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Abstract 

The biological and clinical characterisation and validation of novel 

biomarkers in colorectal cancer  

Seán Fitzgerald 

Colorectal cancer (CRC) is the second deadliest type of cancer in Ireland after lung 

cancer and therapy resistance is a major problem leading to treatment failure in CRC. 

There is a need for novel independent prognostic biomarkers in CRC that can accurately 

predict prognosis and predictive biomarkers capable of predicting a patient’s likelihood to 

respond to a particular therapy. A previous study carried out in this laboratory identified 

biologically relevant antigens with potential utility as diagnostic, prognostic, predictive 

and therapeutic biomarkers in CRC, (Kijanka et al., 2010).  

The aim of this PhD project is to evaluate the CRC tissue expression patterns of two of 

these novel cancer-specific antigens (CerS5 & TRIM28) and to further investigate their 

role in CRC.  

Immunohistochemical staining of CerS5 and TRIM28 was evaluated using tissue 

microarrays constructed from colorectal cancer patient-tissue samples. The effects of 

both CerS5 and TRIM28 expression on tumourigenic processes were further 

characterised using reverse-phase protein microarrays constructed from laser capture 

micro-dissection enriched tumour epithelium and stroma cells.  

CerS5 was found to be a novel prognostic biomarker in CRC patients. Proteomic 

analysis demonstrated a shift from apoptosis-related pathways in CerS5 Low cases to 

autophagy in CerS5 High cases. CerS5 expression levels can also identify colorectal 

cancer patients that would potentially benefit from neoadjuvant therapy (CerS5 High). 

Hence, it could potentially be used as a predictive biomarker in CRC.  

A High TRIM28 expression ratio between epithelial and stromal compartments in 

colorectal cancer tissue was found to be an independent predictor of poor prognosis. 

The pathophysiological role of TRIM28 in carcinogenesis may be dependent on 

expression levels and cell type within the tumour microenvironment and thus a 

combinatorial approach assessing the tumour cells as well as the corresponding stromal 

cells may prove to be a more comprehensive way of predicting survival in human cancer
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1.1 The Colon and Rectum 

The colon and rectum are parts of the digestive system, also called the gastrointestinal 

(GI) system. The GI system is responsible for the breakdown and absorption of various 

foods and liquids needed to sustain life and rids the body of solid waste (faecal matter). 

The digestion process begins after food is chewed and swallowed. It then travels 

through the oesophagus to the stomach. In the stomach, food is partially broken down 

and sent to the small intestine, where digestion continues and most of the nutrients are 

absorbed. The small intestine then joins the large intestine in the lower right abdomen. 

The small and large intestines are occasionally referred to as the small and large bowel. 

The first and longest part of the large intestine is the colon, a muscular tube about 5 feet 

long. Water and mineral nutrients are absorbed from the food matter in the colon 

(Devroede and Phillips, 1969).  

As previously described (Whalen, 1975) the colon is composed of 5 main parts (as can 

be seen in Fig. 1.1):  

 The first section of the colon is called the caecum and it is found in the lower right 

side of a person’s abdomen, where the small intestine first attaches to the large 

intestine. 

 The second section is called the ascending colon, so-called because it extends 

upwards on the right side of a person’s abdomen. The ascending colon carries 

faeces from the caecum superiorly along the right side of the abdominal cavity to 

the transverse colon. In the ascending colon, bacteria digest the transitory faecal 

matter in order to release vitamins. The intestinal wall absorbs water, nutrients, 

and vitamins from the faeces and allows absorption of these materials into the 

bloodstream. The unwanted waste material is moved upwards toward the 

transverse section of the colon by a process known as peristalsis. 
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 The third section is called transverse colon, because it crosses the body from the 

hepatic flexure of the colon on the right side of the abdomen, to the splenic 

flexure on the left hand side of the abdomen. 

 The descending colon continues downward on the left side. The function of the 

descending colon in the digestive system is to store faeces that will be emptied 

into the rectum. 

 The final segment of the colon is called the sigmoid colon because of its ‘S’ 

shape. The walls of the sigmoid colon are muscular, and contract to increase the 

pressure inside the colon, causing the stool to move into the rectum. 

The sigmoid colon then joins the rectum, which is the final straight portion of the large 

intestine and measures about 6 inches in length. The rectum follows the shape of the 

sacrum and connects to the anus. It acts as a temporary storage site for faeces before 

passing them to the anus, from where they are excreted from the body. As the rectal 

walls expand due to the materials filling it from within, stretch receptors from the nervous 

system located in the rectal walls stimulate the desire to defecate (Jorge and Wexner, 

1997).  
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Figure 1.1: The anatomy of the colon and rectum. (Taken and adapted from 

www.gograph.com). 

 

1.2 Colorectal Cancer 

Colorectal cancer (CRC) generally originates from the uncontrolled growth of the 

epithelial cells in the lining of the colon or rectum of the gastrointestinal tract (Ponz de 

Leon and Percesepe, 2000). Cell division is the process a cell undergoes to make 

copies of itself and this process is normally well regulated so that a cell divides only 

when instructed to do so and when conditions are favourable for division. A cancerous 

cell, in stark contrast, is an unruly cell that violates this scheme and increases its 

propensity to proliferate when it would normally rest. This unregulated cell division leads 

to an accumulation of cells that form a lump or tumour, without an apparent function in 

the body (Weinberg, 1996).  

http://www.gograph.com/
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In the human genome, there are many different types of genes that control cell growth in 

a very systematic, precise way. When these genes have an error in their DNA code, they 

may not work properly, and are said to be "altered" or mutated. An accumulation of 

many mutations in different genes occurring in a specific group of cells over time is 

required to cause malignancy (Vogelstein and Kinzler, 2004). The different types of 

genes, that when mutated can lead to the development of cancer include oncogenes, 

tumour-suppressor genes and DNA-repair genes (Knudson, 2002). What specifically 

causes mutations to occur in these genes is largely unknown. However, mutations can 

be caused by carcinogens (factors known to increase the risk of cancer) (Program, 

2011) and the development of mutations is also a natural part of the aging process 

(Tosato et al., 2007).  

Benign tumours of the colorectum are referred to as polyps. A polyp is a growth of tissue 

that develops in the lining of the colon or rectum. Benign polyps can be easily removed 

during a colonoscopy and are generally not life-threatening. An example of a benign 

polyp can be seen in figure 1.2 (B). Most polyps remain benign (termed hyperplastic 

polyps) and the chance of them becoming cancerous is very low. However, other polyps 

such as adenomatous polyps are termed pre-cancerous polys and if they are not 

removed, over time they can become malignant (cancerous), (Bond, 2003), and grow 

into larger, more invasive tumours like those that can be seen in figure 1.2 (C&D).  
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Figure 1.2: Advancing stages of CRC. Composition of photographs taken during colonoscopy 

procedures on patients with varying stages of CRC. (A) is a picture of normal colonic lumen as 

seen through a colonoscopy camera. (B) is a picture of a benign polyp. (C) is a picture of a 

relatively advanced tumour protruding well into the colon. (D) is a picture of a very advanced 

tumour that is completely occluding the colon. Images taken from:  (A); 

www.portalesmedicos.com, (B); www.medword.com, (C&D); www.gastrointestinalatlas.com  

 

Colorectal cancer usually develops slowly over a period of 10 to 15 years and 

adenomatous polyps or adenomas are the most likely to become cancerous, though 

fewer than 10% of adenomas progress to cancer (Sloan et al., 2009). Cancer cells can 

travel to virtually anywhere in the body via the lymphatic and circulatory systems. The 

lymphatic system collects fluids, or lymph, lost from blood vessels and returns it to the 

blood vessels, thus allowing cancer cells to gain access to the bloodstream. Cancer of 

the colorectum most commonly spreads to the liver and the lungs, where ‘secondary’ 

http://www.portalesmedicos.com/galeria_fotografias/colon/09.htm
http://www.medword.com/Gastro/GastroPhoto/colonPolyps2.html
http://www.gastrointestinalatlas.com/English/Colon_and_Rectum
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tumours form (Gutman and Fidler, 1995). The spread of tumours to distant organs is 

called the metastasis and once metastasis has occurred in CRC, a complete cure of the 

cancer is unlikely (Kindler and Shulman, 2001).  

Mutations in the Wnt-signalling pathway, resulting in increased signalling activity, are 

thought to be the most frequent cause of CRC. The Wnt-signalling pathway is a network 

of proteins that passes signals from receptors on the surface of the cell into the nucleus, 

where it can bind to DNA and alter the expression of genes. It controls cell-cell 

communication in the embryo and adult (Logan and Nusse, 2004). These mutations can 

be inherited or acquired and most likely occur in the intestinal crypt stem cells (Cancer, 

2006; Mellert et al., 2011). Stem cells are cells found in all multicellular organisms, that 

can divide (through mitosis) and differentiate into diverse specialized cell types and can 

self-renew to produce more stem cells. The adenomatous polyposis coli (APC) gene, 

which produces the APC protein, is the most commonly mutated gene in CRC. The APC 

protein is responsible for preventing a build-up of the β-catenin protein and when a 

mutation occurs, the levels of active APC protein are diminished. Without APC, β-catenin 

accumulates to high levels and translocates to the nucleus, where it binds to DNA. Once 

DNA-bound, β-catenin activates the transcription of several genes that, when expressed 

at high levels, can cause cancer (Okamoto et al., 2006).   

Colorectal cancer generally occurs more frequently in the left colon than in the right 

colon, as shown in figure 1.3. The anatomical distribution of colorectal cancer has 

significant clinical implications for investigating patients with suspected colorectal 

malignancy. The symptoms can also be different depending on the location of the 

tumour. For example, right-sided tumours typically present at a more advanced stage 

(Nawa et al., 2008), and often present with subtle symptoms such as weight loss and 

anaemia, as opposed to rectal bleeding, change in bowel habit, and tenesmus which are 

http://en.wikipedia.org/wiki/Signal_transduction
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Cell_(biology)
http://en.wikipedia.org/wiki/Organisms
http://en.wikipedia.org/wiki/Cell_division
http://en.wikipedia.org/wiki/Mitosis
http://en.wikipedia.org/wiki/Cellular_differentiation
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more evident in left-sided tumours (Lee et al., 2014) and usually caused by growth of the 

tumour outward into the lumen, obstructing the flow of faeces.  

 

Figure 1.3: Anatomical representation of the most common sites of occurrence of CRC. 

Taken from www.cancerresearchuk.org  

 

1.2.1 Epidemiology of Colorectal Cancer  

Globally, CRC is the third most commonly diagnosed cancer in males and the second in 

females, with over 1.36 million new cases and 694,000 deaths estimated to have 

occurred in 2012 (Ferlay et al., 2014). However, the incidences and mortality rates of 

colorectal cancer vary 10-fold around the world. The highest estimated rates are in 

Australia/New Zealand (44.8 and 32.2 per 100,000 in men and women, respectively), 

and the lowest in Western Africa (4.5 and 3.8 per 100,000 in men and women, 

respectively) (Ferlay et al., 2014).  Differences in diet and variable exposure to 

environmental carcinogens, combined with a background of genetically determined 

susceptibility, would appear to account for the differences in incidence rates.  
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In Ireland, colorectal cancer was the second deadliest type of cancer in 2011, after lung 

cancer, accounting for about 11.7% of all cancer deaths (National Cancer Registry 

Ireland, 2014). It was also the second most commonly diagnosed cancer in each sex, 

after prostate cancer in men and breast cancer in women, with approximately 2,436 new 

cases being diagnosed annually, 1,405 in men and 1,031 in women (National Cancer 

Registry Ireland, 2014). That corresponds to about one newly diagnosed case every 4 

hours in Ireland. Approximately 1,040 people (610 men and 430 women) die from 

colorectal cancer each year in Ireland (National Cancer Registry Ireland, 2014). Ireland 

has the ninth highest incidence rate in Europe (Ferlay et al., 2013), as can be seen in 

figure. 1.4.  
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Figure 1.4: Incidences rates of CRC amongst men and women in Europe. (Taken from 

Ferlay et al., 2013).  

The median age at diagnosis for cancer of the colon and rectum is 69 years of age 

(Howlader, 2012). However, the incidence and death rates for colorectal cancer increase 

with age, with the incidence rate being more than 15 times higher in adults 50 years and 

older than in those 20 to 49 years (Howlader, 2012). Screening is effective at decreasing 

the chance of dying from colorectal cancer and is recommended starting at the age of 50 

and continuing until a person is 75 years old. 
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Anyone can develop colorectal cancer, but overall the incidences and mortality rates of 

colorectal cancer are about 35% to 40% higher in men than in women 

(American;Cancer;Society, 2011). The reasons for this are not completely understood, 

but are most probably due to the complex interactions between gender-related 

differences in exposure to hormones and risk factors. Gender differences in risk patterns 

may also help explain why the proportion of colorectal tumours occurring in the rectum is 

higher in men (31%) than in women (24%). 

Over the last 15 years the number of cases of colorectal cancer has risen by 

approximately 20% in both sexes. By 2020 the number of new cases of colorectal 

cancer diagnosed each year in Ireland is projected to increase by 79% in men and 56% 

in women. This projected growth is attributable to an increasing and ageing population 

(National;Cancer;Registry;Ireland, 2006).  

 

1.2.2 Causes, symptoms and diagnosis of colorectal cancer 

A family history of colorectal cancer; specifically forms such as familial adenomatous 

polyposis (FAP), Gardner syndrome, and hereditary nonpolyposis colon cancer 

(HNPCC), can predispose an individual to developing colorectal cancer. Each of these 

conditions is caused in part by a known genetic mutation. Chronic inflammatory bowel 

diseases such as Crohn’s disease or ulcerative colitis are associated with colorectal 

cancer (Gillen et al., 1994), as is the presence of a large number of non-cancerous 

polyps along the wall of the colon or rectum (Shinya and Wolff, 1979). Other risk factors 

include physical inactivity and a diet high in fats.  

