters’ 

showed increased GFP expression based on fluorescence intensity upon temp shift to 31
o
C 

from 37
o
C. The p-TATA (-) promoterless control showed basal level GFP intensity 

compared to all other constructs as expected. 

The Cirbp-mouse promoter appeared to have noticeably increased GFP fluorescence at 

31
o
C compared to 37

o
C, indicating an increase in GFP expression owing to reduced culture 

temperature as expected of this comparison control construct.  

Interestingly, the CMV promoter control also exhibited an increase upon temperature shift, 

which was unexpected and this observation will be discussed further in section 3.2.4. 

MDM2 showed much lower GFP expression at 37
o
C which complies with the native 

expression levels seen from the qPCR validation (Figure 3.1.4.6), however, expression 

noticeably increases at 31
o
C.  
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Cells transfected with the SSu72 promoter construct showed a moderate GFP expression 

increase upon 31
o
C temperature shift and also had higher GFP intensity than MDM2 at 

37
o
C, and SSu72 seemed to drive GFP expression strongly at both temperatures. Cells 

transfected with the Cirbp-CHO promoter performed as expected relative to Cirbp-mouse 

control, displaying increased GFP expression at 31
o
C.  

Cells transfected with the miR-17-92 constitutive promoter constructs displayed lower GFP 

expression than expected considering it is acknowledged as a highly expressed cluster. In 

fact, increased saturation gain on the images for miR-17-92 samples was required to 

visualise positive GFP expressing cells (Figure 3.2.2.1). 

Next the cells were analysed by flow cytometry in order to more accurately quantify the 

levels of fluorescence from each promoter construct transfected into CHO-K1 cells and 

tested at 37
o
C and 31

o
C again (Figure 3.2.2.2).  
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Figure 3.2.2.2: Average GFP mean fluorescence values of cell populations’ transfected 

with promoter-pEGFP-altAL constructs. After transfection in 24-well plates, cells were 

incubated at 37 and 31
o
C (shifted after 6-8 hours) and measured for GFP activity 24-48 

hours later. Error bars represent standard deviation (± SD) between biological triplicates of 

samples taken at both temperatures. The fold changes (x) represent 37v31 values to show 

relative expression change for each promoter. * represents statistical significance p-value 

<0.05, ** p-value<0.01, *** p-value<0.001, determined by a 2 tailed students T-Test 

between both sets of triplicate samples for both temperatures. (n = 9). 

 

Figure 3.2.2.2 illustrates the strength of each promoter construct at each temperature plus 

the fold change between those temperatures - indicative of temperature induciblity. MDM2 

had the biggest fold change (3.77x) followed by CMV (3.25x). With the expectancy that 

the inducible promoter constructs tested should portray a high fold change between 

temperatures, it was unexpected that the CMV-promoter displayed such temperature 

responsive expression also. Although the GFP expression of the Cirbp constructs for mouse 

and CHO mirrored each other, the CHO version showed higher GFP expression at both 

temperatures; however a slightly lower fold change of 2.79x was calculated.  
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The SSu72 construct, despite having the lowest fold change of 2.46x, drove higher GFP 

expression at both temperatures than MDM2, but lower than both Cirbp constructs and the 

CMV control. The CMV promoter drove strong GFP expression as expected and was 

marginally the best performing construct and had a mean fluorescence of ~350. The 

pTATA (-) control had very low GFP expression as expected with a fold change of 1.13x 

representing the basal/background level of GFP expression by the promoterless vector 

backbone. 

The miR-17-92 cluster promoters did not drive strong GFP expression, but was detectable 

nevertheless and resulted in higher GFP expression than the basal control pTATA (-). The 

CHO version did however show slightly higher GFP expression at 31
o
C; perhaps indicating 

it may not be constitutive regulatory sequence as expected, while the mouse version 

expression was unchanged based on an insignificant p-value. The low levels of GFP 

expression resulting from these 2 promoter fragments would suggest that crucial parts of 

the regulatory sequence may be missing. 

 

Figure 3.2.2.3: Relative GFP mean fluorescence values for all promoter constructs as a 

percentage compared to CMV-promoter control at each temperature. CMV activity was set 

to 100%. 
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Figure 3.2.2.3 illustrates the GFP expression differential between temperatures for all 

promoter constructs tested. Only the Cirbp–CHO construct had stronger expression strength 

relative to the CMV at 37
o
C, whereas the MDM2 construct has the lowest GFP expression 

at both temperatures but was very promising from a fold change viewpoint, while the 

activity relative to CMV was ~50% and ~48% for each temperature.  

The SSu72 promoter showed higher expression at both temperatures than MDM2 and had 

~75% activity relative to CMV at 37
o
C and ~45% at 31

o
C. The Cirbp-CHO promoter 

activity was ~103% and ~89% for 37
o
C and 31

o
C respectively and marginally out-

performed the Cirbp-mouse control which correlated with the observations from the 

microscope images (Figure 3.2.2.1). 

The miR-17-92 cluster promoters overall activity was much less than the 3 inducible 

promoters with activities between 20% and 10% relative to the CMV promoter. 

Nonetheless, these promoters could still have utility regarding control of lower transgene 

expression, as high constitutive expression is not always desirable and smaller incremental 

expression is needed depending on the transgene being expressed in a bioprocess. 

Finally, we repeated the same protocol but alternatively measured promoter activity using a 

second flow cytometer platform – a FACSAria™ from BD Biosciences (Figure 3.2.2.4). 

We used a second flow cytometry platform in order to compare GFP expression results 

between two separate technologies.  

The FACS is capable of detecting a much greater range of fluorescence intensity – several 

orders of magnitude greater than than the Guava. This analysis was performed to ensure we 

were not missing a population of cells with expression levels outside the range detectable 

on the Guava.  
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Figure 3.2.2.4: FACS results 36 hours post-transfection of 8 promoter constructs into attached 

CHO-K1 cells in 24-well format. Dotplots are shown in the left images below the label for 

each promoter construct with GFP+ cells gated using the software. This gate was further sub-

divided into mid to high FITC ranges as shown. On the X-axis is the GFP-FITC fluorescence 

and on the Y-axis is side-scatter (SSC) which is proportional to the granularity and overall 

size of the cells. Plots show the cell populations at both temperatures (37
o
C - top and 31

o
C - 

bottom). The left sector (black) indicates the non-florescent cell population. The far right 

sector displays the cells with highest GFP intensity (dark green). Cells transfected with the 

pTATA (-) and a cells only control were included as controls. 
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Once again, CHO-K1 cells were transfected with the 8 promoter constructs, cultured at 

either 37
o
C or 31

o
C and GFP fluorescence measured 36 hours later. In all cases, the GFP 

positive populations of cells were shifted to the right (more cells showing higher GFP 

fluorescence) upon temperature shift to 31
o
C (Figure 3.2.2.4).  

GFP intensity in all three low, mid and high sub-gate ranges increased at 31
o
C especially in 

the highest GFP intensity range (far right sector). The sector breakdown for medium and 

high GFP intensity plus the number of cells (#Events) in each of the gated populations can 

be seen in appendices 6.2.2.  

The CMV control GFP intensity increased at 31
o
C in each gate compared to 37

o
C, and also 

was the strongest promoter once again. Interestingly, the miR-17-92-mouse promoter 

showed markedly more GFP expression and there was an obvious increase in expression at 

31
o
C compared to 37

o
C. This would indicate that it is acting contrary to its expected 

constitutive nature. The miR-17-92-CHO counterpart showed expression levels equivalent 

to the pTATA (-) negative control.  
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Figure 3.2.2.5: FACS results for the GFP-promoter constructs transfected into CHO-K1 

cells showing mean fluorescence of GFP+ gated populations (from figure 3.2.2.4) assayed 

36 hours later. Shown as bar headers were the temperature shift fold change (x) values 

between 37
o
C and 31

o
C. Error bars represent standard deviation (± SD) between biological 

triplicates of samples taken at both temperatures. * represents statistical significance p-

value <0.05, ** p-value<0.01, *** p-value<0.001, determined by a 2 tailed students T-Test 

between both sets of triplicate samples for both temperatures.  

 

The CMV promoter once again drove the highest GFP expression (~72000) and a 5.44x 

fold increase upon temperature shift to 31
o
C. The mouse miR-17-92 promoter had stronger 

expression at both temperatures than the CHO version, however, unlike the analysis 

performed using the Guava®, in this case, the promoter resulted in >2-fold increased GFP 

expression at 31
o
C compared to 37

o
C. This is not dissimilar to the changes seen in the 

Cirbp promoters.  
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Figure 3.2.2.6: Median GFP expression values in transiently transfected CHO-K1 cells. 

Error bars represent standard deviation (± SD) between biological triplicates of samples 

taken at both temperatures. In the bar headers showed the temperature shift fold change (x) 

values between 37
o
C and 31

o
C. * represents statistical significance p-value <0.05, ** p-

value<0.01, *** p-value<0.001, determined by a 2 tailed students T-Test between both sets 

of triplicate samples for both temperatures. 

 

The median figures were calculated by measuring the GFP intensity of the highest 

expressing cells within the gated population and here it demonstrated a very similar pattern 

to the mean values reported in figure 3.2.2.5. However, discrete differences were seen 

between data sets, especially at a fold change level. MDM2, for example, was double 

[8.38x] that of SSu72 [4.34x], while Cirbp-mouse had a higher median than the Cirbp-CHO 

ortholog, meaning that although the average FITC signal might be high, the median showed 

that some cells were of a higher GFP intensity range. 

One of the most striking observations was the impact of temperature reduction on the 

activity of the CMV viral promoter. This will be addressed later in the section. 
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In conclusion, using GFP as a reporter gene, all of our novel isolated promoters can drive 

GFP expression albeit at various degrees of strength. MDM2, SSu72, miR-17-92-mouse, 

miR-17-92-CHO and Cirbp-CHO constructs all showed markedly increased fold changes 

due to temperature downshift (31
o
C) when compared to the strong CMV control and also 

compared favourably to the endogenous Cirbp-mouse control. Additionally, it was 

interesting to observe that the CHO version of Cirbp had marginally better expression than 

its mouse orthologue.  

 

3.2.3: Luciferase reporter expression results 

Having tested the various promoter fragments for their ability to drive GFP at 37
o
C and 

31
o
C we then switched vectors to investigate their activity in another reporter gene, 

Luciferase. 

The GFP assays didn’t account for variations in transfection efficiency between the various 

promoter constructs. Therefore, by incorporating a second vector and reporter gene, in this 

case, a Renilla Luciferase from the sea pansy ‘Renilla reniformis’ we now had a vector 

which could be included in every experiment as a normalisation control. This second vector 

was under the control of a CMV promoter and the resulting Luciferase signal from Renilla 

can then be used to account for small differences in transfection efficiency. 

It became apparent that the Renilla vector was also temperature sensitive, presumably 

owing to the fact that Renilla expression was under a similar CMV promoter control. 

Therefore, this observation highlighted that the vector would not be a suitable control for 

normalisation between samples. To rectify this we reverted to using a Bradford protein 

assay to calculate total protein concentrations per sample in order to normalise across all 

samples. The Luciferase results of transfections normalised in this manner are shown in 

figure 3.2.3.1.  

The positive control in this assay was a viral SV40 driven Luciferase (pGL3-Control), not a 

CMV as used in the GFP assays; finally a basic promoterless control (pGL3-basic) vector 

was used as a negative control. 
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Figure 3.2.3.1: Luciferase results for CHO-K1 cells grown in 24-well plates. Cells were 

transfected with pGL3-plasmids containing promoters of interest driving expression of 

Luciferase gene and relative Luciferase units were measured on a BioTek® Plate reader 48 

hours later. Included controls were a strong positive promoter (SV40) and a minimal-

TATA negative promoter (pGL3-basic). The bar headers represent the temperature shift 

fold change (x) values between 37
o
C and 31

o
C. Error bars represent standard deviation (± 

SD) between biological triplicates of samples taken at both temperatures. * represents 

statistical significance p-value <0.05, ** p-value<0.01, *** p-value<0.001, determined by a 

2 tailed students T-Test between both sets of triplicate samples for both temperatures. 

Luminescence (RLU) values were normalised to protein concentration measured using the 

Bradford assay.  

 

The first point to note is that, unlike the GFP experiments, the positive control construct 

using another viral promoter (SV40) was much less responsive to a temperature downshift. 

However, there was a significant increase (~1.5x) in expression, but it was much more 

modest than the CMV-driven control in the GFP assays seen previous. 

Interestingly, the miR-17-92-mouse promoter had the highest Luciferase expression at 

37
o
C, while the Cirbp-mouse control promoter drove the strongest expression at 31

o
C, out-

performing the CHO version in contrast to the GFP expression results. MDM2 had a 

markedly higher fold change of 41.62x in comparison to all other promoter constructs.  
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This large fold change was in contrast to the GFP results where it was only 3.77x higher at 

31
o
C (Figure 3.2.2.2). 

SSu72 had a more modest FC of 1.67x, however the promoter drove higher expression of 

Luciferase at both temperatures, similar to the SV40 control. The miR-17-92-CHO 

promoter displayed very low Luciferase expression, only slightly higher than the 

promoterless pGL3-basic control. 

 

Figure 3.2.3.2: Relative promoter activity results measured by the Luciferase reporter 

assay. Data represented as a relative % of SV40 viral promoter control for both 37
o
C and 

31
o
C temperatures. SV40 activity was set to 100%.  

 

Interestingly, the miR-17-92-mouse promoter out-performed all other constructs at 37
o
C 

being ~42% stronger than SV40, while the CHO version was relatively lower at ~23%. In 

comparisons to the SV40 control at each temperature, MDM2 and SSu72 showed 5% and 

99% activity at 37
o
C, but upon temperature shift this activity rose to 145% and 118% 

respectively. The MDM2 promoter demonstrated a large differential between 37
o
C and 

31
o
C, indicating the strongest temperature responsiveness which was quite striking. 
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In this assay the Cirbp-mouse promoter outperformed the CHO equivalent by 11.9% at 

37
o
C and 35.7% at 31

o
C, while both were more expressive than SV40 at 31

o
C by 113% and 

77% respectively which was very promising. MDM2 and SSu72 promoters although less 

active than the Cirbp-promoters, also seemed to be interesting candidates for future study as 

their expression results were on par with SV40. 

Furthermore, the SV40 control promoter did not illicit the same expression strength at 

either temperature compared to the CMV promoter used in the GFP experiments. In fact, 

the different results achieved using the two different reporter platforms highlight the 

importance of testing the activity of promoter sequences of interest in more than one 

experimental circumstance, in order to gain a complete picture of their transcriptional 

properties. 
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3.2.4: CMV and SV40: Poor viral controls  

Upon completion of the above two reporter platforms for target promoters, one concern was 

continuously raised over the results. Why do the CMV and SV40 promoters display 

inducible expression when it is commonly accepted that they are constitutive promoters? 

Having appropriate controls is important when conducting promoter studies; our results so 

far have demonstrated that these viral promoters were in fact not suitable controls in 

temperature shift promoter studies. CMV (also contained in commercial Renilla vector) and 

to a lesser extent SV40 promoters were all shown to be responsive to a low temperature 

culture shift.  

In fact, Bruening et al demonstrated that CMV promoters were upregulated in response to 

stress, and was induced from reduction in available nutrients, accumulation of metabolic 

by-products and of course reductions in culture temperature. They showed that reduced 

temperature culture of mouse NIH-3T3 cells caused up-regulation of the early CMV 

promoter (pCMV-lacZ) after transfection, and appeared to result in activation of the MAP 

kinase cascade pathway. They concluded that if the CMV promoter (or any viral promoter 

control) can be up-regulated by cellular stresses like cold shock, inadvertent activation of 

the stress kinase pathways may complicate, if not invalidate, the interpretation of a wide 

range of experiments (Bruening et al. 1998). 

More commonly, it is believed to be an innate immune response to combat pathogenicity, 

although the exact mechanism is unclear, by viral DNA in order to survive and remain 

quiescent within a host until conditions become more favourable, in this case lower 

environment temperature (Bruggeman et al. 1995).  

To test whether the CMV promoter was behaving as a temperature inducible promoter an 

experiment was designed to observe if the CMV-driven reporter gene expression increase at 

31
o
C was occurring due to the mRNA being more stable or more transcriptionally active at 

this temperature.  
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CHO-K1 cells were transfected with the CMV-GFP vector and either treated with 

actinomycin D or fresh culture media only, coupled with a temperature shift to 31
o
C to 

investigate the effects of 31
o
C on the mRNA transcript level. Cells were harvested 4, 14 

and 24 hours later and RNA was reverse transcribed and GFP mRNA levels quantified by 

qPCR. 

The copy number in a given sample was calculated from a standard curve (see appendices 

table 6.2.2.1) as described previously in section 3.1.4.  
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Figure 3.2.4.1: Calculation of the mRNA stability of a GFP reporter gene driven by the 

CMV-promoter. GFP transcript copy numbers were calculated after using RT-qPCR. A 

pEGFP vector driven by the CMV-promoter was transfected into CHO-K1 cells in 6-well 

plate format and grown over 24 hours with no treatment (A) or actinomycin D treatment 

(B) at 37
o
C or 31

o
C. Samples were taken at 4, 14 and 24 hours (h).   

 

Figure 3.2.4.1 A, illustrates the copy number of GFP transcripts over 24 hours at 37
o
C and 

31
o
C. A no treatment control was included as a guide to the performance of the CMV 

promoter to drive GFP expression over 3 timepoints at both temperatures.  
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More critically, we wanted to examine the drop in GFP transcript number post-actinomycin 

D treatment over the same time points and at both temperatures (Figure 3.2.4.1 B). 

In the untreated samples at 37
o
C, transcript copy numbers increased from 8.61x10

5
 at 4 

hours to 9.24x10
6
 after 24 hours while at 31

o
C copy numbers increased from 1.52x10

6
 at 4 

hours to 1.19x10
7
 after 24 hours (Figure 3.2.6.1 A). Interestingly, there was more GFP 

transcript measured at 14 hours compared to 24 hours at 31
o
C, which was unexpected. This 

could indicate that there is interplay between stability and transcript turnover yet to be fully 

understood between 14 and 24 hours at mild hypothermia and may be cell cycle related.   

There was some fluctuation in copy number over the 3 timepoints which was unexpected; 

however, Al-Fageeh and Smales also reported such anomalies between timepoints. They 

observed that between 2, 6 and 12 hours the transcript levels of mouse Cirbp mRNA 

transcripts varied significantly upon 31
o
C cold-shock with copy number being lower at 12 

hours compared to the copy number 6 hours previous (Al-Fageeh and Smales 2009).  

During the first 4 hours at 31
o
C, GFP transcript numbers were 2-fold higher than the 

numbers at 37
o
C, owing to more GFP expression being driven under the CMV under 

normal (no treatment) conditions (Figure 3.2.4.1 A). The expected transcriptional increase 

at 31
o
C by CMV in the untreated samples only becomes substantial from 4 hours onwards. 

The difference in copy number between temperatures after 4 hours was 2.97x10
5
 compared 

to the difference after 14 and 24 hours, which were 8.68x10
6
 and 7.72x10

6
 copies 

respectively, thus showing a strong increase in transcription upon temperature shift after the 

initial 4 hours (Figure 3.2.4.1 A). 

The absolute copy number of GFP transcripts dropped as early as 4 hours in the 

actinomycin D treated samples and more so after 24 hours, where the transcript level had 

dropped by approximately 21-fold at 37
o
C and 110-fold at 31

o
C. Transcripts also decayed 

more quickly during the first 10 hours at 31
o
C than the same time period at 37

o
C (Figure 

3.2.4.1 B).  
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Overall, the GFP mRNA under control of the CMV promoter appeared to be less stable at 

31
o
C than at 37

o
C based on higher decay rates and lower half-life of GFP mRNA between 

24 hours and 4 hours. The half-life at 37
o
C was calculated to be 4.51hr

-1
 compared to 

2.45hr
-1

 at 31
o
C over the 20 hours in culture (Table 3.2.4.2).  

We assume this accounted for the increased GFP expression caused by temperature 

downshift shown in the reporter assays previous. The complete decay rate and half-life 

values between each time-point were shown in table 3.2.4.2.  

 

Table 3.2.4.2: Decay rate (k in h
-1

) and half-life (t1/2) for actinomycin D treatment at both 

temperatures representative of figure 3.2.4.1 results.  

 

 

We conclude that the change in mRNA abundance can be attributed to a transcriptional rate 

change, and not increased transcript stability caused by the CMV promoter within the cells. 

It was also observed that in the untreated control samples at 37
o
C and 31

o
C, the transcript 

copy numbers increased over time at 31
o
C while with the addition of actinomycin D the 

reverse was seen. In other words, we saw reduced stability at 31
o
C versus 37

o
C and 

comparatively increased transcriptional activity at 31
o
C after 24 hours. Finally, the CMV 

promoter used in these studies appears to be more transcriptionally active at 31
o
C and 

therefore will no longer be referred to as a reporter control. 

 

 

 

ActD @ Time (kdecay) h
-1 t 1/2

37oC 24h-4h -0.1535 4.51

24h-14h -0.1843 3.76

14h-4h -0.1227 5.64

31oC 24h-4h -0.2824 2.45

24h-14h -0.1881 3.68

14h-4h -0.235 2.94
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3.2.5: Driving expression of a bioprocess product (EPO) 

Erythropoietin was the first recombinant protein from mammalian cells to achieve 

blockbuster status, with sales over $1 billion annually (Wurm F. 2004).  

We chose it to investigate whether its synthesis could be controlled according to culture 

temperature and, as a result, whether yield of the protein was better or worse than in 

isothermic culture. The hypothesis being that reduced expression at 37
o
C early in the 

bioprocess may allow cells reach higher density, followed by a switch to 31
o
C which slows 

growth and directs cellular energy to produce more EPO in parallel with these temperature 

inducible promoters to increase productivity. It also would showcase the promoter’s 

potential in driving expression of an important biopharma product. 

As in the case of Luciferase and GFP, the promoter sequences were cloned into an EPO 

vector and transfected into CHO-K1 cells to investigate EPO transgene expression. Two 

out of the three novel endogenous CHO promoters were shown to drive EPO expression 

(Cirbp-CHO and SSu72) in a temperature dependent manner, with a definite expression 

gradient between 37
o
C and 31

o
C. The Cirbp-mouse promoter control EPO vector also 

functioned well by exhibiting strong EPO expression at both temperatures (Figure 3.2.5.1).  
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Figure 3.2.5.1: EPO mRNA transcript copy number calculated after RT-qPCR. The 8 

promoter-EPO constructs were transfected into CHO-K1 cells and cultivated at 37
o
C and 

31
o
C over 36 hours. Total RNA was extracted and 1μg was DNase treated and reverse-

transcribed to generate cDNA. Fold change between 37
o
C and 31

o
C was denoted by [x] 

under each sample. 

 

At the transcriptional level the CMV promoter drove the highest level of EPO at both 

temperatures, with copy numbers reaching ~5.23x10
5
 at 37

o
C and ~1.40x10

6
 at 31

o
C. 

However, the effect of temperature shift on transcript copy number was not as apparent as 

with GFP and Luciferase assays with a smaller fold change of 2.7x observed between 

temperatures. This is more in-line with an expected result from a constitutive promoter but 

this was not seen at a protein level where there was quite an obvious shift in protein 

expression for the CMV samples between 37
o
C and 31

o
C (Figure 3.2.5.2). 

Out of the novel CHO promoters, MDM2 only expressed 444 copies at 37
o
C and 7416 

copies at 31
o
C, however, the fold change between temperatures was much larger being 

16.7x which was comparable to the Cirbp-promoters.  
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The SSu72 promoter performed the best of all the promoters tested (excluding CMV) 

regarding transcript abundance at both temperatures and indeed at the protein level at both 

temperatures (Figure 3.2.5.2).  

The basal pTATA (-) control produced low levels of EPO transcript as would be expected 

of a minimal promoter. The miR-17-92-mouse promoter expressed marginally more 

transcripts than the CHO version, while both promoters drove transcription slightly better at 

31
o
C. The abundance of EPO transcripts varied greatly from the Luciferase values 

produced by the miR-17-92 promoters. The miR-17-92 mouse promoter only produced 785 

copies at 31
o
C while the CHO ortholog produced 295 copies at 31

o
C.  

For the Cirbp-promoters, the effect of temperature shift to 31
o
C was shown to increase EPO 

transcript copy numbers in both orthologs tested. Although the CHO sequence generated 

more transcripts at each temperature, the temperature induciblity was less pronounced with 

the fold change being marginally less (24.4x) than the Cirbp-mouse promoter, with itself 

been the most temperature responsive among all promoters and had a 26.3-fold difference 

between 37
o
C and 31

o
C. 

 

Figure 3.2.5.2: Western blots for the 8 promoter-EPO constructs plus a cells only control. 

CHO-K1 cells were transfected with the promoter constructs and cultured in 24-well plates 

at 37
o
C and 31

o
C. Supernatant from each sample well was harvested 48-hours later. 

Supernatant was subsequently loaded onto a 4-12% SDS/Bis-Tris gel and probed with anti-

EPO antibody from Abcam®. As extracellular EPO was secreted into the growth media; no 

loading control for EPO was available.  

 

Figure 3.2.5.2 shows that no EPO protein was detected for pTATA (-), MDM2 or either 

miR-17-92 promoter; this was unexpected in lieu of previous results in Luciferase and GFP 

assays. Surprisingly, the MDM2 promoter resulted in very low EPO mRNA levels, and 
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consequently no protein was detectable by western blot. This result was evidently different 

to what was observed for the two reporter proteins previously.  

Chen et al see such anomalies aswell, using only two reporter protein platforms for analysis 

of transgene expression (GFP and Luciferase). They tested two putative promoter CHO 

fragment sequences derived from a promoter-trap method that underwent hygromycin 

selection. They showed that clone #2 was strong enough to drive GFP expression but not 

Luciferase. Furthermore, clone #2 only exhibited ~20% GFP expression strength for 

compared to the SV40 viral promoters used in the study (Chen et al. 2013). Our promoters, 

although varying in strength across reporter platforms, performed to relatively higher levels 

than the 20% of the CMV and SV40 promoters. As a result, we conclude that MDM2 might 

not be suitable for EPO production but could still hold value in other protein production 

settings. 

Both Cirbp promoters drove expression of EPO as evidenced by qPCR and western blotting 

data (Figure 3.2.5.1 and 3.2.5.2). At a transcriptional level the Cirbp-CHO promoter 

expressed more copies of EPO than the Cirbp-mouse version at both temperatures. This was 

encouraging as a novel finding because so far, only Cirbp promoters from mouse had been 

reported in the literature (Al-Fageeh and Smales 2006).  

Furthermore, the lack of EPO expression from the miR-17-92-CHO promoter was not 

surprising due to its low level GFP and Luciferase expression compared to the other 

promoters in previous sections. Moreover, the miR-17-92-mouse promoter had an extra 

259bp which may contain addition regulatory sequence. However, to recount, this was not 

apparent after cloning in a 1.1kb fragment of the miR-17-92-CHO during the initial 

promoter fragment GFP screen (Table 3.1.11), but the landscape of both promoters may be 

different. Regardless, in theory, the miR-17-92 CHO promoter could still be utilised to 

drive expression of genes that are not required at high levels, such as toxic proteins or dose-

dependent engineering targets that do not require strong expression. 

In conclusion, three of the novel isolated promoters [SSu72, Cirbp-CHO, and Cirbp-mouse] 

have shown their utility from a bioprocess product viewpoint. They drove expression of a 

well-known and important therapeutic glycoprotein [EPO] at both 37
o
C and 31

o
C, with 

markedly increased expression seen at 31
o
C.  
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3.2.6: Driving expression of an cellular engineering transgene (p27) 

In the previous section, we investigated the use of several promoters on the production of 

EPO at different temperatures. Realistically the product gene is unlikely to be expressed in 

an inducible manner such as this, although there have been examples reported (eg: 

Regenerons’ ciliary neurotrophic factor (CNTF)/Axokine and interleukin-1) (Preti 2003) 

(Gabay 2003).  

Inducible promoters are more likely to be useful for controlling the temporal expression of 

a cell engineering transgene. Therefore, our next experiment was to consider their use in 

this manner. We chose to use cyclin-dependant kinase inhibitor 1B (p27) to investigate 

whether they could drive expression of an engineering target to influence a phenotype in 

culture. Successful induction of p27 should result in reduced cellular growth via cell cycle 

inhibition in the G1 phase. 

Controlling p27 expression by inducible promoters could be utilised in a CHO cell line 

bioprocess to arrest cell growth and to quickly transition cells into a productive phase to 

increase protein production for example. 

Here the effect of p27 expression was reported after transfecting the promoter constructs 

into attached parental CHO-K1 cells as well as a specially adapted in-house suspension 

CHO-K1-SEAP cell line.  

We chose a second cell line for two reasons. Firstly to see if p27 could be induced in more 

than one cell type in order to impact proliferation and secondly we also wanted to measure 

the SEAP productivity of the cells at different cell densities by the varying p27 expression 

resulting from the different promoters. 

Finally, including a suspension culture will provide data on the utility of these promoters in 

a format more relevant to industrial bioprocesses.  
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3.2.6.1: Temperature responsive p27 expression in ‘attached’ culture 

CHO-K1 parental cells were seeded and grown at 37
o
C in 24-well plates for 12 hours prior 

to transfection of promoter constructs driving p27. Six hours after transfection, half the 

cultures were switched to a 31
o
C incubator and 66 hours later all cultures were trypsinised 

and subsequently stained for viability and analyised by flow cytometry (Figure 3.2.6.1). In 

addition, we calculated relative cell density normalised to the pTATA (-) control for all 

samples at each temperature (Figure 3.2.6.2).  

 

 



189 
 

Figure 3.2.6.1: (A) Cell densities were measured 72 hours post-transfection with p27-

promoter constructs. Guava™ flow cytometry was used to calculate cell numbers for 

attached CHO-K1 cells grown in 24-well plate format. Error bars represent standard 

deviation (± SD) between biological triplicates at both temperatures. * represents statistical 

significance p-value <0.05, ** p-value<0.01, determined by a 2 tailed students T-Test 

between the pTATA (-) control and all other constructs over 3 replicate experiments. (n = 

3). (B) Percentage viability values were also measured by flow cytometry 72 hours later at 

37
o
C and 31

o
C.  

 

Post-transfection, all promoter constructs caused a reduction in cell number at 37
o
C 

compared to the pTATA (-) control (Figure 3.2.6.1 A). Interestingly, both MDM2 and 

SSu72 constructs caused greater growth suppression than CMV at 37
o
C, plus SSu72 caused 

greater suppression at 31
o
C also. The Cirbp promoters had a similar effect as CMV, 

whereas the miR-17-92 promoters only caused slightly reduced cell densities compared to 

pTATA (-) control at 37
o
C. Switching the cells to a 31

o
C incubator resulted in 6x10

4
 less 

cells per well in the pTATA (-) control samples, representing approximately a 18% drop 

compared to cells maintained at 37
o
C and this was taken to be in response to temperature 

shift alone, on cell growth. All promoter constructs tested had a higher cell density 

differential when compared to this value from the pTATA (-) control.  
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In contrast, the CMV promoter transfected cells had ~60% reduction in cell numbers at 

31
o
C compared to 37

o
C, presumably due to the added effect of transgenic p27 expression 

and its subsequent added suppression on proliferation. MDM2 and SSu72 both displayed a 

45% and 53% reduced cell density upon temperature shift. However, the greatest impact 

caused by temperature shift on relative cell density, between 37
o
C and 31

o
C, was in 

cultures transfected with the Cirbp promoters, as highlighted by significant P-values across 

3 similar experiments (Figure 3.2.6.2).  

Cirbp-CHO had the biggest differential between temperatures being 2.51x10
5
 cells/well; 

this represented a reduction of 74% of 37
o
C cell numbers. The Cirbp-mouse promoter had 

the next highest cell number differential of 2.26x10
5
 cells/well; this represented a reduction 

of 70% of 37
o
C cell numbers. By taking into account the pTATA (-) control at 18%, we 

calculated the more accurate cell number reduction percentages of 55% (Cirbp-CHO) and 

51% (Cirbp-mouse) as a result of normalising to the pTATA (-) control. For the full figures 

and % cell number reductions for each p27 construct see tables 6.3.1 and 6.3.2 in the 

appendices. 

The CMV cell number differential between temperatures was 1.97x10
5
 cells/well compared 

to MDM2 and SSu72 being 1.23x10
5
 and 9.20x10

4
 cells/well respectively. This resulted in 

a larger fold change seen in the CMV promoter samples than MDM2 and SSu72 samples 

and appeared to be more inducible upon temperature shift providing further evidence that 

CMV was not a good control. 

Interestingly, the viability values measured at 31
o
C were marginally lower overall than the 

viability values at 37
o
C (Figure 3.2.6.1 B). This was unexpected, as lower cultivation 

temperature in usually reported to increase viability. There are potentially two reasons why 

this may have been observed. One is that maybe the cells were still only adjusting to cold 

shock after 3 days and secondly, perhaps the transfection procedure was more impactful at 

31
o
C. Indeed as the viability was lower in all samples that underwent transfection, whereas 

the cells only samples had slightly higher viability at 31
o
C being 97.8% compared to 96.8% 

at 37
o
C.  
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The miR-17-92 promoters had minimal impact on cell density at 37
o
C but showed reduced 

cell numbers at 31
o
C compared to the pTATA (-) control. However, their impact was not 

comparable to the other promoters at either temperature and had the least relative cell 

density reduction compared to the pTATA (-) control (Figure 3.2.6.2). This correlated to 

the RT-qPCR validation which showed much less p27 mRNA transcripts (Figure 3.2.6.3).  

Additionally, they showed a significant response to temperature shift (p<0.05) at an mRNA 

transcript level which again is not what one would expect of constitutively active 

promoters. 

 

Figure 3.2.6.2: Relative CHO-K1 cell density fold-change (fc) in attached culture. Cell 

densities were normalised to the promoterless (pTATA-) negative control sample (Set to 

1.0) of its respective 37
o
C versus 31

o
C values. 

 

Overall, there was a correlation between increased copy number and the effect on growth 

due to overexpression of p27 (Figure 3.2.6.1 A). For example; MDM2 and SSu72 had the 

biggest effect on the cell growth and this correlated with greater p27 mRNA transcript 

abundance (Figure 3.2.6.3). 
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Figure 3.2.6.3: Quantification of p27 transcript expression in CHO-K1 cells transfected 

with 8 promoter-p27 constructs and cultured at 37
o
C and 31

o
C. Absolute transcript copy 

number was measured by RT-qPCR and calculated using a standard curve for p27. Total 

RNA was extracted 72 hours after transfection and 1μg was DNase treated and reverse-

transcribed to generate cDNA. Bar headers showed the absolute values for p27 transcript 

copy numbers for each sample. 

 

The Cirbp-CHO promoter was shown to be the most transcriptionally active promoter, 

reaching 6.23x10
3
 transcripts at 37

o
C and 1.96x10

4
 transcripts at 31

o
C after 72 hours. The 

Cirbp-mouse promoter was marginally less active at driving p27, than its CHO counterpart, 

however Cirbp-mouse had a larger transcript fold change between temperatures at 3.7-fold 

whereas Cirbp-CHO was 3.1-fold. The CMV construct produced the highest transcript fold 

change between temperatures, at 5.8-fold.  

The MDM2 and SSu72 promoters appeared to be less active, with less transcripts detected 

at both temperatures compared to the Cirbp promoters, however they both had large 

transcript fold changes between temperatures.  
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The fold change between 37
o
C and 31

o
C for MDM2 and SSu72 copy numbers were 

calculated to be 3.4-fold and 5.4-fold respectively, indicating that they were the most 

temperature responsive at a transcriptional level when driving p27. 

The observed correlation between growth arrest and p27 transcript abundance encouraged 

us to investigate the levels of p27 protein present in the cells using western blot analysis 

(Figure 3.2.6.4).  

There was an obvious increase in p27 protein (band intensity) expression in the 31
o
C 

samples compared to the 37
o
C samples overall. The pTATA (-) control detected low levels 

of p27 protein at 37
o
C and slightly more at 31

o
C; this was also seen at a transcriptional 

level (Figure 3.2.6.3). There was no endogenous level of p27 detected in the cells only 

sample at either temperature. 

The CMV promoter appeared to drive the most amount of p27 protein at 31
o
C. MDM2 and 

SSu72 also produced strong detection at 31
o
C and interestingly, SSu72 had similar 

detection at 37
o
C (Figure 3.2.6.4). The Cirbp-promoters had dissimilar results compared to 

each other. The Cirbp-mouse promoter had a bigger differential between temperatures than 

the Cirbp-CHO and the CHO version as more p27 was detected at 37
o
C; however less p27 

was detected than in the CMV samples. The miR-17-92 mouse promoter appeared to drive 

reasonable p27 protein expression based on the protein detected with no apparent intensity 

difference between temperatures.  
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Figure 3.2.6.4: Western blots for the 8 promoter-p27 constructs plus a cells only control. CHO-K1 cells were transfected with the p27 

promoter constructs and cultured at 37
o
C and 31

o
C. 1x10

6
 cells were trypsinised and then lysed 72 hours post-transfection with an in-house 

lysis buffer cocktail. A Bradford assay was performed to calculate protein concentration for all samples. 10µg of protein was subsequently 

loaded onto a 4-12% SDS/Bis-Tris gel and probed with anti-p27 antibody from Abcam® and a house-keeping gene GAPDH as a loading 

control. [p27 = ~27kDa and GAPDH = ~40kDa]. 
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3.2.6.2: Temperature responsive p27 expression in ‘suspension’ culture 

Our early experiments had illustrated the transcript-dependent nature of the 

activity/induciblity of these promoters. Having observed such interesting and encouraging 

results with p27 – under the transcriptional control of the Cirbp promoters in particular – 

we wanted to assess whether this effect was maintained in cells grown in a different culture 

format i.e.: suspension culture.  

This is important, as ultimately the aim was to develop tools for use in commercial 

bioprocesses in bioreactors and oftentimes the dynamics of different culture formats can 

have adverse effects on gene expression. Feng et al examined differential expression of two 

viral promoters (SV40 and CMV) and one mammalian (beta-actin) and they found that 

beta-actin and SV40 promoters exhibited suppressed gene expression of 70 and 56%, 

respectively, in suspension cells. They conclude that regardless of mammalian or viral 

vectors, one cannot assume that all expression vectors behave similarly in both suspension 

and adherent state. (Feng, Hicks and Chang 2003).  
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Figure 3.2.6.2.1: (A) Guava™ flow cytometry was used to calculate cell numbers for 

suspension CHO-K1-SEAP cells grown in 24-well suspension plate format. Cell densities 

were measured 72 hours post-transfection with p27-promoter constructs. Error bars 

represent standard deviation (± SD) between biological triplicates at both temperatures. * 

represents statistical significance p-value <0.05, ** p-value<0.01, determined by a 2 tailed 

students T-Test between the change in cell numbers at 37
o
C and 31

o
C between pTATA (-) 

control and all other constructs over 3 replicate experiments (n = 3). (B) Percentage 

viability values were also measured by flow cytometry 72 hours later at 37
o
C and 31

o
C. 

 

All constructs displayed reductions in cell numbers for both temperatures compared to the 

pTATA (-) control (Figure 3.2.6.2.1). Switching the cells to a 31
o
C incubator resulted in 

6x10
4
 less cells per well in the pTATA (-) control samples, representing a 23.6% drop 

compared to cells maintained at 37
o
C and this impact on cell growth was taken to be in 

response to temperature shift alone. All promoter constructs tested had more substantial 

reductions at 31
o
C compared to their 37

o
C counterpart samples.  

Cirbp-CHO had the largest drop at 48.2% followed closely by the MDM2 and SSu72 

constructs which showed 45.2% and 39% reductions in cells at 31
o
C compared to cells 

maintained at 37
o
C when normalised to the pTATA (-) control. The MDM2 and SSu72 

promoter cell densities between temperatures showed differentials of 1.84x10
6
 cell/mL and 
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1.51x10
6
 cells/mL respectively, and both caused substantial growth suppression at both 

temperatures. However, only MDM2 was shown to be statistically significant over 3 

similar experiments. For the full figures and % cell number reductions for each p27 

construct see tables 6.3.1 and 6.3.2 in the appendices. 

The transfected CMV promoter resulted in the fewest cell numbers at both temperatures 

presumably due to strongly driving p27 expression. Surprisingly, this was the opposite of 

the attached culture results (Figure 3.2.6.1.1 A), whereby the MDM2 and SSu72 promoters 

caused a bigger reduction in cell numbers than the CMV promoter. However, the cell 

number differential between 37
o
C and 31

o
C for CMV was only 5.18x10

5
 cells/mL and was 

less than the differential between 37
o
C and 31

o
C for pTATA (-) control which was 

8.31x10
5
 cells/mL. This perhaps indicated that CMV was the least temperature responsive 

promoter in suspension CHO-K1-SEAP culture, however, CMV did show a 16% reduction 

after normalisation to the pTATA (-) control. 

The Cirbp-CHO promoter had the largest cell density differential at 1.91x10
6
 cells/mL 

while the Cirbp-mouse ortholog promoter had a difference of 1.80x10
6
 cells/mL between 

temperatures. Both Cirbp promoters, like the attached culture results, showed significant P-

values from 3 replicate experiments when compared to the pTATA (-) control. 

The miR-17-92 constructs had a similar impact on suspension CHO cells compared to the 

attached cells but once again the impact on cell numbers was modest but not 

overwhelming. Again the mouse version outperformed the CHO version, when normalised 

to the pTATA (-) control, miR-17-92-mouse promoter resulted in a 20.4% reduction in cell 

numbers compared to a 13.5% reduction from the miR-17-92-CHO promoter. 

Overall, the viability % in the suspension cultures was lower compared to attached culture 

(Figure 3.2.6.2.1 B). This could be attributed to suspension cells being more sensitive to the 

transfection process and hypothermic environment. The reduced viability seen previously 

in attached culture was evident again, with all 31
o
C samples having been less viable 

following flow cytometry analysis. However, we also see that the cells only control 

samples which did not undergo transfection showed marginally (1.6% increase) higher 

viability at 31
o
C was more in-line with what we expected.  
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Figure 3.2.6.2.2: Relative CHO-K1-SEAP cell population density as a fold-change (fc) in 

suspension culture. Cell densities were normalised to the promoterless (pTATA-) negative 

control sample (Set to 1.0) of its respective 37
o
C versus 31

o
C values. 

 

All promoter constructs showed decreased cell density relative to the pTATA (-) basal 

control, suggesting that all constructs drove p27 expression sufficiently to inhibit growth at 

varying strengths. Once again, the miR-17-92 promoters had the least impact on growth – 

having between ~5-14% lower growth than pTATA (-) across both temperatures. The CMV 

had the biggest impact and indeed similar reduction of ~60% at both temperatures after 

normalisation to the pTATA (-) control values for both 37
o
C and 31

o
C (Figure 3.2.6.2.2).  

The Cirbp-CHO promoter showed the strongest effect at 31
o
C compared to all other 

promoters with a 62% reduction in cell density, marginally more than the CMV promoter. 

It also had the largest response to temperature with a 2.12-fold reduction in cell density. 

MDM2 and SSu72 promoter constructs had moderate effects on cell growth at both 

temperatures with 52% and 55% reductions when normalised to the pTATA (-) control 

values at both temperatures. Furthermore, both had cell density differentials between 37
o
C 

and 31
o
C of 1.85-fold and 1.93-fold respectively.  
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Finally, the CMV promoter did cause cell growth to be reduced significantly but there was 

a very small difference between temperatures. This indicated that the CMV promoter was 

less temperature responsive in this experiment also. We hypothesised that this was maybe 

due to the growth repressive effect of p27 expression reaching saturation within the cells,  

whereby the natural growth of the suspension cells could simply not be reduced any lower 

than ~7.82x10
5 
cells/mL (Figure 3.2.6.2.1 A).  

 

 

Figure 3.2.6.2.3: Absolute transcript copy number results from RT-qPCR analysis. 

Suspension culture CHO-K1-SEAP cells were transfected with all eight p27-promoter 

constructs. RNA was extracted from the cells after 72 hours in culture at 37
o
C and 31

o
C. 

RNA was then reverse transcribed to generate cDNA for qPCR and analyised using a 

HT7900 applied Biosystems™ PCR thermal cycler.  

 

The activity of the CMV promoter resulted in more p27 transcript expression compared to 

all other promoter constructs. Cells only and pTATA (-) controls showed very low levels of 

p27 as expected. The miR-17-92 constructs did not seem to drive p27 at as high a level as 

the four temperature sensitive promoters (Figure 3.2.6.2.3).  
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However, the mouse version did perform better than the CHO version, having 8.3-fold and 

9.9-fold more transcripts at 37
o
C and 31

o
C respectively.  

Interestingly, MDM2 and SSu72 showed lower amounts of transcripts at both temperatures 

compared to the CMV contrary to the attached culture result (Figure 3.2.6.3). MDM2 and 

SSu72 promoters along with the Cirbp-promoters showed quiet varying amounts of p27 

transcripts than what was expected, based on the cell growth numbers being reported as 

consistently reduced among all four promoters (Figure 3.2.6.2.1 A). The Cirbp-CHO 

promoter was the only construct that expressed p27 transcripts to a similar level as the 

CMV promoter after temperature shift to 31
o
C.  

Because qPCR only measured mRNA expression and not total protein synthesis, it is 

important to be aware that disparities can exist between qPCR (transcript) and western blot 

(protein) results (Figure 3.2.6.2.4). 
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Figure 3.2.6.2.4: Western blots for the 8 promoter-p27 constructs plus a cells only control. CHO-K1-SEAP cells were transfected with the 

p27 promoter constructs and cultured at 37
o
C and 31

o
C. 2x10

6
 cells were lysed 72 hours post-transfection with an in-house lysis buffer 

cocktail. A Bradford assay was performed to calculate protein concentration for all samples. 10µg of protein was subsequently loaded onto a 

4-12% SDS/Bis-Tris gel and probed with anti-p27 antibody from Abcam® and a house-keeping gene GAPDH as a loading control. [p27 = 

~27kDa and GAPDH = ~40kDa]. 
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Similar to the attached culture transfections, all constructs showed increased p27 protein 

expression at 31
o
C (Figure 3.2.6.2.4). Cells only and pTATA (-) controls did not drive p27 

to a detectable level. The 3 CHO promoters, MDM2, SSu72 and Cirbp all had similar p27 

detection based on band intensity (Figure 3.2.6.2.4), however the Cirbp-mouse promoter 

appeared to have less p27 detected an indeed not as an obvious increase at 31
o
C. 

Surprisingly, both miR-17-92 promoters appeared to drive p27 protein at 31
o
C only, with 

the mouse version having a marginally bigger band. 

 

3.2.6.3: p27 effect on SEAP activity in CHO-K1-SEAP  

Additionally, as we used a suspension CHO-K1-SEAP adapted cell line created in-house by 

Dr. Niraj Kumar a secreted alkaline phosphatase (SEAP) assay was performed having taken 

the cell supernatants 72 hours post-transfection with the p27 plasmid constructs. This 

exercise was to see if SEAP productivity was affected by using temperature-inducible 

expression of a growth-associated gene i.e: p27. 
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Figure 3.2.6.3: Secreted Alkaline phosphatase (SEAP) production (units/mL) by SEAP-

secreting CHO-K1 cells 3 days post-transfection with p27 constructs. Error bars represent ± 

SD. A cells only control was included as an indicator of the intrinsic SEAP productivity at 

each temperature.  

 

SEAP yield seemed to be proportional to the amount of cells present (see figure 3.2.6.2.1 

A) and SEAP production wasn’t affected by inducing p27 expression with a temperature 

shift to 31
o
C. The hypothesis was that the more active a promoter was in driving p27, the 

less SEAP that should accumulate in the supernatant as a result of less cells being present. 

For example, there was more SEAP protein present as expected in the basal pTATA (-) 

control at both temperatures (~414 and 323 SEAP units per mL respectively) than all other 

transfected constructs. All transfected promoter constructs [MDM2, SSu72 and both Cirbp 

orthologs] had an indirect effect on SEAP productivity, we saw lower SEAP detected at 

31
o
C and all had similar levels of SEAP, with Cirbp-CHO having the lowest at 92 SEAP 

units per mL (Figure 3.2.6.3).  

All transfected promoters had a larger SEAP differential between 37
o
C and 31

o
C, in 

comparison to the cells only and pTATA (-) controls. Assuming the 37
o
C samples were 

100% we found that the % drop in SEAP was lowest in the CMV promoter samples (~11%) 
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while the largest drop was seen in the MDM2 promoter samples (~43%) followed by 

Cirbp-CHO (~40%). MDM2 showed the largest differential in SEAP and was represented 

with a fold change of 2.86-fold drop in SEAP units between 37
o
C and 31

o
C samples.  

The cells transfected with the miR-17-92 promoters showed the highest SEAP 

concentrations, directly linked to the growth numbers (Figure 3.2.6.2.1 A), and presumably 

indirectly linked to their modest ability to drive p27 expression. They did show a reduction 

in SEAP at 31
o
C compared to 37

o
C, albeit much less of a reduction than the other 

endogenous promoters but interestingly showed a higher reduction than the CMV (11%), 

with a 19% reduction for the mouse and a 16% reduction for the CHO version.  

Cells transfected with the CMV constructs showed the lowest SEAP concentration at both 

temperatures but had a lower fold change of 1.49-fold and the response to temperature shift 

was not as impactful on SEAP productivity as the inducible endogenous promoters.  

As hypothesised from the attached culture results seen previous, this may be attributed to a 

saturation of p27 overexpression by the CMV promoter, whereby the cells were not going 

to be growth inhibited any further at 31
o
C as there is already a strong inhibitory effect on 

growth in the 37
o
C sample. Additional growth inhibition by p27 overexpression caused by 

the temperature downshift by the CMV promoter samples may have experienced an 

expression overloading on the cells, preventing a further reduction in growth. 

Cells transfected with the Cirbp promoters showed marginally lower SEAP overall 

compared to cells transfected with the MDM2 and SSu72 promoters, this was more than 

likely due to Cirbp being marginally more active at driving p27 expression leading to a 

reduced cell growth and therefore lower SEAP concentration.  

In conclusion, our data demonstrated that placing novel CHO and mouse promoter 

sequences upstream of a cytostatic growth gene (p27), can cause a phenotypic and 

metabolic effect on two CHO cell lines especially MDM2 and SSu72 promoters. Variation 

was seen between attached and suspension culture probably due to different growth 

dynamics. One cannot assume that all expression vectors behave similarly in both 

suspension and adherent state as shown by (Feng, Hicks and Chang 2003). The miR-17-92 

cluster promoters performed the poorest in driving p27 and like the EPO section, the 

promoters seem limited in their functionality, with the mouse performing marginally better.  
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Furthermore, all transfected promoters resulted in quite variable levels of transcripts and 

protein levels, highlighting one of our main findings; that it if these inducible promoters are 

to be used as tools in gene expression/regulation, then it is important to match the most 

suitable promoter to the right gene of interest GOI (Table 3.2.7). 

 

3.2.7: Promoter – Ranking to GOI 

To summarise the performance of our promoters over all four reporter platforms used in 

this project, table 3.2.7 was devised to establish a somewhat subjective promoter ranking 

catalogue. The ranking was based on total expression strength based on protein levels (A) 

and temperature induciblity (B) depending on the promoter’s purpose. We believe this 

catalog can be expanded as future work contributes further to the promoter toolkit for use in 

fine-tuning gene regulation.  

From analysing the performance of all promoters across all 4 reporter systems, there was no 

obvious behavioral trend apparent by any promoter post-ranking. MDM2, SSu72 promoters 

and both orthologs of Cirbp vary from one reporter assay to the next.  

For example, the MDM2 promoter was ranked 4
th

 compared to Cirbp-CHO in 1
st
 for GFP 

expression and ranked 3
rd

 compared to Cirbp-mouse in 1
st
 in driving Luciferase expression 

(Table 3.2.7 A). However, regarding induciblity at 31
o
C as indicated by the fold changes 

measured between both temperature expression values, MDM2 was ranked higher within 

the GFP and Luciferase assays than all other promoters. The miR-17-92 cluster promoters 

were consistently the weakest performing promoters within the study but represent very 

novel sequences capable of driving transgene expression nonetheless. 
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Table 3.2.7: Ranking of gene promoters [#1-6] from this study, excluding CMV and SV40 

promoters, based on reporter gene expression. (1 = best). (A) Represents an indication of 

promoter strength. Ranking based on accumulative total expression from both temperatures. 

(B) Represents an indication of the strength of promoter temperature induciblity. Ranking 

was based on the fold change between 37
o
C and 31

o
C in each reporter case. (-) denotes an 

equal rank value. 

 

 

 

 

 

 

 

 

 

 

Expression level [37+31]

Rank #
GFP Luciferase EPO p27

MDM2 4 3 4 2

SSu72 3 4 1 1

Cirbp-CHO 1 2 2 3

Cirbp-mouse 2 1 3 4

mir17-92-CHO 5 6 5 5

mir17-92-mouse 6 5 6 6

Temp shift FC [31/37]

Rank #
GFP Luciferase EPO p27

MDM2 1 1 3 3

SSu72 3 4 4 2

Cirbp-CHO 2 3 2 1

Cirbp-mouse 4 2 1 4

mir17-92-CHO 6 6 5- 5

mir17-92-mouse 5 5 5- 6
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3.3: Bioinformatics / In-silico analysis of promoter sequences 

3.3.1: Introduction 

As a general rule, promoter regions tend to be located 1500-50bp (but could be thousands 

of base pairs further away) from the transcriptional start site (TSS). Enhancer elements and 

trans-acting molecules can be located several thousand base pairs away and even on 

different chromosomes for example, making analysis as well as isolation difficult 

(Khambata-Ford et al. 2003). Several open source promoter prediction programs are 

available for public use and can be used to evaluate prospective DNA sequences.  

Several online tools (Genomatix, UCSC) were used throughout to provide a comprehensive 

analysis of the isolated promoter sequences. Transcription factor binding sites (TFBS) and 

polymerase-II binding sites can be located within a promoter sequence to build a 

framework of each promoter.  

One of the important goals in the post-genomic era is to predict gene expression regulation 

on the basis of presence of TFBS in promoter regions (Ding et al. 2013). Genome wide 

comprehension of TFBS would be useful to build a transcriptional regulatory network in 

CHO biology however understanding of Transcription Factors (TF’s) and TFBS remains 

relatively poorly understood, especially in CHO cells. 

 

3.3.2: Promoter mapping 

3.3.2.1: Cross-species alignments and TFBS location 

There is a plethora of software tools and algorithms at present but for this project we 

concentrated on four resources, Genomatix ElDorado™ (MatInspector/FrameWorker 

applications), the web resource Regulatory Sequence Analysis Tools (RSAT), ‘Cpgplot’ 

and the UCSC genome browser. The specificity of a transcription factor can be described 

by a sequence pattern. Two alternative formats are currently used to identify these 

regulatory patterns: strings (including the IUPAC alphabet for ambiguous nucleotides) or 

position-specific scoring matrices (PSSM) (van Helden 2003) 
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Figure 3.3.2.1 illustrates a multi-alignment conservation snapshot of each promoter 

sequence; the ATG start codons and predicted transcriptional start sites (TSS) were also 

shown. Various transcription factors were identified as a result of highlighting conserved 

sequence across evolutionary related organisms and which is often indicative of regulatory 

sequence. 

This comparative cross species alignment of all 4 promoter sequences [MDM2, SSu72, 

Cirbp and miR-17-92] from Rat, Mouse and CHO was done to try and provide detailed 

representative maps for identifying the promoter framework encompasing TFBS, core 

promoter and possible temperature sensitive regions (Figure 3.3.2.2).  
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Figure 3.3.2.1: Cross-species alignments using ‘ClustalW’ multiple alignment software by inputting the respective promoter sequences in 

FASTA format. TF’s were identified using the PROMO:ALGEN™ transcription factor analysis tool which utilises the TRANSFAC™ 

database. Shown are the predicted TFBS loci and sequence conservation between species for the 4 novel promoters used in this study. 

Mouse orthologs for miR-17-92 and Cirbp are included. The predicted TSS’s are denoted by (\\). [ denotes the ATG start site. 
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The predicted TSS positions from the translational start site ‘ATG’ were as follows; 

MDM2 -218, SSu72 -192, miR-17-92 -361 and Cirbp at -387. Additionally, a second TSS 

was found in the Cirbp sequence at -1170. This was interesting, in light of Cirbp being 

reported by Al-Fageeh and Smales, as being modulated by alternative mRNA leader 

sequences and exhibits internal ribosome entry segment (IRES)-like activity (Al-Fageeh 

and Smales 2009).  

 

 

Figure 3.3.2.2: Representative promoter mapping of the predicted TSS and TFBS loci and 

annotation for all 4 promoter sequences. Transcription factors across evolutionary related 

organisms (mouse, rat and CHO) between sequences were highlighted and mapped for each 

promoter. (+1) denotes the transcription start sites. 
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Table 3.3.2.1: Identity matrix showing the sequence homology %. Analysis performed 

across all four promoter sequences against promoter sequences from two other rodent 

species sequences. Analysis was performed by the ClustalW Omega™ software. 

 

 

 

Interestingly, the CHO sequence tested in all cases was shown to be more homologous to 

rat than mouse when an identity matrix calculation was used to examine the sequence 

conservation of all three species. For example; the CHO Cirbp sequence shared 66% 

homology with mouse and 70% with rat (Table 3.3.2.1). 

It is generally known that miRNAs themselves are well conserved across species and 

evolution but tend to have indistinct promoter regions. Interestingly however, the promoter 

sequence alignment across species did reveal a relatively high conservation based on a high 

identity matrix percentage. The CHO miR-17-92 sequence was shown to be 61% 

homologous to mouse and 63% to rat. 

In fact, the CHO SSu72 promoter showed the least conservation with only 51.37% and 

51.42% compared to mouse and rat respectively. The highest conservation was seen in 

MDM2 with the CHO promoter being 67% and 74% respectively.  
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Finally, we noticed that in all cases, at a gene aswell as promoter conservation level, rat 

was always more analogous to CHO, which was interesting as the general consensus is that 

mouse is the nearest neighbour in evolution (since its genome was sequenced). 

 

3.3.2.2: Genomatix™ analysis 

Additionally, we used the reputable Genomatix™ website to investigate transcription factor 

binding sites further. MatInspector™ is a software tool contained in the website that utilizes 

a large library of matrix descriptions for TFBS in order to locate matches in DNA 

sequences. MatInspector has been shown to not be as fast as searching for ‘IUPAC’ strings 

but has been shown to produce superior results. It assigns a quality rating to matches and 

thus allows quality-based filtering and selection of matches (Quandt,K. 1995). 

The FrameWorker™ software uses a genome annotation system called ‘ElDorado’; it 

stores biological data consisting of annotation and gene network data plus all transcription 

factor information that is contained in MatBase. This lets researchers analyse and interpret 

their experimental results in an in silico biological context for more than 30 different 

species. 

Figure 3.3.2.2.1 illustrates the FrameWorker™ output for each of the four CHO promoters 

used in this study. Mouse sequences were automatically tested for TFBS homology in 

parallel for Cirbp and miR-17-92 promoters. It was shown that the amount of TFBS was 

proportional to the size of the promoter sequence examined. For example, there were 6 

TFBS identified in MDM2 and 15 TFBS identified in miR-17-92 sequences, with the miR-

17-92 sequence being ~620bp longer. There were 11 TFBS identified within the SSu72 

promoter sequences and 14 TFBS identified in the Cirbp promoter sequences. 
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Figure 3.3.2.2.1 A: MatInspector™ / FrameWorker ™ analysis on MDM2 and SSu72 promoter sequences across CHO (1), rat (2) and 

mouse (3) using the software suite with ElDorado annotation for the species within the database. The TFBS shown were generated by using 

a high core and matrix similarity cutoff (>0.90) where >0.80 is considered a good match. The matrix families were denoted by V = 

Vertebrate and O = Other functional elements. Black bars indicate the relative size of the input sequence. Above the line represents the sense 

strand directionality, and below the line represents the anti-sense strand. 
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Figure 3.3.2.2.1 B: MatInspector™ / FrameWorker ™ analysis on Cirbp and miR-17-92 promoter sequences across CHO (1), rat (2) and 

mouse (3) using the software suite with ElDorado annotation for the species within the database. The TFBS shown were generated by using 

a high core and matrix similarity cutoff (>0.90) where >0.80 is considered a good match. The matrix families were denoted by V = 

Vertebrate and O = Other functional elements. Black bars indicate the relative size of the input sequence. Above the line represents the sense 

strand directionality, and below the line represents the anti-sense strand. 
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3.3.2.3: ‘Cpgplot’ results 

CpG islands are typically located near transcription start sites and are commonly associated 

with promoter regions for most genes. Promoters can often be broadly classed into either 

TATA-based or CpG island-based promoters (Carninci et al. 2006).  

The European Molecular Biology Open Software Suite (EMBOSS) is a high quality, well 

documented package of open source software tools for molecular biology (Rice et al. 

2000).  

CpG islands scoring (The CpG score is the number of CG dinucleotides in the putative 

island sequence). CpG islands are associated with genes, particularly housekeeping genes, 

in vertebrates. Getting a relative CpG island score for each promoter will aid in their 

characterisation.  

The EMBOSS suite is found at http://www.sanger.ac.uk/Software/EMBOSS/. 

The CHO sequence for all four promoters was put into the EMBOSS Cpgplot software. The 

ratio of observed to expected number of GC dinucleotides patterns is calculated over a 

window of user-specified size (-window parameter). The window moved along the input 

sequence and the ratio was recalculated until the end of the sequence was reached.  

By default, Cpgplot defines a CpG island as a region where the calculated (%G + %C) 

content was over 50% and the calculated Observed/Expected ratio was over 0.6. The 

calculated ratios were then plotted graphically, together with the regions which match the 

program's definition of a putative "CpG island" (a window containing a CG dinucleotide 

rich area). 

Both the SSu72 and Cirbp CHO promoters were identified as having putative islands 

present in their input sequences, while MDM2 and miR-17-92 promoters did not (Figure 

3.3.2.3.1). For the SSu72 promoter sequence, a CpG rich region was located between the 

340 and 684 nucleotides, while the Cirbp sequence contained a CpG rich region between 

nucleotides 583 and 816.  

http://www.sanger.ac.uk/Software/EMBOSS/
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Figure 3.3.2.3.1: (A) Emboss® output results for CpG island analysis of MDM2 and 

SSu72. (B) Emboss® output results for CpG island analysis of Cirbp and miR-17-92. The 

grey boxes indicate the putative CpG islands, while analysis was performed using default 

settings. 

