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Introduction 

In the era of cloud computing, Infrastructure-as-a-Service 
(IaaS), Platform-as-a-Service (PaaS) and Software-as-a-
Service (SaaS) providers offer on-demand services and 
resources for various compute/platform/software needs 
[1][2]. While many cloud service providers (CSPs) pro-
vide unique management portals for their own services 
and resources, the interfaces, functionalities and service 
operation environments are mostly diverse. Indeed, this 
is due to the fact that different CSPs tend to act distinctly 
while addressing service quality of service (QoS), features, 
customizability, requirements, etc. [3][4]. As a result, 
while trying to manage multiple cloud services and re-
sources, users often have to use a variety of cloud portals 
for different CSPs. This significantly limits the effective-
ness and efficiency for tasks deployment and implemen-
tation. 
    To deal with the above issues, a number of approaches 
to cloud service and resource interoperability and porta-
bility are proposed. These solutions include but are not 
limited to: open cloud API (Application Programming 
Interface) development such as jclouds [5], libcloud [6], 
fog [7]; service specifications such as TOSCA [8], mOSA-
IC [9]; generic cloud management protocols/drivers such 
as OCCI [10]. Despite their capabilities of handling certain 
specific service and resource categories, it is difficult to 

find any that allows adequate management for diverse 
CSPs’ services and resources via a common interface. This 
is mainly due to the lack of a unified service specification 
framework that can interpret cloud service and resource 
entities and deal with the interoperability among CSPs 
[11]. 
    This paper proposes a new service operation semantic 
specification approach, called Service Access and Manip-
ulation Operation Specification (SAMOS) framework. The 
framework is underpinned by ontological modelling 
techniques. It is capable of modelling comprehensive 
specifications for cloud service operations regardless of 
the service/operation/provider types. The variety of ser-
vice operations are specified into two categories: service 
information requests and service manipulation requests. 
For each category, the proposed framework describes the 
detailed operation elements involved, including the pa-
rameters, requirement, outcome, condition changes, etc. 
    Based on SAMOS, a cloud service operation ontology 
and a unified service remote management prototype tool 
are dev eloped. In this paper, “unified” refers to the term 
that an integrated and versatile (specification and man-
agement) solution is provided for heterogeneous services 
and resources in multiple cloud environments. To such 
extent, the proposed model can interpret and preserve the 
complexity which lies behind cloud service operation 
executions, in a formal systematic way. By utilizing a 
cloud service API mapping mechanism, the tool is com-
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Abstract 

 

Cloud computing offers various computational resources via convenient on-demand service provi-

sion. Currently, heterogeneous services and cloud resources are usually utilized and managed 

through diverse service portals. This significantly limits the effectiveness and efficiency for tasks 

implementation. Fundamentally, it is due to the lack of adequate specifications for service concepts, 

operations and interfaces from diverse cloud service models and types. This paper proposes a service 

management operation semantic description framework for comprehensive cloud service operation 

specification. Relying on ontological modelling techniques, cloud service operations are specified via 

entity classification, attribute assertion, relationship assertion and annotation assertion. Further, the 

proposed framework benefits from operation reasoning application. It enables intelligent assistance 

for multiple operation preparation and remote execution tasks. Based on the approach, a cloud ser-

vice operation ontology and a unified service access and manipulation system prototype are imple-

mented. Extensive experiments are conducted over different cloud service providers and for distinct 

service models. Obtained results demonstrate that the approach outperforms existing practices by 

facilitating reliable and effective service access, manipulation and interaction tasks. 
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patible with real IaaS, PaaS and SaaS services from multi-
ple provider clouds. Accordingly, the ontology and the 
tool enable users to effectively view, create and manipu-
late a wide range of cloud service and resource data via a 
unified structured interface. Additionally, featured with 
ontology reasoning techniques, the proposed approach 
can provide a series of operation assistances. This means 
that appropriate service operations can be dynamically 
prepared and/or composed into groups and then execut-
ed intelligently according to the real-time status of the 
target cloud services and resources, even if they are origi-
nated from multiple clouds. Consequently, the proposed 
unified cloud service operation specification and reason-
ing approach is capable of providing effective semantic 
support to deal with cloud (service) interoperability is-
sues. 

The rest of the paper is organized as follows: Section 
“Background and related work” discusses the back-
ground and related work regarding open cloud API, ser-
vice semantic specification and generic cloud service 
management tool. Section “SAMOS service operation 
modelling framework” describes the core and detailed 
elements of SAMOS framework. Section “Service opera-
tion requirement verification and dynamic assistance rea-
soning” outlines cloud service operation requirement 
verification and reasoning assistance mechanisms. Section 
“Prototype implementation” provides the design of the 
prototype system and components, including the API 
(and specification) mapping implementation. Section 
“Case studies” demonstrates case studies and experi-
ments on real cloud services. Section “Evaluation and 
discussion” evaluates the proposed approach based on 
findings and the obtained results. Finally, Section “Con-
clusions and future work” concludes the paper with 
summaries and future work. 

Background and related work 

Considerable efforts have been made on enhancing the 
interoperability and portability of cloud services. The 
practices are widely applied in open cloud API develop-
ments, comprehensive service interface specifications, 
versatile cloud management protocols or drivers, etc. 

Open cloud service specification framework 

The Open Cloud Computing Interface (OCCI [10]) is one 
of the earliest attempts to eliminate cloud resource heter-
ogeneity. Originally, it was developed only to deal with 
IaaS remote management tasks such as resource deploy-
ment, monitoring and automated scheduling. Later, the 
evolved Rendering and Extension specification frame-
works enable wider application for PaaS and SaaS ser-
vices, which consequently make it a generic management 
driver for a number of cloud resources. 
    The OASIS Topology and Orchestration Specification 
for Cloud Applications (TOSCA [8]) is a recently estab-
lished standard for clouds. With the aim to enhance cloud 
service portability, it enables specifications for diverse 
cloud service resources, their relationships and opera-
tional behaviors. With several templates (e.g. service and 

policy templates) and types (e.g. node, relationship, re-
quirement and capability types) specifications, the topol-
ogy framework can provide semantic support for many 
cloud service management and orchestration tasks.  
    Other than the above well-established practices, a series 
of research projects are also implemented towards the 
aim. mOSAIC [4], for instance, advocates applica-
tion/provider/language-independent cloud service se-
mantic specifications. The mOSAIC ontology model ena-
bles separation of application-logic and cloud layers and 
consequently enhances cloud portability. Likewise, the 
RASIC framework [12] attempts to enhance service in-
teroperability through modelling three horizontal layers 
(i.e. service frontend, SOA, virtualization/execution) and 
two vertical layers (i.e. semantic and governance). Simi-
larly, the Intercloud [13] architecture comprises multi-
layer cloud service models and a series of management, 
federation and operations frameworks. They serve as 
cloud middleware to support the service integration. 
However, these approaches are developed mainly for 
infrastructure services and resources, and cannot be effec-
tively applied to PaaS and SaaS models. 

Open cloud service API 

Deltacloud [14] provides a REST [15]-based cloud abstrac-
tion API that enables service management functions for a 
number of IaaS resources. The wide range of CSP support 
makes it feasible to manage heterogeneous resources 
across diverse clouds. Fundamentally, it runs a series of 
cloud drivers, which serve as individual service adapters 
for each CSP specifically. Deltacloud API along with the 
management interface enables long-term stability for 
cloud resource utilization. 
    On the other hand, a number of (stand-alone) lan-
guage-dependent cloud APIs are also found. Libcloud [6], 
for instance, is a Python library that offers wide support 
for many popular CSPs. The library provides interfacing 
functions mainly for compute, storage, load balancer, etc. 
services. Fog [7] is an API library for Ruby developers. It 
also has flexible support for several services from main-
stream CSPs. Jclouds [5] and Dasein [16], are examples of 
java API library that supports a wide range of CSPs. 
Likewise, they can be applied to manage various CSPs’ 
IaaS compute, platform, database, storage, etc. services. 
    Some open cloud service API research is also found in 
the field. Bastião Silva et al. [17] propose a common API 
and SDCP (Service Delivery Cloud Platform) for deliver-
ing services over multi-vendor cloud resources. The plat-
form is capable of describing diverse cloud concepts (e.g. 
agent, domain, and provider) and managing service data 
and abstraction conventions. Similarly, Petcu et al. [18] 
propose the mOSAIC java API as an example of open 
interface for service deployment and portability. None-
theless, a drawback is that it cannot effectively handle the 
unique features offered among distinct cloud services (i.e. 
lack of support for many provider-specific service fea-
tures). 