Early stage colorectal cancer often has little or no symptoms, therefore presenting 

symptoms are often indicative of relatively advanced CRC (Nawa et al., 2008), which is 

why screening and early detection is so important. Because colorectal cancer is a 
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disease of the GI tract, many of the symptoms are associated with abnormal digestion 

and elimination. The majority of patients presenting with symptomatic CRC have 

symptoms such as hematochezia (blood in the stool), abdominal pain, otherwise 

unexplained iron deficiency anaemia, a change in bowel habits, a new onset of 

constipation, diarrhoea that lasts for more than a few days or unintentional weight loss 

(www.cancer.ie). These symptoms accompany a variety of different illnesses, and hence 

a physician should be consulted to determine their cause and to confirm a diagnosis. 

Diagnosis of colon and rectal cancers is made by means of several techniques. During a 

digital rectal examination, the physician inserts a gloved finger into the rectum and feels 

its surface for abnormalities. A faecal test may also be used to detect the presence of 

blood in the stool (Young et al., 2002). In order to examine the rectum more carefully, a 

physician may use a narrow, flexible tube called a sigmoidoscope to look at the lining of 

the rectum and the distal colon. Colonoscopy uses a similar device to examine the entire 

colon. A biopsy may also be performed in which a small piece of tissue is removed using 

the colonoscope and then examined under a microscope by a pathologist for signs of 

cancer. New non-invasive imaging techniques may also be used in the diagnosis of CRC 

and these include magnetic resonance imaging (MRI), computed tomography (CT) 

scans and Positron emission tomography (PET) scans (Maas et al., 2011). If cancer is 

discovered, the degree to which it has spread (metastasised) from the colon or rectum is 

then determined, either by taking biopsies from surrounding tissue/organs, or using one 

of the previously mentioned imaging techniques.  
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1.2.3 Histopathology of Colorectal Cancer 

The histopathology of a tumour is usually reported from the analysis of tissue taken from 

a biopsy or surgery. A histopathology report will usually contain a detailed description of 

all aspects of the tumour. The type of colon tumour describes the cells from which the 

tumour arises. Adenocarcinoma is the most common type, accounting for 95-98% of 

colorectal cancers (www.oncolink.org). Two subtypes of adenocarcinoma are signet ring 

and mucinous adenocarcinoma, which are both named for the way the cells look under 

the microscope. Sometimes, tumour cells are discohesive and secrete mucus, which 

invades the interstitium producing large pools of mucus/colloid (mucinous 

adenocarcinoma). If the mucus remains inside the tumour cell, it pushes the nucleus at 

the periphery and these are referred to as signet-ring cell tumours (Makino et al., 2006). 

The other 2-5% of cancers found in the colon, are generally lymphomas, gastrointestinal 

stromal tumour (GIST), and carcinoid tumours.   

Normal colorectal mucosa is a highly organised network of glands composed of 

epithelial cells. These glands are inter-connected by stromal cells (Fig 1.5). 

Adenocarcinoma is a malignant epithelial tumour, originating from the glandular 

epithelium of the colorectal mucosa (Fig 1.6) and glandular formation is the basis for 

histologic tumour grading in CRC. In well differentiated adenocarcinoma >95% of the 

tumour is gland forming. Moderately differentiated adenocarcinoma shows 50-95% gland 

formation while poorly differentiated adenocarcinomas are mostly solid with <50% gland 

formation. The majority of colorectal adenocarcinomas are diagnosed as moderately 

differentiated (~70%), with well and poorly differentiated carcinomas account for 10% 

and 20%, respectively (Fleming et al., 2012).   
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Figure 1.5: Normal Colonic Mucosa. Normal colonic crypts when transected have the 

appearance of gun barrels (black arrow). There is little lamina propria between the crypts (red 

arrow). Nuclei are basally placed and uniform. (Taken and adapted from www.MyBiopsy.org). 

 

Figure 1.6: Cancerous Colonic tissue.  Transverse section of an invasive adenocarcinoma. 

The cancerous cells are seen in the centre and at the top left of the image (black arrow). The 

biopsy contains colonic mucosa showing infiltrative glands surrounded by desmoplastic stroma 

consistent with submucosal invasion (red arrow). (Taken and adapted from www.MyBiopsy.org). 
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If left untreated the tumour will grow and invade the muscularis mucosae, then the 

submucosa, thence the muscularis propria and, finally, the serosa. From here the 

disease will then spread to other organs, as can be seen in figure 1.7.  

 

Figure 1.7: Colorectal cancer progression. Stage 0: The tumour has not grown beyond the 

inner lining of the colon or rectum. Stage I: The tumour has spread through the muscularis 

mucosae. Stage II: The cancer has grown through the submucosa Stage III: The tumour has 

grown through the muscularis propria and the serosa and may also spread to local lymph nodes. 

Stage IV: The tumour has spread from the colon or rectum to distant organs, such as the liver, 

lungs, or ovaries. The insert shows in more detail the tissue layers within the colorectum. (Taken 

and adapted from www.digestivehealth.net). 

  

http://www.digestivehealth.net/
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1.2.4 The Dukes and TNM Staging Systems 

In 1932 the British pathologist Cuthbert Dukes (1890-1977) devised a classification 

system for colorectal cancer which was an accurate prognostic indicator and a predictor 

of mortality (Dukes, 1932). Before the Dukes classification, the main prognostic tool was 

a histological grading system, based solely on cell differentiation and which had a limited 

prognostic value.  Dukes classification of colorectal cancer initially seemed to be a crude 

classification based on the level of cancer invasion, but is in fact rather sophisticated and 

still relevant nearly 80 years after its publication. The system classifies the tumour into 

stage A, B, C or D based on the following guidelines: 

 

Dukes A: Invasion into but not through the bowel wall (90% 5-year survival). 

Dukes B: Invasion through the bowel wall but not involving lymph nodes (70% 5-year 

survival). 

Dukes C: Involvement of lymph nodes (30% 5-year survival) 

Dukes D: Widespread metastases (5% 5-year survival). 

The Dukes staging system was originally published for rectal cancer only and did not 

include distant metastases. However, the system was later adapted as follows:  

 Adapted by Kirklin in 1949 and later by Astler and Coller in 1953 to include both 

colon and rectal tumours. (Kirklin et al., 1949; Astler and Coller, 1954) 

 Revised by Turnbull in 1967 to include stage for un-resectable tumours and 

distant metastases. (Turnbull et al., 1967) 

 

 

http://en.wikipedia.org/wiki/Pathologist
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Due to its accuracy in predicting prognosis, its reproducibility and its simplicity, the 

Dukes staging system was used internationally for many years. However, this system 

has now largely been replaced by the more detailed TNM staging system and is no 

longer recommended for use in clinical practice (Edge and Compton, 2010).  

 

The TNM-Staging System: 

The TNM Classification of Malignant Tumours is a cancer staging system, first devised 

by Pierre Denoix for use in all solid tumours (Denoix, 1946). This system utilises the 

extent of the primary tumour (Tis-4), the absence or presence of cancer in the lymph 

nodes (N0-2), and the existence of metastasis (M0 or 1) to assign a TNM rating, which 

corresponds to a stage. All of these classifiers are used to determine the stage of the 

cancer and what treatment is needed. The American Joint Committee on Cancer 5th 

Edition TNM rating is summarised in table 1.1.  
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 Table 1.1: The American Joint Committee on Cancer 5th Edition TNM Stages 

Taken and adapted from the American Joint Committee on Cancer website 

(https://cancerstaging.org). 

Primary Tumour (T) 

TX  Primary tumour cannot be assessed 

T0 No evidence of primary tumour 

Tis Carcinoma in situ: intraepithelial or invasion of lamina propria 

T1 Tumour invades submucosa 

T2 Tumour invades muscularis propria 

T3 Tumour invades through the muscularis propria into pericolorectal tissues 

T4a Tumour penetrates to the surface of the visceral peritoneum 

T4b Tumour directly invades or is adherent to other organs or structures 

Regional Lymph Nodes (N) 

NX  Regional lymph nodes cannot be assessed 

N0 No regional lymph node metastasis 

N1 Metastasis in 1–3 regional lymph nodes 

N1a Metastasis in one regional lymph node 

N1b Metastasis in 2–3 regional lymph nodes 

N1c Tumour deposit(s) in the subserosa, mesentery, or nonperitonealized pericolic 
or perirectal tissues without regional nodal metastasis 

N2  Metastasis in 4 or more regional lymph nodes 

N2a Metastasis in 4–6 regional lymph nodes 

N2b Metastasis in 7 or more regional lymph nodes 

Distant Metastasis (M) 

M0 No distant metastasis 

M1 Distant metastasis 

M1a Metastasis confined to one organ or site (for example, liver, lung, ovary, non-
regional node) 

M1b Metastases in more than one organ/site or the peritoneum 

 

  

https://cancerstaging.org/references-tools/quickreferences/Documents/ColonSmall.pdf
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These ratings are then combined to form an overall stage for the cancer. For example: 

Stage IIA (T3, N0, M0): The cancer has grown into the outermost layers of the colon or 

rectum but has not gone through them (T3). It has not reached nearby organs. It has not 

yet spread to the nearby lymph nodes or distant sites. 

Stage IIIA (T1 or 2, N1, M0) the cancer has spread through the submucosa or muscle 

layer and into 1-3 lymph nodes, but has not spread to other areas of the body. 

Stage IV (Any T, Any N, M1): the cancer has spread to other areas of the body (i.e. liver, 

lungs). This is also called Dukes D colorectal cancer. 

 

Lymphovascular invasion refers to the spread of cancer cells to the blood vessels and/or 

the lymphatics system. The presence of Lymphovascular invasion can be used to 

identify patients with sporadic primary colorectal cancer with aggressive tumours and as 

a factor that independently indicates an unfavourable prognosis (Lim et al., 2010). 

 

1.2.5 Prevention, Prognosis and Treatment of Colorectal Cancer 

A lifestyle that includes regular exercise and a diet low in fats and high in fibre helps to 

prevent colorectal cancer. A report published in 2005 that analysed data on the use of 

the pain-reliever, aspirin, and cancer risk in different study groups over a 20-year period, 

revealed that consistent use of aspirin lowered the risk for colon cancer by 23 percent 

(Chan et al., 2005).  

Colorectal cancer patients have an excellent five-year survival rate when the disease is 

detected early, and those patients often go on to live long, healthy lives. Overall, only 

39% of colorectal cancer patients diagnosed between 2004 and 2010 had localized-
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stage disease, for which the 5-year relative survival rate is 89.9%. Five-year survival 

rates for patients diagnosed at the regional and distant stage are 70.5% and 12.9%, 

respectively, (Table 1.2). The 5-year relative survival rate for colorectal cancer has 

increased from 51% for cases diagnosed in the mid-1970s to 67% for cases diagnosed 

in 1999-2006. The introduction of 5-fluoroucil-based adjuvant chemotherapy for 

resectable stage III colon cancer was a significant advance in colorectal cancer 

treatment as it reduced mortality by up to 30% (Moertel et al., 1990). 

 

Table 1.2: Stage Distribution and 5-year Relative Survival by Stage at Diagnosis for  

2004-2010, (all races, both sexes). (Taken and adapted from www.cancer.gov). 

Stage Distribution and 5-year Relative Survival by Stage at Diagnosis for  

2002-2008, All Races, Both Sexes 

Stage at Diagnosis 
Stage  

Distribution (%) 

5-year  

Relative Survival (%) 

Localized (confined to primary site) 39 89.8 

Regional (spread to regional lymph nodes) 36 70.5 

Distant (cancer has metastasised) 20 12.9 

Unknown (unstaged) 5 33.2 

 

 

 

http://www.cancer.gov/
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Colorectal cancer is generally treated by surgery, often in combination with 

chemotherapy, or radiation depending on the site of the cancer and the degree to which 

it has spread. For cancers localized to the colon or rectum, surgery is usually all that is 

required. For very early-stage tumours of the colon or rectum, a colonoscope/ 

laparoscope may be used to remove the cancerous polyps (Green et al., 2013). Other 

early colonic or rectal tumours require a surgical resection, whereby the portion of the 

colon or rectum containing the cancerous tissue is removed along with surrounding 

tissue and nearby lymph nodes, and the remainder of the organ is repaired if possible 

(Guillem et al., 1997).  

For more advanced tumours where cancer has spread to other parts of the body 

chemotherapy is administered before and/or after surgery and the standard first-line 

chemotherapy for metastatic colorectal cancer generally consists of one of two 

regimens: FOLFOX (5-FU (Fluorouracil), leucovorin, and oxaliplatin) or FOLFIRI (5-FU, 

leucovorin, and irinotecan) (Kelly and Cassidy, 2007). Radiation therapy is often used in 

combination with chemotherapy in the treatment of rectal cancer (Schmoll et al., 2012), 

but is not currently used in the treatment of colon cancer due to the sensitivity of the 

colon to radiation (Martenson et al., 2004). Radiation therapy is generally used either 

before surgery to help shrink the tumour or following surgery to destroy any remaining 

cancerous tissue (Glimelius, 2002). Side effects of both radiation and chemotherapy 

may include vomiting, diarrhoea, and fatigue. 

