
 1

An Approach to Unified Cloud Service Access,
Manipulation and Dynamic Orchestration via
Semantic Cloud Service Operation
Specification Framework
Daren Fang1*, Xiaodong Liu1, Imed Romdhani1, Claus Pahl2

Introduction

In the era of cloud computing, Infrastructure-as-a-Service
(IaaS), Platform-as-a-Service (PaaS) and Software-as-a-
Service (SaaS) providers offer on-demand services and
resources for various compute/platform/software needs
[1][2]. While many cloud service providers (CSPs) pro-
vide unique management portals for their own services
and resources, the interfaces, functionalities and service
operation environments are mostly diverse. Indeed, this
is due to the fact that different CSPs tend to act distinctly
while addressing service quality of service (QoS), features,
customizability, requirements, etc. [3][4]. As a result,
while trying to manage multiple cloud services and re-
sources, users often have to use a variety of cloud portals
for different CSPs. This significantly limits the effective-
ness and efficiency for tasks deployment and implemen-
tation.
 To deal with the above issues, a number of approaches
to cloud service and resource interoperability and porta-
bility are proposed. These solutions include but are not
limited to: open cloud API (Application Programming
Interface) development such as jclouds [5], libcloud [6],
fog [7]; service specifications such as TOSCA [8], mOSA-
IC [9]; generic cloud management protocols/drivers such
as OCCI [10]. Despite their capabilities of handling certain
specific service and resource categories, it is difficult to

find any that allows adequate management for diverse
CSPs’ services and resources via a common interface. This
is mainly due to the lack of a unified service specification
framework that can interpret cloud service and resource
entities and deal with the interoperability among CSPs
[11].
 This paper proposes a new service operation semantic
specification approach, called Service Access and Manip-
ulation Operation Specification (SAMOS) framework. The
framework is underpinned by ontological modelling
techniques. It is capable of modelling comprehensive
specifications for cloud service operations regardless of
the service/operation/provider types. The variety of ser-
vice operations are specified into two categories: service
information requests and service manipulation requests.
For each category, the proposed framework describes the
detailed operation elements involved, including the pa-
rameters, requirement, outcome, condition changes, etc.
 Based on SAMOS, a cloud service operation ontology
and a unified service remote management prototype tool
are dev eloped. In this paper, “unified” refers to the term
that an integrated and versatile (specification and man-
agement) solution is provided for heterogeneous services
and resources in multiple cloud environments. To such
extent, the proposed model can interpret and preserve the
complexity which lies behind cloud service operation
executions, in a formal systematic way. By utilizing a
cloud service API mapping mechanism, the tool is com-

*Correspondence:

d.fang@napier.ac.uk
1School of Computing, Ed-

inburgh Napier University,

10 Colinton Road,

Edinburgh, EH10 5DT, UK

Full list of author infor-

mation is available at the

end of the article

Abstract

Cloud computing offers various computational resources via convenient on-demand service provi-

sion. Currently, heterogeneous services and cloud resources are usually utilized and managed

through diverse service portals. This significantly limits the effectiveness and efficiency for tasks

implementation. Fundamentally, it is due to the lack of adequate specifications for service concepts,

operations and interfaces from diverse cloud service models and types. This paper proposes a service

management operation semantic description framework for comprehensive cloud service operation

specification. Relying on ontological modelling techniques, cloud service operations are specified via

entity classification, attribute assertion, relationship assertion and annotation assertion. Further, the

proposed framework benefits from operation reasoning application. It enables intelligent assistance

for multiple operation preparation and remote execution tasks. Based on the approach, a cloud ser-

vice operation ontology and a unified service access and manipulation system prototype are imple-

mented. Extensive experiments are conducted over different cloud service providers and for distinct

service models. Obtained results demonstrate that the approach outperforms existing practices by

facilitating reliable and effective service access, manipulation and interaction tasks.

Keyword: Cloud Computing, service orchestration, API, semantic modelling, OWL

2

patible with real IaaS, PaaS and SaaS services from multi-
ple provider clouds. Accordingly, the ontology and the
tool enable users to effectively view, create and manipu-
late a wide range of cloud service and resource data via a
unified structured interface. Additionally, featured with
ontology reasoning techniques, the proposed approach
can provide a series of operation assistances. This means
that appropriate service operations can be dynamically
prepared and/or composed into groups and then execut-
ed intelligently according to the real-time status of the
target cloud services and resources, even if they are origi-
nated from multiple clouds. Consequently, the proposed
unified cloud service operation specification and reason-
ing approach is capable of providing effective semantic
support to deal with cloud (service) interoperability is-
sues.

The rest of the paper is organized as follows: Section
“Background and related work” discusses the back-
ground and related work regarding open cloud API, ser-
vice semantic specification and generic cloud service
management tool. Section “SAMOS service operation
modelling framework” describes the core and detailed
elements of SAMOS framework. Section “Service opera-
tion requirement verification and dynamic assistance rea-
soning” outlines cloud service operation requirement
verification and reasoning assistance mechanisms. Section
“Prototype implementation” provides the design of the
prototype system and components, including the API
(and specification) mapping implementation. Section
“Case studies” demonstrates case studies and experi-
ments on real cloud services. Section “Evaluation and
discussion” evaluates the proposed approach based on
findings and the obtained results. Finally, Section “Con-
clusions and future work” concludes the paper with
summaries and future work.

Background and related work

Considerable efforts have been made on enhancing the
interoperability and portability of cloud services. The
practices are widely applied in open cloud API develop-
ments, comprehensive service interface specifications,
versatile cloud management protocols or drivers, etc.

Open cloud service specification framework

The Open Cloud Computing Interface (OCCI [10]) is one
of the earliest attempts to eliminate cloud resource heter-
ogeneity. Originally, it was developed only to deal with
IaaS remote management tasks such as resource deploy-
ment, monitoring and automated scheduling. Later, the
evolved Rendering and Extension specification frame-
works enable wider application for PaaS and SaaS ser-
vices, which consequently make it a generic management
driver for a number of cloud resources.
 The OASIS Topology and Orchestration Specification
for Cloud Applications (TOSCA [8]) is a recently estab-
lished standard for clouds. With the aim to enhance cloud
service portability, it enables specifications for diverse
cloud service resources, their relationships and opera-
tional behaviors. With several templates (e.g. service and

policy templates) and types (e.g. node, relationship, re-
quirement and capability types) specifications, the topol-
ogy framework can provide semantic support for many
cloud service management and orchestration tasks.
 Other than the above well-established practices, a series
of research projects are also implemented towards the
aim. mOSAIC [4], for instance, advocates applica-
tion/provider/language-independent cloud service se-
mantic specifications. The mOSAIC ontology model ena-
bles separation of application-logic and cloud layers and
consequently enhances cloud portability. Likewise, the
RASIC framework [12] attempts to enhance service in-
teroperability through modelling three horizontal layers
(i.e. service frontend, SOA, virtualization/execution) and
two vertical layers (i.e. semantic and governance). Simi-
larly, the Intercloud [13] architecture comprises multi-
layer cloud service models and a series of management,
federation and operations frameworks. They serve as
cloud middleware to support the service integration.
However, these approaches are developed mainly for
infrastructure services and resources, and cannot be effec-
tively applied to PaaS and SaaS models.

Open cloud service API

Deltacloud [14] provides a REST [15]-based cloud abstrac-
tion API that enables service management functions for a
number of IaaS resources. The wide range of CSP support
makes it feasible to manage heterogeneous resources
across diverse clouds. Fundamentally, it runs a series of
cloud drivers, which serve as individual service adapters
for each CSP specifically. Deltacloud API along with the
management interface enables long-term stability for
cloud resource utilization.
 On the other hand, a number of (stand-alone) lan-
guage-dependent cloud APIs are also found. Libcloud [6],
for instance, is a Python library that offers wide support
for many popular CSPs. The library provides interfacing
functions mainly for compute, storage, load balancer, etc.
services. Fog [7] is an API library for Ruby developers. It
also has flexible support for several services from main-
stream CSPs. Jclouds [5] and Dasein [16], are examples of
java API library that supports a wide range of CSPs.
Likewise, they can be applied to manage various CSPs’
IaaS compute, platform, database, storage, etc. services.
 Some open cloud service API research is also found in
the field. Bastião Silva et al. [17] propose a common API
and SDCP (Service Delivery Cloud Platform) for deliver-
ing services over multi-vendor cloud resources. The plat-
form is capable of describing diverse cloud concepts (e.g.
agent, domain, and provider) and managing service data
and abstraction conventions. Similarly, Petcu et al. [18]
propose the mOSAIC java API as an example of open
interface for service deployment and portability. None-
theless, a drawback is that it cannot effectively handle the
unique features offered among distinct cloud services (i.e.
lack of support for many provider-specific service fea-
tures).