FANG ET AL.:  

 

 3 

 

Service and resource management tools for 
heterogeneous clouds 

Bernabe et al. [19] demonstrate an access control system 
for multi-vendor cloud resource management. The pro-
posed ontology specifications can describe various enti-
ties (e.g. cloud, system, software, etc.), whereas the au-
thorization model can deal with user authentication and 
authorization tasks. Despite its advanced hierarchical 
role-based access control, the application is currently lim-
ited to IaaS resources and a single CSP (AWS EC2 [20]). 
    Cloud Data Imager (CDI) [21] is seen as a complete sys-
tem to provide comprehensive functionalities for access-
ing and managing storage resources across diverse clouds 
(i.e. Dropbox, Google Drive, and Microsoft SkyDrive). 
The proposed CDI library is able to handle a variety of 
functions including user authentication, folder listing, file 
downloading, etc. Another work addressing resource 
utilization monitoring issues over heterogeneous multi-
tenant clouds is found in DARGOS [22]. The proposed 
architecture can provide highly reliable monitoring func-
tions. These approaches would only work for their own 
limited cloud service models/types. 
    A model-based cloud service integration platform [23] 
is advocated to drive service orchestration for business 
application integration. The proposed framework ad-
dresses three levels of modelling: cross-organizational 
business processes, service operation/orchestration, and 
dynamic member services binding. Nonetheless, the ap-
proach focuses mainly on enhancing cloud service and 
resource integration for certain specific business process-
es. The platform is not an ideal tool for a diversity of 
cloud service and resource management tasks. 
    In summary, there are well-established cloud specifica-
tion standards and considerable native/third-party open 
cloud service API libraries for application over various 
cloud resources and many CSPs. Meanwhile, many ap-
proaches are proposed as a means towards generic cloud 
service management. They bring some alternatives for 
avoiding vendor lock-in plus flexible management of ser-
vices and resources. Nevertheless, due to the gaps among 
existing studies, currently no solution is available for a 

unified and effective management of diverse cloud ser-
vice models/types regardless of CSPs. Consequently, this 
significantly limits the effectiveness and efficiency for 
cloud service management and composition tasks. 

SAMOS cloud service operation modelling 
framework 

SAMOS models cloud service operation via three compo-
nents: cloud service entity and operation classification, 
cloud service entity datatype specification, and cloud ser-
vice entity operational relationship specification. 

Cloud service entity and operation 
classification specifications 

In fact, certain membership or association relationships 
can often be found among the various service and opera-
tion entities for every individual CSP. These facts can be 
well modelled with ontology classification techniques 
(see Figure 1). 
    Specifically, cloud services and CSPs are asserted as 
ontology classes. According to their membership func-
tions (e.g. a service belongs to a certain CSP), the service 
class is seen as a subclass for the CSP class. Then, cloud 
service instances (CSIs) created within a cloud service are 
specified as individuals of the service class. 
    The classification also applies to additional cloud enti-
ties, such as service operation parameter entities, service 
configuration entities, and service accountability and user 
authorization data (e.g. service regions, instance attrib-
utes, user account data, etc.). Here, considering that al-
most all of such entities tend to be CSP-specific (i.e. the 
data formats, names, descriptions, etc. of the entities 
would all be unique from one CSP to another), they are 
specified as “provider-specific service aspect” (PSSA). 
Nonetheless, some PSSAs, i.e. common service/software 
aspects, may fundamentally indicate the same entity, de-
spite their distinct PSSA names (e.g. public IP addresses, 
open VM images and SQL database data entries). These 
associated entities are declared with equivalence (via 
“equivalent class” or “same individual” axioms). Figure 1 
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Figure 1 Cloud service entity and operation classification specifications 
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summarizes the association relationships among cloud 
services, CSIs and PSSAs. 
    Further, the diversity of cloud service operations are 
asserted as ontology classes and individuals according to 
their associations. As illustrated in Figure 1, cloud service 
operation class comprises four subclasses: IaaS, PaaS, 
SaaS and Common Operations. They each own a set of 
relevant operations. Obviously, for IaaS, PaaS and SaaS, 
the majority of the categorized operations would be dif-
ferent from each other. Then, the common cloud service 
operations, which are available widely for all service 
models (e.g. “list instance”, “set region”), are gathered in 
the Common Operation class. 

Cloud service entity datatype specifications 

As cloud concepts and entities are established in appro-
priate class hierarchy, their datatype specifications are to 
be described in detail. Generally speaking, cloud services 
appear the same (entity) to all users, and hence own no 
typical data-relevant properties. In contrast, CSIs, which 
are created and owned by certain users, are unique to the 
owners; they own specific data formats, i.e. IDs, creation 
times, names, etc. These details are attached to the entities 
via ontology datatype property assertions. With such, a 
CSI can be easily recognized with its unique ID, whereas 
other relevant datatype information can be effectively 
addressed when required. Similarly, datatype specifica-
tion also applies to all PSSAs, e.g. strings, integers, dates, 
URLs, or some unique provider-specific service data for-
mats (see Figure 2).  
    Indeed, these data properties enable precise datatype 
format demonstration, differentiation and validation for 
cloud entities and operations. With the extracted data 
presentation patterns and respected pattern examination 
mechanism, validations can be effectively implemented 
for cloud service operation preparation and execution (e.g. 

validations of authorization, input, output, condition, 
etc.). 

Cloud service entity operational relationship 
specifications 

Cloud service operations can be seen as reflections of the 
operational relationships among relevant cloud service 
and operation entities. For instance, I) “Create instance” 
and “List instance” can describe the creation and inclu-
sion relationships from a cloud service to its instance(s). II) 
“Get instance ID” and “Modify instance name” can clarify 
the retrievable and modifiable relationships from a ser-
vice instance to its property and condition. This is how 
SAMOS tackles cloud service operation specification by 
modelling the diversity of service entity operational rela-
tionships. 

Classification of cloud service operations 

Shown in Table 1, based on the different nature and inten-
tions of cloud service operations, we first divide them 
into two categories: service information request (SIR) and 
service manipulation request (SMR). 
SIR 

At the cloud service level, SIR often relies on collecting all 
available cloud service’s settings and instances (e.g. get 
available regions and list instances). At the CSI level, it is 
usually to retrieve the diverse real-time information of a 
certain service instance (e.g. get instance status). At the 
PSSA level, it tends to acquire the real-time information 
of the specific CSP entities (e.g. get VM image ID). Gener-
ally, SIR operations would not alter any cloud service, CSI 
or PSSA after execution. 
SMR 

At the cloud service level, SMR is usually to handle the 
general service settings and overall instances manage-
ment tasks (e.g. set region and delete all instances). At the 
CSI level, it is mainly regarding some specific instance 
control and modification functions (e.g. reboot VM in-
stance). At the PSSA level, it is for the manipulations im-
plemented on those unique CSP entities (e.g. delete VM 
image). On successful execution, SMR should alter the 
target cloud service/CSI/PSSA in an intended way. 