Other novel treatments currently in various stages of development include: 

• Target Therapies: Several targeted therapies are already used to treat colorectal 

cancer, including bevacizumab (Avastin), cetuximab (Erbitux), and panitumumab 

(Vectibix). Bevacizumab, a monoclonal antibody that helps cut off the nutrient supply to 

the tumour by suppressing blood vessel growth (anti-angiogenesis), may also help 
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improve survival when included with standard treatment regimens (Giantonio et al., 

2007). Cetuximab and panitumumab, both monoclonal antibodies against the epidermal 

growth factor receptor (EGFR), have also been shown to improve survival when 

administered with multi-agent chemotherapy. These antibodies, however, are only 

effective in patients whose tumours lack RAS mutations (Lièvre et al., 2006; Amado et 

al., 2008). Doctors continue to study the best way to give these drugs to make them 

more effective and newer studies are trying to determine if using them with 

chemotherapy in earlier stage cancers as part of adjuvant therapy may further reduce 

the risk of recurrence. 

• Adoptive Cell Therapy. Unlike vaccines that prevent infectious diseases, these 

vaccines are meant to boost the patient's immune reaction to fight colorectal cancer 

more effectively. For example, some vaccines involve removing some of the patient's 

own immune system cells (called dendritic cells) from the blood, genetically modifying or 

treating them with chemicals to enhance their activity, and then re-introducing them into 

the patient with the goal of improving the immune system’s anti-cancer response 

(Besser et al., 2009). At this time, these types of vaccines are only available in clinical 

trials; such as U.S. National Institutes of Health phase I/II clinical trial on the use of anti-

VEGFR2 gene engineered CD8+ lymphocytes for the treatment of metastatic cancer 

(Rosenberg, 2010).  

• Gene studies to determine optimal, individualized treatment for advanced colorectal 

cancer based on patient gene profile (Mariadason et al., 2003; De Mattos-Arruda et al., 

2011).  
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1.3 Biomarkers in Colorectal Cancer 

The National Institutes of Health Biomarkers Definitions Working Group defined a 

biomarker as “a characteristic that is objectively measured and evaluated as an indicator 

of normal biological processes, pathogenic processes, or pharmacologic responses to a 

therapeutic intervention”, (Biomarkers Definition Working Group, 2001). Understanding 

and exploiting this relationship between measurable biological processes and clinical 

outcomes is crucial to disease management. Biomarkers can be used at all stages of 

disease including screening and detection, diagnosis, prognosis, predicting response to 

therapy and as therapeutic targets.  

An ideal biomarker should have the following characteristics:  

 Be safe and easy to measure 

 Be cost efficient to follow up 

 Be consistent across gender and ethnic groups 

 Be modifiable with treatment 

The use of biomarkers in clinical practice as well as in research has become 

commonplace and they are routinely used to predict serious illnesses such as diabetes 

and cardiovascular disease. A list of commonly used biomarkers in CRC is summarised 

in Table 1.3.  
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Table 1.3: Summary of currently used biomarkers in CRC.  

 

In a previous study carried out in this laboratory, it was demonstrated that screening 

high-density protein arrays can distinguish unique antibody profiles that discriminate 

between symptomatic patients with and without colorectal cancer and can identify 

biologically relevant antigens with potential utility as diagnostic, prognostic, predictive 

and therapeutic biomarkers in CRC, as shown previously, (Kijanka et al., 2010). 

Although many studies have looked at these cancer-specific antibodies, little is known 

about the corresponding antigens and their relevance in disease.  

Screening / Diagnostic 

Biomarkers:
Description: Benefits: Limitations: 

Faecal occult blood test
A fecal occult blood test (FOBT) checks for 

hidden (occult) blood in the stool (feces)
Cost-Effective

Relatively Low Specificity,  

Poor Patient-Compliance 

Septin 9
Hypermethylation of its promoter region  is 

known to be associated with CRC
Good Specificity (90%) Poor Senitivity (72%)

CEA

Measurement of the CEA level is commonly 

used as part of the follow up after curative 

resection for CRC

Cost-Effective CRC has already occured  

Predictive Biomarkers: Description: Benefits: Limitations: 

KRAS

In chemotherapy-refractory metastatic CRC, 

a KRAS mutation predicts a complete lack of 

response to anti-EGFR therapy

Identifies Non-responders 

to anti-EGFR therapy

Only Effective in patients 

with mutant KRAS

B-RAF

B-RAF mutations may have a predictive role 

in the response to therapy with antiEGFR in 

patients with wild-type KRAS

Identifies Non-responders 

to anti-EGFR therapy

Only Effective in patients 

with mutant B-RAF

DPD

 Involved in the catabolism of uracil and 

thymine and is the initial rate-limiting 

enzyme involved in the metabolism of 5-FU 

in the liver 

Predicts patients who are 

likely to suffer serious 5-FU 

toxicity

No currently available 

assays can accurately 

assess DPD status

Prognostic Biomarkers: Description: Benefits: Limitations: 

KRAS As Above
Independent Predictor of 

Prognosis

Only accurate for a small 

percentage of CRC patients

B-RAF As Above
Independent Predictor of 

Prognosis

Only accurate for a small 

percentage of CRC patients

Mismatch Repair 

Deficiency

DNA damage is not recognized by the 

deficient mismatch repair system and 

therefore, apoptosis is not triggered and the 

cancerous cell survives

Independent Predictor of 

Prognosis

Only accurate for a small 

percentage of CRC patients
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Eighteen antigens associated with colorectal cancer and 4 antigens associated with the 

absence of the disease were identified from a training set of sex- and age-matched 

patients and controls. These markers were confirmed to have corresponding antibodies 

in sera of a larger cohort of patients (Kijanka et al., 2010). Expression of two of these 

identified antigens; tripartite motif-containing 28 (TRIM28) and longevity assurance gene 

homologue 5 (CerS5) was further characterised by quantitative reverse transcription-

PCR. Significantly elevated mRNA levels for TRIM28 and CerS5 antigens in colorectal 

tumours compared with adjacent normal tissue were found (Fig. 1.8). 

 

 

Figure 1.8: mRNA levels of TRIM28 and CerS5 antigens are significantly elevated in 

colorectal tumours compared with adjacent normal tissue. The graphs represent the ratios 

between gene expression of TRIM28 (A & B) and CerS5 (C & D) at the mRNA level in tumour 

compared with adjacent normal tissue in patients with CRC. The line represents the average 

expression in either tumour or normal tissue. p-values were calculated using the Wilcoxon rank-

sum method. (Taken and adapted from Kijanka et al., 2010).  
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1.4 CerS5, Ceramide Synthases and Sphingolipid Metabolism in CRC 

CerS5, also called TRH4, is a 392 amino acid endoplasmic reticulum, multi-pass 

membrane protein that functions as a bona fide (dihydro) ceramide synthase (Fig. 1.9) 

and is thought to be a key regulator in the network of specialized and compartmentalized 

enzymes that regulate sphingolipid metabolism. The bioactive sphinogolipids including, 

ceramide, Sphingosine, and Sphingosine-1-phosphate (S1P) have important roles to 

play in several types of signalling and regulation of many cellular processes including 

cell proliferation, apoptosis, senescence, angiogenesis and transformation. In 

sphingolipid metabolism, ceramide is regarded as the key intermediate in the pathway of 

sphingolipid biosynthesis (Merrill, 2002). Sphingolipids are also important bioactive 

molecules in various aspects of cancer biology, with ceramide being a crucial cell death 

signalling molecule. Ceramide regulates numerous cell-stress responses including the 

induction of apoptosis (Mullen and Obeid, 2012) and cell senescence (Venable and Yin, 

2009) and S1P plays important roles in cell survival, migration and inflammation (Hait et 

al., 2006; Van Brocklyn and Williams, 2012). Alterations of ceramide levels and/or 

increased levels of S1P are increasingly implicated in various stages of cancer 

pathogenesis, including an anti-apoptotic phenotype, metastasis and escape from 

senescence. Ceramide is synthesized de novo from serine and palmitoyl CoA through 

the action of serine palmitoyl transferase (SPT) and ceramide synthases. 

The CerS (Ceramide Synthase) proteins are a family of proteins that are highly 

conserved from yeasts to mammals. Six members of this family of proteins have been 

characterized (CerS1, CerS2, CerS3, CerS4, CerS5 and CerS6). The CerS family 

subdivide into two distinct groups, with CerS1 in its own category and CerSs 2–6 on a 

separate branch. This is consistent with the fact that CerS1 is much closer to the yeast 

proteins than the others (Mizutani et al., 2005). The six human CerS genes are located 
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on different chromosomes, with the exception of CerS1 and 4, which are located on the 

same chromosome but at distant locations (Pewzner-Jung et al., 2006). The CerS family 

of proteins also share similar transmembrane profiles of four to seven predicted 

transmembrane (TM) domains, although the exact number of TM domains, and their 

topology, has not been resolved experimentally (Winter and Ponting, 2002; Futerman 

and Riezman, 2005; Yu et al., 2006). Membrane localization of mammalian CerS1, 

CerS4, CerS5, and CerS6 (Venkataraman and Futerman, 2002; Riebeling et al., 2003; 

Mizutani et al., 2005) is established to be in the endoplasmic reticulum.  
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Figure 1.9: Pathways of sphingolipid metabolism. Ceramide can be formed de novo (pink) or 

from hydrolysis of sphingomyelin (blue) or cerebrosides (green). Conversely, ceramide can be 

phosphorylated by ceramide kinase to yield ceramide-1-phosphate, or can serve as a substrate 

for the synthesis of sphingomyelin or glycolipids. Ceramide can be metabolized (orange) by 

ceramidases (CDases) to yield Sphingosine, which in turn is phosphorylated by Sphingosine 

kinases (SKs) to generate Sphingosine-1-phosphate (S1P). S1P can be cleared by the action of 

specific phosphatases that regenerate Sphingosine or by the action of a lyase that cleaves S1P 

into ethanolamine-1-phosphate and a C16-fatty-aldehyde. C1PP, ceramide-1-phosphate 

phosphatase; CRS, cerebrosidase; CK, ceramide kinase; CS, ceramide synthase; DAG, 

diacylglycerol; DES, dihydroceramide desaturase; GCS, glucosylceramide synthase; CerS5, 

longevity assurance homolog 5; PC, phosphatidylcholine; SGPP1, S-1-P phosphatase; SMS, 

sphingomyelin synthase; SMase, sphingomyelinase; SPT, serine palmitoyl transferase. (Taken 

and adapted from Ogretmen and Hannun, 2004).  
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The first evidence for specific functional roles of mammalian CerS genes was obtained 

upon overexpression of CerS1, which resulted in a selective increase in C18-ceramide in 

mammalian cells (Venkataraman et al., 2002). CerS4 was subsequently shown to 

selectively utilize C18/20 and C16 acyl-CoAs (Riebeling et al., 2003), CerS6 was found  to 

produce shorter acyl chain ceramides (C14 and C16) (Mizutani et al., 2005), and CerS3 

produced C18- and C24-ceramides (Mizutani et al., 2005; Mizutani et al., 2006). 

Verification that mammalian CerS proteins are bona fide ceramide synthases, rather 

than regulators of endogenous ceramide synthases, was obtained when purified CerS5 

was shown to possess synthase activity (Lahiri and Futerman, 2005). This suggests that 

CerS proteins are genuine ceramide synthases, with each mammalian CerS family 

member utilizing a relatively restricted subset of fatty acyl-CoAs.  

CerS5 is thought to preferentially generate C16-ceramide and increased generation of 

C16-ceramide has been shown in response to CerS5 expression (Venkataraman et al., 

2002; Riebeling et al., 2003). The generation of C16-ceramide is suggested to be 

specifically involved in apoptotic signalling. C16-ceramide levels were shown to 

continually increase in a time-dependent manner in SW480 cells after TRAIL (tumour 

necrosis factor-related apoptosis-inducing ligand) treatment and this increase was 

accompanied by decreases in intracellular sphingosine (White-Gilbertson et al., 2009). 

TRAIL is a death receptor ligand that selectively kills cancer cells without toxicity to 

normal cells.  It was also shown that the ceramide synthase inhibitor fumonisin B1, 

significantly inhibited the increase in C16-ceramide in SW480 colon cancer cells (White-

Gilbertson et al., 2009). This data suggests that ceramide synthases utilize sphingosine 

as a substrate to generate C16-ceramide in the salvage pathway of sphingolipid 

synthesis, leading to apoptosis in the cell. 
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Under normal circumstances sphingolipid metabolism is perfectly balanced between the 

pro-apoptotic ceramide and Sphingosine and the pro-survival Sphingosine-1-phosphate. 

However, abnormalities in sphingolipid metabolism disturb the balance between various 

tumour-promoting and tumour-suppressing sphingolipid species, thereby influencing the 

overall fate of the cell (Sliva et al., 2000). Ceramide can be metabolized to Sphingosine 

through the action of ceramidase (Mao et al., 2000) and Sphingosine, in turn, can be 

phosphorylated by Sphingosine kinase, producing S1P (Olivera et al., 1994). Increasing 

intracellular ceramide levels through exposure to exogenous ceramide or the 

ceramidase inhibitor B13, induces apoptosis in cancer cells (Selzner et al., 2001; Renert 

et al., 2009). Ceramide can directly bind to protein phosphatase 2A (PP2A), thereby 

enhancing the association of PP2A to pro-apoptotic endothelial nitric oxide synthase 

(eNos) and reducing the association between eNos and anti-apoptotic AKT, which 

ultimately promotes apoptosis through dephosphorylation of AKT (Zhang et al., 2012).  

S1P on the other hand binds to G protein‑coupled receptors, increasing motility of 

cancer cells through coupling to Rac and Rho GTPases, as well as proliferation through 

the mitogen-activated protein kinases (MAPK) pathway (Pyne and Pyne, 2010). 

Furthermore, S1P inhibits ceramide-induced apoptosis through the activation of the 

extracellular signal–regulated protein kinase (ERK), also a MAPK family member 

(Cuvillier et al., 1996). Consequently, ceramide and S1P have antagonistic cellular 

effects mediated through different signalling pathways.  