FANG ET AL.:

 3

Service and resource management tools for
heterogeneous clouds

Bernabe et al. [19] demonstrate an access control system
for multi-vendor cloud resource management. The pro-
posed ontology specifications can describe various enti-
ties (e.g. cloud, system, software, etc.), whereas the au-
thorization model can deal with user authentication and
authorization tasks. Despite its advanced hierarchical
role-based access control, the application is currently lim-
ited to IaaS resources and a single CSP (AWS EC2 [20]).
 Cloud Data Imager (CDI) [21] is seen as a complete sys-
tem to provide comprehensive functionalities for access-
ing and managing storage resources across diverse clouds
(i.e. Dropbox, Google Drive, and Microsoft SkyDrive).
The proposed CDI library is able to handle a variety of
functions including user authentication, folder listing, file
downloading, etc. Another work addressing resource
utilization monitoring issues over heterogeneous multi-
tenant clouds is found in DARGOS [22]. The proposed
architecture can provide highly reliable monitoring func-
tions. These approaches would only work for their own
limited cloud service models/types.
 A model-based cloud service integration platform [23]
is advocated to drive service orchestration for business
application integration. The proposed framework ad-
dresses three levels of modelling: cross-organizational
business processes, service operation/orchestration, and
dynamic member services binding. Nonetheless, the ap-
proach focuses mainly on enhancing cloud service and
resource integration for certain specific business process-
es. The platform is not an ideal tool for a diversity of
cloud service and resource management tasks.
 In summary, there are well-established cloud specifica-
tion standards and considerable native/third-party open
cloud service API libraries for application over various
cloud resources and many CSPs. Meanwhile, many ap-
proaches are proposed as a means towards generic cloud
service management. They bring some alternatives for
avoiding vendor lock-in plus flexible management of ser-
vices and resources. Nevertheless, due to the gaps among
existing studies, currently no solution is available for a

unified and effective management of diverse cloud ser-
vice models/types regardless of CSPs. Consequently, this
significantly limits the effectiveness and efficiency for
cloud service management and composition tasks.

SAMOS cloud service operation modelling
framework

SAMOS models cloud service operation via three compo-
nents: cloud service entity and operation classification,
cloud service entity datatype specification, and cloud ser-
vice entity operational relationship specification.

Cloud service entity and operation
classification specifications

In fact, certain membership or association relationships
can often be found among the various service and opera-
tion entities for every individual CSP. These facts can be
well modelled with ontology classification techniques
(see Figure 1).
 Specifically, cloud services and CSPs are asserted as
ontology classes. According to their membership func-
tions (e.g. a service belongs to a certain CSP), the service
class is seen as a subclass for the CSP class. Then, cloud
service instances (CSIs) created within a cloud service are
specified as individuals of the service class.
 The classification also applies to additional cloud enti-
ties, such as service operation parameter entities, service
configuration entities, and service accountability and user
authorization data (e.g. service regions, instance attrib-
utes, user account data, etc.). Here, considering that al-
most all of such entities tend to be CSP-specific (i.e. the
data formats, names, descriptions, etc. of the entities
would all be unique from one CSP to another), they are
specified as “provider-specific service aspect” (PSSA).
Nonetheless, some PSSAs, i.e. common service/software
aspects, may fundamentally indicate the same entity, de-
spite their distinct PSSA names (e.g. public IP addresses,
open VM images and SQL database data entries). These
associated entities are declared with equivalence (via
“equivalent class” or “same individual” axioms). Figure 1

Class

Cloud
Service

Provider

Class

Cloud
Service

e.g., EC2

Individual

Cloud
Service

Instance
(CSI)

e.g., EC2
instance

Class

Provider-
specific
Service
Aspect
(PSSA)
(group)

e.g., regions

Individual

Provider-
specific
Service
Aspect
(PSSA)

(member)
e.g., region

n

1

1

n

1

n

1

n

Class

Cloud
Service

Operation

Class

IaaS
Operation

Class

VM Service
Operation

Class

Common
Operation

Class

PaaS
Operation

Class

SaaS
Operation

Class

...

Individual

e.g. Start A VM

Class

e.g. List
Instance

Class

e.g. Set
Region

Class

e.g. Start VMs

Class

Platform Service
Operation

Individual

e.g. Create A New
Environment

Class

e.g. Create New
Environments

Class

Load Balancer
Service Operation

Individual

e.g. Suspend A
Load Balancer

Class

e.g. Suspend
Load Balancers

...

Figure 1 Cloud service entity and operation classification specifications

4

summarizes the association relationships among cloud
services, CSIs and PSSAs.
 Further, the diversity of cloud service operations are
asserted as ontology classes and individuals according to
their associations. As illustrated in Figure 1, cloud service
operation class comprises four subclasses: IaaS, PaaS,
SaaS and Common Operations. They each own a set of
relevant operations. Obviously, for IaaS, PaaS and SaaS,
the majority of the categorized operations would be dif-
ferent from each other. Then, the common cloud service
operations, which are available widely for all service
models (e.g. “list instance”, “set region”), are gathered in
the Common Operation class.

Cloud service entity datatype specifications

As cloud concepts and entities are established in appro-
priate class hierarchy, their datatype specifications are to
be described in detail. Generally speaking, cloud services
appear the same (entity) to all users, and hence own no
typical data-relevant properties. In contrast, CSIs, which
are created and owned by certain users, are unique to the
owners; they own specific data formats, i.e. IDs, creation
times, names, etc. These details are attached to the entities
via ontology datatype property assertions. With such, a
CSI can be easily recognized with its unique ID, whereas
other relevant datatype information can be effectively
addressed when required. Similarly, datatype specifica-
tion also applies to all PSSAs, e.g. strings, integers, dates,
URLs, or some unique provider-specific service data for-
mats (see Figure 2).
 Indeed, these data properties enable precise datatype
format demonstration, differentiation and validation for
cloud entities and operations. With the extracted data
presentation patterns and respected pattern examination
mechanism, validations can be effectively implemented
for cloud service operation preparation and execution (e.g.

validations of authorization, input, output, condition,
etc.).

Cloud service entity operational relationship
specifications

Cloud service operations can be seen as reflections of the
operational relationships among relevant cloud service
and operation entities. For instance, I) “Create instance”
and “List instance” can describe the creation and inclu-
sion relationships from a cloud service to its instance(s). II)
“Get instance ID” and “Modify instance name” can clarify
the retrievable and modifiable relationships from a ser-
vice instance to its property and condition. This is how
SAMOS tackles cloud service operation specification by
modelling the diversity of service entity operational rela-
tionships.

Classification of cloud service operations

Shown in Table 1, based on the different nature and inten-
tions of cloud service operations, we first divide them
into two categories: service information request (SIR) and
service manipulation request (SMR).
SIR

At the cloud service level, SIR often relies on collecting all
available cloud service’s settings and instances (e.g. get
available regions and list instances). At the CSI level, it is
usually to retrieve the diverse real-time information of a
certain service instance (e.g. get instance status). At the
PSSA level, it tends to acquire the real-time information
of the specific CSP entities (e.g. get VM image ID). Gener-
ally, SIR operations would not alter any cloud service, CSI
or PSSA after execution.
SMR

At the cloud service level, SMR is usually to handle the
general service settings and overall instances manage-
ment tasks (e.g. set region and delete all instances). At the
CSI level, it is mainly regarding some specific instance
control and modification functions (e.g. reboot VM in-
stance). At the PSSA level, it is for the manipulations im-
plemented on those unique CSP entities (e.g. delete VM
image). On successful execution, SMR should alter the
target cloud service/CSI/PSSA in an intended way.

Cloud service operation object property
specifications

Based on the proposed operation classifications, the di-
verse cloud service operations can then be described,
shown in the form of various operational relationships
among relevant cloud services, CSIs and PSSAs. These
relationships can be adequately described using ontology
object property assertions. Figure 3 illustrates the repre-
sentation of cloud service operations using object proper-

Individual

Provider-specific
Service Aspect

(PSSA)(member)

EC2 Region

has type: String
has letterContainPattern:

“ec2.amazonaws.com”
has length: 35

EC2 Instance

has type: String

has letterContainPattern: “i-”
has length: 10

Rackspace Cloud Server
Instance

has type: String

has letterContainPattern: “-”
has length: 36

Rackspace Region

has type: String
has letterCasePattern: “[A-Z]”

has length: 3

Individual

Cloud Service
Instance

(CSI)

 Figure 2 Cloud service entity datatype specifications

Table 1 Classification of cloud service operations

Operation

Type

Description Examples

Service Infor-

mation Request

(SIR)

Operation requested to

retrieve service entities

and entity information

List owned service in-

stances, get instance ID,

get available platforms

Service Manip-

ulation Request

(SMR)

Operation requested to

make changes to cloud

services, CSIs or PSSAs

Create new instance,

terminate instance,

modify instance name

FANG ET AL.:

 5

ty specifications. Basically, “hasSIR” and “hasSMR” are
asserted to describe the types of operations available, be-
tween cloud service/CSI/PSSA and relevant operation
concepts. For instance, the “create” and “list” operations
between cloud services and CSIs can be represented with
“hasSMR create instance” and “hasSIR list instance”, re-
spectively; the “get attribute” and “modify” operations
between CSIs and PSSAs can be represented with “hasSIR
get attribute” and “hasSMR modify…”, to demonstrate
their operational relationships.
 Additionally, the details of cloud service operations, i.e.
operation conditions, parameters, outcomes and changes
are comprehensively described in SAMOS. Here, we uti-
lize a series of systematic operation specification elements
to specify the aspects that may be involved (before, dur-
ing and after operations). These details are stored in the
form of ontology annotations for the respective object
property relation assertions.