Cloud service operation object property 
specifications 

Based on the proposed operation classifications, the di-
verse cloud service operations can then be described, 
shown in the form of various operational relationships 
among relevant cloud services, CSIs and PSSAs. These 
relationships can be adequately described using ontology 
object property assertions. Figure 3 illustrates the repre-
sentation of cloud service operations using object proper-
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 Figure 2 Cloud service entity datatype specifications 

 

Table 1 Classification of cloud service operations 

Operation 

Type 

Description Examples 

Service Infor-

mation Request 

(SIR) 

Operation requested to 

retrieve service entities 

and entity information 

List owned service in-

stances, get instance ID, 

get available platforms 

Service Manip-

ulation Request 

(SMR) 

Operation requested to 

make changes to cloud 

services, CSIs or PSSAs 

Create new instance, 

terminate instance,  

modify instance name 
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ty specifications. Basically, “hasSIR” and “hasSMR” are 
asserted to describe the types of operations available, be-
tween cloud service/CSI/PSSA and relevant operation 
concepts. For instance, the “create” and “list” operations 
between cloud services and CSIs can be represented with 
“hasSMR create instance” and “hasSIR list instance”, re-
spectively; the “get attribute” and “modify” operations 
between CSIs and PSSAs can be represented with “hasSIR 
get attribute” and “hasSMR modify…”, to demonstrate 
their operational relationships. 
    Additionally, the details of cloud service operations, i.e. 
operation conditions, parameters, outcomes and changes 
are comprehensively described in SAMOS. Here, we uti-
lize a series of systematic operation specification elements 
to specify the aspects that may be involved (before, dur-
ing and after operations). These details are stored in the 
form of ontology annotations for the respective object 
property relation assertions. 

Specification of cloud service 
information/manipulation request elements 

Request Subject (SRSubject) 

SRSubject is recognized as the target of a cloud service 
operation. As a user selects a cloud service for operation, 
the service becomes the target. Similarly, SRSubject can 
apply to all CSIs and PSSAs if selected. 
Request Parameters (SRParameter) 

Although some cloud service operations can execute with 
only SRSubjects, many others do need certain parameter 
inputs, e.g. relevant restrictions, options, customized data, 
etc. These are required by CSPs to enable accurate and 
successful service operations. SRParameters specify such 
details for applicable service operations. Generally, PSSAs 
make up the majority of SRParameters; CSIs can also be 
involved as SRParameters; it is unlikely for any cloud 
service to be used as SRParameter. 
    Due to the complexity of cloud service operation pa-
rameter requirement, a SRParameter attribute notation 
system is developed. The denotations and examples of 
the SRParameter attributes are shown in Table 2. Basically, 
according to the operation requirements, each parameter 
is specified with mandatory/optional differentiations. 
Then, depending on whether an operation accepts sin-
gle/multiple parameters of the same entity type, the pa-
rameters are also differentiated. Consequently, this ought 
to enable a precise specification and interpretation for 
diverse cloud service operation (parameter) requirements. 
Request Outcome (SROutcome) 

As a cloud service operation is executed, certain data re-
sponse would be returned from its CSP, informing the 

Table 2 SRParameter symbol notations 

SRParameter  
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Denotation  

(in object 
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annotation)  

Examples Service  

Operations and  
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Mandatory multiple “[<>]” Reboot: [<“vm1,2…”>] 

Optional single “()” Set authorization: (“basic”) 

Optional multiple “<>” Deny access: <“user1,2...”> 
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execution result, e.g. execution status, obtained service 
information, newly altered service entities, etc. This oper-
ation element is represented as SROutcome. Typically, for 
the majority of operation requests, SROutcome reveals 
the expected service entities to be returned from the re-
spected CSP. For some simple SMR operations, SROut-
come would only be the (expected) success response. 

Request Pre Condition (SRPreCondition) 

According to CSP restrictions, there may be various oper-
ation request condition requirements. Some operations 
can be initiated without any condition constraints whilst 
others do need specific condition fulfilments. This is de-
fined as SRPreConditions of cloud service operations. For 
SRPreCondition specification, the condition text can be 
either positive (“VM == off”) or negative (e.g. “service != 
updating”), where specific data formats and symbols can 
be involved (e.g. “instance count restriction <= 100”). 
SRPreCondition applies only to those operations which 
genuinely require so; others would have an empty entry 
(“unconditional”) for the element. 
Request Post Condition (SRPostCondition) 

Using the same specification pattern as SRPreCondition, 
SRPostConditions describes the (expected) post execution 
condition of a cloud service operation. Specifically, the 
condition is accounted whenever a “new” condition is 
created. This is to drive as many as operation composi-
tions (by paring SRPreCondition and SRPostCondition) 
towards possible cloud service orchestrations. Hence, a 
SRPostCondition does not necessarily need to contradict 
the respected SRPreCondition: some operations may only 
have SRPostCondition and no SRPreCondition; for some 
operations, the entities involved in SRPostCondition may 
be different from those in the respected SRPreCondition. 
For instance, a VM creation operation can have SRPre-
Condition of “account restriction == OK” and SRPost-

Condition of “VM == running”. 

Service operation requirement verification 
and dynamic assistance reasoning 

While cloud service entities, their attributes and relation-
ships, and operation elements are comprehensively speci-
fied, relevant service operation assistance reasoning can 
be introduced. In fact, this enables effective cloud service 
operation execution management, even for cloud service 
orchestration tasks. 

Basic service operation preparation and 
execution 

A typical use of the cloud service operation specifications 
is verification. Given SRSubject, relevant SRParameters 
and fulfilled SRPreCondition, an operation can be remote-
ly executed through appropriate programming interface 
request. If successfully executed, this would result in cer-
tain service entity (data) which matches the respected 
SROutcome and/or SRPostCondition. 
Service Operation Parameter Verification 

 

INPUT: Operation op 
 
  1 INIT SRPreconditionRequirement srprec1, srprec2, …, 
     Srprecn to CALL getPrecondition with op;  
     ConditionSatisfied to FALSE; 
  2 IF ConditionCount = 0 THEN 
  3      SET ConditionSatisfied to TRUE  
  4 END IF 
  5 ELSE THEN 
  6      INIT SatisfyCount to 0; 
  7      FOR each srprecn in SRPreconditionRequirement 
  8           INIT condition to CALL  
              getCurrentServiceEntityCondition with op, srprecn 
  9           IF srprecn HAS “==” THEN 
10               IF srprecn = condition THEN /* SRPreCondition 
                   fulfils certain positive condition requirement */ 
11                    INCREMENT SatisfyCount 
12               END IF 
13          END IF 
14          ELSE IF srprecn HAS “!=” THEN 
15               IF srprecn NOT EQUAL condition THEN /* 
                   SRPreCondition fulfils certain negative condition 
                   requirement */ 
16                    INCREMENT SatisfyCount 
17               END IF 
18          END ELSE IF 
19          ELSE THEN 
20               IF  condition COMPLY with srprecn THEN /*  
                   SRPreCondition fulfils certain numerical (>=/<=)  
                   condition requirement */ 
21                    INCREMENT SatisfyCount 
22               END IF 
23          END ELSE 
24      END FOR 
25      IF SatisfyCount >= ConditionCount THEN /* all  
          preconditions satisfied 
26           SET ConditionSatisfied to TRUE 
27      END IF 
28 END ELSE 
 
OUTPUT: ConditionSatisfied 

Figure 5 Cloud service operation precondition verification  

algorithm 

 

INPUT: Operation op, SRParameterType srpt1, srpt2, ..., srptn; 
SRParameterData srpd1, srpd2, ..., srpdn, 
 
  1 INIT SRParameterRequirement srpr1, srpr2, …, srprn to 
     CALL getMandatoryParameter with op;  
     ParameterSatisfied to FALSE; 
  2 IF ParameterCount = 0 THEN 
  3      SET ParameterSatisfied to TRUE  
  4 END IF 

  5 ELSE THEN 

  6      INIT matchCount to 0; 
  7      FOR each srprn in SRParaterRequirement 
  8           IF srprn = srptn THEN /*parameter type matches*/ 
  9                INCREMENT matchCount 
10           END IF 

11      END FOR 

12      IF matchCount >= ParameterCount THEN  
          /*all mandatory parameters satisfied*/ 
13           SET ParameterSatisfied to TRUE 
14           CALL fillParameter with op, srpd1 to srpdn 
               /*pass parameter data*/ 
15      END IF 