Chemotherapy can alter the balance of sphingolipid metabolism and drive the cell 

towards apoptosis. The molecular mechanisms involved in chemotherapy-induced 

apoptosis are diverse and depend on cell type and drugs used. However, a common 

pathway leading to tumour cell death has been shown to implicate the generation of 

ceramide (Dimanche-Boitrel et al., 2011) through de novo ceramide synthesis, activation 

of sphingomyelinase, and blockage of glucosylceramide formation (Morales et al., 2007). 
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The resulting ceramide-driven apoptosis is mediated by the activation of various protein 

kinases, phosphatases and ultimately caspases (Morales et al., 2007). Celecoxib, a 

selective cyclooxygenase-2 (COX-2) inhibitor that induces apoptosis and inhibits 

proliferation in cancer cells, also leads to elevated levels of the pro-apoptotic C16-

ceramide (Schiffmann et al., 2010). Daunorubicin, an inhibitor of DNA replication, 

promotes ceramide formation and apoptosis by stimulating ceramide synthase activity, 

which in turn can be reversed by the ceramide synthase inhibitor Fumonisin B1 (Bose et 

al., 1995). Camptothecin, a topoisomerase I inhibitor, stimulates de novo ceramide 

synthesis through activation of serine-palmitoyltransferase and ceramide synthase, 

leading to ceramide-induced growth inhibition via caspase-3 (Chauvier et al., 2002). 

Ionizing radiation can also induce ceramide formation and initiate apoptosis via the 

mitochondrial (intrinsic) pathway (Kolesnick and Fuks, 2003).  

1.5 TRIM28 and the TRIM Family  

TRIM28, also known as KAP1 and TIF1β, is a universal co-repressor, mediating 

transcriptional control through interaction with Krüppel associated box (KRAB) zinc 

finger proteins (Friedman et al., 1996; Kim et al., 1996; Moosmann et al., 1996). TRIM28 

is an essential partner in several multiple-protein complexes and is involved in a wide 

range of biological processes (Schultz et al., 2001; Iyengar and Farnham, 2011). It 

belongs to the Tripartite Motif (TRIM) family of proteins, which have been implicated in 

many pathological conditions, including developmental disorders, neurodegenerative 

diseases, viral infections, innate immunity and cancer (Ozato et al., 2008; Hatakeyama, 

2011). In humans and mice there are more than 70 known TRIM proteins which are 

encoded by approximately 71 genes in humans, several of which are clustered together. 

TRIM family members arose from a common ancestral gene, however, TRIM genes 

evolved independently, which is highlighted by their scattered presence throughout the 

genome and their species-specific functions (Hatakeyama, 2011).  
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The TRIM or RBCC (Ring, B-box, Coiled-Coil) motif defines the superfamily. This is 

made up of a ring domain, one or two box domains and an associated coiled-coil domain 

in the amino-terminal region. Importantly, the multi-domain structure of the TRIM protein 

family infers a host of interactions through ring-finger domains, zinc binding motifs, and 

coiled-coil regions (Meroni and Diez-Roux, 2005; Hatakeyama, 2011). The presence of a 

ring domain allows for the conjugation of proteins with ubiquitin which enhances the 

biological flexibility of TRIM proteins. The RBCC motif is conserved amongst various 

species, indicating that this is the defining characteristic of the superfamily. In cases 

where one domain of the RBCC motif is missing, the other domains are conserved in 

order and spacing (Agricola et al., 2011).   

 

 

Figure 1.10: The Tripartite Motif. (Taken from University Virginia, 2014). 

The ring domain is a zinc binding motif which is found 10-20 amino acids from the first 

methionine at the N-terminal portion of most of the TRIM proteins. Ring domains 

modulate ubiquitination events. Ubiquitination is a post-translational modification which 

regulates cell physiology. The ubiquitin-mediated proteolytic pathway plays an important 

role in the removal of short- lived regulatory proteins, which includes those that 

contribute to cell-cycle regulation, DNA repair, transcriptional regulation, cell signalling 

and protein quality control. When dealing with cancer, oncogene products and tumour 

suppressors are regulated by post-transcriptional modification (Reymond et al., 2001).  
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The E3-ubiquitin ligase activity of the ring domain makes TRIM proteins a focus for 

cancer research, as they are involved in the regulation of oncoproteins and tumour 

suppressor proteins.  E3 ubiquitin ligases act as scaffold proteins, which mediate the 

interaction between E2 ubiquitin-conjugating enzyme and the substrate (Ciechanover, 

1998).  Through the formation of homodimers and heterodimers TRIM proteins can have 

a range of substrate specificities by switching their binding partners.  Most TRIM proteins 

function as E3 ubiquitin ligases and many members are involved in the oncogenic 

processes. TRIM family genes can also be translocated to other genes and are involved 

in carcinogenesis and cancer progression (Herquel et al., 2011b). 

The B-BOX also contains a zinc binding domain. This domain has a similar structure to 

that of the RING domain, indicating that they evolved from a common ancestor. The 

coiled coiled domain follows on from the B-Box domain. This domain mediates 

homomeric and heteromeric interactions among TRIM family members and other 

proteins, particularly self-association. Specific subcellular structures are defined by the 

protein-protein interactions which involve the coiled-coiled domains through the 

formation of high-molecular mass complexes (Torok & Etkin, 2001). The TRIM 

superfamily is broken down into families, based on the sequences in the C-terminal 

region, C-I to C-IX. This system is based on the association of particular domains with 

specific subcellular localization (Ozato et al., 2008).  

TRIM28 is a member of the C-VI family, which also includes TRIM24 and TRIM33. This 

sub-family is characterized by the presence of the plant homeodomains (PHDs); these 

are found in nuclear proteins and are believed to have a role in chromatin-mediated 

transcriptional regulation. PHDs are paired with bromodomains (BROMO); these 

recognise acetylated lysine residues, which can be found on the N-terminal tails of 
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histones. Transcriptional repression is mediated by the pairing of these domains (Le 

Douarin et al., 1998).  

A recent study has proposed that through transcriptional regulation of multiple epithelial 

and mesenchymal markers, TRIM28 may have both tumour suppressing and oncogenic 

activities, much like the TGF-β signalling pathway is known to play a complex role in 

tumourigenesis. They found that TRIM28 influences TGF-β-induced EMT in lung cancer 

(Chen et al., 2014). In normal tissues and early stage cancers, TRIM28 is responsible for 

cell-cycle regulation through E2F transcription factors and HDACs; therefore, TRIM28 

shows an anti-proliferative function and acts as a tumour suppressor. In late stage or 

metastatic cancers, high levels of TRIM28 contribute to EMT through transcription 

regulation of epithelial and mesenchymal genes. As a result, cells with high levels of 

TRIM28 tend to have a more invasive and metastatic nature (Chen et al., 2014).  

The up-regulation of the TRIM28 gene has been shown in gastric cancer and is 

associated with poor prognosis (Yokoe et al., 2010). The tumour-promoting role of 

TRIM28 is associated with inactivation of p53-dependent apoptosis. The tumour-

suppressor p53 has a major impact on carcinogenesis and it accumulates in cells in 

response to DNA damage, leading to DNA repair, cell cycle arrest or apoptosis (Green 

and Kroemer, 2009). These tumour-suppressor functions are inactivated by TRIM28, 

which interrupts the acetylation of key DNA-binding domains within the p53 protein 

(Mellert et al., 2011). TRIM28 mediates such p53 inactivation through interactions with 

the oncogenic protein MDM2 (Wang et al., 2005; Okamoto et al., 2006), cancer testis 

antigens MAGE (Yang et al., 2007) and through the suppression of the transcription 

factor E2F1 (Wang et al., 2007).  

Conversely, other studies suggest a role for TRIM28 as a tumour-suppressor (Herquel et 

al., 2011a) and inactivation of TRIM28 has been shown to promote the formation of 
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murine hepatocellular carcinoma (Herquel et al., 2011b). The tumour-suppressor activity 

of TRIM28 is mediated through its role in DNA repair mechanisms, (Peng et al., 2002; 

White et al., 2006; Goodarzi et al., 2008; Kepkay et al., 2011) as well as through the 

silencing of retroviral DNA and epigenetic stability (Rowe et al., 2010; Messerschmidt et 

al., 2012). DNA is protected from damage by chromatin compaction present in 

heterochromatin. This compaction restricts the ability of DNA damage response proteins 

to access the site. Hence, DNA damage in heterochromatin is resistant to repair and the 

surrounding chromatin structure needs to be de-condensed (Cann and Dellaire, 2010). 

When double-stranded breaks occur, this involves the inhibition of TRIM28 

transcriptional repressor. TRIM28 operates as a co-repressor for the Kruppel-associated 

box containing zinc-finger proteins (KRAB-ZFP’s). These are a large class of eukaryotic 

transcription factors. The RING-finger B-box coiled domain of TRIM28 can bind to the 

KRAB-ZFP’s which have bound chromatin in a sequence dependent manner (Huntley et 

al., 2006). TRIM28 then induces transcriptional repression and chromatin condensation 

by recruiting HP1, the histone methyltransferase SETDB1 and mi-2α. This function of 

TRIM28 relies on the SUMOylation of 3 lysine residues, where TRIM28 functions as an 

intermolecular E3 ligase (Schultz et al., 2002). It has been shown that TRIM28 is 

phosphorylated in a DNA-damage dependent manner and this phosphorylated TRIM28 

co-localises with sites of DNA damage. This phosphorylation regulates the SUMOylation 

of TRIM28 and as a result, its function in transcriptional condensation (Ziv et al., 2006).   

Although numerous studies have investigated the tumour-promoting and tumour-

suppressor activity of TRIM28 in cancer, little is known about the expression of TRIM28 

in the tumour microenvironment. Interestingly, TRIM28 forms part of a ternary complex 

with the fibroblast-specific protein (FSP1) and CArG box–binding factor–A (CBF-A) 

which controls the expression of a wide spectrum of epithelial-mesenchymal transition 

responsive genes, enabling the transformation of epithelial cells into a spindle-shaped 
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fibroblast morphology (Venkov et al., 2007; Venkov et al., 2011). Therefore, the balance 

of TRIM28 expression in cancer epithelium and the surrounding stroma may be a critical 

determinant of the tumour-promoting or tumour-suppressing phenotype of the protein. 

By dissecting the effects of TRIM28 in stromal fibroblasts and epithelial tumour cells, the 

aim is to elucidate the complex relationship between stromal and epithelial 

compartments in colorectal cancer as it has been previously shown that the TRIM28 

gene is overexpressed in CRC (Kijanka et al., 2010).  

 

1.6 The Tumour Microenvironment 

 

The interactions between tumour cells and the surrounding stroma play a significant role 

in the progression of cancer (Liotta and Kohn, 2001). Tumours are not merely masses of 

neoplastic cells but complex tissues composed of cellular and non-cellular elements, 

with the main cellular components being fibroblasts, endothelial cells and immune cells. 

Together these produce a range of factors which make up the non-cellular contributors 

to the tumour stroma, such as the extracellular matrix (ECM), proteins, proteases, 

cytokines and growth factors (Weber et al., 2007). Invasive tumour cells interact with the 

microenvironment and remodel it into a milieu supportive of tumour growth and tumour 

progression and consequently the focus of many evolving therapies is on the elimination 

of stromal support by destroying the stromal cells or by inhibiting feedback stimulation of 

cancer growth. The reciprocal interactions between epithelial and stromal cells play a 

crucial role in cancer progression. It has been demonstrated that cancer cells which are 

enclosed in tumour stroma are 10-100 fold more tumourigenic than cancer cells which 

are in a stroma free environment (Engels et al., 2012).  
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Figure 1.11: The Tumour Microenvironment. This illustration depicts the tumour cells, immune 

cells, vascular network and the fibroblast cells. (Image taken from Junttila & de Sauvage, 2013).  

 

In the early stages of tumour growth, cancer cells form a neoplastic lesion that is 

embedded in the microenvironment of a given tissue (usually epithelium) but separated 

from the surrounding tissue and contained within the boundary of a basement 

membrane. This is referred to as carcinoma in situ (CIS) (Hanahan and Weinberg, 

2000). CIS is associated with a stroma similar to that observed during wound healing, 

and it is commonly referred to as 'reactive stroma' (Dvorak, 1986). It was suggested that 

this reactive stroma and cancer cells communicate with each other through the 

basement membrane barrier. However, this communication is not yet fully understood 
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(Ronnov-Jessen et al., 1996). Normal stroma contains a small number of fibroblasts in 

association with a physiological ECM, whereas reactive stroma contains an increased 

number of fibroblasts and displays enhanced capillary density and type I collagen and 

fibrin deposition (Ronnov-Jessen et al., 1996). Tumour cells invade this reactive stroma 

during cancer development from CIS to invasive carcinoma. Invasive carcinoma involves 

the expansion of tumour stroma and increased deposition of the ECM (Brown et al., 

1999). 

Stroma promotes tumour growth through the stimulation of vasculature and connective 

tissue and by supressing the immune response. The vasculature provides oxygenation 

and nutrients while the ECM and connective tissue are required for adherence, structure 

and the release of growth factors, cytokines and chemokines which act in a paracrine 

manner to signal to cancer cells (Teppo et al., 2013). It was demonstrated that T cells 

which permeate the tumour, along with other leukocytes, release cytokines which 

activate the stroma and drive tumour expansion (Seung et al., 1995). For cancer cell 

growth, these cell-stroma interactions are critical. This signalling relationship appears to 

be dependent on oncogene mutation in cancer cells which triggers them to release 

molecules, which activate non-malignant stromal cells to produce factors that promote 

cancer cell growth.  
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1.6.1 Fibroblasts and Cancer-Associated Fibroblasts 

Fibroblast cells are large and flat, with elongated processes protruding from the body of 

the cell, making the spindle-like appearance of the cell. Fibroblasts are the most 

common cell type found in the connective tissue and they form the structural framework 

of tissues through their secretion of ECM components. Fibroblasts produce a collagen 

subunit, called topcollagen. This is then used to make larger collagenous aggregates. 