 

Furthermore, CpG based promoters can also be sub-divided into high CpG (HCG) content 

or low CpG (LCG) content as a further classification step. Saxonov et al adopted a direct 

and comprehensive survey to identify the locations of all CpGs in the human genome and 

found that promoters segregate naturally into two classes by CpG content.  
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Overall they found that 72% of promoters belong to the class with high CpG content 

(HCG), and 28% were in the class whose CpG content is characteristic of the overall 

genome (LCG) (Saxonov et al. 2006). Finally, new methods are being explored to genome 

sequence exploration, Chuang et al proposed a specific CpG islands prediction analysis 

platform (CpGPAP). The platform's supported algorithms (CPSO and CGA) provide a 

higher sensitivity and a higher correlation coefficient when compared to Cpgplot, however 

we did not compare results (Chuang et al. 2012). 

 

3.4: Co-expression pattern analysis (PCA) 

Next we performed co-expression pattern analysis on Cirbp, SSu72 and MDM2 (Figure 

3.4.1); unfortunately this cannot be done for the miR-17-92 miRNA cluster, due to its lack 

of a clearly defined open reading frame (ORF) and software input limitation. 

This co-expression analysis was based on the hypothesis that groups of genes that display 

similar expression patterns are likely to be; 1) involved in similar pathways/processes and 

more importantly for our study, 2) under the same regulatory control sequences.  

In other words, if one takes a large scale profiling dataset (such as the one used to identify 

our target promoters originally) and look for subsets of genes whose expression behaviour 

over time (or treatment) is very highly correlated, many of these will contain common 

regulatory elements within their promoter sequences. The hypothesis was that by aligning 

and comparing the promoter regions of these co-expressed genes, it should be possible to 

identify common elements. 

To perform this co-expression analysis we took all the expression information contained in 

the profiling dataset and correlated the expression of every gene in each sample with the 

expression of; MDM2, SSu72 and Cirbp. Only genes with a Pearson correlation coefficient 

(PCC) value of >0.7 were chosen for further analysis (Figure 3.4.1). 
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Figure 3.4.1: Graph representing co-expression theory of genes following a similar 

expression profile. We used the Pearson correlation coefficient (PCC) to identify genes that 

followed the same expression pattern from the in-house microarray dataset. The PCC cutoff 

was set to 0.7 and ranges from [0-1]. This range represented how close genes were in 

comparison to each other.  

 

The co-expressed gene maps were then grouped by the software and showed genes with 

similar expression pattern coefficients based on strength of the relationship between genes, 

with 1 or -1 being the highest and lowest similarity (Figure 3.4.2).  
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Figure 3.4.2: Co-expression result for the 3 genes used during this project. Analysis was done using the software at www.cgcdb.org, genes 

joined by red lines were indicated as having a positive correlation and green lines indicated an anti-correlation. SSu72 had 9 co-expressed 

genes based on the stringent 0.7 PCC cut-off, while Cirbp and MDM2 had 2 and 7 genes co-expressed respectively. Full gene annotation is 

described in the appendix. 

http://www.cgcdb.org/
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Having now identified these 16 co-expressed CHO genes using the software at 

www.cgcdb.org, all respective promoter sequences from ~800bp upstream of the start 

codon (ATG) for each gene was extracted from the Genbank database. These 16 putative 

promoter sequences were compiled and formatted for further analysis (see supplementary 

data). 

We used the Genomatix™ conserved TF families suite, using the most stringent cutoffs, 3 

novel transcription factors were identified in all 16 gene promoter sequences tested. These 

were the Ecotropic viral integration site-1 (EVI1), the testis-determining factor (TDF), also 

known as Sex-determining region Y (SRY) protein and the Forkhead (FKHD) transcription 

factor which consists of many family members.  

All three transcription factor binding sights were found in all 16 sequences but interestingly 

they had no previous association with CHO or any promoter related studies based on a 

comprehensive literature search.  

Additionally, a single consensus motif ‘CCCCAGC’ was identified, using the motif finder 

from Genomatix™, in all 16 co-expressed gene upstream promoter sequences, including all 

4 novel CHO promoters from this study (Table 3.4.3).  This motif may be essential for the 

temperature sensitive nature of these said sequences.  

 

 

http://www.cgcdb.org/
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Table 3.4.3: Determination of consensus sequence ‘CCCCAGC’ which was present in all 16 co-expressed temperature sensitive gene 

promoter sequences. Gene name, stepwise alignment, nucleotide position and matrix similarity values were shown. A matrix similarity of 1 

was only assigned if only if the candidate sequence corresponded to the most conserved nucleotide at each position of the matrix. A score 

above 0.8 was indicative of a good match. 
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3.5: Viral versus Endogenous stability 

To establish if there was a difference between viral and endogenous promoter sequences we 

wanted to investigate the stability between the CMV promoter and two of the novel CHO 

promoters, miR-17-92 and SSu72. Viral sequences can become silenced over time leading 

to cell line instability (Williams et al. 2005). Investigating endogenous promoter sequences 

may provide a means of overcoming this.  

We transfected the pEGFP-altAL reporter plasmid into CHO-K1 cells, the GFP reporter 

containing these three test promoters to measure GFP transgene expression over time in 

stable mixed and stable single cell populations. By transfecting the CMV, CHO SSu72 

(654bp) and miR-17-92 (992bp) promoter constructs we wished to examine and compare 

GFP reporter expression and therefore stability over an extended culture timecourse.  

 

3.5.1: GFP-stability - Mixed population results 

Post-transfection, G418 (Gentamycin) was used to select a stable mixed population over 3-

4 weeks, for each of the 3 constructs. This provided us with a viral promoter (CMV) versus 

two endogenous promoters (one strong inducible and one weak constitutive) chosen based 

on previous reporter results, for a 3 month transgene stability experiment. 

In addition to measuring GFP over an extended period in the mixed populations (Figure 

3.5.1), we also performed FACS sorting on these populations in order to separate high, 

medium and low GFP positive cells into single cell colonies for further stability analysis. 

This allowed comparison of stability in mixed stable populations as well as single cell 

clones. 
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Figure 3.5.1: Guava™ flow cytometry GFP stability sampling results from 3 promoter 

variants (CMV, SSu72 and miR-17-92) stably transfected into CHO-K1 cells. Graph 

illustrated the progression of the 3 stable mixed populations during twice weekly passages 

by measuring GFP mean expression. 

 

Figure 3.5.1 illustrates the progression of the mixed population over sampling points; the 

cells stably expressing GFP under CMV control resulted in much higher GFP expression 

overall (~1000) but varied considerably over the first 5 timepoints. The SSu72 promoter 

driven stable GFP cells showed lower GFP expression in comparison (~200) but seemed 

more consistent and did not appear to fluctuate over the timecourse. Finally, the cells stably 

expressing GFP under control of the miR-17-92 promoter resulted in very faint GFP 

expression (~90), in keeping with previous GFP reporter results. 

The most striking feature of the data was the collapse in GFP expression in the CMV stably 

transfected cells after passage 9, dropping to 5.9% (a decrease of 94.1%), of the original 

expression. Conversely the SSu72 and miR-17-92 transfected cells remained consistent in 

their levels of GFP intensity. 
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Furthermore, the SSu72 promoter seemed to marginally enhance GFP expression over time 

(Figure 3.5.1). This was verified as the average expression figures indicated a rise from ~90 

mean GFP to ~170 mean GFP over the time period. Finally, cells transfected with the miR-

17-92 promoter, showed a reduction to 94% (decrease of 6%) of the original value which 

was not as severe as the CMV promoter effect.  

 

3.5.2: GFP-stability - Single cell populations 

Next we examined the clonal cell lines that were generated from FACS sorting (see 

Appendices 6.3.3) at weekly intervals for 14 weeks. Clones were sorted based on high, 

medium and low GFP expression this was done in order to eliminate high CMV expression 

levels seen in the mixed population results, as the cause of instability.  

After sorting, cells were maintained under selective pressure with intermittent G418 

addition to the ATCC media every 3 weeks. Cells were passaged twice weekly and GFP 

fluorescence was measured using the Guava™ flow cytometry system during one of these 

passages (Figure 3.5.2). 

We observed that all CMV driven GFP stable single cell clones show markedly reduced 

GFP expression over the 14 week timecourse in comparison to our two novel endogenous 

SSu72 and miR-17-92 driven GFP stable clones which stayed remarkably consistent. The 

drop-off in expression in single cell clones was not as obvious as was seen in the mixed 

population experiment; CMV (clone 11) was the only clone that did not yield lower GFP 

expression by the end of the experiment (GFP mean of 155 at beginning and 161 at the end 

of the timecourse) (Figure 3.5.2 A).  

Although GFP expression in the stable SSu72 clones fluctuated over the timecourse, 

whereby during weeks 3-7 we saw 6 out of 12 clones increase their GFP expression but 

ultimately returned to the original expression level by weeks 9 and 10 (Figure 3.5.2 B). 

GFP expression exhibited by the miR-17-92 clones was again relatively lower compared to 

the CMV and SSu72 clones but was noticeably consistent over the timecourse with the 
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majority of clones having higher GFP expression, albeit marginally by the last timepoint 

(Figure 3.5.2 C). 

In addition, we calculated the overall trend of the 12 clones for each gene promoter. The 

slope (m) of the trendline for each clones set of data points was calculated in Excel 

(Supplementary data). Then the average slope value across all 12 trendlines was calculated 

and imposed onto each graph to represent the overall trend of GFP expression for the entire 

12 clonal populations (Figure 3.5.2).  

CMV driven single cell clones had the largest slope of -40.2 which was indicative of the 

largest decrease in GFP expression, the minus representing a decrease. Interestingly, SSu72 

clones showed an increased trend in GFP expression levels with a slope of +8.9. Finally, 

miR-17-92 clones showed a decrease in GFP expression, but this was minute compared to 

the CMV with a slope of -0.73.  

In conclusion, this demonstrated that both endogenous promoter sequences tested can 

maintain GFP expression strength compared to a viral counterpart. Furthermore, they 

appeared to be exempt from promoter silencing over extended culture time, thus 

showcasing their potential for use in driving transgene expression in bioprocessing, by 

offering an alternative to commonly used viral promoter sequences. 
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Figure 3.5.2: FACS sorted stable single cell clonal plots for each promoter sampled over 

the same time period. Guava™ flow cytometry was used to take samples over the 

timecourse. Red line denotes overall average slope of all 12 populations for each gene 

promoter (CMV, SSu72 and miR-17-92). 
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Section 4.0  

 

 

 

 

 

 

Results 

Project 2 

XIAP as an anti-apoptotic genetic engineering target in CHO 

and a subsequent ‘MiR-Capture’ affinity pulldown technique 

to identify miRNAs targeting XIAP mRNA. 
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4.1: XIAP as a novel target for engineering in CHO 

4.1.1: IAPs and their origin 

The Inhibitor of Apoptosis protein (IAP) family are characterised by a novel domain of 

∼70 amino acids termed the baculoviral IAP repeat (BIR) one of the 3 domains defining 

the family, the name of which derives from the original discovery of these apoptosis 

suppressors in the genomes of baculoviruses by Lois Miller and her colleagues (Crook, 

Clem and Miller 1993) (Birnbaum, Clem and Miller 1994). 

First discovered in baculoviruses, IAPs were shown to be involved in suppressing the host 

cell death retort to viral infection. Interestingly, ectopic expression of some baculoviral 

IAPs blocks apoptosis in mammalian cells, suggesting conservation of the cell death 

program among diverse species and commonalities in the mechanism used by the IAPs to 

stall apoptosis in very complex mechanisms and thus be suitable targets for gene therapy 

(Smolewski and Robak 2011). 

More recently, a second group of BIR-domain-containing proteins (BIRPs) have been 

identified that includes the mammalian proteins Bruce and Survivin as well as BIR-

containing proteins in yeasts and Caenorhabditis elegans (Verhagen et al. 2001). 

 

4.1.2: XIAP in Glioblastoma 

We became interested in the possibility of using one of these IAPs, more specifically XIAP, 

as an engineering target in CHO cells after having contributed to a project entitled “MiR-

23b targets the X-Linked Inhibitor of Apoptosis (XIAP) gene in Glioblastoma”. 

Glioblastoma multiforme (GBM) is the most common and most aggressive malignant 

primary brain tumor in humans.  

It was established that XIAP expression correlated with faster growing more invasive 

Glioma cell lines. It was concluded that by increasing the expression of miR-23b in the 

established Glioma cell line SNB-19, a 30% decrease in proliferation was achieved. 

Furthermore, from qRT-PCR analysis a 65.3% knockdown of XIAP was seen; western blot 

http://en.wikipedia.org/wiki/Malignant
http://en.wikipedia.org/wiki/Brain_tumor
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analysis of the XIAP protein confirmed the expression was strongly inhibited and that there 

was a correlation between miR-23b and XIAP and both could be potential candidates for 

targeted treatment options in cancer. It is possible that a decrease of miR-23b expression in 

Glioblastomas, and subsequent unregulated expression of XIAP, has contributed to the 

ability of glioblastoma cells to evade apoptosis. 

 

4.1.3: XIAP – from human to CHO engineering 

This previous work on XIAP in the SNB-19 GBM cell line encouraged us to consider the 

use of XIAP as an engineering target in CHO cells.  

We settled on an approach to combine and apply both miRNA - XIAP anti-apoptotic theory 

and practice to the CHO environment. The first step was to see if XIAP was detectable in 

various CHO cell lines using the human SNB-19 Glioma cell line (Figure 4.1.4.1) as a 

comparison control. 

In parallel, a human XIAP overexpression vector (Origene – TruClone
TM

) was transfected 

into CHO-K1 cells for the following reasons. 1) To have positive controls for the initial 

XIAP western, to make sure XIAP antibody detects XIAP expression in CHO cell lines and 

also to see difference between stable and transient transfection of the XIAP vector in CHO.  

2) To investigate whether overexpression of XIAP in CHO-K1 cells displays an anti-

apoptotic phenotype/survival compared to control cultures. We planned to measure this in 

extended time-course experiments in conjunction with using spent medium (Day 9) and 

sodium butyrate (NaBu) addition to mimic an apoptotic culture environment. 

Questions to be answered in this part of the project include; is XIAP expressed in CHO? 

Does over expression of XIAP in CHO stable clones inhibit the onset of apoptosis? Can 

XIAP specific miRNAs be identified through an in vivo capture method? Is XIAP a useful 

target in CHO engineering?  
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4.1.3.1: XIAP sequence comparison – Human and CHO 

Before progressing further, as we were investigating XIAP between both species a 

comparison between XIAP sequences from CHO and human was performed. Until recently 

the UCSC genome browser  (https://genome.ucsc.edu/) did not have a CHO sequence 

interface for searching CHO-specific sequence until Xu et al released the first draft of the 

CHO-K1 genome in 2011, but now the sequence information has been integrated into the 

UCSC website (Xu et al. 2011). 

After initial inspection, the human XIAP full genomic sequence size appeared to span 

54.1kb compared to 21.5kb in CHO (Figure 4.1.3.1). In addition, the full mRNA  transcript 

size was 8.4kb compared to 1.5kb in CHO. The 3’UTR was found to be 6791bp long in 

human XIAP whereas it was found to be 28bp in CHO.  

 

Figure 4.1.3.1: UCSC genome browser BLAT output illustrating the incomplete mapping 

of 54.1kb of human XIAP total sequence as a comparison across other species. [1] denotes 

the chromosomal location (chrx = x chromosome). [2] denotes the 3 transcript variants of 

human XIAP. [3] Mouse, Rat and CHO homolog’s highlighted as Refseq versions of 

XIAP. [4] denotes the species conservation comparisons for the mRNA coding sequences. 

[5] denotes the overall species conservation across 8 additional species for comparison in 

that region. 

https://genome.ucsc.edu/
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Mouse (Mus) and Rat (Rattus) homologs share similarity with the 3 human transcript 

variants shown, both span the same sequence distance, while the CHO (Cricetulus) 

homolog was markedly shorter (Figure 4.1.3.1). A comparison between the human XIAP 

mRNA sequence and CHO mRNA sequence revealed that in the human mRNA there was 

6879 more nucleotide bases, nevertheless, the sequences were found to be 88.76% 

homologous using ClustalW®.  

However, we believed this discrepancy in transcript length was highly unlikely and 

proposed that the end of the CHO XIAP 3’UTR was poorly annotated and ill-defined 

owing to the draft-nature of sequence annotation (Figure 4.1.3.1). Therefore, we 

downloaded the CHO XIAP sequence from www.CHOgenome.org, where the Cricetulus 

griseus/CHO sequences are publicly available, to establish the boundary for the CHO XIAP 

3’UTR using manual annotation.  

The scaffold containing the XIAP gene was identified as NW_003615119 from GenBank. 

By mapping the human XIAP 3’UTR to this CHO scaffold we were able to align conserved 

putative 3’UTR sequence for CHO. This allowed us to search for CHO-specific expressed 

sequence tags (ESTs) which provide further evidence of the true extent of the 3’UTR 

sequence. When tested in BLAT on the UCSC genome browser, the chromosomal location 

in the UCSC browser was found to be annotated as KE376346, not chromosome-X as 

expected. However, using Ref-Seq and expressed sequence tag (EST) comparisons, the 

location was established.  

The CHO 3’UTR sequence length cut-off was estimated based on a BLAT search of human 

XIAP 3’UTR against available C.griseus/CHO sequences using the most 3’ EST 

(JP055852). Thus we identified the transcript with the most 3’ EST sequence homology 

(TSA: Cricetulus griseus Contig13990.Crgrv2 mRNA sequence)(Figure 4.1.3.2). 



 
 

235 
 

 
 

Figure 4.1.3.2: BLAT output mapping the CHO-specific XIAP mRNA using the UCSC 

genome browser software. [1] denotes the chromosomal location. [2] denotes the input 

CHO XIAP mRNA sequence from GenBank with exons in solid blocks and introns as 

arrowed lines (arrows show direction of expression). [3] denotes the species conservation 

comparisons. [4] denotes the 3’ outermost EST reads JP055852 (long) and JI871897 

(short). Note: The orientation is 3’-5’ as XIAP in CHO is on the anti-sense strand. 

 

 

The next step was to use the multi-sequence alignment tool ClustalW® to align the XIAP 

mRNA transcript (CDS and 3’UTR only) from both species to investigate the conservation 

(see Appendices 6.2.3.1). It was found that the CHO total sequence size was 6300bp with a 

4782bp 3’UTR while the human total sequence size was 8413bp, 6791bp being the 3’UTR. 

The full transcripts had 81.01% similarity after alignment whereas the alignment for both 

3’UTR regions alone revealed 64.22% similarity.  

Figure 4.1.3.2 [3], shows that the rat 5’UTR is longer than the human and CHO homologs 

but is similar to mouse and extends outside the cropped image. Furthermore, the rat XIAP 

3’UTR is a shorter sequence compared to CHO, mouse and human. The human has 2113 

nucleotides more than the CHO transcript. One implication of this is that it may potentially 

contain more miRNA binding sites compared to rodent species.  
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Finally, the human XIAP codes on the + strand while the CHO XIAP codes on the –strand. 

In summary, using manual annotation and in silico mapping, we performed a comparison 

between both the CHO and Human XIAP gene sequence. The coding sequence was found 

to be 99% homologous (result not shown), however the 3’UTRs were less so at 64.22%, 

and the sequence similarity was interspersed even though it spans the same chromosomal 

distance (Figure 4.1.3.3). Furthermore, the CHO XIAP 3’UTR was deduced to be 2113bp 

shorter in size compared to the human version although the CHO does span the same 

chromosomal distance. It remains to be seen if this interspersed additional sequence will 

impact the amount of miRNAs detected with the expectation that miRNAs are likely to find 

binding sites on longer 3’UTR sequences.  

 

Figure 4.1.3.3: BLAT sequence of XIAP 3’UTR from CHO compared to human. Also 

shown are the transcript variants for mouse (Mus XIAP), wild boar (Sus XIAP) and rat 

(rattus XIAP) as a general comparison to the difference in conservation across species. 

 

4.1.4: XIAP expression in various cell lines 

If we were to implement XIAP as an engineering target it was important to first establish 

the levels of endogenous expression in CHO cells. Using an antibody specific to XIAP, we 

performed a western blot (Figure 4.1.4) on the following cell lines (Table 4.1.4): CHO-K1 

parental and CHO-K1-SEAP cells to test for endogenous XIAP expression, CHO cells 

transiently and stably transfected with the human XIAP plasmid as positive control and to 

examine the level of XIAP protein in a stable population. Two Glioblastoma (GBM) cell 

lines (DK-MG and SNB-19) and a normal human astrocyte (NHA) cell line were also 

included as controls.  

 



 
 

237 
 

Table 4.1.4: Various human and CHO cell lines (Wells 1-10) for western blot analysis, 

covering different clonal populations denoted as (1) or (2), and CHO transient and stable 

lines overexpressing XIAP. 

 

 

 

Figure 4.1.4.1: Western result for XIAP protein expression on a 4-12% SDS-Bis/Tris gel 

using protein lysates from the ten cell lines (Table 4.1.4.1). XIAP expression was detected 

at ~55 kDa along with beta-actin expression (~40 kDa) using a beta-actin house-keeping 

antibody as a loading control. XIAP was not detected in the NHA cell line (lane 5). 

 

Figure 4.1.4.1 showed that all cell lines except the ISPB-18 cell line in well 5, possessed 

detectable levels of XIAP. The CHO cells in wells 1, 4 and 10 displayed moderate 

endogenous XIAP expression. Wells 6 and 7 contained cell lysates from a transient and 

stable (mixed population) CHO-K1 parental cell line transfected with the XIAP 

overexpression vector (Origene – TruClone
TM

 cat. #SC119404).  

Note: In the SNB-19 cells the XIAP protein had a double-band, which has been reported 

before (Spee et al. 2006). 
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4.1.5: Single cell cloning/Isolation of XIAP high producers 

Stable XIAP-overexpressing CHO cells were generated by co-transfection of the XIAP 

vector with another vector encoding red-fluorescent protein and neomycin 

phosphotransferase (RFP-Neo). Following transfection, selection media containing G418/ 

Geneticin was used to generate mixed pools from which to derive single cell clones from, 

using the single cell cloning method (see section 2.17.1). 

After 4 weeks, 13 XIAP-positive single cell clones were isolated. A western blot was 

subsequently performed on all 13 clones. The highest XIAP expressers were identified 

from this panel to perform further functional studies (Figure 4.1.5). 

 

Figure 4.1.5: Western blot of stable XIAP clones isolated from single cell cloning. (A) 

Stable XIAP overexpression clones and GAPDH loading controls [1-3]. (B) XIAP clones 

[4-13] plus CHO-K1 parent transiently transfected with XIAP overexpression vector as a 

positive control (XIAP ~55 kDa) (GAPDH ~ 40 kDa). 

 

From figure 4.1.5, it was evident that clone 12 was the highest XIAP expresser. This was 

based on the signal strength of XIAP detected, plus the fact that it displayed a slightly 

lower signal of GAPDH protein in the loading control. This indicated there was slightly 

less protein loaded. Clones 5, 10 and 11 were also chosen for the next series of functional 

studies. The stable clones were transferred into T25 flasks and expanded while frozen 

stocks were also generated for future work.  

In parallel, the RFP-Neo vector only, was stably transfected into CHO-K1 cells and a stable 

mixed population was used as a comparative control for apoptosis studies as it represents 

the same composition apart from the XIAP cDNA. This RFP-Neo therefore represented a 

non-functional transgene control. 
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4.2: Apoptosis functional validation on cells over expressing XIAP 

Now that these XIAP stable cell cultures were derived, a series of experiments was 

performed to examine if XIAP overexpression had a beneficial phenotypic effect such as; 

increased growth, extended viability, or resistance to apoptosis.  

A study by Druz et al, used day 9 spent media to induce/trigger apoptosis in early stage 

culture settings to test apoptosis regulation by miRNAs (Druz et al. 2011). We took a 

similar approach by cultivating CHO-K1 cells for 9 days and extracting the spent media to 

use in this manner. 

We also utilised Sodium Butyrate (NaBu) which is well documented to increase cellular 

productivity, but can also induce apoptosis at higher concentrations in culture. Sodium 

butyrate is an inhibitor of histone deacetylation, and possibly, increases gene transcription 

by enhancing gene accessibility to transcription factors (Jiang and Sharfstein 2008). On the 

contrary, combinational strategies using NaBu and RNAi to both induce and curtail 

apoptosis have been shown to lead to increased production of a range of foreign proteins 

such as; EPO, iL-2, β-interferon etc (Yoon, Hong and Lee 2004) (Kim and Lee 2000) 

(Hong et al. 2011) (Sung et al. 2007).  

Subsequently, addition of NaBu was found to inhibit cell growth and decrease cell viability 

in a dose-dependent manner after optimisation (results not shown), and was chosen as a 

positive control/trigger during functional validation.  

 

4.2.1: Preliminary testing – cell behaviour in apoptosis-inducing conditions 

To begin, we tested the effect of NaBu and spent media treatment on XIAP clone 12 and 

RFP-Control stable populations. Cells were seeded at 2x10
5
/well using 6-well plate format 

which allowed 4-5 days of growth before reaching 100% confluency. The impact on cell 

morphology over time can be seen in figures 4.2.1(1, 2 & 3). We also had an untreated 

control plate seeded in parallel to monitor the progression of growth and morphology over 

time with no apoptosis inducing treatment. 
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Figure 4.2.1.1: Growth and cell morphology was monitored over 28 days in 6-well plate 

format. The comparison was between XIAP clone 12 and RFP-Control (Cont) stable cell 

lines cultured in ATCC media only. Images were taken by the Leica™ microscope imaging 

suite on various days in culture (3 of which were shown).  
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RFP-Control cells reached confluency by day 4, while XIAP clone 12 reached it 

approximately 24-36 hours earlier. By day 14, both populations appeared to be highly 

condensed on the plate surface, while the XIAP clone 12 populations had a more elongated 

morphology compared to the RFP-Control populations. At this early stage it seemed that 

XIAP not only conferred faster growth but seemed to result in notably less death/apoptosis. 

Furthermore, by day 28, clone 12 cells appeared healthier morphologically and RFP-

Control cells looked unhealthier, i.e: more detached and much grainier. 

Next an independent test was performed to examine if the day 9 spent media (section 

2.14.1) could be used to trigger growth arrest/apoptosis. Two types of spent media were 

used; ATCC supplemented with fetal calf serum (FCS) and ATCC without FCS, sourced 

from two populations of cells grown over 9 days. Cells were seeded at 5x10
4
/well in 24-

well plates and allowed attach for 24 hours before addition of spent media and incubated 

for 5 days at 37
o
C (Figure 4.2.1.2). 

 

 

Figure 4.2.1.2: Effect of ATCC day 9 spent media on XIAP clone 12 after 5 days in culture 

in 24-well plate format. Comparison was done between No treatment (fresh ATCC media) 

versus ATCC spent media without FCS (-) versus ATCC spent media with FCS (+). Images 

were taken by the Leica™ microscope imaging suite using default settings. 
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The absence of FCS caused more death and detachment of cells and led to an unhealthier 

cell state in both cell lines. However, the spent media containing FCS still had a 

morphological effect (spiral and elongated cell structure) on the XIAP clone 12 compared 

to the non-treated control cells (Figure 4.2.1.2).  

This morphology shown may be a defensive mechanism for cell survival or in response to 

harsh culture conditions and allowed stronger attachment/adhesion to the substratum. There 

is no evidence of this after a literature search, however, many publications have explored 

bacteria and cell morphology over extended culture. One publication showed that long term 

survival was dependant on the cell wall integrity and that S. aureus cells decreased their 

cell size significantly when starved of fresh medium (Watson et al. 1998).  

Interestingly, CHO cells elongated and seemed to get larger in harsh culture conditions. 

Future experimentation would be required involving isolating cells when they are in this 

state and testing for cell adhesion molecules (CAMs) such as integrins, selectins, CD44 and 

N-cadherin under flow/shear conditions.  

Having observed this abnormal morphological effect we repeated the experiment in 6-well 

plates to test over longer time period, owing to increased surface area. We used spent media 

once again, but this time included an ATCC media control with no FCS (-) and NaBu 

treatment (10mM) on XIAP clone 12 and RFP-Control cultures (Figure 4.2.1.3). 
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Figure 4.2.1.3: Growth and morphology of XIAP clone 12 and RFP-Control cells exposed 

to three treatments; ATCC (-) growth media without FCS, ATCC media supplemented with 

NaBu at a 10mM concentration and finally spent day 9 media also without FCS (-). Cells 

were seeded at 5x10
5
/well and allowed cells to attach in 6-well format for 12 hours before 

each treatment step. Cells were cultured over 6 days and images taken at day 2 and day 6 

time points. 

 

Observations suggested that in ATCC media, the XIAP clone 12 grew to higher densities 

with the well becoming overcrowded, however without any obvious sign of death. The 

RFP-Control also grew well albeit not to the same high densities and cells tended to 

become detached more easily, i.e: more floating cells (circular morphology) in the media 

observed (Figure 4.2.1.3). 
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The NaBu treatment resulted in the biggest difference in cell numbers and cell morphology 

between the RFP-Control and clone 12 populations. After 2 days, growth was visibly 

reduced based on comparison to ATCC (-) fresh media samples, but the XIAP clone 12 had 

more cells (ie: less affected by NaBu treatment presumably owing to the stable XIAP 

overexpression) than the RFP-Control samples.  

This was even more evident at day 6, where the RFP-Control sample wells showed  very 

low viable cell numbers and although the XIAP clone 12 samples had less cell growth in 

the NaBu treated wells than the ATCC (-) treated wells, clone 12 wells had markedly more 

growth than the corresponding RFP-Control wells regardless of condition. This would 

suggest greater resilience to death/apoptosis due to overexpression of XIAP. 

The spent media samples gave contrasting results, at day 2 there seemed to be more cells in 

the RFP-Control, however by day 6, XIAP clone 12 samples exhibited a change in 

morphology (cells became more elongated and spiral patterns were seen). Clone 12 also 

seemed to be more confluent than the RFP-Control samples beyond day 4-5.  

The NaBu treatment method appeared to be more consistent and is more routinely used in 

the literature than spent media to induce apoptosis (often there can be gross differences 

between spent media collection batches); however spent media is more representative of 

late-stage conditions in a industrial bioprocesses. 
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4.2.2: Growth and viability in adherent culture 

By performing batch timecourse experiments over 9 days, we wanted to see if differences 

in cell numbers existed between the XIAP clone 12 stable cell line and the control vector 

(RFP-Control) stable cell line. To achieve this we measured cell density, viability and 

prolonged culture survival cultured in fresh ATCC media, ATCC media supplemented with 

sodium butyrate or day 9 spent media as mentioned previously (Figure 4.2.2.1).  

The non-treated samples were indicative of a natural timecourse progression, giving an 

insight into the behaviour between clone 12 stably expressing XIAP and the RFP-Control 

population. In addition, we tested the effect on cell numbers after the induction of two 

previously reported apoptosis triggers (NaBu and day 9 spent media). 

Note: A NaBu concentration of 10mM was found to be optimal by titration experiments to 

check the effect of NaBu on healthy CHO-K1 cells, indicated by a substantial decrease in 

viability, prior to commencement of the timecourse experiment (results not shown). 
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Figure 4.2.2.1: (A) A 6-well batch culture testing growth characteristics via Guava™ flow 

cytometry Viacount®. Cell numbers calculated for stable clones expressing RFP-Neo (RFP 

cont) in comparison with XIAP (clone 12) over three treatment conditions. (No 

treatment/ATCC (-), 10mM NaBu treatment and day 9 spent media added on day 1). Cells 

seeded on day 0 at 5x10
4
 in 6-well plates and counted 6 hours later to allow attachment for 

day 0 time point. * represents statistical significance p-value <0.05, ** p-value<0.01, 

determined by a 2 tailed students T-Test between both sets of triplicate samples for RFP-

Control and XIAP populations. Error bars represent standard deviation between triplicate 

biological samples. (B) Percentage viability averages over the timecourse experiment. 

Standard deviation was so minute that it was not included. (n = 4).  

 

Interestingly, NaBu showed a growth promoting effect on Clone 12 over the first 6 days 

(4.2.2.1 A) when compared to no treatment (-) control whereas in the RFP-Control samples 

treated with NaBu, growth was arrested if not reduced markedly. Perhaps the treatment 

with NaBu increased the expression of XIAP from the CMV promoter (NaBu is a 

deacetylase inhibitor)  in clone 12, hence improving cell growth early in culture. Further 

analysis of transcript levels would be required to establish whether this was the case. It was 

also concluded that XIAP clone 12 out-performed the RFP-Control (RFP cont) regarding 

growth in the no treatment/ATCC and NaBu samples, with more significant difference seen 

at later culture time points. For example; in the no treatment samples at day 9, RFP-Control 

cell numbers reached 7.20x10
5
 cells/well whereas clone 12 cell numbers reached 1.55x10

6
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cell/well. In NaBu containing media samples, clone 12 reached 1.48x10
6
 cells/well at day 9 

compared to 4.33x10
5
 cells/well for RFP-Control.  

NaBu treatment appeared to trigger growth arrest and even decline based on counts from 

day 4 onwards compared to no treatment (-) populations. As early as day 2 the XIAP clone 

12 not only seemed to be less affected by treatment and recovered faster but rather 

continued to exhibit strong growth up to day 9.   

Although the spent media addition did trigger growth arrest in early culture, contradictorily 

the RFP-Control had infact higher growth on days 6 and 9 compared to clone 12 while the 

XIAP clone 12 counts were only higher [1.8x] than the RFP-Control on day 4, being 

2.46x10
5
 and 4.54x10

5
 cells/well respectively. 

Figure 4.2.2.1 (B) illustrates the cellular viability over the timecourse; viability for four of 

the six sample populations remained relatively high and constant whereas the two spent 

media treated populations showed reduced viability. Interestingly, the RFP-Control spent 

population seemed less affected by spent media addition than the XIAP clone 12 population 

in day 2, 4 timepoints. However, XIAP clone 12 did recover back up to ~96% in the two 

later timepoints while the RFP samples remained the same at ~76-78%. There was variation 

seen in both spent media samples (RFP-control and clone 12 populations) on day 0. This 

may possibly have been because we took the day 0 sample a few hours after seeding – 

hence the spent media had already been detrimental to the culture and thus the viability of 

the cells. 

Next we wanted to test this same approach in smaller scale 24-well plate adherent format 

(Figure 4.2.2.2). This was to observe cell behaviour in two scale formats as at different 

scales, cellular dynamics can often be varied (Feng et al. 2003). Even when seeded at a low 

density, 24-well scale only allowed for 5-6 days of culture due to confluency on the wells 

surface. Once CHO cells become confluent, growth rates typically decrease and true 

differences between cell growth counts can become less accurate. Therefore, cells were 

seeded at a lower density of 2x10
4
 cells/well to extend the culture timecourse, and although 

cells became confluent ~day 6/7, a day 9 time point was included nevertheless. 
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Figure 4.2.2.2: (A) A 24-well batch culture testing growth characteristics via Guava™ 

flow cytometry Viacount®. Cell numbers calculated for stable clones expressing RFP-Neo 

(RFP cont) in comparison with XIAP (clone 12) over three treatment conditions.  (No 

treatment (-), 10mM NaBu treatment and day 9 spent CHO-SFM-II media added on day 1 

cells have attached o/n). RFP-Control and XIAP clone 12 stable cells seeded on day 0 at 

2x10
4
 /well in 24-well plates and were allowed attach for 24 hours before treatment step. * 

represents statistical significance p-value <0.05, ** p-value<0.01, *** p-value<0.001 

determined by a 2 tailed students T-Test between both sets of triplicate samples. Error bars 

represent standard deviation between triplicate biological samples.  (B) Percentage viability 

averages over the timecourse experiment. Viability of day 0 cells was set to 99%. Standard 

deviation was so minute that it was not included. (n = 3).  
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Figure 4.2.2.2 shows the comparisons between RFP-Control and XIAP clone 12 over 9 

days in culture. In all cases the XIAP overexpressing clone 12 outperformed the RFP-

Control regarding growth and reduced onset of death and presumably apoptosis. The cell 

numbers correlate positively with preliminary observations seen in section 4.2.1 suggesting 

increased XIAP expression can benefit the longevity of adherent CHO cell culture.  

Both NaBu addition and spent media treatment appeared to trigger growth arrest thus 

allowing observations of apoptosis in CHO cells to test the effects of XIAP stable 

overexpression in apoptosis-inducing culture.  

However, contradictorily, NaBu addition onto clone 12 cells appeared to cause an 

additional growth increase compared to untreated (-) clone 12 cells. NaBu is a known 

inhibitor of histone deacetylase – perhaps treatment of Clone 12 increased acetylation of 

the viral promoter thus enhancing XIAP expression and inproving the growth/survival of 

those cells. However, this would require further investigation.   

The viability percentages can be misleading in some cases where the population densities 

of the samples are not taken into account. In other words, the viability for clone 12 samples 

were not significantly better than the RFP-Control based on the Viacount assay, however 

this does not take into consideration that there was a large disparity between population 

numbers.   

Visually we observed that XIAP clone 12 underwent a change to its cellular morphology 

(spiral/elongated) when treated with spent media in all cases. The presence of FCS in the 

spent media also prolonged and protected the cells from death for up to 4 weeks compared 

to no FCS spent media; Clone 12 seemed to enter a state of arrest/senescence while RFP-

Control cells consistently died off. 

Cell counts indicated that clone 12 had extended growth and longevity but whether this was 

a result of a direct anti-apoptotic effect was unclear at this point until we measured 

apoptosis directly via Nexin® assay (See section 4.2.5).  

Clone 12 also seemed to display extended survival in culture when compared to the RFP-

Control in most instances, early day 2 spent treatments being the only exception. The cells 
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morphology seemed to respond to spent media in XIAP clone 12, while the NaBu treatment 

seemed to trigger growth arrest and death in both stable cell lines tested. But the XIAP 

clone 12 appeared to be more resilient overall and thus seemed to be a promising 

engineering target in CHO at this early stage. 

Overall there was a difference between culture formats regarding spent media addition. The 

6-well experiment showed that spent media had a positive impact on growth but a negative 

impact was seen on growth in the 24- well plates. This may have been due to the fact that 

we used different spent media batches, even though both batches were extracted in a similar 

fashion. However, subtle variations in composition from batch to batch may have occured. 

They may have contributed to the conflicting observations on growth. 

 

4.2.3: Growth and viability in suspension culture 

Commercial bioprocessing is customarily performed in suspension culture, so we wanted to 

observe cellular behaviour in a suspension setting by first adapting both stable cell lines 

[XIAP clone 12 and RFP-Control] to suspension growth.  

Once populations were adapted after 3-4 weeks under G418 selection (Geneticin), selection 

and growth was monitored in suspension tubes in 1mL media and sub-cultered twice a 

week. After 4 weeks it was deemed that cell viability of both clone 12 and RFP-control 

cells had reached ~90% after each subsequent passage. However, when RFP-control cells 

were grown in 50mL tubes in 5mL volume, RFP-control cells had anemic growth which 

may have been a result of incomplete adaption to larger volumes and thus may not have 

been a suitable control. 

Dedicated suspension culture 24-well plates (Cellstar®) were used to cultivate the adapted 

lines (Figure 4.2.3.1). Additionally we used 50mL spin tubes (5mL working volume) 

formats in order to assess two different scales of suspension culture (Figure 4.2.3.2).  
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Figure 4.2.3.1: (A) Impact of XIAP overexpression on cell growth. Cell numbers for RFP-

Control and XIAP clone 12 in 24-well suspension plate format. Cells were seeded at 

2x10
5
/well in CHO-SFM-II serum free media and measured via Guava™ flow cytometry. 

Error bars represent standard deviation between triplicate biological samples. (B) Cellular 

% viability over the 12 day timecourse. Error bars represent standard deviation between 

triplicate biological samples. * represents statistical significance p-value <0.05, ** p-

value<0.01, *** p-value<0.001 determined by a 2 tailed students T-Test between both sets 

of triplicate samples. (n = 3). 
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Figure 4.2.3.2: (A) Impact of XIAP overexpression on cell growth. Cell numbers for RFP-

Control and XIAP clone 12 in 5mL suspension tubes. Cells were seeded at 2.5x10
5
/mL in 

CHO-SFM-II serum free media and measured via Guava™ flow cytometry. Error bars 

represent standard deviation between triplicate biological samples. (B) Cellular % viability 

over the 15 day timecourse. Error bars represent standard deviation between triplicate 

biological samples. * represents statistical significance p-value <0.05, ** p-value<0.01, *** 

p-value<0.001 determined by a 2 tailed students T-Test between both sets of triplicate 

samples. (n = 3). 
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Figures 4.2.3.1 and 4.2.3.2, illustrate the difference in growth and viability between XIAP 

clone 12 compared to the RFP-Control stable cell lines in two separate culture formats. The 

larger 5mL volume format allowed extension of culture up to day 15 compared to day 12 

for 24-well plates. Interestingly, the behavior for XIAP clone 12 is similar in both formats, 

with day 9 showing the largest cell density differential between cell lines. At each time-

point, the differences in cell numbers were significantly higher in the clone 12 samples.  

In the 24-well results, RFP-Control day 9 cell numbers reached 6x10
4
 cells/mL compared 

to ~7x10
5
 cells/mL for clone 12 - whether the low seeding density suited clone 12 more 

than the RFP-Control remains to be seen. Other seeding densities were tested but due to cell 

clumping in the RFP-Control early in culture, higher seeding densities were not pursued. 

Day 9 cell numbers in 5mL culture reached over 3x10
6
 cells/mL compared to RFP-Control 

cell samples reaching less than half that at ~1.40x10
6
 cells/mL. 

However, there were differences in viabilities seen between formats. In 24-well plates the 

cellular viability for clone 12 was relatively high considering the late stage of culture, being 

~53% compared to ~23% in RFP samples on day 12. From the 2mL results on days 3 and 

6, RFP samples actually had higher viability, RFP being ~89% after day 3 and ~66% after 

day 6, compared to clone 12 being ~74% after day 3 and ~61% after day 6.  

However, cell numbers on these two days were double in the clone 12 samples compared to 

RFP, so we attributed some of this viability difference to a faster growth phenotype 

displayed by clone 12. Regardless, it appears clone 12 exerted its superior resistance to 

death/apoptosis and a switch was seen between days 6 and 9 (Figure 4.2.3.2 B), 

culminating in clone 12 having a viabilities of 39% compared to 18% for RFP-Control after 

15 days in culture.  
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4.2.3.1: XIAP clonal variation – Growth in suspension culture 

In order to discount the possibility of simple clonal effects as the source of the beneficial 

phenotypes we wanted to adapt and test the other XIAP clones [5, 10 and 11] previously 

isolated to see if they follow the same phenotype as clone 12. This was conducted using the 

same experimental design but with CHO-SFM-II serum free media as the no treatment 

control instead of ATCC used previously and again NaBu addition was used to induce 

apoptosis to see if clonal differences were apparent.  

From the western (Figure 4.1.5) we saw that after FACS sorting of XIAP clones (1-13) had 

slightly varying levels of XIAP expression and all lower than clone 12 (hence why it was 

chosen originally), clones 5, 10 and 11 were chosen along with clone 12 to test further. To 

recap, the RFP-Control is a mixed population of CHO cells transfected with the RFP-Neo 

vector, which was co-transfected with the XIAP overexpression vector originally to 

facilitate cloning selection. 

These three XIAP overexpressing clones were first adapted to serum-free suspension 

culture. This was achieved by growing the cells in T25 flasks for 4 weeks while 

continuously titrating to lower % FCS and a blend of CHO-SFM-II and ATCC media. 

Finally, as the cells no longer needed FCS they were cultured in CHO-SFM-II serum free 

media specially formulated for suspension growth. 
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Figure 4.2.3.1.1: (A) Cell numbers for RFP-Control stable CHO-K1 cell line and XIAP clones 5, 10 and 11 grown in 24-well plate 

suspension culture format. Cells were seeded at 2.5x10
4
/well in 1mL CHO-SFM-II serum free media and or NaBu treatment 12 hours post 

seeding. Cell were measured via Guava™ flow Cytometry and viacount® reagent. * represents statistical significance p-value <0.05, ** p-

value<0.01, *** p-value<0.001 determined by a 2 tailed students T-Test between both sets of triplicate samples with the asterisk placed on 

the XIAP clone sample bars representing its corresponding RFP-Control bars. Error bars represent standard deviation between triplicate 

biological samples. (n = 3). 
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Figure 4.2.3.1.1: (B) Cell percentage viability of samples seen in figure 4.2.3.1.1. Cells 

measured via Guava™ flow Cytometry and Viacount® reagent over a 15 day timecourse. 

Error bars represent standard deviation between biological triplicates. (n = 3). 
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Overall the same trend was observed, regardless of scale between 24-well and 5mL in 

suspension, where XIAP clone 12 surpassed the RFP-Control in growth and extended viability 

in culture. Whether this was due to a direct anti-apoptotic effect to mitigate death/apoptosis 

will be investigated with the Nexin® assay in section 4.2.5.  

These results suggested our previous observations for clone 12 were not a clonal anomaly as 

we provide evidence using three other XIAP clones (5-10-11) that perform in a similar 

fashion, albeit with clone 10 to a lesser extent in control CHO-SFM-II and NaBu treatment 

samples from figure 4.2.3.1.1 (A). Although higher counts were seen in XIAP clone 10 at all 

timepoints irrespective of treatment, clone 10 cell counts were only significantly different at 

day 9 for SFM samples being 4.29x10
5
 cells/mL in RFP-Control versus 4.57x10

5
 cells/mL in 

clone 10. While in the NaBu samples, the same trend was observed with the XIAP clone 10 

having higher cell counts but the differential between RFP-Control and clone 10 were only 

significant on days 3 and 12.  

This observation correlates well with the initial western blot clonal screening where clone 10 

had a lower XIAP expression (and thus perhaps less anti-apoptotic influence) compared to 

clones 5, 11 and clone 12 which displayed the highest XIAP expression although this was not 

quantified directly but based on visual interpretation of the western blot (Figure 4.1.5).  

The viability of clones 5, 10 and 11, grown in the control serum-free media in all cases was 

highest over the batch timecourse, with the only exception on day 15 for clone 5, whereby 

viability dropped below both NaBu treated samples. There was also a noticeable drop in 

viability at day 6 in all NaBu treated samples, presumably due to the effect of the NaBu 

influencing the cells more strongly. Interestingly, both the RFP-Control and all 3 clones 

appeared to recover at similar rates, however, the XIAP overexpression does seem to allow 

recovery to higher viability percentages (Figure 4.2.3.1.1 B). 
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4.2.4: Fed-batch culture – Growth and viability in suspension culture 

This positive impact in a batch culture setting led us to consider whether it would be equally 

beneficial in a fed-batch setting.  Having previously adapted all stable clones [RFP-Control 

and XIAP clones 5-10-11-12] to suspension growth, clones were monitored in 5mL volumes 

in 50mL suspension culture tubes over the same timecourse with batch feeding (CHO CD 

Efficientfeed™ A) - every second day to replace 10% of media volume. 

The question of whether the advantageous phenotypes carry over into a fed-batch setting was 

investigated and the growth and viability results were shown in figures 4.2.4.1 (A, B). The 

reasons for this experiment were two-fold. Firstly, to investigate XIAP overexpressing clones 

in a small-scale fed-batch setting and secondly, to confirm clonal variance wasn’t seen in fed-

batch culture. 

Factors impacting on density can be attributed to non-optimal feeding, coupled with the much 

smaller seeding density of 5x10
4
 cells/mL compared to 2x10

5
 cells/mL, more commonly used 

for timecourse experiments. Since the aim was to capture as much of the cell behaviour over 

the longest possible time range, cell seeding needed to be this low. 

Cells proliferated exponentially over the first 2 days based on seeding of 5x10
4
 cells/mL 

reaching ≥2x10
5
 cells/mL by day 2, but growth appeared to slow after the first supplement of 

Efficientfeed™. The feeding was perhaps not optimal for exponential growth past day 4, 

however it did allow enough time for the cells to be observed up to day 10.  

Osmolality, substrate inhibition and nutrient turnover may be limiting parameters here also; 

but without the same resources to investigate these more complex factors of a fed-batch 

culture the interplay between these factors remains unclear.  
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Figure 4.2.4.1: (A) Cell numbers for RFP-Control stable cell line and XIAP clones 5, 10, 11 

and 12 cell lines in 50mL tube suspension fed-batch format (5mL working volume). Cells 

were seeded at 5x10
4
 cells/well in CHO-SFM-II serum free media and measured via Guava™ 

flow Cytometry viacount® over 10 days. * represents statistical significance p-value <0.05, ** 

p-value<0.01, *** p-value<0.001 determined by a 2 tailed students T-Test between both sets 

of triplicate samples with the asterisk placed on the XIAP clone sample bars representing the 

difference between the corresponding RFP-Control bars on left of blue line. Error bars 

represent standard deviation between triplicate biological samples. 0.5mL of culture was 

removed and supplemented with 0.5mL Efficientfeed™ every 2 days (10%). (B) Cell 

percentage viability of samples seen in (A) over 10 days. Error bars represent standard 

deviation between triplicate biological samples. (n = 3). 
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Two observations were reported. All 4 stable XIAP clones tested against the RFP-Control 

exhibited greater propensity for higher growth densities at each timepoint, for example, clones 

5 and 12 had 5-6-fold greater cell numbers than RFP at day 10 (Figure 4.2.4.1 A). 

Interestingly, the RFP-Control viability was higher than all clones apart from on day 10 

(Figure 4.2.4.1 B), again this observation may be attributed to higher cell densities in all XIAP 

clones overall. Clone 10 again appeared to exhibit less of a growth effect than the other XIAP 

clones regarding growth rate and survival compared to the RFP-Control, mirroring results seen 

in figure 4.2.3.1.1. Viability of the RFP-Control dropped 7% on day 10 while all XIAP clones 

were markedly higher with clone 12 having the most viable cells at 47%. XIAP clones 5 and 

11 had larger decreases in viability between days 8 and 10, being 48% and 56% respectively 

(Figure 4.2.4.1 B). 

These results demonstrate that stable expression of anti-apoptotic gene XIAP can increase the 

growth and survival in a CHO cell line over a range of culture formats and scale. As 

mentioned clumping was an issue for the RFP-Control, where the population began clumping 

after day 4; this was circumvented to some extent with the supplementation of polyvinyl 

alcohol (PVA) in the media. PVA is a water soluble non-toxic synthetic polymer which 

prevented clumping in all XIAP clones after day 6, but was less effective in RFP-Control 

samples, maybe highlighting further the utility of XIAP overexpression in suspension culture.  

However, the experiment appeared to suffer from some constraints compared to batch culture, 

such as; the RFP-Control cells did not grow well in larger suspension volume and exhibited 

cell clumping after day 4 in culture, likewise none of the populations seem to fulfill their 

potential for high viable cell density (AIVCD) as seen in other fed-batch experiments, with 

cells normally reaching 5x10
6
 cells/mL in 5mL total volumes as reported by (Hewitt and 

Nienow 2007)( Yang et al. 2014)(Lee et al. 1999). 

Finally, although XIAP would be expected to mediate its effect on cell density via inhibition 

of apoptosis, this only appeared to be the case later in culture. At earlier timepoints, if 

anything, the viability seemed to be routinely higher in the RFP-Control cell line; this was 

confirmed later in the Nexin® assay. 
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4.2.5: Apoptosis - Nexin® Assay on adherent and suspension culture 

In the early stages of apoptosis, changes occur at the cell surface which can be difficult to 

recognise and differentiate between the stages of death. The Nexin® /Annexin V assay, offers 

the possibility of detecting early phases of apoptosis before the loss of cell membrane integrity 

and permits measurements of the kinetics of apoptotic death (Vermes et al. 1995).  

The assay uses the Annexin V protein to tag apoptotic and dead cells within a culture, the 

numbers are then counted by Guava® flow cytometry. The mix-and-read Guava Nexin Assay 

relies on a two-dye strategy. The assay utilises Annexin V-PE to detect the translocation of 

phosphatidylserine (PS) to the external surface of the membrane of apoptotic cells, an early 

indication of commitment to apoptosis. The Guava Nexin Assay incorporates this PS-Annexin 

V-PE binding as an indicator of early stage apoptotic cells. The cell impermeant dye 7-AAD is 

included in the Guava Nexin Reagent as an indicator of membrane structural integrity. 7-AAD 

is excluded from live healthy cells and early apoptotic cells, but permeates late stage apoptotic 

and dead cells.  
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Figure 4.2.5.1:  Measuring Apoptosis via Nexin® Assay apoptotic index for RFP-Control and 

XIAP clone 12 cell lines. Cells were evaluated using the Guava™ flow cytometry over a 12 

day timecourse in 24-well adherent culture. Error bars represent standard deviation between 

triplicate biological samples. * represents statistical significance p-value <0.05, ** p-

value<0.01, *** p-value<0.001 determined by a 2 tailed students T-Test between both sets of 

triplicate samples with the asterisk placed on the XIAP clone sample bars representing the 

difference between its corresponding RFP-Control bars.  
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In keeping with the earlier viability measurements, XIAP clone 12 was found to have higher 

levels of apoptotic cells on days 3 and 6 compared to the RFP-Control. However on day 9 a 

shift occurred where XIAP clone 12 still maintained a higher percentage of cells in early 

apoptosis but actually had fewer cells progressing to late apoptosis unlike the RFP samples 

(Figure 4.2.5.1). For example; out of 2500 events measured by flow cytometry on day 12, 

RFP-Control samples had on average 703 cells in early apoptotic state and 328 cells in late 

apoptosis, compared to clone 12 which had 734 cells in early apoptosis but only 58 cells in 

late apoptosis.  

It is important to note that total cell numbers for XIAP clone 12 samples were double 

compared to RFP-Control samples on days 3, 6 and 9 due to higher growth rate as seen in 

section 4.2. For example on day 3, the average cell density for RFP-Control was 5x10
5
 

cells/mL while in clone 12 samples the cell density was 1.49x10
6 

cells/mL. On day 12, RFP 

average cell densities were 4.73x10
5
 cells/mL while clone 12 average the cell density was 

9.92x10
5
 cells/mL.  

In conclusion, the extended culture survival phenotype of XIAP clone 12 can be attributed to 

an anti-apoptotic effect at later stages of culture for both attached and suspension experiments. 

Therefore, it is unlikely that entire clonal behavior was down to apoptosis-resistance solely.  
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4.2.6: Functional Validation using RNAi - XIAP effect on growth 

Stable XIAP overexpression appeared to increase cell growth and reduce apoptosis in the 

previous section. In order to further confirm the role of XIAP in this observation, the aim of 

this experimental section was to specifically knockdown XIAP in two cell lines using RNAi. 

To examine whether this increased growth/reduced apoptosis was specifically a result of XIAP 

overexpression, we wanted to see whether these phenotypes could be reversed by specifically 

knocking down XIAP using RNAi.  

XIAP clones and CHO-K1 cells (not to be confused with the stable RFP-control CHO cells) 

were grown in two formats, 24-well suspension plates and 2mL suspension tubes. We 

measured the cell counts and viability post- transfection to see the impact various siRNAs had 

on both cell lines. Additionally a comparison using two different CHO cell lines, the CHO-K1 

parental cell line and the XIAP stable clone 12 (CHO-K1 also had detectable endogenous 

XIAP expression as shown in figure 4.1.3.1) in 24-well suspension culture over a 6 day 

timecourse. 

The XIAP siRNA was pre-designed by Ambion® from the Silencer® select range to target the 

human XIAP transcript (NM_001167U32974.1) which the stable XIAP clone 12 was 

transfected with. A control VCP siRNA was also chosen, and targets the Valosin-containing 

protein which is an ubiquitin segregase that remodels multimeric protein complexes by 

extracting polyubiquitinated proteins for recycling or degradation by the proteasome. It is 

responsible for proper functionality of CHO cells and when knocked down, reduces viability 

and growth radically. It has been used as an in-house siRNA knockdown positive control since 

it was identified and functionally validated by Doolan et al, in a large scale microarray CHO 

specific profiling study (Doolan et al. 2010). The negative siRNA control (siNeg) was a 

scrambled sequence that should not target any coding sequence within CHO cells and served 

to control for non-specific effects of the transfection. 

Figure 4.2.6 depicts the sequence comparison between the siRNA and the CHO mRNA target. 

Despite the 2 base mismatches, we predicted that it might also target the endogenous hamster 

XIAP transcript the main purpose was to reverse the overexpression of human XIAP – not 

necessarily deplete endogenous version. 
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Figure 4.2.6: Sequence alignment between Silencer® XIAP siRNA and the CHO mRNA 

sequence target. A 2 base mismatch is shown at base numbers 11 and 16. 

 

After transfection, we analysied the cells via flow cytometry to see the effects of the various 

siRNAs. Figure 4.2.6.2 illustrates the cell counts and viability results for XIAP clone 12 in 

2mL suspension tubes over 6 days post-transfection with XIAP, VCP and scramble negative 

siRNAs. 
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Figure 4.2.6.1: Functional validation using siRNAs targeting XIAP, VCP and a scrambled negative control (siNeg) of cells grown in 

24-well suspension over 6 day culture. CHO-K1 and XIAP clone 12 cells used for functional comparison and the cells were seeded at 

2x10
5
/mL. * represents a p-value <0.05, ** p-value<0.01, *** p-value<0.001 as determined by a 2 tailed students T-Test between 

triplicate samples and placed on the siNeg data points to represent the statistical significance between siXIAP and siNeg values. 
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Figure 4.2.6.2: Functional validation using siRNAs targeting XIAP, VCP and a scramble 

siRNA negative (siNeg) control for XIAP stable clone 12 cells grown in 2mL tube 

suspension over 6 day culture. Cells were seeded at 2x10
5
/mL. Error bars represent 

standard deviation between triplicate biological samples. * represents a p-value <0.05, ** 

p-value<0.01, *** p-value<0.001 as determined by a 2 tailed students T-Test between 

triplicate samples and placed on the siNeg data points to represent the statistical 

significance between siXIAP and siNeg values.  

 

The cell counts and viability measured from the 24-well format culture showed that over 6 

days the XIAP-specific siRNA (siXIAP) did significantly impact on cell growth and 

viability in Clone 12 and CHO-K1 cells in comparison to the negative control (siNeg) 

siRNA. The siVCP positive control displayed the expected phenotype (suppressed growth 

and decreased viability) demonstrating that the transfection was successful (Figure 4.2.6.1).  
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By knocking down XIAP there was a significant reduction in cell numbers at days 4 and 6, 

while a reduction in cell counts was seen at day 2 for both cell types, though not significant.  

Clone 12 cell numbers were the highest on day 4, with the siNeg samples reaching 

1.30x10
6
 cells/mL; this indicated the natural cell density of the stable XIAP clone 12 cells, 

whereas after knocking down XIAP, cell counts decreased to 8.2x10
5
 cells/mL. 

Interestingly, the highest cell numbers seen in the CHO-K1 siNeg samples were on day 6 

and reached 9.65x10
5
 cells/mL compared to 5.75x10

5
 cells/mL in the siXIAP treated 

samples, again indicating that knocking down XIAP does appear to impact on the growth 

characteristics of both clone 12 and CHO-K1 cell lines. 

Furthermore, the results showed that viability was significantly reduced in siXIAP 

transfected samples in comparison to the siNeg control transfected samples on days 2, 4 

and 6 for both clone 12 and CHO-K1. Interestingly, the percentage viability seen in siXIAP 

transfected samples on day 6 in the CHO-K1 cells dropped to 30%, 8% below the siVCP 

transfected samples.  

The biggest differential between cell counts after siRNA transfection of clone 12 was seen 

on day 4 in 24-well culture whereby siXIAP samples were 8x10
5
 cells/mL and the siNeg 

control counts were 1.30x10
6 

cells/mL. The biggest viability differential was seen on day 6 

in the 24-well culture, where clone 12 had 71% viability in the siNeg and 39% in the 

siXIAP. In contrast the CHO-K1 cell line had 50% viability in siNeg samples while in the 

siXIAP samples had 32% viability at day 6.  

XIAP knockdown had a more marginal functional effect on cell growth and viability after 

day 6 compared to clone 12 in 24-well culture at day 6, but was statistically significant 

(Figure 4.2.6.2). The biggest differential was seen on day 6 in cell count with siNeg 

transfected cells being 4x10
5
 cells/mL and siXIAP transfected cells being reduced to 

2.8x10
5
 cells/mL, while the viability was 32% in siNeg samples and reduced to 19% in 

siXIAP samples. 
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Additionally, a western blot was performed to show XIAP expression at the protein level 

(Figure 4.2.6.3). This was performed to see the functional efficacy of the XIAP siRNA 

post-transfection into CHO-K1 and XIAP clone 12 cells. It was observed that the XIAP 

was knocked down on day 3 in both cell lines with CHO-K1 showing less XIAP protein 

compared to XIAP clone 12 (Figure 4.2.6.3).  

 

 

Figure 4.2.6.3: Western blot to validate XIAP siRNA knockdown in CHO-K1 and XIAP 

clone 12 cell lines in 24-well suspension culture post-transfection. A positive XIAP protein 

control sample from a transient transfection sample seen in figure 4.1.3.1 plus a GAPDH 

loading control were also included. (XIAP ~55-57kDa) (GAPDH ~ 40kDa).  

 

Figure 4.2.6.3 illustrates that by day 6 the XIAP knockdown was more obvious in the 

CHO-K1 cell line which may simply be due to the higher levels initially present in clone 

12. In the clone 12 samples, the XIAP protein was reduced, but was still present on day 3; 

and detection of the protein was shown to be similarly decreased at day 6.  

Additionally, Gapdh appeared to be marginally lower in the siNeg XIAP clone 12 samples 

compared to siXIAP – this would, in theory, mean endogenous XIAP levels were higher 

than they appear on the western gel image. 

Taken together, from these results we concluded that the XIAP siRNA (siXIAP) caused a 

reverse in functional phenotype in the XIAP clone 12 and indeed parental CHO-K1 growth 

densities compared to a scramble siRNA negative control (siNeg). Late culture exhibited 

the most significant cell count changes, with the most significant differences seen at day 6. 



 
 

270 
 

The siXIAP samples were evidently reduced compared to the scramble siNeg control in all 

cases (Figure 4.2.6.1), thus confirming the functional role of XIAP, at least partially in 

impacting cell growth and survival.  

 

4.2.7: XIAP clone 12 productivity results 

In light of of previous results showing increased growth and survival by the XIAP clones 

and clone 12 in particular, the next step was to see if XIAP engineering could be used to 

impact on productivity. SEAP, and two industrially relevant proteins, EPO and IgG were 

transfected into clone 12 to investigate whether this phenotype could increase overall 

protein production compared to the RFP-Control. 

 

4.2.7.1: SEAP productivity 

A vector containing SEAP driven by the CMV promoter was transfected into XIAP clone 

12 and RFP-Control cell lines to test SEAP productivity over 12 days. Cells were seeded at 

1.5x10
4 

cells/well into 24-well plates on day 0 and allowed attach for 12 hours before 

transfection of SEAP-vector (a sample was taken here as day 0).  
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Figure 4.2.7.1.1: (A) Volumetric SEAP productivity assay over a 12 day timecourse post-

transient transfection of the SEAP vector into XIAP clone 12 and RFP-Control cell lines. 

SEAP was measured per 50μl of supernatant from cells grown in 24-well suspension plates. 