16 END ELSE 

 
OUTPUT: ParameterSatisfied 

Figure 4 Cloud service operation parameter verification  

algorithm 
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Specifically, the verification algorithm of cloud service 
operation parameter requirements in Figure 4 demon-
strates the first control prior to operation execution. Basi-
cally, the service entities, either selected or manually en-
tered data, are processed in two sets of key-value pairs. 
One holds the entity name and type information whilst 
the other holds the actual entity data and format infor-
mation. Then, according to the retrieved SRParameter 
specification, the parameters (names, types and format) 
are verified against the relevant mandatory requirements. 
As all of the mandatory parameters are satisfied, it would 
indicate that the parameter verification process is com-
plete. Subsequently, the respected parameter data can be 
sent to appropriate operation handler for further action. 
Service Operation Precondition Verification 

The service operation precondition verification is imple-
mented depending on the nature and format of the condi-
tion specification, shown in Figure 5. Specifically, if the 
candidate requires no SRPreCondition (unconditional), 
the verification will be complete instantly. Otherwise, the 
positive, negative or numerical condition is verified based 
on a dynamically initiated real-time service entity infor-
mation check. Once all mandatory verifications are com-
plete, the operation can then execute as dispatched. 
   While the above verifications are mainly for use of sim-
ple individual cloud service operations, SAMOS also of-
fers advanced usages, known as operation assistances. 
Indeed, the assistances can be widely enabled, such as to 
automatically prepare preconditions and gather parame-
ters, to program the execution schedules for multiple rel-
evant operations, or to assess the applicability for poten-
tial service interactions and compositions. They are pro-
vided based on the reasoning analysis of cloud service 

entity operational relationships and the operation specifi-
cation elements involved. For instance, operation group-
ing applicability can be analyzed by seeking operations 
with similar types/requirements in both their SRParame-
ters and SROutcomes; Operation chaining applicability 
can be determined when the operations own SROutcome 
and SRParameter match, or SRPostCondition and SRPre-
Condition match (equivalence). The description summary 
of the proposed cloud service operation assistances can be 
found in Table 3. 

Basic Assisted Service Operation Request 
(BASR) assistance reasoning 

BASR serves to help users understand the required 
SRPreConditions and SRParameters for service opera-
tions. It also assists in relevant operation preparations 
during the operation process. Basically, as a user selects 
certain cloud service/CSI/PSSA and SRParameter(s), 
BASR can actively examine all available operations for 
unsatisfied operation conditions and parameters. Then, 
relevant information regarding how to fulfil such condi-
tions or/and obtain the mandatory parameter(s) is pro-
duced to assist the user for further actions. 
    BASR is implemented on a per cloud service/service 
instance and per service request basis. This means that 
the assistance algorithm does not consider the potential 
subsequent impact resulted from one operation to anoth-
er (or from service entity to another). 

Concurrent Combined Service Operation 
Request (CCSR) assistance reasoning 

As some cloud services own the same mod-
el/type/function, their service operations are very similar. 

Table 3 Cloud service operation reasoning assistance type 

Reasoning  

Assistance 

Name 

Assistance  

Description 

Reason-

ing 

Scale 

Operation 

Scheduling 

Precondition 

& Parameter 

Preparation 

Reasoning Steps 

BASR To assist in prepara-

tion of precondition 

and parameters for 

unsatisfied service 

operations 

Single 

cloud 

(CSP) 

None Guided  

manual input 

1. For the unsatisfied SRParameters and SRPreConditions, list 

possible options based on current selected SRSubject and SRPa-

rameters, plus the real-time status of them; 

CCSR To assist in multiple 

concurrent service 

operations of similar 

types 

Multiple 

clouds 

(CSPs) 

None Manual input 1. Get SRSubjects’ operations which have satisfied  SRParameters; 

2. Filter the operations based on whether their preconditions fulfil 

the real-time SRSubject statuses; 

3. Produce the operation lists for the applicable SRSubjects; 

SCSR To assist in  

automatic scheduled  

executions of a 

series of  operations 

in a logical sequence 

Single 

cloud 

(CSP) 

Yes Manual input 1. Get SRSubjects’ operations which have satisfied  SRParameters; 

2. For the operations, seek for those which have precondition 

SRPostCondition matches; 

3. Compose these operations into sequenced chains by filtering 

 Them from their factorial combinations, according to the  

two-two sequenced connections; 

4. Filter the operation chains based on whether the first operation’s 

preconditions fulfil the real-time SRSubject status; 

Produce the operation lists for the applicable SRSubjects 

IOSR To assist in seeking 

possible service 

interactions by 

linking appropriate 

operations in a 

scheduled sequence 

Multiple 

clouds 

(CSPs) 

Yes Automatic 

preparation 

1. For all SRSubjects’ operations, seek for those which have 

SROutcomes SRParameters (equivalence) matches; 

2. For all SRSubjects’ operations, seek for those which have 

SRPreCondition SRPostCondition matches; 

3. Compose these operations into sequenced chains as long as  

their SRPostConditions and SRPreConditions are not  

contradictory, according to the two-two sequenced connections; 

4. Filter the operation chains based on whether the first operation’s 

preconditions fulfil the real-time SRSubject status; 

5. Produce the operation lists for the applicable SRSubjects 
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Indeed, the operation specification patterns for such op-
erations often coincide. Due to this nature, these opera-
tions can be composed and then executed concurrently 
towards greater efficiency. 

CCSR reasoning algorithm enables a convenient means 
of executing multiple similar service operations for eligi-
ble cloud services or instances, even across multiple 
clouds. Specifically, as a user selects multiple SRSubjects 
and a series of required SRParameters, CCSR collects the 
eligible operations into simultaneously executable groups, 
and offers the options to the user. For the reason that 
CCSR assistance is provided at a per request basis, alt-
hough it acts to control multiple cloud service entities, the 
algorithm does not consider the potential impact resulted 
from one request to another. Hence, the assistance still 
does not adopt any scheduling controls. 

Sequenced Chained Service Operation 
Request (SCSR) assistance reasoning 

For some service operations, the SRPostCondition of an 
operation may happen to match (or be equivalent to) an-
other’s SRPreCondition. In other words, the successful 
execution of some operations would enable certain sub-
sequent operations dynamically by satisfying their pre-
condition requirements. As a series of such operations are 
linked one another with precondition and postcondition 
matches, a sequenced operation chain can be composed in 
real-time. SCSR serves to seek such operation chains and 
provide assistances in scheduling their sequenced execu-
tions. Although this may happen over multiple clouds, 
we consider that it would be more reasonable for imple-
mentation in a single cloud. Hence, the scale of SCSR rea-
soning is restricted to that. 

SCSR reasoning seeks for operation combinations 
which satisfy the following three requirements: Firstly, 
within the available operations of the chosen SRSubjects, 
there are coherent/equivalence matches between their 
SRPreConditions and SRPostConditions from one to an-

other (empty condition, like “unconditional”, is not ac-
counted here). Secondly, all of the SRParameters (if any) 
of such operations are presented in prior simultaneously. 
Thirdly, the real-time service (entity) condition meets the 
SRPreCondition of the first operation (in the chain). 
Fourthly, any duplicate/repeated operation is to be elim-
inated from the chain. Finally, these dynamically com-
posed operation chains are arranged, where users can 
select and execute them depending on their intension. 

Interactive Orchestrated Service Operation 
Request (IOSR) assistance reasoning 

With a successfully executed service operation, the 
SROutcome retrieved in real-time can be used as SRPa-
rameter for further service operations. This provides an-
other means towards dynamic service (operation) orches-
trations. IOSR is designed to provide operation orchestra-
tion assistances that require minimum user effort. It can 
intelligently select and compose all necessary operations, 
and automatically prepare the SRPreConditions and 
SRParameters for relevant service interaction tasks. Hence, 
IOSR assisted operation tasks only ask users for SRSub-
jects entry and require no further user interventions. 
    In order to provide the assistance with proactive condi-
tion and parameter preparation, IOSR reasoning algo-
rithm does not simply consider the exact match between 
operations’ SROutcome and SRParameter or between 
SRPreCondition and SRPostCondition. Instead, it checks 
the equivalence of SROutcome and SRParameter entities. 
As long as there is no direct conflict between the SRPre-
Condition and SRPostCondition, a link can be formed (for 
certain valid interaction intentions). Indeed, whenever 
there are commonly recognizable service and resource 
entities, they can result in “orchestration points” between 
the interactive pair of clouds, regardless of their CSPs or 
service types. 