They also generate glycoproteins and polysaccharides which surround collagen fibres of 

dense connective tissue, making the ECM. This ECM then contributes to the physical 

properties of the connective tissue. Fibroblasts have a role to play in maintaining the 

homeostasis of the surrounding epithelia, through the secretion of growth factors. 

Fibroblasts also have many other functions including regulation of epithelial 

differentiation, regulation of inflammation and they are also involved in wound healing 

(Chang et al., 2002).    

However, fibroblasts are emerging as key cells in the progression, growth and spread of 

cancers and are found to be associated with cancer cells at all stages of cancer 

progression (Kalluri and Zeisberg, 2006). Fibroblasts within the tumour stroma acquire a 

modified phenotype, similar to fibroblasts associated with wound healing (Ryan et al., 

1973; Barsky et al., 1984; Schor et al., 1988). Such 'activated' fibroblasts within the 

tumour stroma have been termed cancer-associated fibroblasts (CAFs). Evidence 

suggests that CAFs control cell motility and the metastatic spread of cancer to 

secondary organs. This is achieved through their ability to invade surrounding tissues 

through the remodelling of the ECM and this then allows for cancer metastases (Joyce 

and Pollard, 2009). Signals which are secreted by cancer cells will elicit a stromal 

response which kick starts a cycle of paracrine signalling, resulting in tumour invasion 

and the loss of tissue integrity. 
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The origin of CAFs is still debated, and can differ between different areas of a tumour. 

Evidence suggests that the CAFs origin can be i) resident ii) mesenchymal stem cell 

derived (MSC derived) or iii) mutational. Tumour cells secrete the growth factors TGF-β, 

PDGF and bFGF which can activate stromal cells which include resting fibroblasts. 

CAFs present in the tumour originate mainly by activation of local fibroblasts. This trans-

differentiation is followed by the expression of the CAF-specific genes in fibroblasts, 

which include α-SMA and FAP (Gallagher et al., 2005).  Epithelial cells have also been 

suggested as a source of CAFs, which can become fibroblasts through the EMT 

process. They may also originate directly from carcinoma cells through EMT. This 

enables cancer cells in adopting mesenchymal cell phenotype, demonstrated by an 

increase in their migratory capacity and invasiveness (Gallagher et al., 2005). 
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1.7 Project Aims 

The aim of this PhD project is to evaluate the tissue expression patterns of two 

previously identified novel colorectal cancer-specific antigens (CerS5 and TRIM28) and 

to investigate the potential significance and role of these novel antigens in colorectal 

cancer. This involves: 

 Creating a database containing information on the familial history, medical 

history, clinical and pathological information, treatment regimen, disease 

recurrence and patient outcome for all of the patients in our cohort. 

 Constructing tissue microarrays (TMAs) from corresponding CRC tissue 

samples for each of the patients in the cohort.   

 Performing immunohistochemical analysis on these TMAs and examining the 

tissue expression patterns of CerS5 and TRIM28. 

 Assessing the associations between CerS5 and TRIM28 expression patterns 

and the clinicopathological features, disease recurrence and patient outcome 

information of the cohort.  

 Constructing reverse-phase protein microarrays from laser capture micro-

dissection enriched tumour epithelium and stroma cells isolated from fresh-

frozen CRC tissue sample.  

 Further characterising the effects of both CerS5 and TRIM28 expression on 

tumourigenic processes.  
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Chapter 2 
 

Materials and Methods 
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2.1 Introduction 

This chapter describes the methodologies employed in this project, accompanied by 

general background information on each technique. The full description of each 

technique is restricted to this chapter, with specific deviations from the standard 

technique being mentioned, where necessary, in later chapters.  

 

2.2 Materials 

2.2.1 Equipment List 

Table 2.1: List of Equipment  

Equipment:  Supplier: 
Power Pac Bio-Rad Laboratories,  

1000 Alfred Nobel Drive,  
Hercules,  
CA 94547,  
USA.  

Mini-PROTEAN® Tetra Cell 

Trans-Blot®SD Semi-Dry Transfer System 

Gel Doc™ EZ Imaging System 

Pierce G2 Fast Blotter Thermo Fisher Scientific Inc., 
81 Wyman Street, 
Waltham,  
MA 02451,  
USA. 

LaminAir HB2448K Laminair Flow Hood 

Sigma 2K15 Centrifuge 

Branson Sonifier™ S-450 Digital Sonicator 

GENE GNome Imager Syngene Europe office, Beacon House, 
Nuffield Road, Cambridge, CB4 1TF, UK. 

Lauda Aqualing AL12 Water Bath Mason Technologies, 228 South Circular 
Road, Dublin 8, Ireland. 

Nikon DIAPHOT Camera Nikon Corproration, Chiyoda, Tokyo, Japan. 

Hera Cell 150 Incubator Unitech, Airton Raod, Tallagh, Dublin 24, 
Ireland. 

Optika XDS-2FL Inverted HBO Fluorescence 
Microscope 

OPTIKA SRL, Via Rigla, 30 - 24010 
Ponteranica (BG), Italy. 

Microplate Shaker Laboratory Supplies Ltd., John F. Kennedy 
Drive, Naas Road, Dublin 12, Ireland. 

Safire II Microplate Reader Tecan Group Ltd, Seestrasse 103, 
8708 Männedorf, Switzerland. 

Aushon 2470 Arrayer  Aushon BioSystems, 43 Manning Rd, 
Billerica, MA 01821, USA. 
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Dako Autostainer Dako Denmark A/S, 
Produktionsvej 42, 
DK-2600, Glostrup, 
Denmark. 

NovaRay CCD Imager Alpha Innotech, San Leonardo, CA, USA. 

UMAX 2100XL Flatbed Scanner Umax Technologies Inc.,  
3561 Gateway Blvd.,  
Fremont, CA, 945386585, USA. 

ArcturusXT™ Laser Capture Microdissection 
System 

Life Technologies, 
3175 Staley Road, 
Grand Island, NY 14072 
USA. 

Tissue-Arrayer™ Beecher Instruments, Silver Springs, MD, 
USA.  

Leica CM3050 Cyrostat  Leica Microsystems, 
Newcastle Upon Tyne, 
NE12 8EW, 
UK. 

Leica Bond-Max™ automated 
Immunohistochemisty Instrument 

Rotary Microtome 

Nikon Eclipse E400 Microscope Nikon Instruments Inc.,  
Melville,  
NY 11747-3064,  
USA.  

Nikon DXM 1200 Digital Camera 

ND-1000 Spectrophotometer (Nanodrop) NanoDrop Technologies, Inc., 3411 
Silverside Rd 100BC, Wilmington, DE19810-
4803, USA. 

Vapour-line eco 25 autoclave VWR International Ltd., Orion Business 
Campus, Northwest Business Park, 
Ballycoolin, Blanchardstown, Dublin 15, 
Ireland. 

Chyo JK-180 Balance Medical Supply Company Ltd,  
Damastown,  
Mulhuddart,  
Dublin 15,  
Ireland.  

Mettler PJ300 Balance 

Grant Y6 Water Bath Grant Instruments (Cambridge) Ltd., 
Shepreth, Royston, Herts., SG8 6Pz, UK. 

Eppendorf 5810R Centrifuge Eppendorf House, Gateway 1000 Whittle 
Way, Arlington Business Park, Stevenage 
SG1 2FP, UK.  

New Brunswick Excella E25 Shaking Incubator 

Sciolgex D1008 Mini-centrifuge 
 

 
Sciolgex MX-S Vortex 

SCILOGEX, LLC.,  
1275 Cromwell Avenue,  
C-6, Rocky Hill,  
CT 06067,  
USA.  

Stuart Platform Shaker STR6 Stuart Scientific,  
Beacon Road,  
Stone, Staffordshire, ST15 0SA, UK.  

Stuart Roller Mixer SRT1 
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2.2.2 General Buffers  

The constituents of each buffer are dissolved in 900mL distilled and deionised water and 

adjusted to a final pH of 7.4. The solution is then made up to a final volume of 1L. All 

components were analytical grade. 

Phosphate-buffered saline (PBS) (150 mM, pH 7.4): 

8g of NaCl 

0.2g of KCl 

1.44g of Na2HPO4 

0.24g of KH2PO4  

 

PBS Tween 20 (PBST):  

0.5mL of Tween 20 detergent (Sigma) was added to PBS to give a final concentration of 

0.05% (v/v).   
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2.2.3 Buffers for Sodium Dodecyl Sulphate-Polyacrylamide Gel 

Electrophoresis (SDS-PAGE) 

 

Table 2.2: SDS-PAGE reagents 

 

10X Electrophoresis Buffer Volume (1 L): 

196 mM Glycine    144 g 

50M Tris (pH 8.3)    30 g 

0.1% (w/v) SDS    10 g 
 
dH20 to 1L  
 

4X Loading Dye Volume (10mL): 

Tris 0.5M (pH 6.8)    2.5mL 

Glycerol     2mL 

2-mercaptoethanol    0.5mL 

20 % (w/v) SDS    2.5mL 

Bromophenol blue    20 ppm 

dH20      2.5mL 

 

 

Solution 12.5% (w/v) Separation Gel    
(1 gel/6mls) 

4.5% (w/v) Stacking Gel    
(1 gel/2.5mls)  

1M TrisHCl, pH 8.8 1.5ml - 

1M TrisHCl, pH 6.8 - 0.300mL 

30% (w/v) acrylamide 
(Acrylagel) 

2.5mL 0.375mL 

2% (w/v) bisacrylamide  

(Bis-Acrylagel) 

1mL 0.150mL 

Distilled H20 0.934mL 1.740mL 

10% (w/v) sodium dodecyl 
sulphate (SDS) 

0.30mL 0.024mL 

10% (w/v) ammonium 
persulfate (APS) 

0.030mL 0.024mL 

TEMED .006mL .0025mL 
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Coomassie Stain Volume (500mL): 

0.2 % (v/v) Coomassie blue R-250  1 g 

45 % (v/v) Methanol    225mL 

45 % (v/v) Water    225mL 

10 % (v/v) Acetic acid    50mL 

 

Coomassie Destain Volume (1 L): 

10 % (v/v) Acetic acid    100mL 

25 % (v/v) Methanol    250mL 

65 % Water     650mL 

 

2.2.4 Buffers for Western Blotting 

Transfer Buffer Volume (1 L) 

Tris      3.03 g 

Glycine     14.4 g 

Methanol     200mL 

Adjust to 1L with dH20 

 

2.2.5 Buffers for protein purification under denaturing conditions: 

Lysis buffers 

Buffer A (1 litre): 

100 mM NaH2PO4    13.8 g (MW 137.99 g/mol) 

10 mM TrisHCl     1.2 g (MW 121.1 g/mol) 

6 M GuHCl     573 g guanidine hydrochloride 

Adjust pH to 8.0 using 1M NaOH. 
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Buffer B (1 litre): 

100 mM NaH2PO4    13.8 g (MW 137.99 g/mol) 

10 mM TrisHCl     1.2 g (MW 121.1 g/mol) 

8 M Urea      480.5 g (MW 60.06 g/mol) 

Adjust pH to 8.0 using 1M NaOH. 

 

Wash buffer 

Buffer C (1 litre): 

100 mM NaH2PO4    13.8 g (MW 137.99 g/mol) 

10 mM TrisHCl     1.2 g (MW 121.1 g/mol) 

8 M Urea     480.5 g (MW 60.06 g/mol) 

Adjust pH to 6.3 using 12M HCl. 

 

Elution buffers 

Buffer D (1 litre): 

100 mM NaH2PO4    13.8 g (MW 137.99 g/mol) 

10 mM TrisHCl     1.2 g (MW 121.1 g/mol) 

8 M Urea     480.5 g (MW 60.06 g/mol) 

Adjust pH to 5.9 using 12M HCl. 

Buffer E (1 litre): 

100 mM NaH2PO4    13.8 g (MW 137.99 g/mol) 

10 mM TrisHCl     1.2 g (MW 121.1 g/mol) 

8 M Urea    480.5 g (MW 60.06 g/mol) 

Adjust pH to 4.5 using 12M HCl. 
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2.2.6 Cell Lysis Buffer 

Tris-HCl    0.0757g 

10% SDS    2mL 

Glycerol    1mL 

dH20     10mL 

 

2.2.7 General Reagents 

Table 2.3: List of Commonly Used Reagents:  

Reagent: Supplier: 

PageRuler™ Plus Prestained Protein 

Ladder 

AGB Scientific Limited - A VWR International 

Company, Orion Business Campus, Northwest 

Business Park, Ballycoolin, Dublin 15, Ireland. 

InstantBlue Single Step Coomassie Based 

Gel Stain 

Expedeon Ltd., Unit 12 Buckingway Business Park, 

Anderson Road, Swavesey, Cambridge CB24 4AE, 

United Kingdom.  

MycoAlert
® Mycoplasma Detection Kit Lonza Ltd. , Muechensteinstrasse 38            4002 

Basel, Switzerland. 

Enhanced chemiluminescence (ECL) 

Western Blotting Substrate 

Thermo Fisher Scientific Inc., 81 Wyman Street, 

Waltham, MA 02451, USA. 