Cells were seeded at 1.5x10
4
 cells/well in ATCC+5% FCS on day 0. SEAP units were 

normalised by calculating the mean V (slope) of the SEAP activity using the BioTek™ 

KC4 plate reader. * represents statistical significance p-value <0.05, ** p-value<0.01, *** 

p-value<0.001 determined by a 2 tailed students T-Test between both sample sets of 

triplicate samples. (B) Normalised SEAP productivity calculated per cell by dividing total 

SEAP by the cell counts for each sample. All error bars represent standard deviation 

between triplicate biological samples.  
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Volumetric SEAP activity was more than twice as much in clone 12 samples compared to 

RFP-Control samples at all time points. For example on day 9 SEAP was ~125 SEAP units 

in RFP-Control samples compared to ~320 SEAP units in clone 12 samples (Figure 

4.2.7.1.1 A). 

We also wanted to investigate a normalised SEAP productivity per cell, from our analysis 

there was no significant difference between both cell lines in terms of specific 

productivities. However, on each day, productivity per cell tended to be higher in clone 12. 

For example; on day 9 normalised SEAP activity per cell was 0.00501 in RFP-Control 

compared to 0.00732 SEAP detected in clone 12 (Figure 4.2.7.1.1 B).  

In addition, the large increase in SEAP activity per cell seen at day 12 can perhaps be 

attributed to a substantial drop in cell viability for both cell lines, therefore less viable cells 

were subsequently counted on day 12, causing the per cell productivity to appear increased. 

 

4.2.7.2: EPO productivity 

Next we wanted to investigate the productivity of another protein in clone 12 compared to 

the RFP-Control. Cells were seeded at the same density of 1.5x10
4
/well and grown in 

ATCC+5% FCS for 12 hours prior to transfection of an EPO-vector driven by a CMV 

promoter into both cell lines. Erythropoietin (EPO) is an example of a therapeutic protein 

manufactured in CHO cells and many studies have been conducted to increase its 

production (Trummer et al. 2006) (Hong et al. 2007) (Park et al. 2012). 

A western blot was performed to measure the levels of EPO protein post-transfection, 

samples were taken at days 2, 4, 7, 10 and 12 with days 4, 7 and 10 results shown (Figure 

4.2.7.2). 

We observed an increase in EPO protein yield over the timecourse for both cell lines, with 

an obvious increase in the XIAP clone 12 samples at each time-point compared to the RFP-

Control.  
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Figure 4.2.7.2: Western blot of extracellular EPO secreted by RFP-Control and XIAP 

clone 12 cell lines over 12 days in 24-well suspension culture. Cells were seeded at 

1.5x10
4
/well. (XIAP ~55-57kDa). Equal volumes of supernatant were loaded per lane. No 

GAPDH loading control used as extracellular protein taken from culture supernatant. 

 

4.2.7.2.1: Densitometry - EPO 

Additionally, we converted all EPO band intensities from the western result into 

quantitative numerical values using densitometry to quantify the difference in EPO 

production between RFP-Control and XIAP clone 12. Using Total-Lab Quant™ software 

we analysed the optical density of the pixels on the photographic film (Figure 4.2.7.2.2). 

From this, we were able to calculate a percentage and fold-change increase relative to the 

RFP-Control samples at each time-point. 
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Figure 4.2.7.2.1: Densitometry using Total-Lab Quant™ on the western blot for EPO 

productivity. Comparison of RFP-Control (set to 1) and XIAP clone 12 cell lines over days 

4, 7 and 12. Percentage increase between RFP-Control and clone 12 on each day placed on 

the XIAP bar headers. 

 

Densitometry results provided further evidence that XIAP clone 12 did indeed produce 

more EPO than the RFP-Control. On day 4 the largest increase of 1.42-fold was seen in 

XIAP clone 12, while on day 7, the increase was much less but still higher at 1.08-fold. 

Five days later, presumably owing to increased cell numbers at the early stages of culture 

and resistance to apoptosis at later stages (after day 6 based on Nexin results seen 

previously), the XIAP clone 12 produced 1.28-fold more EPO than the RFP-Control.  

Ideally, for a future experiment we would like to extend this culture even longer and 

examine EPO productivity beyond 12 days, however, we are aware that product quality 

may deteriorate over time in harsh culture conditions. 
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4.2.7.3: IgG productivity  

Finally, we wanted to determine whether cells stably overexpressing IgG (in-house CHO 

1.14 cell line) yielded more monoclonal antibody (mAb), compared to control cells. Both a 

XIAP overexpression vector and a RFP-Neo vector (as before) were co-transfected with an 

in-house hygromycin resistance (HYG) vector into CHO 1.14 cells and was used to select 

stable mixed populations after 4 weeks.  

Note: Having previously experimented with transient transfection of both vectors into CHO 

1.14, no significant effect was seen (results not shown).  

To ensure that the increased growth and survival phenotypes, seen previously in stable 

transfected CHO-K1 cells, repeated in another CHO cell line – we first measured the cell 

numbers and viability of the 1.14 cell line stably expressing RFP and XIAP (Figure 

4.2.7.3.1). Due to clumping, day 9 was the maximum longevity of the timecourse.  
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Figure 4.2.7.3.1: CHO 1.14 cell numbers and viability percentage measured over 9 days to 

investigate the RFP-Neo control stable population compared to the XIAP stable population. 

Cells were seeded at 2x10
4
/well in 24-well plates and measured via Guava™ flow 

cytometry. * represents statistical significance p-value <0.05, ** p-value<0.01, *** p-

value<0.001 determined by a 2 tailed students T-Test between both sample sets of triplicate 

samples for cell counts and cell viability. Asterisks were placed on viability error bars of 

XIAP 1.14 data points and denote the statistical significance between the respective RFP 

1.14 data points. 

 

It was shown that stable XIAP transfected CHO-1.14 cells grew faster and had prolonged 

viability compared to RFP stably transfected CHO 1.14 cells (Figure 4.2.7.3.1). Cell 

numbers at each time point were significantly higher overall in the XIAP expressing cells 

than the respective RFP expressing cells. After 2 days in culture XIAP stable cell densities 

reached 5.05x10
4
 cells/well which was 1.56-fold higher than the RFP stable control average 

density of 3.3x10
4
 cells/well.  

More strikingly, on day 9, XIAP expressing cell numbers reached 1.98x10
5
 cells/well 

compared to only 7.33x10
4
 cells/well for the RFP expressing cells, making the differential 

between cell numbers 2.7-fold higher in the stable XIAP samples.  
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Furthermore, viability was also shown to be significantly higher overall in XIAP stable 

cells, for example; viability for XIAP 1.14 cells was comparatively higher ~51% than the 

RFP 1.14 cells which dropped to ~25% on day 9. Taken together, once again this 

highlighted that the stable overexpression of XIAP increased growth and reduced death 

phenotypes, this time in a variation of another CHO cell line. 

In parallel, we took supernatant aliquots from all assayed cell samples at each timepoint in 

order to examine the IgG productivity using an ELISA assay (Figure 4.2.7.3.2).   

 

 

Figure 4.2.7.3.2: ELISA assay to test IgG concentration of stable CHO 1.14 cells 

transfected with XIAP and RFP-Neo vectors grown in 2mL suspension tubes over a 9 day 

timecourse. Error bars represent standard deviation between triplicate biological samples. 

Fold change between cells represented by [x]. * represents statistical significance p-value 

<0.05, ** p-value<0.01, *** p-value<0.001 determined by a 2 tailed students T-Test 

between both sets of triplicate samples.  
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It was found that at each timepoint, IgG concentration was higher in the XIAP stable cell 

line in comparison to the RFP control, with the fold change between RFP and XIAP clone 

12 reaching a maximum of 2.98-fold on day 6. On day 9, the IgG concentration in the 

XIAP expressing 1.14 samples had reached ~370 ng/mL compared to ~162 ng/mL in the 

RFP expressing control samples (Figure 4.2.7.3.2).  

This increase in IgG could be attributed to more cells being present in the XIAP samples, 

whereby it out-performed the RFP control, owing to the increased growth and survival 

phenotypes shown previously.  

Therefore, we wanted to examine the average specific productivity (Qp) for each sample. 

The specific productivity was calculated and revealed that on days 2, 4 and 6, the stable 

XIAP 1.14 cells had a significantly higher Qp than the stable RFP cells (Table 4.2.7.3). 

However, the day 9 values were not statistically significantly different between RFP and 

XIAP cell lines. 

 

Table 4.2.7.3: Specific IgG per cell productivity (pg/cell/day) of RFP stable 1.14 CHO 

cells compared to XIAP stable 1.14 CHO cells over 9 days in culture. Specific productivity 

(Qp) was calculated as the IgG titre divided by the accumulated integral viable cell density 

(AIVCD). * represents statistical a significance p-value of <0.05, ** p-value<0.01, 

determined by a 3 tailed students T-Test between both sets of triplicate samples. 

 

In conclusion, these productivity results, further support findings that XIAP overexpression 

in two separate cell lines can be beneficial in increasing IgG productivity, with a more 

modest impact on SEAP and EPO productivity.  

 

Specific (Qp)  IgG
RFP  Qp ± SD XIAP Qp ± SD

Day 2 0.175 0.009 0.238* 0.024

Day 4 0.201 0.010 0.267* 0.025

Day 6 0.167 0.007 0.276** 0.022

Day 9 0.155 0.009 0.174 0.012
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4.3: Identification and Validation of miRNAs using a novel Capture technique 

4.3.1: XIAP is a direct and functional target of miRNAs 

As mentioned in sections 4.1.2 and 4.1.3, we referred to previous work in Glioma which 

had identified an anti-correlation between XIAP and miR-23b expression in SNB-19 cells. 

In this section we aim to use a novel method to identify other miRNAs that target XIAP. 

Having shown XIAP to be an attractive gene target for engineering in CHO cells, we 

wanted to establish which miRNAs regulate its expression.  

Since miRNAs regulate gene expression usually via controlled targeting of a mRNA, a 

rational step was to identify miRNAs involved in XIAP expression with a view to using 

them as a means to manipulate XIAP expression in CHO cells in a bioreactor setting for 

example. Furthermore, this study provided an opportunity to perform a direct comparison 

between human (SNB-19) and CHO (CHO-K1) XIAP transcripts in terms of the milieu of 

miRNAs that bind to each orthologue. 

Upon bioinformatic analysis it was shown that the human XIAP 3’UTR was much longer 

(2113bp) in sequence than its CHO orthologue (Figure 4.1.3.3). From the outset, this would 

imply that many more miRNAs have the potential to interact and bind with human XIAP. 

Investigating the difference between a longer XIAP sequence and a shorter one in two 

different organisms to see what miRNAs are common or unique would be interesting.  

Through in silico analysis, the XIAP sequence was screened using prediction tools; 

TargetScan™ (www. Targetscan.org) miRanda® (www.microRNA.org) and mirBase® 

(www.mirbase.org) - together these databases predicted many miRNAs including three 

putative binding sites for miR-23b (Figure 4.3.1.1).  

In a parallel study in human Glioblastoma cell lines, we used standard miRNA 

methodologies to determine whether XIAP mRNA was a molecular target of miR-23b. By 

using an miR-23b pre-miR mimic to increase the abundance of miRNA-23b in SNB-19 

GBM cells, we wanted to examine the effect on XIAP expression. This was achieved by 

analyising GFP-reporter gene expression combined with the presence of the XIAP 3’UTR.  

 

http://www.microrna.org/
http://www.mirbase.org/
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Figure 4.3.1.1: (A) The three predicted binding sites of miR-23b within the 6791bp XIAP 

3’UTR sequence. Shown are the base pair positions of the 3 predicted binding sites +999, 

+3102 and +4634 from the start (+1) of the XIAP 3’UTR after the TAA stop codon of the 

XIAP gene. (B) The miR-23b mimics mature sequence with nomenclature and order 

number. 

 

We also investigated the effect overexpression of miR-23b had on the mRNA (qPCR) and 

protein level (Western blot) of XIAP after transfection into SNB-19 cells (Figure 4.3.1.2). 

XIAP expression was suppressed following transient transfection of SNB-19 cells with 

miR-23b mimics. The cellular levels of a genuine biological target of a miRNA would be 

expected to anti-correlate with the levels of the miRNA in question. The levels of the XIAP 

mRNA post-transient transfection with miR-23b were found to be significantly repressed 

(~65 %) in comparison to the control cells and premiR-scramble negative (PMN) (Figure 

4.3.1.2 A).  
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This was further confirmed by a western blot, whereby XIAP protein levels were also 

considerably lower in miR-23b treated cells, demonstrating that miR-23b played a role in 

regulation of the cellular levels of XIAP in these cells. A decrease in protein expression 

was seen after miR-23b mimics transfections (Figure 4.3.1.2.B), this could have been direct 

or indirect; to refine this further the next step was to functionally test this XIAP-miR-23b 

interaction.  

 

 

Figure 4.3.1.2: (A) Relative expression of XIAP in SNB-19 cells measured by qRT-PCR 

post transfection with pre-miR-23b. A negative pre-miR (PM-Neg) was used as a control; 

each sample was measured in technical triplicate (n = 3). (B) Western blot of XIAP protein 

expression in SNB-19, samples for cells only with no miR-treatment plus cells post 

transient transfection with negative-pre-miR (PM- control) and the premiR mimics of miR-

23b. 

 

We used 3 reporter plasmids designed to contain a destabilized GFP reporter gene coupled 

with the isolated XIAP 3’UTR sequence extracted by PCR (containing one, two or all three 

in silico predicted target sites for miR-23b shown in figure 4.3.1.1) downstream of this 

GFP. The reporter plasmids were subsequently co-transfected with premiR-23b into SNB-

19 cells and the effect on GFP was measured post-transfection.  
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Figure 4.3.1.3: XIAP 3’UTR map and results of co-transfection of the SNB-19 cell line. 

Measurements were taken 24 hour post-transfection for Guava™ flow cytometry analysis 

using the ExpressPlus® software. Plasmids containing a GFP reporter plus one, two or 

three XIAP 3’UTR binding sites for miR-23b along with a plasmid with no UTR sequence 

as a control. 3µl Lipofectamine 2000® used with 100 nM concentrations of pre-miR-23b 

and a pre-miR-Negative (PMN). ** represents a statistical significance p-value of <0.01, 

and was determined by a 2 tailed students T-Test between both sets of triplicate samples.(n 

= 3). 

 

Only the longest XIAP 3’UTR sequence containing all 3 predicted binding sites (XIAP3) 

showed a significantly decreased GFP signal of 36.1 % (Figure 4.3.1.3). This would 

suggest that the 3
rd

 (most 3’) site is the only biologically active miR-23b binding site in the 

transcript. Or, that the full 3’UTR must be present, for structural reasons perhaps, for miR-

23b to mediate its effect. 
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4.3.2: MiR-Capture as a tool to identify mRNA:miRNA interactions 

As mentioned in section 4.3.1, we investigated the miR-23b role in targeting human XIAP 

in SNB-19 GBM cells using a more conventional approach. This led us to ask whether we 

could identify miRNAs that regulate XIAP in CHO cells and indeed if they are any 

different than the miRNAs identified in human. 

One of the challenges with identifying miRNAs that bind a particular gene is that each 

miRNA is believed to regulate multiple transcripts and many transcripts are thought to be 

regulated by multiple miRNAs (Hafner et al. 2012)(Treiber, Treiber and Meister 2012). . 

This is due to imperfect base pairing as miRNAs bind to their target mRNAs by partial 

complementarity over a short sequence of usually 2-7 bases termed the ‘seed region’, 

however, these seed matches are not always sufficient for repression, indicating that other 

determinants may be needed to help specify targeting of miRNA secondary to this seed 

pairing. Grimson et al presented a model which can extend beyond this limited seed pairing 

prediction. Their model predicts site efficacy without recourse to evolutionary 

conservation, and it also identifies effective non-conserved sites and siRNA off-targets 

(Grimson et al. 2007).  

Furthermore, many computational programs exist to predict miRNA targets, and though 

considerable efforts have been made by research groups to recognise miRNAs associated 

with a certain binding site on a 3’UTR of a target gene, this can be difficult and computer-

based in silico prediction can only go so far. Using TargetScan™, miRANDA™ and other 

such prediction tools can lead to high false positive rates due to the short ‘seed’ region 

sequence  and temporal/spatial differences of miRNA:mRNA interactions (Sethupathy et 

al. 2006) (Megraw and Hatzigeorgiou 2006). 

Here we have used a recent novel experimental technique first described in (Orom and 

Lund 2010) (Hassan et al. 2013), to search for miRNAs targeting a given mRNA based on a 

capture affinity assay. The assay utilises a biotinylated DNA anti-sense oligonucleotide, 

which is designed to bind to an exposed loop section within the secondary structure of an 

mRNA transcript. Few methods can comprehensively identify miRNAs that target a single 

mRNA, see table 1.13.1 for a list of various competitive methods. 
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We proposed to use this method to ‘pulldown’ miRNAs which bind to CHO and human 

XIAP mRNAs thus allowing a bone fide validation of miRNA:mRNA interactions. Another 

advantage to this method compared with those seen in table 1.13.1, is that it has been 

shown that miRNAs can unexpectedly target the mRNA coding region and even the 5’UTR 

in some cases (Nonne et al. 2010) (Hsu and Tsai 2011). 

As a result, some methods used can miss important interactions based on 3’UTR focused 

localisation only, whereas this approach captures all miRNAs bound to the full length 

mRNA transcript.  

The success of the capture can be dependent on many variables, most importantly the 

capture oligonucleotide design. A 5’-Biotin modification incorporates a biotin moiety at the 

5' terminus of the oligonucleotide (Figure 4.3.2.1). Biotin binds to avidin or streptavidin 

conjugates (beads) which are used as a ‘hook’ to pulldown miRNA:mRNA interaction 

molecules. 

 

Figure 4.3.2.1: 5’ Biotin moiety modification to the capture oligo in order to facilitate 

pulldown using streptavidin affinity beads.  

 

Using Basic Local Alignment Search Tool (BLAST) to check if the oligo only binds to the 

chosen target mRNA and that it doesn’t bind anywhere else within the genome is a crucial 

step. However one drawback can be that, the in vivo environment can often vary greatly 

compared to what can be discerned from in silico prediction.  

As this technique was never performed in CHO cell lines, alterations to the method were 

used to optimise the experiment which will be discussed.  
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In summary, by identifying miRNAs that bind to XIAP in CHO, it may provide a route to 

regulate CHO XIAP expression (ie: by targeting CHO-specific miRNAs). It would also 

provide an opportunity to compare in vivo miRNA-XIAP interactions to those predicted by 

in silico approaches such as miR-Walk™ (http://mirwalk.uni-hd.de/). Finally, by 

performing the same capture method in human and CHO cells in parallel, we aimed to 

identify species/cell line specific differences in the milieu of miRNAs binding XIAP.  

 

4.3.3: Designing the capture oligo-hook for human and CHO XIAP mRNAs 

In order to study miRNA interaction with XIAP, the affinity capture technique was 

designed to capture or hook the XIAP mRNA complete with bound miRNAs in a way 

amenable to downstream rigor i.e: streptavidin bead capture consisting of extensive 

washing, eluting and extraction. Two steps are necessary for this, secondary structure 

modelling to design a capture ‘hook’ oligo and formaldehyde treatment to cross-link the 

miR-Ago-RISC complexes to their mRNA targets. 

The complex rules for multi-branch loops were predicted using the M-fold server which 

organises the structures and orders them by their initial free energies (ΔG) (Mathews et al. 

1999). Using M-fold, the first step was to determine the most thermodynamically stringent 

single-stranded regions (ss) within the total XIAP mRNA. The oligos were designed to 

target single-stranded regions in the XIAP secondary structure, for CHO (CHO-K1 cell 

line) (Figure 4.3.3.1) and human (SNB-19 cell line) (Figure 4.3.3.2).  

Due to the XIAP 3’UTR being a longer sequence in human than its CHO counterpart, 

making the overall mRNA target sequence more difficult to pulldown, two capture oligos 

were designed (one in the CDS and one in the 3’UTR) to ensure such a long transcript was 

pulled down.  

Initially, a ‘naked’ unfixed capture was performed with all the capture oligos excluding the 

formaldehyde step, to bind the mRNA only before completing the full capture protocol (see 

section 2.19). This was to test and optimise the oligos for binding specificity to the mRNA 

target without undertaking the entire protocol. 
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Figure 4.3.3.1: (A) M-fold snapshot of the predicted secondary structure of the CHO XIAP mRNA transcript. (B) An exposed single-

stranded (ss) region located between bases 116-140. (C) Oligo nomenclature and details including the capture sequence location. 

(N.B: T = U). The blue dots indicate the hydrogen bonding between the adjacent bases.  
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Figure 4.3.2.2: (A) M-fold snapshot of the predicted secondary structure of the human (SNB-19) XIAP mRNA transcript. (B) An 

exposed single-stranded (ss) region located between bases 116-140. (C) Oligo nomenclature and details including the capture 

sequence location. (N.B: T = U). The blue/red dots indicate the strength of the hydrogen bonding between the adjacent bases. Blue 

being less tightly bound. 
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Analysis with the Basic Local Alignment Search Tool (BLAST) showed the oligo 

sequences to have 100% homology and to be specific to XIAP transcripts.  

Figure 4.3.3.2 (C), illustrates human oligos 3 and 4 nomenclature, make note of 5 ds bases 

and 3 ds bases respectively following the oligos name and bp. This indicated that each oligo 

overlaps with a region that is single stranded with the exception of 5 and 3 bases which are 

double stranded at their respective loci. The colour of the dots indicates the type of double 

stranded bond: red G-C (strong), blue A-U (weaker), green G-U (very weak). 

 

4.3.4: Validation of XIAP mRNA:miRNA specific isolation 

To validate the oligos designed for ‘capture’, qRT-PCR was performed with primers 

specific to XIAP, GAPDH, and RPLOP genes to measure levels of mRNA post-capture. If 

the oligo design was competent then we expected to see an enrichment of XIAP mRNA 

after bead affinity purification compared to total RNA cell lysates for both human and 

CHO cell lines.  

An initial ‘unfixed’ capture was carried out minus formaldehyde step in order to optimise 

the efficiency of the capture oligos at binding and ‘pulling down’ the XIAP target mRNA 

based on mRNA enrichment compared to total RNA isolated in parallel (Figure 4.3.4.1). 

The levels of XIAP mRNA in the ‘captured’ sample were normalised against GAPDH 

mRNA levels in both captured and total RNA samples.  

Total RNA samples were exposed to the beads only (without capture oligo) to identify 

background noise caused by highly abundant mRNAs that might bind non-specifically to 

the streptavidin-coated beads. 
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Figure 4.3.4.1: Validation of XIAP mRNA specific isolation technique. qRT-PCR was 

used to measure XIAP target enrichment in the ‘unfixed’ capture on both SNB-19 and CHO 

cell lysates post-affinity capture using 3 different oligos for each cell line (the most 

efficient oligo shown for each). Relative mRNA enrichment to total lysate was calculated 

using the 2
- ∆∆Ct

 method and normalised using the abundant house-keeping gene GAPDH 

(set @ 1).  

 

Enrichment of XIAP mRNA was calculated to be 160-fold for SNB-19 and 141-fold for 

CHO samples post-capture compared to XIAP mRNAs in the total lysates. Additionally, 

dissociation curve analysis was performed to ensure single qPCR XIAP and GAPDH 

amplicons were detected (see appendices 6.2.3.3.1).  
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In addition to incubating cell lysates with the capture oligos, we extracted cell lysates in 

parallel using a non-specific oligonucleotide (NSO) as a negative control (to control for 

non-specific binding of the oligos) and a total cell lysate (without a capture oligo) to be 

tested alongside the two XIAP targeting oligos. The non-specific mismatched sequence 

controls were designed not to bind or be specific for any mRNA within either genome 

(Human or CHO), based on a BLAST alignment and subsequently qPCR validation (Figure 

4.3.4.2). 

Once satisfied with the capture technique and efficiency of the oligos, cell lysates 

underwent a ‘full’ capture protocol, this included formaldehyde crosslinking and proteinase 

K treatment steps. Formaldehyde causes covalent DNA-protein and protein-protein 

crosslinks that stabilise complexes during stringent downstream washing steps while it can 

be easily reversed at >70
o
C and has been widely used in a range of molecular biology 

procedures such as ChIP (Sutherland, Toews and Kast 2008). Proteinase K was used to 

clean up the final captured sample by digesting and denaturing protein bound complexes 

including RBPs and DNase remaining post-elution and to release the mRNAs and the 

miRNAs from the beads.  

Post-capture there was substantial enrichment of the XIAP mRNA (188 and 96-fold) for 

SNB-19 human and CHO cell lines respectively. The mismatch/NSO oligo capture lysates 

had less XIAP enrichment at 101-fold for SNB-19 and 50-fold for CHO when compared to 

total RNA lysate for each cell line (Figure 4.3.4.2). The NSO enrichment values obtained 

are consistent with other published studies (Hassan et al, 2013) and it can be expected that 

an oligo with only a 3-base mismatch would yield relativily higher enrichment background 

than a totally non-specific oligo based on sequence complimentarity. However, as this was 

a control oligo which consistently resulted in less enrichment than the true XIAP capture 

oligo, we belived this was a suitably stringent control to ensure that XIAP mRNA:miRNA 

specific isolation was occurring. 
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Figure 4.3.4.2: ‘Full’ capture run using QRT-PCR validation to measure XIAP mRNA 

enrichment fold-change from both SNB-19 and CHO cell lines post affinity bead capture 

with additional steps; formaldehyde crosslinking and proteinase K. A non-specific capture 

oligo experimental control (NSO) was also included. Relative mRNA enrichment was 

calculated using the 2
- ∆∆Ct

 method using the house-keeping gene RPLOP to normalise (set 

@ 1). (n = 3). 

 

Figure 4.3.4.2 illustrates the results for the complete pulldown of XIAP mRNA using two 

capture oligos ‘hooks’, one specific for XIAP and one for a non-specific negative control. 

The human SNB-19 capture results showed more XIAP mRNA enrichment (188.7-fold) 

compared to the CHO capture (96.1-fold) when normalised relative to total lysate sample. 

Enrichment comparing the non-specific oligo (NSO) and the capture oligo was higher in 

the SNB-19 human capture overall.  
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4.3.5: TLDA analysis – miRNA expression profiling on captured eluate 

The next step was to use the captured RNA samples that were isolated from the pull-down 

to test the samples for presence of miRNAs bound and subsequently eluted from the beads. 

These miRNAs were detected by qPCR using Taqman™ low density arrays (TLDA). 

By running the capture samples on the TLDA cards, we wanted to achieve two things; to 

examine if the pulled down mRNA contained bound miRNAs and to quantify and compare 

the expression profiles for any miRNAs that were present in these captured samples 

between human and CHO. 

In the pre-processing of the data, one crucial analysis step was normalisation, in order to 

reduce measurement errors and technical variability among arrays that might have arisen 

during the execution of the experiments. Furthermore, a cycle threshold below 40 was 

considered to indicate a miRNA being expressed, while this cut-off would usually be 

considered high; it was set to 40 owing to the minute amounts of RNA expected in the 

captured eluate.  

Prior to miRNA detection, we performed a pre-amplification step on the pulled down 

samples. As it was expected that the RNA would be minute in amount, this step was to 

boost the starting amount of cDNA before conducting TLDA profiling. However, after 

comparing capture samples that were pre-amplified (preamp +) and non-amplified (preamp 

-) in parallel using the SNB-19 full capture sample, it was observed that captured samples 

with no preamp treatment subsequently yielded better detection results than capture 

samples with preamp. This was based on lower endogenous U6 miRNA control Ct values in 

the preamp (-) sample (Cts of ~24 compared to Cts of ~33 in preamp (+)).  

In addition, more miRNAs were detected overall in the preamp (-) sample with 15 miRNAs 

being detected compared to only 3 miRNAs detected in the preamp (+) sample, and these 

were the 3 endogenous miRNA controls (two U6 and one RNU44) (Figure 4.3.5.1).  
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Figure 4.3.5.1: TLDA-qPCR output for 384 (top left grid) miRNA probes. The SDS output file illustrates the comparison between pre-

amplification (PreAmp +) and no pre-amplification (PreAmp -) steps. By not performing the pre-amplification step, many more miRNAs 

were detected below the 40 cycle threshold cutoff. In the PreAmp – run, only 3 endogenous control miRNAs (two U6 and one RNU44) were 

detected in the SNB-19 full capture sample when loaded into a human-specific TLDA A card. Flat line amplification curves denote 

undetected miRNA probes. 
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Proceeding without pre-amplification, the output from the Applied Biosystems® 7900HT 

PCR instrument, showed detection of the endogenous controls and was indicative of a 

successful experimental run using captured samples. MammU6, RNU43, RNU6B and Let-

7 endogenous controls were all detected in the 18-39 Ct range. Cts were calculated for total 

RNA samples, the mismatch/scramble oligo captured eluate and the full XIAP oligo 

captured eluate.  

To normalise the data on each card, the Cts values from the detected endogenous control 

mammU6 were subtracted from the Ct for each miRNA on that TLDA card. Anything 

above 40 cycles was considered absent. The relative quantity (RQ) of each detected 

miRNA was calculated relative to the NSO samples. An RQ >1 indicated miRNA 

differential expression (enrichment) between the scramble/NSO and full captured samples. 

The total RNA samples were included as a measure of the endogenous levels of expressed 

miRNAs.  

For example, miR-124 was detected in all 3 samples for human SNB-19 (Total, NSO 

capture and XIAP capture) and the RQ of the XIAP capture showed ~1.5-fold enrichment 

for miR-124 in comparison to the NSO capture in the SNB-19 pulldown. In the CHO 

pulldown, the RQ of the XIAP capture oligo was ~65-fold higher than the NSO; however 

the total RNA sample also had a high RQ (Table 4.3.5.1).  

 

Table 4.3.5.1: Analysis study snapshot of miR-124 results from SNB-19 and CHO 

captured samples post-TLDA run using the ΔΔCt method and relative quantity (RQ) was 

calculated using 2^-( ΔΔCt) normalised to the NSO capture samples.  

 

SNB-19 sample miRNA ID CT Avg Endo CT Avg (U6) Δ CT ΔΔ CT RQ

Total RNA miR-124 34.7 21.7 13.0 9.4 0.001

NSO Capture miR-124 36.0 32.4 3.6 0.0 1.000

XIAP Capture miR-124 35.1 32.1 3.0 -0.6 1.499

CHO sample miRNA ID CT Avg Endo CT Avg (U6) Δ CT ΔΔ CT RQ

Total RNA miR-124 28.2 25.0 3.1 -5.9 59.958

NSO Capture miR-124 40.0 31.0 9.0 0.0 1.000

XIAP Capture miR-124 35.1 32.1 3.0 -6.0 65.960
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In cases of a miRNA not being detected in the total sample but detected in capture samples, 

this was maybe due to strong enrichment of that miRNA in the capture step, despite being 

expressed at low (undetectable) levels in the cell. We will discuss this in more detail in 

later sections. 

The low numbers of miRNAs detected led us to believe that the formaldehyde and perhaps 

the proteinase K steps may have damaged/denatured some of the miRNAs during the 

pulldown technique. This was based on an independent TLDA run conducted whereby we 

used the SNB-19 total RNA captured samples, one unfixed and one fixed, and compared 

both to see the effect of formaldehyde treatment.  

It was found that in the ‘unfixed’ capture there was 102 miRNAs detected compared to 60 

miRNAs detected in the ‘fixed/full’ total RNA SNB-19 human captured samples from 

TLDA analysis  (Figure 4.3.5.2).  

TLDA analysis revealed that, in total, 40 miRNAs across both cell lines were detected and 

4 miRNAs were common to both cell lines (miR-124, miR-526b*, miR-760 and miR-877) 

for a detailed list of these miRNAs and nomenclature analysis see table 4.3.5.2. 
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Figure 4.3.5.2: TLDA-qPCR output for 384 (top left grid) miRNA probes. An independent test illustrating the difference between an 

unfixed capture compared to formaldehyde fixed capture of SNB-19 human cells. More miRNAs were detected in the ‘unfixed’ capture 

sample as illustrated by more amplification curves being present. A 384-well human-specific TLDA A card was used. Flat line amplification 

curves denote undetected miRNAs. 
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Table 4.3.5.2: Profiling of miRNAs using TaqMan Low-Density Array™ based on an Applied Biosystems® 7900HT micro fluidic cards 

consisting of two cards with 667 individual miRNA probes to test simultaneously over two cards (A and B). The sequence detection system 

(SDS v2.2.2) software was used to operate the 7900HT. Additionally, results from mirWalk® (http://mirwalk.uni-hd.de/) showed if the 

detected miRNA targets were predicted to bind XIAP full length mRNA in silico. (Y = predicted, N = not predicted). * denotes passenger 

strand of the miRNA. 

 

  

Predicted Predicted Predicted Predicted Predicted

in silico A cards B Cards in silico in silico A cards B Cards in silico in silico

Y miR-124 miR-135a* N Y miR-124 miR-125b-2* Y miR-124 Y

Y miR-197 miR-135b* Y Y miR-125b miR-30a* Y miR-526b* Y

Y miR-204 miR-149* Y Y miR-17 miR-30e Y miR-877 Y

Y miR-222 miR-188-5p Y Y miR-19b miR-526b* Y miR-760 Y

Y miR-323-3p miR-516a-3p Y N miR-20a miR-572 N

Y miR-494 miR-520c-3p Y Y miR-30b miR-610 Y

miR-526b* Y miR-760 Y

miR-567 Y miR-877 Y

miR-623 Y

miR-625* Y

miR-626 Y

miR-629* Y

miR-630 Y

miR-632 Y

miR-760 Y

miR-768-3p N

miR-801 N

miR-877 Y

miR-923 N

miR-99b* Y

Human SNB-19 CHO-K1 Common to both

http://mirwalk.uni-hd.de/
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It was also evident that the human SNB-19 miR-Capture resulted in more bound miRNAs 

than CHO. This was somewhat expected owing to the previous mapping of the XIAP 

transcript which showed that the human XIAP transcript was 2113bp longer than CHO, 

meaning it could potentially contain many more miRNA binding domains. There were 26 

miRNAs detected in the human capture, whereas there were 14 miRNAs detected in the 

CHO capture (Table 4.3.5.2). 

There were 10 miRNA passenger (star) strands detected on the B cards, 7 were detected in 

SNB-19 capture and 3 in the CHO capture with miR-526* being common to both cell lines. 

Interestingly, in the CHO capture, the miR-125b guide strand was detected on the A card, 

while the passenger strand miR-125b* was also detected on the B card (Table 4.3.5.2).   

Next we wanted to identify miRNAs bound to XIAP that existed in clusters or families. We 

hypothesised that miRNAs identified by miR-Capture, that exist in clusters (same genomic 

location) or families (same seed sequence) may be indicative of co-functional relationships 

via co-regulating or co-ordinately regulating cellular XIAP.  

From the CHO capture, miR-30b was detected on the A card while miR-30a* and miR-30e, 

which are all from the same family, were detected on the B card (Figure 4.3.5.2). miR-30 

members are generally highly expressed in human cardiovascular and muscle cells (Chen et 

al. 2014). Noticeably, no miR-30 family members were detected in the human SNB-19 

capture, while there has been only one CHO-specific publication related to miR-30 

expression. Fischer et al suggested that the entire miR-30 family substantially improves 

bioprocess performance of CHO cells. It was shown that stable miR-30 over-expressing 

cells outperformed parental cells by increasing SEAP productivity or maximum cell density 

of approximately twofold (Fischer et al. 2014). 

Other notable miRNA families identified were; the miR-154 family on chromosome 14 

containing miR-323-3p and miR-494 were detected from the SNB-19 capture. In addition, 

the miR-10 family containing miR-125b was detected from the CHO capture. Finally, the 

miR-515 family on chromosome 19 which contains miR-516a-3p, miR-520c and miR-

526b* was identified from the SNB-19 capture. 
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The miR-17-92 cluster members (miR-17, miR-19b and miR-20a) were all detected in the 

CHO capture. MiR-222 was detected in the SNB-19 capture and is often co-expressed with 

miR-221; however miR-221 was not present in SNB-19 or indeed CHO pulldowns (Table 

4.3.5.2).  

None of the 4 miRNAs detected in both cell lines [miR-124, miR-526*, miR-877, miR-

760] have previously been associated with XIAP or CHO in the literature but all are 

predicted to bind to XIAP in silico. In some cases a miRNA may not be predicted in silico 

but was still detected in the capture. For example, while the TLDA analysis showed that 

miR-20a in the CHO miR-Capture samples was pulled down, it was not predicted in silico 

(Table 4.3.5.2). Furthermore, out of the 40 identified miRNAs, only 6 were not predicted in 

silico by using the MirWalk™ database (miR-135, miR-768-3p, miR-801, miR-923, miR-

572 and miR-20a). There was 209 miRNAs predicted to bind to XIAP across 5’UTR, CDS 

and 3’UTR sequence in total (Full table in supplementary data). 

Similarly, Hassan et al reported that miR-19b was captured in human cell lines but was not 

predicted to bind to the mRNA target they were testing, alpha-1 antitrypsin (AAT). 

Nevertheless, from our miR-Capture, miR-19b showed functional effects irrespective of 

prediction (Figure 4.3.6.1).  A potential recommendation we have is that extra biochemical 

assays should be performed to independently confirm such anomalies (Hassan et al. 2013). 

In summary, we have presented a readily accessible method for identifying miRNAs that 

target a specific mRNA transcript. This method was obtained by combining methodology 

from the publication by Hassan et al, and additional steps divised in association with Dr. 

Sebastian Vecken (RCSI) . An advantage includes the capture of a full length mRNA and 

not just the 3’UTR region. It is also a useful tool to compare mRNA:miRNA interactions 

across cell lines via parallel miR-Captures. For example; as we have shown, only 4 

miRNAs were common to XIAP transcripts between hamster and CHO cell lines. 

Additionally, as it is a relatively novel technique, there is scope for improvement; an 

example would be to optimise the formaldehyde crosslinking step to try to isolate bound 

miRNAs more efficiently.  
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4.3.6: Functional effects of XIAP mRNA-specific miRNAs 

To further validate target miRNA enrichment, Taqman™ single-plex assays were 

performed by reverse transcribing the same captured lysate and normalising to the 

endogenous U6 highly expressed control miRNA.   

For single-plex Taqman™ PCR, miR-124 was chosen as it is a common XIAP target from 

TLDA detection in both cell types (Table 4.3.5.2). Two more miRNAs were chosen to 

validate, miR-19b (which is part of the miR17-92 cluster mentioned previously) and miR-

222 were selected for validation in CHO and SNB-19 respectively.  

Interestingly, as mentioned miR-222 is usually co-expressed with miR-221, however miR-

221 wasn’t detected from the TLDA profiling. By investigating or targeting miR-222, it 

could lead to a better understanding between both cluster members and compare it to XIAP 

regulation in GBM and CHO cells. Recently, it has been shown that targeting miR-221-222 

could serve as potential therapeutic targets for increasing radio-sensitivity of glioblastoma 

cells due to modulating the DNA damage response (DDR) (Li et al. 2014a). 

To investigate individual miRNA levels in capture eluate from each cell line, first RNA 

from the same pulldown capture samples were reverse transcribed with specific RT primers 

for the chosen miRNAs plus the specific RT primers for the U6 endogenous house-keeping 

control for normalisation. Next Taqman® PCR was performed on the Applied BioSystems 

7900HT to measure the relative quantity (RQ) of these miRNAs using more specific single-

plex Taqman™ assays (Figure 4.3.6.1). 
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Figure 4.3.6.1: Single-plex miRNA specific Taqman™ qPCR assays. RQ quantified by 

using the 2
-ΔΔCT

 method and normalised to the scramble/NSO sample (set @ 1). MiR-124-

222-19b levels were normalised to endogenous levels of U6 snRNA for correction of RNA 

input. (A) Relative expression RQ results for CHO full captured lysate samples versus 

CHO scramble captured lysates from the same capture run previous. (B) Relative 

expression RQ results for SNB-19 full captured lysate samples versus SNB-19 scramble 

captured lysates from the same capture run previous.  
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The RQ of all four chosen miRNAs was increased within the XIAP oligo samples 

compared to the non-specific oligo samples (Figure 4.3.6.1), thereby validating the TLDA 

data, via single-plex miRNA enrichment. 

The next step was to determine whether these XIAP-specific miRNAs have a specific 

impact on XIAP expression in both cell lines.  

Pre-miR mimics were transfected in SNB-19 and CHO-K1 cells to observe if they impact 

on XIAP mRNA levels via qRT-PCR (Figure 4.3.6.3) and protein level via western blotting 

(Figure 4.3.6.4).  
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Figure 4.3.6.3: Impact of various mimics on XIAP expression. Calculation of decrease in 

XIAP mRNA using qPCR post-transfection with mimics in human SNB-19 cell line (A) 

and CHO-K1 (B). RQ of each miRNA was calculated relative to the pre-miR (-)/ (PM-) 

which was set @ 1. Also included was the XIAP siRNA (siXIAP) as a positive control for 

XIAP downregulation. * represents p-value <0.05, ** p-value<0.01, determined by a 2 

tailed students T-Test between both sets of triplicate sample CTs using endogenous U6 for 

normalisation.  
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In CHO cells, miR-222 was included as an experimental control as it should not cause a 

change in XIAP expression based on it not being captured, and indeed it showed no 

significant effect. The two other miRNA mimics tested (miR-124 and miR-19b) caused 

decreases in XIAP mRNA levels compared to the pre-miR (PM-) control, further 

suggesting that they directly interact with XIAP to down-regulate its expression (Figure 

4.3.6.3 A). 

In SNB-19 cells, miR-124 and miR-222 transfections both resulted in decreased XIAP 

mRNA levels of 13% and 55% respectively compared to PM-. Interestingly, miR-222 

treatment had the most notable effect on XIAP expression levels, compared to the PM- 

treated sample (Figure 4.3.6.3 B).  

In addition, the XIAP control siRNA had a modest effect on XIAP mRNA levels, resulting 

in a 38% decrease compared to PM-. The siXIAP treatment showed less impact than miR-

222 which was unexpected, as a specific XIAP-siRNA would be expected to induce a more 

effective knockdown effect based on previous knockdown results seen in figure 4.2.6.3. 

Next we wanted to investigate the impact on the protein level and to see if they correlated 

with the qPCR results. Figure 4.3.6.4, illustrates the results from the transfection of mimics 

into two cell lines on their XIAP protein levels. 
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Figure 4.3.6.4: Impact of various miRNA mimics on XIAP protein expression. CHO-K1 

(A) or SNB-19 (B) cells were transiently transfected with individual miRNA mimics (miR-

124, miR-222, miR-19b) or combinations (Combi) and lysates were analysed for XIAP 

expression 60hrs later by western blot (~55-57 kDa). PM- is the scrambled control. The 

house-keeping gene GAPDH is the loading control (~40 kDa). The siXIAP control was 

included as a positive control.  

 

Both miR-124 and miR-19b overexpression in CHO cells appeared to reduce XIAP protein 

expression (Figure 4.3.6.4 A), while the combination sample showed a more modest 

decrease compared to the PM- treated cells. This was interesting considering the impact 

was greater individually on XIAP expression.  

There was no significant decrease in XIAP expression compared to the PM- sample; in 

SNB-19 cells, however there did appear to be a modest decrease in the combination 

transfection (miR-124-222) sample (Figure 4.3.6.4 B). The siXIAP-treated SNB-19 cells 

displayed nearly complete knockdown of XIAP expression compared to miR-222, PM- and 

Cells only samples. However, this was not seen at the mRNA transcriptional level (Figure 

4.3.6.3 B), and is most likely attributed to miRNAs blocking translation only. 
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4.3.6.1: XIAP 3’UTR targeting by miRNA- in silico 

RNAhybrid™, an open source and flexible online prediction tool was used to identify all 4 

miRNAs binding positions (pos) within the XIAP 3’UTR, loop structures and minimum 

free energy (mfe). The miRNA-mRNA forms an RNA duplex, while the structure with the 

lowest mfe is predicted to have the most stable structure (Figure 4.3.6.1.1).  

RNAhybrid™ is available at http://bibiserv.techfak.uni-bielefeld.de/rnahybrid.  

 

 

Figure 4.3.6.1.1: RNAhybrid™ result for each miRNA targeting the XIAP 3’UTR 

sequence in CHO and Human. The green strand represents the miRNA and the red strand 

is the mRNA. (A) miR-124 and miR-19b secondary structure duplex, minimum free energy 

and nucleotide position in the CHO XIAP 3’UTR (4782bp) sequence. (B) miR-124 and 

miR-222 secondary structure duplex, minimum free energy and nucleotide position in the 

SNB-19-human XIAP 3’UTR (6791bp) sequence. 

 

http://bibiserv.techfak.uni-bielefeld.de/rnahybrid
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It was predicted that these miRNAs have binding sites in both human and CHO XIAP 

3’UTR sequence. After RNAhybrid™ analysis of the full XIAP transcript, we identified 

predicted sites for miR-124 in CHO and miR-222 in human sequences respectively.  

These binding sites had much lower affinity for each miRNA based on weaker seed regions 

(more Uracil present) and lower free energy calculations and perhaps may not be true 

binding sites. However, other potential binding sites may exist in the XIAP CDS and 

5’UTR, but for the purposes of 3’UTR targeting, this analysis was sufficient. 

 

4.3.6.2: XIAP 3’UTR targeting by miRNA- in vivo 

Next we performed another functional assay to see if there was an interaction between 

these miRNAs and the XIAP 3’UTR. We used a specifically designed GFP plasmid 

containing a cloned 3.7kb 3’UTR XIAP human sequence [NM_001167.2] (Figure 4.3.3.2) - 

downstream of the GFP, to test if the XIAP 3’UTR was a target of these same 4 miRNAs. 

We co-transfected into SNB-19 and CHO-K1 cells once again, to examine the effects of 

these miRNAs on GFP-reporter expression.  
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Figure 4.3.6.1.2: Functional pre-miR XIAP 3’UTR-GFP reporter assay. The pGFP (xiap3) 

denotes the GFP-reporter vector containing 3.7kb of XIAP 3’UTR sequence. PM- denotes 

the pre-miR-negative mimic (50nM concentration). The Y-mean GFP figures when the 

pGFP constructs are co-transfected with 50nM mimics into CHO-K1 (A) and SNB-19 cells 

(B) Error bars represent standard deviation between triplicate biological samples. * 

represents statistical significance p-value <0.05, ** p-value<0.01, *** p-value<0.001 

determined by a 2 tailed students T-Test between both sets of triplicate samples.  
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In CHO cells, the GFP mean florescence showed a significant decrease when the XIAP 

3’UTR sequence was present (Figure 4.3.6.1.1 A). The difference in GFP expression 

between pGFP (with xiap3 sequence) and miR-124/miR-19b versus pGFP + miR-124/miR-

19b (with no xiap3 sequence) showed that miR-124 mimics reduced GFP expression by 

38.7% while miR-19b reduced GFP expression by 33.9%. A significant decrease in GFP 

expression was observed for miR-124 (37.1%) and miR-19b (9.2%). 

A reduction in GFP florescence was also seen upon transfection of miRNA mimics 

[miR124/222] in SNB-19 human cells (Figure 4.3.6.1.1 B). By comparing pGFP (xiap3) + 

PM- to pGFP (xiap3) + miR-124/miR-222, we see that miR-124 reduced GFP expression 

by 11.2% but was not statistically significant whereas miR-222 reduced GFP expression by 

28.9%. Furthermore, the SNB-19 cell line was harder to transfect, hence lower GFP 

expression range overall.   

The pGFP (xiap3)-only transfected sample showed a reduction in GFP expression 

compared to the three pGFP + (mir124/222/PM-) samples, and would perhaps indicate the 

endogenous levels of miRNAs targeting the 3.7kb 3’UTR, irrespective of additional 

miRNA mimics. However, the long 3.7kb 3’UTR sequence might reduce transfection 

efficiency compared to the pGFP vector on its own, due to its larger size - larger constructs 

often being more difficult to transfect. In addition, we cannot compare across cell types as 

there is potentially different levels of endogenous miRNA present in each cell line.  

In summary, here we present an alternative validated method to identify multiple miRNAs 

targeting a predetermined mRNA. Our data showed 40 miRNAs in total, that may be cell 

specific, plus 4 common and that co-elute with XIAP mRNA transcript in two cell types. 

From this target list (Table 4.3.5.2), two miRNAs were chosen for each cell line (miR-124, 

miR-19b for CHO and miR124, miR-222 for SNB-19) to test the impact of their 

overexpression using premiR mimics in vivo. All four miRNAs subsequently showed a 

functional impact on XIAP expression at varying degrees when measured using qRT-PCR, 

single-plex Taqman assays, western blotting and GFP-reporter 3’UTR knockdown analysis. 
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5.1: Project 1 Discussion – Endogenous promoters as gene engineering tools 

5.1.1: Project overview 

The most frequently used promoters in expression vectors were derived from the simian 

virus 40 (SV40), Rous sarcoma virus (RSV), cytomegalovirus (CMV), and mouse 

mammary tumor virus (MMTV). On one hand viral promoters allow high expression rates, 

but on the other hand, they can lead to instability and silencing via promoter methylation in 

response to foreign sequence being continuously overexpressed (Brooks et al. 2004) 

(Mariati et al. 2014). 

Consequently, the aim of this study was to identify endogenous promoter that could be used 

as tools to improve recombinant protein production in CHO cells. We wanted to investigate 

if promoters derived from CHO cells were more beneficial than viral or other exogenous 

sequences. Two possible applications of these promoters are, firstly to drive ‘product’ gene 

expression in a process-dependant manner and secondly, to drive an engineering gene 

designed to impact on CHO cell behaviour in a process dependent manner. The process-

dependent parameter that we focused on in this work was culture temperature. 

Initial profiling undertaken in the NICB, generated an expansive CHO transcriptome 

dataset, which facilitated differential gene expression analysis. This dataset was mined for 

genes which changed expression in response to temperature and more specifically, genes 

that increased or decreased expression at lower temperature (Table 3.1.2.1). Additionally, 

we identified genes displaying constitutive expression which had the least variance across 

the entire dataset (Table 3.1.2.3), however, none of these gene promoters were successful in 

driving reporter gene expression effectively when tested. 

It should be noted that none of the genes identified in this analysis demonstrated complete 

temperature-dependant induciblity. In other words, none were completely repressed (off) at 

one temperature and strongly expressed (on) at the lower or higher temperature. Therefore, 

the promoters would unlikely behave like ‘classic’ inducible systems such as the TetOn/off 

system. However, this doesn’t negate their potential value and utility as the field of CHO 

cell engineering matures.  
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As we strive to gain greater control over the CHO ‘platform’ there is every reason to 

believe that in some cases simply switching from on to off or vice versa may not be 

desirable for optimal control.  

By having a range of inducible tools available with different expression characteristics, we 

will ensure that a suitable choice can always be made based on the gene whose expression 

is being controlled, in addition, to how that control is mediated – e.g.: by changing culture 

temperature, rather than adding or subtracting inducer molecules (IMs).  

Fussenegger and co-workers have shown a plethora of exogenous IMs and synthetic 

inducible systems to increase expression or indeed tightly control inducible expression, 

examples include; gas acetaldehyde, biotin, drug-sensing hydrogels, exocytic SNAREs, 

siRNA toggle switch and pTRIDENT (Fux et al. 2004)(Werner et al. 2007, Weber et al. 

2009) (Ehrbar et al. 2008) (Peng, Abellan and Fussenegger 2010). 

However, most of these are not industrially viable as the use of artificial/exogenous 

molecules is not feasible from a regulatory point of view (Weber et al. 2009) (Wieland and 

Fussenegger 2012). Therefore, more natural/endogenous inducible mechanisms are being 

sought. 

The mouse (Cirbp and miR-17-92) and CHO-derived promoters studied in this project 

(MDM2, SSu72, miR17-92 and Cirbp) could not only drive expression of product genes to 

a similar and often better level than viral ones frequently used in bioprocessing settings, but 

additionally were shown to be inducible upon a temperature shift to 31
o
C. 

This property could be advantageous in a biphasic bioprocess (Figure 1.11.1), whereby 

adjusting a culture to a lower culture, we could arrest growth and simultaneously boost 

expression of a particular gene by using a temperature sensitive promoter. When cells are 

not growing/dividing they can concentrate cellular energy on protein synthesis (Kaufmann 

et al. 1999) (Clark, Chaplin and Harcum 2004) (Yoon et al. 2004) (Kim and Lee 2007). 
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5.1.2: Promoter isolation 

As a result of sparse genomic sequence available publically for Chinese hamster in the 

early part of this project, we took a different approach to isolating the promoters of these 

genes, than reported in studies of analogous nature; (Thaisuchat et al. 2011) (Pontiller et al. 

2008) (Chen et al. 2013) (Running Deer and Allison 2004).  

For example, Running-Deer and Allison used an approach whereby they screened the 

flanking regions of a CHO-K1 lambda phage library after highly expressed genes were 

identified. They extracted and cloned a large 12kb region (including the 5’UTR) flanking 

the CHEF-1α gene to test it for promoter activity. Ideally, shorter more concise regulatory 

sequences would be more attractive in transgene expression vectors; therefore, they tried to 

shorten it considerably. They managed to reduce the size from 12kb to 4.1kb without loss 

of expression levels; however, once they shortened the fragment to 3.3kb, this reduced 

expression by half. Ultimately, 3.3kb was acknowledged as perhaps still too large to be 

utilised in a biopharma vector construct (Running Deer and Allison 2004). 

Another method is to use restriction enzymes fragment the genomic DNA of the chosen 

cells followed by random recombination to re-ligate into reporter plasmids. These are then 

screened to identify ‘active’ fragments that drive expression of a reporter gene (Pontiller et 

al. 2008). A promoter trap method can also be used whereby a promoterless plasmid 

containing GFP and selectable marker is transfected and integrated into cells. Drug-

resistant, GFP positive cells are isolated and the sequences upstream of the integrated 

plasmid are identified by sequencing.  

Although the name of the method suggests that regulation automatically assumes it is 

promoter region specific, however here the isolated regulatory sequences were not 

necessarily derived from gene promoter regions (Chen et al. 2013). This study showed that 

some strong regulatory elements can be located at unexpected locations in the CHO 

genome and this would imply more scope to find potential regulatory sequences/tools as 

opposed to focusing on promoter regions only.  
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Our approach was to first identify target genes based on microarray transcriptome data. As 

mentioned, we identified genes capable of increased or decreased expression at 31
o
C (Table 

3.1.2.1). Furthermore, we identified genes capable of constitutive expression across a wide 

range of parameters including culture stage, temperature and cell type (Table 3.1.2.3). 

This was a similar to the approach taken by Le et al to isolate the Thioredoxin-interacting 

protein (Txnip) promoter (Le et al. 2013). Then we used cross-species alignments (Figure 

3.1.8.1) to identify conserved locations for primer design (Figure 3.1.8.2) to PCR amplify 

and extract the promoter regions. This way we could be more certain that putative 

promoters were being isolated and not just random segments of DNA which may or not be 

clearly defined. Ideally ~300-5000bp upstream sequence was considered a good starting 

point to test putative promoter regions.  

 

5.1.3: Screening target genes and transcript validation  

5.1.3.1: Initial promoter fragment screen 

Various promoter fragments were amplified from gDNA by PCR (Table 3.1.9.3). These 

were cloned into a GFP-reporter plasmid and screened (Table 3.1.11.1) for GFP expression 

initially to identify suitable fragments for further study in plasmids containing other 

transgenes.  

There were some interesting observations from the screen. None of the promoters chosen 

based on constitutive activity (UBA52, PPIA and AUP1) from either mouse or CHO, were 

successful in driving detectable expression except for the miR-17-92 cluster promoter. For 

example; despite PPIA topping the list of constitutively highly expressed genes in the array 

analysis, reporter plasmids containing either of two putative promoter fragments 1424bp 

and 750bp upstream of the PPIA ATG start site failed to drive expression of GFP.  

The most obvious reason for this would be that these fragments didn’t contain the necessary 

promoter elements needed for the apparent strong transcriptional activity in vivo. This is 

and has been one of the greatest challenges in promoter analysis in higher eukaryotes – the 

fact that very distal elements and epigenetic/chromatin context can play a major role in 
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promoter activity. Indeed, the classical promoter analysis approach is to start with a large 

(2-5kb) of sequence from 5’ of the translational start site, cloned into a reporter vector and 

systematically delete ‘chunks’ of sequence while monitoring the effect on reporter output 

(Pontiller et al. 2010) (Thaisuchat et al. 2011). Although it would have been interesting to 

study some of the non-functional sequences cloned in this project more closely, we opted to 

focus on the shorter, more active sequences, keeping in mind our goal of generating 

engineering tools for use in vectors to drive transgene expression. 

In summary, the mouse miR-17-92 cluster fragments were more effective than the CHO 

orthologues. For genes that were identified as being upregulated at 31
o
C (Cirbp, MDM2 

and SSu72) the observed effect correlated with the expected effect from the profiling 

dataset with all performing similarly. For genes that were identified as being downregulated 

at 31
o
C, only mouse fragments of HNRPa2b1 and Nars (1326bp and 2466bp) and CHO 

fragments of PPID (560bp and 1025bp) were successful in driving GFP expression and 

may be candidates for future work regarding using temperature shift in the opposite 

manner.  

Finally, another consideration before we progressed the promoters to other reporter assays 

was that we chose promoter fragments based on size and how easy the fragment could be 

cloned into other vectors. All viral promoter sequences used in commercial vectors are 

small concise sequences capable of driving strong expression levels and do not impinge on 

transfection efficiency like larger sequences would.  

 

5.1.3.2: RT-qPCR analysis and half-life determination 

The transcript abundance for Cirbp, MDM2 and SSu72 genes was confirmed to be much 

lower in the 37
o
C samples compared to the 31

o
C cultured samples over the entire sampleset 

(Figure 3.1.4.6). Unexpectedly, MDM2 transcript copy numbers were much lower overall 

compared to SSu72 and Cirbp in contrast to the high fluorescence signals observed in the 

initial array data. Despite this, we decided to continue with MDM2 as a candidate 

promoter. 
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Transcript levels for miR-17-92 were not measured in this particular instance as small 

RNAs were not present due to the extraction method used, but data from a separate study 

in-house as well as published reports (Hayashita et al. 2005) (Hernandez Bort et al. 2012), 

showed members of this cluster to be most abundantly expressed in various CHO cell lines. 

Furthermore, we were interested to see whether a promoter sequence derived from a 

miRNA cluster could be used to drive expression of a protein-encoding gene. 

Of course, a strong signal on an array or high copy numbers as measured by qPCR could be 

as a result of two separate phenomena, high transcriptional turnover of the mRNA 

(desirable) or if the mRNA of that particular gene was just highly stable (undesirable) and 

subsequently had a slower decay rate within the cells, it may give the impression of 

increased expression upon temperature shift. 

Stability analysis revealed that the decay rates were quite varied between all 3 genes at both 

37
o
C and 31

o
C, however, the decay rate was consistently lower (and thus mRNA half-life 

was higher) at 31
o
C for each individual gene (Table 3.1.5.2). Similarly Cirbp and MDM2 

showed a marginal decrease in decay rate and as a result a marginal increase in mRNA 

half-life at 31
o
C with MDM2 shown to be more stable overall at both temperatures. Al-

Fageeh and Smales reported similar results for various Cirbp 5’ UTR leader sequences 

from NIH-3T3 mouse cells. They showed that although Cirbp mRNA stability was 

increased at 31
o
C, half-life of 13.9 hr at 37

o
C versus 15 hr at 31

o
C, it was marginal 

compared to a beta-actin control which had a more substantial difference between 37
o
C 

(10.4 hr) and 31
o
C (15.8 hr) (Al-Fageeh and Smales 2009).  

Conversely, SSu72 was a little over twice as stable at 31
o
C as at 37

o
C, based on a decay 

rate of 2.44 hr
-1

 at 37
o
C and 5.12 hr

-1
 at 31

o
C. This could perhaps contribute partly to the 

higher SSu72 signal the original microarray profiling, but as it is known that at lower 

temperature mRNA transcripts tend to be more stable, this was not unexpected. Finally, 

although we can partially attribute the increased transcript levels detected from the original 

profiling to this increase in stability, it is clearly not responsible for the 6/7-fold increase 

observed in the 31
o
C samples (Figure 3.1.4.6). 
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As a point of reference, Thaisuchat et al also conducted mRNA stability on the S100a6 

gene promoter using actinomycin D treatment and a luciferase reporter. It was difficult to 

compare results as they analysed mRNA stability over only 6 hours compared to 24 hours 

for our analysis but nevertheless they found the transcript decayed by 33% at 37
o
C, 

whereas in parallel the transcript only decayed by 5% in 33
o
C culture (Thaisuchat et al. 

2011). This observation indicates that mRNA stability is enhanced by lowering culture 

temperature (only after 4 hours was this apparent) which must contribute to higher mRNA 

levels. It was also shown that after 4 hours there was no significant change in stability and 

indeed at 37
o
C transcripts were more stable. Translation presumably has its own set of 

limitations at lower temperature and the level with which it influences overall protein 

expression in this instance remains unclear. 

 

5.1.4: Prioritising useful promoters 

Promoter fragments from Cirbp, SSu72, MDM2 and miR-17-92 cluster were prioritised as 

the most suitable candidates for progression as a result of an initial GFP expression reporter 

screen (Table 3.1.11.1). As mentioned, there was difficulty in cloning some of the larger 

fragments so we focused on the following for the remainder of the project: 828bp CHO 

Cirbp, 370bp MDM2 and 654bp SSu72. Not only did this set appear capable of high GFP 

expression but smaller fragments would be more suitable in a vector designed for routine 

transfection. 

Cirbp was one of the most highly ranked genes on our list and although less novel than 

some of the other genes, it was included as a recognised temperature sensitive positive 

control with which to compare induciblity of the more novel promoters identified (Al-

Fageeh and Smales 2009) (Nishiyama et al. 1998) (Sumitomo et al. 2012). Additionally, an 

889bp promoter fragment from mouse Cirbp was included in all experiments as a further 

control. 

Cold-inducible RNA-binding protein (Cirbp) is a cold-shock protein (CSP), and is well 

characterised in human and mouse and is believed to function as a chaperone protein 

(Nishiyama et al. 1997) (De Leeuw et al. 2007) (Kaneko and Kibayashi 2012). It assists in 
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assembly, transport, preventing transcription termination and folding of other 

macromolecules during various critical cellular responses caused by stimuli such as; 

hypoxia and hypothermia (Mihailovich et al. 2010). It has also been reported to be involved 

in interleukin IL-1β regulation (Brochu et al. 2013).  

Recent results by Liu et al suggest that CSPs (Cirbp and Rbm3) regulate temperature 

specific circadian gene expression by controlling alternative polyadenylation (APA) and the 

depletion of Cirbp or Rbm3 significantly reduced the amplitudes of core circadian genes. 