User Accounts
& Profiles

(public)

Service Operation 
SchedulerCloud Service 

Access and 
Manipulation 

Ontology
(CSAMO)

Service Operation Reasoning Engine

OWL API

UI

Unified Service Access 
and Manipulation Portal

Service Operation 
Reasoning Assistance
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Reasoner

CCSR 
Reasoner

SCSR
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IOSR 
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Logging 
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Prototype implementation 

This section outlines the implementation in terms of the 
deployment of cloud service access and manipulation 
ontology (CSAMO) and system prototype tool (USAMS). 
Moreover, for real cloud service management enablement, 
details of cloud service operation API mapping are pre-
sented, as a key component of the prototype. 

System architecture 

USAMS is implemented in java. As Figure 6 shows, it 
consists of six main components: Specification Interpreter, 
Service Entity & Operation Mapping Manager, Service 
Operation Scheduler, Service Operation Reasoning En-
gine, Authorization Manager and UI. 
    CSAMO is deployed based on SAMOS framework. It 
encapsulates various real cloud service operation specifi-
cation data, written in OWL 2 [24]. While CSAMO is uti-
lized as the main knowledge source for cloud service op-
erations, the User Accounts & Profiles database used here 
stores users’ cloud service account data (including CSP 
API credentials). This is mandatory for most service oper-
ations over different clouds. 
    Specification Interpreter is responsible for retrieving 
and translating granular service operation and entity 
specifications and the respected API request and response 
data. This includes interpreting all sorts of cloud service 
entities in SIR and SMR operations, plus gathering the 
entire operation element details (i.e. SRPreCondition, 
SRParameter, SROutcome, etc.).  
    Service Entity & Operation Mapping Manager manages 
the operation API mapping entries so that users’ service 
operation requests can be implemented properly. It has 
two separate mappers inside for use of SIR and SMR op-
erations respectively. Indeed, due to the many different 
characteristics between the two operation categories, the 
operation handling processes are treated separately. This 
prevents potential issues as attempting to schedule a 
group of mixed operation tasks. 
    USAMS UI deals with a wide range of service operation 
execution tasks by providing a unified portal for real-
world cloud service access and manipulation. It has two 
sub components: Unified Service Access and Manipula-
tion Portal and Service Operation Reasoning Assistance. 
While the former allows users view and execute various 
service operations, the latter actively assists users for ad-
vanced operation execution tasks. Together, these enable 
a generic and interactive portal for service access, manip-
ulation and interaction regardless of service mod-
els/types/CSPs. 
    Service Operation Reasoning Engine incorporates four 
individual reasoners, each works for a certain operation 
assistance scenario. BASR Reasoner assists in preparation 
of the required operation data so as to guide users 
throughout operation process. The scale of its reasoning is 
restricted to operations in a single cloud. CCSR Reasoner 
assists in grouping similar operations for users so as to 
enable simultaneous executions, even if such are imple-
mented across distinct clouds. SCSR Reasoner assists in 
scheduling chained tasks when a series of operation are 
found with certain execution dependency relations one 

another. Finally, IOSR Reasoner assists in implementing 
service orchestration tasks by analyzing the possibilities 
for potential operation interactions for selected services. 
    Service Operation Scheduler acts to control the sched-
ule and execution of operation tasks. Whenever a user 
initiates an operation, the component would first verify 
the user’s API credentials (for the target cloud). Then, the 
necessary data format verifications (for SRParameter and 
SRPreCondition) are performed. If no error occurs, the 
mapped operation task will be executed execution. Fur-
ther, for advanced service operation tasks, the component 
works closely with Service Operation Reasoning Engine, 
enabling the tasks reasoned by the reasoners. With its 
internal Dynamic Service Condition Checker, it provides 
various automatic dynamic scheduling controls for 
grouped SIR and SMR tasks. For every SMR operations 
executed, the logs are forwarded to Logging Controller. 
    Logging Controller documents critical system and op-
eration logs so that users can examine them as required. 
This enables event tracking, diagnostics and performance 
evaluation tasks via the platform. 

Mapping service operation ontology 
specifications to service API calls 

Nowadays, most cloud service providers also release na-
tive service API libraries and/or complete SDKs as cus-
tomized service and resource control interfaces. Mean-
while, a series third-party service APIs are also available 
as an alternative programmable service and resource en-
trance. In fact, these service API call/respond operations 

OCSO Cloud Service APIOCSO Cloud Service API

Native & 3rd Party Service APIs

Service Entity & 
Operation 

Mapping Manager

AWS API

OCSO API Adapter

Google 
AppEngine 

API

Jclouds 
API

… 
API

Cloud Services

CSAMO
consult

bind

invoke

request response

invoke

intepret

Cloud Service/Resource Data
Clouds

Service 
API

USAMS

Figure 7 Cloud service operation specification and API call mapping 
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often enable more effective service access and enhanced 
service function manipulation, since they allow users to 
control services and relevant resources from a much low-
er level [25]. 
   While each of the cloud service API requests can be ad-
dressed with certain service operation specification data, 
a mapping can be implemented between the API and re-
spected operation specifications. To enable flexible and 
generic service access and manipulation via a single point 
of interface, we adopt OCSO API [25]. It comprises OCSO 
API Adapter which can flexibly invoke cloud service API 
libraries as (user) requested. Seen in Figure 7, the map-
ping is controlled via Service Entity and Operation Map-
ping Manager. Here, depending on the designated API 
library and the operation requirement, each service’s op-
eration (object property assertion) is mapped to at least 
one API request (for each library). Moreover, the addi-
tional operation specifications (e.g. SRParameter, SRPre-
Condition and SROutcome) must be consistent with the 
relevant information against the API request. 
    As the mapping between service operation specifica-
tions and API calls is established, the modelled cloud ser-
vice operations can be prepared and executed (with rele-
vant cloud API user account credentials) as retrieved. 

Case studies 

To demonstrate the practice use and to evaluate the pro-
posed approach, we present some case studies on service 
operation specifications and service access, manipulation 
and orchestration tasks, using a series of services from 
multiple popular clouds. In addition to the contents pre-
sented below, more specifications for other cloud services 
and providers are provided in Appendix A, B and C. 

EC2 service operation specifications 

Table 4 shows the specifications of some AWS EC2 [20] 
operations (retrieved from CSAMO). Within SAMOS, the 
operations are divided into two categories, and seen in 
three entity levels. For instance, at EC2 service level, there 
are SIRs for overall instance information retrieval (e.g. 
“List VM Instance”) and SMRs for (overall) instance man-
agement (e.g. “Create VM Instances”). At EC2 CSI level, 
there are SIRs for individual data retrieval (e.g. “Get VM 
Architecture”) and SMRs for individual control (e.g. 
“Terminate VM Instance”). At EC2 PSSA level, take EC2 
AMI as an example, it has SIRs and SMRs for specific en-
tity (data) retrieval and control (e.g. “Get Image Platform”, 
“Delete Image”). 
    Further, the detailed operation elements can be well 
presented with SAMOS. For instance, basic SIRs such as 
“List VM Instance” and “Get VM Architecture”, they do 
not require any SRPreCondition and only require a single 
SRParameter (each); they would not trigger any SRPost-
Condition change after execution. In contrast, SMRs act 
differently: they would alter certain service/CSI/PSSA 
conditions on successful execution, and may require sev-
eral SRParameters (e.g. “Create VM Instance(s)”). Addi-
tionally, even for the same operation, the specifications 
can differ for distinct SRSubjects: the two “Create VM 
Instance(s)” executable for EC2 and EC2 AMI appear to 
be very similar, except that one requires fewer SRParame-
ters than the other. 

Unified cloud service access and 
manipulation 

A practice use of the cloud service operation specifica-
tions is seen as the enablement of unified service access 
and manipulation through USAMS. Figure 8 demon-

Table 4 EC2 service/CSI/PSSA operation specifications (from CSAMO) 

Cloud Service 

Level Operations 

AWS EC2  

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition 

List VM Instance SIR Unconditional EC2 Region(M) EC2 InstanceIDs Unconditional 

Create VM 

Instance(s) 

SMR < account allow-

ance, i.e. 20 in-

stances per region 

 

EC2 RequestCount(O), EC2 InstanceType(M), 

EC2 AMIID(M), EC2 KeyName (M), EC2 Secu-

rityGroup(O), EC2 Region(M), EC2 Monitor(O), 

EC2 AvailabilityZone (O), etc. 