Specification of cloud service
information/manipulation request elements

Request Subject (SRSubject)

SRSubject is recognized as the target of a cloud service
operation. As a user selects a cloud service for operation,
the service becomes the target. Similarly, SRSubject can
apply to all CSIs and PSSAs if selected.
Request Parameters (SRParameter)

Although some cloud service operations can execute with
only SRSubjects, many others do need certain parameter
inputs, e.g. relevant restrictions, options, customized data,
etc. These are required by CSPs to enable accurate and
successful service operations. SRParameters specify such
details for applicable service operations. Generally, PSSAs
make up the majority of SRParameters; CSIs can also be
involved as SRParameters; it is unlikely for any cloud
service to be used as SRParameter.
 Due to the complexity of cloud service operation pa-
rameter requirement, a SRParameter attribute notation
system is developed. The denotations and examples of
the SRParameter attributes are shown in Table 2. Basically,
according to the operation requirements, each parameter
is specified with mandatory/optional differentiations.
Then, depending on whether an operation accepts sin-
gle/multiple parameters of the same entity type, the pa-
rameters are also differentiated. Consequently, this ought
to enable a precise specification and interpretation for
diverse cloud service operation (parameter) requirements.
Request Outcome (SROutcome)

As a cloud service operation is executed, certain data re-
sponse would be returned from its CSP, informing the

Table 2 SRParameter symbol notations

SRParameter

Attribute

Denotation

(in object

property

annotation)

Examples Service

Operations and

SRParameters

Mandatory “[]”

Optional “”

Single “()”

Multiple “<>”

Mandatory single “[()]” Rename: [(“new_name”)]

Mandatory multiple “[<>]” Reboot: [<“vm1,2…”>]

Optional single “()” Set authorization: (“basic”)

Optional multiple “<>” Deny access: <“user1,2...”>

Class

Cloud Service

Class

Provider-specific
Service Aspect
(PSSA)(group)

has SIR
(has attribute)

Individual

Cloud Service
Instance

Individual

Cloud Service
Instance

Individual

Cloud Service
Instance

Individual

Cloud Service
Instance

(CSI)

Individual

Provider-specific
Service Aspect

(member)

Individual

Provider-specific
Service Aspect

(member)

Individual

Provider-specific
Service Aspect

(member)

Individual

Provider-specific
Service Aspect

(PSSA)(member)

used for

Individual

e.g. Start A VM

Individual

e.g. Create A New
Environment

Individual

e.g. Suspend A
Load Balancer

Class

e.g. Start VMs

Class

e.g. Create New
Environments

Class

e.g. Suspend
Load Balancers

creates

has SMR

Class

e.g. Delete
Security Groups

Class

e.g. Create New
VM Image

Class

e.g. Modify Load
Balancer Nodes

Class

e.g. List Instance

Class

e.g. Set Region

has SIR

Individual

e.g. Delete A
Security Group

Individual

e.g. Create A
New VM Image

Individual

e.g. Modify A Load
Balancer Node

has SMR

creates
has SIR

has SIR
(has attribute)

has SMR

has SMR

Figure 3 Cloud service entity object property specifications

6

execution result, e.g. execution status, obtained service
information, newly altered service entities, etc. This oper-
ation element is represented as SROutcome. Typically, for
the majority of operation requests, SROutcome reveals
the expected service entities to be returned from the re-
spected CSP. For some simple SMR operations, SROut-
come would only be the (expected) success response.

Request Pre Condition (SRPreCondition)

According to CSP restrictions, there may be various oper-
ation request condition requirements. Some operations
can be initiated without any condition constraints whilst
others do need specific condition fulfilments. This is de-
fined as SRPreConditions of cloud service operations. For
SRPreCondition specification, the condition text can be
either positive (“VM == off”) or negative (e.g. “service !=
updating”), where specific data formats and symbols can
be involved (e.g. “instance count restriction <= 100”).
SRPreCondition applies only to those operations which
genuinely require so; others would have an empty entry
(“unconditional”) for the element.
Request Post Condition (SRPostCondition)

Using the same specification pattern as SRPreCondition,
SRPostConditions describes the (expected) post execution
condition of a cloud service operation. Specifically, the
condition is accounted whenever a “new” condition is
created. This is to drive as many as operation composi-
tions (by paring SRPreCondition and SRPostCondition)
towards possible cloud service orchestrations. Hence, a
SRPostCondition does not necessarily need to contradict
the respected SRPreCondition: some operations may only
have SRPostCondition and no SRPreCondition; for some
operations, the entities involved in SRPostCondition may
be different from those in the respected SRPreCondition.
For instance, a VM creation operation can have SRPre-
Condition of “account restriction == OK” and SRPost-

Condition of “VM == running”.

Service operation requirement verification
and dynamic assistance reasoning

While cloud service entities, their attributes and relation-
ships, and operation elements are comprehensively speci-
fied, relevant service operation assistance reasoning can
be introduced. In fact, this enables effective cloud service
operation execution management, even for cloud service
orchestration tasks.

Basic service operation preparation and
execution

A typical use of the cloud service operation specifications
is verification. Given SRSubject, relevant SRParameters
and fulfilled SRPreCondition, an operation can be remote-
ly executed through appropriate programming interface
request. If successfully executed, this would result in cer-
tain service entity (data) which matches the respected
SROutcome and/or SRPostCondition.
Service Operation Parameter Verification

INPUT: Operation op

 1 INIT SRPreconditionRequirement srprec1, srprec2, …,
 Srprecn to CALL getPrecondition with op;
 ConditionSatisfied to FALSE;
 2 IF ConditionCount = 0 THEN
 3 SET ConditionSatisfied to TRUE
 4 END IF
 5 ELSE THEN
 6 INIT SatisfyCount to 0;
 7 FOR each srprecn in SRPreconditionRequirement
 8 INIT condition to CALL
 getCurrentServiceEntityCondition with op, srprecn
 9 IF srprecn HAS “==” THEN
10 IF srprecn = condition THEN /* SRPreCondition
 fulfils certain positive condition requirement */
11 INCREMENT SatisfyCount
12 END IF
13 END IF
14 ELSE IF srprecn HAS “!=” THEN
15 IF srprecn NOT EQUAL condition THEN /*
 SRPreCondition fulfils certain negative condition
 requirement */
16 INCREMENT SatisfyCount
17 END IF
18 END ELSE IF
19 ELSE THEN
20 IF condition COMPLY with srprecn THEN /*
 SRPreCondition fulfils certain numerical (>=/<=)
 condition requirement */
21 INCREMENT SatisfyCount
22 END IF
23 END ELSE
24 END FOR
25 IF SatisfyCount >= ConditionCount THEN /* all
 preconditions satisfied
26 SET ConditionSatisfied to TRUE
27 END IF
28 END ELSE

OUTPUT: ConditionSatisfied

Figure 5 Cloud service operation precondition verification

algorithm

INPUT: Operation op, SRParameterType srpt1, srpt2, ..., srptn;
SRParameterData srpd1, srpd2, ..., srpdn,

 1 INIT SRParameterRequirement srpr1, srpr2, …, srprn to
 CALL getMandatoryParameter with op;
 ParameterSatisfied to FALSE;
 2 IF ParameterCount = 0 THEN
 3 SET ParameterSatisfied to TRUE
 4 END IF

 5 ELSE THEN

 6 INIT matchCount to 0;
 7 FOR each srprn in SRParaterRequirement
 8 IF srprn = srptn THEN /*parameter type matches*/
 9 INCREMENT matchCount
10 END IF

11 END FOR

12 IF matchCount >= ParameterCount THEN
 /*all mandatory parameters satisfied*/
13 SET ParameterSatisfied to TRUE
14 CALL fillParameter with op, srpd1 to srpdn
 /*pass parameter data*/
15 END IF

16 END ELSE

OUTPUT: ParameterSatisfied

Figure 4 Cloud service operation parameter verification

algorithm

FANG ET AL.:

 7

Specifically, the verification algorithm of cloud service
operation parameter requirements in Figure 4 demon-
strates the first control prior to operation execution. Basi-
cally, the service entities, either selected or manually en-
tered data, are processed in two sets of key-value pairs.
One holds the entity name and type information whilst
the other holds the actual entity data and format infor-
mation. Then, according to the retrieved SRParameter
specification, the parameters (names, types and format)
are verified against the relevant mandatory requirements.
As all of the mandatory parameters are satisfied, it would
indicate that the parameter verification process is com-
plete. Subsequently, the respected parameter data can be
sent to appropriate operation handler for further action.
Service Operation Precondition Verification

The service operation precondition verification is imple-
mented depending on the nature and format of the condi-
tion specification, shown in Figure 5. Specifically, if the
candidate requires no SRPreCondition (unconditional),
the verification will be complete instantly. Otherwise, the
positive, negative or numerical condition is verified based
on a dynamically initiated real-time service entity infor-
mation check. Once all mandatory verifications are com-
plete, the operation can then execute as dispatched.
 While the above verifications are mainly for use of sim-
ple individual cloud service operations, SAMOS also of-
fers advanced usages, known as operation assistances.
Indeed, the assistances can be widely enabled, such as to
automatically prepare preconditions and gather parame-
ters, to program the execution schedules for multiple rel-
evant operations, or to assess the applicability for poten-
tial service interactions and compositions. They are pro-
vided based on the reasoning analysis of cloud service

entity operational relationships and the operation specifi-
cation elements involved. For instance, operation group-
ing applicability can be analyzed by seeking operations
with similar types/requirements in both their SRParame-
ters and SROutcomes; Operation chaining applicability
can be determined when the operations own SROutcome
and SRParameter match, or SRPostCondition and SRPre-
Condition match (equivalence). The description summary
of the proposed cloud service operation assistances can be
found in Table 3.