TCEP (Tris(2-carboxyethyl)phosphine) 

T-PER (Tissue Protein Extraction 

Reagent) 

TMB (3,3',5,5'-tetramethylbenzidin) 

Blotting Substrate Solution 

NiNTA Resin 

1X Trypsin EDTA Solution Sigma Aldrich Ireland Limited, Vale Rd, Arklow, 

Co. Wicklow, Ireland 
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2.2.8 Commercial Antibodies 

Table 2.4:   List of primary antibodies used to probe RPPA slides 

Antibody Source Species Dilution Phospho or Total Protein 
Acid Ceramidase LS Mouse 1 : 20 Total 

Acetyl-coA Ser73 CS Rabbit 1 : 100 Phospho 

AKT Thr 308 CS Rabbit 1 :100 Phospho 

AMPKβ1 s108 CS Rabbit 1 : 50 Phospho 

Bax CS Rabbit 1 : 500 Total 

Bcl-2 Ser70 CS Rabbit 1 : 500 Phospho 

Beclin 1 CS Rabbit 1 : 100 Total 

β-Actin CS Rabbit 1 : 500 Total 

Ceramide LS Mouse 1 : 20 Total 

CerS1 LS Goat 1 : 50 Total 

CerS2 LS Rabbit 1 : 1000 Total 

CerS3 LS Rabbit 1 : 100 Total 

CerS4 LS Rabbit 1 : 100 Total 

CerS5 LS Rabbit 1 : 200 Total 

CerS6 LS Mouse 1 : 200 Total 

Cleaved Caspase 3 CS Rabbit 1 : 50 Phospho 

Cleaved Caspase 7 CS Rabbit 1 : 100 Phospho 

Cox2 BD Mouse 1 : 500 Total 

E-Cadherin CS Rabbit 1 : 100 Total 

EGFR y1045 CS Rabbit 1 : 100 Phospho 

EGFR y1148 BS Rabbit 1 : 500 Phospho 

eNos s1177 CS Rabbit 1 : 200 Phospho 

JNK S183/185 CS Rabbit 1 : 500 Phospho 

LC3B CS Rabbit 1 : 100 Total 

LCK y505 In Rabbit 1 : 200 Phospho 

MDM2 CS Rabbit 1 : 500 Phospho 

MMP9 CS Rabbit 1 : 1000 Total 

mTor S2481 CS Rabbit 1 : 100 Phospho 

p53 Ser15 CS Rabbit 1 : 1000 Phospho 

PI3K BD Mouse 1 : 100 Total 

PP2A  CS Rabbit 1 : 1000 Total 

RAGE CS Rabbit 1 : 250 Total 

Ras GFR s91 CS Rabbit 1 : 250 Phospho 

RUNX1 Ab Rabbit 1 : 5000 Total 

SGPP1 LS Rabbit 1 : 200 Total 

SPHK1 CS Rabbit 1 : 100 Total 

Survivin CS Rabbit 1 : 1000 Total 

TNFR1 CS Rabbit 1 : 50 Total 

VEGFR y117 CS Rabbit 1 : 250 Phospho 

Abbreviations: Ab, Abcam (Cambridge, UK); BD BD Biosciences (San Jose, CA,USA); BS, Biosource Int. 
(Camarillo, CA, USA); CS, Cell Signalling Technology (Beverly, MA, USA); In, Invitrogen Corporation 

(Camarillo, CA, USA) LS, LifeSpan BioSciences, Inc. (Seattle, WA, USA) 
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Table 2.5:   List of additional antibodies used in IHC, RPPA and Western Blot analysis 

 

Primary Antibodies: Supplier: 

Rabbit anti-TRIM28 mAb Cell Signalling Technology Inc,  
Danvers,  
MA, USA. 

Mouse anti-p53 mAb  Dako Denmark A/S, 
Produktionsvej 42, 

DK-2600,  
Glostrup, 
Denmark. 

Rabbit anti-β-Actin pAb Sigma Aldrich, 
3050 Spruce Street, 
St. Louis, MO 63103, 

USA. 

Secondary Antibodies: Supplier: 
Goat anti-rabbit IgG, peroxidase 
conjugated pAb 

Sigma Aldrich, 
3050 Spruce Street, 
St. Louis, MO 63103, 

USA. 

Rabbit anti-goat IgG, peroxidase 
conjugated pAb 

Goat anti-mouse IgG, peroxidase 
conjugated pAb 

Biotinylated rabbit anti-goat IgG 
antibody 

VECTOR LABORATORIES, INC. 
30 Ingold Road, 

Burlingame, CA 94010, 
USA. 

Biotinylated goat anti-rabbit IgG 
antibody 

Biotinylated goat anti-mouse IgG 
antibody 

Dako Denmark A/S, 
Produktionsvej 42, 
DK-2600, Glostrup, 

Denmark. 
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2.2.9 E. coli Protein Purification  

 

Product:     Source: 

E. coli Clones: 

TRIM28     imaGenes GmbH,  

Clone: IMGSp800C11583    10 Robert-Rössle-Str.,  

Size: 835 AA (1-835)    13125 Berlin, Germany.  

        

CerS5      imaGenes GmbH, 

Clone: IMGSp800M17513    10 Robert-Rössle-Str.,  

Size: 326 AA (67-392)   13125 Berlin, Germany. 

 

Vector: 

pQE30NST      Qiagen Ltd.,    

                                                                       Skelton House, Lloyd Street North,  

                                                                       Manchester M15 6SH, UK.  

 

E.coli Strain: 

SCS1       Agilent Technologies (Stratagene),  

5301 Stevens Creek Blvd, Santa Clara,  

CA 95051, USA.   
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2.3 TRIM28 and CerS5 Protein Expression and Antibody Validation 

Methods 

2.3.1 Protein Expression  

Protein expression systems are very widely used in the life sciences, biotechnology and 

medicine. Expression of a recombinant protein can be approached in general by 

constructing a plasmid that encodes for the desired protein, introducing the plasmid into 

the required host cell, growing the host cells and inducing protein expression. Cells 

expressing the protein are then lysed, which releases the protein of interest, which can 

then be purified and finally SDS-PAGE analysis can be performed to verify the presence 

of the protein. E. coli is one of the most widely used expression hosts, and DNA is 

normally introduced in a plasmid expression vector (Hunt, 2005; Graslund et al., 2008). 

The techniques for overexpression of proteins in E. coli are well developed and work by 

increasing the number of copies of the gene or increasing the binding strength of the 

promoter region so assisting transcription. 
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2.3.2 Protocol for Expression of TRIM28 and CerS5  

On day one, two 1L conical flasks and two 100mL flasks were autoclaved and 1L of 

Terrific Media was prepared as follows:  

800mL distilled H2O  

12g Tryptone  

24g Yeast extract  

4mL Glycerol  

The volume was adjusted to 900mL with distilled H2O and the mixture was sterilized by 

autoclaving. The mixture was then allowed to cool to room temperature and the volume 

was adjusted to 1000mL with 100mL of a filter sterilized solution of 0.17M KH2PO4 and 

0.72M K2HPO4.  

Antibiotics: 100µg/mL ampicillin; 15µg/mL kanamycin. 

 

Terrific media (200mL) was then added to each of the 1L flasks and placed in a 37ºC 

incubator overnight. Terrific media (50mL) was added to each of the 100mL flasks for 

inoculation. One of the 100mL flasks was then inoculated with the TRIM28 expressing  

E.coli clone using an inoculation stick, while the other was inoculated with the CerS5 

expressing E.coli clone. The inoculated cultures were grown overnight at 37ºC in a 

shaking incubator.  

 

On day two, 1mL of the overnight culture containing the TRIM28 clone was added to one 

of the 1L flasks containing 200mL pre-warmed media and 1mL of the overnight culture 

containing the CerS5 clone was added to the 1L flask containing 200mL pre-warmed 

media. A 1mL sample of each (TRIM28 and CerS5) was then taken immediately before 

induction. This was the non-induced control and the cells were pelleted and dissolved in 

4x SDS-PAGE loading and frozen until required. Expression was then induced by adding 

IPTG to a final concentration of 1mM (200µL IPTG to 200mL culture medium) to each of 

the 1L flasks.  The cultures were then incubated at 30ºC overnight. Another 1mL sample 

of each (TRIM28 and CerS5) was then taken. This was the induced control and again 
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the cells were pelleted and dissolved in 4x SDS-PAGE loading buffer and frozen until 

required. The 200mL over-night culture was then harvested by centrifugation at 10,000 x 

g for 20 min. Finally, the supernatant was discarded and the cell pellet was snap frozen 

in liquid nitrogen and stored at -80ºC until purification.  

 

Figure 2.1: Schematic diagram of the protein purification protocol.   
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2.3.3 Protein Purification using Immobilized metal ion affinity 

chromatography (IMAC) 

A polyhistidine-tag (6xHis-tag) is an amino acid motif in proteins that consists of at least 

five histidine (His) residues, often at the N- or C-terminus of the protein (Hengen, 1995). 

Polyhistidine-tags are often used for affinity purification of 6xHis-tagged recombinant 

proteins expressed in E.coli and other prokaryotic expression systems. Bacterial cells 

are harvested via centrifugation and the resulting cell pellet lysed either by physical 

means or by means of detergents and enzymes such as lysozyme. At this stage raw 

lysate contains the recombinant protein among many other proteins originating from the 

bacterial host. This mixture is incubated with affinity media which in this case was Ni-

NTA. This affinity media contains bound nickel ions to which the polyhistidine-tag binds 

with micro molar affinity. The resin is then washed with phosphate buffers to remove 

proteins that do not specifically interact with the nickel ion. Finally, the protein is eluted 

from the column using elution buffers. The purity and amount of protein can be assessed 

by SDS-PAGE and Western blotting. 

The TRIM28 and CerS5 cell pellets were thawed on ice for 15 min and then re-

suspended in lysis buffer A (see appendix 1 for composition of buffers) at 5mL per gram 

wet weight. The cells were then lysed by gently vortexing them, taking care to avoid 

foaming, and lysis is complete when the solution becomes translucent. The lysates were 

then centrifuged (Eppendorf Centrifuge 5810R) at 10,000 x g for 20 min to pellet the 

cellular debris. The supernatant was saved for purification. Ni-NTA slurry was loaded 

onto the purification columns at approximately 1mL of 50% Ni-NTA slurry to 4mL lysate. 

The TRIM28 and CerS5 lysates were then loaded into separate Ni-NTA columns. The 

bottom caps were removed and the flow-through was collected. The samples were then 

washed once with 4mL of buffer B, and twice with 4mL of buffer C. Then the 

http://en.wikipedia.org/wiki/Enzyme
http://en.wikipedia.org/wiki/Lysozyme
http://en.wikipedia.org/wiki/SDS-PAGE
http://en.wikipedia.org/wiki/Western_blotting
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recombinant proteins were eluted 4 times with 0.5mL of buffer D and 4 times with 0.5mL 

with buffer E. All of the wash and elution fractions (0.5mL aliquots) were collected and 

stored at -20ºC for SDS-PAGE and Western blot analysis.    

2.3.4 SDS-PAGE 

The separation of macromolecules in an electric field is called electrophoresis. Sodium 

dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), describes a 

technique widely used in biochemistry, genetics and molecular biology to separate 

proteins according to differences in the electrophoretic mobility (a function of the length 

of a polypeptide chain and its charge). SDS is an anionic detergent meaning that, when 

dissolved, its molecules have a net negative charge within a wide pH range. A 

polypeptide chain binds amounts of SDS in proportion to its relative molecular mass. 

The sample to be analysed is mixed with SDS, which denatures secondary and non–

disulphide–linked tertiary structures, and applies a negative charge to each protein in 

proportion to its mass. Heating the samples to 95°C further promotes protein 

denaturation, helping SDS to bind. Polyacrylamide gels restrain larger molecules from 

migrating as fast as smaller molecules. Because the charge-to-mass ratio is nearly the 

same among SDS-denatured polypeptides, the final separation of proteins is dependent 

almost entirely on the relative molecular mass of polypeptides (Schägger and von 

Jagow, 1987). 

Regardless of the system, preparation requires casting two different layers of acrylamide 

between glass plates. The lower layer (separating, or resolving, gel) is responsible for 

actually separating polypeptides by size. The upper layer (stacking gel) includes the 

sample wells, where the samples are applied. Free radical-induced polymerisation of the 

resolving gel acrylamide (See table 2.2 above) was catalysed by addition of ammonium 

persulphate and the accelerator TEMED and the gel was added to the space between 

http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate
http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate
http://en.wikipedia.org/wiki/Polyacrylamide
http://en.wikipedia.org/wiki/Gel_electrophoresis
http://en.wikipedia.org/wiki/Biochemistry
http://en.wikipedia.org/wiki/Genetics
http://en.wikipedia.org/wiki/Molecular_biology
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate
http://en.wikipedia.org/wiki/Denaturation_(biochemistry)
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the plates and covered with a layer of ethanol. Following polymerisation of the gel, the 

ethanol was removed and the stacking gel placed directly onto the resolving gel. A 

plastic comb was placed in this gel creating the wells for sample application. Once the 

gel had fully polymerised, the plates were then placed in an electrophoresis chamber, 

the comb was removed, the chamber and wells filled with electrophoresis buffer (25mM 

Tris, 250 mM glycine (electrophoresis grade), pH 8.3 and 0.1% (w/v) SDS) and samples 

were loaded and run at 100V for 1-2 hrs. The gel was then removed from the casting 

tray apparatus and stained using Coomassie blue solution for 1 hour. The gel was 

transferred to destain solution and incubated until the protein bands were clearly visible 

(approximately 1 hr). 

2.3.5 Western Blotting 

Western blotting is an analytical technique widely used to detect specific proteins in the 

given sample of tissue homogenate or extract. Proteins were separated by SDS as 

described previously. The proteins were then transferred to a nitrocellulose membrane 

where they were probed with antibodies specific to the target protein. After an SDS-

PAGE gel has been resolved, it is incubated in transfer buffer for 20 min, along with thick 

blotting paper and nitrocellulose membrane. The proteins were transferred to the 

nitrocellulose membrane at 15V for 20 min. When the transfer is complete the 

nitrocellulose membrane is carefully removed from the apparatus and placed in 5% (w/v) 

Milk Marvel blocking solution in 1X PBS for 1 hour to block the non-specific binding. The 

membrane is then washed and incubated with the primary antibody dissolved in 1% 

(w/v) Milk Marvel in PBS-Tween for 1 hour. The membrane is then washed again and 

incubated with the secondary antibody dissolved in 1% (w/v) Milk Marvel in 1X PBS-

Tween for 30 min. Finally the membrane is washed 3 times in PBS, followed by 1X PBS-

Tween for 5 min each and then detection takes place using the appropriate substrate. 