Having performed PAR-CLIP analysis, they showed that the 3'UTR of a range of circadian 

genes were significantly enriched for Cirbp and Rbm3 near the polyadenylation sites 

(PASs) (Liu et al. 2013b).  

First discovered in yeast, RNA polymerase II CTD phosphatase (SSu72) is an essential 

phylogenetically conserved transcription factor phosphatase and is a component of the 

cleavage/polyadenylation factor (CPF). It interacts with the general transcription initiation 

factor (TFIIB) and termination complexes, promoting RNA polymerase pausing and release 

(Krishnamurthy et al. 2004) (Ganem et al. 2003). Pappas and Hampsey, identified a 

recessive ssu72-1 allele and showed that it was a synthetic enhancer of a TFIIB (sua7-1) 

defect, resulting in a heat-sensitive (Ts(-)) phenotype and a dramatic downstream shift in 

transcription start site selection (Pappas and Hampsey 2000). He et al, demonstrated that 

SSu72 is required for 3' end cleavage of pre-mRNA but is dispensable for poly(A) addition 

and RNAP II termination and interacts with Sub1 and Pta1 genes (He et al. 2003).  

Mouse double minute 2 homolog (MDM2), plays a key role in processes like cell growth, 

senescence and apoptosis. It is an important negative regulator of the p53 tumor suppressor 

and has been identified as a proto-oncogene. MDM2 functions both as an E3 ubiquitin 

ligase that recognizes the N-terminal trans-activation domain (TAD) of the p53 tumor 

suppressor and as an inhibitor of p53 transcriptional activation (Iwakuma and Lozano 2003) 

(Uhrinova et al. 2005). 

Lalonde et al identified two promoters for MDM2 in humans which influence its 

expression; an internal promoter (P2), which is located near the end of intron 1 and is p53-

responsive, and an upstream constitutive promoter (P1), which is p53-independent.  

http://en.wikipedia.org/wiki/P53
http://en.wikipedia.org/wiki/Ubiquitin_ligase
http://en.wikipedia.org/wiki/Ubiquitin_ligase
http://en.wikipedia.org/wiki/N-terminal
http://en.wikipedia.org/wiki/P53
http://en.wikipedia.org/wiki/P53
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They postulated that sequence variation in the promoter region of MDM2 could lead to 

disregulated expression and variation in gene dosage. Their data suggests that part of the 

variability in the MDM2 expression levels could be explained by allelic p53-independent 

P1 promoter activity (Lalonde et al. 2012).  

In a follow up study, a human MDM2 promoter polymorphism (SNP309T>G) was found to 

be associated with enhanced Sp1 transcription factor binding and elevated MDM2 

transcription while 309G has been found to be associated with elevated cancer risk 

(Knappskog and Lonning 2011). 

In addition to the protein-encoding gene promoters used in this study, a highly abundant 

miRNA cluster (see section 1.12.1) was identified from miRNA expression profiling in-

house. The main focus of this project was to identify temperature-inducible promoter 

sequences capable of driving transgene expression; however, it was acknowledged that 

investigating a promoter from the miR-17-92 cluster might be an interesting and novel 

endogenous tool in CHO cell culture. This cluster was identified as being highly abundant 

and it has been shown to be highly expressed in various cell lines in the literature, so it 

seemed worthwhile to examine if its promoter could drive transgene expression also. 

None of these gene promoters had previously been reported in driving transgene expression 

either inducibly or constitutively in any species.  
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5.2: Reporter-gene expression   

5.2.1: GFP and Luciferase transgenes 

Qualitative analysis using the fluorescent microscope showed that there was an obvious 

increase in GFP expression between populations of cells grown at 37
o
C and 31

o
C using 

MDM2, SSu72 and both Cirbp promoters (Figure 3.2.2.1). This was evidenced further by 

flow cytometry to give quantitative values to each promoter’s strength in driving GFP.  

The fact that CMV drove strong GFP expression was not unexpected, however the Cirbp-

CHO promoter activity was encouraging compared to the mouse orthologue and was a 

novel finding. All promoters showed temperature sensitivity including the CMV promoter 

which showed higher GFP expression at 31
o
C. This was unexpected and called into 

question its suitability as an appropriate control in temperature-shift experiments. 

Nonetheless, this led us to examine more than one reporter gene when investigating 

promoter behaviour. Only the MDM2 promoter had a larger fold change between 

temperatures (Figure 3.2.2.2). This was encouraging that the MDM2 promoter was so 

active despite the contrasting results from the qPCR and microarray analyses where we saw 

very low transcript numbers from the qPCR validation (Figure 3.1.4.6) and high 

fluorescence from the microarray profiling (Figure 3.1.2.1). This gave us confidence in 

MDM2 as a potentially useful promoter. Perhaps one reason for this discrepancy is that the 

reverse transcription step was not efficient for this gene, as low transcript numbers were 

frequently seen in RT-qPCR results throughout the project. The Cirbp-CHO promoter was 

the only promoter to drive better GFP expression at both temperatures relative to CMV 

(Figure 3.2.2.3).  

As most commercial systems utilise viral promoters to drive product gene expression it is 

unusual that there are no reports in the literature of viral promoters displaying this 

temperature responsiveness. However, it is well known that reducing temperature during 

recombinant protein production can improve yield (Wulhfard et al. 2008). Although this is 

often related to an improvement in cell viability or culture duration, improved gene 

expression could also contribute – Wulhford et al showed it was feasible to use large-scale 

(up to 100L) transient gene expression (TGE) in CHO cells and as a result they increased 



 
 

319 
 

transient recombinant antibody expression by more than 3-fold at 31
o
C as compared to 

expression at 37
o
C. 

The miR-17-92 cluster promoter was disappointing in terms of its ability to consistently 

drive high expression of GFP. Although studies on miRNA promoters specifically are 

scarce, especially those of mammalian miRNAs, there is reason to believe that they could 

be useful as engineering tools due to the dynamic nature of miRNA expression (Jadhav et 

al. 2013). Analogous to this reasoning, Lee et al developed a dual-luciferase reporter 

system to monitor expression and posttranscriptional regulation of miR-23a in cells in vitro 

and in vivo. They used a plasmid encoding firefly luciferase under the control of a 5′ 

regulatory sequence from the human miR23a∼27a∼24-2 gene cluster to determine whether 

the degree of miR-23a transcription is cell-type dependent or differentiation-stage specific. 

This demonstrated a functional use for a miRNA promoter sequence in driving a protein-

encoding gene (Lee et al. 2008).  

The regulation of intragenic miRNAs by their own intronic promoters is one of the open 

questions relating to the understanding of miRNA biogenesis. It is still poorly understood 

how miRNAs are regulated and their respective promoters are not well characterised. This 

is partly due to the difficulty of predicting promoters from short conserved sequence 

features without producing a high number of false positives (Megraw and Hatzigeorgiou 

2010) (Schanen and Li 2011). Thus, methods to identify miRNA promoter regions are 

being sought. Marsico et al described a model called PROmiRNA, it is a new approach for 

miRNA promoter annotation based on a semi-supervised statistical model trained on 

deepCAGE data and sequence features. In addition to the model identifying more miRNA 

promoters than other methods (miRBase v18 and Ensembl v66), PROmiRNA also returns 

all possible alternative promoters for a particular miRNA, including intronic promoters 

(Marsico et al. 2013). 

Another way to identify miRNA promoters is using chromatin analysis. Ozsolak et al 

identified the proximal promoters of 175 human miRNAs by combining nucleosome 

mapping with chromatin signatures (Ozsolak et al. 2008). In addition, Long et al analysed 

the 5' flanking regions of intergenic miRNAs and intronic miRNAs. They used luciferase 

reporter assays also and showed that 22 of the 30 promoters drove gene expression in HEK-
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293 cells, indicating a high accuracy of the TSSG promoter prediction. Further analysis 

showed that approximately 60% of the miRNA promoters tested had a TATA-like box 

contained in their sequence (Long et al. 2011). In summary, the high-throughput 

identification of miRNA promoter and enhancer regulatory elements can shed light on the 

control of miRNA transcription and using a combination of these analysis tools may permit 

rapid identification of transcriptional networks of miRNAs. 

Another routinely used reporter is the luciferase gene. In order to facilitate normalisation 

for transfection efficiency owing to different promoter and plasmid size configurations, we 

used the luciferase reporter in conjunction with Bradford assays to quantify the amount of 

protein present. Although a constructive assay, there was no normalisation for the GFP 

assay in this regard therefore this led to utilising the luciferase reporter gene and Bradford 

assay. 

The most interesting initial observation was that the SV40 promoter did not appear to be as 

responsive to temperature as CMV. Our data showed Cirbp-mouse and Cirbp-CHO both 

had the most striking expression change between 37
o
C and 31

o
C (Figure 3.2.3.1). MDM2, 

SSu72, Cirbp-CHO and Cirbp-mouse all showed higher expression at 31
o
C relative to the 

SV40 promoter, while only miR-17-92-mouse and SSu72 promoters drove luciferase 

expression to a higher level than SV40 at 37
o
C (Figure 3.2.3.2). This was both interesting 

and encouraging as the miR-17-92-mouse promoter performed so poorly in the GFP assay. 

Broadly speaking though, the patterns of expression and induciblity were similar to that 

observed using GFP as a reporter. 

Thaisuchat et al reported on an endogenous CHO promoter (S100a6) which was compared 

to SV40 viral promoter using a luciferase reporter, however, it was unclear how they 

performed subsequent normalisation post-transfection. They used the Dual-luciferase assay 

co-transfecting a plasmid encoding the Renilla luciferase (under the control of a CMV 

promoter), however, when we tried to utilise the same plasmid as a normalising control, we 

found its expression to be temperature sensitive. For this reason we adopted the Bradford 

assay as a means of normalisation. In their study, the SV40 luciferase expression units were 

set to 100 % activity for each temperature and all other samples were measured relative to 

them.  
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At most, increases of 2/3-fold in luciferase expression were observed using the various 

truncated promoter fragments after adjusting the culture to 31
o
C, with the majority showing 

between 1.5/2-fold (Thaisuchat et al. 2011). Conversely, our data showed that upon 

temperature shift, the MDM2 and Cirbp-CHO promoters were capable of increasing 

luciferase expression levels to ~41-fold and ~3.8-fold respectively, higher than SV40. In 

short, it was difficult to compare the absolute activities we observed to their data. 

 

5.2.2: Driving inducible expression of a ‘product gene’ using temperature  

Having observed encouraging results using these promoters in both GFP and luciferase 

reporter assays, the next step was to test them with more industrially relevant proteins. We 

examined the expression of EPO under the control of our various promoters by western blot 

and qPCR. At this point, the issue of promoter specificity was raised. In other words, the 

ability of individual promoter sequences to drive transcription (at either temperature) 

seemed to vary depending upon the gene being transcribed. MDM2 and both miR-17-92 

promoters, for example, appeared to be incapable of driving EPO expression (Figure 

3.2.5.2). This was surprising considering the substantial expression of GFP and luciferase 

for all 3 promoters. In contrast, the SSu72 promoter generated high levels of EPO and was 

significantly more active at 31
o
C. The difference appears to be transcription-specific, as 

opposed to a problem with translation, as very little EPO mRNA was detected using these 

promoters (Figure 3.2.5.1). 

The CMV promoter drove higher EPO expression at 31
o
C compared to 37

o
C, than all other 

tested promoters. This highlighted once again, that viral promoters are temperature 

sensitive and that they are perhaps poor controls for promoter studies relating to 

temperature.  

So is inducible expression of a product gene in mammalian culture the way to go? In other 

words, is controlling expression using CHO-specific regulatory sequences an attractive 

alternative to existing technologies? Although there are commercially available inducible 

systems from companies like Clontech and Life Technologies e.g.: GeneSwitch™, there 



 
 

322 
 

has not been any approved CHO-related regulatory sequence used in large scale 

manufacture of protein to date.  

Controlled gene expression represents an unmatched potential for biopharmaceutical 

manufacturing of unstable, growth-impairing and cytotoxic proteins as well as conditional 

metabolic engineering to improve desired cell phenotypes (Werner,N.S et al. 2007). In an 

field where inducible systems are difficult to implement technologically, the TetOn/Off 

inducible system is the most widely publicised and has shown tight regulation of gene 

expression with fold changes of product genes reaching up to many hundred folds 

(Sprengel and Hasan 2007) (Nishijima et al. 2009). Other antibiotics and hormones have 

also been designed to utilise transgene transcription control systems such as; streptogramin, 

macrolide, coumermycin, rapamycin and progesterone (Hartenbach and Fussenegger 2005), 

but some of these drugs may elicit side effects following long-term administration at 

regulation-effective concentrations (Sartor and Cutler 1996) (Lautermann et al. 2004).  

Additionally, drug-based inducers are less suited for transgene modulation of 

biotechnologically relevant production cell lines since preparation of inducer-free product 

formulations remains a costly downstream processing challenge and requires additional 

cross-talk with regulatory authorities. 

Although it is interesting to test product gene expression under control of some sort of 

inducible system, a more permissible approach would involve the generation of stable cell 

lines expressing the product gene. For example, if we take the temperature shift results out 

of the equation, at the more normal culture temperature of 37
o
C our SSu72 promoter was 

capable of driving equal or higher expression than the strong CMV promoter and Cirbp-

mouse control of EPO at a protein level (Figure 3.2.5.2).  

Recently, alternate ways to trigger product gene expression have been sought; one method 

involves gaseous acetaldehyde, which is physiologically inert and approved as a food 

additive by the FDA. Weber et al pioneered an acetaldehyde-inducible regulation (AIR) 

technology which takes advantage of gaseous acetaldehyde to modulate product gene 

expression levels. They showed that human IFN-beta production was fully reversible while 

maintaining 95% cell viability during the entire batch process and they suggest it will foster 
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novel opportunities large-scale manufacturing of difficult-to-produce protein 

pharmaceuticals (Weber and Fussenegger 2004b) (Weber and Fussenegger 2004a) (Weber 

et al. 2005) (Werner et al. 2007). 

In contrast to our temperature inducible expression results, the AIR system was shown to 

be tightly regulated via autoregulated, bidirectional and multicistronic mammalian and 

lentiviral expression vectors that exhibit strict 1:1 transcription stoichiometry. They show 

all 3 to be robust and versatile expression platforms for the gas-inducible transgene control 

system which they expect to foster future advances in gene therapy and tissue engineering 

as well as biopharmaceutical manufacturing (Hartenbach and Fussenegger 2005). Although 

this tight control AIR system has potential, it still requires the addition of external 

component i.e: gas whereas our temperature responsive promoters do not. 

 

5.2.3: Driving inducible expression of an ‘engineering gene’ using temperature  

In the previous section, we discussed the induction of product gene (EPO) expression at 

different temperatures. Realistically the majority of product genes are unlikely to be 

expressed in an inducible manner such as this. The promoters identified in this project are 

more likely to be useful for controlling the temporal expression of a cell engineering 

transgene. Therefore, our next focus was to consider their use in this manner. We chose to 

use cyclin-dependant kinase inhibitor 1B (p27) to investigate whether they could drive 

expression of an engineering target to influence a phenotype in culture. Successful 

induction of p27 should result in reduced cellular growth via cell cycle inhibition in the G1 

phase. 

Overall, there was a correlation between increased transcript copy number of p27 and the 

effect on cell number (Figure 3.2.6.1 A). For example, MDM2 and SSu72 promoters had 

the biggest effect on the cell growth and this correlated with greater p27 mRNA transcript 

abundance (Figure 3.2.6.3). This demonstrates that cell growth can be influenced by using 

temperature as a switch mechanism to induce these endogenous CHO promoters. This 

mechanism could be valuable in bioprocesses where control over cell density is required. 

These promoters could potentially be used to achieve dynamic control of other cellular 



 
 

324 
 

behaviours for enhanced process characteristics during a bioprocess. For example, 

mammalian cell culture metabolism is characterised by glucoglutaminolysis, that is, high 

glucose and glutamine uptake combined with a high rate of lactate and non-essential amino 

acid secretion (Quek et al. 2010). Thus to circumvent the onset of glucoglutaminolysis, 

gaining control over cell density by using a systematic p27 inducible construct, may be a 

suitable way to extend culture longevity for example.  

Gene expression is a dynamic process by nature, which is constantly adjusting to cope with 

various environmental perturbations and other signals. Consequently, endogenous 

promoters with intrinsic dynamic activities represent attractive tools to control the 

expression dynamics of transgenes. In a study relating to dynamic metabolic engineering 

using CHO-specific promoters, Le et al isolated an 800bp promoter fragment containing 

part of the putative 5′ UTR and the upstream region of the Thioredoxin-interacting protein 

and showed that it could drive expression in concert with cell growth. They further 

employed this promoter to control dynamic expression of the mouse GLUT5 fructose 

transporter in CHO cells, enabling them to utilize sugar according to the cells needs rather 

than in having excess as typically seen in culture (Le et al. 2013).  

Alternative dynamic engineering methods such as engineering of metabolic, secretory, and 

growth control pathways in producing cells to enhance their growth and product secretion 

traits have all been attempted to control expression in CHO cells (Datta et al., 2013) (Kim 

et al., 2012) (Kaufmann and Fussenegger, 2003) (Seth et al. 2006). It is reasonable to 

assume that in the future, further advancements in protein production will be a reality as a 

result of combinatorial approaches utilising many areas of engineering including the use of 

endogenous promoter tools. 

Additionally, our data from CHO-K1-SEAP cells demonstrated that using the isolated 

promoter sequences upstream of a cytostatic gene had a direct effect on cell growth and an 

equal but indirect effect on SEAP productivity after 3 days (Figure 3.2.6.2.5).  

Furthermore, as the assay was transient by nature, it would be interesting to see the impact 

over a longer period generating cell lines with stably integrated temperature-responsive p27 

and subsequently measure SEAP secretion over time in various batch or fed-batch settings.  

http://www.sciencedirect.com/science/article/pii/S1096717613000888#bib9
http://www.sciencedirect.com/science/article/pii/S1096717613000888#bib24
http://www.sciencedirect.com/science/article/pii/S1096717613000888#bib24
http://www.sciencedirect.com/science/article/pii/S1096717613000888#bib22
http://www.sciencedirect.com/science/article/pii/S1096717613000888#bib36
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Ultimately, the goal of any engineering intervention is to improve the final yield and/or 

quality of recombinant protein from a particular process. While, inducible p27 expression 

clearly impacted on cell density in response to temperature as planned, this had a knock-on 

negative impact on SEAP yield. Therefore, while p27 provided us with a useful model cell 

engineering gene, clearly its implementation in a bioprocess in terms of productivity is 

impractical. However, it does provide a good demonstration of the applicability of this 

approach. It may well be that temperature shift is enough in its own right to reduced cell 

growth and that temperature-responsive promoters could be implemented to switch 

expression of other genes involved in processes related to recombinant protein production 

(rather than cell growth). 

In summary, the promoters investigated in this project resulted in quite variable levels of 

transcript and protein depending on the reporter gene, highlighting one of our main 

findings; that if these inducible promoters are to be used as tools in gene 

expression/regulation, then it is important to match each individual transgene of interest to 

the most suitable promoter (Table 3.2.6.3.1). 

 

5.3: In silico promoter analysis 

The focus of the project was to identify promoter sequences that could be used as tools to 

drive transgene expression in a temperature sensitive manner. However, we also had 

opportunity to investigate which, if any, promoter elements (such as transcription factor 

bind sites (TFBS)) or other features might be responsible for this induciblity. In silico 

promoter analysis of the 3 gene promoters used in the reporter studies would be insufficient 

for this type of analysis as unlike coding sequence, for example, regulatory sequences are 

under different constraints in terms of evolutionary conservation. Even a single base change 

in coding sequence may be unacceptable due to the negative impact it may have on the 

function or expression of the resulting protein.  

On the other hand, promoter modules (2-3 TFBS in tandem that combine to control 

initiation of transcription) may tolerate considerable variations in intervening sequence, 

without changing the functionality of the regulatory module. Indeed, even TFBS can be 
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quite promiscuous in terms of their exact sequence motif – often allowing interchangeable 

use of different nucleotides without impacting TF binding/recruitment.  

For these reasons, alignment algorithms used to identify conserved patterns of promoter 

elements use different ‘rules’ to those used to align coding sequence and furthermore, 

require greater numbers of input promoter sequences in order to perform or predict real 

promoter modules effectively.  

In order to explore this concept further, we identified a cohort of genes whose expression 

patterns across a large transcriptional dataset mimicked that of the 3 temperature-inducible 

genes. This ‘guilt-by-association’ approach assumes that genes that are co-expressed are 

controlled by the same regulatory elements. In this manner, upstream sequences of 16 co-

expressed genes from the cohort (Figure 3.4.2), were extracted in silico. We used the 

‘Conserved TF-family suite’ from Genomatix™ with the highest stringency for analysis 

and as a result, we identified binding sites for 3 TFs; EVI1, SRY and FKHD/FOX. None of 

these TFs have had previous links to any specific inducible promoter studies in CHO, but a 

literature search showed examples in mouse and human disease models.  

A gene associated with both murine and human myeloid leukemia is ecotropic viral 

integration 1 (EVI1). It is a nuclear TF involved in many signaling pathways for both 

coexpression and coactivation of cell cycle genes. EVI1 is a proto-oncogene conserved 

across humans, mice, and rats, sharing 91% homology in nucleotide sequence and 94% 

homology in amino acid sequence between humans and mice (Buonamici et al. 2003). The 

EVI1 gene codes for a zinc finger transcription factor with important roles both in normal 

development and in leukemogenesis. The exact mechanism by which EVI1 induces 

leukemogenesis is not clear but a study by Fuchs, has shown that EVI1 upregulates cell 

proliferation, impairs cell differentiation, and induces cell transformation (Fuchs 2006). 

A review by Wieser highlighted that experimental overexpression of EVI1 by itself was 

insufficient to cause leukemia in animal model systems, but it did interact with other genes 

(Wieser 2007). For example, it was shown that putative interference of EVI1 with the DNA 

binding activity of the transforming growth factor-beta (TGF-β) responsive Smad3/Smad4 

in causing leukemogenesis (Kurokawa et al. 1998). In summary, EVI1 is able to interfere 
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with the actions of TGF-β in a variety of biological systems and appears to be cell line 

specific. 

The sex-determining region Y (SRY) or testis-determining factor (TDF) is a member of the 

SOX (SRY-like box) gene family of DNA-binding proteins. When complexed with the SF1 

protein, SRY acts as a transcription factor that can upregulate other transcription factors, 

most importantly SOX9 (Haqq et al. 1993). More recently it has been dubbed the 

masterswitch in sex-determination by Kashimada et al. They discuss the cascade of events 

triggered by SRY and the mechanisms that reinforce the differentiation of the testes in 

males while actively inhibiting ovarian development (Kashimada and Koopman 2010). 

Finally, Hiramatsu et al, highlight a more time-specific window on the importance of SRY 

action in the initial 6-hour phase for the female-to-male switching of FGF9/WNT4 

signaling patterns (Hiramatsu et al. 2009).  

FOX (Forkhead box) proteins are a family of transcription factors that play important roles 

in regulating the expression of genes involved in cell growth, proliferation, differentiation, 

and longevity. Many FOX proteins are important in embryonic development (Tuteja and 

Kaestner 2007). There are many members of the FOX family, many annotated by a suffix, 

for example, FOXO. Members of the class O regulate metabolism, cellular proliferation, 

stress tolerance and possibly lifespan. The activity of FOXO is controlled by post-

translational modifications, including phosphorylation, acetylation and ubiquitination (van 

der Horst and Burgering 2007). 

Chromatin can be visualised as a string of nucleosome beads linked by ribbons of DNA. 

Much of the DNA in the eukaryotic cell is wrapped around nucleosomes and thereby 

occluded by histones. This raises the question of, how can a transcription factor find its 

binding site, given that an enhancer or other element might be condensed in the 

nucleosomes? Recent work has revealed certain transcription factors like Pbx that can 

penetrate repressed chromatin and bind to sites in DNA sequences with high affinity, acting 

much like a homing beacon for other TFs and their associated co-factors (Berkes et al. 

2004). These have been termed ‘pioneering transcription factors’ which appear to be 

critical in establishing certain cell lineages. Interestingly, FOX proteins have also shown 
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pioneering transcription activity by being able to bind condensed chromatin during cell 

differentiation processes (Zaret and Carroll 2011). 

A review by Fukunaga, Shioda and co-workers showed instances of gerbil and mouse brain 

ischemia connections to the Akt pathway with the Forkhead box transcription factor, class 0 

(FOXO) (Fukunaga and Shioda 2009) (Shioda et al. 2007). Interestingly, after in silico 

analysis of the Txnip promoter discussed previously, Le et al identified a FOXO binding 

site flanked by two CAAT-box sites in the 800bp promoter sequence. This is intriguing that 

both our promoters and the Txnip promoter sequences possess this TFBS. The presence of 

this pioneering TF may be related to dynamic induciblity and/or expression strength 

reported. In other words, scenarios in vivo in which the binding of a series of TFs to their 

binding sites is improbable owing to sites being located at densely packed chromatin 

locations and thus not initially cooperative for any interactions, then these special pioneer 

transcription factors can be at hand to engage target sites in this dense chromatin location  

(Zaret and Carroll 2011). 

The CREB TF was located in 15 of the sequences. CREB was first described in 1987 as a 

cAMP-responsive transcription factor regulating the somatostatin gene. CREB binds to 

certain DNA sequences called cAMP response elements (CRE), thereby increasing or 

decreasing the transcription of the downstream genes (Montminy and Bilezikjian 1987). 

More recently, its downregulation has been linked to disease progression in disease states 

like Alzheimer’s when the expression of CREB in the hippocampal neurons of mice was 

examined (Pugazhenthi et al. 2011). 

More commonly studied transcription factors such as; TBP, STAT and E2FF had TFBS 

located in 13 out of the 16 sequences tested. TATA-bind protein (TBP) and the Signal 

Transducer and Activator of Transcription (STAT) especially, are well studied TFs that 

play crucial roles in initiating or enhancing transcription with STAT proteins also being 

involved in immune tolerance and tumour surveillance (Darnell 1997). In addition, E-box 

and CAAT-box motifs were identified in 12 out of 16 sequences, and are regarded as vital 

drivers of transcription and regulation with the CAAT-box being frequently regarded as 

part of the core promoter architecture (Bi et al. 1997). Furthermore, C2H2 Zinc Finger 

Transcription Factors 2 (ZF02) and CCCTC-Binding factor or 11-zinc finger protein 

http://en.wikipedia.org/wiki/Pioneer_factor
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(CTCF) sites were also found in 12 of the sequences. CCCTC-Binding factor or CTCF was 

initially discovered as a negative regulator of the chicken c-myc gene. This protein was 

found to bind to three regularly spaced repeats of the core sequence CCCTC and thus was 

named CCCTC binding factor (Lobanenkov et al. 1990). It requires additional sequences 

outside the three recognition motifs for tight binding, like many TFs its mode of action is 

synchronous with other factors/elements for transcriptional functionality. All of these 

identified transcription factors and their respective binding sites could perhaps be, at least 

partially, responsible for the promoter functionality shown throughout this project, but this 

has yet to be fully elucidated.  

Additionally, a single consensus motif ‘CCCCAGC’ was identified by examining across all 

these 16 input sequences (including a 1kb upstream portion of the putative miR-17-92 

promoter sequence). We used the motif-finder software tool from Genomatix™ choosing 

the most stringent cut-off parameters for analysis. This sequence was identified in all 16 co-

expressed gene promoter sequences, including all 4 novel CHO promoters from this study 

(Table 3.4.3). While interesting, this sequence has not been identified as a TFBS in the past, 

and would require closer investigation using site-directed mutagenesis or similar 

experimental verification to draw any further conclusions. 

 

5.4: The most appropriate promoter for each GOI - Promoter specificity 

One of the main findings of this project was that the isolated promoters all drove transgene 

expression at varying levels, showing utility across 4 reporter gene platforms. For example: 

the Cirbp-CHO promoter was more efficient at driving GFP than luciferase but the opposite 

was seen for the Cirbp-mouse promoter. Equally, the EPO protein could only be detected 

with SSu72, CMV and both Cirbp promoters while MDM2 and both miR-17-92 promoters 

could not, even though the latter 3 all drove luciferase to moderate or high expression. 

It is important to note that the efficiency of an inducible or indeed any exogenous promoter, 

in driving transcription, is dependent on the nature of the gene it regulates, for example it’s 

toxicity, and the host cell it is being produced in. This promoter specificity was observed 

throughout the project, although we didn’t expose the promoters to such experimental rigor 

http://en.wikipedia.org/wiki/C-myc
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as driving toxic proteins or transfection into a wide-range of cell types, we did observe 

mixed levels of promoter activity across the 4 reporter genes.  

Promoter usage can be dependent on which location or tissue the sequence resides and 

indeed the species and cell type (Carninci et al. 2006) (Spenger et al. 2004) (Lim et al. 

2010) and how the diverse mechanisms regulating transcription of different promoter’s 

work, still remains unclear for the majority of promoters, especially CHO-specific ones. 

Additionally, Strid et al reported on the use of a promoter derived from a key enzyme in 

leukotriene biosynthesis called Leukotriene C4 synthase. They used this promoter to drive 

expression of enhanced GFP (EGFP). Specific GFP expression was observed in human 

monocytic leukemia (THP-1) and rat basophilic leukemia (RBL-1) myeloid cells but not in 

human embryonic kidney (HEK293/T) demonstrating cell specificity (Strid et al. 2008). 

Similarly, Haverkamp et al showed the cell line specificity was the restrictive reason for 

different observed levels of GFP expression. They performed in vivo studies using 4 

transgenic mouse cell lines that expressed EGFP under the control of 3 cell-specific 

promoters from calretinin, choline-acetyltransferase and parvalbumin genes (Haverkamp et 

al. 2009). 

Conversely in an older study, Hollenhorst et al, as a promoter specificity determinant, 

tested the mRNA levels of the ETS family of TFs. The mRNA levels of the 27 paralogous 

human ETS genes were measured in 23 tissues and various cell lines, with the premise 

being that ETS factors display highly conserved DNA binding properties and would not be 

expected to retain promoter selectivity across tissues (Hollenhorst et al. 2004). Tissues and 

complementary cell lines showed similar expression patterns perhaps indicating that tissue 

complexity was not always a limitation to specificity.  

Either way, it seems apparent that promoter specificity results from the promoter only being 

a ‘sum of its parts’, the diverse TFs and combination of elements present in a promoter 

sequence all work in concert or if elements are missing or modified through 

phosphorylation for example, then the sequences will inadvertently exhibit different 

transcriptional rates and promoter selectivity. A recent publication by Authier et al, 

revealed that IKK - IκB kinase α (IKKα) and IκB kinase β (IKKβ) – interacts and 
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phosphorylates oncogene related B (RelB) to modulate its promoter specificity and leads to 

increased fibroblast migration (Authier et al. 2014). Through phosphorylation, promoter 

activity and its transcriptional rate can be altered. Therefore, it is reasonable to assume that 

all elements of a promoter sequence can succumb to various levels of activity as a result of 

modifications and diverse combinations of TF interactions. 

In conclusion, it would appear essential to map the most suitable promoter to an individual 

transgene and that using more than one reporter gene assay to test transgene expression 

would be good practice for promoter studies overall. 

 

5.5: Viral versus endogenous stability in extended culture 

The cytomegalovirus (CMV) major immediate-early promoter/enhancer is used in many 

cell culture systems and is considered to be one of the strongest promoters in vitro. 

However, when this promoter was used in in vivo approaches for gene therapy, it was 

silenced within a few weeks in several organs including the liver (Loser et al. 1998).  CMV 

silencing was also reported by Teschendorf et al, they showed that >97% of stable HT-29 

clones homogeneously expressing GFP, under control of the CMV promoter gave rise to a 

scattered patterns of high and low GFP expression (Teschendorf et al. 2002). 

The human cytomegalovirus promoter (hCMV) has also been shown to be susceptible to 

gene silencing in CHO cells, most likely due to epigenetic events, such as DNA 

methylation and histone modifications (Mariati et al. 2014b). Therefore, we assumed that 

over time, a CMV viral sequence would become unstable due to promoter silencing in 

comparison to endogenous sequence. We examined the performance of two endogenous 

promoters (SSu72 and miR17-92) versus a CMV, by stably transfecting each promoter-

GFP construct into CHO-K1 cells to test GFP expression over extended culture time.  

Figure 3.5.1, illustrates the 3 GFP stable clonal mixed populations and their mean GFP 

fluorescence over three months. Decreases in GFP expression were seen in the clones 

transfected with the CMV promoter compared to the two endogenous SSu72 and miR17-92 

driven clones over time. This drop in GFP expression was more acute in the CMV stable 

mixed population, where GFP expression fell by ~95%.   
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In addition, we sorted these 3 stable GFP heterogeneous populations into single clones 

expressing high, medium or low GFP levels to examine this silencing effect further using 

homogeneous populations. Over 14 weeks, clones carrying the CMV promoter, once again 

showed decreased GFP expression/stability over time, whereas more consistent GFP levels 

were seen over the same time period by both SSu72 and mir17-92 clones (Figure 3.5.2).  

This underlines once again, the importance of the choice of promoter, in this case, for the 

generation of stable cell lines in bioprocessing. Even though our findings showed that viral 

promoters were marginally better at driving high level expression (luciferase exempt), 

using the endogenous promoters, not only do we get moderate to high expression but we 

also get added stability over time in culture, which could be advantageous in a bioprocess 

setting. 

In parallel to using endogenous CHO promoters to improve stability and expression in 

CHO cells, however, alternate ways to circumvent the transcriptional silencing commonly 

seen by the CMV viral promoter have been explored. For example; methylation-free CpG 

island sequences derived from TBP and HNRPa2b1 genes were inserted into vectors 

containing the human hCMV promoter, conferred more stable GFP transgene expression, 

aswell as, improved resistance to heterochromatin-mediated silencing (Antoniou et al. 

2003) (Williams et al. 2005).. 

Similarly, to combat silencing over extended culture, Mariati et al successfully inserted a 

core CpG island element (IE) from the hamster adenine phosphoribosyltransferase gene 

into a human CMV promoter. It was found to be effective in preventing DNA methylation 

and silencing. They also showed that the insertion of IE into a chimeric murine CMV 

(mCMV) enhancer and human elongation factor-1α core (hEF) promoter in reverse 

orientation did not enhance expression stability, indicating that the effect of IE on 

expression stability was possibly promoter specific (Mariati et al. 2014b) (Mariati et al. 

2014a). 

This experiment demonstrated two things: first, it validated what is generally accepted 

regarding viral promoters, i.e: they are susceptible to promoter silencing over long exposure 

in culture. Secondly, that endogenously sourced regulatory/promoter sequences maintain 
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strong expression characteristics compared to viral sequences over extended time in culture. 

Future work would be to include a repeat of this experiment using various other reporter 

proteins to assess whether the stable expression is independent of the transgene downstream 

of the promoter. 

 

5.6: Comparisons to analogous promoter studies 

In cell line and bioprocess optimisation, dynamic expression using inducible promoters 

represents an attractive tool to control the expression of transgenes. Existing inducers such 

as tetracycline, hormones and IPTG are undesirable at a manufacturing scale. 

Consequently, groups including us have acknowledged that utilising endogenous sequences 

from CHO may have more beneficial effects than those involving exogenous sequences 

reported in similar studies.  

Chen et al isolated 17 stable clones containing CHO sequence using a promoter trap 

approach. They generated a collection of transgenic lines with random insertions of a 

promoter-less reporter gene and screened for clones expressing the highest levels of 

reporter activity. They used GFP to evaluate expression for all clones. Only two clones 

showed high quality BLAST matches to the CHO genome and subsequent experimentation 

focused on these two clones. Clone 2 showed stronger GFP expression than the basal empty 

vector control (~20% of the SV40 viral promoter activity), while clone 11 did not. A clone 

2 fragment of 864bp was truncated and placed upstream of a luciferase gene and expression 

was reported to be highest in a 156bp fragment (~63% of SV40 control). In comparison, 2 

of our promoter constructs displayed higher luciferase expression than SV40 at 37
o
C and 3 

promoters displayed luciferase expression higher than SV40 at 31
o
C. Finally, only clone 2 

was capable of expression in both reporter systems (Chen et al. 2013), similar to what we 

observed across reporter assays. 

Another group isolated novel CHO sequences using inverse PCR methodology and tested 

their utility using the luciferase reporter assay. When constructs C1 – C5 were transfected 

into CHO cells, luciferase expression of ~25% and ~40% as a % of the SV40 control were 

reported for constructs C1 and C4 and were deemed the most promising. They performed 
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minimal mapping and in silico transcription factor binding site prediction. Only two 

predicted TATA-boxes were detected (Pontiller et al. 2010). Both of these studies reveal 

sequences that were successful in driving transgenes, however, further characterisation of 

the regulatory sequences is needed, and neither relate to dynamic or inducible expression.  

Thaisuchat et al did however identify a temperature sensitive promoter - S100a6 

(Calcyclin), which wasn’t identified on our initial microarray data. They examined the 

promoter activity using the luciferase assay only, but screened an extensive panel (~19) of 

truncated S100a6 constructs. From these, 12 displayed activities above the SV40 positive 

control. 

Although, our promoters do infact drive expression of an industrially applicable protein of 

interest, the reporter results were not without their inconsistencies. For example, MDM2 

did not produce EPO protein (Figure 3.2.5.2) even though it had shown promise in the 

other reporter assays. Perhaps this is highlighting that it should be standard practice to use 

more than one reporter assay as a true measurement of a regulatory sequences’ utility. A 

typical example is seen at a transcriptional level, where the Cirbp-CHO promoter expressed 

more EPO than the Cirbp-mouse version at both 37
o
C and 31

o
C (Figure 3.2.5.1), however, 

in the luciferase assay the Cirbp-mouse drives luciferase to higher levels than the CHO 

version.  

Furthermore, both promoters drove similar moderate to high EPO expression based on 

qPCR and western blotting (Figure 3.2.5.1 and 3.2.52), and very little difference in activity 

was seen. Nevertheless, regardless of varying promoter activities across reporter platforms 

this was encouraging, as to date only Cirbp from mouse is reported in the literature and as a 

result of this project, the CHO equivalent can now be further analyised and comparisons 

can be made between both promoters, based on having prior knowledge of the mouse 

version.  

Additionally, with reporter assay comparisons between CHO and mouse species, as in the 

case for miR-17-92 and Cirbp promoters, distal regulatory sequences and their location 

relative to the ATG start site may differ between species. Alternative promoters may also 

exist as well as with different TSS’, as was the case for mouse Cirbp (Al-Fageeh and 
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Smales 2009). In other words, even though the ATG start site was located in two species, 

and fragments of similar size were extracted relative to this ATG, then it is likely that they 

won’t necessarily have the same framework and elements arranged in the same locations, 

meaning they could, and often will as our results show, have different activities. This may 

go some way towards explaining why we observed different levels of reporter gene 

expression between promoter orthologues, irrespective of the promoter specificity for the 

transgene it controls.  

Other factors may also come into play demonstrating that functionality of a promoter is not 

solely dependent on the reporter gene. For example; we found that transgene expression can 

be influenced by culture format. Feng et al fused three different promoters (viral CMV and 

SV40 and human beta-actin) to luciferase and beta-galactosidase reporter genes and tested 

their expression in adherent and suspension formats. They found that beta-actin and SV40 

exhibited suppressed gene expression when transfected into mouse epidermal cells 

suspended over-agar compared with cells attached on culture plates. In contrast to the SV40 

promoter, CMV promoter activity was not decreased in cells suspended in an over-agar 

assay when compared with adherent cells. These studies show that regardless of 

mammalian or viral promoters, one cannot assume that all promoter-reporter gene 

constructs behave similarly in all conditions (Feng, Hicks and Chang 2003).  

The miR-17-92 promoters displayed lower GFP activity than expected, considering the 

cluster being highly expressed in many CHO cell lines (Hernandez Bort et al. 2012) and it 

being prevalently expressed in lung cancers (Jin et al. 2014) (Hayashita et al. 2005). 

However, after examining both using the luciferase reporter, the mouse version was found 

to be capable of driving higher luciferase expression than all other promoters tested 

including the SV40 control at 37
o
C (Figure 3.2.3.1). The CHO version did drive luciferase 

but not strongly, hinting that there may be crucial regulatory elements missing in the CHO 

sequence.  

This was interesting as both the mouse and CHO sequences had high sequence homology. 

As with the other gene promoter sequences investigated the truncated nature of the 

sequences compared to the endogenous locus may be responsible for the observed results. 

The reasonably novel nature of using a miRNA-derived promoter sequence also meant that 
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there were sparse published studies, at the time of analysis, to compare our observations 

with. 

More recently, miR-17-92 transcription was shown to be partly controlled by an E2F-

regulated host gene promoter. An intronic A/T-rich region exists directly upstream of the 

miRNA coding region and has shown to be a contributor to the clusters expression. 

Deletion analysis of the A/T-rich region revealed a strong dependence on c-Myc binding to 

the functional E3 site. Yet, constructs lacking the 5'-proximal ~1.3 kb or 3'-distal ~0.1 kb of 

the 1.5 kb A/T-rich region still retained residual promoter activity, suggesting multiple 

transcription start sites (TSS) in this region (Thomas et al. 2013). In light of this study, we 

investigated the sequence of human, rat, mouse and CHO approximately 1.5kb upstream of 

the miR-17-92 coding sequences.  

Although subjective, we believe that these A/T rich regions are present in all 4 species, 

however, interestingly the mouse promoter, being a larger fragment (more 5’ upstream 

sequence), was shown to contain a conserved E-Box site ‘CACGTG’ - this site was not 

located in the CHO orthologue and may be a reason for poor expression in 3 of the 4 

reporter assays but further work is required for validation. This is in line with the finding 

that cluster expression is activated by c-myc binding to a conserved E-box element (E3) 

~1.5 kb upstream of the miRNA coding sequence (Ji et al. 2011) (Thomas et al. 2013). 

 

5.7: Inducible mechanisms for improving bioprocess behaviour 

Although adjusting culture temperature is routinely used to increase productivity through 

extended viability and stationary culture phase, it serves a slightly different function in this 

study. Here we present the reoccurring theme of using temperature shift as a control 

mechanism. It is an attractive inducible switch because it requires no external molecules or 

further engineering (Yoon, Song and Lee 2003) (Fogolin et al. 2004). All promoters used in 

this study showed temperature induciblity, which in turn we hope to utilise as 

bioproduction tools. 
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Many inducible systems and inducer molecules (IMs) have been pioneered by Fussenegger, 

Weber and colleagues over the last ten years. They visualise the cellular environment like 

an electronic circuit capable of fully integrated tuneable expression allowing control via 

response to distinct input signals/triggers.  

These synthetic biology approaches will expand the biological toolbox for manipulation of 

cells for use in bioprocessing. Our endogenously sourced promoters and indeed any 

regulatory sequences may have added benefits when sourced from a host cell (CHO in our 

case), based on stability and greater ease of regulatory approval. 

The use of an appropriately chosen native promoter can also have the benefit of providing 

more refined control over transgenes with regard to timing and dosage. Le et al, showed 

such control by employing a pTixnip-driven mGLUT5 (a mouse fructose transporter under 

the pTixnip promoter) to demonstrate the concept of dynamic expression based around a 

metabolic engineering approach, to control fructose consumption in sync with culture 

growth stage (Le et al. 2013).. As a result, the GLUT5 fructose transporter under control of 

the Txnip promoter enabled CHO cells to utilise sugar according to cellular needs rather 

than in excess as typically seen in culture. Thus, less lactate was produced, resulting in a 

better growth rate, prolonged culture duration, and higher product titer. 

Recently it was shown that more dynamic expression that is in sync with the cells natural 

circadian rhythm or clock genes is the holy grail of precise inducible regulation (Le et al. 

2013) (Lopez et al. 2014). Clock genes are transcriptional regulators engaged in the 

generation of circadian rhythms. Cirbp guarantees high amplitude expression of the 

circadian clock genes and drives the rhythmic expression of a broad array of genes that 

orchestrate metabolism such as; sleep/wake behaviour, and the immune response. Their 

results represent a new mechanism of cytokine-regulated expression of clock genes namely 

Cirbp by modulating expression based on various concentrations of cytokines TNF and 

TGF-beta. This was supported by the finding that overexpression of Cirbp protects cells 

from the inhibitory effects of TNF and TGF-beta (Lopez et al. 2014).  

If Cirbp expression can be responsive to multiple factors i.e: temperature (as we have 

shown) and these two cytokines then its reasonable to assume that a useful molecular 
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circuit could be generated which incorporates sequences responsible for the responsiveness, 

and apply it to CHO protein production. This more natural circuit based around Cirbp 

which so obviously has a fundamental impact on cell behaviour, based on the amount of 

processes it is involved in , would be more appealing than the exogenous or IM circuits 

discussed previously. 

Although inducible systems and newer dynamic systems as mentioned have inherent 

benefits regarding more ‘real’ control of cells via their genes, in some instances the use of 

an inducible type system may not be desirable in large-scale manufacturing. This could be 

attributed to manufacturing costs and where a bioreactor design isn’t suitable. Another 

drawback seen is through lowering temperature is that it decreases specific growth rate (μ) 

and thus volumetric productivity often does not increase even though specific productivity 

(q) does (Hong et al. 2007). 

 In conclusion, progress is being made to bridge theory and application between fine tuning 

gene expression via synthetic biology or exploring control in sync with the cells natural 

rhythm in order to improve bioprocess outcomes. 
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5.8: Conclusions – Project 1 

Here we have described a study on CHO-specific promoters with particular emphasis on 

temperature induciblity. From the study we make the following conclusions; 

 Promoter activity was shown to be cell line specific and dependent on the nature of 

the transgene it controls. 

 Having isolated 6 functional promoter fragments of a certain size, there was a 

possibility that there is some regulatory sequence missing, potentially preventing 

the promoters from performing even better.  

 It was shown that MDM2 and Cirbp genes both had similar mRNA half-life and 

decay rates at both temperatures, suggesting that they were transcriptionally equally 

active at both temperatures.  

 The SSu72 gene on the other hand was shown to be twice as stable at 31
o
C and had 

a lower decay rate which may contribute to the increased expression seen when 

driving reporter genes upon temperature shift to 31
o
C.  

 The Cirbp-CHO promoter out-performed the Cirbp-mouse promoter in the GFP, 

EPO and p27 reporter results regarding expression strength and temperature 

induciblity.  

 The SSu72 and both Cirbp promoters appeared to be less temperature sensitive in 

luciferase reporter results than in GFP assays, especially compared to the MDM2 

promoter which had a very large differential of ~41-fold between 37
o
C and 31

o
C, 

which was very encouraging from an inducible viewpoint.  

 The MDM2 promoter was not effective in driving an EPO product, whereas SSu72 

and Cirbp-CHO promoters were. 

 All promoters successfully drove p27 expression, directly causing an impact on cell 

growth; however, this did not improve SEAP productivity. 

 It was shown that some results in the GFP and Luciferase reporter formats did not 

necessarily transmit similar results using more complex proteins like EPO and p27.  

 It was shown that two typical viral promoter sequences (CMV and SV40) did not 

exhibit constitutive expression at different culture temperatures and were 

temperature responsive in all four reporter assays. 
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 Therefore, CMV and SV40 to a lesser extent are unsuitable controls to use in 

temperature shift experiments.  

 The CMV promoter was shown to more transcriptionally active at 31
o
C than 37

o
C 

when transfected into CHO-K1 cells. 

 Three TFs were identified as having binding sites in all 16 co-expressed genes; 

EV1I, SRY and FKHD/FOXO. Further elucidation is needed to see whether they 

contribute to the promoter activities seen and the interactions they may have with 

one another. 

 A consensus sequence ‘CCCCAGC’ was also identified across all 16 temperature 

sensitive co-expressed genes. Whether this sequence was essential for promoter 

functionality remains to be seen and further work is required. 

 It was shown that viral promoter sequence stability was more susceptible to gene 

silencing and unstable at driving GFP expression over an extended culture period 

than two of the endogenous promoters used in this study.  

 It should be a prerequisite to identify the best promoter sequence to drive a gene of 

interest before beginning a bioprocess due to different promoter efficacies across 

the different reporter platforms.  
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5.9: Future work – Project 1 

5.9.1: Promoters from other CHO cell types 

The promoters isolated in this study were from the parental CHO-K1 cell line and showed 

varying levels of expression, some with great potential. However, it would be interesting to 

extract all equivalent promoter fragments from other choice CHO cell types, for example, 

CHO-DG44 cell line. Owing to the diversity of different cell lines, coupled with mutations 

like SNPs, indels, chromosome or copy number variations, this may provide us with 

analogous versions of the promoters from these other cell lines. These analogous promoters 

could be better or indeed worse than the promoters from the CHO-K1 cell line. 

 

5.9.2: Clone longer promoter fragments 

Although we were restricted by ligations involving larger fragments over ~1.5kb, and the 

lack of CHO sequence information at the beginning of the project, as time progressed, the 

CHO sequence became easier to navigate using bioinformatics approaches. As a result, it is 

now possible to PCR amplify any chosen sequence size upstream of our target genes (Table 

3.1.2.1) and re-test for improved activity using the reporter plasmids. Even though our 

promoter fragments showed the ability to drive moderate to high expression of various 

reporter genes, it may well be that more sequence would illicit more reporter gene activity, 

perhaps due to the presence of enhancer elements and other trans-factors. On the contrary, 

cloning more sequence may show reduced activity, as extra sequence may contain silencer 

regions for example, so a comprehensive study to test various larger constructs is 

recommended. 

 

5.9.3: Create stable CHO lines to test activity in fed-batch culture 

It would be interesting to generate CHO cells stably expressing an anti-apoptotic or 

proliferation gene under the control of the promoters identified in this study and 

subsequently test these cells in a fed-batch reactor setting. By controlling the cells using 

these promoters, we could aim to increase protein production by controlling advantageous 
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bioprocess genes. We could utilise a biphasic culture by dropping the temperature during 

the culture run to potentially boost expression as our promoters have shown increased 

expression levels at 31
o
C, this would in turn also slow cellular growth and direct cell 

metabolism towards increased protein output.   

 

5.9.4: Analyse the degree of inducibility of promoters over various temperatures 

In the aftermath of identifying CHO and mouse temperature inducible promoters by 

reducing the culture temperature to 31
o
C, we recommend to analyse these promoters in 

driving expression of reporter genes at other low culture temperatures. It would be 

interesting to observe the level of inducibility of these promoters and see if they can be 

‘tuned’ to exhibit varying levels of gene expression. In other words, would we see varying 

levels of reporter gene activity by altering the culture temperature at say 33
o
C or 29

o
C 

(other noted temperatures for low temperature culture) to see how gene expression responds 

to various temperatures. This may facilitate the promoters’ ability for more tunable control 

based on adjusting the temperature of the culture at various points of a batch run for 

instance.  

 

5.9.5: Viral controls in temperature shift experiments 

The use of viral promoters as a comparative control against unknown promoter sequences 

is maybe not the best gauge to use in temperature shift experiments owing to their inducible 

expression under mild hypothermia conditions of 31
o
C. In each case the CMV and SV40 

viral show increased expression at 31
o
C compared to 37

o
C.  

So these promoters contain discrete sequence information discerning cold-inducible 

expression, infact many enhancer and other functional sequences making up a typical 

vector construct have viral-origin sequences, even the polyA termination sequence in the 

luciferase pGL3-control vector could play a role in temperature shift.  
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It would be interesting to observe the behaviour of a range of virus-derived sequences and 

their response to temperature shift. 

 

5.9.6: Transcription factors further work 

We identified some unusual transcription factors especially the 3 TF’s common to all 16 

temperature sensitive promoter sequences; SRY, FKHD and EVl1. If they are indeed 

responsible for the promoter functionality we see throughout the project, then all 3 are 

attractive for future genetic engineering. We propose that modulating transcription factor 

amplification through vector transfections, could be used in conjunction with our 

promoters, as shown by Mangalampalli et al, where they co-transfected the Mouse 

Mammary Tumor Virus Promoter system with another vector expressing its specific 

transcription factor (glucocorticoid receptor). Increased production of SEAP resulted from 

CHO cells grown in increased concentrations of methotrexate supplemented into the 

growth media (Mangalampalli et al. 2002).  

Ideally mutational studies, for example; the GeneTailor™ kit from Invitrogen should be 

used in conjunction with the 3 TFBS, to alter the binding sites within the CHO promoters to 

test if this has a knock on effect to the expression levels. Additionally, we could use the 

‘Electrophoretic mobility shift assay’ (EMSA) approach to confirm transcription factor 

binding. This procedure can determine if a protein or mixture of proteins is capable of 

binding to a given DNA or RNA sequence sequences which have bound to the TF for 

example will migrate slower due to increased mass (Moxley and Jarrett 2005) (Smith and 

Humphries 2009) (Nagore et al. 2013). 

Finally, a notable consensus sequence ‘CCCCAGC’ was found in all 16 co-expressed gene 

promoters (Figure 3.4.3), while a temperature responsive MCRE element was seen in the 

mouse Cirbp promoter sequence, also reported by (Sumitomo et al. 2012) (Higashitsuji et 

al. 2012). They showed that the MCRE binds to SP1 and contributes to expression 

induction at 32
o
C. The group further duplicated the sequence (MCRExx48), when placed 

upstream of luciferase reporter it promoted >2-fold increases in luciferase expression. If the 

consensus sequence we identified was shown to be crucial to induciblity or responsible for 
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the moderate to high expression of reporter genes, then similarly duplication of this 

sequence would be a possible future endeavour to increase expression further.  
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6.1: XIAP – potential as an anti-apoptotic bioprocess target in CHO cells 

Over the last decade, there has been a steady increase in the volume of studies exploring the 

use of gene engineering strategies in order to improve various aspects of CHO cell 

performance in a bioreactor (Figueroa et al. 2007) (Lee et al. 2009) (Doolan et al. 2012) 

(Mariati et al. 2014b). 

Recently, a member of the inhibitor of apoptosis (IAP) proteins family has attracted more 

interest (Eckelman, Salvesen and Scott 2006). XIAP was shown to inhibit activation of 

members of the caspase family of cell-death proteases, namely caspase-3, caspase-7 and 

caspase-9 (Smolewski and Robak 2011). As a result, apoptosis can now be regulated by 

targeting anti-apoptosis genes such as XIAP and Bcl-2 (Lee et al. 2012). Furthermore, due 

to their prominent ability to control cell death and elevated expression in a variety of cancer 

cell types, IAP proteins are attractive gene targets for the development of novel anti-cancer 

treatments (Hunter, LaCasse and Korneluk 2007) (de Almagro and Vucic 2012). However, 

we aimed to address this from a more bioprocessing perspective, in particular improving 

biologic production by CHO cells. 

XIAP was identified as a potentially interesting engineering target based on data generated 

in a cancer project that was ongoing in the NICB labs. That work established that XIAP 

expression correlated with faster growth and a more invasive phenotype in Glioblastoma 

(GBM) cells, therefore we hypothesized that XIAP manipulation via overexpression could 

affect CHO cell culture behaviour, maybe beneficially.  

 

6.2: Stable overexpression of XIAP in CHO exhibit beneficial phenotypes 

When XIAP was stably overexpressed in CHO cells, the general propensity was for cells to 

reach higher growth densities and have longer viability in culture while maintaining cellular 

homeostasis. Such phenotypes are actively being sought for bioprocessing engineering to 

increase batch productivity and yield (Wong et al. 2006)(Dorai et al. 2010)(Wei et al. 

2011). These effects were observed to a greater or lesser extent depending on various 

factors, including the amount or degree of XIAP overexpression in a particular clone 
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(covered in later sections), the culture environment (media type/additives) and the culture 

format. We observed the effect of XIAP overexpression on CHO cell behaviour under 

apoptosis-inducing conditions (day 9 spent media and NaBu addition) and in adherent 

(Figure 4.2.2.1) and suspension (Figure 4.2.3.1) culture further validating these phenotypes.  

In previous studies, XIAP overexpression was shown to inhibit activities of caspase 3, 7 

and 9 in CHO-K1 cells and offered protection against etoposide (a cytotoxic anticancer 

drug), spent media-induced apoptosis and Sindbis virus infection and subsequently showed 

improved cell viabilities by 9-12% 48 hours post-infection (Sauerwald, Betenbaugh and 

Oyler 2002) (Sauerwald et al. 2006). Kim et al followed up this inquiry by researching the 

impact of XIAP overexpression in recombinant CHO (rCHO) cells producing EPO and 

treated with sodium butyrate (NaBu) to induce apoptosis. This was similar to our method of 

inducing apoptosis, however, unlike our results which showed XIAP overexpression 

circumventing NaBu-induced apoptosis to some degree, Kim et al showed that XIAP 

overexpression could inhibit Sindbis virus-induced apoptosis but not inhibit NaBu-induced 

apoptosis, as evidenced by DNA fragmentation. They concluded that XIAP overexpression 

did not affect cellular growth nor EPO production significantly, suggesting that the release 

of mitochondrial proteins might induce caspase-independent apoptosis, which may explain 

the specificity of apoptosis inhibition within the cells (Kim and Lee 2009). 

In addition, NaBu has also previously been shown to increase the specific productivity and 

mRNA transcription in CHO cells (Jeon and Lee 2007) (Jiang and Sharfstein 2008) (Hong, 

Lee and Yoon 2011). There is a fine line between adding too much NaBu and not enough, 

as too much induces apoptosis (>10mM) while the optimal butyrate concentration for 

productivity was observed to be ~2/3 mM. Mimura et al showed 2-4 fold increase in 

productivity of chimeric recombinant IgG when using 2mM NaBu supplemented to CHO-

K1 cells in culture while not compromising either glycosylation or biological activity 

(Mimura et al. 2001). More recently, Jeon et al reported that 1-2mM resulted in a 55% 

increase in human thrombopoietin (hTPO) productivity whereas 5-10mM was needed for a 

more cytotoxic effect to induce apoptosis (Jeon and Lee 2007).   
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Conversely, our results indicate that CHO cells overexpressing XIAP exhibited an increase 

in cell growth and higher viabilities than controls over extended time (usually 12-15 days) 

in various batch culture formats under apoptosis inducing conditions. This conflicting result 

may be due to a number of reasons. Kim et al used a regulated XIAP overexpression (Tet-

off-XIAP) construct tightly regulated by doxycycline, whereas for Sauerwald et al and 

ourselves, XIAP was constitutively overexpressed with both groups seeing increased 

viability (Sauerwald et al. 2006).  

Moreover, Sauerwald et al and Dorai et al used a XIAP variant, which retained the BIR 

domain but the C-terminal RING domain was absent (Dorai et al. 2009), whereas Liew et al 

and ourselves on the other hand used the full length XIAP transcript. We are unsure as to 

why we see contrasting results regarding growth and viability, however, it is more likely to 

be due to a different cell death mechanism such as rather than this XIAP transcript 

discrepancy, perhaps originating from mitochondrial membrane potential (MMP) as 

suggested by ( Kim and Lee 2009) (Liew et al. 2010). For instance, it is now accepted that 

apoptosis does not function alone in determining the fate of a cell (Booth et al. 2014). 

Several death initiator and effector molecules, signalling pathways and subcellular sites 

have been identified as key mediators in both processes, either by constituting common 

modules or alternatively by functioning as a switch allowing cells to decide which route to 

take (Nikoletopoulou et al. 2013), therefore we can assume that the interplay between these 

processes and molecules can alter phenotypes perhaps leading to the varying results 

observed among publications. 

Originally, the function of many of these apoptotic pathway proteins was believed to be 

binding the mitochondria and regulating apoptosis through modulation of mitochondria 

permeability. Mitochondria are at the core of all apoptosis pathways and are effectively 

targets themselves for cell engineering, owing to their essential role in aerobic respiration. 

Mitochondrial proteins called SMACs (small mitochondria-derived activator of caspases), 

bind to IAPs and deactivate them (Eschenburg et al. 2012). Furthermore, apoptosis pathway 

proteins in other organelles, other than mitochondria, within the cell may also both 

modulate apoptosis and metabolism adding to the potential for apoptosis-independent 

phenotype variations (Majors et al. 2007). 

http://en.wikipedia.org/wiki/Caspase
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Our efforts did not examine caspase activity or mitochondrial membrane potential, 

however, we examined cell behaviour over longer culture periods in comparison. For 

example, Liew et al only tested cell behaviour over 5 days, viability of their control cells 

dropped to 40% after 2 days of serum deprivation, with the XIAP expressing cells 

maintaining up to 90% viability (Liew et al. 2010). We have shown that this impact can be 

extended to longer durations, mirroring those used in commercial bioprocesses. 

 

6.3: XIAP overexpression is directly linked to anti-apoptotic behaviour in CHO 

Cellular death can be divided into apoptosis, autophagy and necrosis. Apoptosis is 

morphologically and biochemically distinct from necrosis or autophagy and can be treated 

as a separate process (Krysko et al. 2008). For our analysis we did not focus on autophagy 

or necrosis, however, we are aware that all three processes and the crosstalk between them 

are important to understanding overall cell death behaviour.  

Having observed beneficial phenotypes attributed to XIAP overexpression in CHO cell 

clones, we wanted to examine if this specifically correlated with cellular apoptosis levels. 

We tested XIAP clone 12 in attached and suspension culture once again, and used the 

Nexin® assay to measure cells undergoing different stages of apoptosis (Figure 4.2.5.1). 

The most obvious impact was a tendency for cells to reach higher cell densities as expected, 

but also to be somewhat resistant to apoptosis later in culture – despite tending to be more 

prone to apoptosis earlier (Figure 4.2.5.1). We were unsure as to the reason for this 

observation: is it dosage dependant? In other words, is there too much XIAP being 

expressed earlier in culture from the plasmid coupled with the already relatively high 

endogenous levels of XIAP in CHO cells shown from the initial western result (Figure 

4.1.4).  

Although, XIAP is often overexpressed in cancer cells, where it plays a key role in survival 

and also promotes invasiveness, the extracellular signals and intracellular pathways 

regulating its expression and activity remain poorly understood. We also do not know if 

XIAP expression is fluctuating or is being constitutively expressed at any given point in 

time within CHO cells.  
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To estimate the dosage/expression of XIAP at various stages of batch culture would be 

interesting and mapping the XIAP levels over a timecourse may answer this question. For 

example, Gu et al demonstrated that the upregulation of XIAP protein levels is regulated by 

MDM2 at the translational level. 

This was interesting as the MDM2 promoter was one of our candidate inducible promoters 

identified from project 1, and we have shown that MDM2 gene expression is controlled by 

a temperature sensitive promoter. The MDM2 protein has been shown to physically interact 

with the IRES of the XIAP 5'-UTR, and to positively regulate XIAP IRES activity. This 

XIAP IRES-dependent translation was significantly increased in MDM2-transfected cells 

where MDM2 accumulated in the cytoplasm (Gu et al. 2009). Although project 1 focuses 

on the MDM2 promoter, rather than the MDM2 protein, it begs the question, what happens 

to XIAP levels post-temperature shift? Knowing that MDM2 transcription is activated – i.e: 

presumably more MDM2 protein, then would XIAP protein translation be increased or 

even impacted due to this? Is it the same biochemical pathway or a closed circuit? 