Basic Assisted Service Operation Request
(BASR) assistance reasoning

BASR serves to help users understand the required
SRPreConditions and SRParameters for service opera-
tions. It also assists in relevant operation preparations
during the operation process. Basically, as a user selects
certain cloud service/CSI/PSSA and SRParameter(s),
BASR can actively examine all available operations for
unsatisfied operation conditions and parameters. Then,
relevant information regarding how to fulfil such condi-
tions or/and obtain the mandatory parameter(s) is pro-
duced to assist the user for further actions.
 BASR is implemented on a per cloud service/service
instance and per service request basis. This means that
the assistance algorithm does not consider the potential
subsequent impact resulted from one operation to anoth-
er (or from service entity to another).

Concurrent Combined Service Operation
Request (CCSR) assistance reasoning

As some cloud services own the same mod-
el/type/function, their service operations are very similar.

Table 3 Cloud service operation reasoning assistance type

Reasoning

Assistance

Name

Assistance

Description

Reason-

ing

Scale

Operation

Scheduling

Precondition

& Parameter

Preparation

Reasoning Steps

BASR To assist in prepara-

tion of precondition

and parameters for

unsatisfied service

operations

Single

cloud

(CSP)

None Guided

manual input

1. For the unsatisfied SRParameters and SRPreConditions, list

possible options based on current selected SRSubject and SRPa-

rameters, plus the real-time status of them;

CCSR To assist in multiple

concurrent service

operations of similar

types

Multiple

clouds

(CSPs)

None Manual input 1. Get SRSubjects’ operations which have satisfied SRParameters;

2. Filter the operations based on whether their preconditions fulfil

the real-time SRSubject statuses;

3. Produce the operation lists for the applicable SRSubjects;

SCSR To assist in

automatic scheduled

executions of a

series of operations

in a logical sequence

Single

cloud

(CSP)

Yes Manual input 1. Get SRSubjects’ operations which have satisfied SRParameters;

2. For the operations, seek for those which have precondition

SRPostCondition matches;

3. Compose these operations into sequenced chains by filtering

 Them from their factorial combinations, according to the

two-two sequenced connections;

4. Filter the operation chains based on whether the first operation’s

preconditions fulfil the real-time SRSubject status;

Produce the operation lists for the applicable SRSubjects

IOSR To assist in seeking

possible service

interactions by

linking appropriate

operations in a

scheduled sequence

Multiple

clouds

(CSPs)

Yes Automatic

preparation

1. For all SRSubjects’ operations, seek for those which have

SROutcomes SRParameters (equivalence) matches;

2. For all SRSubjects’ operations, seek for those which have

SRPreCondition SRPostCondition matches;

3. Compose these operations into sequenced chains as long as

their SRPostConditions and SRPreConditions are not

contradictory, according to the two-two sequenced connections;

4. Filter the operation chains based on whether the first operation’s

preconditions fulfil the real-time SRSubject status;

5. Produce the operation lists for the applicable SRSubjects

8

Indeed, the operation specification patterns for such op-
erations often coincide. Due to this nature, these opera-
tions can be composed and then executed concurrently
towards greater efficiency.

CCSR reasoning algorithm enables a convenient means
of executing multiple similar service operations for eligi-
ble cloud services or instances, even across multiple
clouds. Specifically, as a user selects multiple SRSubjects
and a series of required SRParameters, CCSR collects the
eligible operations into simultaneously executable groups,
and offers the options to the user. For the reason that
CCSR assistance is provided at a per request basis, alt-
hough it acts to control multiple cloud service entities, the
algorithm does not consider the potential impact resulted
from one request to another. Hence, the assistance still
does not adopt any scheduling controls.

Sequenced Chained Service Operation
Request (SCSR) assistance reasoning

For some service operations, the SRPostCondition of an
operation may happen to match (or be equivalent to) an-
other’s SRPreCondition. In other words, the successful
execution of some operations would enable certain sub-
sequent operations dynamically by satisfying their pre-
condition requirements. As a series of such operations are
linked one another with precondition and postcondition
matches, a sequenced operation chain can be composed in
real-time. SCSR serves to seek such operation chains and
provide assistances in scheduling their sequenced execu-
tions. Although this may happen over multiple clouds,
we consider that it would be more reasonable for imple-
mentation in a single cloud. Hence, the scale of SCSR rea-
soning is restricted to that.

SCSR reasoning seeks for operation combinations
which satisfy the following three requirements: Firstly,
within the available operations of the chosen SRSubjects,
there are coherent/equivalence matches between their
SRPreConditions and SRPostConditions from one to an-

other (empty condition, like “unconditional”, is not ac-
counted here). Secondly, all of the SRParameters (if any)
of such operations are presented in prior simultaneously.
Thirdly, the real-time service (entity) condition meets the
SRPreCondition of the first operation (in the chain).
Fourthly, any duplicate/repeated operation is to be elim-
inated from the chain. Finally, these dynamically com-
posed operation chains are arranged, where users can
select and execute them depending on their intension.

Interactive Orchestrated Service Operation
Request (IOSR) assistance reasoning

With a successfully executed service operation, the
SROutcome retrieved in real-time can be used as SRPa-
rameter for further service operations. This provides an-
other means towards dynamic service (operation) orches-
trations. IOSR is designed to provide operation orchestra-
tion assistances that require minimum user effort. It can
intelligently select and compose all necessary operations,
and automatically prepare the SRPreConditions and
SRParameters for relevant service interaction tasks. Hence,
IOSR assisted operation tasks only ask users for SRSub-
jects entry and require no further user interventions.
 In order to provide the assistance with proactive condi-
tion and parameter preparation, IOSR reasoning algo-
rithm does not simply consider the exact match between
operations’ SROutcome and SRParameter or between
SRPreCondition and SRPostCondition. Instead, it checks
the equivalence of SROutcome and SRParameter entities.
As long as there is no direct conflict between the SRPre-
Condition and SRPostCondition, a link can be formed (for
certain valid interaction intentions). Indeed, whenever
there are commonly recognizable service and resource
entities, they can result in “orchestration points” between
the interactive pair of clouds, regardless of their CSPs or
service types.

User Accounts
& Profiles

(public)

Service Operation
SchedulerCloud Service

Access and
Manipulation

Ontology
(CSAMO)

Service Operation Reasoning Engine

OWL API

UI

Unified Service Access
and Manipulation Portal

Service Operation
Reasoning Assistance

BASR
Reasoner

CCSR
Reasoner

SCSR
Reasoner

IOSR
Reasoner

Service Operation Mapping Manager

SMR MapperSIR Mapper

Dynamic Service
Condition Checker

Logging
Manager

Authorization
Manager

Specification
InterpreterOWL API

Figure 6 USAMS system architecture

FANG ET AL.:

 9

Prototype implementation

This section outlines the implementation in terms of the
deployment of cloud service access and manipulation
ontology (CSAMO) and system prototype tool (USAMS).
Moreover, for real cloud service management enablement,
details of cloud service operation API mapping are pre-
sented, as a key component of the prototype.

System architecture

USAMS is implemented in java. As Figure 6 shows, it
consists of six main components: Specification Interpreter,
Service Entity & Operation Mapping Manager, Service
Operation Scheduler, Service Operation Reasoning En-
gine, Authorization Manager and UI.
 CSAMO is deployed based on SAMOS framework. It
encapsulates various real cloud service operation specifi-
cation data, written in OWL 2 [24]. While CSAMO is uti-
lized as the main knowledge source for cloud service op-
erations, the User Accounts & Profiles database used here
stores users’ cloud service account data (including CSP
API credentials). This is mandatory for most service oper-
ations over different clouds.
 Specification Interpreter is responsible for retrieving
and translating granular service operation and entity
specifications and the respected API request and response
data. This includes interpreting all sorts of cloud service
entities in SIR and SMR operations, plus gathering the
entire operation element details (i.e. SRPreCondition,
SRParameter, SROutcome, etc.).
 Service Entity & Operation Mapping Manager manages
the operation API mapping entries so that users’ service
operation requests can be implemented properly. It has
two separate mappers inside for use of SIR and SMR op-
erations respectively. Indeed, due to the many different
characteristics between the two operation categories, the
operation handling processes are treated separately. This
prevents potential issues as attempting to schedule a
group of mixed operation tasks.
 USAMS UI deals with a wide range of service operation
execution tasks by providing a unified portal for real-
world cloud service access and manipulation. It has two
sub components: Unified Service Access and Manipula-
tion Portal and Service Operation Reasoning Assistance.
While the former allows users view and execute various
service operations, the latter actively assists users for ad-
vanced operation execution tasks. Together, these enable
a generic and interactive portal for service access, manip-
ulation and interaction regardless of service mod-
els/types/CSPs.
 Service Operation Reasoning Engine incorporates four
individual reasoners, each works for a certain operation
assistance scenario. BASR Reasoner assists in preparation
of the required operation data so as to guide users
throughout operation process. The scale of its reasoning is
restricted to operations in a single cloud. CCSR Reasoner
assists in grouping similar operations for users so as to
enable simultaneous executions, even if such are imple-
mented across distinct clouds. SCSR Reasoner assists in
scheduling chained tasks when a series of operation are
found with certain execution dependency relations one