Two detection methods were used in this project; colorimetric and enhanced 
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chemiluminescence (ECL). Colorimetric detection utilises the reaction of the conjugated 

label with a compatible substrate. When the conjugated enzyme reacts with the 

substrate a colour change occurs. The TMB (3,3′,5,5′-Tetramethylbenzidine) substrate 

was used for all colorimetric detection analyses. ECL involves the reaction of the 

conjugate with a luminol and hydrogen peroxide solution, emitting a photon of light. The 

intensity of light emitted is detected by a charge-coupled device camera which captures 

a digital image of the Western blot.  

2.3.6 Lowry Assay 

The Lowry assay is a commonly used technique for protein quantification. The total 

protein concentration is exhibited by a colour change of the sample solution in proportion 

to protein concentration, which can then be measured using colorimetric techniques.  

The procedure involves the reaction of protein with cupric sulphate and tartrate in an 

alkaline solution, resulting in the formation of tetradenate copper-protein complexes.  

When the Folin-Ciocalteu Reagent is added, it is effectively reduced in proportion to 

these chelated copper complexes, producing a water-soluble product whose blue colour 

can be measured at 750nm.  In this project the Lowry assay was used to determine the 

levels of protein in the SW480 and SW620 cell lines, enabling the same amount of 

protein for each cell line to be loaded to the gel when carrying out SDS-PAGE and 

Western Blot analysis. This then allows for the comparison of TRIM28 expression 

between the cell lines. 

Bovine serum albumin (BSA) protein standards were made up in the same lysis buffer 

that was used to prepare the cell lysates in the range of 0-500μg/mL. Dilutions of the cell 

lysate samples were also made up in lysis buffer. 1X Folin-Ciocalteu was prepared fresh 

on the day of use by diluting the supplied 2X reagent 1:1 with ultrapure water. Each 

standard (40μL) and unknown sample replicate was added into a well of a 96-well plate. 
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Modified Lowry Reagent (200μL) was added to each well at nearly the same moment 

using a multi-channel pipette. The micro plate was covered and incubated at room 

temperature for exactly 10 minutes. The prepared 1X Folin-Ciocaltau Reagent (20μL) 

was added to each well using a multi-channel pipette and the plate was mixed 

immediately on a plate mixer for 30 seconds. The micro plate was covered and 

incubated at room temperature for 30 minutes. The absorbance was then measured at 

750nm on a plate reader. The average 750nm absorbance of the blank standard 

replicates was subtracted from the average from the 750nm value for all individual 

standards and unknown sample replicates. A standard curve was prepared by plotting 

the average blank corrected 750nm value for each BSA standard versus its 

concentration in μg/mL. This standard curve was then used to determine the protein 

concentration of each unknown sample. 

2.4 Histological Methods 

2.4.1 Ethical Approval, Study Cohort and Sample Collection 

The research conducted in this PhD thesis was approved by the Ethics (Medical) 

Research Committee at Beaumont Hospital, Dublin, Ireland and informed consent was 

obtained from all patients. Patients undergoing colonoscopy were screened 

prospectively, with the clinical notes of all patients attending for colonoscopies being 

reviewed daily by the clinical research nurses. Patients with a history of cancer or 

systemic inflammatory disease and patients taking immunosuppressive medication were 

excluded from the study. In total, 156 Caucasian patients with newly diagnosed CRC 

fulfilled the inclusion criteria. A pathologist sampled an area of invasive carcinoma from 

the tumour mass and an adjacent area of uninvolved colonic/rectal mucosa was also 

sampled. 
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A representative section of archived formalin-fixed and paraffin-embedded (FFPE) CRC 

tissue specimens for each of the patients in the cohort was retrieved for the study. Each 

block was sectioned and stained with haematoxylin and eosin (H&E). The case was 

reviewed by a pathologist to confirm pathological stage. The relevant tumour areas were 

marked and used as the donor cores for TMA construction. 

2.4.2 Tissue Microarrays (TMA) 

Tissue microarrays are produced by a method of re-locating tissue from conventional 

histologic paraffin blocks such that tissue from multiple patients or tissue blocks can be 

seen on the same slide. This is done by using a needle to biopsy a standard histologic 

tissue block and placing the core into an array on a recipient paraffin block. This 

technique was originally described in 1987 by Wan, Fortuna and Furmanski in the 

Journal of Immunological Methods (Wen-Hui et al., 1987). The group published a 

modification of Battifora's "sausage" block technique whereby tissue cores were placed 

in specific spatially fixed positions in a solid paraffin block (Battifora, 1986). The 

technique was further developed by Kononen and colleagues in the laboratory of Ollie 

Kallioneimi and published in Nature Medicine in 1998, (Kononen et al., 1998).  

The major advantage of TMAs is that they allow the performance of tissue-based assays 

(immunohistochemistry, in situ hybridization, Fluorescent-in-situ-hybridisation, etc.) on a 

large number of patient samples in an efficient and cost-effective manner. With TMA 

technology, several hundred representative cores from several hundred patients may be 

included on a single glass slide for analysis at the same time. Thus, significantly more 

tissue can be conserved than if the full sections of blocks were to be sectioned serially. 

TMAs have been generated from all tissue types including decalcified bone and core 

biopsies. The major disadvantage of TMAs is that each core (or set of cores) represents 

a fraction of the lesion. This was considered a major weakness, particularly in the early 

days of the TMA. However, multiple studies in different organ systems have now 
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demonstrated that consistent and comparable results can be obtained using multiple-

TMA cores as with whole sections (Henriksen et al., 2007; Kyndi et al., 2008; Thomson 

et al., 2009). In this study the TMA construction was performed as previously described 

(Kononen et al., 1998; Kay et al., 2004) using the Beecher Instruments Tissue 

Microarrayer (Beecher Instruments, Silver Spring, MD, USA). Cores of 1.0 mm diameter 

were sampled in quadruplicate for each case. Of the 137 CRC cases, 126 were 

incorporated into the TMAs and a further 11 cases, that could not be included into the 

TMAs for various reasons, were investigated using whole sections of tissue. Normal 

mucosa from surgical margins was incorporated into the TMAs for 28 cases and a 

further 10 cases were investigated using whole tissue sections. All 19 cases of the 

RPPA cohort were also investigated for CerS5 expression using IHC in FFPE whole 

tissue sections. The TMA construction process is shown schematically in Fig. 2.2. 

 

Figure 2.2: Pictorial representation of the TMA construction process. Cylindrical cores are 

obtained from a number of individual formalin-fixed, paraffin-embedded tissue blocks using the 

Beecher Instrument Manual Tissue Arrayer (A-C). These are transferred to a recipient TMA block 

(D&E). Sections (4µm) are cut from the TMA using a microtome and transferred to a glass slide 

(F&G). All resulting TMA slides have the same tissues in the same coordinate positions. The 

individual slides can be used for a variety of analyses including immunohistochemistry (H). 

Individual images (A-G) taken and adapted from images.google.com.   
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2.4.3 Immunohistochemical Staining 

Sections of 4 µm thickness were cut from all TMA blocks and from the whole section 

blocks for the purpose of immunohistochemistry. Sections were immunostained with an 

anti-TRIM28 rabbit monoclonal antibody (mAb) (C42G12, Cell Signalling Technology 

Inc, Danvers, MA, USA), anti-p53 mouse mAb (DO-7, Dako, Glostrup, Denmark), or anti-

CerS5 human polyclonal (pAb) (LS-B3152, LifeSpan Biosciences, Inc. Seattle, WA, 

USA) on an automated platform (Bond system – Leica Microsystems, Bannockburn, IL, 

USA). Briefly, cut sections were subjected to on-board dewaxing. For each antibody 

varying antigen retrieval conditions and antibody dilutions were used, which are given 

below. Detection of the antibody–antigen complex was achieved using a polymer-based 

kit (Bond Refine) with 3, 3’-diaminobenzadine (DAB) as the chromogen. All sections 

were counterstained with haematoxylin. Negative controls were included for all sections 

by omitting the primary antibody and positive controls were also used for each antibody. 

The positive control tissue included tonsil and colonic adenocarcinoma for TRIM28 and 

CerS5 and bladder cancer tissue for p53. 

For the anti-TRIM28 antibody, the optimal conditions were as follows: antigen retrieval in 

tri-sodium citrate buffer (Bond Epitope Retrieval 1 solution) for 20 mins and 1:50 

antibody dilution. For the anti-CerS5 antibody, the optimal conditions were as follows: 

antigen retrieval in tri-sodium citrate buffer (Bond Epitope Retrieval 1 solution) for 20 

mins and 1:300 antibody dilution. The optimal conditions for anti-p53 antibody were as 

follows: antigen retrieval in tri-sodium citrate buffer (Bond Epitope Retrieval 1 solution) 

for 30 mins and 1:100 antibody dilution.  

  



64 
 

2.4.4 Immunohistochemical Analysis and Assessment 

Immunohistochemistry scoring was performed independently by two reviewers blinded to 

the clinicopathological details and clinical outcome of the cohort. In cases where there 

were discrepancies between the scorers, a consensus was reached after a joint review 

using a multi-headed microscope. A previous study in our labatory has shown that the 

inter-observer variability of immunohistochemistry scoring is as low as 7%, (Kay et al., 

1996).  

The degree of nuclear TRIM28 staining was evaluated for epithelial and stromal tissue. 

The intensity of the TRIM28 staining (negative = 0; weak = 1+; moderate = 2+; strong = 

3+) was recorded for both epithelial and stromal tissue. The relationship between the 

epithelial and stromal intensity was calculated by determining the ratio of TRIM28 

expression between the two compartments. A High TRIM28 expression ratio was 

defined as at least 2 units of difference in staining intensity (e.g. epithelium strong (3+) 

and stroma weak (1+), or epithelium moderate (2+) and stroma negative (0). A Low 

TRIM28 expression ratio was defined as 1 or 0 units of difference in staining intensity 

(e.g. epithelium moderate (2+) and stroma weak (1+).  

The degree of membranous CerS5 staining was evaluated. The intensity of the CerS5 

staining (negative = 0; weak = 1+; moderate = 2+; strong = 3+) was recorded for all 

tumour and normal tissue sections. The p53 staining and scoring was carried out 

previously by a research team from our group.   

Nuclear p53 staining was evaluated and the intensity of expression was recorded 

(negative = 0; weak = 1+; moderate = 2+; strong = 3+).  
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2.4.5 Frozen Tissue Sectioning 

Fresh tissue samples for RPPA analysis were rapidly processed and snap-frozen in 

liquid nitrogen. The time from removal of a colectomy specimen to snap-freezing of 

samples was < 20 mins. Prompt preservation of the sample limits protein and RNA 

degradation as a result of protease and RNase activity, respectively, and limits reactive 

changes in phosphorylated proteins (Botling et al., 2009; Espina et al., 2011). Tissue 

stabilization and preservation methods should be compatible with the intended 

downstream analysis. Preservation of tissue histology and morphology is essential for 

verification of tissue type and cellular content. Fresh-frozen tissue samples were stored 

at −80°C.  

The frozen tissue samples are first embedded in optimal cutting temperature compound 

(OCT). The bottom of a cryomold is covered with OCT to a depth of 2-4mm and the 

frozen tissue specimen is placed on top of the OCT in the cryomold and orientated in the 

desired position, keeping in mind that the side facing down will be the first tissue surface 

cut. The tissue is completely covered with OCT and placed in a container of dry ice 

immediately. The frozen tissue is stored at −70° to −80°C. 

When carrying out frozen tissue sectioning the cryomold is removed from the O.C.T. 

tissue block and the block is placed directly onto a chuck at room temperature. The 

chuck is then immediately placed in liquid nitrogen, allowing the O.C.T. to freeze and 

forming a bond between the tissue block and the chuck. A new blade is placed in the 

knife holder and the chuck containing the tissue block is placed in the chuck holder. The 

micrometre is set to the desired thickness (5-8μm is optimal for laser capture 

microdissection) and frozen sections are cut and discarded until a full tissue section is 

obtained. These tissue sections are then placed on a glass slide at room temperature. 

The tissue block and frozen section slides are then stored at −80°C. 
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Figure 2.3: Tissue Embedded in OCT. This image shows a piece of frozen human tissue 

embedded in OCT, contained with a cryomold.  

 

2.4.6 Haematoxylin Staining for LCM 

Haematoxylin stains cellular nuclear material bluish/purple while eosin stains 

cytoplasmic proteins pink, allowing the visual distinction between cytoplasmic and 

nuclear cellular elements (Wittmann, 1965). This process is often called blueing. 

Haematin, a product of oxidation of haematoxylin, is the compound that combines with 

aluminium ions to form the active dye-metal complex. Alum haematoxylin solutions 

(Mayer’s Haematoxylin) impart to the nuclei of cells a light transparent red stain that 

rapidly turns blue on exposure to any neutral or alkaline liquid (Scott’s Tap Water 

Substitute). Haematoxylin and Eosin (H&E) stains are compatible with Laser Capture 

Microdissection (LCM) and are suitable for general histological examination of tissue 

sections. To reduce potential dye-cellular protein interactions, Eosin-Y is not included in 

the staining protocol for tissue that will be microdissected. Thus, only nuclei will be 

stained blue with these haematoxylin staining protocols (Kiernan, 2010). 
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Frozen sections slides are immediately fixed in 70% (v/v) ethanol. OCT is then dissolved 

by soaking the slide in water, followed by nucleic acid staining with Mayer’s 

Haematoxylin.  Excess dye is removed by rinsing the slide in water.  The blue colour of 

the dye develops in a basic solution (Scott’s Tap Water Substitute). The final staining 

steps are dehydration in graded alcohols (70%, 95% and 100% (v/v) ethanol) followed 

by clearing in xylene. The slides are allowed to air dry at room temperature after the final 

rinse in xylene. 