EC2 InstanceID(s) 

 

Instance(s) is in 

“running” state  

Resize VM 

Instances 

SMR Instances are in 

“stop” state 

EC2 InstanceIDs(M), EC2 InstanceTypes(M) Operation  

Succeeded 

Instances are in 

“stop” state 

CSI Level 

Operations 

AWS EC2 Instance  

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition 

Get VM  

Architecture 

SIR Unconditional EC2 InstanceID(M) EC2 Instance 

Architecture 

Unconditional 

Create VM Image SMR Unconditional EC2 InstanceID(M) EC2 AMIID AMI is in 

 “available” state 

Terminate VM 

Instance 

SMR Instance is NOT in 

“terminated” state 

EC2 InstanceID(M) Operation  

Succeeded 

Instance is in  

“terminated” state 

PSSA Level 

Operations 

AWS EC2 AMI (VM image)  

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition 

Get Image  

Platform 

SIR Unconditional EC2 AMIID(M) EC2  

Instance Platform 

Unconditional 

Create VM  

Instance(s) 

SMR < account allow-

ance, i.e. 20 in-

stances per region 

EC2 InstanceID(M) EC2 RequestCount(M), EC2 

InstanceType(M), EC2 KeyName (O), EC2 

SecurityGroup(O), EC2 Monitor(O), etc. 

EC2 InstanceID(s) Instance(s) is in 

“available” state 

Delete Image SMR Image is in 

 “available” state 

EC2 AMIID(M) Operation  

Succeeded 

Unconditional 
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strates the appearance of USAMS unified service opera-
tion interface (with EC2). 
    Every SRSubject is initially displayed in a small panel. 
There are four buttons in the panel: “Description”, “Use 
Entity”, “Information” and “Manipulation”. By clicking 
“Description”, users can view its annotation description 
through external knowledge sources [26]. “Information” 
and “Manipulation” buttons lead to the respected SIR and 
SMR operation retrieval (from CSAMO). Then, if a user’s 
API account authorization permits, one can execute oper-
ations via USAMS. 
    Due to the simple nature, SIR operations are executed 
concurrently as the user clicks the “Refresh” button aside. 
SMR operations are to be executed individually; they 
would only execute when the all of the requirements (i.e. 
SRPreCondition and SRParameter(s)) are satisfied, which 
are checked dynamically by relevant USAMS components. 
To enhance operation parameter input experience, all 
dynamically acquired service entity (information) can be 
reused as parameters. 
    In addition, for any CSI or PSSA acquired through SIR 

operations, their operation panels can be called from a 
click (see Figure 8). Afterwards, the remaining options 
follow the same steps as the above. In this way, USAMS 
achieves a unified service access and manipulation 
through a common presentation and execution interface, 
regardless of the CSP, service or operation types. 

Cloud service operation reasoning assistance: 
IOSR 

As previously discussed, an additional benefit of SAMOS 
framework is its operation reasoning assistance. Here, we 
present an IOSR assistance case on orchestrating EC2 and 
Rackspace Cloud Load Balancer (RSLB) [27]. 
    As a user selects the two services to seek orchestration 
feasibility, the reasoning engine analyzes the possible 
entity relationships throughout CSAMO. Here, the com-
mon nature of public IP address becomes the key link for 
the orchestration: EC2 instances own public IPs; RSLB 
instance needs public IPs for node entries; so EC2 in-
stances can be inserted as nodes for RSLB instances. As a 
result, a series of relevant operations can then be selected 

 

Figure 8 Unified cloud service access and manipulation 
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and composed into chains. Seen in Figure 9, based on the 
real-time service conditions, USAMS reasoning engine 
outputs an operation chain with two EC2 operations and 
one RSLB operation. The two EC2 operations are selected 
to obtain an IP address whilst the rest is to complete the 
orchestration by using the address. According to the rele-
vant specifications displayed below each operation, “start 
VM” would turn a VM on; “has IP” would acquire its IP 
address; “add node” would add the VM into a RSLB in-
stance by using its IP. 
    The case validates that IOSR execution process runs 
intelligently on operation condition and parameter prepa-
ration: for SRPreCondition fulfillment, it adds the “start 
VM” operation at the beginning of the chain due to the 

“has IP” needing such condition requirement; for SRPa-
rameter fulfilment, the IP address is not manually entered 
but a dynamic real-time service entity acquired form CSP. 

Service operation remote execution 
performance 

The cloud service operation execution performance study 
involves a variety of services and operations from multi-
ple clouds. We provide operation execution time compar-
isons between USAMS and provider native command line 
interfaces (CLI). To deal with the test data deviations (e.g. 
due to unexpected/slight QoS fluctuation), the results are 
regulated: the operation tests are conducted on two sepa-
rate days; the results are obtained from several sample 

 

Figure 9 Service orchestration with IOSR operation reasoning assistance 

Table 4 Single SIR access time comparison (via native CLI/USAMS) 

Service  

provider 

           Typical SIR 

 

Method 

List cloud VM 

instances  

(IaaS) 

List cloud database 

instances  

(PaaS) 

List cloud files  

 

(SaaS) 

List cloud load 

balancers  

(SaaS) 

Success rate  

 

(based on 200 tests) 

AWS Via native CLI 0.757 sec 0.519 sec 0.666 sec 0.550 sec 100% 

Via USAMS 1.185 sec 1.032sec 1.143 sec 1.263 sec 100% 

Rackspace Via native CLI 3.242 sec 3.280 sec 4.009 sec 3.202 sec 100% 

Via USAMS 5.534 sec 5.281 sec 5.129 sec 5.483 sec 100% 

 

Table 5 Single SMR execution time comparison (via native CLI/USAMS) 

Service  

provider 

        Typical SMR 

 

Method 

Create cloud VM 

instance  

(IaaS) 

Terminate cloud 

VM instance  

(IaaS) 

Create cloud 

load balancer 

(SaaS) 

Update cloud 

load balancer  

(SaaS) 

Success rate 

 

(based on 200 tests) 

AWS Via native CLI 2.450 sec 2.086 sec 1.038 sec  0.588 sec  100% 

Via USAMS 2.732 sec 1.943 sec 0.758 sec  0.682 sec  100% 

Rackspace Via native CLI 3.237 sec 3.742 sec 3.235 sec 3.249 sec 100% 

Via USAMS 3.383 sec 4.147 sec 3.539 sec 3.761 sec 100% 
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tests, where any excessive values are eliminated. 
    The services selected for the operation experiment are 
EC2, Relational Database Service (RDS) [28], Elastic Load 
Balancer [29], Cloud Servers [30], Cloud Databases [31] 
and Cloud Load Balancers [27]. They belong to AWS and 
Rackspace two CSPs respectively. Accordingly, the two 
CLIs involved in the experiment are AWS CLI [32] and 
Rackspace CLI (rumm [33]). For SIR, a series of service 
instance data retrieval operations are tested to justify the 
typical performances for IaaS, PaaS and SaaS operations 
individually. For SMR, various service instance manipu-
lation operations are tested, including instance creation, 
deletion, updating, etc. 
SIR(s) remote execution performance 

Table 4 demonstrates the experiment results of accessing 
AWS and Rackspace IaaS/PaaS/SaaS service instance 
data. While the two interfaces both show consistent suc-
cess rates of 100%, the response time varies. Generally 
speaking, the CLIs offer faster response than USAMS for 
all the SIR operations. Specifically, for AWS SIRs, all the 
operations are handled within 1 second via AWS CLI, 
whereas USAMS takes some milliseconds extra. Mean-
while, Rackspace CLI offers slower accesses of more than 
3 seconds for the SIRs, and USAMS requires approximate-
ly additional 2 seconds. 
    The multiple service operation remote execution exper-
iment is implemented in AWS EC2 only, due to its relia-
ble success rates and with reasonable elapsed time. For 
the SIR experiment on retrieving multiple EC2 instances 
data, it reveals similar access and response patterns be-
tween the CLI and USAMS (see Figure 10). Faster comple-
tion is found via the CLI, regardless of the total number of 
operations. However, the overall performance difference 
between the two interfaces is minimal, i.e. generally with-
in 0.3 seconds. 
SMR(s) remote execution performance 