another. Finally, IOSR Reasoner assists in implementing
service orchestration tasks by analyzing the possibilities
for potential operation interactions for selected services.
 Service Operation Scheduler acts to control the sched-
ule and execution of operation tasks. Whenever a user
initiates an operation, the component would first verify
the user’s API credentials (for the target cloud). Then, the
necessary data format verifications (for SRParameter and
SRPreCondition) are performed. If no error occurs, the
mapped operation task will be executed execution. Fur-
ther, for advanced service operation tasks, the component
works closely with Service Operation Reasoning Engine,
enabling the tasks reasoned by the reasoners. With its
internal Dynamic Service Condition Checker, it provides
various automatic dynamic scheduling controls for
grouped SIR and SMR tasks. For every SMR operations
executed, the logs are forwarded to Logging Controller.
 Logging Controller documents critical system and op-
eration logs so that users can examine them as required.
This enables event tracking, diagnostics and performance
evaluation tasks via the platform.

Mapping service operation ontology
specifications to service API calls

Nowadays, most cloud service providers also release na-
tive service API libraries and/or complete SDKs as cus-
tomized service and resource control interfaces. Mean-
while, a series third-party service APIs are also available
as an alternative programmable service and resource en-
trance. In fact, these service API call/respond operations

OCSO Cloud Service APIOCSO Cloud Service API

Native & 3rd Party Service APIs

Service Entity &
Operation

Mapping Manager

AWS API

OCSO API Adapter

Google
AppEngine

API

Jclouds
API

…
API

Cloud Services

CSAMO
consult

bind

invoke

request response

invoke

intepret

Cloud Service/Resource Data
Clouds

Service
API

USAMS

Figure 7 Cloud service operation specification and API call mapping

10

often enable more effective service access and enhanced
service function manipulation, since they allow users to
control services and relevant resources from a much low-
er level [25].
 While each of the cloud service API requests can be ad-
dressed with certain service operation specification data,
a mapping can be implemented between the API and re-
spected operation specifications. To enable flexible and
generic service access and manipulation via a single point
of interface, we adopt OCSO API [25]. It comprises OCSO
API Adapter which can flexibly invoke cloud service API
libraries as (user) requested. Seen in Figure 7, the map-
ping is controlled via Service Entity and Operation Map-
ping Manager. Here, depending on the designated API
library and the operation requirement, each service’s op-
eration (object property assertion) is mapped to at least
one API request (for each library). Moreover, the addi-
tional operation specifications (e.g. SRParameter, SRPre-
Condition and SROutcome) must be consistent with the
relevant information against the API request.
 As the mapping between service operation specifica-
tions and API calls is established, the modelled cloud ser-
vice operations can be prepared and executed (with rele-
vant cloud API user account credentials) as retrieved.

Case studies

To demonstrate the practice use and to evaluate the pro-
posed approach, we present some case studies on service
operation specifications and service access, manipulation
and orchestration tasks, using a series of services from
multiple popular clouds. In addition to the contents pre-
sented below, more specifications for other cloud services
and providers are provided in Appendix A, B and C.

EC2 service operation specifications

Table 4 shows the specifications of some AWS EC2 [20]
operations (retrieved from CSAMO). Within SAMOS, the
operations are divided into two categories, and seen in
three entity levels. For instance, at EC2 service level, there
are SIRs for overall instance information retrieval (e.g.
“List VM Instance”) and SMRs for (overall) instance man-
agement (e.g. “Create VM Instances”). At EC2 CSI level,
there are SIRs for individual data retrieval (e.g. “Get VM
Architecture”) and SMRs for individual control (e.g.
“Terminate VM Instance”). At EC2 PSSA level, take EC2
AMI as an example, it has SIRs and SMRs for specific en-
tity (data) retrieval and control (e.g. “Get Image Platform”,
“Delete Image”).
 Further, the detailed operation elements can be well
presented with SAMOS. For instance, basic SIRs such as
“List VM Instance” and “Get VM Architecture”, they do
not require any SRPreCondition and only require a single
SRParameter (each); they would not trigger any SRPost-
Condition change after execution. In contrast, SMRs act
differently: they would alter certain service/CSI/PSSA
conditions on successful execution, and may require sev-
eral SRParameters (e.g. “Create VM Instance(s)”). Addi-
tionally, even for the same operation, the specifications
can differ for distinct SRSubjects: the two “Create VM
Instance(s)” executable for EC2 and EC2 AMI appear to
be very similar, except that one requires fewer SRParame-
ters than the other.

Unified cloud service access and
manipulation

A practice use of the cloud service operation specifica-
tions is seen as the enablement of unified service access
and manipulation through USAMS. Figure 8 demon-

Table 4 EC2 service/CSI/PSSA operation specifications (from CSAMO)

Cloud Service

Level Operations

AWS EC2

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

List VM Instance SIR Unconditional EC2 Region(M) EC2 InstanceIDs Unconditional

Create VM

Instance(s)

SMR < account allow-

ance, i.e. 20 in-

stances per region

EC2 RequestCount(O), EC2 InstanceType(M),

EC2 AMIID(M), EC2 KeyName (M), EC2 Secu-

rityGroup(O), EC2 Region(M), EC2 Monitor(O),

EC2 AvailabilityZone (O), etc.

EC2 InstanceID(s)

Instance(s) is in

“running” state

Resize VM

Instances

SMR Instances are in

“stop” state

EC2 InstanceIDs(M), EC2 InstanceTypes(M) Operation

Succeeded

Instances are in

“stop” state

CSI Level

Operations

AWS EC2 Instance

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

Get VM

Architecture

SIR Unconditional EC2 InstanceID(M) EC2 Instance

Architecture

Unconditional

Create VM Image SMR Unconditional EC2 InstanceID(M) EC2 AMIID AMI is in

 “available” state

Terminate VM

Instance

SMR Instance is NOT in

“terminated” state

EC2 InstanceID(M) Operation

Succeeded

Instance is in

“terminated” state

PSSA Level

Operations

AWS EC2 AMI (VM image)

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

Get Image

Platform

SIR Unconditional EC2 AMIID(M) EC2

Instance Platform

Unconditional

Create VM

Instance(s)

SMR < account allow-

ance, i.e. 20 in-

stances per region

EC2 InstanceID(M) EC2 RequestCount(M), EC2

InstanceType(M), EC2 KeyName (O), EC2

SecurityGroup(O), EC2 Monitor(O), etc.

EC2 InstanceID(s) Instance(s) is in

“available” state

Delete Image SMR Image is in

 “available” state

EC2 AMIID(M) Operation

Succeeded

Unconditional

FANG ET AL.:

 11

strates the appearance of USAMS unified service opera-
tion interface (with EC2).
 Every SRSubject is initially displayed in a small panel.
There are four buttons in the panel: “Description”, “Use
Entity”, “Information” and “Manipulation”. By clicking
“Description”, users can view its annotation description
through external knowledge sources [26]. “Information”
and “Manipulation” buttons lead to the respected SIR and
SMR operation retrieval (from CSAMO). Then, if a user’s
API account authorization permits, one can execute oper-
ations via USAMS.
 Due to the simple nature, SIR operations are executed
concurrently as the user clicks the “Refresh” button aside.
SMR operations are to be executed individually; they
would only execute when the all of the requirements (i.e.
SRPreCondition and SRParameter(s)) are satisfied, which
are checked dynamically by relevant USAMS components.
To enhance operation parameter input experience, all
dynamically acquired service entity (information) can be
reused as parameters.
 In addition, for any CSI or PSSA acquired through SIR

operations, their operation panels can be called from a
click (see Figure 8). Afterwards, the remaining options
follow the same steps as the above. In this way, USAMS
achieves a unified service access and manipulation
through a common presentation and execution interface,
regardless of the CSP, service or operation types.