Interesting, but further study would be necessary to establish its relevance to CHO cell 

culture. 

It should be noted that, comparing apoptosis values between clone 12 and RFP-Control cell 

populations was difficult, owing to the RFP-Control samples having much lower cell 

densities over all timepoints. Clone 12 cultures presumably depleted the media quicker than 

RFP-Control as a result. This may be the reason for the observation that during early-mid 

culture, the control cells were less inclined to become apoptotic due to ample carbon source 

availability and limited waste product accumulation. One the other hand however, once 

both cultures had depleted the media and culture conditions had deteriorated the presence 

of excess XIAP conferred a survival advantage on the engineered cells. XIAP was deemed 

to have a direct link to apoptosis resistance over all timepoints tested but was found to only 

be statistically significantly at later stages of culture (9-12 days) (Figure 4.2.5.1).  

In summary, these experiments have suggested that XIAP is potentially a target for 

apoptosis engineering in advanced culture when overexpressed in CHO cells.  
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6.4: Targeting XIAP with siRNA reverses the beneficial phenotypes 

To provide additional evidence of XIAPs role in the observed phenotypic changes we used 

a siRNA targeting XIAP. By knocking down XIAP we expected to reverse the 

survival/growth benefit exhibited by clone 12, and to see if XIAP was responsible for these 

changes, in two different suspension formats (Figures 4.2.6.1 and 4.2.6.2). 

The data showed that targeting XIAP by RNAi significantly impacted the growth and 

viability of both XIAP clone 12 as well as the CHO-K1 cell line (Figure 4.2.6.1). The 

CHO-K1 cell line was tested in parallel as it was shown previously that XIAP expression 

was relatively high in actively growing CHO-K1 cells. Are the above normal XIAP levels 

seen a reason for CHO cells to be robust and resilient as is the general consensus?  

As regards to cell viability, the impact of XIAP knockdown was seen as early as day 2 in 

both cell lines in 24-well and 2mL formats. For growth, this impact was not shown to be 

significant at day 2 in culture for either cell line nor suspension culture format, but was by 

days 4 and 6. The viability of CHO-K1 cells on day 6 transfected with siXIAP dropped 5% 

lower than the siVCP treated cells which highlighted that treatment with siRNAs targeting 

XIAP really does hinder the viability phenotype compared to the siNeg control treated 

cells. VCP is a well-established RNAi control in the NICB labs, which obliterates CHO 

cells in culture when knocked down. The fact that XIAP knockdown caused a more potent 

effect is striking. 

In conclusion, we saw that XIAP depletion through RNAi caused a reverse in phenotypic 

effect on both the XIAP clone 12 and parental CHO-K1 cell densities compared to a siNeg 

control. Late culture exhibited the most significant cell count changes overall and by day 6 

the XIAP knockdown was more obvious from the western blot also (Figure 4.2.6.3) thus 

confirming the functional role of XIAP in impacting cell growth, survival and resistance to 

apoptosis. Other groups have reported comparative results of XIAP knockdown affecting 

growth and apoptosis sensitivity in human cancer cells, for example, Shi et al showed that 

luteolin (a dietary flavonoid commonly found in some medicinal plants) sensitizes TRAIL-

induced apoptosis through down-regulation of XIAP (Shi et al. 2005). 

 



 
 

352 
 

Spee et al reported that specific down-regulation of XIAP with RNAi enhances the 

sensitivity of canine tumor cell-lines to TRAIL and doxorubicin thereby reducing growth 

(Spee et al. 2006). Furthermore, Cho et al investigated the effect of GTP-binding proteins 

(Gαs) on apoptosis triggered by cisplatin and its underlying molecular mechanism in 

cervical cancer cells and showed XIAP knockdown by siRNA augmented apoptosis. They 

concluded that Gαs inhibit cisplatin-induced apoptosis by increasing transcription of XIAP 

and by decreasing degradation of XIAP protein in HeLa cervical cancer cells (Cho et al. 

2014). 

Clonal heterogeneity is always a concern when studying CHO cell behaviour (Dahodwala 

et al. 2012) (Ghorbaniaghdam et al. 2014). Therefore, we investigated the possibility that 

the phenotypes observed throughout the growth and viability timecourse assays were a 

result of a single clonal effect of XIAP overexpression, having focused on one particular 

clone (Clone 12) for the majority of the batch runs. As our results show, clone 12 exhibited 

higher cell densities while remaining healthier over extended culture, than the control 

(RFP) mixed populations up to 9-15 days and across varying culture formats.   

Having isolated 3 more clones overexpressing XIAP (5, 10 and 11), we grew them over 15 

days alongside clone 12 and the RFP-Control cells in a repeat experiment. All 3 clones 

perform in a similar fashion to clone 12 in 24-well suspension format (Figure 4.2.3.1.1 A), 

and suggested that initial observations for clone 12 were not due to a clonal specific 

anomaly.  

Clonal variation among CHO cells has been analysed using transcriptomics by a group in-

house to understand the mechanisms underlying bioprocess phenotypes; they focused on 

clonal growth rate variation during CHO cell line development. Using differential 

expression and correlation analysis they identified a high priority group of 416 transcripts 

(190 upregulated; 226 downregulated) associated with growth rate, highlighting the 

heterogeneity among clones when generating producer cell lines (Doolan et al. 2013). 
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6.5: Effect of XIAP overexpression on productivity 

Bioprocess engineering often focuses on growth/proliferation strategies to improve 

productivity as seen in a review by Kumar et al, for example; the role of cyclin dependent 

kinases (CDKs) and temperature shift to control the growth pathways/transitions while Bi 

et al, show that the average cell volume of arrested cells was approximately fourfold greater 

than that of proliferating cells (Bi, Shuttleworth and Al-Rubeai 2004) (Kumar, Gammell 

and Clynes 2007). Alternatively, yields can be improved by targeting pathways, for 

example, mTOR kinase signally pathway {{22 Dreesen,I.A. 2010;}}, in order to increase 

CHO cell specific productivity, while examples of  targeting pathways/genes via miRNAs 

is becoming more prevalent (Park et al. 2012) (Strotbek et al. 2013) (Fischer et al. 2014). 

The improvements in culture behaviour shown by the XIAP overexpressing clones during 

this project ultimately translated into improved yield of various types of recombinant 

protein products both transiently and in stable producer lines. In lieu of this we also 

examined whether XIAP engineering impacted cell-specific productivity of SEAP, EPO 

and IgG.  

It was shown that XIAP overexpression had no significant impact on cell-specific SEAP 

productivity however volumetric SEAP yield was increased (Figure 4.2.7.1.1). Therefore, 

the increase in SEAP yield must be due to the higher clone 12 cell numbers. EPO protein 

levels were shown via western blot to be increased in clone 12 cells compared to the RFP-

Control cells over 14 days in culture (Figure 4.2.7.2.1). From a bioprocess point of view, 

this validated that using an XIAP stable cell line (clone 12) versus a control CHO-K1 cell 

line was better in producing EPO and could be used to increase product titres. We also 

converted EPO band intensities to numerical values via densitometry analysis and found 

that EPO levels were higher in XIAP clone 12 samples on days 4, 7 and 12 compared to 

RFP-Control samples (Figure 4.2.7.2.2). This analysis provided further quantitative 

evidence that clone 12 cells did indeed produce more EPO than the RFP-Control cells. 

There are a few reports on the link between XIAP expression and productivity. Becker et al 

reported that co-expression of both XBP-1 and XIAP genes resulted in a higher titer of IgG 

in a serum-free medium than expression of either gene singularly (Becker et al. 2010). 
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Similar studies have shown that overexpressing anti-apoptotic genes such as, Aven and 

E1B-19k also increased survival and resistance to apoptosis, with reduced annexin-V 

binding compared to controls (Nivitchanyong et al. 2007) (Dorai et al. 2010). Similarly, 

Figueroa et al found that stable transfected pools of CHO cells engineered to express either 

Aven or E1B-19K alone were found to survive 1-2 days longer than the parent cell line 

following glucose deprivation while the expression of both genes in concert increased cell 

survival by 3 days. In their spinner flask batch studies, a clonal isolate engineered to 

express both anti-apoptosis genes exhibited a longer operating lifetime and higher final 

monoclonal antibody (MAb) titer.  

Much like what we reported for EPO, SEAP and IgG titers, they found that maximum titers 

of MAb were increased by 40-55% in bioreactors containing cells expressing both Aven 

and E1B-19K compared to cells expressing each singularly. Furthermore, as with our 

findings, these increases in volumetric productivity arose primarily due to enhancements in 

viable cell density over the course of the fed-batch culture period since the specific 

productivities for the cells expressing anti-apoptosis genes were comparable or slightly 

lower than the control CHO cells (Figueroa et al. 2007). 

So one thing is apparent, co-expressing anti-apoptotic genes appear to be more beneficial 

overall. This was encouraging from our perspective as we only concentrated on one gene, 

however, there might be opportunity for further improvement if we were to express another 

anti-apoptotic gene in CHO cells, along with XIAP.  

Tey et al found that exposure of CHO cells to ammonia toxicity via thymidine treatment 

revealed the relative robustness of Bcl-2 transfected cells. Growth was arrested by 

treatment with 4 mM thymidine, Bcl-2 overexpressing cells exhibit a viability of over 80% 

after 5 days in culture, compared to only 40% in the control cell line (Tey et al. 2000). 

Interestingly, measuring titers of a chimeric antibody they reported that under growth-

arrested conditions, there was no major difference in specific productivity of the antibody 

between the two cell lines, this was analogous to our IgG results.  

One aspect which we may have overlooked in comparison is that they showed that the 

mean level of Bcl-2 expression in the overexpressing population also declined significantly, 
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presumably reflecting the exhaustion of precursors for protein synthesis following nutrient 

depletion. We did not monitor XIAP expression levels over time like they did so we do not 

know how XIAP behaved as time progressed. Conducting and experiment to capture XIAP 

expression levels over extended culture, using gene expression analysis via qRT-PCR may 

provide this answer. 

Dorai et al, also experimented in overexpressing E1B-19K, Aven, and more specifically a 

mutant of XIAP (EAX197), they saw a reduction in caspase 3 activity of at least 60% and a 

170% enhancement in mitochondrial membrane potential (MMP) compared to controls 

when treated with staurosporine (inhibitor of protein kinases through the prevention of ATP 

binding to the kinase) (Dorai et al. 2009). The capacity of the apoptotic resistant cell lines 

to consume lactate was exploited by cultivating them in a ‘high’ glucose medium 

containing 15 g/L (60 mM glucose) in which apoptotic resistant cell lines exhibited lower 

maximum lactate (1.8 g/L) compared to control cell lines which accumulated 

concentrations of lactate (2.2 g/L) that subsequently appeared to be deleterious for growth. 

They also reported titers of a therapeutic antibody product expressed in the said apoptotic 

resistant cell line in ‘high’ glucose medium, titers reached 690 mg/L in apoptotic resistant 

cells compared to 390 mg/L for a cell line derived from a control host cell line. This was 

the first example in the literature in which manipulation of the apoptosis pathway led to an 

altered nutrient consumption profile of CHO cells in culture (Dorai et al. 2009). 

Furthermore, cells arrested in G1 phase can exhibit more specific productivity (Qp) as 

shown by groups Hackl et al, and Sanchez et al. Over expressing miR-7 arrested CHO cell 

growth for a period of 96 hours leading to increases in normalised productivity per cell 

albeit less than temperature shift studies carried out similarly. With the latter showing that 

using a novel sponge decoy approach was able to divert (soak up) endogenous miR-7, and 

they further showed that the reverse of this phenotype could increase maximum viable cell 

density, leading to increases in productivity (Hackl et al. 2012) (Sanchez et al. 2013).  

Enzymes, such as proteases and sialidases, accumulate in batch bioreactors. These enzymes 

are known to be detrimental to the quality of recombinant glycoproteins. Therefore, product 

quality in bioprocessing is another issue that frequently causes concerns, this is often made 

worse by manipulation of an otherwise predetermined natural process, be it an endogenous 

http://en.wikipedia.org/wiki/Enzyme_inhibition
http://en.wikipedia.org/wiki/Protein_kinase
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gene/pathway or external environment change. For example, temperature shift or osmotic 

stress were both explored regarding the impact they cause on product quality when 

producing tissue type plasminogen activator (tPa) (Clark, Chaplin and Harcum 2004) (Han 

et al. 2010). Recently, Yang et al found that using perfusion seed cultures can optimise 

capacity utilization and improve process efficiency by increasing volumetric productivity 

while maintaining or improving product quality. They used three different CHO cell lines 

producing Fc fusion proteins and monoclonal antibodies and where titers were increased 

there was no significant deterioration in product quality (Yang et al. 2014). 

Therefore, it is reasonable to believe that any undertaking which may cause cellular stress, 

leads to unwanted cell death, often resulting in cell debris in culture media for example 

after degradation. As a result, care must be taken to ensure product quality is not 

compromised. Stressed conditions that can be shown to exhibit beneficial phenotypes such 

as growth and productivity as shown by Yoon et al, with EPO production, can invariably 

lead to stressed reactions by the cells used such as; loss of sialyation and formation of 

inclusion bodies affecting protein quality once undergone downstream processing. 

Therefore, increases in production, minus introducing a manipulation step causing cellular 

stress could obviously provide an improved route to increase productivity (Yoon, Hwang 

and Lee 2004).  

This is why we believe that the overexpression of XIAP in stable clone 12 especially, can 

be useful in a process setting. Clone 12 displayed two beneficial bioprocess phenotypes 

(increased growth rate and decreased apoptosis) that presumably do not put a transfection 

or any additional stress load onto the cells at a gene level and can be used as a productivity 

cell line in its natural state (with scope to make perhaps further adjustments to improve the 

cell line further). 

In conclusion, these results, demonstrate that XIAP overexpression in CHO lines can be 

beneficial in increasing productivity of therapeutic and reporter proteins, while keeping 

genetic manipulation to a minimum.  It would be interesting to combine the findings from 

each Project to investigate the temporal overexpression of XIAP later in culture in response 

to temperature shift, by placing it downstream of the promoters identified in project 1. 
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6.6: Targeting XIAP using  ncRNAs as a route to CHO cell engineering 

MicroRNAs are strongly implicated in the global regulation of gene expression, and 

consequently affect diverse metabolic pathways across many species. This characteristic 

makes miRNAs promising targets for cell engineering, while a key advantage of miRNAs, 

in contrast to most cell-engineering approaches that rely on overexpression of regulatory 

proteins for example, is that they do not compete for the translational machinery that is 

required to express the recombinant product (Muller et al. 2008) (Hackl et al. 2011). 

Therefore, the second part of project 2 considered the possibility of whether XIAP (from 

CHO and human) is subject to miRNA regulation, with a view to increasing productivity 

via interplay between miRNA and gene expression. 

The cancer project referred to earlier, not only identified XIAP expression as being 

correlated with proliferation rate and invasiveness potential of a panel of Glioblastoma 

(GBM) cell lines but also that XIAP was a direct target of miR-23b (Figure 4.3.1.2). 

Additionally, along with miR-23b, recently other miRNAs have also been shown to target 

XIAP such as miR-130, miR-24, miR-7 and miR-519d (Zhang et al. 2013) (Xie et al. 2013) 

(Liu et al. 2013a) (Pang et al. 2014). Furthermore, miRNA targeting could be an attractive 

route to regulate XIAP without exogenous expression derived from plasmid transfections. 

Over the last decade, approaches using other small RNAs i.e: siRNAs, which target XIAP 

have shown immediate impacts on human cancer cell phenotypes such as decreased 

viability and growth. Often the goal of such siRNA or miRNA based approaches is to 

sensitize cancerous cells by knocking down an important gene and simultaneously adding 

chemotherapeutic agents such as doxorubicin and TRAIL (McManus et al. 2004) (Spee et 

al. 2006), analogous to the findings of Shi et al, whereby they showed that luteolin (a 

dietary flavonoid) treatment sensitizes cells to TRAIL-induced apoptosis through down-

regulation of XIAP in HeLa cells (Shi et al. 2005). Our group also observed that XIAP 

targeting by a miRNA (in our case miR-23b) sensitized GBM cells to docetaxel treatment 

(unpublished data).  

Similarly, Pang et al found recently that miR-519d was also capable of sensitizing ovarian 

cancer cells to cisplatin-induced cell death by targeting the XIAP transcript and suppressing 
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cellular proliferation, suggesting that miR-519d plays a tumor-suppressive role in human 

ovarian cancer (Pang et al. 2014). 

The fact that such an important regulatory protein like XIAP can be targeted by siRNAs 

and miRNAs provides the basis for the second part of this project, which focused on the 

miR-Capture technique. This technique was used to identify potential miRNAs that may 

bind to XIAP mRNA and thus allow us to consider an alternative engineering option for 

XIAP regulation and will be addressed in more detail in the next section.    

 

6.7: MiR-Capture - to identify miRNAs targeting predetermined mRNAs 

Although the miR-Capture technique was described previous by (Hassan et al. 2013), it was 

never utilised in CHO before. By performing the XIAP mRNA capture method we wanted 

to establish a connection between  XIAP overexpression engineering (shown from the first 

part of this project) and miRNA engineering (more specifically the miRNAs that interact 

with XIAP) in CHO and human, with a view to potentially improve bioprocessing 

characteristics overall. Having realised XIAP manipulation can impact on CHO cells, 

knowing the miRNAs which regulate XIAP from both species, might provide an alternative 

method of controlling endogenous XIAP expression and see which miRNAs are common 

between species.  

By carrying out a novel MiR-Capture technique, our aims were two-fold. Firstly, to further 

validate the interaction between XIAP and ‘real’ miRNAs via bona fide validation using an 

affinity capture technique. It is well known that existing software algorithms for prediction 

of microRNA-mRNA interactions suffer from considerable false positive rates. A recent 

study by Maccani et al highlighted the urgent need for reliable CHO-specific microRNA 

target prediction tools and experimentally validated target databases in order to facilitate 

functional analysis of high-throughput microRNA expression data in CHO cells (Maccani 

et al. 2014). Secondly, we were afforded an opportunity to investigate and compare human 

(SNB-19) versus CHO XIAP mRNA homologues to test if they interact with a similar sub-

set of miRNAs and complete the first study of its type using CHO specific sample lysates. 



 
 

359 
 

This would also be interesting as the mRNA transcripts for CHO and human (SNB-19) are 

quite different in size but are reasonably conserved (>60%) at a DNA level. 

Investigating this would not only provide better primary understanding of the molecular 

mechanisms of XIAP expression control by miRNAs, but also potentially identify 

alternative ‘upstream’ routes to manipulating XIAP levels in given cell types without 

necessarily overexpressing the protein as an exogenous transgene. In other words, if we 

could identify miRNAs that regulate XIAP then they in turn might be used as future tools 

to alter endogenous XIAP levels. As briefly mentioned, the advantage of this approach, 

from a bioprocessing perspective, is that miRNA-based engineering avoids the added 

metabolic burden of translating another competing transgene (XIAP in this case). For 

example, by depleting the levels of a miRNA known to repress XIAP, the expression of the 

endogenous XIAP protein should increase.  

We are witnessing a shift from gene engineering to miRNA engineering with recent 

publications substantiating this, for example, Strotbek et al performed a genome wide 

functional miRNA screen by transient transfection of CHO cells stably expressing an IgG1 

antibody (CHO-IgG1). They identified 9 human miRNAs that improved productivity, 

whilst retaining product quality, not only of the CHO-IgG1 cells but also of CHO cells 

expressing recombinant human serum albumin (HSA), hinting that miRNAs can act in a 

product-independent manner  (Strotbek et al. 2013).  

This would appear beneficial as the opposite was reported recently by Maccani et al 

regarding exogenous gene expression, they suggested that the reaction of CHO cells to 

heterologous protein expression is strongly product- and/or clone-specific (Maccani et al. 

2014), though our data using XIAP does not support this observation. Encouragingly 

however, our broad analysis identified both an anti-apoptotic gene target and numerous 

miRNA targets from the miR-Capture.   

Jadhav et al also reported on the effect of various miRNAs transiently and stably 

transfected into CHO cells and their impact on various phenotypes. They found that CHO 

cells stably engineered with miR-17 exhibited both enhanced growth performance and a 2-
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fold increase in specific productivity, which resulted in a 3-fold overall increase in EPO 

titer (Jadhav et al. 2014).  

Interestingly, from our analysis, miR-17 was pulled down with XIAP in the CHO-K1 

lysate, but not in the SNB-19 lysate (Figure 4.3.5.2). However, careful annotation of the 

3’UTR of CHO-XIAP (Figures 4.1.3.1 and 4.1.3.2) revealed a substantially shorter (~2kb) 

sequence than in human and indeed other rodent species (Figure 4.1.3.3), therefore this may 

be partially attributed to miR-17 or indeed any orthologous miRNA not being present in the 

CHO sequence, as miR-17 is predicted to bind the human XIAP 3’UTR at nucleotide 

positions 5069 and 5677. In other words, due to the disparity between human and CHO 

XIAP 3’UTR sequences and the fact that the sequences match at interspersed regions 

(Figure 4.1.3.3), there was no way to fully elucidate or map the presence or lack thereof of 

certain miRNAs without further functional validation irrespective of in silico prediction. 

Equally constraining is that currently all prediction software haven’t been fully updated to 

contain CHO miRNA information. 

The miR-Capture technique was optimised to pulldown XIAP mRNA specifically along 

with miRNAs bound to it; this was followed by a comparison between CHO and human 

cell lines to identify miRNAs targeting XIAP. Four miRNAs were identified common to 

both cell lines [miR-124, miR-877, miR-526b*, miR-760]. None of the 4 miRNAs detected 

in both cell lines have previously been associated with XIAP or CHO in the literature but 

all were predicted to bind to XIAP in silico (Table 4.3.5.2).  

Furthermore, there were also 12 more miRNAs detected in the SNB-19 capture, and 

obvious questions would be to ask, can this discrepancy in miRNAs detected between both 

cell lines be explained by the differences in CHO-XIAP sequence versus the human-XIAP 

sequence? And does the 2kb difference in sequence size account for more miRNA binding 

as we envisaged? To help interpret the results of the miR-Capture, we compiled a table 

dividing up the lists of miRNAs into various categories depending on which samples they 

were detected (or not detected)  (Table 6.7).  
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Table 6.7: Categories of miRNAs from miR-Capture experiment. Six scenarios of why 

miRNAs made the list from figure 4.3.5.2. * denotes an exception where miRNA may have 

been pulled down but wasn’t detected in the total lysate. 

Categories of miR-Capture miRNA detection: 

In total lysate Predicted in silico Pulled down Ex: miR-124 

In total lysate Predicted in silico Not pulled down Ex: miR-24 

In total lysate Not predicted in silico Pulled down Ex: miR-135a* 

In total lysate Not predicted in silico Not pulled down Ex: miR-553 

Not in total lysate* Predicted in silico Pulled down Ex: miR-323-3p 

Not in total lysate* Not Predicted in silico Pulled down Ex: miR-801 

 

Various miRNAs predicted to bind XIAP may not have been detected because they simply 

were not detected in the cell lysates. We can check this by looking at the TLDA output for 

the total capture sample for a given miRNA. For example, as shown, miR-222 was detected 

in the SNB-19 total and XIAP-capture lysates, additionally it was detected in the CHO total 

lysate but not in the CHO XIAP-capture or indeed the non-specific oligo capture. In this 

case miR-222 was present in CHO cells extracted at that point in time but was not pulled 

down in the capture. It would be interesting to repeat the entire experiment with SNB-19 

and CHO-K1 cells at various time points of culture and see if the milieu of miRNAs differ 

from what was observed here.  

On the contrary, 6 miRNAs (miR-135a*, miR-768-3p, miR-801, miR-923, miR-20a and 

miR-572) were detected from the pulldown but were not predicted to bind to XIAP in silico 

which again highlights the frailties of computational approaches (Figure 6.7). For example 

upon inspection, the levels of miR-135* were found to be relatively high in total, NSO and 

capture XIAP lysates compared to other miRNAs that were predicted to bind in silico. This 

observation may have been due to non-canonical miRNA-mRNA binding which is not 

detectable using current prediction algorithms but has been demonstrated to occur in nature 

(Li and Yao 2012) (Pasquinelli 2012). 
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Figure 6.7: Venn diagram showing number of miRNAs predicted to bind in silico versus 

miRNAs that were actually pulled down and detected from the miR-Capture and 

overlapping miRNAs. 

 

Once the miR-Capture was completed, we performed a literature search to link some of the 

most promising miRNAs, starting with the four common ones and their involvement with 

growth and apoptosis regardless of cell type.  

MiR-124 featured in recent publications regarding reductions in growth of human cancer 

cells. Zhang et al found that ectopic expression of miR-124 in transplanted HT1197 cells 

resulted in the retardation of tumor growth in mouse tumor xenografts, and the expression 

of miR-124 and CDK4 showed an obvious inverse correlation in these xenograft tissues 

suggesting that miR-124 can arrest cell cycle and restrain the growth of bladder cancer by 

targeting CDK4 directly (Zhang et al. 2014). Additionally, Silber et al found that targeted 

delivery of miRNA-124 to glioblastoma multiforme tumor cells inhibited proliferation of 

the cells and in parallel induced differentiation of brain tumor stem cells and therefore may 

be therapeutically efficacious for the treatment of this disease (Silber et al. 2008). 

MiR-526b* was reported as a placental specific miRNA in numerous studies (Miura et al. 

2010) (Kotlabova, Doucha and Hromadnikova 2011) and more recently was shown to be 

involved in fetal growth restriction (FGR). The expression levels of six other placenta-

specific miRNAs including miR-526b* (hsa-miR-518b, hsa-miR-1323, hsa-miR-516b, hsa-

miR-515-5p, hsa-miR-520h, hsa-miR-519d), were significantly lower in placentas from 

FGR pregnancies than in placentas from uncomplicated pregnancies (Higashijima et al. 

2013). These other miRNAs listed were not identified from our miR-Capture, in other 
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words, were not co-captured with XIAP and miR-526b*. As growth was affected by miR-

526b* in an opposite fashion (shown to be less expressed) than say miR-124 which when 

highly expressed inhibits growth of cancer cells as mentioned previously, thus it was 

interesting that miR-526b* was moderately expressed in both cell lines. Mir-877 expression 

was not related to growth phenotypes but rather found to be associated with paclitaxel-

induced apoptosis in hepatocellular carcinoma cells (HCC) (Yan et al. 2013). 

Interestingly, miR-23b was not detected in the XIAP pulldown which was somewhat 

surprising as previous results suggested it targets XIAP. It has been shown by Garcia et al, 

that two properties of this miR-23b may explain this finding. Their analysis uses seed-

pairing stability (SPS) and high target-site abundance (TA) and miR-23b was shown to 

have unusually weak seed regions (an abundance of A/U bases), low SPS and high TA 

(Garcia et al. 2011). Therefore, miR-23b may not bind strongly enough to be pulled down 

during the miR-Capture procedure. Of course it could also simply be explained by the fact 

that even in the total lysate samples miR-23b was not detectable. Many miRNAs that were 

not detected in the capture lysates were detected in the total lysates – as would be expected 

using a technique that is specific for one mRNA target. Other miRNAs that were predicted 

to bind to XIAP but not captured by miR-Capture such as; miR-130a (Zhang et al. 2013), 

miR-7 (Liu et al. 2013a), miR-519d (Pang et al. 2014), miR-220c (Ren et al. 2014), and 

miR-24 (Xie et al. 2013) have all been reported as regulating XIAP, largely in human 

cancer cell types. 

For in silico prediction we used the mirWalk database as it scans all other existing 

databases such as TargetScan® and miRanda®, and allowed us to search the entire mRNA 

sequence, whereas most other miRNA prediction databases are restricted to the 3’UTR 

region. The database contains information based on predicted miRNAs as well as 

frequently being updated when functionally validated miRNAs are published in the 

literature (Dweep et al. 2011). MirWalk specifically uses a prediction approach whereby it 

identifies a strong seed region and ‘walks out’ to identify more complementary sequence 

and then assigns a score based on this affinity. In other words, miRNAs such as miR-135a* 

may not be predicted based on the binding criteria of the mirWalk software.  
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Recent publications have reviewed the extent of these wide-ranging binding criteria (see 

Figure 1.14.1) allowing deeper understanding of the rules used by miRNAs for the 

recognition and regulation of targets in vivo. Pasquinelli reviews several methods that are 

now available for identifying miRNA target sites and stated that the mere presence of a 

miRNA-binding site is insufficient for predicting target regulation. Furthermore, regulation 

of targets by miRNAs is subject to various levels of control, and recent developments have 

presented a new twist; targets can reciprocally control the level and function of miRNAs 

(Pasquinelli 2012). Curiously, target–sequence interactions can also stimulate miRNA 

degradation. It has been shown in D. melanogaster and in human cells that extensive 

pairing between a miRNA and its target site can induce 3′ end trimming of the miRNA 

(Ameres et al. 2010). It remains to be seen whether this may be the case for some miRNAs 

targeting XIAP here, subsequently reducing the detected captured output, for example in 

the SNB-19 capture, miR-221 was not captured, but its family member miR-222 was. The 

apparent flexibility in animal miRNA-targeting rules suggests that factors beyond their sole 

pairing capacity may mediate functional interactions in vivo (Grimson et al. 2007). In other 

words, the complexity may be so varied that understanding miRNAs via combinations of 

bioinformatics and capture methods may not wholly satisfy validation of every miRNA. 

Another aspect is co-expression of the mRNA and miRNA in question at a given point in 

time, for example, XIAP mRNA expression may differ grossly between stages of culture, 

and any in silico predicted miRNA target may not be present at the same stage. 

Additionally, folding of the XIAP mRNA may confer various secondary structures which 

may not facilitate access to a particular miRNA binding site. Furthermore, under different 

states of stress and culture conditions mRNA binding protein occupancy may differ and 

block access to the sequence. One way to examine this would be to run multiple captures at 

various culture/growth stages.  

In addition, it would be interesting to use other techniques (Table 1.14.1), to compare the 

miRNAs detected between techniques. The most commonly used methods to identify 

miRNA:mRNA interactions via argonaute (Ago) protein binding are HITS-CLIP and PAR-

CLIP, both of which have produced interesting results. As PAR-CLIP and HITS-CLIP 

results accumulated, Yang et al conceptualised a novel database, starBase (sRNA target 
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Base), which they have developed to facilitate the comprehensive exploration of miRNA-

target interaction maps from CLIP-Seq and Degradome-Seq data. They established 

approximately 400,000 and approximately 66,000 miRNA-target regulatory relationships 

from CLIP-Seq and Degradome-Seq data, respectively (Yang et al. 2011). Recently, 

starBase version 2.0 was established with many updates including interactive web 

implementations to provide visualisation, analysis and downloading of the aforementioned 

large-scale data sets (Li et al. 2014). 

However, unlike miR-Capture both CLIP techniques are in vitro-based which may not fully 

reflect the complexity of in vivo interactions. Other methods, similar in approach to miR-

Capture have been developed which can be used to identify miRNAs that regulate a single 

mRNA of interest. One method uses luciferase 3’UTR reporter genes with which individual 

miRNAs must be co-transfected into a cell line (Wu et al. 2010). This method suffers from 

some limitations, it can be laborious especially when bioinformatic screening predicts 

multiple potential regulatory miRNAs and it is limited to 3’UTR targeting only, with 

miRNAs targeting CDS and 5’UTR regions going unaccounted for. 

Interestingly, the miR-17-92 cluster members (miR-17, miR-19b and miR-20a) were all 

detected in the CHO capture lysate (Table 4.3.5.2). The fact that only some of the cluster 

members were detected was somewhat unexpected as the cluster was reported to be highly 

expressed in many cell types including Neuro- and Glio-blastoma (Hayashita et al. 2005) 

(Mestdagh et al. 2010), from which SNB-19 cells were derived. Additionally, as this 

clusters promoter was identified in the first project in this thesis, it was encouraging that 

these miRNAs appeared to be highly expressed in healthy, unstressed CHO cells, and 

therefore under the control of a moderate to strong promoter. This was partial justification 

to using the miR-17-92 cluster promoter even though the functional analysis wasn’t overly 

striking, but as mentioned it was highly unlikely we isolated the fully functional promoter 

region from the outset. 

MiR-222 was detected in the SNB-19 capture lysate and has been reported to be often co-

expressed with miR-221 (Howe, Cochrane and Richer 2012); however miR-221 was not 

present in SNB-19 or indeed CHO pulldowns (Table 4.3.5.2). Recently, Li et al found that 

knocking down the miR-221/222 cluster, significantly increased radiation-sensitivity of 
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Glioblastoma cells which they are normally highly resistant to. Notably, combined anti-

miR-221/222 and radiation therapy remarkably inhibited tumor growth compared with anti-

miR-221/222 or radiotherapy alone in a subcutaneous mouse model (Li et al. 2014a). It 

may be interesting to explore the knockdown of miR-222 in both cell lines as a comparison 

and expose them to radiation, based on miR-222 only being pulled down in our 

glioblastoma SNB-19 lysates.  

Interestingly, miR-8/200 and miR-221/222 families play crucial opposing roles that affect 

the differentiation state of breast cancers and have been shown to be expressed at higher 

levels in highly invasive basal-like breast cancer (BLBC) cells than in non-invasive luminal 

cells  (Howe et al. 2012), (Li et al. 2014b). This could go some way towards explaining as 

to why miR-222 was detected in the invasive human GBM SNB-19 cell line and not in the 

CHO XIAP pulldown. 

Reports in the literature have associated XIAP with certain miRNAs that are involved in 

carcinogenesis pathways and apoptosis regulation. From in vivo data, Ren et al indicated 

that the overexpression of miR-200c significantly inhibited tumor growth and increased the 

rate of apoptosis. Western blot analysis also demonstrated that the expression of XIAP was 

markedly reduced and that caspase-3 was highly activated by the overexpression of 

miR-200c (Ren et al. 2014). In addition, Xie et al suggested a novel mechanism by which 

miR-24 directly modulates the apoptosis threshold in cancer cells via downregulation of 

XIAP expression, and may be useful in order to overcome apoptosis resistance in cancer 

cells (Xie et al. 2013). 

In conclusion, while other studies have used this capture affinity technique for other mRNA 

targets such as; alpha-1 antitrypsin (AAT), interleukin-8 (IL-8) and secretory leucoprotease 

inhibitor (SLP1) (Hassan et al. 2013), this is the first miR-Capture study of this type done 

in CHO cells and the first capture study on an anti-apoptotic gene. 
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6.8: Functional validation of specific miRNAs from miR-Capture 

We presented an alternative validated method to identify multiple miRNAs targeting a 

predetermined mRNA. Our data showed 40 miRNAs in total, that may be cell specific, plus 

4 common and that co-elute with XIAP mRNA transcript in two cell types. From this target 

list (Table 4.3.5.2), two miRNAs were chosen for each cell line (miR-124, miR-19b for 

CHO and miR124, miR-222 for SNB-19) for functional validation.  

Each of these miRNAs were shown to be more abundant after single-plex Taqman assays, 

with miR-124 in the SNB-19 cells being the most abundant (~2.5-fold) compared to the 

non-specific oligo (NSO) treated SNB-19 cells. The other 3 miRNAs had similar fold 

increases (~1.8-1.9-fold) (Figure 4.3.6.1). Similarly, Chi et al validated genome-wide 

interaction maps for miR-124 and its target mRNAs after using the HITS-CLIP approach 

(Chi et al. 2009). 

All four showed a functional impact on XIAP expression to varying degrees when 

measured using qRT-PCR, treatment with pre-miR mimics for overexpression, western 

blotting and GFP-reporter 3’UTR knockdown analysis. 

XIAP 3’UTR GFP-reporter assay was performed to see the effect of miRNAs had on GFP 

expression levels. Surprisingly, miR-19b caused a very small reduction in GFP expression 

in CHO cells although it was significant (Figure 4.3.6.1.2 A). This was interesting because 

miR-19b was not detected from the human miR-Capture yet was shown to target human 

XIAP 3’UTR sequence. Maybe miR-19b does not bind that efficiently to the human XIAP 

mRNA and hence was not captured in the human lysate. 

Overall using the human XIAP 3’UTR sequence, it was shown that co-transfection of a 

pGFP (xiap3) vector with various pre-miR mimics resulted in modest reductions of GFP 

expression in both cell lines (Figure 4.3.6.1.2). This was presumably due to the miRNAs 

binding to locations on the XIAP 3’UTR as shown by RNAhybrid™ (Figure 4.3.6.1.1) and 

therefore impacting on GFP expression levels. As only the human XIAP 3’UTR (3.7kb) 

was examined for 3’UTR reporter gene targeting, repeat studies involving the exact CHO 

XIAP 3’UTR would prove beneficial.  



 
 

368 
 

The transfected miR-222 mimics induced a ~55% reduction in XIAP RQ in SNB-19 cells 

and had the most striking impact (Figure 4.3.6.3). The miR-222 mimics were included as a 

transfection control in CHO cells, as this miRNA was expected not to cause a change in 

XIAP expression based on it not being captured i.e: targeting XIAP endogenously, and 

indeed it showed no significant effect (Figure 4.3.6.3 A).  

The western blotting results did appear to correlate with the mimic transfection results for 

the CHO cells, both miR-124 and miR-19b showed reduced XIAP protein levels compared 

to the cells only and PM- control samples (Figure 4.3.6.4). However, in the SNB-19 cells, 

they did not correlate. For example, miR-222 transfected cells did not seem to have a 

reduction in XIAP protein and infact only the combination of miR-124 and miR-222 caused 

an impact on XIAP protein level (Figure 4.3.6.3 B). 

Transfecting pre-miR mimics into both cell lines resulted in varying amounts of XIAP 

knockdown measured as relative quantity (RQ). Hassan et al also observed varied results in 

their functional studies post-capture; they reported small percentage knockdown by anti-

miRs and suggest that using higher concentrations of anti-miRs may cause more substantial 

functional effects on alpha-1 antitrypsin (AAT) knockdown and we suggest the same for 

XIAP. Conversely, they highlighted that some miRNAs that were co-captured with AAT 

caused an effect on 3’UTR reporter gene studies but did not have a functional effect on 

AAT mRNA or protein levels (Hassan et al. 2013). Our results in fact show the opposite in 

some cases, for example, we had moderate but significant knockdown of XIAP mRNA 

levels by miR-124 mimics when transfected in SNB-19 cells, yet from the 3’UTR GFP 

reporter assay we saw slight knockdown but it was not significant (Figure 4.3.6.1.2). 

In summary, this novel technique combined with TLDA analysis, presents a simple 

efficient method to identify native interacting miRNAs targeting the whole sequence of an 

mRNA transcript. If used together with more stringent prediction programs and more 

sensitive specific assays for elucidation of miRNA biogenesis and functionality, this 

method is likely to significantly advance miRNA research.  

Ultimately what does this mean for protein production and how might we apply our 

findings in a bioreactor setting? For one we have identified 4 miRNAs that target both 
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CHO and human XIAP, these miRNAs could be stably overexpressed individually or in 

combination in CHO clones to examine their effects on cell growth, recombinant protein 

productivity and product quality much like Loh et al did for miRs-17, -19b, -20a, and -92a 

(Loh et al. 2014). Since miRNAs suppress mRNA translation, we hypothesized that up-

regulating miR-124 for example or indeed any miRNA identified by miR-Capture could 

inhibit endogenous XIAP and induce apoptosis as a result, i.e: they may be pro-apoptotic. 

Therefore by targeting these miRNA or using sponge decoys we might promote XIAP 

expression leading to even better phenotypes as shown from our data.  Furthermore, there is 

a high probability that these miRNAs may target more than one anti-apoptotic gene in both 

species which may increase the impact on apoptosis regulation further. For example, Druz 

et al found that miR-466h affects the apoptotic pathway by targeting at least 5 anti-

apoptotic genes in unison (Druz et al. 2011).  

Out of interest we checked other apoptotic related genes Bcl-2 and Aven for predicted 

binding sites of the four miRNAs identified from the miR-Capture. The Bcl-2 gene was 

shown to contain binding sites for miR-124 and miR-760, with miR-526* and miR-877 

sites not being predicted. MiR-124 was the only miRNA out of the four that also contained 

bind sites in the 3’UTR of the Aven gene. Therefore, with the help of more extensive 

validation, miR-124 may be shown to regulate a host of anti-apoptotic genes, not just XIAP 

as we showed in section 4.3.6.  
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6.9: Conclusions – Project 2 

 The anti-apoptotic gene XIAP plays important roles in survival and apoptosis in 

CHO in both adherent and suspension culture.  

 Stable overexpression of XIAP in CHO single cell clones caused increased growth 

rates, higher viabilities and resistance to apoptosis which enabled them to grow to 

higher cell densities compared to controls.  

 There were 4 clones which displayed these phenotypes to slightly varying levels, 

while clone 12 exhibited the most striking difference compared to the controls. 

 Day 9 spent media induced a morphological change in the tested cell lines in 

attached culture, and it was impactful on cellular viability in early culture for XIAP 

clone 12 and control populations. 

 Functional validation studies showed that the phenotypes (increased growth and 

viability) exhibited by overexpressing XIAP could be reversed by specifically 

knocking down XIAP using RNAi in two CHO cell lines (CHO-K1 parental and 

CHO stable XIAP clone 12).  

 The beneficial phenotypes displayed were adjudged not to be a clonal irregularity, 

as stable XIAP clones 5, 10 and 11 also displayed these phenotypes albeit to slightly 

varying degrees.  

 Regarding productivity, the stable XIAP clone 12 outperformed the RFP-Control 

cell line in all 3 reporter productivity assays [EPO, SEAP and IgG].  

 Other XIAP observations showed that it was; under control of miR-23b regulation 

in Glioma (Figure 4.3.1.2) and expressed highly in various CHO cell lines (Figure 

4.1.4).  

 A novel miRNA affinity capture ‘miR-Capture’ technique was shown to pulldown 

cognate miRNAs targeting XIAP. This was revealed in two separate mammalian 

cell types (CHO and human).  

 There were 40 miRNAs identified (26 in human and 14 in CHO) as being enriched 

between the capture oligo and control. As expected, more miRNAs were detected in 

the human XIAP mRNA presumably owing to it being 2113nt longer in sequence 

size. 
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 Of the 40 miRNAs detected, 4 miRNA were common between Human (SNB-19) 

and CHO (K1), these were [miR-124, miR-877, miR526b*, miR-760]. None had 

previous affiliation to XIAP in the literature.  

 The absence of 6 miRNAs predicted to bind XIAP in silico highlighted the 

discrepancies seen between software prediction methods and functional studies.  

 MiR-124 was validated as a true target of XIAP in both cell lines, while further 

validation is needed for the three other common miRNA targets. 
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6.10: Project 2 - Future work 

6.10.1: Cell-adhesion analysis 

From the abnormal morphology seen in the XIAP clone 12 cells under the microscope in 

extended culture under harsh conditions (Section 4.2.1) led us to believe that the elongated 

spiral morphology was responsible for survival in harsh conditions. Although not wholly 

relevant to biopharma production, we recommend for future experimentation to test for cell 

adhesion molecules (CAMs) such as integrins, selectins, CD44 and N-cadherin under 

flow/shear conditions. Several families of adhesion receptors have been identified (Albelda 

and Buck 1990). The different adhesive properties of our CHO cells may be reflected by 

different expression profiles of several CAMs and it would be interesting to analyse CAMs 

over time to see if they are responsible for increased survival. For example, in cancer cells, 

these CAMs have been associated with the growth and metastatic behaviour in several 

malignant entities such as neuroblastoma (Schwankhaus et al. 2014). One way of testing is 

by using a Laminar flow adhesion assay using IBIDI microslides VI (IBIDI, Munich, 

Germany) connected to a syringe pump (Model 100 Series; kdScientific, Holliston, 

Massachusetts, USA) and measure cell movement with an inverted microscope and validate 

with qRT-PCR. 

 

6.10.2: Clonal variation in XIAP clones 

The process of clonal cell line generation has inherent pitfalls. For example, random 

integration of the experimental vector/transgene can result in various genetic phenotypes 

such as intensity of expression potentially due to insertional mutagenesis and/or copy 

number variation. Vesuna and Winnard et al, also showed that random integration and 

amplification can interfere with the regulation of endogenous genes while potentially 

creating variation leading to chromosomal instability and karyotype alteration (Winnard et 

al. 2006) (Vesuna et al. 2006). 

Although care was taken to include a panel to test clonal variation in CHO cells expressing 

stable XIAP, only 13 clones survived after 3 months of selective pressure due to 

contamination and other technical issues. Although four clones progressed to the apoptosis 
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experiments and were deemed sufficient for an unbiased study, ideally more clones would 

be investigated to establish the full extent of the XIAP effect as well as to identify 

potentially better clones for future work. 

 

6.10.3: Analysis of metabolite utilisation and waste accumulation 

There is scope for analyzing the interdependence of the apoptotic cellular machinery with 

metabolism and waste formation (ammonia and lactate) to provide greater flexibility to 

mammalian bioreactor process development. Dorai and colleagues provided the first study 

pushing these boundaries into apoptosis mediated metabolite and waste interplay. They 

showed that overexpression of anti-apoptotic genes E1B-19K, Aven, and a mutant of XIAP 

(EAX197), resulted in beneficial traits including improved lactate clearance (>1.8g/L) and 

lower ammonia accumulation compared to host cell controls (Dorai et al. 2009) (Dorai et 

al. 2010). It would be interesting to assess the XIAP clones in terms of these metabolic 

activities. 

 

6.10.5: MiR-Capture improvements 

As it is a relatively novel technique, there is scope for improvement in the miR-Capture 

technique. An example would be to optimise the formaldehyde crosslinking step to try 

isolate bound miRNAs more efficiently. Additionally, it would be an interesting exercise to 

repeat the miR-Capture for other anti- and pro-apoptotic genes to see if there is a 

commonality of miRNAs pulled down which may target more than one apoptotic related 

gene/mRNA.  

Finally, as this was a novel technique, many steps can be altered which may be beneficial 

or in the contrary detrimental to the success of the miR-Capture process. For example, there 

were many washing steps with Catherine greens labs continuously experimenting to 

increase the efficiency and reproducibility of the technique. Therefore, multiple repeats of 

the technique using different arrangements of washing agents and exposure times may be 

useful in detecting more miRNAs (as some may simply not be bound to the XIAP mRNA 
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strongly enough using an oligo hook) and as a result, may have been undetected form the 

protocol we used. We could also compare the set of miRNAs after each miR-Capture. 

 

6.10.6: Are other anti-apoptotic genes targeted by the XIAP miR-Capture miRNAs 

As mentioned previously in section 6.8, it would be interesting to see if the four miRNAs 

identified as common or indeed any miRNA detected from the miR-Capture from either 

species affect the regulation of other anti-apoptotic genes. We were limited to in silico 

prediction only but we suggest validation using premir and antagomir to overexpress or 

knock down various miRNAs which are predicted to bind XIAP and a range of other 

related genes. In other words, by performing miR-Capture on other anti-apoptotic genes we 

would like to see if they are controlled by an overlapping set of miRNAs.  

 

6.10.7: XIAP 3’UTR reporter assay 

The XIAP 3’UTR reporter functional assay showed the decrease in GFP expression 

resulting from a co-transfection of a GFP construct containing a 3.7 kb sequence of the 

human XIAP 3’UTR with various miRNA mimics (Figure 4.3.6.1.2).  

For future work we recommend isolating the CHO XIAP equivalent (~3.7 kb) and clone to 

the GFP plasmid and repeat the assay. It would be beneficial to see effect after co-

transfection of the GFP- XIAP 3’UTR construct and various mimics in CHO cells, the 

experiment as it wasn’t originally specific for CHO. This was based on the hypothesis that 

different cell lines have potentially different levels of endogenous miRNAs, however, it 

must be noted that identifying and isolating the CHO 3’UTR sequence was not possible at 

the time of designing the experiment. With the release of the draft CHO sequence this is 

now possible. 
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6.10.8: Use the promoters from project 1 to control XIAP transgene expression 

To amalgamate both projects, we suggest using the temperature sensitive promoters 

identified from project 1 to drive competitive inhibitors of miRNAs ‘miRNA sponges’ in 

order to repress the set of miRNAs which control XIAP, and hence increase XIAP 

expression late in culture for example, to delay the onset of apoptosis. MiRNA sponges are 

transcripts which usually function under the control of a strong promoter, so we suggest 

using our strong CHO endogenous promoters which would be an attractive means for 

controlling XIAP expression coupled with a temperature inducible means of altering 

expression. 

Similarly, we could use sponges’ specific to the subset of miRNAs which regulate XIAP 

and engineer stable CHO cells to reduce these miRNAs and potentially get the same 

phenotypes as we saw from the XIAP overexpression experiments.  

 

 

 

 

 

 

 



 
 

376 
 

Section 7.0  

 

 

 

 

 

 

Bibliography & Appendices 
 

 

 

 

 

 

 

 

 

 

 



 
 

377 
 

 

7.1: Bibliography 

Albelda, S.M. and Buck, C.A. 1990. Integrins and other cell adhesion molecules. FASEB 

Journal : Official Publication of the Federation of American Societies for Experimental 

Biology, 4(11), pp.2868-2880.  

Al-Fageeh, M.B. and Smales, C.M. 2009. Cold-inducible RNA binding protein (CIRP) 

expression is modulated by alternative mRNAs. RNA (New York, N.Y.), 15(6), pp.1164-

1176.  

Altuvia, Y., Landgraf, P., Lithwick, G., Elefant, N., Pfeffer, S., Aravin, A., Brownstein, 

M.J., Tuschl, T. and Margalit, H. 2005. Clustering and conservation patterns of human 

microRNAs. Nucleic Acids Research, 33(8), pp.2697-2706.  

Amarzguioui, M., Rossi, J.J. and Kim, D. 2005. Approaches for chemically synthesized 

siRNA and vector-mediated RNAi. FEBS Letters, 579(26), pp.5974-5981.  

Ameres, S.L., Horwich, M.D., Hung, J.H., Xu, J., Ghildiyal, M., Weng, Z. and Zamore, 

P.D. 2010. Target RNA-directed trimming and tailing of small silencing RNAs. Science 

(New York, N.Y.), 328(5985), pp.1534-1539.  

Andachi, Y. 2008. A novel biochemical method to identify target genes of individual 

microRNAs: Identification of a new caenorhabditis elegans let-7 target. RNA (New York, 

N.Y.), 14(11), pp.2440-2451.  

Antoniou, M., Harland, L., Mustoe, T., Williams, S., Holdstock, J., Yague, E., Mulcahy, T., 

Griffiths, M., Edwards, S., Ioannou, P.A., Mountain, A. and Crombie, R. 2003. Transgenes 

encompassing dual-promoter CpG islands from the human TBP and HNRPA2B1 loci are 

resistant to heterochromatin-mediated silencing. Genomics, 82(3), pp.269-279.  

Arden, N. and Betenbaugh, M.J. 2004. Life and death in mammalian cell culture: Strategies 

for apoptosis inhibition. Trends in Biotechnology, 22(4), pp.174-180.  

Aubel, D. and Fussenegger, M. 2010. Mammalian synthetic biology--from tools to 

therapies. BioEssays : News and Reviews in Molecular, Cellular and Developmental 

Biology, 32(4), pp.332-345.  

Authier, H., Billot, K., Derudder, E., Bordereaux, D., Riviere, P., Rodrigues-Ferreira, S., 

Nahmias, C. and Baud, V. 2014. IKK phosphorylates RelB to modulate its promoter 

specificity and promote fibroblast migration downstream of TNF receptors. Proceedings of 

the National Academy of Sciences of the United States of America, 111(41), pp.14794-

14799.  



 
 

378 
 

Baek, D., Villen, J., Shin, C., Camargo, F.D., Gygi, S.P. and Bartel, D.P. 2008. The impact 

of microRNAs on protein output. Nature, 455(7209), pp.64-71.  

Bailey, T.L. 2011. DREME: Motif discovery in transcription factor ChIP-seq data. 

Bioinformatics (Oxford, England), 27(12), pp.1653-1659.  

Baranick, B.T., Lemp, N.A., Nagashima, J., Hiraoka, K., Kasahara, N. and Logg, C.R. 

2008. Splicing mediates the activity of four putative cellular internal ribosome entry sites. 

Proceedings of the National Academy of Sciences of the United States of America, 105(12), 

pp.4733-4738.  

Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, 

D.A. and Horvath, P. 2007. CRISPR provides acquired resistance against viruses in 

prokaryotes. Science (New York, N.Y.), 315(5819), pp.1709-1712.  

Barron, N., Sanchez, N., Kelly, P. and Clynes, M. 2011. MicroRNAs: Tiny targets for 

engineering CHO cell phenotypes? Biotechnology Letters, 33(1), pp.11-21.  

Bassiri, H., Janice Yeo, W.C., Rothman, J., Koretzky, G.A. and Nichols, K.E. 2008. X-

linked lymphoproliferative disease (XLP): A model of impaired anti-viral, anti-tumor and 

humoral immune responses. Immunologic Research, 42(1-3), pp.145-159.  

Becker, E., Florin, L., Pfizenmaier, K. and Kaufmann, H. 2010. Evaluation of a 

combinatorial cell engineering approach to overcome apoptotic effects in XBP-1(s) 

expressing cells. Journal of Biotechnology, 146(4), pp.198-206.  

Beitzinger, M. and Meister, G. 2011. Experimental identification of microRNA targets by 

immunoprecipitation of argonaute protein complexes. Methods in Molecular Biology 

(Clifton, N.J.), 732pp.153-167.  

Beitzinger, M., Peters, L., Zhu, J.Y., Kremmer, E. and Meister, G. 2007. Identification of 

human microRNA targets from isolated argonaute protein complexes. RNA Biology, 4(2), 

pp.76-84.  

Benham, C., Kohwi-Shigematsu, T. and Bode, J. 1997. Stress-induced duplex DNA 

destabilization in scaffold/matrix attachment regions. Journal of Molecular Biology, 

274(2), pp.181-196.  

Benton, T., Chen, T., McEntee, M., Fox, B., King, D., Crombie, R., Thomas, T.C. and 

Bebbington, C. 2002. The use of UCOE vectors in combination with a preadapted serum 

free, suspension cell line allows for rapid production of large quantities of protein. 

Cytotechnology, 38(1-3), pp.43-46.  

Bentwich, I. 2005. Prediction and validation of microRNAs and their targets. FEBS Letters, 

579(26), pp.5904-5910.  



 
 

379 
 

Berkes, C.A., Bergstrom, D.A., Penn, B.H., Seaver, K.J., Knoepfler, P.S. and Tapscott, S.J. 

2004. Pbx marks genes for activation by MyoD indicating a role for a homeodomain 

protein in establishing myogenic potential. Molecular Cell, 14(4), pp.465-477.  

Berkhout, B. and Liu, Y.P. 2014. Towards improved shRNA and miRNA reagents as 

inhibitors of HIV-1 replication. Future Microbiology, 9(4), pp.561-571.  

Berkner, ,Silvia, Wlodkowski, ,Alexander, Albers, ,Sonja-Verena and Lipps, ,Georg. 2010. 

Inducible and constitutive promoters for genetic systems in sulfolobus acidocaldarius. 

Extremophiles, (3), pp.249-259.  

Berkner, S. and Lipps, G. 2008. Genetic tools for sulfolobus spp.: Vectors and first 

applications. Archives of Microbiology, 190(3), pp.217-230.  

Bi, J.X., Shuttleworth, J. and Al-Rubeai, M. 2004. Uncoupling of cell growth and 

proliferation results in enhancement of productivity in p21CIP1-arrested CHO cells. 

Biotechnology and Bioengineering, 85(7), pp.741-749.  

Bi, W., Wu, L., Coustry, F., de Crombrugghe, B. and Maity, S.N. 1997. DNA binding 

specificity of the CCAAT-binding factor CBF/NF-Y. The Journal of Biological Chemistry, 

272(42), pp.26562-26572.  

Blankenship, J.W., Varfolomeev, E., Goncharov, T., Fedorova, A.V., Kirkpatrick, D.S., 

Izrael-Tomasevic, A., Phu, L., Arnott, D., Aghajan, M., Zobel, K., Bazan, J.F., Fairbrother, 

W.J., Deshayes, K. and Vucic, D. 2009. Ubiquitin binding modulates IAP antagonist-

stimulated proteasomal degradation of c-IAP1 and c-IAP2(1). The Biochemical Journal, 

417(1), pp.149-160.  

Bode, J., Winkelmann, S., Gotze, S., Spiker, S., Tsutsui, K., Bi, C., A, K.P. and Benham, C. 

2006. Correlations between scaffold/matrix attachment region (S/MAR) binding activity 

and DNA duplex destabilization energy. Journal of Molecular Biology, 358(2), pp.597-613.  

Bondarenko, V.A., Liu, Y.V., Jiang, Y.I. and Studitsky, V.M. 2003. Communication over a 

large distance: Enhancers and insulators. Biochemistry and Cell Biology = Biochimie Et 

Biologie Cellulaire, 81(3), pp.241-251.  

Boorsma, M., Hoenke, S., Marrero, A., Fischer, R., Bailey, J.E., Renner, W.A. and 

Bachmann, M.F. 2002. Bioprocess applications of a sindbis virus-based temperature-

inducible expression system. Biotechnology and Bioengineering, 79(6), pp.602-609.  

Booth, L.A., Tavallai, S., Hamed, H.A., Cruickshanks, N. and Dent, P. 2014. The role of 

cell signalling in the crosstalk between autophagy and apoptosis. Cellular Signalling, 26(3), 

pp.549-555.  



 
 

380 
 

Boscolo, S., Mion, F., Licciulli, M., Macor, P., De Maso, L., Brce, M., Antoniou, M.N., 

Marzari, R., Santoro, C. and Sblattero, D. 2012. Simple scale-up of recombinant antibody 

production using an UCOE containing vector. New Biotechnology, 29(4), pp.477-484.  

Brochu, C., Cabrita, M.A., Melanson, B.D., Hamill, J.D., Lau, R., Pratt, M.A. and McKay, 

B.C. 2013. NF-kappaB-dependent role for cold-inducible RNA binding protein in 

regulating interleukin 1beta. PloS One, 8(2), pp.e57426.  

Brooks, A.R., Harkins, R.N., Wang, P., Qian, H.S., Liu, P. and Rubanyi, G.M. 2004. 

Transcriptional silencing is associated with extensive methylation of the CMV promoter 

following adenoviral gene delivery to muscle. The Journal of Gene Medicine, 6(4), pp.395-

404.  

Brown, A.J., Sweeney, B., Mainwaring, D.O. and James, D.C. 2014. Synthetic promoters 

for CHO cell engineering. Biotechnology and Bioengineering,  

Brummelkamp, T.R., Bernards, R. and Agami, R. 2002. Stable suppression of 

tumorigenicity by virus-mediated RNA interference. Cancer Cell, 2(3), pp.243-247.  

Buonamici, S., Chakraborty, S., Senyuk, V. and Nucifora, G. 2003. The role of EVI1 in 

normal and leukemic cells. Blood Cells, Molecules & Diseases, 31(2), pp.206-212.  

Chappell, S.A., Owens, G.C. and Mauro, V.P. 2001. A 5' leader of Rbm3, a cold stress-

induced mRNA, mediates internal initiation of translation with increased efficiency under 

conditions of mild hypothermia. The Journal of Biological Chemistry, 276(40), pp.36917-

36922.  

Chaudhuri, K. and Chatterjee, R. 2007. MicroRNA detection and target prediction: 

Integration of computational and experimental approaches. DNA and Cell Biology, 26(5), 

pp.321-337.  

Carninci, ,Piero, Sandelin, ,Albin, Lenhard, ,Boris, Katayama, ,Shintaro, Shimokawa, 

,Kazuro, Ponjavic, ,Jasmina, Semple, C.,A.M., Taylor, M.,S., Engstrom, P.,G., Frith, M.,C., 

Forrest, A.,R.R., Alkema, W.,B., Tan, S.,Lam, Plessy, ,Charles, Kodzius, ,Rimantas, 

Ravasi, ,Timothy, Kasukawa, ,Takeya, Fukuda, ,Shiro, Kanamori-Katayama, ,Mutsumi, 

Kitazume, ,Yayoi, Kawaji, ,Hideya, Kai, ,Chikatoshi, Nakamura, ,Mari, Konno, ,Hideaki, 

Nakano, ,Kenji, Mottagui-Tabar, ,Salim, Arner, ,Peter, Chesi, ,Alessandra, Gustincich, 

,Stefano, Persichetti, ,Francesca, Suzuki, ,Harukazu, Grimmond, S.,M., Wells, C.,A., 

Orlando, ,Valerio, Wahlestedt, ,Claes, Liu, E.,T., Harbers, ,Matthias, Kawai, ,Jun, Bajic, 

V.,B., Hume, D.,A. and Hayashizaki, ,Yoshihide. Genome-wide analysis of mammalian 

promoter architecture and evolution.  

Castro, P.M., Hayter, P.M., Ison, A.P. and Bull, A.T. 1992. Application of a statistical 

design to the optimization of culture medium for recombinant interferon-gamma production 

by chinese hamster ovary cells. Applied Microbiology and Biotechnology, 38(1), pp.84-90.  



 
 

381 
 

Cato, A.C., Henderson, D. and Ponta, H. 1987. The hormone response element of the 

mouse mammary tumour virus DNA mediates the progestin and androgen induction of 

transcription in the proviral long terminal repeat region. The EMBO Journal, 6(2), pp.363-

368.  

Chan, K.K., Wu, S.M., Nissom, P.M., Oh, S.K. and Choo, A.B. 2008. Generation of high-

level stable transgene expressing human embryonic stem cell lines using chinese hamster 

elongation factor-1 alpha promoter system. Stem Cells and Development, 17(4), pp.825-

836.  

Chappell, S.A. and Mauro, V.P. 2003. The internal ribosome entry site (IRES) contained 

within the RNA-binding motif protein 3 (Rbm3) mRNA is composed of functionally 

distinct elements. The Journal of Biological Chemistry, 278(36), pp.33793-33800.  

Chen, J., Haverty, J., Deng, L., Li, G., Qiu, P., Liu, Z. and Shi, S. 2013. Identification of a 

novel endogenous regulatory element in chinese hamster ovary cells by promoter trap. 

Journal of Biotechnology, 167(3), pp.255-261.  

Chi, S.W., Zang, J.B., Mele, A. and Darnell, R.B. 2009. Argonaute HITS-CLIP decodes 

microRNA-mRNA interaction maps. Nature, 460(7254), pp.479-486.  

Chien, W., Ding, L.W., Sun, Q.Y., Torres-Fernandez, L.A., Tan, S.Z., Xiao, J., Lim, S.L., 

Garg, M., Lee, K.L., Kitajima, S., Takao, S., Leong, W.Z., Sun, H., Tokatly, I., Poellinger, 

L., Gery, S. and Koeffler, P.H. 2014. Selective inhibition of unfolded protein response 

induces apoptosis in pancreatic cancer cells. Oncotarget,  

Cho, S.W., Kim, S., Kim, Y., Kweon, J., Kim, H.S., Bae, S. and Kim, J.S. 2014. Analysis 

of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. 