The SMR operations selected for the experiment are IaaS 
and SaaS service instance creation, modification and ter-
mination tasks. Specifically, the IaaS VM creation opera-
tions are deployed with plain Linux Red Hat 7.0 image on 
m3.large (2vCPU/7.5GB RAM) for EC2 and 4GB standard 
instance (2vCPU/4GB RAM) for Rackspace Cloud Serv-
ers. Then, the instances created are used for the termina-
tion tests. Meanwhile, the SaaS cloud load balancer crea-
tion and update operations are performed by creating an 
http load balancer, followed by node adding modifica-
tions. 
    Seen from the experiment data in Table 5, overall, the 

success rates of all the operations remain at 100%. Yet, 
each operation execution respond appears to be different. 
For AWS IaaS operations, the VM creation tasks are com-
pleted a little faster through CLI, but termination opera-
tions respond quicker via USAMS. For AWS SaaS opera-
tions, the load balancer creation is handled slightly sooner 
via USAMS, although CLI manages to update the load 
balancers with a bit less time. On the other hand, with 
regard to Rackspace SMR tasks, all the VM and load bal-
ancer instance manipulation tasks tend to consume slight-
ly more time via USAMS. 
    Further, considering the SMR experiment on starting 
multiple VM instances, the execution time data is illus-
trated in Figure 11. For the 5 to 40 tasks deployed, both 
interfaces require some 20 seconds for completion. No 
obvious increase is found despite more operations being 
involved. Regarding the performance differences between 
the two interfaces, there is not any clear distinction. 

Evaluation and discussion 

Figure 10 Multiple SIR operations execution comparison 

 

 

Figure 11 Multiple SMR operations execution comparison 

 

Table 6 Cloud service specification framework comparison 

Approach Syntax/ 

Semantics 

Model Core/Base Concepts  Management Interface Service Or-

chestration 

OCCI OCCI 

Grammar 

Category, Kind, Mixin, Resource Instantiation, Collections, Dis-

covery /Entity, Resource, Link, Action) [35] 

Testing tool, doyouspeak 

OCCI,OCCI API 

OCCI client 

TOSCA YAML Topology Templates, Plans /Service, Node, Relationship, Require-

ment, Capability,  Artifact, Policy,  Cloud Service Archive [36] 

OpenTOSCA, jclouds and 

PyTosca API 

Pre-defined 

Plans 

mOSAIC OWL Environment, Infrastructure, Resource, Runtime Component, State-

ful Component, Stateless Component, etc. [37] 

mOSAIC API mOSAIC Cloud 

Agency 

SAMOS OWL Entity and operation  classifications, Entity datatype specifications, 

Entity operational relationship Specifications, etc. 

USAMS prototype tool, 

flexible choice of API librar-

ies via OCSO API 

Lightweight 

automatic rea-

soning 
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As illustrated in the EC2 case study, SAMOS framework 
can adequately model a wide range of operations. Its clas-
sifications of cloud service entities and operations enable 
structured specification presentation layout. The relevant 
operation element specifications reveal sufficient details 
for operation executions. Additionally, as shown in Ap-
pendix A, B and C, the approach can be flexibly applied 
to other IaaS providers (e.g. Rackspace Cloud Servers), 
and so as other PaaS and SaaS services (e.g. AWS Elastic 
Beanstalk [32], Rackspace Cloud Load Balancers). Conse-
quently, this would enhance cloud service interoperabil-
ity and composition. Further, to evaluate SAMOS against 
other well-established cloud (service) specification 
frameworks/models, we provide the data comparison 
with OCCI, TOSCA and mOSAIC. Shown in Table 6, the 
four approaches involve dissimilar core/base model con-
cepts with different specification semantics. They adopt 
distinct management tools/APIs as cloud service inter-
faces and enable service orchestration with own solutions. 
In contrast, SAMOS achieves a distinguished outcome for 
service management and orchestration tasks due to the 
flexible choices of API libraries and the lightweight opera-
tion reasoning assistances. 
    Meanwhile, the performance evaluation with USAMS 
covers a wide range of typical service operations. Ob-
tained experiment results illustrate some performance 
differences between the proposed approach and provid-
er-native CLIs. For SIR operation handling performance, 
the prototype demonstrates the same solid success rates 
regardless of the type/nature of operations, although 
there are some minor processing overheads. Considering 
SMR operation tasks, USAMS demonstrates competitive 
performance in comparison with the native CLIs. There is 
no obvious delay or distinction for many service man-
agement tasks involved. In fact, the slight overheads are 
caused by two main factors: the API libraries (AWS Java 
SDK version 1.8.3 and jclouds Rackspace API libraries 
version 1.7.0) used (by OCSO) decide the main processing 
time; USAMS components also consume minor extra time 
while processing the obtained data, preparing for the op-
erations and other additional tasks. In overall, USAMS 
enables reliable cloud service remote management with 
acceptable performance. The proposed approach offers a 
more flexible and intelligent remote management solution 
than individual portals of vast cloud service providers. 

Conclusions and future work 

This paper proposes a cloud service operation specifica-
tion approach which can be applied to diverse cloud ser-
vice models and resource types, namely SAMOS. The 
framework can reveal comprehensive information with 
regard to the involved service entities, their attributes and 
relationships, plus a series of operational elements includ-
ing parameters, conditions and outcomes. The ontological 
modelling approach also enables a range of operation 
reasoning which can provide assistances for advanced 
tasks such as simultaneous, chained and service orches-
tration operations. 
   To evaluate the proposed approach, CSAMO semantic 

model and USAMS prototype are implemented. Together, 
they enable a unified cloud service access and manipula-
tion via a structured management interface. This is vali-
dated through considerable experiments that are con-
ducted over Amazon and Rackspace IaaS, PaaS and SaaS 
clouds. The test results suggest that the proposed ap-
proach can provide competitive service operation reliabil-
ity and effectiveness, especially while handling groups of 
operation tasks. 
    In future work, we plan to extend the approach by in-
troducing service recommendation engine and service 
interaction agent. The recommendation module should 
enable more user friendly service selection and operation 
experiences. The service interaction agent would drive 
more effective service compositions with enhanced opera-
tion reasoning applications. 
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Appendix A:  IaaS Service/CSI/PSSA operation specifications for Rackspace Cloud 
Servers 

Cloud Service 

Level Operations 

Rackspace Cloud Servers  

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition 

List VM Instances SIR Unconditional Rackspace Region(M) 

Rackspace FlavorID(M) 

Rackspace 

CloudServerIDs 

Unconditional 

Create VM  

Instance 

SMR < Rackspace Cloud-

ServersAbsolute 

Limits, i.e. 100 

Rackspace Server name(M), Rackspace Image-

Ref(M),  Rackspace OSDiskConfig (O),  Rack-

space Metadata(O),  Rackspace KeyPair(O), etc. 