Cloud service operation reasoning assistance:
IOSR

As previously discussed, an additional benefit of SAMOS
framework is its operation reasoning assistance. Here, we
present an IOSR assistance case on orchestrating EC2 and
Rackspace Cloud Load Balancer (RSLB) [27].
 As a user selects the two services to seek orchestration
feasibility, the reasoning engine analyzes the possible
entity relationships throughout CSAMO. Here, the com-
mon nature of public IP address becomes the key link for
the orchestration: EC2 instances own public IPs; RSLB
instance needs public IPs for node entries; so EC2 in-
stances can be inserted as nodes for RSLB instances. As a
result, a series of relevant operations can then be selected

Figure 8 Unified cloud service access and manipulation

12

and composed into chains. Seen in Figure 9, based on the
real-time service conditions, USAMS reasoning engine
outputs an operation chain with two EC2 operations and
one RSLB operation. The two EC2 operations are selected
to obtain an IP address whilst the rest is to complete the
orchestration by using the address. According to the rele-
vant specifications displayed below each operation, “start
VM” would turn a VM on; “has IP” would acquire its IP
address; “add node” would add the VM into a RSLB in-
stance by using its IP.
 The case validates that IOSR execution process runs
intelligently on operation condition and parameter prepa-
ration: for SRPreCondition fulfillment, it adds the “start
VM” operation at the beginning of the chain due to the

“has IP” needing such condition requirement; for SRPa-
rameter fulfilment, the IP address is not manually entered
but a dynamic real-time service entity acquired form CSP.

Service operation remote execution
performance

The cloud service operation execution performance study
involves a variety of services and operations from multi-
ple clouds. We provide operation execution time compar-
isons between USAMS and provider native command line
interfaces (CLI). To deal with the test data deviations (e.g.
due to unexpected/slight QoS fluctuation), the results are
regulated: the operation tests are conducted on two sepa-
rate days; the results are obtained from several sample

Figure 9 Service orchestration with IOSR operation reasoning assistance

Table 4 Single SIR access time comparison (via native CLI/USAMS)

Service

provider

 Typical SIR

Method

List cloud VM

instances

(IaaS)

List cloud database

instances

(PaaS)

List cloud files

(SaaS)

List cloud load

balancers

(SaaS)

Success rate

(based on 200 tests)

AWS Via native CLI 0.757 sec 0.519 sec 0.666 sec 0.550 sec 100%

Via USAMS 1.185 sec 1.032sec 1.143 sec 1.263 sec 100%

Rackspace Via native CLI 3.242 sec 3.280 sec 4.009 sec 3.202 sec 100%

Via USAMS 5.534 sec 5.281 sec 5.129 sec 5.483 sec 100%

Table 5 Single SMR execution time comparison (via native CLI/USAMS)

Service

provider

 Typical SMR

Method

Create cloud VM

instance

(IaaS)

Terminate cloud

VM instance

(IaaS)

Create cloud

load balancer

(SaaS)

Update cloud

load balancer

(SaaS)

Success rate

(based on 200 tests)

AWS Via native CLI 2.450 sec 2.086 sec 1.038 sec 0.588 sec 100%

Via USAMS 2.732 sec 1.943 sec 0.758 sec 0.682 sec 100%

Rackspace Via native CLI 3.237 sec 3.742 sec 3.235 sec 3.249 sec 100%

Via USAMS 3.383 sec 4.147 sec 3.539 sec 3.761 sec 100%

FANG ET AL.:

 13

tests, where any excessive values are eliminated.
 The services selected for the operation experiment are
EC2, Relational Database Service (RDS) [28], Elastic Load
Balancer [29], Cloud Servers [30], Cloud Databases [31]
and Cloud Load Balancers [27]. They belong to AWS and
Rackspace two CSPs respectively. Accordingly, the two
CLIs involved in the experiment are AWS CLI [32] and
Rackspace CLI (rumm [33]). For SIR, a series of service
instance data retrieval operations are tested to justify the
typical performances for IaaS, PaaS and SaaS operations
individually. For SMR, various service instance manipu-
lation operations are tested, including instance creation,
deletion, updating, etc.
SIR(s) remote execution performance

Table 4 demonstrates the experiment results of accessing
AWS and Rackspace IaaS/PaaS/SaaS service instance
data. While the two interfaces both show consistent suc-
cess rates of 100%, the response time varies. Generally
speaking, the CLIs offer faster response than USAMS for
all the SIR operations. Specifically, for AWS SIRs, all the
operations are handled within 1 second via AWS CLI,
whereas USAMS takes some milliseconds extra. Mean-
while, Rackspace CLI offers slower accesses of more than
3 seconds for the SIRs, and USAMS requires approximate-
ly additional 2 seconds.
 The multiple service operation remote execution exper-
iment is implemented in AWS EC2 only, due to its relia-
ble success rates and with reasonable elapsed time. For
the SIR experiment on retrieving multiple EC2 instances
data, it reveals similar access and response patterns be-
tween the CLI and USAMS (see Figure 10). Faster comple-
tion is found via the CLI, regardless of the total number of
operations. However, the overall performance difference
between the two interfaces is minimal, i.e. generally with-
in 0.3 seconds.
SMR(s) remote execution performance

The SMR operations selected for the experiment are IaaS
and SaaS service instance creation, modification and ter-
mination tasks. Specifically, the IaaS VM creation opera-
tions are deployed with plain Linux Red Hat 7.0 image on
m3.large (2vCPU/7.5GB RAM) for EC2 and 4GB standard
instance (2vCPU/4GB RAM) for Rackspace Cloud Serv-
ers. Then, the instances created are used for the termina-
tion tests. Meanwhile, the SaaS cloud load balancer crea-
tion and update operations are performed by creating an
http load balancer, followed by node adding modifica-
tions.
 Seen from the experiment data in Table 5, overall, the

success rates of all the operations remain at 100%. Yet,
each operation execution respond appears to be different.
For AWS IaaS operations, the VM creation tasks are com-
pleted a little faster through CLI, but termination opera-
tions respond quicker via USAMS. For AWS SaaS opera-
tions, the load balancer creation is handled slightly sooner
via USAMS, although CLI manages to update the load
balancers with a bit less time. On the other hand, with
regard to Rackspace SMR tasks, all the VM and load bal-
ancer instance manipulation tasks tend to consume slight-
ly more time via USAMS.
 Further, considering the SMR experiment on starting
multiple VM instances, the execution time data is illus-
trated in Figure 11. For the 5 to 40 tasks deployed, both
interfaces require some 20 seconds for completion. No
obvious increase is found despite more operations being
involved. Regarding the performance differences between
the two interfaces, there is not any clear distinction.

Evaluation and discussion

Figure 10 Multiple SIR operations execution comparison

Figure 11 Multiple SMR operations execution comparison

Table 6 Cloud service specification framework comparison

Approach Syntax/

Semantics

Model Core/Base Concepts Management Interface Service Or-

chestration

OCCI OCCI

Grammar

Category, Kind, Mixin, Resource Instantiation, Collections, Dis-

covery /Entity, Resource, Link, Action) [35]

Testing tool, doyouspeak

OCCI,OCCI API

OCCI client

TOSCA YAML Topology Templates, Plans /Service, Node, Relationship, Require-

ment, Capability, Artifact, Policy, Cloud Service Archive [36]

OpenTOSCA, jclouds and

PyTosca API

Pre-defined

Plans

mOSAIC OWL Environment, Infrastructure, Resource, Runtime Component, State-

ful Component, Stateless Component, etc. [37]

mOSAIC API mOSAIC Cloud

Agency

SAMOS OWL Entity and operation classifications, Entity datatype specifications,

Entity operational relationship Specifications, etc.

USAMS prototype tool,

flexible choice of API librar-

ies via OCSO API

Lightweight

automatic rea-

soning

0

0.3

0.6

0.9

1.2

1.5

5 10 15 20 25 30 35 40E
la

p
s
e
d

 t
im

e
 (

s
e
c
o
n

d
s
)

No. of concurrent operations
(list AWS EC2 VM instances)

Concurrent SIR operation access
comparison

via
native
CLI

via
USAMS

0

5

10

15

20

25

5 10 15 20 25 30 35 40

 E
la

p
s
e
d
 t
im

e
 (

s
e
c
o
n
d
s
)

No. of concurrent operations
(start AWS EC2 VM instances)

Concurrent SMR operations execution
comparison

via
native
CLI

via
USAMS

14

As illustrated in the EC2 case study, SAMOS framework
can adequately model a wide range of operations. Its clas-
sifications of cloud service entities and operations enable
structured specification presentation layout. The relevant
operation element specifications reveal sufficient details
for operation executions. Additionally, as shown in Ap-
pendix A, B and C, the approach can be flexibly applied
to other IaaS providers (e.g. Rackspace Cloud Servers),
and so as other PaaS and SaaS services (e.g. AWS Elastic
Beanstalk [32], Rackspace Cloud Load Balancers). Conse-
quently, this would enhance cloud service interoperabil-
ity and composition. Further, to evaluate SAMOS against
other well-established cloud (service) specification
frameworks/models, we provide the data comparison
with OCCI, TOSCA and mOSAIC. Shown in Table 6, the
four approaches involve dissimilar core/base model con-
cepts with different specification semantics. They adopt
distinct management tools/APIs as cloud service inter-
faces and enable service orchestration with own solutions.
In contrast, SAMOS achieves a distinguished outcome for
service management and orchestration tasks due to the
flexible choices of API libraries and the lightweight opera-
tion reasoning assistances.
 Meanwhile, the performance evaluation with USAMS
covers a wide range of typical service operations. Ob-
tained experiment results illustrate some performance
differences between the proposed approach and provid-
er-native CLIs. For SIR operation handling performance,
the prototype demonstrates the same solid success rates
regardless of the type/nature of operations, although
there are some minor processing overheads. Considering
SMR operation tasks, USAMS demonstrates competitive
performance in comparison with the native CLIs. There is
no obvious delay or distinction for many service man-
agement tasks involved. In fact, the slight overheads are
caused by two main factors: the API libraries (AWS Java
SDK version 1.8.3 and jclouds Rackspace API libraries
version 1.7.0) used (by OCSO) decide the main processing
time; USAMS components also consume minor extra time
while processing the obtained data, preparing for the op-
erations and other additional tasks. In overall, USAMS
enables reliable cloud service remote management with
acceptable performance. The proposed approach offers a
more flexible and intelligent remote management solution
than individual portals of vast cloud service providers.