Genome Research, 24(1), pp.132-141.  

Chong, W.P., Reddy, S.G., Yusufi, F.N., Lee, D.Y., Wong, N.S., Heng, C.K., Yap, M.G. 

and Ho, Y.S. 2010. Metabolomics-driven approach for the improvement of chinese hamster 

ovary cell growth: Overexpression of malate dehydrogenase II. Journal of Biotechnology, 

147(2), pp.116-121.  

Choudhuri, S. 2009. Lesser known relatives of miRNA. Biochemical and Biophysical 

Research Communications, 388(2), pp.177-180.  

Clark, K.J., Chaplin, F.W. and Harcum, S.W. 2004. Temperature effects on product-

quality-related enzymes in batch CHO cell cultures producing recombinant tPA. 

Biotechnology Progress, 20(6), pp.1888-1892.  

Clarke, C., Doolan, P., Barron, N., Meleady, P., O'Sullivan, F., Gammell, P., Melville, M., 

Leonard, M. and Clynes, M. 2011. Large scale microarray profiling and coexpression 

network analysis of CHO cells identifies transcriptional modules associated with growth 

and productivity. Journal of Biotechnology, 155(3), pp.350-359.  



 
 

382 
 

Clarke, C., Henry, M., Doolan, P., Kelly, S., Aherne, S., Sanchez, N., Kelly, P., Kinsella, 

P., Breen, L., Madden, S.F., Zhang, L., Leonard, M., Clynes, M., Meleady, P. and Barron, 

N. 2012. Integrated miRNA, mRNA and protein expression analysis reveals the role of 

post-transcriptional regulation in controlling CHO cell growth rate. BMC Genomics, 

13pp.656-2164-13-656.  

Cohen, S.N., Chang, A.C., Boyer, H.W. and Helling, R.B. 1973. Construction of 

biologically functional bacterial plasmids in vitro. Proceedings of the National Academy of 

Sciences of the United States of America, 70(11), pp.3240-3244.  

Cost, G.J., Freyvert, Y., Vafiadis, A., Santiago, Y., Miller, J.C., Rebar, E., Collingwood, 

T.N., Snowden, A. and Gregory, P.D. 2010. BAK and BAX deletion using zinc-finger 

nucleases yields apoptosis-resistant CHO cells. Biotechnology and Bioengineering, 105(2), 

pp.330-340.  

Crouse, G.F., McEwan, R.N. and Pearson, M.L. 1983. Expression and amplification of 

engineered mouse dihydrofolate reductase minigenes. Molecular and Cellular Biology, 

3(2), pp.257-266.  

Dahodwala, H., Nowey, M., Mitina, T. and Sharfstein, S.T. 2012. Effects of clonal 

variation on growth, metabolism, and productivity in response to trophic factor stimulation: 

A study of chinese hamster ovary cells producing a recombinant monoclonal antibody. 

Cytotechnology, 64(1), pp.27-41.  

Darnell, J.E.,Jr. 1997. STATs and gene regulation. Science (New York, N.Y.), 277(5332), 

pp.1630-1635.  

Dasgupta, A., Das, S., Izumi, R., Venkatesan, A. and Barat, B. 2004. Targeting internal 

ribosome entry site (IRES)-mediated translation to block hepatitis C and other RNA 

viruses. FEMS Microbiology Letters, 234(2), pp.189-199.  

Datta, P., Linhardt, R.J. and Sharfstein, S.T. 2013. An 'omics approach towards CHO cell 

engineering. Biotechnology and Bioengineering, 110(5), pp.1255-1271.  

Davies, J. and Jacob, F. 1968. Genetic mapping of the regulator and operator genes of the 

lac operon. Journal of Molecular Biology, 36(3), pp.413-417.  

Davydova, A.I., Erokhin, M.M., Georgiev, P.G. and Chetverina, D.A. 2011. Distant 

interactions between enhancers and promoters in drosophila melanogaster are mediated by 

transgene-flanking su(hw) insulators. Genetika, 47(8), pp.1037-1043.  

de Almagro, M.C. and Vucic, D. 2012. The inhibitor of apoptosis (IAP) proteins are critical 

regulators of signaling pathways and targets for anti-cancer therapy. Experimental 

Oncology, 34(3), pp.200-211.  



 
 

383 
 

De Leeuw, F., Zhang, T., Wauquier, C., Huez, G., Kruys, V. and Gueydan, C. 2007. The 

cold-inducible RNA-binding protein migrates from the nucleus to cytoplasmic stress 

granules by a methylation-dependent mechanism and acts as a translational repressor. 

Experimental Cell Research, 313(20), pp.4130-4144.  

Dean, A. 2011. In the loop: Long range chromatin interactions and gene regulation. 

Briefings in Functional Genomics, 10(1), pp.3-10.  

Delhalle, S., Duvoix, A., Schnekenburger, M., Morceau, F., Dicato, M. and Diederich, M. 

2003. An introduction to the molecular mechanisms of apoptosis. Annals of the New York 

Academy of Sciences, 1010pp.1-8.  

Deveraux, Q.L. and Reed, J.C. 1999. IAP family proteins--suppressors of apoptosis. Genes 

& Development, 13(3), pp.239-252.  

Ding, J., Cai, X., Wang, Y., Hu, H. and Li, X. 2013. ChIPModule: Systematic discovery of 

transcription factors and their cofactors from ChIP-seq data. Pacific Symposium on 

Biocomputing.Pacific Symposium on Biocomputing, pp.320-331.  

Ding, J., Hu, H. and Li, X. 2014. SIOMICS: A novel approach for systematic identification 

of motifs in ChIP-seq data. Nucleic Acids Research, 42(5), pp.e35.  

Doolan, P., Barron, N., Kinsella, P., Clarke, C., Meleady, P., O'Sullivan, F., Melville, M., 

Leonard, M. and Clynes, M. 2012. Microarray expression profiling identifies genes 

regulating sustained cell specific productivity (S-qp) in CHO K1 production cell lines. 

Biotechnology Journal, 7(4), pp.516-526.  

Doolan, P., Clarke, C., Kinsella, P., Breen, L., Meleady, P., Leonard, M., Zhang, L., 

Clynes, M., Aherne, S.T. and Barron, N. 2013. Transcriptomic analysis of clonal growth 

rate variation during CHO cell line development. Journal of Biotechnology, 166(3), pp.105-

113.  

Doolan, P., Meleady, P., Barron, N., Henry, M., Gallagher, R., Gammell, P., Melville, M., 

Sinacore, M., McCarthy, K., Leonard, M., Charlebois, T. and Clynes, M. 2010. Microarray 

and proteomics expression profiling identifies several candidates, including the valosin-

containing protein (VCP), involved in regulating high cellular growth rate in production 

CHO cell lines. Biotechnology and Bioengineering, 106(1), pp.42-56.  

Dorai, H., Corisdeo, S., Ellis, D., Kinney, C., Chomo, M., Hawley-Nelson, P., Moore, G., 

Betenbaugh, M.J. and Ganguly, S. 2012. Early prediction of instability of chinese hamster 

ovary cell lines expressing recombinant antibodies and antibody-fusion proteins. 

Biotechnology and Bioengineering, 109(4), pp.1016-1030.  

Dorai, H., Ellis, D., Keung, Y.S., Campbell, M., Zhuang, M., Lin, C. and Betenbaugh, M.J. 

2010. Combining high-throughput screening of caspase activity with anti-apoptosis genes 



 
 

384 
 

for development of robust CHO production cell lines. Biotechnology Progress, 26(5), 

pp.1367-1381.  

Dorai, H., Kyung, Y.S., Ellis, D., Kinney, C., Lin, C., Jan, D., Moore, G. and Betenbaugh, 

M.J. 2009. Expression of anti-apoptosis genes alters lactate metabolism of chinese hamster 

ovary cells in culture. Biotechnology and Bioengineering, 103(3), pp.592-608.  

Dreesen, I.A. and Fussenegger, M. 2010. Ectopic expression of human mTOR increases 

viability, robustness, cell size, proliferation, and antibody production of chinese hamster 

ovary cells. Biotechnology and Bioengineering,  

Dresios, J., Aschrafi, A., Owens, G.C., Vanderklish, P.W., Edelman, G.M. and Mauro, V.P. 

2005. Cold stress-induced protein Rbm3 binds 60S ribosomal subunits, alters microRNA 

levels, and enhances global protein synthesis. Proceedings of the National Academy of 

Sciences of the United States of America, 102(6), pp.1865-1870.  

Druz, A., Chu, C., Majors, B., Santuary, R., Betenbaugh, M. and Shiloach, J. 2011. A novel 

microRNA mmu-miR-466h affects apoptosis regulation in mammalian cells. Biotechnology 

and Bioengineering, 108(7), pp.1651-1661.  

Duckett, C.S., Li, F., Wang, Y., Tomaselli, K.J., Thompson, C.B. and Armstrong, R.C. 

1998. Human IAP-like protein regulates programmed cell death downstream of bcl-xL and 

cytochrome c. Molecular and Cellular Biology, 18(1), pp.608-615.  

Durai, S., Mani, M., Kandavelou, K., Wu, J., Porteus, M.H. and Chandrasegaran, S. 2005. 

Zinc finger nucleases: Custom-designed molecular scissors for genome engineering of plant 

and mammalian cells. Nucleic Acids Research, 33(18), pp.5978-5990.  

Dweep, H., Sticht, C., Pandey, P. and Gretz, N. 2011. miRWalk--database: Prediction of 

possible miRNA binding sites by "walking" the genes of three genomes. Journal of 

Biomedical Informatics, 44(5), pp.839-847.  

Eckelman, B.P., Salvesen, G.S. and Scott, F.L. 2006. Human inhibitor of apoptosis 

proteins: Why XIAP is the black sheep of the family. EMBO Reports, 7(10), pp.988-994.  

Ecker, J.R., Bickmore, W.A., Barroso, I., Pritchard, J.K., Gilad, Y. and Segal, E. 2012. 

Genomics: ENCODE explained. Nature, 489(7414), pp.52-55.  

Ehrbar, M., Schoenmakers, R., Christen, E.H., Fussenegger, M. and Weber, W. 2008. 

Drug-sensing hydrogels for the inducible release of biopharmaceuticals. Nature Materials, 

7(10), pp.800-804.  

Epinat, J.C., Arnould, S., Chames, P., Rochaix, P., Desfontaines, D., Puzin, C., Patin, A., 

Zanghellini, A., Paques, F. and Lacroix, E. 2003. A novel engineered meganuclease 

induces homologous recombination in yeast and mammalian cells. Nucleic Acids Research, 

31(11), pp.2952-2962.  



 
 

385 
 

Eschenburg, G., Eggert, A., Schramm, A., Lode, H.N. and Hundsdoerfer, P. 2012. Smac 

mimetic LBW242 sensitizes XIAP-overexpressing neuroblastoma cells for TNF-alpha-

independent apoptosis. Cancer Research, 72(10), pp.2645-2656.  

Farre, D., Roset, R., Huerta, M., Adsuara, J.E., Rosello, L., Alba, M.M. and Messeguer, X. 

2003. Identification of patterns in biological sequences at the ALGGEN server: PROMO 

and MALGEN. Nucleic Acids Research, 31(13), pp.3651-3653.  

Feng, G., Hicks, P. and Chang, P.L. 2003. Differential expression of mammalian or viral 

promoter-driven gene in adherent versus suspension cells. In Vitro Cellular & 

Developmental Biology.Animal, 39(10), pp.420-423.  

Figueroa, B.,Jr, Ailor, E., Osborne, D., Hardwick, J.M., Reff, M. and Betenbaugh, M.J. 

2007. Enhanced cell culture performance using inducible anti-apoptotic genes E1B-19K 

and aven in the production of a monoclonal antibody with chinese hamster ovary cells. 

Biotechnology and Bioengineering, 97(4), pp.877-892.  

Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E. and Mello, C.C. 1998. 

Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans. 

Nature, 391(6669), pp.806-811.  

Fischer, S., Buck, T., Wagner, A., Ehrhart, C., Giancaterino, J., Mang, S., Schad, M., 

Mathias, S., Aschrafi, A., Handrick, R. and Otte, K. 2014. A functional high-content 

miRNA screen identifies miR-30 family to boost recombinant protein production in CHO 

cells. Biotechnology Journal,  

Foecking, M.K. and Hofstetter, H. 1986. Powerful and versatile enhancer-promoter unit for 

mammalian expression vectors. Gene, 45(1), pp.101-105.  

Fogolin, M.B., Wagner, R., Etcheverrigaray, M. and Kratje, R. 2004. Impact of temperature 

reduction and expression of yeast pyruvate carboxylase on hGM-CSF-producing CHO 

cells. Journal of Biotechnology, 109(1-2), pp.179-191.  

Fox, S.R., Yap, M.X., Yap, M.G. and Wang, D.I. 2005. Active hypothermic growth: A 

novel means for increasing total interferon-gamma production by chinese-hamster ovary 

cells. Biotechnology and Applied Biochemistry, 41(Pt 3), pp.265-272.  

Fuchs, O. 2006. EVI1 and its role in myelodysplastic syndrome, myeloid leukemia and 

other malignant diseases. Casopis Lekaru Ceskych, 145(8), pp.619-624.  

Fujita, J. 1999. Cold shock response in mammalian cells. Journal of Molecular 

Microbiology and Biotechnology, 1(2), pp.243-255.  

Fukunaga, K. and Shioda, N. 2009. Pathophysiological relevance of forkhead transcription 

factors in brain ischemia. Advances in Experimental Medicine and Biology, 665pp.130-142. 



 
 

386 
 

Furukawa, K. and Ohsuye, K. 1998. Effect of culture temperature on a recombinant CHO 

cell line producing a C-terminal alpha-amidating enzyme. Cytotechnology, 26(2), pp.153-

164.  

Fussenegger, M. 2001. The impact of mammalian gene regulation concepts on functional 

genomic research, metabolic engineering, and advanced gene therapies. Biotechnology 

Progress, 17(1), pp.1-51.  

Fussenegger, M., Mazur, X. and Bailey, J.E. 1998. pTRIDENT, a novel vector family for 

tricistronic gene expression in mammalian cells. Biotechnology and Bioengineering, 57(1), 

pp.1-10.  

Fussenegger, M., Mazur, X. and Bailey, J.E. 1997. A novel cytostatic process enhances the 

productivity of chinese hamster ovary cells. Biotechnology and Bioengineering, 55(6), 

pp.927-939.  

Fussenegger, M., Moser, S., Mazur, X. and Bailey, J.E. 1997. Autoregulated multicistronic 

expression vectors provide one-step cloning of regulated product gene expression in 

mammalian cells. Biotechnology Progress, 13(6), pp.733-740.  

Fussenegger, M., Schlatter, S., Datwyler, D., Mazur, X. and Bailey, J.E. 1998. Controlled 

proliferation by multigene metabolic engineering enhances the productivity of chinese 

hamster ovary cells. Nature Biotechnology, 16(5), pp.468-472.  

Fux, C., Langer, D., Kelm, J.M., Weber, W. and Fussenegger, M. 2004. New-generation 

multicistronic expression platform: PTRIDENT vectors containing size-optimized IRES 

elements enable homing endonuclease-based cistron swapping into lentiviral expression 

vectors. Biotechnology and Bioengineering, 86(2), pp.174-187.  

Gagniuc, P. and Ionescu-Tirgoviste, C. 2012. Eukaryotic genomes may exhibit up to 10 

generic classes of gene promoters. BMC Genomics, 13pp.512-2164-13-512.  

Gaillet, B., Gilbert, R., Broussau, S., Pilotte, A., Malenfant, F., Mullick, A., Garnier, A. and 

Massie, B. 2010. High-level recombinant protein production in CHO cells using lentiviral 

vectors and the cumate gene-switch. Biotechnology and Bioengineering, 106(2), pp.203-

215.  

Ganem, C., Devaux, F., Torchet, C., Jacq, C., Quevillon-Cheruel, S., Labesse, G., Facca, C. 

and Faye, G. 2003. Ssu72 is a phosphatase essential for transcription termination of 

snoRNAs and specific mRNAs in yeast. The EMBO Journal, 22(7), pp.1588-1598.  

Gaj, T., Gersbach, C.A. and Barbas, C.F.,3rd. 2013. ZFN, TALEN, and CRISPR/Cas-based 

methods for genome engineering. Trends in Biotechnology, 31(7), pp.397-405.  



 
 

387 
 

Gammell, P., Barron, N., Kumar, N. and Clynes, M. 2007. Initial identification of low 

temperature and culture stage induction of miRNA expression in suspension CHO-K1 cells. 

Journal of Biotechnology, 130(3), pp.213-218.  

Garcia-Otin, A.L. and Guillou, F. 2006. Mammalian genome targeting using site-specific 

recombinases. Frontiers in Bioscience : A Journal and Virtual Library, 11pp.1108-1136.  

Garcia, D.M., Baek, D., Shin, C., Bell, G.W., Grimson, A. and Bartel, D.P. 2011. Weak 

seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and 

other microRNAs. Nature Structural & Molecular Biology, 18(10), pp.1139-1146.  

Garrido, C., Brunet, M., Didelot, C., Zermati, Y., Schmitt, E. and Kroemer, G. 2006. Heat 

shock proteins 27 and 70: Anti-apoptotic proteins with tumorigenic properties. Cell Cycle 

(Georgetown, Tex.), 5(22), pp.2592-2601.  

Geiduschek, E.P. and Tocchini-Valentini, G.P. 1988. Transcription by RNA polymerase 

III. Annual Review of Biochemistry, 57pp.873-914.  

Ghorbaniaghdam, A., Chen, J., Henry, O. and Jolicoeur, M. 2014. Analyzing clonal 

variation of monoclonal antibody-producing CHO cell lines using an in silico metabolomic 

platform. PloS One, 9(3), pp.e90832.  

Gillissen, B., Richter, A., Richter, A., Overkamp, T., Essmann, F., Hemmati, P.G., 

Preissner, R., Belka, C. and Daniel, P.T. 2013. Targeted therapy of the XIAP/proteasome 

pathway overcomes TRAIL-resistance in carcinoma by switching apoptosis signaling to a 

Bax/Bak-independent 'type I' mode. Cell Death & Disease, 4pp.e643.  

Girod, P.A., Zahn-Zabal, M. and Mermod, N. 2005. Use of the chicken lysozyme 5' matrix 

attachment region to generate high producer CHO cell lines. Biotechnology and 

Bioengineering, 91(1), pp.1-11.  

Gomez, N., Subramanian, J., Ouyang, J., Nguyen, M.D., Hutchinson, M., Sharma, V.K., 

Lin, A.A. and Yuk, I.H. 2012. Culture temperature modulates aggregation of recombinant 

antibody in cho cells. Biotechnology and Bioengineering, 109(1), pp.125-136.  

Gossen, M. and Bujard, H. 1992. Tight control of gene expression in mammalian cells by 

tetracycline-responsive promoters. Proceedings of the National Academy of Sciences of the 

United States of America, 89(12), pp.5547-5551.  

Gratz, S.J., Wildonger, J., Harrison, M.M. and O'Connor-Giles, K.M. 2013. CRISPR/Cas9-

mediated genome engineering and the promise of designer flies on demand. Fly, 7(4), 

pp.249-255.  

Greber, D. and Fussenegger, M. 2007. Mammalian synthetic biology: Engineering of 

sophisticated gene networks. Journal of Biotechnology, 130(4), pp.329-345.  



 
 

388 
 

Grimson, A., Farh, K.K., Johnston, W.K., Garrett-Engele, P., Lim, L.P. and Bartel, D.P. 

2007. MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. 

Molecular Cell, 27(1), pp.91-105.  

Grissa, I., Vergnaud, G. and Pourcel, C. 2007. The CRISPRdb database and tools to display 

CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics, 

8pp.172.  

Grizot, S., Smith, J., Daboussi, F., Prieto, J., Redondo, P., Merino, N., Villate, M., Thomas, 

S., Lemaire, L., Montoya, G., Blanco, F.J., Paques, F. and Duchateau, P. 2009. Efficient 

targeting of a SCID gene by an engineered single-chain homing endonuclease. Nucleic 

Acids Research, 37(16), pp.5405-5419.  

Gronenborn, B. 1976. Overproduction of phage lambda repressor under control of the lac 

promotor of escherichia coli. Molecular & General Genetics : MGG, 148(3), pp.243-250.  

Grummt, I. 1999. Regulation of mammalian ribosomal gene transcription by RNA 

polymerase I. Progress in Nucleic Acid Research and Molecular Biology, 62pp.109-154.  

Gu, L., Zhu, N., Zhang, H., Durden, D.L., Feng, Y. and Zhou, M. 2009. Regulation of 

XIAP translation and induction by MDM2 following irradiation. Cancer Cell, 15(5), 

pp.363-375.  

Gualerzi, C.O., Giuliodori, A.M. and Pon, C.L. 2003. Transcriptional and post-

transcriptional control of cold-shock genes. Journal of Molecular Biology, 331(3), pp.527-

539.  

Gyrd-Hansen, M., Darding, M., Miasari, M., Santoro, M.M., Zender, L., Xue, W., Tenev, 

T., da Fonseca, P.C., Zvelebil, M., Bujnicki, J.M., Lowe, S., Silke, J. and Meier, P. 2008. 

IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-

kappaB as well as cell survival and oncogenesis. Nature Cell Biology, 10(11), pp.1309-

1317.  

Hackl, M., Jadhav, V., Jakobi, T., Rupp, O., Brinkrolf, K., Goesmann, A., Puhler, A., Noll, 

T., Borth, N. and Grillari, J. 2012. Computational identification of microRNA gene loci and 

precursor microRNA sequences in CHO cell lines. Journal of Biotechnology, 158(3), 

pp.151-155.  

Hackl, M., Jakobi, T., Blom, J., Doppmeier, D., Brinkrolf, K., Szczepanowski, R., 

Bernhart, S.H., Honer Zu Siederdissen, C., Bort, J.A., Wieser, M., Kunert, R., Jeffs, S., 

Hofacker, I.L., Goesmann, A., Puhler, A., Borth, N. and Grillari, J. 2011. Next-generation 

sequencing of the chinese hamster ovary microRNA transcriptome: Identification, 

annotation and profiling of microRNAs as targets for cellular engineering. Journal of 

Biotechnology, 153(1-2), pp.62-75.  



 
 

389 
 

Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P., 

Rothballer, A., Ascano, M., Jungkamp, A.C., Munschauer, M., Ulrich, A., Wardle, G.S., 

Dewell, S., Zavolan, M. and Tuschl, T. 2010. PAR-CliP--a method to identify 

transcriptome-wide the binding sites of RNA binding proteins. Journal of Visualized 

Experiments : JoVE, (41). pii: 2034. doi(41), pp.10.3791/2034.  

Hafner, M., Lianoglou, S., Tuschl, T. and Betel, D. 2012. Genome-wide identification of 

miRNA targets by PAR-CLIP. Methods (San Diego, Calif.), 58(2), pp.94-105.  

Hahn, S. 2004. Structure and mechanism of the RNA polymerase II transcription 

machinery. Nature Structural & Molecular Biology, 11(5), pp.394-403.  

Hammer, K., Mijakovic, I. and Jensen, P.R. 2006. Synthetic promoter libraries--tuning of 

gene expression. Trends in Biotechnology, 24(2), pp.53-55.  

Hammond, S., Kaplarevic, M., Borth, N., Betenbaugh, M.J. and Lee, K.H. 2012. Chinese 

hamster genome database: An online resource for the CHO community at 

www.CHOgenome.org. Biotechnology and Bioengineering, 109(6), pp.1353-1356.  

Han, Y.K., Kim, Y.G., Kim, J.Y. and Lee, G.M. 2010. Hyperosmotic stress induces 

autophagy and apoptosis in recombinant chinese hamster ovary cell culture. Biotechnology 

and Bioengineering, 105(6), pp.1187-1192.  

Handstad, T., Rye, M., Mocnik, R., Drablos, F. and Saetrom, P. 2012. Cell-type specificity 

of ChIP-predicted transcription factor binding sites. BMC Genomics, 13pp.372-2164-13-

372.  

Haqq, C.M., King, C.Y., Donahoe, P.K. and Weiss, M.A. 1993. SRY recognizes conserved 

DNA sites in sex-specific promoters. Proceedings of the National Academy of Sciences of 

the United States of America, 90(3), pp.1097-1101.  

Hartenbach, S. and Fussenegger, M. 2006. A novel synthetic mammalian promoter derived 

from an internal ribosome entry site. Biotechnology and Bioengineering, 95(4), pp.547-559.  

Hartenbach, S. and Fussenegger, M. 2005. Autoregulated, bidirectional and multicistronic 

gas-inducible mammalian as well as lentiviral expression vectors. Journal of 

Biotechnology, 120(1), pp.83-98.  

Harraghy, N., Buceta, M., Regamey, A., Girod, P.A. and Mermod, N. 2012. Using matrix 

attachment regions to improve recombinant protein production. Methods in Molecular 

Biology (Clifton, N.J.), 801pp.93-110.  

Harraghy, N., Regamey, A., Girod, P.A. and Mermod, N. 2011. Identification of a potent 

MAR element from the mouse genome and assessment of its activity in stable and transient 

transfections. Journal of Biotechnology, 154(1), pp.11-20.  

http://www.chogenome.org/


 
 

390 
 

Hartenbach, S. and Fussenegger, M. 2006. A novel synthetic mammalian promoter derived 

from an internal ribosome entry site. Biotechnology and Bioengineering, 95(4), pp.547-559.  

Hartenbach, S. and Fussenegger, M. 2005. Autoregulated, bidirectional and multicistronic 

gas-inducible mammalian as well as lentiviral expression vectors. Journal of 

Biotechnology, 120(1), pp.83-98.  

Hassan, T., Smith, S.G., Gaughan, K., Oglesby, I.K., O'Neill, S., McElvaney, N.G. and 

Greene, C.M. 2013. Isolation and identification of cell-specific microRNAs targeting a 

messenger RNA using a biotinylated anti-sense oligonucleotide capture affinity technique. 

Nucleic Acids Research, 41(6), pp.e71.  

Haverkamp, S., Inta, D., Monyer, H. and Wassle, H. 2009. Expression analysis of green 

fluorescent protein in retinal neurons of four transgenic mouse lines. Neuroscience, 160(1), 

pp.126-139.  

Hayashita, Y., Osada, H., Tatematsu, Y., Yamada, H., Yanagisawa, K., Tomida, S., Yatabe, 

Y., Kawahara, K., Sekido, Y. and Takahashi, T. 2005. A polycistronic microRNA cluster, 

miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer 

Research, 65(21), pp.9628-9632.  

He, X., Khan, A.U., Cheng, H., Pappas, D.L.,Jr, Hampsey, M. and Moore, C.L. 2003. 

Functional interactions between the transcription and mRNA 3' end processing machineries 

mediated by Ssu72 and Sub1. Genes & Development, 17(8), pp.1030-1042.  

Heintzman, N.D. and Ren, B. 2007. The gateway to transcription: Identifying, 

characterizing and understanding promoters in the eukaryotic genome. Cellular and 

Molecular Life Sciences : CMLS, 64(4), pp.386-400.  

Hernandez Bort, J.A., Hackl, M., Hoflmayer, H., Jadhav, V., Harreither, E., Kumar, N., 

Ernst, W., Grillari, J. and Borth, N. 2012. Dynamic mRNA and miRNA profiling of CHO-

K1 suspension cell cultures. Biotechnology Journal, 7(4), pp.500-515.  

Higashijima, A., Miura, K., Mishima, H., Kinoshita, A., Jo, O., Abe, S., Hasegawa, Y., 

Miura, S., Yamasaki, K., Yoshida, A., Yoshiura, K. and Masuzaki, H. 2013. 

Characterization of placenta-specific microRNAs in fetal growth restriction pregnancy. 

Prenatal Diagnosis, 33(3), pp.214-222.  

Hiramatsu, R., Matoba, S., Kanai-Azuma, M., Tsunekawa, N., Katoh-Fukui, Y., 

Kurohmaru, M., Morohashi, K., Wilhelm, D., Koopman, P. and Kanai, Y. 2009. A critical 

time window of sry action in gonadal sex determination in mice. Development (Cambridge, 

England), 136(1), pp.129-138.  

Hockemeyer, D., Wang, H., Kiani, S., Lai, C.S., Gao, Q., Cassady, J.P., Cost, G.J., Zhang, 

L., Santiago, Y., Miller, J.C., Zeitler, B., Cherone, J.M., Meng, X., Hinkley, S.J., Rebar, 



 
 

391 
 

E.J., Gregory, P.D., Urnov, F.D. and Jaenisch, R. 2011. Genetic engineering of human 

pluripotent cells using TALE nucleases. Nature Biotechnology, 29(8), pp.731-734.  

Holcik, M. 2003. Translational upregulation of the X-linked inhibitor of apoptosis. Annals 

of the New York Academy of Sciences, 1010pp.249-258.  

Hollenhorst, P.C., Jones, D.A. and Graves, B.J. 2004. Expression profiles frame the 

promoter specificity dilemma of the ETS family of transcription factors. Nucleic Acids 

Research, 32(18), pp.5693-5702.  

Hong, J.K., Lee, G.M. and Yoon, S.K. 2011. Growth factor withdrawal in combination 

with sodium butyrate addition extends culture longevity and enhances antibody production 

in CHO cells. Journal of Biotechnology, 155(2), pp.225-231.  

Hong, J.K., Kim, Y., Yoon, S.K. and Lee, G.M. 2007. Down-regulation of cold-inducible 

RNA-binding protein does not improve hypothermic growth of chinese hamster ovary cells 

producing erythropoietin. Metabolic Engineering, 9(2), pp.208-216.  

Howe, E.N., Cochrane, D.R. and Richer, J.K. 2012. The miR-200 and miR-221/222 

microRNA families: Opposing effects on epithelial identity. Journal of Mammary Gland 

Biology and Neoplasia, 17(1), pp.65-77.  

Hsu, R.J. and Tsai, H.J. 2011. Performing the labeled microRNA pull-down (LAMP) assay 

system: An experimental approach for high-throughput identification of microRNA-target 

mRNAs. Methods in Molecular Biology (Clifton, N.J.), 764pp.241-247.  

Huang, E.P., Marquis, C.P. and Gray, P.P. 2004. Process development for a recombinant 

chinese hamster ovary (CHO) cell line utilizing a metal induced and amplified 

metallothionein expression system. Biotechnology and Bioengineering, 88(4), pp.437-450.  

Huang, Y., Park, Y.C., Rich, R.L., Segal, D., Myszka, D.G. and Wu, H. 2001. Structural 

basis of caspase inhibition by XIAP: Differential roles of the linker versus the BIR domain. 

Cell, 104(5), pp.781-790.  

Hunter, A.M., LaCasse, E.C. and Korneluk, R.G. 2007. The inhibitors of apoptosis (IAPs) 

as cancer targets. Apoptosis : An International Journal on Programmed Cell Death, 12(9), 

pp.1543-1568.  

Hwang, S.O. and Lee, G.M. 2009. Effect of akt overexpression on programmed cell death 

in antibody-producing chinese hamster ovary cells. Journal of Biotechnology, 139(1), 

pp.89-94.  

Hwang, S.O. and Lee, G.M. 2008. Nutrient deprivation induces autophagy as well as 

apoptosis in chinese hamster ovary cell culture. Biotechnology and Bioengineering, 99(3), 

pp.678-685.  



 
 

392 
 

Ifandi, V. and Al-Rubeai, M. 2005. Regulation of cell proliferation and apoptosis in CHO-

K1 cells by the coexpression of c-myc and bcl-2. Biotechnology Progress, 21(3), pp.671-

677.  

Iwakuma, T. and Lozano, G. 2003. MDM2, an introduction. Molecular Cancer Research : 

MCR, 1(14), pp.993-1000.  

Jadhav, V., Hackl, M., Bort, J.A., Wieser, M., Harreither, E., Kunert, R., Borth, N. and 

Grillari, J. 2012. A screening method to assess biological effects of microRNA 

overexpression in chinese hamster ovary cells. Biotechnology and Bioengineering, 109(6), 

pp.1376-1385.  

Jadhav, V., Hackl, M., Druz, A., Shridhar, S., Chung, C.Y., Heffner, K.M., Kreil, D.P., 

Betenbaugh, M., Shiloach, J., Barron, N., Grillari, J. and Borth, N. 2013. CHO microRNA 

engineering is growing up: Recent successes and future challenges. Biotechnology 

Advances, 31(8), pp.1501-1513.  

Jain, K.K. 2013. Synthetic biology and personalized medicine. Medical Principles and 

Practice : International Journal of the Kuwait University, Health Science Centre, 22(3), 

pp.209-219.  

Jalali, S., Bhartiya, D., Lalwani, M.K., Sivasubbu, S. and Scaria, V. 2013. Systematic 

transcriptome wide analysis of lncRNA-miRNA interactions. PloS One, 8(2), pp.e53823.  

James, R.I., Elton, J.P., Todd, P. and Kompala, D.S. 2000. Engineering CHO cells to 

overexpress a secreted reporter protein upon induction from mouse mammary tumor virus 

promoter. Biotechnology and Bioengineering, 67(2), pp.134-140.  

Jayapal, K.P., Wlaschin, K.F., Hu, W. and Yap, M.G.S. 2007. Recombinant protein 

therapeutics from cho cells - 20 years and counting. CHO Consortium: SBE Special 

Edition, pp.40-47.  

 

Jadhav, V., Hackl, M., Druz, A., Shridhar, S., Chung, C.Y., Heffner, K.M., Kreil, D.P., 

Betenbaugh, M., Shiloach, J., Barron, N., Grillari, J. and Borth, N. 2013. CHO microRNA 

engineering is growing up: Recent successes and future challenges. Biotechnology 

Advances, 31(8), pp.1501-1513.  

Jadhav, V., Hackl, M., Klanert, G., Hernandez Bort, J.A., Kunert, R., Grillari, J. and Borth, 

N. 2014. Stable overexpression of miR-17 enhances recombinant protein production of 

CHO cells. Journal of Biotechnology, 175pp.38-44.  

Jayme, D.W. 1999. An animal origin perspective of common constituents of serum-free 

medium formulations. Developments in Biological Standardization, 99pp.181-187.  



 
 

393 
 

Jayme, D.W. and Smith, S.R. 2000. Media formulation options and manufacturing process 

controls to safeguard against introduction of animal origin contaminants in animal cell 

culture. Cytotechnology, 33(1-3), pp.27-36.  

Jeon, M.K. and Lee, G.M. 2007. Correlation between enhancing effect of sodium butyrate 

on specific productivity and mRNA transcription level in recombinant chinese hamster 

ovary cells producing antibody. Journal of Microbiology and Biotechnology, 17(6), 

pp.1036-1040.  

Ji, M., Rao, E., Ramachandrareddy, H., Shen, Y., Jiang, C., Chen, J., Hu, Y., Rizzino, A., 

Chan, W.C., Fu, K. and McKeithan, T.W. 2011. The miR-17-92 microRNA cluster is 

regulated by multiple mechanisms in B-cell malignancies. The American Journal of 

Pathology, 179(4), pp.1645-1656.  

Jiang, S., Li, C., Olive, V., Lykken, E., Feng, F., Sevilla, J., Wan, Y., He, L. and Li, Q.J. 

2011. Molecular dissection of the miR-17-92 cluster's critical dual roles in promoting Th1 

responses and preventing inducible treg differentiation. Blood, 118(20), pp.5487-5497.  

Jiang, W., Hou, Y. and Inouye, M. 1997. CspA, the major cold-shock protein of escherichia 

coli, is an RNA chaperone. The Journal of Biological Chemistry, 272(1), pp.196-202.  

Jiang, Z. and Sharfstein, S.T. 2008. Sodium butyrate stimulates monoclonal antibody over-

expression in CHO cells by improving gene accessibility. Biotechnology and 

Bioengineering, 100(1), pp.189-194.  

Jin, H.Y., Lai, M. and Xiao, C. 2014. microRNA-17~92 is a powerful cancer driver and a 

therapeutic target. Cell Cycle (Georgetown, Tex.), 13(4), pp.495-496.  

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A. and Charpentier, E. 2012. A 

programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. 

Science (New York, N.Y.), 337(6096), pp.816-821.  

Josse, L., Smales, C.M. and Tuite, M.F. 2012. Engineering the chaperone network of CHO 

cells for optimal recombinant protein production and authenticity. Methods in Molecular 

Biology (Clifton, N.J.), 824pp.595-608.  

Joung, J.K. and Sander, J.D. 2013. TALENs: A widely applicable technology for targeted 

genome editing. Nature Reviews.Molecular Cell Biology, 14(1), pp.49-55.  

Kadonaga, J.T. 2004. Regulation of RNA polymerase II transcription by sequence-specific 

DNA binding factors. Cell, 116(2), pp.247-257.  

Kameyama, Y., Kawabe, Y., Ito, A. and Kamihira, M. 2010. An accumulative site-specific 

gene integration system using cre recombinase-mediated cassette exchange. Biotechnology 

and Bioengineering, 105(6), pp.1106-1114.  



 
 

394 
 

Kaneko, T. and Kibayashi, K. 2012. Mild hypothermia facilitates the expression of cold-

inducible RNA-binding protein and heat shock protein 70.1 in mouse brain. Brain 

Research, 1466pp.128-136.  

Kantardjieff, A., Jacob, N.M., Yee, J.C., Epstein, E., Kok, Y.J., Philp, R., Betenbaugh, M. 

and Hu, W.S. 2010. Transcriptome and proteome analysis of chinese hamster ovary cells 

under low temperature and butyrate treatment. Journal of Biotechnology, 145(2), pp.143-

159.  

Kantardjieff, A., Jacob, N.M., Yee, J.C., Epstein, E., Kok, Y.J., Philp, R., Betenbaugh, M. 

and Hu, W.S. 2010. Transcriptome and proteome analysis of chinese hamster ovary cells 

under low temperature and butyrate treatment. Journal of Biotechnology, 145(2), pp.143-

159.  

Kantardjieff, A., Nissom, P.M., Chuah, S.H., Yusufi, F., Jacob, N.M., Mulukutla, B.C., 

Yap, M. and Hu, W.S. 2009. Developing genomic platforms for chinese hamster ovary 

cells. Biotechnology Advances, 27(6), pp.1028-1035.  

Kantardjieff, A. and Zhou, W. 2014. Mammalian cell cultures for biologics manufacturing. 

Advances in Biochemical Engineering/Biotechnology, 139pp.1-9.  

Kashimada, K. and Koopman, P. 2010. Sry: The master switch in mammalian sex 

determination. Development (Cambridge, England), 137(23), pp.3921-3930.  

Kaufman, R.J. 1990. Selection and coamplification of heterologous genes in mammalian 

cells. Methods in Enzymology, 185pp.537-566.  

Kaufmann, H., Mazur, X., Fussenegger, M. and Bailey, J.E. 1999. Influence of low 

temperature on productivity, proteome and protein phosphorylation of CHO cells. 

Biotechnology and Bioengineering, 63(5), pp.573-582.  

Kaufmann, H., Mazur, X., Marone, R., Bailey, J.E. and Fussenegger, M. 2001. 

Comparative analysis of two controlled proliferation strategies regarding product quality, 

influence on tetracycline-regulated gene expression, and productivity. Biotechnology and 

Bioengineering, 72(6), pp.592-602.  

Kim, H.S. and Lee, G.M. 2007. Differences in optimal pH and temperature for cell growth 

and antibody production between two chinese hamster ovary clones derived from the same 

parental clone. Journal of Microbiology and Biotechnology, 17(5), pp.712-720.  

Kim, Y.G., Kim, J.Y. and Lee, G.M. 2009. Effect of XIAP overexpression on sodium 

butyrate-induced apoptosis in recombinant chinese hamster ovary cells producing 

erythropoietin. Journal of Biotechnology, 144(4), pp.299-303.  



 
 

395 
 

Kito, M., Itami, S., Fukano, Y., Yamana, K. and Shibui, T. 2002. Construction of 

engineered CHO strains for high-level production of recombinant proteins. Applied 

Microbiology and Biotechnology, 60(4), pp.442-448.  

Knappskog, S. and Lonning, P.E. 2011. MDM2 promoter SNP285 and SNP309; phylogeny 

and impact on cancer risk. Oncotarget, 2(3), pp.251-258.  

Koh, E.Y., Ho, S.C., Mariati, Song, Z., Bi, X., Bardor, M. and Yang, Y. 2013. An internal 

ribosome entry site (IRES) mutant library for tuning expression level of multiple genes in 

mammalian cells. PloS One, 8(12), pp.e82100.  

Koonin, E.V. and Makarova, K.S. 2013. CRISPR-cas: Evolution of an RNA-based adaptive 

immunity system in prokaryotes. RNA Biology, 10(5), pp.679-686.  

Kotlabova, K., Doucha, J. and Hromadnikova, I. 2011. Placental-specific microRNA in 

maternal circulation--identification of appropriate pregnancy-associated microRNAs with 

diagnostic potential. Journal of Reproductive Immunology, 89(2), pp.185-191.  

Kozak, M. 2003. Alternative ways to think about mRNA sequences and proteins that 

appear to promote internal initiation of translation. Gene, 318pp.1-23.  

Kramer, B.P., Viretta, A.U., Daoud-El-Baba, M., Aubel, D., Weber, W. and Fussenegger, 

M. 2004. An engineered epigenetic transgene switch in mammalian cells. Nature 

Biotechnology, 22(7), pp.867-870. 

Kramer, O., Klausing, S. and Noll, T. 2010. Methods in mammalian cell line engineering: 

From random mutagenesis to sequence-specific approaches. Applied Microbiology and 

Biotechnology, 88(2), pp.425-436.  

Krampe, B. and Al-Rubeai, M. 2010. Cell death in mammalian cell culture: Molecular 

mechanisms and cell line engineering strategies. Cytotechnology, 62(3), pp.175-188.  

Krishnamurthy, S., He, X., Reyes-Reyes, M., Moore, C. and Hampsey, M. 2004. Ssu72 is 

an RNA polymerase II CTD phosphatase. Molecular Cell, 14(3), pp.387-394.  

Krysko, D.V., Vanden Berghe, T., Parthoens, E., D'Herde, K. and Vandenabeele, P. 2008. 

Methods for distinguishing apoptotic from necrotic cells and measuring their clearance. 

Methods in Enzymology, 442pp.307-341.  

Kumar, N., Gammell, P. and Clynes, M. 2007. Proliferation control strategies to improve 

productivity and survival during CHO based production culture : A summary of recent 

methods employed and the effects of proliferation control in product secreting CHO cell 

lines. Cytotechnology, 53(1-3), pp.33-46.  

Kumar, N., Maurya, P., Gammell, P., Dowling, P., Clynes, M. and Meleady, P. 2008b. 

Proteomic profiling of secreted proteins from CHO cells using surface-enhanced laser 



 
 

396 
 

desorption ionization time-of-flight mass spectrometry. Biotechnology Progress, 24(1), 

pp.273-278.  

Kurokawa, M., Mitani, K., Irie, K., Matsuyama, T., Takahashi, T., Chiba, S., Yazaki, Y., 

Matsumoto, K. and Hirai, H. 1998. The oncoprotein evi-1 represses TGF-beta signalling by 

inhibiting Smad3. Nature, 394(6688), pp.92-96.  

Kuystermans, D. and Al-Rubeai, M. 2009. cMyc increases cell number through uncoupling 

of cell division from cell size in CHO cells. BMC Biotechnology, 9pp.76-6750-9-76.  

Kussie, P.H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A.J. and 

Pavletich, N.P. 1996. Structure of the MDM2 oncoprotein bound to the p53 tumor 

suppressor transactivation domain. Science (New York, N.Y.), 274(5289), pp.948-953.  

Lalonde, M.E., Ouimet, M., Lariviere, M., Kritikou, E.A. and Sinnett, D. 2012. 

Identification of functional DNA variants in the constitutive promoter region of MDM2. 

Human Genomics, 6pp.15-7364-6-15.  

Lautermann, J., Dehne, N., Schacht, J. and Jahnke, K. 2004. Aminoglycoside- and 

cisplatin-ototoxicity: From basic science to clinics. Laryngo- Rhino- Otologie, 83(5), 

pp.317-323.  

Le, H., Vishwanathan, N., Kantardjieff, A., Doo, I., Srienc, M., Zheng, X., Somia, N. and 

Hu, W.S. 2013. Dynamic gene expression for metabolic engineering of mammalian cells in 

culture. Metabolic Engineering, 20pp.212-220.  

Lee, J.S., Ha, T.K., Park, J.H. and Lee, G.M. 2013. Anti-cell death engineering of CHO 

cells: Co-overexpression of bcl-2 for apoptosis inhibition, beclin-1 for autophagy induction. 

Biotechnology and Bioengineering, 110(8), pp.2195-2207.  

Lee, J.S., Kim, Y.J., Kim, C.L. and Lee, G.M. 2012. Differential induction of autophagy in 

caspase-3/7 down-regulating and bcl-2 overexpressing recombinant CHO cells subjected to 

sodium butyrate treatment. Journal of Biotechnology, 161(1), pp.34-41.  

Lee, J.Y., Kim, S., Hwang do, W., Jeong, J.M., Chung, J.K., Lee, M.C. and Lee, D.S. 2008. 

Development of a dual-luciferase reporter system for in vivo visualization of MicroRNA 

biogenesis and posttranscriptional regulation. Journal of Nuclear Medicine : Official 

Publication, Society of Nuclear Medicine, 49(2), pp.285-294.  

Lee, Y.Y., Wong, K.T., Tan, J., Toh, P.C., Mao, Y., Brusic, V. and Yap, M.G. 2009. 

Overexpression of heat shock proteins (HSPs) in CHO cells for extended culture viability 

and improved recombinant protein production. Journal of Biotechnology, 143(1), pp.34-43.  

Leung, R.K. and Whittaker, P.A. 2005. RNA interference: From gene silencing to gene-

specific therapeutics. Pharmacology & Therapeutics, 107(2), pp.222-239.  



 
 

397 
 

Lewis, N.E., Liu, X., Li, Y., Nagarajan, H., Yerganian, G., O'Brien, E., Bordbar, A., Roth, 

A.M., Rosenbloom, J., Bian, C., Xie, M., Chen, W., Li, N., Baycin-Hizal, D., Latif, H., 

Forster, J., Betenbaugh, M.J., Famili, I., Xu, X., Wang, J. and Palsson, B.O. 2013. Genomic 

landscapes of chinese hamster ovary cell lines as revealed by the cricetulus griseus draft 

genome. Nature Biotechnology, 31(8), pp.759-765.  

Li, J.H., Liu, S., Zhou, H., Qu, L.H. and Yang, J.H. 2014. starBase v2.0: Decoding 

miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale 

CLIP-seq data. Nucleic Acids Research, 42(Database issue), pp.D92-7.  

Li, L., Xu, J., Yang, D., Tan, X. and Wang, H. 2010. Computational approaches for 

microRNA studies: A review. Mammalian Genome : Official Journal of the International 

Mammalian Genome Society, 21(1-2), pp.1-12.  

Li, Q., Peterson, K.R., Fang, X. and Stamatoyannopoulos, G. 2002. Locus control regions. 

Blood, 100(9), pp.3077-3086.  

Li, J.S. and Yao, Z.X. 2012. MicroRNAs: Novel regulators of oligodendrocyte 

differentiation and potential therapeutic targets in demyelination-related diseases. 

Molecular Neurobiology, 45(1), pp.200-212.  

Li, W., Guo, F., Wang, P., Hong, S. and Zhang, C. 2014a. miR-221/222 confers 

radioresistance in glioblastoma cells through activating akt independent of PTEN status. 

Current Molecular Medicine, 14(1), pp.185-195.  

Li, Y., Liang, C., Ma, H., Zhao, Q., Lu, Y., Xiang, Z., Li, L., Qin, J., Chen, Y., Cho, W.C., 

Pestell, R.G., Liang, L. and Yu, Z. 2014b. miR-221/222 promotes S-phase entry and 

cellular migration in control of basal-like breast cancer. Molecules (Basel, Switzerland), 

19(6), pp.7122-7137.  

Liew, J.C., Tan, W.S., Alitheen, N.B., Chan, E.S. and Tey, B.T. 2010. Over-expression of 

the X-linked inhibitor of apoptosis protein (XIAP) delays serum deprivation-induced 

apoptosis in CHO-K1 cells. Journal of Bioscience and Bioengineering, 110(3), pp.338-344.  

Lim, Y., Wong, N.S., Lee, Y.Y., Ku, S.C., Wong, D.C. and Yap, M.G. 2010. Engineering 

mammalian cells in bioprocessing - current achievements and future perspectives. 

Biotechnology and Applied Biochemistry, 55(4), pp.175-189.  

Liu, S., Zhang, P., Chen, Z., Liu, M., Li, X. and Tang, H. 2013a. MicroRNA-7 

downregulates XIAP expression to suppress cell growth and promote apoptosis in cervical 

cancer cells. FEBS Letters, 587(14), pp.2247-2253.  

Liu, Y., Hu, W., Murakawa, Y., Yin, J., Wang, G., Landthaler, M. and Yan, J. 2013b. Cold-

induced RNA-binding proteins regulate circadian gene expression by controlling alternative 

polyadenylation. Scientific Reports, 3pp.2054.  



 
 

398 
 

Lobanenkov, V.V., Nicolas, R.H., Adler, V.V., Paterson, H., Klenova, E.M., Polotskaja, 

A.V. and Goodwin, G.H. 1990. A novel sequence-specific DNA binding protein which 

interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5'-flanking 

sequence of the chicken c-myc gene. Oncogene, 5(12), pp.1743-1753.  

Loh, W.P., Loo, B., Zhou, L., Zhang, P., Lee, D.Y., Yang, Y. and Lam, K.P. 2014. 

Overexpression of microRNAs enhances recombinant protein production in chinese 

hamster ovary cells. Biotechnology Journal, 9(9), pp.1140-1151.  

Long, Y.S., Deng, G.F., Sun, X.S., Yi, Y.H., Su, T., Zhao, Q.H. and Liao, W.P. 2011. 

Identification of the transcriptional promoters in the proximal regions of human microRNA 

genes. Molecular Biology Reports, 38(6), pp.4153-4157.  

Lopez, M., Meier, D., Muller, A., Franken, P., Fujita, J. and Fontana, A. 2014. Tumor 

necrosis factor and transforming growth factor beta regulate clock genes by controlling the 

expression of the cold inducible RNA-binding protein (CIRBP). The Journal of Biological 

Chemistry, 289(5), pp.2736-2744.  

Loser, P., Jennings, G.S., Strauss, M. and Sandig, V. 1998. Reactivation of the previously 

silenced cytomegalovirus major immediate-early promoter in the mouse liver: Involvement 

of NFkappaB. Journal of Virology, 72(1), pp.180-190.  

 

Maccani, A., Hackl, M., Leitner, C., Steinfellner, W., Graf, A.B., Tatto, N.E., Karbiener, 

M., Scheideler, M., Grillari, J., Mattanovich, D., Kunert, R., Borth, N., Grabherr, R. and 

Ernst, W. 2014. Identification of microRNAs specific for high producer CHO cell lines 

using steady-state cultivation. Applied Microbiology and Biotechnology, 98(17), pp.7535-

7548.  

Machanick, P. and Bailey, T.L. 2011. MEME-ChIP: Motif analysis of large DNA datasets. 

Bioinformatics (Oxford, England), 27(12), pp.1696-1697.  

Majors, B.S., Betenbaugh, M.J. and Chiang, G.G. 2007. Links between metabolism and 

apoptosis in mammalian cells: Applications for anti-apoptosis engineering. Metabolic 

Engineering, 9(4), pp.317-326.  

Makrides, S.C. 1999. Components of vectors for gene transfer and expression in 

mammalian cells. Protein Expression and Purification, 17(2), pp.183-202.  

Mangalampalli, V.R., Mowry, M.C., Lipscomb, M.L., James, R.I., Johnson, A.K. and 

Kompala, D.S. 2002. Increased production of a secreted glycoprotein in engineered CHO 

cells through amplification of a transcription factor. Cytotechnology, 38(1-3), pp.23-35.  



 
 

399 
 

Mariati, Koh, E.Y., Yeo, J.H., Ho, S.C. and Yang, Y. 2014a. Toward stable gene 

expression in CHO cells: Preventing promoter silencing with core CpG island elements. 

Bioengineered, 5(5),  

Mariati, Yeo, J.H., Koh, E.Y., Ho, S.C. and Yang, Y. 2014b. Insertion of core CpG island 

element into human CMV promoter for enhancing recombinant protein expression stability 

in CHO cells. Biotechnology Progress, 30(3), pp.523-534.  

Marine, S., Bahl, A., Ferrer, M. and Buehler, E. 2012. Common seed analysis to identify 

off-target effects in siRNA screens. Journal of Biomolecular Screening, 17(3), pp.370-378.  

Marsico, A., Huska, M.R., Lasserre, J., Hu, H., Vucicevic, D., Musahl, A., Orom, U. and 

Vingron, M. 2013. PROmiRNA: A new miRNA promoter recognition method uncovers the 

complex regulation of intronic miRNAs. Genome Biology, 14(8), pp.R84-2013-14-8-r84.  

Martinez-Salas, E., Regalado, M.P. and Domingo, E. 1996. Identification of an essential 

region for internal initiation of translation in the aphthovirus internal ribosome entry site 

and implications for viral evolution. Journal of Virology, 70(2), pp.992-998.  

Mazur, X., Eppenberger, H.M., Bailey, J.E. and Fussenegger, M. 1999. A novel 

autoregulated proliferation-controlled production process using recombinant CHO cells. 

Biotechnology and Bioengineering, 65(2), pp.144-150.  

Mazur, X., Fussenegger, M., Renner, W.A. and Bailey, J.E. 1998. Higher productivity of 

growth-arrested chinese hamster ovary cells expressing the cyclin-dependent kinase 

inhibitor p27. Biotechnology Progress, 14(5), pp.705-713.  

McManus, D.C., Lefebvre, C.A., Cherton-Horvat, G., St-Jean, M., Kandimalla, E.R., 

Agrawal, S., Morris, S.J., Durkin, J.P. and Lacasse, E.C. 2004. Loss of XIAP protein 

expression by RNAi and antisense approaches sensitizes cancer cells to functionally diverse 

chemotherapeutics. Oncogene, 23(49), pp.8105-8117.  

McManus, M.T. and Sharp, P.A. 2002. Gene silencing in mammals by small interfering 

RNAs. Nature Reviews.Genetics, 3(10), pp.737-747.  

Mead, E.J., Chiverton, L.M., Smales, C.M. and von der Haar, T. 2009. Identification of the 

limitations on recombinant gene expression in CHO cell lines with varying luciferase 

production rates. Biotechnology and Bioengineering, 102(6), pp.1593-1602.  

Megraw, M. and Hatzigeorgiou, A.G. 2010. MicroRNA promoter analysis. Methods in 

Molecular Biology (Clifton, N.J.), 592pp.149-161.  

Mestdagh, P., Bostrom, A.K., Impens, F., Fredlund, E., Van Peer, G., De Antonellis, P., 

von Stedingk, K., Ghesquiere, B., Schulte, S., Dews, M., Thomas-Tikhonenko, A., Schulte, 

J.H., Zollo, M., Schramm, A., Gevaert, K., Axelson, H., Speleman, F. and Vandesompele, 



 
 

400 
 

J. 2010. The miR-17-92 microRNA cluster regulates multiple components of the TGF-beta 

pathway in neuroblastoma. Molecular Cell, 40(5), pp.762-773.  

Mehnert, M., Sommer, T. and Jarosch, E. 2010. ERAD ubiquitin ligases: Multifunctional 

tools for protein quality control and waste disposal in the endoplasmic reticulum. BioEssays 

: News and Reviews in Molecular, Cellular and Developmental Biology, 32(10), pp.905-

913.  

Mihailovich, M., Militti, C., Gabaldon, T. and Gebauer, F. 2010. Eukaryotic cold shock 

domain proteins: Highly versatile regulators of gene expression. BioEssays : News and 

Reviews in Molecular, Cellular and Developmental Biology, 32(2), pp.109-118.  

Mijakovic, I., Petranovic, D. and Jensen, P.R. 2005. Tunable promoters in systems biology. 

Current Opinion in Biotechnology, 16(3), pp.329-335.  

Mimura, Y., Lund, J., Church, S., Dong, S., Li, J., Goodall, M. and Jefferis, R. 2001. 

Butyrate increases production of human chimeric IgG in CHO-K1 cells whilst maintaining 

function and glycoform profile. Journal of Immunological Methods, 247(1-2), pp.205-216.  

Mimura, I., Kanki, Y., Kodama, T. and Nangaku, M. 2014. Revolution of nephrology 

research by deep sequencing: ChIP-seq and RNA-seq. Kidney International, 85(1), pp.31-

38.  

Misaghi, S., Chang, J. and Snedecor, B. 2014. It's time to regulate: Coping with product-

induced non-genetic clonal instability in CHO cell lines via regulated protein expression. 

Biotechnology Progress,  

Miura, K., Miura, S., Yamasaki, K., Higashijima, A., Kinoshita, A., Yoshiura, K. and 

Masuzaki, H. 2010. Identification of pregnancy-associated microRNAs in maternal plasma. 

Clinical Chemistry, 56(11), pp.1767-1771.  

Montminy, M.R. and Bilezikjian, L.M. 1987. Binding of a nuclear protein to the cyclic-

AMP response element of the somatostatin gene. Nature, 328(6126), pp.175-178.  

Moxley, R.A. and Jarrett, H.W. 2005. Oligonucleotide trapping method for transcription 

factor purification systematic optimization using electrophoretic mobility shift assay. 

Journal of Chromatography.A, 1070(1-2), pp.23-34.  

Muller, D., Katinger, H. and Grillari, J. 2008. MicroRNAs as targets for engineering of 

CHO cell factories. Trends in Biotechnology, 26(7), pp.359-365.  

Mulligan, R.C. and Berg, P. 1981. Factors governing the expression of a bacterial gene in 

mammalian cells. Molecular and Cellular Biology, 1(5), pp.449-459.  

Mussolino, C. and Cathomen, T. 2012. TALE nucleases: Tailored genome engineering 

made easy. Current Opinion in Biotechnology, 23(5), pp.644-650.  



 
 

401 
 

Nagore, L.I., Nadeau, R.J., Guo, Q., Jadhav, Y.L., Jarrett, H.W. and Haskins, W.E. 2013. 

Purification and characterization of transcription factors. Mass Spectrometry Reviews, 

32(5), pp.386-398.  

Nair, A.R., Jinger, X. and Hermiston, T.W. 2011. Effect of different UCOE-promoter 

combinations in creation of engineered cell lines for the production of factor VIII. BMC 

Research Notes, 4pp.178-0500-4-178.  

Ndozangue-Touriguine, O., Sebbagh, M., Merino, D., Micheau, O., Bertoglio, J. and 

Breard, J. 2008. A mitochondrial block and expression of XIAP lead to resistance to 

TRAIL-induced apoptosis during progression to metastasis of a colon carcinoma. 

Oncogene, 27(46), pp.6012-6022.  

Nikoletopoulou, V., Markaki, M., Palikaras, K. and Tavernarakis, N. 2013. Crosstalk 

between apoptosis, necrosis and autophagy. Biochimica Et Biophysica Acta, 1833(12), 

pp.3448-3459.  

Nishijima, H., Yasunari, T., Nakayama, T., Adachi, N. and Shibahara, K. 2009. Improved 

applications of the tetracycline-regulated gene depletion system. Bioscience Trends, 3(5), 

pp.161-167.  

Nishiyama, H., Danno, S., Kaneko, Y., Itoh, K., Yokoi, H., Fukumoto, M., Okuno, H., 

Millan, J.L., Matsuda, T., Yoshida, O. and Fujita, J. 1998. Decreased expression of cold-

inducible RNA-binding protein (CIRP) in male germ cells at elevated temperature. The 

American Journal of Pathology, 152(1), pp.289-296.  

Nishiyama, H., Itoh, K., Kaneko, Y., Kishishita, M., Yoshida, O. and Fujita, J. 1997. A 

glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell 

growth. The Journal of Cell Biology, 137(4), pp.899-908.  

Nonne, N., Ameyar-Zazoua, M., Souidi, M. and Harel-Bellan, A. 2010. Tandem affinity 

purification of miRNA target mRNAs (TAP-tar). Nucleic Acids Research, 38(4), pp.e20.  

Noonan, E.J., Place, R.F., Rasoulpour, R.J., Giardina, C. and Hightower, L.E. 2007. Cell 

number-dependent regulation of Hsp70B' expression: Evidence of an extracellular 

regulator. Journal of Cellular Physiology, 210(1), pp.201-211.  

Nivitchanyong, T., Martinez, A., Ishaque, A., Murphy, J.E., Konstantinov, K., Betenbaugh, 

M.J. and Thrift, J. 2007. Anti-apoptotic genes aven and E1B-19K enhance performance of 

BHK cells engineered to express recombinant factor VIII in batch and low perfusion cell 

culture. Biotechnology and Bioengineering, 98(4), pp.825-841.  

Olive, V., Bennett, M.J., Walker, J.C., Ma, C., Jiang, I., Cordon-Cardo, C., Li, Q.J., Lowe, 

S.W., Hannon, G.J. and He, L. 2009. miR-19 is a key oncogenic component of mir-17-92. 

Genes & Development, 23(24), pp.2839-2849.  



 
 

402 
 

Olive, V., Sabio, E., Bennett, M.J., De Jong, C.S., Biton, A., McGann, J.C., Greaney, S.K., 

Sodir, N.M., Zhou, A.Y., Balakrishnan, A., Foth, M., Luftig, M.A., Goga, A., Speed, T.P., 

Xuan, Z., Evan, G.I., Wan, Y., Minella, A.C. and He, L. 2013. A component of the mir-17-

92 polycistronic oncomir promotes oncogene-dependent apoptosis. ELife, 2pp.e00822.  

Omasa, T., Takami, T., Ohya, T., Kiyama, E., Hayashi, T., Nishii, H., Miki, H., Kobayashi, 

K., Honda, K. and Ohtake, H. 2008. Overexpression of GADD34 enhances production of 

recombinant human antithrombin III in chinese hamster ovary cells. Journal of Bioscience 

and Bioengineering, 106(6), pp.568-573.  

Orom, U.A. and Lund, A.H. 2010. Experimental identification of microRNA targets. Gene, 

451(1-2), pp.1-5.  

Orom, U.A. and Lund, A.H. 2007. Isolation of microRNA targets using biotinylated 

synthetic microRNAs. Methods (San Diego, Calif.), 43(2), pp.162-165.  

Ow, Y.P., Green, D.R., Hao, Z. and Mak, T.W. 2008. Cytochrome c: Functions beyond 

respiration. Nature Reviews.Molecular Cell Biology, 9(7), pp.532-542.  

Ozsolak, F., Poling, L.L., Wang, Z., Liu, H., Liu, X.S., Roeder, R.G., Zhang, X., Song, J.S. 

and Fisher, D.E. 2008. Chromatin structure analyses identify miRNA promoters. Genes & 

Development, 22(22), pp.3172-3183.  