Rackspace 

CloudServer 

InstanceID 

Instance is in 

“ACTIVE” state 

Reboot VM  

Instances 

SMR Unconditional Rackspace CloudServerID(M),  Rackspace  

RebootType(M), e.g. SOFT, HARD 

Operation  

Succeeded 

Instances are in 

“ACTIVE” state 

Resize VM 

Instances 

SMR Instances are Rack-

space Standard 

Flavor 

Rackspace CloudServerID,  Rackspace  

FlavorID(M) 

Operation  

Succeeded 

Unconditional 

CSI Level 

Operations 

Rackspace Cloud Servers Instance  

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition 

Get VM Flavor SIR Unconditional Rackspace CloudServer InstanceID(M) Rackspace  

FlavorID 

Unconditional 

Get VM Image SIR Unconditional Rackspace CloudServer InstanceID(M) Rackspace Im-

ageRef  

Unconditional 

Create VM  

Image 

SMR Unconditional Rackspace CloudServer InstanceID(M) Rackspace  

ImageRef 

Image is in  

“ACTIVE” state 

Terminate VM 

Instance 

SMR Instance is NOT in 

“DELETED” state 

Rackspace CloudServer InstanceID(M) Operation  

Succeeded 

Instance is in  

“DELETED” state 

PSSA Level 

Operations 

Rackspace Cloud Servers Image  

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition 

Get Image  

Architecture 

SIR Unconditional Rackspace ImageRef (M) Rackspace  

ImageArch 

Unconditional 

Get Image  

OS Type 

SIR Unconditional Rackspace ImageRef (M) Rackspace  

ImageOSType 

Unconditional 

Create VM  

Instance(s) 

SMR < Rackspace Cloud-

ServersAbsolute 

Limits, i.e. 100 

Rackspace Server name(M), Rackspace Image-

Ref(M),  Rackspace OSDiskConfig (O),  Rack-

space Metadata(O),  Rackspace KeyPair(O), etc. 

Rackspace 

CloudServer 

InstanceID 

Instance is in  

“ACTIVE” state 

Delete Image SMR Image is NOT in  

“DELETED” state 

EC2 AMIID(M) Operation  

Succeeded 

Unconditional 
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Appendix B: PaaS Service/CSI/PSSA operation specifications for AWS Elastic Bean-
stalk 

Cloud Service 

Level Operations 

Elastic Beanstalk  

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition 

List Applications SIR Unconditional ElasticBeanstalk Region(M) ElasticBeanstalk 

Application-

Name(s) 

Unconditional 

List Application 

Environment 

SIR Unconditional ElasticBeanstalk Region(M) ElasticBeanstalk 

EnvironmentID(s) 

Unconditional 

Delete  

Application 

SMR Unconditional ElasticBeanstalk ApplicationName(M) Operation  

Succeeded 

Unconditional 

Delete Application 

Environment 

SMR Unconditional ElasticBeanstalk EnvironmentID(M) Operation  

Succeeded 

Unconditional 

CSI Level 

Operations 

Elastic Beanstalk Application Instance  

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition 

Get Application 

Environment 

SIR Unconditional ElasticBeanstalk ApplicationName(M) ElasticBeanstalk 

EnvironmentID 

Unconditional 

Get Application 

Versions 

SIR Unconditional ElasticBeanstalk ApplicationName(M) ElasticBeanstalk 

ApplicationVer-

sionDescrptions 

Unconditional 

Create  

Application 

SMR Unconditional Elastic Beanstalk ApplicationName(M), Elastic 

Beanstalk ApplicationDescription(O) 

ElasticBeanstalk 

ApplicationName 

Elastic Beanstalk 

EnvironmentStatus 

is in “Ready” state 

Update  

Application 

SMR Elastic Beanstalk 

EnvironmentStatus 

is in “Ready” state 

Elastic Beanstalk ApplicationName(M), Elastic 

Beanstalk ApplicationDescription(O) 

ElasticBeanstalk 

ApplicationName 

Elastic Beanstalk 

EnvironmentStatus 

is in “Ready” state 

PSSA Level 

Operations 

Elastic Beanstalk Application Environment  

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition 

Get Application 

Environment VMs 

SIR Unconditional ElasticBeanstalk EnvironmentID (M) EC2 InstanceIDs Unconditional 

Get Application 

Environment 

LoadBalancers 

SIR Unconditional ElasticBeanstalk EnvironmentID (M) Elastic Load-

BalancerID 

Unconditional 

Create Application 

Environment 

SMR Unconditional ElasticBeanstalk ApplicationName(M), Elastic-

Beanstalk EnvironmentDescription(O), Elastic-

Beanstalk EnvironmentName(M), Elastic Bean-

stalk ConfigurationOptionSettings<…>(O), etc. 

ElasticBeanstalk 

EnvironmentID 

Unconditional 

Update  

Environment 

Configuration 

SMR Elastic Beanstalk 

EnvironmentStatus 

is in “Ready” state 

Elastic Beanstalk ConfigurationOptionSet-

tings<…>(M) 

ElasticBeanstalk 

EnvironmentID 

Elastic Beanstalk 

EnvironmentStatus 

is in “Ready” state 
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Appendix C: SaaS Service/CSI/PSSA operation specifications for Rackspace Cloud 
Load Balancers 

Cloud Service Level 

Operations 

Rackspace Cloud Load Balancers  

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition 

List Load Balancer 

Instance Names 

SIR Unconditional Rackspace Region(M) Rackspace Cloud-

LoadBalancer In-

stanceNames 

Unconditional 

List Load Balancer 

Instance Addresses 

SIR Unconditional Rackspace Region(M) Rackspace Cloud-

LoadBalancer Ad-

dresses 

Unconditional 

Create Load Balancer 

Instance 

SMR < Rackspace 

LoadBalancer 

Absolute Limits, 

i.e. 25 

Rackspace Region(M), LoadBalancer-

Name(M), LoadBalancerPort(M), Rack-

space CloudServer(O),Rackspace 

CloudLoadBalancer ExternalNode(O), 

Rackspace VirtualIP(M) , etc. 

Rackspace Cloud-

LoadBalancer In-

stanceID 

Load Balancer  In-

stance is in “ACTIVE” 

state 

Delete Load Balancer SMR Load Balancer  is 

NOT in “UPDAT-

ING” state 

Rackspace CloudLoadBalancer  In-

stanceID(M) 

Operation Succeeded Load Balancer  In-

stance is in “ACTIVE” 

state 

CSI Level 

Operations 

Rackspace Cloud Load Balancer Instance  

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition  

Get 

Load Balancing 

Algorithm 

SIR Load Balancer  is 

in “ACTIVE” 

state  

Rackspace Cloud LoadBalancer  

InstanceID(M) 

Rackspace Load-

BalancingAlgorithm 

Unconditional 

List 

Load Balancer 

Instance Nodes  

SIR Load Balancer  is 

in “ACTIVE” 

state  

Rackspace CloudLoadBalance  

InstanceID(M) 

Rackspace Cloud-

LoadBalancer 

InstanceNodeID(s) 

Unconditional 

Edit 

Load Balancer In-

stance Health Moni-

tor 

SMR Load Balancer  is 

in “ACTIVE” 

state 

Rackspace CloudLoadBalancer  

InstanceID(M), Rackspace CloudLoad-

Balancer HealthMonitor(M) 

Operation Succeeded Load Balancer  is in 

“ACTIVE” state 

Add Load Balancer 

Instance Nodes 

SMR Load Balancer  is 

in “ACTIVE” 

state 

Rackspace CloudServer(O), 

Rackspace CloudLoadBalancer Exter-

nalNode(O), Rackspace CloudLoad-

Balancer InstanceNodePort(O), etc. 

Operation Succeeded Load Balancer  is in 

“ACTIVE” state 

PSSA Level 

Operations 

Rackspace Cloud Load Balancer Instance Node  

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition 

Get LoadBalancer 

Instance Node IP 

SIR Load Balancer  is 

in “ACTIVE” 

state  

Rackspace CloudLoadBalancer  

InstanceNodeID(M) 

Rackspace Cloud 

LoadBalancer  

InstanceNodeIP 

Unconditional 

Get LoadBalancer 

Instance Node Port 

SIR Load Balancer  is 

in “ACTIVE” 

state 

Rackspace CloudLoadBalancer  

InstanceNodeID(M) 

Rackspace Cloud 

LoadBalancer  

InstanceNodePort 

Unconditional 

Edit LoadBalancer 

Instance Node 

Weight 

SMR Load Balancer  is 

in “ACTIVE” 

state 

Rackspace CloudLoadBalancer 

InstanceNodeID(M), Rackspace Cloud-

LoadBalancer InstanceNodeWeight(M) 

Operation Succeeded Load Balancer  is in 

“ACTIVE” state 

Delete Load Balancer 

Instance Node 

SMR Load Balancer  is 

in “ACTIVE” 

state 

Rackspace CloudLoadBalancer 

 InstanceNodeID(M) 

Operation Succeeded Load Balancer  is in 

“ACTIVE” state 

 