Conclusions and future work

This paper proposes a cloud service operation specifica-
tion approach which can be applied to diverse cloud ser-
vice models and resource types, namely SAMOS. The
framework can reveal comprehensive information with
regard to the involved service entities, their attributes and
relationships, plus a series of operational elements includ-
ing parameters, conditions and outcomes. The ontological
modelling approach also enables a range of operation
reasoning which can provide assistances for advanced
tasks such as simultaneous, chained and service orches-
tration operations.
 To evaluate the proposed approach, CSAMO semantic

model and USAMS prototype are implemented. Together,
they enable a unified cloud service access and manipula-
tion via a structured management interface. This is vali-
dated through considerable experiments that are con-
ducted over Amazon and Rackspace IaaS, PaaS and SaaS
clouds. The test results suggest that the proposed ap-
proach can provide competitive service operation reliabil-
ity and effectiveness, especially while handling groups of
operation tasks.
 In future work, we plan to extend the approach by in-
troducing service recommendation engine and service
interaction agent. The recommendation module should
enable more user friendly service selection and operation
experiences. The service interaction agent would drive
more effective service compositions with enhanced opera-
tion reasoning applications.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

DF from Edinburgh Napier University developed the
approach, algorithm, model and prototype. XL from Ed-
inburgh Napier University supervised, tested the devel-
opments. IM from Edinburgh Napier University and CP
from Dublin City University provided domain specific
expertise in the experiment and evaluation of the ap-
proach. All Authors read and approved the final manu-
script.

Acknowledgment

We wish to thank British Royal Society of Edinburgh
(RSE-Napier E4161) and Lawrence Ho Research Fund
(LH-Napier2012) for supporting the work presented. We
acknowledge the support from a joint grant by the British
Royal Society and the Royal Irish Academy on a Cloud
Migration Framework 2014-2016, IE131105, and Science
Foundation Ireland grant 13/RC/2094 to Lero - the Irish
Software Research Centre (www.lero.ie).

Author details
1 School of Computing, Edinburgh Napier University, 10
Colinton Road, Edinburgh, EH10 5DT, UK
2 Lero, School of Computing, Dublin City University,
Dublin, Dublin 9, Ireland

References

[1] Marinescu DC (2013) Cloud computing: Theory and practice. Else-
vier. Waltham. USA:2-17

[2] Buyya R, Vecchiola C, Thamarai S (2013) Master cloud computing:
Foundations and applications programming. Elsevier. Waltham.
USA:3-27

[3] Orozco JMS (2012) Applied ontology engineering in cloud services,
networks, and management systems. Springer Science+Business
Media:23-52

FANG ET AL.:

 15

[4] Moreno-Vozmediano R, Montero RS, Llorente IM (2011) Key Chal-
lenges in Cloud Computing: Enabling the Future Internet of Ser-
vices. IEEE Internet Computing 17(4):18-25

[5] Apache Jclouds. http://jclouds.apache.org/. Accessed 30 Jul 2014
[6] Apache Libcloud. https://libcloud.apache.org/. Accessed 12 Aug

2014
[7] Fog. http://fog.io/. Accessed 02 Aug 2014
[8] TOSCA Overview. https://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=tosca#overview.
Accessed 27 May 2014

[9] Moscato F, Aversa R, Martino BD, Venticinque S (2011) An ontology
for the cloud in mOSAIC. Cloud Computing: Methodology, System,
and Applications. CRC Press:467-485

[10] OCCI. http://occi-wg.org/. Accessed 31 Jul 2014
[11] Toosi AN, Calheiros RN, Buyya R (2014) Interconnected Cloud

Computing Environments: Challenges, Taxonomy, and Survey.
ACM Computeing Surveys 47(1):7

[12] Loutas N, Peristeras V, Bouras T, Kamateri E, Zeginis D, Tarabanis K
(2010) Towards a Reference Architecture for Semantically Interoper-
able Clouds. IEEE 2nd International Conference on Cloud Compu-
ting Technology and Science (CloudCom)., pp 143-150

[13] Demchenko Y, Ngo C, de Laat C, Rodriguez J, Contreras LM, Garcia-
Espin JA, Figuerola S, Landi G, Ciulli N (2013) Intercloud Architec-
ture Framework for Heterogeneous Cloud based Infrastructure Ser-
vices Provisioning On-Demand. IEEE International Conference on
Advanced Information Networking and Applications Workshops
(WAINA)., pp 777-784

[14] Deltacloud. https://deltacloud.apache.org/. Accessed 22 May 2014
[15] Fielding R (2000) Architectural Styles and the Design of Network-

based Software Architectures.
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_diss
ertation.pdf. Accessed 16 April 2015

[16] The Dasein Cloud API. http://dasein-cloud.sourceforge.net/. Ac-
cessed 26 Jun 2014

[17] Bastião Silva LA, Costa C, Oliveira JL (2013) A common API for de-
livering services over multi-vendor cloud resources. J Systems and
Software 86(9):2309-2317

[18] Petcu D, Craciun C, Neagul M, Lazcanotegui I, Rak M (2011) Build-
ing an interoperability API for Sky computing. International Confer-
ence on High Performance Computing and Simulation (HPCS)., pp
405-411

[19] Bernabe JB, Marin Perez JM, Alcaraz Calero JM, Garcia Clemente FJ,
Perez GM, Gomez Skarmeta AF (2014) Semantic-aware multi-
tenancy authorization system for cloud architectures. Future Genera-
tion Computer Systems 32:154-167

[20] Amazon EC2 User Guide. http://
awsdocs.s3.amazonaws.com/EC2/latest/ec2-ug.pdf. Accessed 17
May 2014

[21] Federici C (2014) Cloud Data Imager: A unified answer to remote
acquisition of cloud storage areas. Digital Investigation 11(1):30-42

[22] Povedano-Molina J, Lopez-Vega JM, Lopez-Soler JM, Corradi A,
Foschini L (2013) DARGOS: A highly adaptable and scalable moni-

toring architecture for multi-tenant Clouds. Future Generation Com-
puter Systems 29(8):2041-2056

[23] Li Q, Wang Z, Li W, Cao Z, Du R, Luo H (2013) Model-based services
convergence and multi-clouds integration. Computer in Industry
64(7): 813-832

[24] OWL 2 Web Ontology Language Document Overview.
http://www.w3.org/TR/owl2-overview/. Accessed 23 Dec 2013

[25] Fang D, Liu X, Liu L, Yang H (2014) OCSO: Off-the-cloud service
optimization for green efficient service resource utilization. J Cloud
Computing 3(9).
http://www.journalofcloudcomputing.com/content/3/1/9. Ac-
cessed 17 Aug 2014

[26] Fang D, Liu X, Romdhani I, Pahl C, Jamshidi P (2015) An agility-
oriented and fuzziness-embedded semantic model for collaborative
cloud service search, retrieval and recommendation. Future Genera-
tion Computer Systems (unpublished).

[27] Rackspace Cloud Load Balancers Developer Guide.
http://docs.rackspace.com/loadbalancers/api/v1.0/clb-
devguide/clb-devguide-20140630.pdf. Accessed 13 Apr 2014

[28] Amazon Relational Database Service User Guide. http://
awsdocs.s3.amazonaws.com/RDS/latest/rds-ug.pdf. Accessed 02
May 2014

[29] Amazon Elastic Load Balancing Developer Guide.
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/Develo
perGuide/elb-dg.pdf. Accessed 16 Sep 2014

[30] Rackspace Next Generation Cloud Servers Developer Guide.
http://docs.rackspace.com/servers/api/v2/cs-devguide/cs-
devguide-20140311.pdf. Accessed 27 Mar 2014

[31] Rackspace Cloud Database Developer Guide.
http://docs.rackspace.com/cdb/api/v1.0/cdb-devguide/cdb-
devguide-latest.pdf. Accessed 06 May 2014

[32] AWS Command Line Interface User Guide.
http://docs.aws.amazon.com/cli/latest/userguide/aws-cli.pdf/.
Accessed 03 Jun 2015

[33] Rackspace rumm. http://rackspace.github.io/rumm/. Accessed 03
Jun 2015

[34] AWS Elastic Beanstalk API Reference.
http://s3.amazonaws.com/awsdocs/ElasticBeanstalk/latest/awseb
-api.pdf. Accessed 16 April 2015

[35] Open Cloud Computing Interface – Core.
https://www.ogf.org/documents/GFD.183.pdf. Accessed 21 Dec
2014

[36] Topology and Orchestration Specification for Cloud Applications
Version 1.0. http://docs.oasis-
open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html. Accessed 22
Nov 2014

[37] Moscato F, Fortis F, Munteanu V (2014) Cloud ontology and Cloud
resources representations. mOSAIC public deliverables D 1.2.
http://www.mosaic-
cloud.eu/index.php?option=com_chronocontact&Itemid=186. Ac-
cessed 29 Oct 2014

16

Appendix A: IaaS Service/CSI/PSSA operation specifications for Rackspace Cloud
Servers

Cloud Service

Level Operations

Rackspace Cloud Servers

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

List VM Instances SIR Unconditional Rackspace Region(M)

Rackspace FlavorID(M)

Rackspace

CloudServerIDs

Unconditional

Create VM

Instance

SMR < Rackspace Cloud-

ServersAbsolute

Limits, i.e. 100

Rackspace Server name(M), Rackspace Image-

Ref(M), Rackspace OSDiskConfig (O), Rack-

space Metadata(O), Rackspace KeyPair(O), etc.