Paques, F. and Duchateau, P. 2007. Meganucleases and DNA double-strand break-induced 

recombination: Perspectives for gene therapy. Current Gene Therapy, 7(1), pp.49-66.  

Pavletich, N.P. and Pabo, C.O. 1991. Zinc finger-DNA recognition: Crystal structure of a 

Zif268-DNA complex at 2.1 A. Science (New York, N.Y.), 252(5007), pp.809-817.  

Peng, R.W., Guetg, C., Tigges, M. and Fussenegger, M. 2010. The vesicle-trafficking 

protein munc18b increases the secretory capacity of mammalian cells. Metabolic 

Engineering, 12(1), pp.18-25.  

Pang, Y., Mao, H., Shen, L., Zhao, Z., Liu, R. and Liu, P. 2014. MiR-519d represses 

ovarian cancer cell proliferation and enhances cisplatin-mediated cytotoxicity in vitro by 

targeting XIAP. OncoTargets and Therapy, 7pp.587-597.  

Pappas, D.L.,Jr and Hampsey, M. 2000. Functional interaction between Ssu72 and the 

Rpb2 subunit of RNA polymerase II in saccharomyces cerevisiae. Molecular and Cellular 

Biology, 20(22), pp.8343-8351.  

Park, J.H., Wang, Z., Jeong, H.J., Park, H.H., Kim, B.G., Tan, W.S., Choi, S.S. and Park, 

T.H. 2012. Enhancement of recombinant human EPO production and glycosylation in 

serum-free suspension culture of CHO cells through expression and supplementation of 

30Kc19. Applied Microbiology and Biotechnology, 96(3), pp.671-683.  



 
 

403 
 

Pasquinelli, A.E. 2012. MicroRNAs and their targets: Recognition, regulation and an 

emerging reciprocal relationship. Nature Reviews.Genetics, 13(4), pp.271-282.  

Peng, R.W., Abellan, E. and Fussenegger, M. 2010. Differential effect of exocytic SNAREs 

on the production of recombinant proteins in mammalian cells. Biotechnology and 

Bioengineering,  

Piontkivska, H., Yang, M., Larkin, D., Lewin, H., Reecy, J. and Elnitski, L. 2009. Cross-

species mapping of bidirectional promoters enables prediction of unannotated 5' UTRs and 

identification of species-specific transcripts. BMC Genomics, 10(1), pp.189.  

Pontiller, J., Gross, S., Thaisuchat, H., Hesse, F. and Ernst, W. 2008. Identification of CHO 

endogenous promoter elements based on a genomic library approach. Molecular 

Biotechnology, 39(2), pp.135-139.  

Pontiller, J., Maccani, A., Baumann, M., Klancnik, I. and Ernst, W. 2010. Identification of 

CHO endogenous gene regulatory elements. Molecular Biotechnology, 45(3), pp.235-240.  

Preker, P., Nielsen, J., Kammler, S., Lykke-Andersen, S., Christensen, M.S., Mapendano, 

C.K., Schierup, M.H. and Jensen, T.H. 2008. RNA exosome depletion reveals transcription 

upstream of active human promoters. Science (New York, N.Y.), 322(5909), pp.1851-1854.  

Pugazhenthi, S., Wang, M., Pham, S., Sze, C.I. and Eckman, C.B. 2011. Downregulation of 

CREB expression in alzheimer's brain and in abeta-treated rat hippocampal neurons. 

Molecular Neurodegeneration, 6pp.60-1326-6-60.  

Qin, J.Y., Zhang, L., Clift, K.L., Hulur, I., Xiang, A.P., Ren, B.Z. and Lahn, B.T. 2010. 

Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. 

PloS One, 5(5), pp.e10611.  

Qin, L., Ding, Y., Pahud, D.R., Chang, E., Imperiale, M.J. and Bromberg, J.S. 1997. 

Promoter attenuation in gene therapy: Interferon-gamma and tumor necrosis factor-alpha 

inhibit transgene expression. Human Gene Therapy, 8(17), pp.2019-2029.  

Quek, L.E., Dietmair, S., Kromer, J.O. and Nielsen, L.K. 2010. Metabolic flux analysis in 

mammalian cell culture. Metabolic Engineering, 12(2), pp.161-171.  

Raab, J.R. and Kamakaka, R.T. 2010. Insulators and promoters: Closer than we think. 

Nature Reviews.Genetics, 11(6), pp.439-446.  

Ramalingam, S., Kandavelou, K., Rajenderan, R. and Chandrasegaran, S. 2011. Creating 

designed zinc-finger nucleases with minimal cytotoxicity. Journal of Molecular Biology, 

405(3), pp.630-641.  



 
 

404 
 

Recillas-Targa, F. 2006. Multiple strategies for gene transfer, expression, knockdown, and 

chromatin influence in mammalian cell lines and transgenic animals. Molecular 

Biotechnology, 34(3), pp.337-354.  

Remy, S., Tesson, L., Menoret, S., Usal, C., Scharenberg, A.M. and Anegon, I. 2010. Zinc-

finger nucleases: A powerful tool for genetic engineering of animals. Transgenic Research, 

19(3), pp.363-371.  

Ren, Y., Han, X., Yu, K., Sun, S., Zhen, L., Li, Z. and Wang, S. 2014. microRNA-200c 

downregulates XIAP expression to suppress proliferation and promote apoptosis of triple-

negative breast cancer cells. Molecular Medicine Reports, 10(1), pp.315-321.  

Rerole, A.L., Jego, G. and Garrido, C. 2011. Hsp70: Anti-apoptotic and tumorigenic 

protein. Methods in Molecular Biology (Clifton, N.J.), 787pp.205-230.  

Rigoutsos, I. 2009. New tricks for animal microRNAS: Targeting of amino acid coding 

regions at conserved and nonconserved sites. Cancer Research, 69(8), pp.3245-3248.  

Rohmer, S., Mainka, A., Knippertz, I., Hesse, A. and Nettelbeck, D.M. 2008. Insulated 

hsp70B' promoter: Stringent heat-inducible activity in replication-deficient, but not 

replication-competent adenoviruses. The Journal of Gene Medicine, 10(4), pp.340-354.  

Rome, C., Couillaud, F. and Moonen, C.T. 2005. Spatial and temporal control of 

expression of therapeutic genes using heat shock protein promoters. Methods (San Diego, 

Calif.), 35(2), pp.188-198.  

Rossbach, M. 2010. Small non-coding RNAs as novel therapeutics. Current Molecular 

Medicine, 10(4), pp.361-368.  

Running Deer, J. and Allison, D.S. 2004. High-level expression of proteins in mammalian 

cells using transcription regulatory sequences from the chinese hamster EF-1alpha gene. 

Biotechnology Progress, 20(3), pp.880-889.  

Sakurai, K., Chomchan, P. and Rossi, J.J. 2010. Silencing of gene expression in cultured 

cells using small interfering RNAs. Current Protocols in Cell Biology / Editorial Board, 

Juan S.Bonifacino ...[Et Al.], Chapter 27pp.Unit 27.1.1-28.  

Saleem, M., Qadir, M.I., Perveen, N., Ahmad, B., Saleem, U., Irshad, T. and Ahmad, B. 

2013. Inhibitors of apoptotic proteins: New targets for anticancer therapy. Chemical 

Biology & Drug Design, 82(3), pp.243-251.  

Sanchez, N., Kelly, P., Gallagher, C., Lao, N.T., Clarke, C., Clynes, M. and Barron, N. 

2013. CHO cell culture longevity and recombinant protein yield are enhanced by depletion 

of miR-7 activity via sponge decoy vectors. Biotechnology Journal,  



 
 

405 
 

Sanyal, A., Lajoie, B.R., Jain, G. and Dekker, J. 2012. The long-range interaction landscape 

of gene promoters. Nature, 489(7414), pp.109-113.  

Sartor, O. and Cutler, G.B.,Jr. 1996. Mifepristone: Treatment of cushing's syndrome. 

Clinical Obstetrics and Gynecology, 39(2), pp.506-510.  

Sauerwald, T.M., Betenbaugh, M.J. and Oyler, G.A. 2002. Inhibiting apoptosis in 

mammalian cell culture using the caspase inhibitor XIAP and deletion mutants. 

Biotechnology and Bioengineering, 77(6), pp.704-716.  

Sauerwald, T.M., Figueroa, B.,Jr, Hardwick, J.M., Oyler, G.A. and Betenbaugh, M.J. 2006. 

Combining caspase and mitochondrial dysfunction inhibitors of apoptosis to limit cell death 

in mammalian cell cultures. Biotechnology and Bioengineering, 94(2), pp.362-372.  

Schanen, B.C. and Li, X. 2011. Transcriptional regulation of mammalian miRNA genes. 

Genomics, 97(1), pp.1-6.  

Schattner, P. 2009. Genomics made easier: An introductory tutorial to genome datamining. 

Genomics, 93(3), pp.187-195.  

Schatz, S.M., Kerschbaumer, R.J., Gerstenbauer, G., Kral, M., Dorner, F. and Scheiflinger, 

F. 2003. Higher expression of fab antibody fragments in a CHO cell line at reduced 

temperature. Biotechnology and Bioengineering, 84(4), pp.433-438.  

Schuster, V. and Kreth, H.W. 2000. X-linked lymphoproliferative disease is caused by 

deficiency of a novel SH2 domain-containing signal transduction adaptor protein. 

Immunological Reviews, 178pp.21-28.  

Schwankhaus, N., Gathmann, C., Wicklein, D., Riecken, K., Schumacher, U. and 

Valentiner, U. 2014. Cell adhesion molecules in metastatic neuroblastoma models. Clinical 

& Experimental Metastasis,  

Shi, R.X., Ong, C.N. and Shen, H.M. 2005. Protein kinase C inhibition and x-linked 

inhibitor of apoptosis protein degradation contribute to the sensitization effect of luteolin on 

tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in cancer cells. 

Cancer Research, 65(17), pp.7815-7823.  

Shioda, N., Ishigami, T., Han, F., Moriguchi, S., Shibuya, M., Iwabuchi, Y. and Fukunaga, 

K. 2007. Activation of phosphatidylinositol 3-kinase/protein kinase B pathway by a 

vanadyl compound mediates its neuroprotective effect in mouse brain ischemia. 

Neuroscience, 148(1), pp.221-229.  

Sharathchandra, A., Katoch, A. and Das, S. 2014. IRES mediated translational regulation of 

p53 isoforms. Wiley Interdisciplinary Reviews.RNA, 5(1), pp.131-139.  



 
 

406 
 

Shukla, G.C., Singh, J. and Barik, S. 2011. MicroRNAs: Processing, maturation, target 

recognition and regulatory functions. Molecular and Cellular Pharmacology, 3(3), pp.83-

92.  

Silber, J., Lim, D.A., Petritsch, C., Persson, A.I., Maunakea, A.K., Yu, M., Vandenberg, 

S.R., Ginzinger, D.G., James, C.D., Costello, J.F., Bergers, G., Weiss, W.A., Alvarez-

Buylla, A. and Hodgson, J.G. 2008. miR-124 and miR-137 inhibit proliferation of 

glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC 

Medicine, 6pp.14-7015-6-14.  

Siomi, H. and Siomi, M.C. 2009. On the road to reading the RNA-interference code. 

Nature, 457(7228), pp.396-404.  

Siomi, M.C., Sato, K., Pezic, D. and Aravin, A.A. 2011. PIWI-interacting small RNAs: The 

vanguard of genome defence. Nature Reviews.Molecular Cell Biology, 12(4), pp.246-258.  

Smith, A.J. and Humphries, S.E. 2009. Characterization of DNA-binding proteins using 

multiplexed competitor EMSA. Journal of Molecular Biology, 385(3), pp.714-717.  

Smolewski, P. and Robak, T. 2011. Inhibitors of apoptosis proteins (IAPs) as potential 

molecular targets for therapy of hematological malignancies. Current Molecular Medicine, 

11(8), pp.633-649.  

Song, E., Lee, S.K., Wang, J., Ince, N., Ouyang, N., Min, J., Chen, J., Shankar, P. and 

Lieberman, J. 2003. RNA interference targeting fas protects mice from fulminant hepatitis. 

Nature Medicine, 9(3), pp.347-351.  

Song, H.Y., Rothe, M. and Goeddel, D.V. 1996. The tumor necrosis factor-inducible zinc 

finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kappaB activation. 

Proceedings of the National Academy of Sciences of the United States of America, 93(13), 

pp.6721-6725.  

Sonna, L.A., Fujita, J., Gaffin, S.L. and Lilly, C.M. 2002. Invited review: Effects of heat 

and cold stress on mammalian gene expression. Journal of Applied Physiology (Bethesda, 

Md.: 1985), 92(4), pp.1725-1742.  

Spee, B., Jonkers, M.D., Arends, B., Rutteman, G.R., Rothuizen, J. and Penning, L.C. 

2006. Specific down-regulation of XIAP with RNA interference enhances the sensitivity of 

canine tumor cell-lines to TRAIL and doxorubicin. Molecular Cancer, 5pp.34.  

Spenger, A., Ernst, W., Condreay, J.P., Kost, T.A. and Grabherr, R. 2004. Influence of 

promoter choice and trichostatin A treatment on expression of baculovirus delivered genes 

in mammalian cells. Protein Expression and Purification, 38(1), pp.17-23.  

Sprengel, R. and Hasan, M.T. 2007. Tetracycline-controlled genetic switches. Handbook of 

Experimental Pharmacology, (178)(178), pp.49-72.  



 
 

407 
 

Strid, T., Soderstrom, M. and Hammarstrom, S. 2008. Leukotriene C4 synthase promoter 

driven expression of GFP reveals cell specificity. Biochemical and Biophysical Research 

Communications, 366(1), pp.80-85.  

Strotbek, M., Florin, L., Koenitzer, J., Tolstrup, A., Kaufmann, H., Hausser, A. and 

Olayioye, M.A. 2013. Stable microRNA expression enhances therapeutic antibody 

productivity of chinese hamster ovary cells. Metabolic Engineering, 20pp.157-166.  

Stewart, A.J., Hannenhalli, S. and Plotkin, J.B. 2012. Why transcription factor binding sites 

are ten nucleotides long. Genetics, 192(3), pp.973-985.  

Sudbery, I., Enright, A.J., Fraser, A.G. and Dunham, I. 2010. Systematic analysis of off-

target effects in an RNAi screen reveals microRNAs affecting sensitivity to TRAIL-

induced apoptosis. BMC Genomics, 11pp.175-2164-11-175.  

Sumitomo, Y., Higashitsuji, H., Higashitsuji, H., Liu, Y., Fujita, T., Sakurai, T., Candeias, 

M.M., Itoh, K., Chiba, T. and Fujita, J. 2012. Identification of a novel enhancer that binds 

Sp1 and contributes to induction of cold-inducible RNA-binding protein (cirp) expression 

in mammalian cells. BMC Biotechnology, 12pp.72-6750-12-72.  

Sunley, K. and Butler, M. 2010. Strategies for the enhancement of recombinant protein 

production from mammalian cells by growth arrest. Biotechnology Advances, 28(3), 

pp.385-394.  

Sunley, K., Tharmalingam, T. and Butler, M. 2008. CHO cells adapted to hypothermic 

growth produce high yields of recombinant beta-interferon. Biotechnology Progress, 24(4), 

pp.898-906.  

Sureshkumar, G.K. and Mutharasan, R. 1991. The influence of temperature on a mouse-

mouse hybridoma growth and monoclonal antibody production. Biotechnology and 

Bioengineering, 37(3), pp.292-295.  

Takeshita, F. and Ochiya, T. 2006. Therapeutic potential of RNA interference against 

cancer. Cancer Science, 97(8), pp.689-696.  

Tan, H.K., Lee, M.M., Yap, M.G. and Wang, D.I. 2008. Overexpression of cold-inducible 

RNA-binding protein increases interferon-gamma production in chinese-hamster ovary 

cells. Biotechnology and Applied Biochemistry, 49(Pt 4), pp.247-257.  

Tanzer, A. and Stadler, P.F. 2004. Molecular evolution of a microRNA cluster. Journal of 

Molecular Biology, 339(2), pp.327-335.  

Teufel, A., Krupp, M., Weinmann, A. and Galle, P.R. 2006. Current bioinformatics tools in 

genomic biomedical research (review). International Journal of Molecular Medicine, 17(6), 

pp.967-973.  



 
 

408 
 

Teschendorf, C., Warrington, K.H.,Jr, Siemann, D.W. and Muzyczka, N. 2002. 

Comparison of the EF-1 alpha and the CMV promoter for engineering stable tumor cell 

lines using recombinant adeno-associated virus. Anticancer Research, 22(6A), pp.3325-

3330.  

Tey, B.T., Singh, R.P., Piredda, L., Piacentini, M. and Al-Rubeai, M. 2000. Influence of 

bcl-2 on cell death during the cultivation of a chinese hamster ovary cell line expressing a 

chimeric antibody. Biotechnology and Bioengineering, 68(1), pp.31-43.  

Thaisuchat, H., Baumann, M., Pontiller, J., Hesse, F. and Ernst, W. 2011. Identification of a 

novel temperature sensitive promoter in CHO cells. BMC Biotechnology, 11(1), pp.51.  

Thomas, M., Lange-Grunweller, K., Hartmann, D., Golde, L., Schlereth, J., Streng, D., 

Aigner, A., Grunweller, A. and Hartmann, R.K. 2013. Analysis of transcriptional regulation 

of the human miR-17-92 cluster; evidence for involvement of pim-1. International Journal 

of Molecular Sciences, 14(6), pp.12273-12296.  

Thomas, M., Lieberman, J. and Lal, A. 2010. Desperately seeking microRNA targets. 

Nature Structural & Molecular Biology, 17(10), pp.1169-1174.  

Tigges, M. and Fussenegger, M. 2009. Recent advances in mammalian synthetic biology-

design of synthetic transgene control networks. Current Opinion in Biotechnology, 20(4), 

pp.449-460.  

Tuteja, G. and Kaestner, K.H. 2007. SnapShot: Forkhead transcription factors I. Cell, 

130(6), pp.1160.  

Trinklein, N.D., Aldred, S.F., Hartman, S.J., Schroeder, D.I., Otillar, R.P. and Myers, R.M. 

2004. An abundance of bidirectional promoters in the human genome. Genome Research, 

14(1), pp.62-66.  

Underhill, M.F. and Smales, C.M. 2007. The cold-shock response in mammalian cells: 

Investigating the HeLa cell cold-shock proteome. Cytotechnology, 53(1-3), pp.47-53.  

Uhrinova, S., Uhrin, D., Powers, H., Watt, K., Zheleva, D., Fischer, P., McInnes, C. and 

Barlow, P.N. 2005. Structure of free MDM2 N-terminal domain reveals conformational 

adjustments that accompany p53-binding. Journal of Molecular Biology, 350(3), pp.587-

598.  

Urlaub, G., Kas, E., Carothers, A.M. and Chasin, L.A. 1983. Deletion of the diploid 

dihydrofolate reductase locus from cultured mammalian cells. Cell, 33(2), pp.405-412.  

van der Horst, A. and Burgering, B.M. 2007. Stressing the role of FoxO proteins in lifespan 

and disease. Nature Reviews.Molecular Cell Biology, 8(6), pp.440-450.  



 
 

409 
 

Valdez-Cruz, N.A., Caspeta, L., Perez, N.O., Ramirez, O.T. and Trujillo-Roldan, M.A. 

2010. Production of recombinant proteins in E. coli by the heat inducible expression system 

based on the phage lambda pL and/or pR promoters. Microbial Cell Factories, 9pp.18-

2859-9-18.  

van Helden, J. 2003. Regulatory sequence analysis tools. Nucleic Acids Research, 31(13), 

pp.3593-3596.  

van Opstal, A., Bijvelt, J., van Donselaar, E., Humbel, B.M. and Boonstra, J. 2012. 

Inhibition of protein kinase B activity induces cell cycle arrest and apoptosis during early 

G(1) phase in CHO cells. Cell Biology International, 36(4), pp.357-365.  

Vanden Berghe, T., Denecker, G., Brouckaert, G., Vadimovisch Krysko, D., D'Herde, K. 

and Vandenabeele, P. 2004. More than one way to die: Methods to determine TNF-induced 

apoptosis and necrosis. Methods in Molecular Medicine, 98pp.101-126.  

Vesuna, F., Winnard, P.,Jr, Glackin, C. and Raman, V. 2006. Twist overexpression 

promotes chromosomal instability in the breast cancer cell line MCF-7. Cancer Genetics 

and Cytogenetics, 167(2), pp.189-191.  

Vembar, S.S. and Brodsky, J.L. 2008. One step at a time: Endoplasmic reticulum-

associated degradation. Nature Reviews.Molecular Cell Biology, 9(12), pp.944-957.  

Venter, M. 2007. Synthetic promoters: Genetic control through cis engineering. Trends in 

Plant Science, 12(3), pp.118-124.  

 

Vilaboa, N., Fenna, M., Munson, J., Roberts, S.M. and Voellmy, R. 2005. Novel gene 

switches for targeted and timed expression of proteins of interest. Molecular Therapy : The 

Journal of the American Society of Gene Therapy, 12(2), pp.290-298.  

Vo, N.K., Dalton, R.P., Liu, N., Olson, E.N. and Goodman, R.H. 2010. Affinity 

purification of microRNA-133a with the cardiac transcription factor, Hand2. Proceedings 

of the National Academy of Sciences of the United States of America, 107(45), pp.19231-

19236.  

Walsh, G. 2010. Biopharmaceutical benchmarks 2010. Nature Biotechnology, 28(9), 

pp.917-924.  

Wang, J., Xiao, X., Zhang, Y., Shi, D., Chen, W., Fu, L., Liu, L., Xie, F., Kang, T., Huang, 

W. and Deng, W. 2012. Simultaneous modulation of COX-2, p300, akt, and apaf-1 

signaling by melatonin to inhibit proliferation and induce apoptosis in breast cancer cells. 

Journal of Pineal Research, 53(1), pp.77-90.  



 
 

410 
 

Wang, Q., Gao, F., May, W.S., Zhang, Y., Flagg, T. and Deng, X. 2008. Bcl2 negatively 

regulates DNA double-strand-break repair through a nonhomologous end-joining pathway. 

Molecular Cell, 29(4), pp.488-498.  

Watanabe, Y., Tomita, M. and Kanai, A. 2007. Computational methods for microRNA 

target prediction. Methods in Enzymology, 427pp.65-86.  

Weber, W., Bacchus, W., Daoud-El Baba, M. and Fussenegger, M. 2007. Vitamin H-

regulated transgene expression in mammalian cells. Nucleic Acids Research, 35(17), 

pp.e116.  

Weber, W. and Fussenegger, M. 2011. Design of synthetic mammalian quorum-sensing 

systems. Methods in Molecular Biology (Clifton, N.J.), 692pp.235-249.  

Weber, W. and Fussenegger, M. 2010. Synthetic gene networks in mammalian cells. 

Current Opinion in Biotechnology, 21(5), pp.690-696.  

Weber, W. and Fussenegger, M. 2009. Engineering of synthetic mammalian gene networks. 

Chemistry & Biology, 16(3), pp.287-297.  

Weber, W. and Fussenegger, M. 2007. Novel gene switches. Handbook of Experimental 

Pharmacology, (178)(178), pp.73-105.  

Weber, W. and Fussenegger, M. 2004. Approaches for trigger-inducible viral transgene 

regulation in gene-based tissue engineering. Current Opinion in Biotechnology, 15(5), 

pp.383-391.  

Weber, W., Kramer, B.P. and Fussenegger, M. 2007. A genetic time-delay circuitry in 

mammalian cells. Biotechnology and Bioengineering, 98(4), pp.894-902.  

Weber, W., Kramer, B.P., Fux, C., Keller, B. and Fussenegger, M. 2002. Novel 

promoter/transactivator configurations for macrolide- and streptogramin-responsive 

transgene expression in mammalian cells. The Journal of Gene Medicine, 4(6), pp.676-686.  

Weber, W., Lienhart, C., Baba, M.D. and Fussenegger, M. 2009a. A biotin-triggered 

genetic switch in mammalian cells and mice. Metabolic Engineering, 11(2), pp.117-124.  

Weber, W., Lienhart, C., Daoud-El Baba, M. and Fussenegger, M. 2009b. A biotin-

triggered genetic switch in mammalian cells and mice. Metabolic Engineering,  

Weber, W., Marty, R.R., Link, N., Ehrbar, M., Keller, B., Weber, C.C., Zisch, A.H., 

Heinzen, C., Djonov, V. and Fussenegger, M. 2003. Conditional human VEGF-mediated, 

Weber, W. and Fussenegger, M. 2004a. Approaches for trigger-inducible viral transgene 

regulation in gene-based tissue engineering. Current Opinion in Biotechnology, 15(5), 

pp.383-391.  



 
 

411 
 

Weber, W. and Fussenegger, M. 2004b. Inducible gene expression in mammalian cells and 

mice. Methods in Molecular Biology (Clifton, N.J.), 267pp.451-466.  

Weber, W., Lienhart, C., Baba, M.D. and Fussenegger, M. 2009. A biotin-triggered genetic 

switch in mammalian cells and mice. Metabolic Engineering, 11(2), pp.117-124.  

Weber, W., Rimann, M., de Glutz, F.N., Weber, E., Memmert, K. and Fussenegger, M. 

2005. Gas-inducible product gene expression in bioreactors. Metabolic Engineering, 7(3), 

pp.174-181.  

Weber, W., Schuetz, M., Denervaud, N. and Fussenegger, M. 2009. A synthetic metabolite-

based mammalian inter-cell signaling system. Molecular bioSystems, 5(7), pp.757-763.  

Wei, Y.Y., Naderi, S., Meshram, M., Budman, H., Scharer, J.M., Ingalls, B.P. and 

McConkey, B.J. 2011. Proteomics analysis of chinese hamster ovary cells undergoing 

apoptosis during prolonged cultivation. Cytotechnology, 63(6), pp.663-677.  

Werner, N.S., Weber, W., Fussenegger, M. and Geisse, S. 2007. A gas-inducible expression 

system in HEK.EBNA cells applied to controlled proliferation studies by expression of 

p27(Kip1). Biotechnology and Bioengineering, 96(6), pp.1155-1166.  

Wieland, M. and Fussenegger, M. 2012. Engineering molecular circuits using synthetic 

biology in mammalian cells. Annual Review of Chemical and Biomolecular Engineering, 

3pp.209-234.  

Wieser, R. 2007. The oncogene and developmental regulator EVI1: Expression, 

biochemical properties, and biological functions. Gene, 396(2), pp.346-357.  

Wierzbicki, A.T., Ream, T.S., Haag, J.R. and Pikaard, C.S. 2009. RNA polymerase V 

transcription guides ARGONAUTE4 to chromatin. Nature Genetics, 41(5), pp.630-634.  

Williams, S., Mustoe, T., Mulcahy, T., Griffiths, M., Simpson, D., Antoniou, M., Irvine, 

A., Mountain, A. and Crombie, R. 2005. CpG-island fragments from the 

HNRPA2B1/CBX3 genomic locus reduce silencing and enhance transgene expression from 

the hCMV promoter/enhancer in mammalian cells. BMC Biotechnology, 5pp.17.  

Winnard, P.,Jr, Glackin, C. and Raman, V. 2006. Stable integration of an empty vector in 

MCF-7 cells greatly alters the karyotype. Cancer Genetics and Cytogenetics, 164(2), 

pp.174-176.  

Wilkinson, J.C., Cepero, E., Boise, L.H. and Duckett, C.S. 2004. Upstream regulatory role 

for XIAP in receptor-mediated apoptosis. Molecular and Cellular Biology, 24(16), 

pp.7003-7014.  

Williams, K., Christensen, J. and Helin, K. 2011. DNA methylation: TET proteins-

guardians of CpG islands? EMBO Reports, 13(1), pp.28-35.  



 
 

412 
 

Wolff, L.J., Wolff, J.A. and Sebestyen, M.G. 2009. Effect of tissue-specific promoters and 

microRNA recognition elements on stability of transgene expression after hydrodynamic 

naked plasmid DNA delivery. Human Gene Therapy, 20(4), pp.374-388.  

Wong, D.C., Wong, K.T., Nissom, P.M., Heng, C.K. and Yap, M.G. 2006. Targeting early 

apoptotic genes in batch and fed-batch CHO cell cultures. Biotechnology and 

Bioengineering, 95(3), pp.350-361.  

Wu, S., Huang, S., Ding, J., Zhao, Y., Liang, L., Liu, T., Zhan, R. and He, X. 2010. 

Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3' 

untranslated region. Oncogene, 29(15), pp.2302-2308.  

Wu, S.C. 2009. RNA interference technology to improve recombinant protein production in 

chinese hamster ovary cells. Biotechnology Advances, 27(4), pp.417-422.  

Wu, S.Y., Lopez-Berestein, G., Calin, G.A. and Sood, A.K. 2014. RNAi therapies: 

Drugging the undruggable. Science Translational Medicine, 6(240), pp.240ps7.  

Wuest, D.M., Harcum, S.W. and Lee, K.H. 2012. Genomics in mammalian cell culture 

bioprocessing. Biotechnology Advances, 30(3), pp.629-638.  

Wurm, F.M. 2004. Production of recombinant protein therapeutics in cultivated mammalian 

cells. Nature Biotechnology, 22(11), pp.1393-1398.  

Wulhfard, S., Tissot, S., Bouchet, S., Cevey, J., De Jesus, M., Hacker, D.L. and Wurm, 

F.M. 2008. Mild hypothermia improves transient gene expression yields several fold in 

chinese hamster ovary cells. Biotechnology Progress, 24(2), pp.458-465.  

Xie, Y., Tobin, L.A., Camps, J., Wangsa, D., Yang, J., Rao, M., Witasp, E., Awad, K.S., 

Yoo, N., Ried, T. and Kwong, K.F. 2013. MicroRNA-24 regulates XIAP to reduce the 

apoptosis threshold in cancer cells. Oncogene, 32(19), pp.2442-2451.  

Xu, X., Nagarajan, H., Lewis, N.E., Pan, S., Cai, Z., Liu, X., Chen, W., Xie, M., Wang, W., 

Hammond, S., Andersen, M.R., Neff, N., Passarelli, B., Koh, W., Fan, H.C., Wang, J., Gui, 

Y., Lee, K.H., Betenbaugh, M.J., Quake, S.R., Famili, I., Palsson, B.O. and Wang, J. 2011. 

The genomic sequence of the chinese hamster ovary (CHO)-K1 cell line. Nature 

Biotechnology, 29(8), pp.735-741.  

Yekta, S., Shih, I.H. and Bartel, D.P. 2004. MicroRNA-directed cleavage of HOXB8 

mRNA. Science (New York, N.Y.), 304(5670), pp.594-596.  

Yan, H., Wang, S., Yu, H., Zhu, J. and Chen, C. 2013. Molecular pathways and functional 

analysis of miRNA expression associated with paclitaxel-induced apoptosis in 

hepatocellular carcinoma cells. Pharmacology, 92(3-4), pp.167-174.  



 
 

413 
 

Yang, J.H., Li, J.H., Shao, P., Zhou, H., Chen, Y.Q. and Qu, L.H. 2011. starBase: A 

database for exploring microRNA-mRNA interaction maps from argonaute CLIP-seq and 

degradome-seq data. Nucleic Acids Research, 39(Database issue), pp.D202-9.  

Yang, W.C., Lu, J., Kwiatkowski, C., Yuan, H., Kshirsagar, R., Ryll, T. and Huang, Y.M. 

2014. Perfusion seed cultures improve biopharmaceutical fed-batch production capacity 

and product quality. Biotechnology Progress,  

Yoon, S.K., Hong, J.K. and Lee, G.M. 2004. Effect of simultaneous application of stressful 

culture conditions on specific productivity and heterogeneity of erythropoietin in chinese 

hamster ovary cells. Biotechnology Progress, 20(4), pp.1293-1296.  

Yoon, S.K., Hwang, S.O. and Lee, G.M. 2004. Enhancing effect of low culture temperature 

on specific antibody productivity of recombinant chinese hamster ovary cells: Clonal 

variation. Biotechnology Progress, 20(6), pp.1683-1688.  

Yoon, S.K., Song, J.Y. and Lee, G.M. 2003. Effect of low culture temperature on specific 

productivity, transcription level, and heterogeneity of erythropoietin in chinese hamster 

ovary cells. Biotechnology and Bioengineering, 82(3), pp.289-298.  

Yu, J., Wang, F., Yang, G.H., Wang, F.L., Ma, Y.N., Du, Z.W. and Zhang, J.W. 2006. 

Human microRNA clusters: Genomic organization and expression profile in leukemia cell 

lines. Biochemical and Biophysical Research Communications, 349(1), pp.59-68.  

Zahn-Zabal, M., Kobr, M., Girod, P.A., Imhof, M., Chatellard, P., de Jesus, M., Wurm, F. 

and Mermod, N. 2001. Development of stable cell lines for production or regulated 

expression using matrix attachment regions. Journal of Biotechnology, 87(1), pp.29-42.  

Zanghi, J.A., Fussenegger, M. and Bailey, J.E. 1999. Serum protects protein-free competent 

chinese hamster ovary cells against apoptosis induced by nutrient deprivation in batch 

culture. Biotechnology and Bioengineering, 64(1), pp.108-119.  

Zaret, K.S. and Carroll, J.S. 2011. Pioneer transcription factors: Establishing competence 

for gene expression. Genes & Development, 25(21), pp.2227-2241.  

Zeitels, L.R. and Mendell, J.T. 2013. When 19 is greater than 92. ELife, 2pp.e01514.  

Zahn-Zabal, M., Kobr, M., Girod, P.A., Imhof, M., Chatellard, P., de Jesus, M., Wurm, F. 

and Mermod, N. 2001. Development of stable cell lines for production or regulated 

expression using matrix attachment regions. Journal of Biotechnology, 87(1), pp.29-42.  

Zanghi, J.A., Fussenegger, M. and Bailey, J.E. 1999. Serum protects protein-free competent 

chinese hamster ovary cells against apoptosis induced by nutrient deprivation in batch 

culture. Biotechnology and Bioengineering, 64(1), pp.108-119.  



 
 

414 
 

Zarrin, A.A., Malkin, L., Fong, I., Luk, K.D., Ghose, A. and Berinstein, N.L. 1999. 

Comparison of CMV, RSV, SV40 viral and Vlambda1 cellular promoters in B and T 

lymphoid and non-lymphoid cell lines. Biochimica Et Biophysica Acta, 1446(1-2), pp.135-

139.  

Zeitels, L.R. and Mendell, J.T. 2013. When 19 is greater than 92. ELife, 2pp.e01514.  

Zeng, A.P., Deckwer, W.D. and Hu, W.S. 1998. Determinants and rate laws of growth and 

death of hybridoma cells in continuous culture. Biotechnology and Bioengineering, 57(6), 

pp.642-654.  

Zhang, Y.Q., Xiao, C.X., Lin, B.Y., Shi, Y., Liu, Y.P., Liu, J.J., Guleng, B. and Ren, J.L. 

2013. Silencing of pokemon enhances caspase-dependent apoptosis via fas- and 

mitochondria-mediated pathways in hepatocellular carcinoma cells. PloS One, 8(7), 

pp.e68981.  

Zheng, C. and Baum, B.J. 2008. Evaluation of promoters for use in tissue-specific gene 

delivery. Methods in Molecular Biology (Clifton, N.J.), 434pp.205-219.  

Zhou, W., Chen, C.C., Buckland, B. and Aunins, J. 1997. Fed-batch culture of recombinant 

NS0 myeloma cells with high monoclonal antibody production. Biotechnology and 

Bioengineering, 55(5), pp.783-792.  

Zisoulis, D.G., Yeo, G.W. and Pasquinelli, A.E. 2011. Comprehensive identification of 

miRNA target sites in live animals. Methods in Molecular Biology (Clifton, N.J.), 

732pp.169-185.  

Zou, C.G., Ma, Y.C., Dai, L.L. and Zhang, K.Q. 2014. Autophagy protects C. elegans 

against necrosis during pseudomonas aeruginosa infection. Proceedings of the National 

Academy of Sciences of the United States of America,  

 

 

 

 

 

 

 

 



 
 

415 
 

7.2: Appendix 

 

Final Primer Design for functional promoters 

  Primer order name:         Nucleotide sequence 5’-------3’                                     

                             MdM2.370 F:                    aattggtaccGTTAACAGGTGCCTGTCTCC 
  MdM2.370 R:                      aattctcgagTGGCCTACAAGTAGGGGAGAA 
    SSu72.654 F:                     aattggtaccACAGGGTTTCTCCTGATGAGCT 

                 SSu72.654 R:                    aattctcgagGACCGTCCGCGCTACCCA 
Cirbp.(828cho) F:        aataggtaccCCTTCCATGGCATGCTTGAGAC 

  Cirbp.(828cho) R:          attaagatctGTGCACACACCACAGATATTTGC 
                     Cirbp.(889mouse) F:      aataggtaccCCTTCCATGGCATGCTTGAGAC 
                     Cirbp.(889mouse) R:                   ataaagatctGAGTCCCGCCTGATATACTCC 
                  miR17-92.733 (cho) F:                    aattggtaccTAGCAGCACCCGAAGCTTTGC 
                  miR17-92.733 (cho) R:                   aattctcgagTCCATCAGTCTCCAGTCTCACA 
                miR17-92.992 (mouse) F:              aattggtaccTTCCACCCAATACATTGTTGCC 
                miR17-92.992 (mouse) R:             attaagatctGTCACAGCTTCAGTCCCAAG * 

Table 7.2.1: Designed primer sequences and order annotation for promoters used for 

functional reporter assays. * denotes a Bglii site due to existence of a Xho1 site being 

present within the 992bp sequence which would hinder cloning downstream otherwise. 

 

Mouse (backup) primers 

See supplementary CD (large file). 

FACS sector breakdown: 

 

GFP med + #Events GFP med + FITC-A Mean GFP med + FITC-A Median GFP top + #Events GFP top + FITC-A Mean GFP top + FITC-A Median Cells #Events

polyA_37 114 8847 7403 2 36550 36550 10488

polyA_31 691 10969 8695 56 43005 39594 10430

MDM_37 605 11556 9125 250 99225 81201 10621

MDM_31 1785 13285 11483 1348 96817 76647 10139

SSU-600_37 725 11272 8862 223 77062 59105 10289

SSU-600_31 827 13162 11308 580 95099 78151 7012

SSU-19_37 1181 11801 9427 411 86169 68126 10634

SSU-19_31 991 13736 12169 778 99066 78425 5923

Cir7-CHO_37 1555 12479 10249 712 82958 62600 10909

Cir7-CHO_31 715 13429 11345 660 104750 88985 5415

mir17-92M_37 275 11259 8810 116 87094 69770 6080

mir17-92M_31 654 12822 10804 363 94559 71786 5517

mir17-92C_37 129 10350 8003 11 40183 36737 6162

mir17-92C_31 434 11243 8999 44 43374 40080 5817

CMV_37 1047 12233 9762 490 77572 60498 10656

CMV_31 415 13244 11206 622 111499 96864 3740

Cir7-M_37 1318 12114 9672 543 86725 67638 11142

Cir7-M_31 851 12764 10223 683 102273 85866 5719

MED TOP
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RT-qPCR – Actinomycin D experiments – mRNA stability 

Table 7.2.2: Copy No. and CT calculations for 3 priority genes standard curves. 

 

Cirbp SSu72 MDM2
dil CT copy no dil CT copy no dil CT copy no

10 -1 95500000000 10 -1 61100000000 10 -1 16000000000
10 -2 9550000000 10 -2 6110000000 10 -2 1600000000
10 -3 955000000 10 -3 611000000 10 -3 160000000
10 -4 95500000 10 -4 61100000 10 -4 16000000
10 -5 14.2 9550000 10 -5 15.7 6110000 10 -5 14.6 1600000
10 -6 17.2 955000 10 -6 18.7 611000 10 -6 17.8 160000
10 -7 20.2 95500 10 -7 21.7 61100 10 -7 20.9 16000
10 -8 23.2 9550 10 -8 24.7 6110 10 -8 24.0 1600
10 -9 26.2 955 10 -9 27.6 611 10 -9 27.2 160

10 -10 29.2 95.5 10 -10 30.6 61.1 10 -10 30.3 16
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Figure 7.2.3: Logarithmic standard curves and line equation for each priority gene. 
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Figure 7.2.4: Copy number calculation via RT-qPCR for decay rate (-k) determination of 3 

gene specific mRNAs tested over 3 timepoints [3, 6, 24h]. CHO-K1 cells cultured over 24 

hours in 6-well plate format and subjected to treatment (W + W/O ActD). Note: The 24h 

ActD samples do not reach zero, the values were calculated to be 668, 299 and 2 copies 

respectively. 
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Table 7.2.5: Decay rates and half-life of gene transcripts between 3 timepoints post-

actinomycin D treatment of CHO-K1 cells. (A) Values estimated from figure 6.2.2.1 

results. 

 

 

Table 7.2.6: Details for GFP gene amplicon with standards used for calibration curve in red 

(10^5-10^10). For investigating CMV viral promoter stability and mRNA transcript level at 

31
o
C. 
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Figure 7.2.7: Standard curve generated by qPCR from primers specific to the GFP 

amplicon (252bp) diluted by serial dilution (range from 10
5
 to 10

10
). Sample CT plots 

measured in triplicate and averaged. The cycle difference between each order of magnitude 

corresponds to ~2.81 CT. 

 

p27 results appendices 

Table 7.2.8: Attached p27 cell number reduction % results 

 

 

 

 

Attached

% drop % of 100 % of pTATA

71.0 29.0 10.6

81.6 18.4 0.0

39.6 60.4 42.1

54.4 45.6 27.3

47.0 53.0 34.7

26.0 74.0 55.6

30.4 69.6 51.2

75.4 24.6 6.2

80.1 19.9 1.5
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Table 7.2.9: Suspension p27 cell number reduction % results 

 

Table 7.2.10: Single cell clonal population labels – from FACS sorting. 

 

 

 

 

 

 

Suspension

% drop % of 100 % of pTATA

61.1 38.9 15.3

76.4 23.6 0.0

60.1 39.9 16.2

31.1 68.9 45.2

37.3 62.7 39.0

35.7 64.3 40.7

28.2 71.8 48.2

56.0 44.0 20.4

62.8 37.2 13.5
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7.3: Project 2 - Appendices 

XIAP sequences – Human and CHO: 

CHO-scaffold 4366 

>gi|350538686|ref|NM_001246801.1| Cricetulus griseus X-linked inhibitor 

of apoptosis (Xiap), mRNA 

GGTGGACAAGTCCTATTTTCAAGAGAAGATGACTTTTAACAGTTTTGAAGGATCTAGAACTTGTGTACCTGCA

GACACCAATAAGGATGAAGAATTTGTAGAAGAGTTTAATAGATTAAAAACATTTGCTAACTTTCCAAGTAGTA

GTCCTGTTTCAGCATCAACCTTGGCACGAGCAGGGTTTCTTTATACTGGTGAAGGAGATACTGTGCAGTGCTT

TAGTTGTCACGCGGCAGTGGATAGATGGCAGTACGGAGACTCAGCTGTTGGAAGACACAGGCAAATATCCCCA

AATTGCAGATTTATCAATGGTTTTTATTTTGAAAACAGTGCCACACAGGCTACAAATCCTGGTATCCAAAATG

GCCAGTACAAAGCTGAAAACTATGTGGGAAACAGAAATCATTTTGCTCTTGACAGGCCATCTGAGACTCATGC

AGATTATCTTTTGAGAACTGGACAGGTTGTAGATATTTCAGATACCATATACCCGAGGAACCCTGCCATGTGT

AGTGAAGAAGCCAGGCTGAAGTCCTTTCAGAACTGGCCAGACTATGCCCACTTAACCCCCAGAGAGTTGGCCA

GTGCTGGACTGTACTACACAGGGATTGATGATCAAGTGCAGTGCTTTTGCTGTGGTGGGAAACTGAAAAATTG

GGAACCCTGTGATCGTGCCTGGTCAGAACACAGGAGACACTTTCCCAATTGCTTCTTTGTTTTGGGCCGGAAT

GTTAATGTTCGGAGTGAATCTGGTGTGAGTTCTGATAGGAATTTCCCCAATTCGGCAAATTCTCCAAGAAATC

CAGCCATGGCAGAATATGAAGCACGGATCATTACTTTTGGAACATGGATATACTCAGTTAACAAGGAGCAGCT

TGCAAGAGCTGGATTTTATGCTTTAGGTGAAGGTGATAAGGTGAAGTGCTTTCACTGTGGAGGAGGGCTCACA

GATTGGAAGCCAAGTGAAGACCCTTGGGAACAGCATGCGAAGTGGTACCCAGGGTGTAAATATCTATTGGATG

AGAAGGGGCAAGAATATATAAATAATATTCATTTAACCCATTCACTTGGAGAATCTTTGGTAAGAACTGCTGA

AAAAACACCTTCACTAACTAAAAGAATTGATGATACCATCTTCCAGAATCCTATGGTACAAGAAGCTATACGA

ATGGGATTCAGTTTCAGGGACATTAAGAAAACAATGGAAGAAAAGATCCAAACATCTGGGAGCAGCTATCTGT

CCCTTGAGGTTCTGATTGCAGATCTAGTGAGTGCTCAGAAAGATAATACACAGGATGAGTCAAGTCAGACTTC

ATTGCAGAAAGACATCAGTACGGAAGAGCAGCTGAGGCGCCTACAAGAAGAGAAGCTTTGCAAAATCTGCATG

GATAGAAATATTGCTGTAGTTTTTGTTCCTTGTGGACATCTGGTCACTTGTAAACAGTGTGCTGAAGCAGTTG

ACAAATGTCCCATGTGCTACACAATCATTACCTTCAAACAAAAAATTTTTATGTCTTAA*TTGAGAGCAACAG

TAGGCATGTTATGTTC 

 

Next scaffold….. 

>gi|344164155|gb|JH000910.1|:604800-712033 Cricetulus griseus cell 

line CHO-K1 unplaced genomic scaffold scaffold4333, whole genome 

shotgun sequence – rev compl 

miR-17 predicted binding site in Targetscan 

CAGTGTTTGAATGAATTTAAACAACAAACCCTCAAACTAGTATATGTTGTTTTTCTCTTTGTGCAG

ACATCAGTACGGAAGAGCAGCTGAGGCGCCTACAAGAAGAGAAGCTTTGCAAAATCTGCATGGATA

GAAATATTGCTGTAGTTTTTGTTCCTTGTGGACATCTGGTCACTTGTAAACAGTGTGCTGAAGCAG

TTGACAAATGTCCCATGTGCTACACAATCATTACCTTCAAACAAAAAATTTTTATGTCTTAA* 

....TTGAGAGCAACAGTAGGCATGTTATACTCTTCTTACTCTAATTGAATGTGTGATGTGAGCAA

ACTTTAAGTAATCAGCATTGCATTCCATTAGCATCTGCTGCCAAGTGGAAACAAATGTTAACAGCA

CTGGTACTGTCTAAACTTTGGATTTCTGGAACTTTCAGGTTATTAGCTATATCGTTTATCCAGTTT

TTTACTCAATTAAAGCCTTAGACAAAGAAGCATTTAATATTATAACTTTTCACCTTGTGTATTTGT
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AGTACACTGACTTGATTTCTATGTGTAAGTGAATTAATCACTATCATTTTTCATTCCTTTTGGATA

AGCTTAACAAATGGAGTGTTCTGTATAAGCAGGGAGATTTGAGTTAATCTACCCATTCACTTGCTC

TGTTTATTGTGAACAGAGAATACACTGTTCCACACTGGTGGGAGGATAAACATTGGTTTGTAGATG

TTTGTGTCTGTGTTTTGGATTCTGTCCATTTTCTTTCAAATTTATAAACATACTTGTATGAATGGT

TTTTTAAGTGATTTTGCCATCTCCCAAAAGATATTTAATGGTAAACTGCTTATCTAACCAGCATAT

ACTAACATGGAAAGACAACAAAGATATATTAAGTGTAAATTACAAATGGCAAAACACTATGTATAG

TTTGAGCCAAATCAAGGTGTGAATTTTATATCTGTATAGGACAAAAAAGAGTTGGAAAGATATGCA

TCATACTCTTAAATATGTTTTTTTCTTGAGGGGGGTGGGGGTATGGGTCTTTGAGGGGCTTATAGG

AGCCCTTCTTTTTTCATTTTGTTCTGTTTGAAGTTTATATAAGTATGTATTACTTTTATATAATCA

GAATTTTTAGAAATATTGTACTGATTTAAAGGCTTAGGCATGTTCAAACGTCTGCAAAACTACTTA

TTGCTCAGTTTTAGTTTTTCTAATCCAAGAAGGCAGGCCAGTTGACTTTCTGGTGCCAATGTGAAA

TTTAAATGTTTTTGTTTTACCTGCTTTGTGGATAGAAAATATTTCTGAGTGGTAGTTTTCTGACAG

GTAGACCATGTCTTCTTATCTTGTTTCAAAATAAGTATTTCTGATTTTGTAAAATGAAATATAAAA

TATTGTCTCAGATCTTCCAATTAATTAGTAAGGATTCATCCTTAATCCTTGCTAGTTTAAGCCTGC

CTAAGTCACTTTACTAAAAGATCTTTGTTAACCCAGTATTTTAAACATTTGTCTGCTTATGTAGGT

AAAAGTAGAAGCATGTTTGTATGCTGCTTGTAGTTTTAGTGACAGCTTTCCATGTTGAAATTCTCA

TGTCATTTTGTGTCCTAAAAGTTTCATGTGAGTTTTTACTGTTAGGAAGATTAAGATGTATATAGT

ACAGAATGGTAAGTCTCTAATTGTTTTATGTTTGTTTGTTTCTTGACTAGTAATAGTAGTAAATAC

TTTAAAAATATTTTCTCAAGATCCTTAAGAACTCTTGGAAATTGTAACATACTGACAAGAGTAGTT

GTTTAAATACTTCTAACAACTTGTATAAGAGTCAATATGAATAAAATCCAGCTAAATGCTTCATAG

AACACAGGATTTACCCTAAACAATTATCATAATGGACCTCTTACAGAGACTCTAGTCTGTTTTACT

ACAGAGCACAGTTTGAGAGTGAAACTGTTACAATTTAGATTTTTGTTGTATTTTCTAAGAGAAAGA

ATATTGTTAGGTTCTCCTAACTTCTGTTGACTACTATGGTAAGTGGTGTCATTTTAATTGCAAATT

TAAATAGAAATTAACAGAATTAAGTACATTCCCTTTTTTTCTTTGCTTTTTCATGAAAATCCTTAG

TTCTTTACATTGTCTCCTACTTAGGTTCAGTTGTATAGTCGAACTTAATCTAAATTGACTAAGGTT

TAAATTTAAATTTACGTTTAAAGCATTCCACAGGGGATAAAAGTGTTAATTTAAAAAAAAAATGTT

CCCTAAGACACTTCAGGTACAAGTCACGTAGGTAGTGTGTTTAATCTAGCTGTTAGCCAAGGATTC

AAGGACTGAATTGTTTTTGAATAAGGCTTTTCTTGTTCTGGGAGCCTCAGTTCATTAAAACTCTCC

TTTTAAAACTTGTGTGCTGAGAGTTAAGCAAGACCTCTTTTTTTTTTTTTTTTTGTCTTCATGAGT

TGCGAAATTGAATTCATGAAGCTGATGTGGCTAACAAGTTTATTTTAAGAATTGTTTAGAAAATGC

TGTTGCTTCGGGTTCTTAAAATCACAGCATTCCAACTCTAATCAAGTTGTTGGAGACTTACCAGAG

TTGGACTGAGCTCACACTAAAATAAAAAAAACAAAACCAAAAAAAAAAAAAAAACCCTCACTGGAT

TCTTTCCATATAGCTGTGTAAAAAATTGGTCACTTGGAAGGTCAAAATATAACCAGATCCAAATCA

CCCACCCCAGACAGTTCTCAGCATCTGTGTATTGATGTTCTGTTCTGTATAAAGTTCACTCTAGGA

TTTTGAAGTAGCCATGTATTTTACTACTTATTAATTGTCATGTGAAATTTGAAGTTCTTCTGTAAT

AAATAGTTAATTTTATTTGTAATTTACTGTGCTAATCAAAATTTTTGTGTTTGGCATTAAGTAAAC

ACAGTTTATTTGATTAATGGCTTAGTATTCCCTTTCCTTCTAGATTTTTGCCTCTTCCTTTGGTTA

GGGGTAGAGGTGAGGTGAGTGTAGTAAGTGAATATAATGTGATTTGGCTATGTTGTTATGACATTT

GTTTTGTTGTTTAAAATGTGTATTCTTTTCTGTTTTAGTAGATAAAATCTATTATCTTGAGCTCTC

TGAATGGAAACTACCATCCCAGCATTAGCTGCATTTATTGTTCCCATTAGACCTAAATCGTTTTAC

TTGTGACTGCCCAGGTACTGAGTAAGAGAAGAGGAGAGATGAAATAGATTGCAGGTTGTTGCTGTT

AGAGGAATAAGAAAATGGAGAAATACTTGACGACATTTTAGTCAAATCTCTTTTTAAAAAGGTAGC

CATATAGGCTTCACAATCTGAGGTCATATCTCCAGAACCCACATAAAAGCTGGGTGCACTAGCCCC

AAGCATCTGTAATCCGGGAATGCCTCCATGAAACAGGAAGCAGATAGGAGACGGGCCAGAAGCTAA

CTTGGCTTAGGCATTAGCCAAGAGACCCTGTTAAGGTAGGAAGGTTGTCCTTTGGGTTATCTGCCC
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TCTAATGTGCATCATGATAGGCATCCACCTATACTCGGACACACACACAAAAGAAAAAAAACAAAA

AGTAGCTATCTGTATAATAAGACTATTACCTTAACCATTTTATCCAAGGTGATGGAATTCAACTCA

AGGAGAACACACCTTAATTGTTTTAAATGTTAACTCTCAACCTAAAACTTTTTTTTTTTCCAGGAC

AGAGTTTCTCTATGTAGCCCAGGCTGTACTCAAACATCAGCAACCCTCTGCCTCTGCCTCTGCCTC

TGCCTCTGGAGTGCTGGGATTAAAGGTGCATGCCACTACAGCCCAGATTCATCCTAAAAACTCGTA

GGCCTTCCATGGGTTCTCCTTGATAGAGGACTTGGACTAAAGCTTAATAGACCGCCTGGAAAGATA

ACTCAGCCACTAAGAGTACTTGCTGCTTCTGCAGAGGACCAAAGTTCAGTTCCCAGCACCCAACGG

GGTGGCTTACAACTGCATATTAGCTCCAGCTTCAGTCTATCTAGTGCCCTCTTTTGGCCTCCATGG

GCACCTACATGCATGTGCATATATATAAACATACACACATTACACATAAAATAAAAATAATCCTTT

TTTTTTTTGGTTTTTCGAGACAGGGTTTCTCTGTGGCTTTGGAGACTGTCCTGGAACTAGCTCTTG

TAGACCAGGCTGGCCTCGAACTCACAGAGATCTGCCTCCCTCTGCCTCCCTGGAATTAAAGGCGTA

CGCCACCAACGCCCAGCAAATAAAAATAATCTTTAAAGCTTAAACAAAACTGGTATATTTACTTTT

TGTCACTGTTACTTGTTTCTCTGGATGCTTCTTAGAAAAGTTCCAGACTATCAGCTAGAAATGACC

TCGGAGAGTAGCTTATTCACAGCACACCACCCTCATTTTATCATTGCGATAGACCCTTTACTGGCA

CATGCTTTGAAGTTGGAAAACCCCTTACCACACCGGCTACCTGTCCTGGGAAGTCTCCGATGTTTA

TTTTTCAGCAGTTCATTCCATTATACTCGAATTTTCACTACACAGTAAATGATACTTTATAACTGT

TACAGTAGGACAACCCCTAATACTTTTAAATTAAGTAATATGCCGTTAATGCTTGAGTGGTAGAGT

TCTCATTTGGAGGCTCAGGTTTGTAGATGTTTGGCATTTACTGTGTGCTTATGTATCATGTAGCAT

TTAAGATTACTGTGTAAGTTTATTTTATCACTCTATCAATACCAACAAGCTTGCATTTTAAATTTG

ATGTTAATAATGGCTTTAATGTAGTTTCTGGTTTTGGATTTTTTTTTTATTATGCTTCACCTGACA

GAATGACCCATTCTTTTATCTTTGTGTTAGTTTTGTGAATACTTATGTTAAGAGTTTTGAGACAGA

ATACTATATTTGTGAATATAATTTTATGGCTTTTTTTCATTTAGTGGATACCTTTCAGTATGGAGA

TCTATGAAAATTGCTTTCTGCGCTATAATCTGTCCTTTGTTGTAGATTAAAGCTTATTTTTCTGTG

AATAAGACTTATCAATAAAGCACTATTCTTTAAA 

 

>xiap-Human     NM_001167.2 

TTTCCAGATTGGGGCTCGGGCCGCGCCTCCTCCGGGACCCTCCCCTTGGACCGAGCCGATCGCCGCGGGG 

CAGTTCGGGCCGGCTGTCCTGGCGCGAAAAGGTGGACAAGTCCTATTTTCAAGAGAAGATGACTTTTAAC 

AGTTTTGAAGGATCTAAAACTTGTGTACCTGCAGACATCAATAAGGAAGAAGAATTTGTAGAAGAGTTTA 

ATAGATTAAAAACTTTTGCTAATTTTCCAAGTGGTAGTCCTGTTTCAGCATCAACACTGGCACGAGCAGG 

GTTTCTTTATACTGGTGAAGGAGATACCGTGCGGTGCTTTAGTTGTCATGCAGCTGTAGATAGATGGCAA 

TATGGAGACTCAGCAGTTGGAAGACACAGGAAAGTATCCCCAAATTGCAGATTTATCAACGGCTTTTATC 

TTGAAAATAGTGCCACGCAGTCTACAAATTCTGGTATCCAGAATGGTCAGTACAAAGTTGAAAACTATCT 

GGGAAGCAGAGATCATTTTGCCTTAGACAGGCCATCTGAGACACATGCAGACTATCTTTTGAGAACTGGG 

CAGGTTGTAGATATATCAGACACCATATACCCGAGGAACCCTGCCATGTATAGTGAAGAAGCTAGATTAA 

AGTCCTTTCAGAACTGGCCAGACTATGCTCACCTAACCCCAAGAGAGTTAGCAAGTGCTGGACTCTACTA 

CACAGGTATTGGTGACCAAGTGCAGTGCTTTTGTTGTGGTGGAAAACTGAAAAATTGGGAACCTTGTGAT 
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CGTGCCTGGTCAGAACACAGGCGACACTTTCCTAATTGCTTCTTTGTTTTGGGCCGGAATCTTAATATTC 

GAAGTGAATCTGATGCTGTGAGTTCTGATAGGAATTTCCCAAATTCAACAAATCTTCCAAGAAATCCATC 

CATGGCAGATTATGAAGCACGGATCTTTACTTTTGGGACATGGATATACTCAGTTAACAAGGAGCAGCTT 

GCAAGAGCTGGATTTTATGCTTTAGGTGAAGGTGATAAAGTAAAGTGCTTTCACTGTGGAGGAGGGCTAA 

CTGATTGGAAGCCCAGTGAAGACCCTTGGGAACAACATGCTAAATGGTATCCAGGGTGCAAATATCTGTT 

AGAACAGAAGGGACAAGAATATATAAACAATATTCATTTAACTCATTCACTTGAGGAGTGTCTGGTAAGA 

ACTACTGAGAAAACACCATCACTAACTAGAAGAATTGATGATACCATCTTCCAAAATCCTATGGTACAAG 

AAGCTATACGAATGGGGTTCAGTTTCAAGGACATTAAGAAAATAATGGAGGAAAAAATTCAGATATCTGG 

GAGCAACTATAAATCACTTGAGGTTCTGGTTGCAGATCTAGTGAATGCTCAGAAAGACAGTATGCAAGAT 

GAGTCAAGTCAGACTTCATTACAGAAAGAGATTAGTACTGAAGAGCAGCTAAGGCGCCTGCAAGAGGAGA 

AGCTTTGCAAAATCTGTATGGATAGAAATATTGCTATCGTTTTTGTTCCTTGTGGACATCTAGTCACTTG 

TAAACAATGTGCTGAAGCAGTTGACAAGTGTCCCATGTGCTACACAGTCATTACTTTCAAGCAAAAAATT 

TTTATGTCTTAA...stop codon    3'UTR---> 

            TCTAACTCTATAGTAGGCATGTTATGTTGTTCTTATTACCCTGATTGAATGTGTGATG 

TGAACTGACTTTAAGTAATCAGGATTGAATTCCATTAGCATTTGCTACCAAGTAGGAAAAAAAATGTACA 

TGGCAGTGTTTTAGTTGGCAATATAATCTTTGAATTTCTTGATTTTTCAGGGTATTAGCTGTATTATCCA 

TTTTTTTTACTGTTATTTAATTGAAACCATAGACTAAGAATAAGAAGCATCATACTATAACTGAACACAA 

TGTGTATTCATAGTATACTGATTTAATTTCTAAGTGTAAGTGAATTAATCATCTGGATTTTTTATTCTTT 

TCAGATAGGCTTAACAAATGGAGCTTTCTGTATATAAATGTGGAGATTAGAGTTAATCTCCCCAATCACA 

TAATTTGTTTTGTGTGAAAAAGGAATAAATTGTTCCATGCTGGTGGAAAGATAGAGATTGTTTTTAGAGG 

TTGGTTGTTGTGTTTTAGGATTCTGTCCATTTTCTTTTAAAGTTATAAACACGTACTTGTGCGAATTATT 

TTTTTAAAGTGATTTGCCATTTTTGAAAGCGTATTTAATGATAGAATACTATCGAGCCAACATGTACTGA 

CATGGAAAGATGTCAAAGATATGTTAAGTGTAAAATGCAAGTGGCAAAACACTATGTATAGTCTGAGCCA 

GATCAAAGTATGTATGTTTTTAATATGCATAGAACAAAAGATTTGGAAAGATATACACCAAACTGTTAAA 

TGTGGTTTCTCTTCGGGGAGGGGGGGATTGGGGGAGGGGCCCCAGAGGGGTTTTATAGGGGCCTTTTCAC 

TTTCTACTTTTTTCATTTTGTTCTGTTCGAATTTTTTATAAGTATGTATTACTTTTGTAATCAGAATTTT 

TAGAAAGTATTTTGCTGATTTAAAGGCTTAGGCATGTTCAAACGCCTGCAAAACTACTTATCACTCAGCT 

TTAGTTTTTCTAATCCAAGAAGGCAGGGCAGTTAACCTTTTTGGTGCCAATGTGAAATGTAAATGATTTT 

ATGTTTTTCCTGCTTTGTGGATGAAAAATATTTCTGAGTGGTAGTTTTTTGACAGGTAGACCATGTCTTA 

TCTTGTTTCAAAATAAGTATTTCTGATTTTGTAAAATGAAATATAAAATATGTCTCAGATCTTCCAATTA 
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ATTAGTAAGGATTCATCCTTAATCCTTGCTAGTTTAAGCCTGCCTAAGTCACTTTACTAAAAGATCTTTG 