Rackspace

CloudServer

InstanceID

Instance is in

“ACTIVE” state

Reboot VM

Instances

SMR Unconditional Rackspace CloudServerID(M), Rackspace

RebootType(M), e.g. SOFT, HARD

Operation

Succeeded

Instances are in

“ACTIVE” state

Resize VM

Instances

SMR Instances are Rack-

space Standard

Flavor

Rackspace CloudServerID, Rackspace

FlavorID(M)

Operation

Succeeded

Unconditional

CSI Level

Operations

Rackspace Cloud Servers Instance

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

Get VM Flavor SIR Unconditional Rackspace CloudServer InstanceID(M) Rackspace

FlavorID

Unconditional

Get VM Image SIR Unconditional Rackspace CloudServer InstanceID(M) Rackspace Im-

ageRef

Unconditional

Create VM

Image

SMR Unconditional Rackspace CloudServer InstanceID(M) Rackspace

ImageRef

Image is in

“ACTIVE” state

Terminate VM

Instance

SMR Instance is NOT in

“DELETED” state

Rackspace CloudServer InstanceID(M) Operation

Succeeded

Instance is in

“DELETED” state

PSSA Level

Operations

Rackspace Cloud Servers Image

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

Get Image

Architecture

SIR Unconditional Rackspace ImageRef (M) Rackspace

ImageArch

Unconditional

Get Image

OS Type

SIR Unconditional Rackspace ImageRef (M) Rackspace

ImageOSType

Unconditional

Create VM

Instance(s)

SMR < Rackspace Cloud-

ServersAbsolute

Limits, i.e. 100

Rackspace Server name(M), Rackspace Image-

Ref(M), Rackspace OSDiskConfig (O), Rack-

space Metadata(O), Rackspace KeyPair(O), etc.

Rackspace

CloudServer

InstanceID

Instance is in

“ACTIVE” state

Delete Image SMR Image is NOT in

“DELETED” state

EC2 AMIID(M) Operation

Succeeded

Unconditional

FANG ET AL.:

 17

Appendix B: PaaS Service/CSI/PSSA operation specifications for AWS Elastic Bean-
stalk

Cloud Service

Level Operations

Elastic Beanstalk

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

List Applications SIR Unconditional ElasticBeanstalk Region(M) ElasticBeanstalk

Application-

Name(s)

Unconditional

List Application

Environment

SIR Unconditional ElasticBeanstalk Region(M) ElasticBeanstalk

EnvironmentID(s)

Unconditional

Delete

Application

SMR Unconditional ElasticBeanstalk ApplicationName(M) Operation

Succeeded

Unconditional

Delete Application

Environment

SMR Unconditional ElasticBeanstalk EnvironmentID(M) Operation

Succeeded

Unconditional

CSI Level

Operations

Elastic Beanstalk Application Instance

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

Get Application

Environment

SIR Unconditional ElasticBeanstalk ApplicationName(M) ElasticBeanstalk

EnvironmentID

Unconditional

Get Application

Versions

SIR Unconditional ElasticBeanstalk ApplicationName(M) ElasticBeanstalk

ApplicationVer-

sionDescrptions

Unconditional

Create

Application

SMR Unconditional Elastic Beanstalk ApplicationName(M), Elastic

Beanstalk ApplicationDescription(O)

ElasticBeanstalk

ApplicationName

Elastic Beanstalk

EnvironmentStatus

is in “Ready” state

Update

Application

SMR Elastic Beanstalk

EnvironmentStatus

is in “Ready” state

Elastic Beanstalk ApplicationName(M), Elastic

Beanstalk ApplicationDescription(O)

ElasticBeanstalk

ApplicationName

Elastic Beanstalk

EnvironmentStatus

is in “Ready” state

PSSA Level

Operations

Elastic Beanstalk Application Environment

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

Get Application

Environment VMs

SIR Unconditional ElasticBeanstalk EnvironmentID (M) EC2 InstanceIDs Unconditional

Get Application

Environment

LoadBalancers

SIR Unconditional ElasticBeanstalk EnvironmentID (M) Elastic Load-

BalancerID

Unconditional

Create Application

Environment

SMR Unconditional ElasticBeanstalk ApplicationName(M), Elastic-

Beanstalk EnvironmentDescription(O), Elastic-

Beanstalk EnvironmentName(M), Elastic Bean-

stalk ConfigurationOptionSettings<…>(O), etc.

ElasticBeanstalk

EnvironmentID

Unconditional

Update

Environment

Configuration

SMR Elastic Beanstalk

EnvironmentStatus

is in “Ready” state

Elastic Beanstalk ConfigurationOptionSet-

tings<…>(M)

ElasticBeanstalk

EnvironmentID

Elastic Beanstalk

EnvironmentStatus

is in “Ready” state

18

Appendix C: SaaS Service/CSI/PSSA operation specifications for Rackspace Cloud
Load Balancers

Cloud Service Level

Operations

Rackspace Cloud Load Balancers

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

List Load Balancer

Instance Names

SIR Unconditional Rackspace Region(M) Rackspace Cloud-

LoadBalancer In-

stanceNames

Unconditional

List Load Balancer

Instance Addresses

SIR Unconditional Rackspace Region(M) Rackspace Cloud-

LoadBalancer Ad-

dresses

Unconditional

Create Load Balancer

Instance

SMR < Rackspace

LoadBalancer

Absolute Limits,

i.e. 25

Rackspace Region(M), LoadBalancer-

Name(M), LoadBalancerPort(M), Rack-

space CloudServer(O),Rackspace

CloudLoadBalancer ExternalNode(O),

Rackspace VirtualIP(M) , etc.

Rackspace Cloud-

LoadBalancer In-

stanceID

Load Balancer In-

stance is in “ACTIVE”

state

Delete Load Balancer SMR Load Balancer is

NOT in “UPDAT-

ING” state

Rackspace CloudLoadBalancer In-

stanceID(M)

Operation Succeeded Load Balancer In-

stance is in “ACTIVE”

state

CSI Level

Operations

Rackspace Cloud Load Balancer Instance

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

Get

Load Balancing

Algorithm

SIR Load Balancer is

in “ACTIVE”

state

Rackspace Cloud LoadBalancer

InstanceID(M)

Rackspace Load-

BalancingAlgorithm

Unconditional

List

Load Balancer

Instance Nodes

SIR Load Balancer is

in “ACTIVE”

state

Rackspace CloudLoadBalance

InstanceID(M)

Rackspace Cloud-

LoadBalancer

InstanceNodeID(s)

Unconditional

Edit

Load Balancer In-

stance Health Moni-

tor

SMR Load Balancer is

in “ACTIVE”

state

Rackspace CloudLoadBalancer

InstanceID(M), Rackspace CloudLoad-

Balancer HealthMonitor(M)

Operation Succeeded Load Balancer is in

“ACTIVE” state

Add Load Balancer

Instance Nodes

SMR Load Balancer is

in “ACTIVE”

state

Rackspace CloudServer(O),

Rackspace CloudLoadBalancer Exter-

nalNode(O), Rackspace CloudLoad-

Balancer InstanceNodePort(O), etc.

Operation Succeeded Load Balancer is in

“ACTIVE” state

PSSA Level

Operations

Rackspace Cloud Load Balancer Instance Node

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

Get LoadBalancer

Instance Node IP

SIR Load Balancer is

in “ACTIVE”

state

Rackspace CloudLoadBalancer

InstanceNodeID(M)

Rackspace Cloud

LoadBalancer

InstanceNodeIP

Unconditional

Get LoadBalancer

Instance Node Port

SIR Load Balancer is

in “ACTIVE”

state

Rackspace CloudLoadBalancer

InstanceNodeID(M)

Rackspace Cloud

LoadBalancer

InstanceNodePort

Unconditional

Edit LoadBalancer

Instance Node

Weight

SMR Load Balancer is

in “ACTIVE”

state

Rackspace CloudLoadBalancer

InstanceNodeID(M), Rackspace Cloud-

LoadBalancer InstanceNodeWeight(M)

Operation Succeeded Load Balancer is in

“ACTIVE” state

Delete Load Balancer

Instance Node

SMR Load Balancer is

in “ACTIVE”

state

Rackspace CloudLoadBalancer

 InstanceNodeID(M)

Operation Succeeded Load Balancer is in

“ACTIVE” state