TTAACTCAGTATTTTAAACATCTGTCAGCTTATGTAGGTAAAAGTAGAAGCATGTTTGTACACTGCTTGT 

AGTTATAGTGACAGCTTTCCATGTTGAGATTCTCATATCATCTTGTATCTTAAAGTTTCATGTGAGTTTT 

TACCGTTAGGATGATTAAGATGTATATAGGACAAAATGTTAAGTCTTTCCTCTACCTACATTTGTTTTCT 

TGGCTAGTAATAGTAGTAGATACTTCTGAAATAAATGTTCTCTCAAGATCCTTAAAACCTCTTGGAAATT 

ATAAAAATATTGGCAAGAAAAGAAGAATAGTTGTTTAAATATTTTTTAAAAAACACTTGAATAAGAATCA 

GTAGGGTATAAACTAGAAGTTTAAAAATGCTTCATAGAACGTCCAGGGTTTACATTACAAGATTCTCACA 

ACAAACCTATTGTAGAGGTGAGTAAGGCATGTTACTACAGAGGAAAGTTTGAGAGTAAAACTGTAAAAAA 

TTATATTTTTGTTGTACTTTCTAAGAGAAAGAGTATTGTTATGTTCTCCTAACTTCTGTTGATTACTACT 

TTAAGTGATATTCATTTAAAACATTGCAAATTTATTTTATTTATTTAATTTTCTTTTTGAGATGGAGTCT 

TGCTTGTCACCCAGGCTGGAGTGCAGTGGAGTGATCTCTGCTCACTGCAACCTCCGCCTTCTGGGTTCAA 

GCGATTCTCGTGCCTCAGCTTCCTGAGTAGCTGGAATTACAGGCAGGTGCCACCATGCCCGACTAATTTT 

TTTTTATTTTTAGTAGAGACGGGGTTTCACCATGTTGGCCAGGCTGGTATCAAACTCCTGACCTCAAGAG 

ATCCACTCGCCTTGCCCTCCCAAAGTGCTGGGATTACAGGCTTGAGCCACCACGCCCGGCTAAAACATTG 

CAAATTTAAATGAGAGTTTTAAAAATTAAATAATGACTGCCCTGTTTCTGTTTTAGTATGTAAATCCTCA 

GTTCTTCACCTTTGCACTGTCTGCCACTTAGTTTGGTTATATAGTCATTAACTTGAATTTGGTCTGTATA 

GTCTAGACTTTAAATTTAAAGTTTTCTACAAGGGGAGAAAAGTGTTAAAATTTTTAAAATATGTTTTCCA 

GGACACTTCACTTCCAAGTCAGGTAGGTAGTTCAATCTAGTTGTTAGCCAAGGACTCAAGGACTGAATTG 

TTTTAACATAAGGCTTTTCCTGTTCTGGGAGCCGCACTTCATTAAAATTCTTCTAAAACTTGTATGTTTA 

GAGTTAAGCAAGACTTTTTTTCTTCCTCTCCATGAGTTGTGAAATTTAATGCACAACGCTGATGTGGCTA 

ACAAGTTTATTTTAAGAATTGTTTAGAAATGCTGTTGCTTCAGGTTCTTAAAATCACTCAGCACTCCAAC 

TTCTAATCAAATTTTTGGAGACTTAACAGCATTTGTCTGTGTTTGAACTATAAAAAGCACCGGATCTTTT 

CCATCTAATTCCGCAAAAATTGATCATTTGCAAAGTCAAAACTATAGCCATATCCAAATCTTTTCCCCCT 

CCCAAGAGTTCTCAGTGTCTACATGTAGACTATTCCTTTTCTGTATAAAGTTCACTCTAGGATTTCAAGT 

CACCACTTATTTTACATTTTAGTCATGCAAAGATTCAAGTAGTTTTGCAATAAGTACTTATCTTTATTTG 

TAATAATTTAGTCTGCTGATCAAAAGCATTGTCTTAATTTTTGAGAACTGGTTTTAGCATTTACAAACTA 

AATTCCAGTTAATTAATTAATAGCTTTATATTGCCTTTCCTGCTACATTTGGTTTTTTCCCCTGTCCCTT 

TGATTACGGGCTAAGGTAGGGTAGAGTGGGTGTAGTGAGTGTATATAATGTGATTTGGCCCTGTGTATTA 

TGATATTTTGTTATTTTTGTTGTTATATTATTTACATTTCAGTAGTTGTTTTTTGTGTTTCCATTTTAGT 

GGATAAAATTTGTATTTTGAACTATGAATGGAGACTACCGCCCCAGCATTAGTTTCACATGATATACCCT 
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TTAAACCCGAATCATTGTTTTATTTCCTGATTACACAGGTGTTGAATGGGGAAAGGGGCTAGTATATCAG 

TAGGATATACTATGGGATGTATATATATCATTGCTGTTAGAGAAATGAAATAAAATGGGGCTGGGCTCAG 

TGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGCAGGTGGATCACGAGGTCAGGAGATCGAGA 

CCATCCTGGCTAACACGGTGAAACCCCGTCTCTACTAAAAAACAGAAAATTAGCCGGGCGTGGTGGCGGG 

CGCCTGTAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATGGTGTGAACCCGGGAGGCAGAGCTTGCA 

GTGAGCCGAGATCTCGCCACTGCACTCCAGCCTGGGCAACAGAGCAAGACTCTGTCTCAAAAAAAAAAAA 

AAAAGAAATAAGAAAATGGGAAGCAATATTTGACATAGTTCTTTTTAGTCAAATCTACTTGTTAAAAAAA 

GGGTAGCAGTTTATTCATCTGTGAAAGGAAAATAATACTTATCTTACAAGGTTGCAAGAGCTCAAGGAGA 

CCATGTATGTAAAGTTCCTGCTGTAAATATGAACTCCCATCCTAATACCCTTTTACCTCTCTGTGGGTTT 

GTCTTGACCTGGAAATTTGGGCTAAAACTTAGAAAAAATTCTTACATGATAACTCAGTGATGCTTACTCA 

TAGTTTTTGGTGTTTCTCATAGATAAGATATAAATCAGCTGGGCGCGGTGGCTCATGCCTGTAATCCCAG 

CACTTTGGGAGGCCGAGGCGGGCAGATCACCTGAGGTCGGGAGGTCGAGACCAGCCTGACCAACATGGAG 

AAACCCCGTCTCTACTAAAAATACAAAATTAGCTGGGCGTGGTGGCTCATGCCTGTAATCCCAGCTACTT 

GGGAGGCTGAGGCAGGAGAATCGCTTGAACCCAGGAGGCGGAGGTTGTGGTGAGCGAAGATCGTGCCATT 

GCACTCCAGCCTGGGCAACAAGAGCAAAACTCTGTCTCAAAAAAAAAAAAAGATATAAATCACAATAAAT 

AAATAGGTCAATACAAATGTTAGCCAGGCGTGGTGGCACATGCCCATAGTCGCAGCTACTCTGGAGGCAG 

AGGCAGGAGGATCACTTGAGCCCATGAATTTGAGGCAGCAGTGAGCTATGATTGTGCCACTGTACTCCAG 

TCTGGGTGACAGAGTGAGACCCCATCTCTAAATAAATAGGTCAAACCCTTAAAAATATTTAAATTCTTAA 

AAAATTGAAAAGATTATTCTTCTCAAATTTAGTTGAGCTTTCTAAGAGAAGCAATTGGCTTTTTCCCACT 

TCAATAATCATTTTCAGTTTGACTCATACAGTTAACACAATGTGAATTTCTTCCTCAGCATAACAGAGTT 

ATAGAATGACAGGGCTGGAAGTGACCTTAGAGAGTATCCAGTTCTTTCATTTTACAGGTGAGGCAACTGA 

GACTCAAAGGTGATGTAATTTGTGCAAAGATTATAGCTAATTAGTAGCAGAGCCCTGACTGGGACATAGT 

TTGAAGGTGAAAAACTTCACCAAGCTACCTTTCTTGAAAGGTCCAAATGTTTATGTTTTCAACTACTCTT 

TCCACTGTACCATAACTTTCACTACATATTAAATGACACTTTATAACTAATATAATAGGACAATCATCAA 

TGCATATATAGCCAGCCCTTCATATCTGTGGGTTTTGCATCCATGGATTCAACCAAGGAGGAATTGAAAA 

CACTGAGAAAAAAAAAAAAGACCACACAATAAAAAAAAAAAATACAAAATAATACAAAGAAAAAGCCAA

A 

ATTGTCATACTGTTGTTAAGCAACAGTATAACAACTATTTACATAGCATTAAGGTTGGTGCAAAAATGCA 

AAAAAAAAAAAAGCAATTATTTTTAAACCAACCTAATATATTGTATTAGGTATTAAAGTCATCTGGACAT 

GAATTAAAGTATATGATGCCAGCCTGGACAAAAGGCAAAACCCTGTCTCTACAAAAAATACAAAAATTAG 
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CTGGGCATGGTGGTGTGTGCCTGTAGTCCTGGCTACTCCGGAGCCTGAGGTGGGAGGATCGCTTGAGTCT 

GGGAGGCAGAGGCTGCATTGAGCTATGATCATGGCACTGCATTCCAGCCTGGGTGACAGTGCAAGACCTT 

GTCTCAGAATAAATAAAGTATGTGATGAAGATGTGCATACATTATATGCAAATACTGTTTTTTTTTTTTT 

TAATTTAAACAGTCTCACTGTGTTGCCCAGGATGGAGTGCAATGGCACAATCTTGGCTCATGGCAAACTC 

TGCCTCGCAAGCAGCTGGGACTACAGGCATGCTCCACGGTGCCCAGTTAATTTTTTTTGTATTCTTAGTA 

GAGACAGGGTTTCACCATGTTGGCCAGGCTAGTCTTGAATTTCTGACCTCAAGTGATTCATCTCCCAAAG 

TGCTGGGATTACAGGCGTGAGCCACCACGGCCGGCTAATTTTTGTATTTTTTAGTAGTGACTGGTTTCGC 

GGTGTTGACCAGGCTGGTCTCGAACTCCTGATCTCAGGTGATCTGCCTGCCTCGGCCTCACAAAGTGCTG 

GGATTACAGGTGTGAACCACTGCTCCCGGCCTTGTGTGATTTTATCTAAGGGACTTAAGCGTCCTCAGGT 

CCTAGGGGGTCGTGAAACCAAAACCCCAGGGATAGCAAGGGACAATTGTATCTTCAAAGTAGACAAATGG 

CGCCGGGCACGGTGGCTCACGCCTGTAATCCCAGCAGTTTCCGAGGCTGAGGCAGGCGGCTCACCTGAGG 

TCAGGAGTTGGAGACCAGCCTGGCCAACATGCTGAAACCCTGTCTGTACAAAAATACAAAAATAGCTGGG 

CATGGTGGCGCATGCCTGTAGTCCCAGCTACTAGAGCGACTGAGGCAGGAGAATTGCTTGAACCTGGGAG 

GCGGAGGTTGCAGGGAGCCAAGATGGCGCCACCGCACTCCAGCCTAGGTGATAGAGTGAGACTCCCTCTC 

AAAAACAAAACAAAACAAAAAAATTAGACAAATGCTACATTAATGTTTGGGTGGTCAGATTCTACTTTGA 

ATCTGAAGTTTGCAGATATGCCTATAGATTTTTGGAGTTTACCACTTTCTTATTCTGTATCATTAATGTA 

ATATTTTAAATTACTATATATGTTACCATTTTTCTGGATTTAGTAAGAAATTTGCAGTTTTGGTTTGATG 

TAACAAGGGTTTTAATGTAATTTATGTTAGATTTTGCATTTTTTTCATTACTGTTATATTTTAACCTGAC 

TGACTGATCTAATTGTATTAGTATTGTGAATAATCATGTGAAATGTTTTGAGACAGAGTACTATATTTGT 

GAATATAATTTTATGGTTTTTTTCACTTAGAACCTTTCTGTGTGGAAAACTAAGAAAATTGCTTTCTGCT 

GTATAATCTGGCATTCATTGTAGATTAAAGCTTATTTTTCTGTGAATAAAACGTATTCAATAAAATACTA 

TTCTTTAAAATTA…end of transcript 
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Full Alignment: ClustalW: CHO v Human comparison 

CHO=6300bp ---- Human=8413bp  

Identity matrix % = 81.01% 

CHO-XIAP        ------------------------------------------------------------ 

human-XIAP      TTTCCAGATTGGGGCTCGGGCCGCGCCTCCTCCGGGACCCTCCCCTTGGACCGAGCCGAT 60 

                                                                             

 

CHO-XIAP        ----------------------------------------GGTGGACAAGTCCTATTTTC 20 

human-XIAP      CGCCGCGGGGCAGTTCGGGCCGGCTGTCCTGGCGCGAAAAGGTGGACAAGTCCTATTTTC 120 

                                                        ******************** 

 

CHO-XIAP        AAGAGAAGATGACTTTTAACAGTTTTGAAGGATCTAGAACTTGTGTACCTGCAGACACCA 80 

human-XIAP      AAGAGAAGATGACTTTTAACAGTTTTGAAGGATCTAAAACTTGTGTACCTGCAGACATCA 180 

                ************************************ ******************** ** 

 

CHO-XIAP        ATAAGGATGAAGAATTTGTAGAAGAGTTTAATAGATTAAAAACATTTGCTAACTTTCCAA 140 

human-XIAP      ATAAGGAAGAAGAATTTGTAGAAGAGTTTAATAGATTAAAAACTTTTGCTAATTTTCCAA 240 

                ******* *********************************** ******** ******* 

 

CHO-XIAP        GTAGTAGTCCTGTTTCAGCATCAACCTTGGCACGAGCAGGGTTTCTTTATACTGGTGAAG 200 

human-XIAP      GTGGTAGTCCTGTTTCAGCATCAACACTGGCACGAGCAGGGTTTCTTTATACTGGTGAAG 300 

                ** **********************  ********************************* 

 

CHO-XIAP        GAGATACTGTGCAGTGCTTTAGTTGTCACGCGGCAGTGGATAGATGGCAGTACGGAGACT 260 

human-XIAP      GAGATACCGTGCGGTGCTTTAGTTGTCATGCAGCTGTAGATAGATGGCAATATGGAGACT 360 

                ******* **** *************** ** ** ** *********** ** ******* 

 

CHO-XIAP        CAGCTGTTGGAAGACACAGGCAAATATCCCCAAATTGCAGATTTATCAATGGTTTTTATT 320 

human-XIAP      CAGCAGTTGGAAGACACAGGAAAGTATCCCCAAATTGCAGATTTATCAACGGCTTTTATC 420 

                **** *************** ** ************************* ** ******  

 

CHO-XIAP        TTGAAAACAGTGCCACACAGGCTACAAATCCTGGTATCCAAAATGGCCAGTACAAAGCTG 380 

human-XIAP      TTGAAAATAGTGCCACGCAGTCTACAAATTCTGGTATCCAGAATGGTCAGTACAAAGTTG 480 

                ******* ******** *** ******** ********** ***** ********** ** 

 

CHO-XIAP        AAAACTATGTGGGAAACAGAAATCATTTTGCTCTTGACAGGCCATCTGAGACTCATGCAG 440 

human-XIAP      AAAACTATCTGGGAAGCAGAGATCATTTTGCCTTAGACAGGCCATCTGAGACACATGCAG 540 

                ******** ****** **** **********  * ***************** ******* 

 

CHO-XIAP        ATTATCTTTTGAGAACTGGACAGGTTGTAGATATTTCAGATACCATATACCCGAGGAACC 500 

human-XIAP      ACTATCTTTTGAGAACTGGGCAGGTTGTAGATATATCAGACACCATATACCCGAGGAACC 600 

                * ***************** ************** ***** ******************* 

 

CHO-XIAP        CTGCCATGTGTAGTGAAGAAGCCAGGCTGAAGTCCTTTCAGAACTGGCCAGACTATGCCC 560 

human-XIAP      CTGCCATGTATAGTGAAGAAGCTAGATTAAAGTCCTTTCAGAACTGGCCAGACTATGCTC 660 

                ********* ************ **  * ***************************** * 

 

CHO-XIAP        ACTTAACCCCCAGAGAGTTGGCCAGTGCTGGACTGTACTACACAGGGATTGATGATCAAG 620 

human-XIAP      ACCTAACCCCAAGAGAGTTAGCAAGTGCTGGACTCTACTACACAGGTATTGGTGACCAAG 720 

                ** ******* ******** ** *********** *********** **** *** **** 

 

CHO-XIAP        TGCAGTGCTTTTGCTGTGGTGGGAAACTGAAAAATTGGGAACCCTGTGATCGTGCCTGGT 680 

human-XIAP      TGCAGTGCTTTTGTTGTGGTGGAAAACTGAAAAATTGGGAACCTTGTGATCGTGCCTGGT 780 

                ************* ******** ******************** **************** 
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CHO-XIAP        CAGAACACAGGAGACACTTTCCCAATTGCTTCTTTGTTTTGGGCCGGAATGTTAATGTTC 740 

human-XIAP      CAGAACACAGGCGACACTTTCCTAATTGCTTCTTTGTTTTGGGCCGGAATCTTAATATTC 840 

                *********** ********** *************************** ***** *** 

 

CHO-XIAP        GGAGTGAATCTGGTG---TGAGTTCTGATAGGAATTTCCCCAATTCGGCAAATTCTCCAA 797 

human-XIAP      GAAGTGAATCTGATGCTGTGAGTTCTGATAGGAATTTCCCAAATTCAACAAATCTTCCAA 900 

                * ********** **   ********************** *****  *****  ***** 

 

CHO-XIAP        GAAATCCAGCCATGGCAGAATATGAAGCACGGATCATTACTTTTGGAACATGGATATACT 857 

human-XIAP      GAAATCCATCCATGGCAGATTATGAAGCACGGATCTTTACTTTTGGGACATGGATATACT 960 

                ******** ********** *************** ********** ************* 

 

CHO-XIAP        CAGTTAACAAGGAGCAGCTTGCAAGAGCTGGATTTTATGCTTTAGGTGAAGGTGATAAGG 917 

human-XIAP      CAGTTAACAAGGAGCAGCTTGCAAGAGCTGGATTTTATGCTTTAGGTGAAGGTGATAAAG 1020 

                ********************************************************** * 

 

CHO-XIAP        TGAAGTGCTTTCACTGTGGAGGAGGGCTCACAGATTGGAAGCCAAGTGAAGACCCTTGGG 977 

human-XIAP      TAAAGTGCTTTCACTGTGGAGGAGGGCTAACTGATTGGAAGCCCAGTGAAGACCCTTGGG 1080 

                * ************************** ** *********** **************** 

 

CHO-XIAP        AACAGCATGCGAAGTGGTACCCAGGGTGTAAATATCTATTGGATGAGAAGGGGCAAGAAT 1037 

human-XIAP      AACAACATGCTAAATGGTATCCAGGGTGCAAATATCTGTTAGAACAGAAGGGACAAGAAT 1140 

                **** ***** ** ***** ******** ******** ** **  ******* ******* 

 

CHO-XIAP        ATATAAATAATATTCATTTAACCCATTCACTTGGAGAATCTTTGGTAAGAACTGCTGAAA 1097 

human-XIAP      ATATAAACAATATTCATTTAACTCATTCACTTGAGGAGTGTCTGGTAAGAACTACTGAGA 1200 

                ******* ************** **********  ** * * *********** **** * 

 

CHO-XIAP        AAACACCTTCACTAACTAAAAGAATTGATGATACCATCTTCCAGAATCCTATGGTACAAG 1157 

human-XIAP      AAACACCATCACTAACTAGAAGAATTGATGATACCATCTTCCAAAATCCTATGGTACAAG 1260 

                ******* ********** ************************ **************** 

 

CHO-XIAP        AAGCTATACGAATGGGATTCAGTTTCAGGGACATTAAGAAAACAATGGAAGAAAAGATCC 1217 

human-XIAP      AAGCTATACGAATGGGGTTCAGTTTCAAGGACATTAAGAAAATAATGGAGGAAAAAATTC 1320 

                **************** ********** ************** ****** ***** ** * 

 

CHO-XIAP        AAACATCTGGGAGCAGCTATCTGTCCCTTGAGGTTCTGATTGCAGATCTAGTGAGTGCTC 1277 

human-XIAP      AGATATCTGGGAGCAACTATAAATCACTTGAGGTTCTGGTTGCAGATCTAGTGAATGCTC 1380 

                * * *********** ****   ** ************ *************** ***** 

 

CHO-XIAP        AGAAAGATAATACACAGGATGAGTCAAGTCAGACTTCATTGCAGAAAGACATCAGTACGG 1337 

human-XIAP      AGAAAGACAGTATGCAAGATGAGTCAAGTCAGACTTCATTACAGAAAGAGATTAGTACTG 1440 

                ******* * **  ** *********************** ******** ** ***** * 

 

CHO-XIAP        AAGAGCAGCTGAGGCGCCTACAAGAAGAGAAGCTTTGCAAAATCTGCATGGATAGAAATA 1397 

human-XIAP      AAGAGCAGCTAAGGCGCCTGCAAGAGGAGAAGCTTTGCAAAATCTGTATGGATAGAAATA 1500 

                ********** ******** ***** ******************** ************* 

 

CHO-XIAP        TTGCTGTAGTTTTTGTTCCTTGTGGACATCTGGTCACTTGTAAACAGTGTGCTGAAGCAG 1457 

human-XIAP      TTGCTATCGTTTTTGTTCCTTGTGGACATCTAGTCACTTGTAAACAATGTGCTGAAGCAG 1560 

                ***** * *********************** ************** ************* 

 

CHO-XIAP        TTGACAAATGTCCCATGTGCTACACAATCATTACCTTCAAACAAAAAATTTTTATGTCTT 1517 

human-XIAP      TTGACAAGTGTCCCATGTGCTACACAGTCATTACTTTCAAGCAAAAAATTTTTATGTCTT 1620 

                ******* ****************** ******* ***** ******************* 

 

CHO-XIAP        AATGAGAG-CAACAGTAGGCATGTTATACTCTTCTTACT---CTAATTGAATGTGTGATG 1573 

human-XIAP      AATCTAACTCTATAGTAGGCATGTTATGTTGTTCTTATTACCCTGATTGAATGTGTGATG 1680 
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                ***   *  * * **************  * ****** *   ** *************** 

 

CHO-XIAP        TGAGCAAACTTTAAGTAATCAGCATTGCATTCCATTAGCATCTGCTGCCAAGTGG--AAA 1631 

human-XIAP      TGAACTGACTTTAAGTAATCAGGATTGAATTCCATTAGCATTTGCTACCAAGTAGGAAAA 1740 

                *** *  *************** **** ************* **** ****** *  *** 

 

CHO-XIAP        CAAATGTTAACAGCACTGGTACTGTC-------TAAACTTTGGATTTCTGGAACTTTCAG 1684 

human-XIAP      AAAATGTACATGGCAGTGTTTTAGTTGGCAATATAATCTTTGAATTTCTTGATTTTTCAG 1800 

                 ******  *  *** ** *   **        *** ***** ****** **  ****** 

 

CHO-XIAP        GTTATTAGCTATATCGTTTATCCAGTTTT---TTACTCAATTAAAGCCTTAGACAAAGAA 1741 

human-XIAP      GGTATTAGCTGTATTATCCATTTTTTTTACTGTTATTTAATTGAAACCATAGACTAAGAA 1860 

                * ******** ***  *  **    ***    *** * **** ** ** ***** ***** 

 

CHO-XIAP        ------GCATTTAATATTATAACTTTTCACCTTGTGTATTTGTAGTACACTGACTTGATT 1795 

human-XIAP      TAAGAAGCATC--ATACTATAACTGAACACAATGTGTATTCATAGTATACTGATTTAATT 1918 

                      ****   *** *******   ***  ********  ***** ***** ** *** 

 

CHO-XIAP        TCTATGTGTAAGTGAATTAATCACTATCATTTTTCATTCCTTTTGGATAAGCTTAACAAA 1855 

human-XIAP      TCTAAGTGTAAGTGAATTAATCATCTGGATTTTTTATTCTTTTCAGATAGGCTTAACAAA 1978 

                **** ******************     ****** **** ***  **** ********** 

 

CHO-XIAP        TGGAGTGTTCTGTATA--AGCAGGGAGATTTGAGTTAATCTACCCATTCACTTGCTCTGT 1913 

human-XIAP      TGGAGCTTTCTGTATATAAATGTGGAGATTAGAGTTAATCTCCCCAATCACATAATTTGT 2038 

                *****  *********  *    ******* ********** **** **** *  * *** 

 

CHO-XIAP        TTATTGTGAACAGAGAATACACTGTTCCACACTGGTGGGAGGATAAACATTGGTTTGTAG 1973 

human-XIAP      TTTGTGTGAAAAAGGAATAAATTGTTCCATGCTGGTGGAAAGATAGAGATTG-TTTTTAG 2097 

                **  ****** *  ***** * *******  ******* * **** * **** *** *** 

 

CHO-XIAP        ATGTTTGTGTCTGTGTTTT-GGATTCTGTCCATTTTCTTTCAAATTTATAAACA--TACT 2030 

human-XIAP      AGGTTGGTTGTTGTGTTTTAGGATTCTGTCCATTTTCTTTTAAAGTTATAAACACGTACT 2157 

                * *** **   ******** ******************** *** *********  **** 

 

CHO-XIAP        TGTATGAATGGTTTTTT--AAGTGATTTTGCCATCTCCCAAAAGATATTTAATGGTAAAC 2088 

human-XIAP      TGTGCGAATTATTTTTTTAAAGTGATTT-GCCATTTTTGAAAGCGTATTTAATGATAGAA 2216 

                ***  ****  ******  ********* ***** *   ***   ********* ** *  

 

CHO-XIAP        TGCTTATCTAACCAGCATATACTAACATGGAAAGACAACAAAGATATATTAAGTGTAAAT 2148 

human-XIAP      TACT-ATCGAGCCAACATGTACTGACATGGAAAGATGTCAAAGATATGTTAAGTGTAAAA 2275 

                * ** *** * *** *** **** ***********   ********* ***********  

 

CHO-XIAP        TACAAATGGCAAAACACTATGTATAGTTTGAGCCAAATCAAGGTGTGAATTTTAT--ATC 2206 

human-XIAP      TGCAAGTGGCAAAACACTATGTATAGTCTGAGCCAGATCAAAGTATGTATGTTTTTAATA 2335 

                * *** ********************* ******* ***** ** ** ** ** *  **  

 

CHO-XIAP        TGTATAGGACAAAAAAGAGTTGGAAAGATATGCATCATACTCTTAAATATGTTTTTTTCT 2266 

human-XIAP      TGCATAGAACAAAA--GATTTGGAAAGATATACACCAAACTGTTAAATGTGGTTTCTCTT 2393 

                ** **** ******  ** ************ ** ** *** ****** ** *** *  * 

 

CHO-XIAP        TGAGGGGGGTGGG-----GGTATGGGTCTTTGAGGGGCTT-ATAGGAGCCCTT------- 2313 

human-XIAP      CGGGGAGGGGGGGATTGGGGGAGGGGCCCCAGAGGGGTTTTATAGGGGCCTTTTCACTTT 2453 

                 * ** *** ***     ** * *** *   ****** ** ***** *** **        

 

CHO-XIAP        ---CTTTTTTCATTTTGTTCTGTTTGAAGTTTATATAAGTATGTATTACTTTTATATAAT 2370 

human-XIAP      CTACTTTTTTCATTTTGTTCTGTTCGAATTTTTTATAAGTATGTATTACTTTTGTA--AT 2511 

                   ********************* *** *** ******************** **  ** 

 



 
 

432 
 

CHO-XIAP        CAGAATTTTTAGAAA-TATTGTACTGATTTAAAGGCTTAGGCATGTTCAAACGTCTGCAA 2429 

human-XIAP      CAGAATTTTTAGAAAGTATTTTGCTGATTTAAAGGCTTAGGCATGTTCAAACGCCTGCAA 2571 

                *************** **** * ****************************** ****** 

 

CHO-XIAP        AACTACTTATTGCTCAGTTTTAGTTTTTCTAATCCAAGAAGGCAGGCCAGTTGAC-TTTC 2488 

human-XIAP      AACTACTTATCACTCAGCTTTAGTTTTTCTAATCCAAGAAGGCAGGGCAGTTAACCTTTT 2631 

                **********  ***** **************************** ***** ** ***  

 

CHO-XIAP        TGGTGCCAATGTGAAATTTAAATGTTTTT--GTTTTACCTGCTTTGTGGATAGAAAATAT 2546 

human-XIAP      TGGTGCCAATGTGAAATGTAAATGATTTTATGTTTTTCCTGCTTTGTGGATGAAAAATAT 2691 

                ***************** ****** ****  ***** **************  ******* 

 

CHO-XIAP        TTCTGAGTGGTAGTTTTCTGACAGGTAGACCATGTCTTCTTATCTTGTTTCAAAATAAGT 2606 

human-XIAP      TTCTGAGTGGTAGTTTTTTGACAGGTAGACCATGTCT---TATCTTGTTTCAAAATAAGT 2748 

                ***************** *******************   ******************** 

 

CHO-XIAP        ATTTCTGATTTTGTAAAATGAAATATAAAATATTGTCTCAGATCTTCCAATTAATTAGTA 2666 

human-XIAP      ATTTCTGATTTTGTAAAATGAAATATAAAATAT-GTCTCAGATCTTCCAATTAATTAGTA 2807 

                ********************************* ************************** 

 

CHO-XIAP        AGGATTCATCCTTAATCCTTGCTAGTTTAAGCCTGCCTAAGTCACTTTACTAAAAGATCT 2726 

human-XIAP      AGGATTCATCCTTAATCCTTGCTAGTTTAAGCCTGCCTAAGTCACTTTACTAAAAGATCT 2867 

                ************************************************************ 

 

CHO-XIAP        TTGTTAACCCAGTATTTTAAACATTTGTCTGCTTATGTAGGTAAAAGTAGAAGCATGTTT 2786 

human-XIAP      TTGTTAACTCAGTATTTTAAACATCTGTCAGCTTATGTAGGTAAAAGTAGAAGCATGTTT 2927 

                ******** *************** **** ****************************** 

 

CHO-XIAP        GTATGCTGCTTGTAGTTTTAGTGACAGCTTTCCATGTTGAAATTCTCATGTCATTTTGTG 2846 

human-XIAP      GTACACTGCTTGTAGTTATAGTGACAGCTTTCCATGTTGAGATTCTCATATCATCTTGTA 2987 

                ***  ************ ********************** ******** **** ****  

 

CHO-XIAP        TCCTAAAAGTTTCATGTGAGTTTTTACTGTTAGGAAGATTAAGATGTATATAGTACAGAA 2906 

human-XIAP      TCTTAAA-GTTTCATGTGAGTTTTTACCGTTAGGATGATTAAGATGTATATAGGACAAAA 3046 

                ** **** ******************* ******* ***************** *** ** 

 

CHO-XIAP        TGGTAAGTCTCTAATTGTTTTATGTTTGTTTGTTTCTTGACTAGTAATAGTAGTAAATAC 2966 

human-XIAP      TGTTAAGTCTTTCCTCTACCTACATTTGTTT---TCTTGGCTAGTAATAGTAGTAGATAC 3103 

                ** ******* *  *     **  *******   ***** *************** **** 

 

CHO-XIAP        TTTAAAAATA----TTTTCTCAAGATCCTTAAGAACTCTTGGAAATTGTAACA-TACTGA 3021 

human-XIAP      TTCTGAAATAAATGTTCTCTCAAGATCCTTAAAACCTCTTGGAAATTATAAAAATATTGG 3163 

                **   *****    ** *************** * ************ *** * ** **  

 

CHO-XIAP        CAAGAG--------TAGTTGTTTAAATACTTCTAACAA----CTTGTATAAGAGTCAATA 3069 

human-XIAP      CAAGAAAAGAAGAATAGTTGTTTAAATATTTTTTAAAAAACACTTGAATAAGAATCAGTA 3223 

                *****         ************** ** * * **    **** ****** *** ** 

 

CHO-XIAP        TGA-ATAAAATCCAGCT----AAATGCTTCATAGAACA--CAGGATTTACCCTAAACAAT 3122 

human-XIAP      GGGTATAAACTAGAAGTTTAAAAATGCTTCATAGAACGTCCAGGGTTTACATTACAAGAT 3283 

                 *  ***** *  *  *    ****************   **** *****  ** *  ** 

 

CHO-XIAP        TATCATAATGGACCTCTTACAGAGACTC-TAGTCTGTTTTACTACAGAGCACAGTTTGAG 3181 

human-XIAP      TCTCACAACAAACCTATTGTAGAGGTGAGTAAGGCATGTTACTACAGAGGAAAGTTTGAG 3343 

                * *** **   **** **  ****     **     * *********** * ******** 

 

CHO-XIAP        AGTGAAACTGTTACAATTTAGATTTTTGTTGTATTTTCTAAGAGAAAGAATATTGTTAGG 3241 

human-XIAP      AGTAAAACTGTAAAAAATTATATTTTTGTTGTACTTTCTAAGAGAAAGAGTATTGTTATG 3403 
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                *** ******* * ** *** ************ *************** ******** * 

 

CHO-XIAP        TTCTCCTAACTTCTGTTGACTACTATGGTAAGTGGTGT-CATTTTAA---TTGCAAATTT 3297 

human-XIAP      TTCTCCTAACTTCTGTTGATTACTACTTTAAGTGATATTCATTTAAAACATTGCAAATTT 3463 

                ******************* *****   ****** * * ***** **   ********** 

 

CHO-XIAP        A--------------------------AATAGAAATT----------------------- 3308 

human-XIAP      ATTTTATTTATTTAATTTTCTTTTTGAGATGGAGTCTTGCTTGTCACCCAGGCTGGAGTG 3523 

                *                           ** **   *                        

 

CHO-XIAP        -AACAGAAT--------------------------------------------------- 3316 

human-XIAP      CAGTGGAGTGATCTCTGCTCACTGCAACCTCCGCCTTCTGGGTTCAAGCGATTCTCGTGC 3583 

                 *   ** *                                                    

 

CHO-XIAP        ----------TAAGTA------------------------CATTCCC--------TTTTT 3334 

human-XIAP      CTCAGCTTCCTGAGTAGCTGGAATTACAGGCAGGTGCCACCATGCCCGACTAATTTTTTT 3643 

                          * ****                        *** ***        ***** 

 

CHO-XIAP        TTCTTT------------------------------------------------------ 3340 

human-XIAP      TTATTTTTAGTAGAGACGGGGTTTCACCATGTTGGCCAGGCTGGTATCAAACTCCTGACC 3703 

                ** ***                                                       

 

CHO-XIAP        ----------------------------------------------GCTT---------- 3344 

human-XIAP      TCAAGAGATCCACTCGCCTTGCCCTCCCAAAGTGCTGGGATTACAGGCTTGAGCCACCAC 3763 

                                                              ****           

 

CHO-XIAP        ------------------------------------------------------------ 

human-XIAP      GCCCGGCTAAAACATTGCAAATTTAAATGAGAGTTTTAAAAATTAAATAATGACTGCCCT 3823 

                                                                             

 

CHO-XIAP        -TTTC---------ATGAAAATCCTTAGTTCTTTAC------ATTGTCTCCTACTTAGGT 3388 

human-XIAP      GTTTCTGTTTTAGTATGTAAATCCTCAGTTCTTCACCTTTGCACTGTCTGCCACTTAG-T 3882 

                 ****         *** ******* ******* **      * ***** * ****** * 

 

CHO-XIAP        TCAGTTGTATAGTCGAACTTAATCTAAATT--GACTAAGGTTTAAATTTAAATTTACGTT 3446 

human-XIAP      TTGGTTATATAGTCA---TTAACTTGAATTTGGTCT---GTATAGTCTAGACTTTAAATT 3936 

                *  *** *******    ****  * ****  * **   ** **   *  * ****  ** 

 

CHO-XIAP        TAAAGCATTCCACA-GGGGATAAAAGTGTTAATTTAAAAAAAAAATGTTCCCTAAGACAC 3505 

human-XIAP      TAAAGTTTTCTACAAGGGGAGAAAAGTGTTAAAATTTTTAAAATATGTTTTCCAGGACAC 3996 

                *****  *** *** ***** ***********  *    **** *****  * * ***** 

 

CHO-XIAP        TTCAGGTACAAGTCACGTAGGTAGTGTGTTTAATCTAGCTGTTAGCCAAGGATTCAAGGA 3565 

human-XIAP      TTCACTTCCAAGTCAGGTAGGTAGT----TCAATCTAGTTGTTAGCCAAGGACTCAAGGA 4052 

                ****  * ******* *********    * ******* ************* ******* 

 

CHO-XIAP        CTGAATTGTTTTTGAATAAGGCTTTTCTTGTTCTGGGAGCCTCAGTTCATTAAAACTCTC 3625 

human-XIAP      CTGAATTGTTTTAACATAAGGCTTTTCCTGTTCTGGGAGCCGCACTTCATTAAAATT--- 4109 

                ************   ************ ************* ** ********** *    

 

CHO-XIAP        CTTTTAAAACTTGTGTGCTGAGAGTTAAGCAAGACCTCTTTTTTTTTTTTTTTTTGTCTT 3685 

human-XIAP      CTTCTAAAACTTGTATGTTTAGAGTTAAGCAAGAC---------TTTTTTTCTTCCTCTC 4160 

                *** ********** ** * ***************         ******* **  ***  

 

CHO-XIAP        CATGAGTTGCGAAATTGAATTCATGAAGCTGATGTGGCTAACAAGTTTATTTTAAGAATT 3745 

human-XIAP      CATGAGTTGTGAAATTTAATGCACAACGCTGATGTGGCTAACAAGTTTATTTTAAGAATT 4220 

                ********* ****** *** **  * ********************************* 
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CHO-XIAP        GTTTAGAAAATGCTGTTGCTTCGGGTTCTTAAAATCAC--AGCATTCCAACT-CTAATCA 3802 

human-XIAP      GTTTAGAAA-TGCTGTTGCTTCAGGTTCTTAAAATCACTCAGCACTCCAACTTCTAATCA 4279 

                ********* ************ ***************  **** ******* ******* 

 

CHO-XIAP        AGTTGTTGGAGACTTACCAGAGTTGGACTGAGCTCACACTAAAATAAAAAAAACAAAACC 3862 

human-XIAP      AATTTTTGGAGACTTAACAGCATTTGTCTGTGTTTGAACTA---TAAAAAG--------- 4327 

                * ** *********** ***  ** * *** * *   ****   ******           

 

CHO-XIAP        AAAAAAAAAAAAAAAACCCTCACTGGATTCTTTCCATATAGCTGTGTAAAAAATTGGTCA 3922 

human-XIAP      --------------------CACCGGATCTTTTCCATCTAATTCCGCAAAAA-TTGATCA 4366 

                                    *** ****  ******* **  *  * ***** *** *** 

 

CHO-XIAP        CTTGGAAGGTCAAAA-TATAACCAGATCCAAATCA---CCCACCCCAGACAGTTCTCAGC 3978 

human-XIAP      TTTGCAAAGTCAAAACTATAGCCATATCCAAATCTTTTCCCCCTCCCAAGAGTTCTCAGT 4426 

                 *** ** ******* **** *** *********    *** * **  * *********  

 

CHO-XIAP        ATCTGTGTATTGA-TGTTC-TGTTCTGTATAAAGTTCACTCTAGGATTTTGAAGTAGCCA 4036 

human-XIAP      GTCTACATGTAGACTATTCCTTTTCTGTATAAAGTTCACTCTAGGATTTC-AAGTCACCA 4485 

                 ***   * * ** * *** * ***************************  ****  *** 

 

CHO-XIAP        TGTATTTTACTACTTATTAATTGTCATGTGAAATTTGAAGTTCTTCTGTAATAAATAGTT 4096 

human-XIAP      CTTATTTTACATTTTA------GTCATGCAAAGATTCAAGTAGTTTTGCAATAAGTACTT 4539 

                  ********   ***      ******  **  ** ****  ** ** ***** ** ** 

 

CHO-XIAP        AATTTTATTTGTAAT---TTACTGTGCTAATCAAAA------------TTTTTGTG---- 4137 

human-XIAP      ATCTTTATTTGTAATAATTTAGTCTGCTGATCAAAAGCATTGTCTTAATTTTTGAGAACT 4599 

                *  ************   *** * **** *******            ****** *     

 

CHO-XIAP        ---TTTGGCATT----AAGTAAACACAGTTTATTTGATTAATGGCTTAGTATTCCCTTTC 4190 

human-XIAP      GGTTTTAGCATTTACAAACTAAATTCCAGTTAATTAATTAATAGCTTTATATTGCCTTTC 4659 

                   *** *****    ** ****  *   *** ** ****** ****  **** ****** 

 

CHO-XIAP        CTTCTA-----GATTTTTGCCTCT--TCCTTTGGTTAGGGGTAGAGGTGAGGT-----GA 4238 

human-XIAP      CTGCTACATTTGGTTTTTTCCCCTGTCCCTTTGATTACGGGCTAAGGTAGGGTAGAGTGG 4719 

                ** ***     * ***** ** **   ****** *** ***   ****  ***     *  

 

CHO-XIAP        GTGTAGTAAGTGAATATAATGTGATTTGGCTATGT-TGTTATGACATTTG-----TTTTG 4292 

human-XIAP      GTGTAGTGAGTGTATATAATGTGATTTGGCCCTGTGTATTATGATATTTTGTTATTTTTG 4779 

                ******* **** *****************  *** * ****** ****      ***** 

 

CHO-XIAP        TTGTT-TAAAATGTGTATTCT-----------------TTTCTGTTTTAGTAGATAAAAT 4334 

human-XIAP      TTGTTATATTATTTACATTTCAGTAGTTGTTTTTTGTGTTTCCATTTTAGTGGATAAAAT 4839 

                ***** **  ** *  ***                   ****  ******* ******** 

 

CHO-XIAP        CTATTATCTTGAGCTCTCTGAATGGAAACTACCATCCCAGCATTAGCTGCATTTATTGTT 4394 

human-XIAP      TTGT-ATTTTGAACTA--TGAATGGAGACTACCGCCCCAGCATTAGTTTCACATGATATA 4896 

                 * * ** **** **   ******** ******  *********** * **  *  * *  

 

CHO-XIAP        CCCATTAGACCTAAATC---GTTTTACTTG-TGACTGCCCAGGTACTGAGTAAGAGAAGA 4450 

human-XIAP      CCCTTTAAACCCGAATCATTGTTTTATTTCCTGATTACACAGGTGTTGAATGGGGAAAGG 4956 

                *** *** ***  ****   ****** **  *** * * *****  *** *  *  ***  

 

CHO-XIAP        GGAGAG-------ATGAAATAGATTGCAGGTTGT-----------TGCTGTTAGAGGAAT 4492 

human-XIAP      GGCTAGTATATCAGTAGGATATACTATGGGATGTATATATATCATTGCTGTTAGAGAAAT 5016 

                **  **        *   *** * *   ** ***           *********** *** 

 

CHO-XIAP        AAGA--AAATGGAGAAATACTTGACG----ACATTT-TAGTCAAATCTCTTT-------T 4538 

human-XIAP      GAAATAAAATGGGGCTGGGCTCAGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCT 5076 
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                 * *  ****** *     **    *    **   * ** **  * * ****       * 

 

CHO-XIAP        TAAAAAGGTAG-----------------------CCATATAGGCTTCACAATCTGAGGTC 4575 

human-XIAP      GAGGCAGGTGGATCACGAGGTCAGGAGATCGAGACCATCCTGGCTA-ACACGGTGAAACC 5135 

                 *   **** *                       ****   ****  ***   ***   * 

 

CHO-XIAP        ATATCTCCAG-AACCCACATAAAA---GCTGGGTG----------CAC---TAGCCCCAA 4618 

human-XIAP      CCGTCTCTACTAAAAAACAGAAAATTAGCCGGGCGTGGTGGCGGGCGCCTGTAGTCCCAG 5195 

                   **** *  **   *** ****   ** *** *          * *   *** ****  

 

CHO-XIAP        GCATC------------------------TGT-AATCCGGGAA--------TGC------ 4639 

human-XIAP      CTACTCGGGAGGCTGAGGCAGGAGAATGGTGTGAACCCGGGAGGCAGAGCTTGCAGTGAG 5255 

                  *                          *** ** ******         ***       

 

CHO-XIAP        -------------------CTCCA---TGA--AACAGG---------------------A 4654 

human-XIAP      CCGAGATCTCGCCACTGCACTCCAGCCTGGGCAACAGAGCAAGACTCTGTCTCAAAAAAA 5315 

                                   *****   **   *****                      * 

 

CHO-XIAP        AGCAGATAGGAGACGGGCCA----GAAGCTA-ACTTGGCTTAGGCATT---AGCCAAGAG 4706 

human-XIAP      AAAAAAAAAGAAATAAGAAAATGGGAAGCAATATTTGACATAGTTCTTTTTAGTCAAATC 5375 

                *  * * * ** *   *  *    ***** * * *** * ***   **   ** ***    

 

CHO-XIAP        ACCCTGTTAA------GGTAG----------------GAAGG-----------TTGTCCT 4733 

human-XIAP      TACTTGTTAAAAAAAGGGTAGCAGTTTATTCATCTGTGAAAGGAAAATAATACTTATCTT 5435 

                  * ******      *****                *** *           ** ** * 

 

CHO-XIAP        ------TTG--------------GGTTATCTG---------CCCTCT---AATGTG---- 4757 

human-XIAP      ACAAGGTTGCAAGAGCTCAAGGAGACCATGTATGTAAAGTTCCTGCTGTAAATATGAACT 5495 

                      ***              *   ** *          **  **   *** **     

 

CHO-XIAP        --CATCATGATAGGCATCCACCTAT----------------ACTCGGACACACACACAAA 4799 

human-XIAP      CCCATCCTAATACCCTTTTACCTCTCTGTGGGTTTGTCTTGACCTGGAAATTTGGGCTAA 5555 

                  **** * ***  * *  **** *                **  *** *      * ** 

 

CHO-XIAP        AG---AAAAAAAAC--------AAAAA-----------------GTAGCTATCTGTAT-- 4829 

human-XIAP      AACTTAGAAAAAATTCTTACATGATAACTCAGTGATGCTTACTCATAGTTTTTGGTGTTT 5615 

                *    * ******          * **                  *** * *  ** *   

 

CHO-XIAP        ------AATAAGA-----------------------CTATTACCT-TAACC-----ATTT 4854 

human-XIAP      CTCATAGATAAGATATAAATCAGCTGGGCGCGGTGGCTCATGCCTGTAATCCCAGCACTT 5675 

                       ******                       **  * *** *** *     * ** 

 

CHO-XIAP        T----------------------ATCCAAGGT-----GATGGAATTCAACTCAA------ 4881 

human-XIAP      TGGGAGGCCGAGGCGGGCAGATCACCTGAGGTCGGGAGGTCGAGACCAGCCTGACCAACA 5735 

                *                      * *  ****     * * **   ** *   *       

 

CHO-XIAP        -GGAGAACACACCTTAATTGTTTTAAATG-----TTAACT-----------CTCA-ACCT 4923 

human-XIAP      TGGAGAA-ACCCCGTCTCTACTAAAAATACAAAATTAGCTGGGCGTGGTGGCTCATGCCT 5794 

                 ****** ** ** *   *  *  ****      *** **           ****  *** 

 

CHO-XIAP        AAAA------CTTTTT--------------------TTTTTT----CCAGGA--CAGAGT 4951 

human-XIAP      GTAATCCCAGCTACTTGGGAGGCTGAGGCAGGAGAATCGCTTGAACCCAGGAGGCGGAGG 5854 

                  **      **  **                    *   **    ******  * ***  

 

CHO-XIAP        TTCT-----------------CTAT-GTAGCCCAGGCTGTACTCAAACATCAGCAACCCT 4993 

human-XIAP      TTGTGGTGAGCGAAGATCGTGCCATTGCACTCCAGCCTGGGC---AACAAGAGCAAAACT 5911 

                ** *                 * ** * *  **** ***  *   ****  *****  ** 
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CHO-XIAP        CTGCCTC----------------------------------------------------- 5000 

human-XIAP      CTGTCTCAAAAAAAAAAAAAGATATAAATCACAATAAATAAATAGGTCAATACAAATGTT 5971 

                *** ***                                                      

 

CHO-XIAP        -------------------TGCCTCT-GCCTCTGC--CTCTGGAGT-----GCTGGG--- 5030 

human-XIAP      AGCCAGGCGTGGTGGCACATGCCCATAGTCGCAGCTACTCTGGAGGCAGAGGCAGGAGGA 6031 

                                   ****  * * * * **  ********      ** **     

 

CHO-XIAP        ----------------ATTAAAGGT-GCA--------------TGCCACTACAGCCCAG- 5058 

human-XIAP      TCACTTGAGCCCATGAATTTGAGGCAGCAGTGAGCTATGATTGTGCCACTGTACTCCAGT 6091 

                                ***  ***  ***              *******  *  ****  

 

CHO-XIAP        -------------------------------------------------------ATTCA 5063 

human-XIAP      CTGGGTGACAGAGTGAGACCCCATCTCTAAATAAATAGGTCAAACCCTTAAAAATATTTA 6151 

                                                                       *** * 

 

CHO-XIAP        ---TCCTAAAAACTCG--------------------------TAGGCCTTCCA------- 5087 

human-XIAP      AATTCTTAAAAAATTGAAAAGATTATTCTTCTCAAATTTAGTTGAGCTTTCTAAGAGAAG 6211 

                   ** ****** * *                          *  ** *** *        

 

CHO-XIAP        ----TGGGTTCTCC-----TTGATAG--------AG---GACTTGGAC---TAA------ 5118 

human-XIAP      CAATTGGCTTTTTCCCACTTCAATAATCATTTTCAGTTTGACTCATACAGTTAACACAAT 6271 

                    *** ** * *     *  ***         **   ****   **   ***       

 

CHO-XIAP        ---------------AGCTTAATAGACC-------------GCCTGGAA----------- 5139 

human-XIAP      GTGAATTTCTTCCTCAGCATAACAGAGTTATAGAATGACAGGGCTGGAAGTGACCTTAGA 6331 

                               *** *** ***               * ******            

 

CHO-XIAP        -----------------------------AGATAACTCAGCCACTAAG------------ 5158 

human-XIAP      GAGTATCCAGTTCTTTCATTTTACAGGTGAGGCAACTGAGACTCAAAGGTGATGTAATTT 6391 

                                             **  **** ** * * ***             

 

CHO-XIAP        ---------------------AGTA----------------------------------- 5162 

human-XIAP      GTGCAAAGATTATAGCTAATTAGTAGCAGAGCCCTGACTGGGACATAGTTTGAAGGTGAA 6451 

                                     ****                                    

 

CHO-XIAP        ---CTT------GCTGC--TTCTGCAGAGGACCAAA-GTTCA-GTTCCCAGC-AC----- 5203 

human-XIAP      AAACTTCACCAAGCTACCTTTCTTGAAAGGTCCAAATGTTTATGTTTTCAACTACTCTTT 6511 

                   ***      *** *  ****  * *** ***** *** * ***  ** * **      

 

CHO-XIAP        CCAACG-----------------------GGGTGGC---TTACAACTG-CATATTAGCTC 5236 

human-XIAP      CCACTGTACCATAACTTTCACTACATATTAAATGACACTTTATAACTAATATAATAGGAC 6571 

                ***  *                          ** *   *** ****   *** ***  * 

 

CHO-XIAP        CAGCTTCAGTC--TATCTAGT--GCCCTCT-----------TTTGGCCTCCATGGG---- 5277 

human-XIAP      AATCATCAATGCATATATAGCCAGCCCTTCATATCTGTGGGTTTTGCATCCATGGATTCA 6631 

                 * * *** *   *** ***   *****             *** ** *******      

 

CHO-XIAP        -------------------CAC------------------CTACA--------------- 5285 

human-XIAP      ACCAAGGAGGAATTGAAAACACTGAGAAAAAAAAAAAAGACCACACAATAAAAAAAAAAA 6691 

                                   ***                  * ***                

 

CHO-XIAP        -TGCA--------------------------TGTGCATAT---------------ATATA 5303 

human-XIAP      ATACAAAATAATACAAAGAAAAAGCCAAAATTGT-CATACTGTTGTTAAGCAACAGTATA 6750 

                 * **                          *** ****                 **** 

 

CHO-XIAP        A-----ACATACACA-CATTA-----------------CACATAAAATAAAAATAATCCT 5340 

human-XIAP      ACAACTATTTACATAGCATTAAGGTTGGTGCAAAAATGCAAAAAAAAAAAAAGCAATTAT 6810 
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                *     *  **** * *****                 ** * **** ****  ***  * 

 

CHO-XIAP        TTTTT------------------TTTTTGGTTTT-------TCGAGACAGGGTTTC---T 5372 

human-XIAP      TTTTAAACCAACCTAATATATTGTATTAGGTATTAAAGTCATCTGGACATGAATTAAAGT 6870 

                ****                   * ** *** **       **  **** *  **    * 

 

CHO-XIAP        CTGTGGC-----TTTGGAGA------------CTGTCCT-------------GGAACTAG 5402 

human-XIAP      ATATGATGCCAGCCTGGACAAAAGGCAAAACCCTGTCTCTACAAAAAATACAAAAATTAG 6930 

                 * **         **** *            *****                 ** *** 

 

CHO-XIAP        CT-----------------CTTGTAGACCAGGCTGGCCTCGAACTCA------------- 5432 

human-XIAP      CTGGGCATGGTGGTGTGTGCCTGTAGTCCTGGCTACTCCGGAGCCTGAGGTGGGAGGATC 6990 

                **                 * ***** ** ****   *  ** *                 

 

CHO-XIAP        ----------------CAGAGAT-----------------------CTGCCTCCC--TCT 5451 

human-XIAP      GCTTGAGTCTGGGAGGCAGAGGCTGCATTGAGCTATGATCATGGCACTGCATTCCAGCCT 7050 

                                *****                         **** * **   ** 

 

CHO-XIAP        G---------------CCTC--CCTGGAAT---TAAAG----------------GCGTAC 5475 

human-XIAP      GGGTGACAGTGCAAGACCTTGTCTCAGAATAAATAAAGTATGTGATGAAGATGTGCATAC 7110 

                *               ***   *   ****   *****                ** *** 

 

CHO-XIAP        GCCAC---CAA------------------------------------------CGCCCAG 5490 

human-XIAP      ATTATATGCAAATACTGTTTTTTTTTTTTTTAATTTAAACAGTCTCACTGTGTTGCCCAG 7170 

                   *    ***                                           ****** 

 

CHO-XIAP        CA---AATAAAA----ATAATCTT---------TAAA----GCTT---AAACAA----AA 5523 

human-XIAP      GATGGAGTGCAATGGCACAATCTTGGCTCATGGCAAACTCTGCCTCGCAAGCAGCTGGGA 7230 

                 *   * *  **    * ******          ***    ** *   ** **      * 

 

CHO-XIAP        CT---GGTATATT-----------------TACTTTTTGT-------------------- 5543 

human-XIAP      CTACAGGCATGCTCCACGGTGCCCAGTTAATTTTTTTTGTATTCTTAGTAGAGACAGGGT 7290 

                **   ** **  *                 *  *******                     

 

CHO-XIAP        --CAC--TGTTA-----------CTTG--TTTCT-------------------------- 5560 

human-XIAP      TTCACCATGTTGGCCAGGCTAGTCTTGAATTTCTGACCTCAAGTGATTCATCTCCCAAAG 7350 

                  ***  ****            ****  *****                           

 

CHO-XIAP        --CTGGA-------------------------------------TGCTTCTTAGAAA--- 5578 

human-XIAP      TGCTGGGATTACAGGCGTGAGCCACCACGGCCGGCTAATTTTTGTATTTTTTAGTAGTGA 7410 

                  ****                                      *  ** **** *     

 

CHO-XIAP        --AGTTCCAGACTATCAGCTAGA---------AA----TGACCTCGGA-GAGTAGCTTAT 5622 

human-XIAP      CTGGTTTCGCGGTGTTGACCAGGCTGGTCTCGAACTCCTGATCTCAGGTGATCTGCCTGC 7470 

                   *** *    * *   * **          **    *** *** *  **   ** *   

 

CHO-XIAP        -------TCACA-------------------GCACACCACC-CTC-------------AT 5642 

human-XIAP      CTCGGCCTCACAAAGTGCTGGGATTACAGGTGTGAACCACTGCTCCCGGCCTTGTGTGAT 7530 

                       *****                   *   *****  ***             ** 

 

CHO-XIAP        TTTATC--------------------------------ATTGCGA---TAGACCCTT--- 5664 

human-XIAP      TTTATCTAAGGGACTTAAGCGTCCTCAGGTCCTAGGGGGTCGTGAAACCAAAACCCCAGG 7590 

                ******                                 * * **    * * **      

 

CHO-XIAP        --TACT--GGCACA--TG---CTTTGAAGTTGGAAAAC--CCCTTACCACACCGGCT--- 5710 

human-XIAP      GATAGCAAGGGACAATTGTATCTTCAAAGTAGACAAATGGCGCCGGGCACGGTGGCTCAC 7650 

                  **    ** ***  **   ***  **** *  ***   * *    ***   ****    
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CHO-XIAP        ACCTGT--CCTGGGAAGTCTCCGATGTT-------------TATTTT---TCAGCAGTT- 5751 

human-XIAP      GCCTGTAATCCCAGCAGTTTCCGAGGCTGAGGCAGGCGGCTCACCTGAGGTCAGGAGTTG 7710 

                 *****   *   * *** ***** * *              *  *    **** ****  

 

CHO-XIAP        -----CATTC----CATTATACTCGAATTTTCACTACACAGTAA---------------- 5786 

human-XIAP      GAGACCAGCCTGGCCAACATGCTGAAACCCTGTCTGTACAAAAATACAAAAATAGCTGGG 7770 

                     **  *    **  ** **  **   *  **  ***  **                 

 

CHO-XIAP        -ATGATA--------CTTTA----TAACTGTTA------------CAGTAGGAC------ 5815 

human-XIAP      CATGGTGGCGCATGCCTGTAGTCCCAGCTACTAGAGCGACTGAGGCAGGAGAATTGCTTG 7830 

                 *** *         ** **     * **  **            *** ** *        

 

CHO-XIAP        AACC------------------------------------------------CCTA---- 5823 

human-XIAP      AACCTGGGAGGCGGAGGTTGCAGGGAGCCAAGATGGCGCCACCGCACTCCAGCCTAGGTG 7890 

                ****                                                ****     

 

CHO-XIAP        ATA-----------CTTTT---------------------AAATTAAGTAATATGC--CG 5849 

human-XIAP      ATAGAGTGAGACTCCCTCTCAAAAACAAAACAAAACAAAAAAATTAGACAA-ATGCTACA 7949 

                ***           * * *                     ******   ** ****  *  

 

CHO-XIAP        TTAATGCTTGAGTGGTAGAGTTCTCATTTGGAGGCTCAGGTTTGTAGATGT--------- 5900 

human-XIAP      TTAATGTTTGGGTGGTCAGATTCT-ACTTTGAATCTGAAGTTTGCAGATATGCCTATAGA 8008 

                ****** *** *****    **** * ** **  ** * ***** **** *          

 

CHO-XIAP        ---TTGGCATTTACTGTGTGCTTAT---GTATCAT----GTAGCATTTAAGATTACTGTG 5950 

human-XIAP      TTTTTGGAGTTTACCACTTTCTTATTCTGTATCATTAATGTAATATTTTAAATTACTATA 8068 

                   ****  *****    * *****   *******    ***  **** * ****** *  

 

CHO-XIAP        TAAGTTTATTTTATCACTCTATCAATACCAACAAGCTTGCATTTTAAATTTGATGTTAAT 6010 

human-XIAP      TATGTT-ACCATTTTTCTGGATT--TAGTAAGAAATTTGCAGTTTTGGTTTGATGT-AAC 8124 

                ** *** *   * *  **  **   **  ** **  ***** ***   ******** **  

 

CHO-XIAP        AATGGCTTTAATGTAGTTTCTG----GTTTTGGATTTTTTTT----TTATTATGCTTCA- 6061 

human-XIAP      AAGGGTTTTAATGTAATTTATGTTAGATTTTGCATTTTTTTCATTACTGTTATATTTTAA 8184 

                ** ** ********* *** **     ***** ********      * ****  ** *  

 

CHO-XIAP        CCTGACAGAATGACCCATTCTTTTATCTTTGTGTTAGTTTTGTGAATACTTATGTTAAGA 6121 

human-XIAP      CCTGACTGACTGATCTAAT----------TGTATTAGTATTGTGAATAATCATGTGAAAT 8234 

                ****** ** *** * * *          *** ***** ********* * **** **   

 

CHO-XIAP        GTTTTGAGACAGAATACTATATTTGTGAATATAATTTTATGGCTTTTTTTCATTTAGTGG 6181 

human-XIAP      GTTTTGAGACAGAGTACTATATTTGTGAATATAATTTTATGG-TTTTTTTCACTTAG--- 8290 

                ************* **************************** ********* ****    

 

CHO-XIAP        ATACCTTTCAGTATGGAGATCTATGAAAATTGCTTTCTGCGCTATAATCTGTCCTTTGTT 6241 

human-XIAP      -AACCTTTCTGTGTGGAAAACTAAGAAAATTGCTTTCTGCTGTATAATCTGGCATTCATT 8349 

                  ******* ** **** * *** ****************  ********* * **  ** 

 

CHO-XIAP        GTAGATTAAAGCTTATTTTTCTGTGAATAAGACTTAT-CAATAAAGCACTATTCTTTAAA 6300 

human-XIAP      GTAGATTAAAGCTTATTTTTCTGTGAATAAAACGTATTCAATAAAATACTATTCTTTAAA 8409 

                ****************************** ** *** *******  ************* 

 

CHO-XIAP        ---- 

human-XIAP      ATTA 8413 
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Mir-Capture - Dissociation curve analysis: 

 

Figure 7.12: Human (SNB-19) and CHO XIAP and GAPDH melt curves after qPCR analysis post-

naked capture (no formaldehyde fixing step). GAPDH melting temperature peaks are similar and sit on 

top of each other for both species unlike the XIAP amplicons which had separate dissociation 

temperatures. 
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Figure 7.13: (A) Human (SNB-19 and CHO) XIAP melt curves after qPCR analysis post-full capture. 



 
 

441 
 

 

 

Figure 7.14: (B) Human (SNB-19 and CHO) RPLOP melt curves after qPCR analysis 

post-full capture. 

 