 

2.4.7 Laser Capture Microdissection  

Cellular heterogeneity of tissue is a common problem encountered by both genomic and 

proteomic researchers during tissue analysis. Molecular and proteomic analysis of 

heterogeneous tissue is hindered by extreme variability and inaccuracy because it is 

impossible to discern which cells contribute which cellular constituents to a given tissue 

lysate (Wulfkuhle et al., 2008). Laser capture microdissection (LCM) is a technology 

invented and pioneered by Dr. Lance Liotta that allows the identification, selection and 

isolation of pure cell populations from a heterogeneous tissue section or cytological 

preparation under direct microscopic visualization of the cells (Emmert-Buck et al., 1996; 

Bonner et al., 1997). Using LCM researchers are able to isolate normal, pre-malignant, 

and malignant cells without contamination from surrounding cells (Nakazono et al., 2003; 

Angeles et al., 2006; Nakamura et al., 2007). Molecular profiling of pure cell populations, 

which is reflective of the cell population’s in vivo genomic and proteomic state, can 

determine molecular signatures in normal and diseased tissue (Wulfkuhle et al., 2002; 

Petricoin et al., 2005; Petricoin et al., 2007). 
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The fundamental components of LCM technology are (i) visualization of the cells of 

interest via microscopy, (ii) transfer of laser energy to a thermolabile polymer with 

formation of a polymer-cell composite (Infrared system) or photo volatilization of cells 

surrounding a selected area (Ultraviolet system), and (iii) removal of the cells of interest 

from the heterogeneous tissue section. The ArcturusXT™ system (Applied 

Biosystems/Life Technologies) discussed herein incorporates both laser types in one 

instrument providing options as to the type of microdissection to be performed. For the 

purpose of this study only the Infrared laser type was used.  

A stationary near-infrared laser mounted in the optical axis of the microscope stage is 

used for melting a thermolabile polymer film. The polymer film is manufactured on the 

bottom surface of an optical-quality plastic support cap. The cap acts as an optic for 

focusing the laser in the same plane as the tissue section. The polymer melts only in the 

vicinity of the laser pulse, forming a polymer-cell composite. Lifting the polymer from the 

tissue surface shears the embedded cells of interest away from the heterogeneous 

tissue section. The exact cellular morphology, as well as the DNA, RNA and proteins of 

the procured cells, remain intact and bound to the polymer. Following microdissection, 

extraction buffer directly applied to the polymer film solubilizes the cells, allowing the 

collection of the molecules of interest for downstream analysis of DNA, RNA or proteins. 
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Figure 2.4: The ArcturusXT™ Laser Capture Microdissection System. The system is 

composed of a microscope, an IR laser, and a computer. The stage holds the slide containing the 

tissue sample and the LCM caps. The stylus allows the user to navigate around the tissue sample 

and find cells of interest. Cells to be microdissected are marked on the computer screen.  

 

In this study, LCM was performed to isolate separate populations of epithelial and 

stromal cells for signalling analysis (Fig. 2.5). Using the LCM apparatus (Arcturus XT, 

Life Technologies, San Francisco, CA, USA) (Emmert-Buck et al., 1996), approximately 

15000 - 20000 laser shots (estimated >20 000 cells) of epithelium and stroma were 

removed for each frozen tissue sample, from consecutive cryostat sections. No attempt 

was made to target specific regions of carcinoma cells within the tumour and multiple 

separate areas of tissue were dissected so that signalling analysis could be performed 

on a cell population-wide scale within each patient sample. Tissue processing and 
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preparation of tissue lysates have been described previously (Wulfkuhle et al., 2003; 

Sheehan et al., 2005).   

 

 

Figure 2.5: Pictorial Representation of the LCM Process. (A): An overview of the LCM 

process. (B): Stromal Cells marked (In Blue) for LCM prior to the laser being 'fired'. (C): A close-

up of the stromal cells after the laser has been fired. *Note the circles along the blue lines 

corresponding to a 'shot' of the laser. (D): A close up of the tissue remaining (epithelial cells) after 

the stromal cells have been removed. (E): A picture of the LCM Cap, with the stromal cells 

attached. (F): The remaining Epithelial cells on the tissue section. (Image (A) taken and adapted 

from Espina et al., 2006).  
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2.4.8 Protein Extraction of Microdissected Material for Downstream 

Analysis 

 

The LCM cap, containing microdissected cells for protein analysis, can be stored at        

-80°C for extraction at a later date. Extraction of proteins from microdissected cells 

should be performed just prior to the downstream analysis to prevent aggregation of 

proteins, degradation of proteins, or binding of protein to the walls of the micro-centrifuge 

tube during prolonged storage. Microdissected samples for Western blotting and/or 

reverse phase protein array analysis can be prepared with the following denaturing cell 

lysis/protein extraction buffer: 

2x SDS Tris-glycine sample buffer   450µL 

TCEP (Tris(2-carboxyethyl)phosphine)  100µL 

T-PER (Tissue Protein Extraction Reagent)  450µL 

 

Each LCM cap is first thawed at room temperature and then 30µL of extraction buffer is 

added directly onto the cap film and incubated for 1 min. The extraction buffer is pipetted 

up and down on the surface of the cap to solubilize the cells. The extraction buffer 

containing the solubilized cells is collected in a 0.5mL microcentrifuge tube. If more than 

one CapSure cap is used to microdissect the cells of interest, solubilized cells from 

these caps are collected in the same microcentrifuge tube. The samples are then 

denatured by heating the microcentrifuge tubes at 100°C for 5-8 minutes prior to 

downstream proteomic analysis. The samples are stored at –80°C. 
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2.5 Reverse-Phase Protein Microarrays 

Reverse phase protein microarrays (RPPAs) are a multiplexed proteomic platform used 

to evaluate cell signalling protein levels or phosphoprotein profiles in many samples 

printed on one array for one specific endpoint per array (Paweletz et al., 2001; Espina et 

al., 2003; Belluco et al., 2005; Petricoin et al., 2007; VanMeter et al., 2007; Wulfkuhle et 

al., 2008). Over 100 array slides can be printed with 40μL of protein lysate and each 

array is probed with a single antibody. In addition to printing sample lysates, it is also 

essential to print control lysates such as commercial cell lysates, recombinant peptides, 

or peptide mixtures that are known to contain the antigens being investigated. All 

samples are printed in a range of concentrations, which permits the selection of the 

optimal sample protein concentration for individual antibodies having varying affinities. 

The Aushon 2470 arrayer utilizes a solid pin format for the application of cell lysates or 

other protein containing fluids onto a matrix of nitrocellulose mounted on a glass 

microscope slide. Prior to printing cell lysates on a RPPA, the number of cells required 

should be optimized preceding the final array construction. The arrays are subsequently 

stained using a Dako CSA (Catalysed Signal Amplification) System that includes 

blocking and signal amplification reagents that are compatible with chromogenic (DAB), 

chemiluminescent, or fluorescent (Li-Cor® IRDye680) detection reagents (Fig. 2.6). 
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Figure 2.6: Schematic overview of the RPPA Construction Process. Laser capture 

microdissected cells are lysed and immobilized onto nitrocellulose slides at distinct positions. 

Each sample is arrayed in duplicate and in a range of concentrations. After arraying these slides 

are incubated with a primary antibody, allowing the antibody to bind the antigen in the lysate. 

Bound antibodies are detected by secondary tagging and signal amplification and these can then 

be detected by chemiluminescencent, fluorescence-based, or colorimetric assays. The intensity 

of the signal is proportional to the concentration of the target protein. This data can then be 

analysed using specially designed software to analyse the results (Taken and adapted from 

www.capmm.gmu.edu). 
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Reverse-phase protein microarrays (RPPA) were generated as described previously 

(Paweletz et al., 2001; Liotta et al., 2003; Espina et al., 2007; Mueller et al., 2010). LCM-

enriched epithelium lysates were printed in triplicate on ONCYTE Avid nitrocellulose film-

slides (GRACE Bio-Labs, Bend, OR) using an Aushon 2470 arrayer equipped with 350 

μm pins (Aushon Biosystems, Billerica, MA). Each array contained epithelium lysates for 

all 19 cases and each lysate was printed in a 2-fold dilution curve representing undiluted 

lysate, 1:2, 1:4 and 1:8 dilutions. Control lysates were printed in a 2-fold dilution curve. 

All RPPAs were baked for 2 hrs at 80°C to allow fixation and then stored with desiccant 

at −20°C. Quality control samples, including A431 cell lines (±EGF stimulation; BD 

Pharmingen, San Diego, CA, USA) and Bovine serum albumin (BSA) standards, were 

printed on the RPPA to ensure protein deposition and immunostaining reactivity 

(reviewed in Gulmann et al., 2006).   

2.5.1 RPPA immunostaining, image acquisition and data analysis 

RPPA slides were blocked (I-Block, Applied Biosystems) for 2 hours before 

immunostaining. Immunostaining was conducted on a Dako Autostainer using a Dako 

Catalysed Signal Amplification (CSA) kit, (Fig. 2.7). Each slide was incubated with a 

single primary antibody at room temperature for 30 minutes. The negative control slide 

was incubated with antibody diluent (Dako). For each immunostaining run, 1 slide was 

incubated with anti-ssDNA antibody (1:15,000; IBL International GmbH). Secondary 

antibody was goat anti-rabbit (1:10,000; Vector Laboratories), or rabbit anti-mouse IgG 

(1:10; Dako), that were amplified via horseradish peroxidase-mediated biotinyl tyramide 

with chromogenic detection (diaminobenzidine; Dako). In total 30 primary antibodies 

specific to known signalling endpoints were used to measure phosphorylation and total 

protein levels using RPPAs (Table 2.4).   
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Figure 2.7: RPPA slides stained using the Dako Autostainer. (A) = A negative control slide 

incubated with antibody diluent (Dako). (B & C) = Examples of stained RPPA slides stained with 

(B) anti-Sphingosine Kinase 1 and (C) anti-Acid Ceramidase antibodies.  

 

RPPA slides were scanned on a UMAX 2100XL flatbed scanner (white balance 255, 

black 0, middle tone 1.37, 600 dpi, 14 bit). Spot intensity was analysed by Image Quant 

v5.2 software (Molecular Dynamics). Data reduction was carried out with a VBA Excel 

macro, RPPA Analysis Suite (Mueller, 2013). To normalize data, the relative intensity for 

each protein spot was divided by the ssDNA relative intensity for the corresponding spot 

(Chiechi et al., 2012).  
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Figure 2.8: An example of an RPPA slide stained with the anti-Sphingosine Kinase 1 

antibody. (A) shows the scanned image of the slide. (B) shows the corresponding inverted image 

that is used for measuring spot intensity. The red box in both cases indicates the first tissue 

sample, printed in duplicate in a range of concentrations.    

  

(A) 

(B) 
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2.6 Cell Culture Techniques and Protein Analysis  

2.6.1 Cell Lines 

In this project two colorectal cancer cell lines were used, SW480 and SW620. The two 

CRC cell lines were purchased from the European Collection of Cell Cultures 

(ECACC/Sigma Aldrich). SW480 cells were originally isolated from a primary colon 

carcinoma, while the SW620 line was established from a metastasis that arose in the 

same patient one year later. The stromal fibroblast cell line, CCD-18Co (ECACC/Sigma 

Aldrich), was derived from normal colon tissue. This cell line was used in this project to 

represent the tumour microenvironment. SW480 and SW620 cell lines were cultured in 

RPMI medium supplemented with 10% (v/v) fetal bovine serum (FBS) and 1% (v/v) 

penicillin. The CCD-18Co cell line was cultured in Minimal Essential Media (MEM) 

supplemented with 2X essential and non-essential amino acids, 2X vitamins, 2mM L-

glutamine, 15% (v/v) inactivated Foetal Bovine Serum (FBS) and 1% penicillin-

streptomycin.  

2.6.2 Sub-culturing 

Old media was removed and discarded from the cell culture flasks. The cell layer was 

rinsed (30secs) with 1.5mL of 1X Trypsin (0.25%). This was then removed and replaced 

with 3mL 1X Trypsin. Cells were monitored under the microscope until the cell layer had 

come off the bottom of the flask. The cell suspension was removed from the flask and 

added to 7mL of the appropriate media in a 15mL tube to inactivate the 1X Trypsin. Cells 
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were pelleted at 1200 RPM for 5 minutes, supernatant was removed and the cell pellets 

were re-suspended in 2mL of fresh medium. One millilitre of the cell suspension was 

added to 2 new T75 cell culture flasks and incubated at 37°C. 

2.6.3 Resuscitation of frozen cell line stocks 

An aliquot of cells was thawed, when new cultures were required, or when the viability of 

the cells after cryopreservation needed to be assessed. Ten millilitres of the appropriate 

medium was pre-warmed to 37°C. The cryovial was thawed at 37ºC in a water bath. The 

contents of the vial were slowly transferred to the pre-warmed medium, which was then 

placed in the incubator. Cell growth was monitored by examining the cells, under a 

Nikon® inverted microscope. After 72-96 hrs, the regular subculture routine was initiated 

to ensure that the optimal cell concentration and conditions were maintained. 

2.6.4 Cell lysis 

The lysis buffer was prepared as described in 2.2.6. PBS was refrigerated overnight. 

Medium was removed from cells and replaced with 20mL of cold PBS. PBS was 

removed from the flask and 2mL of lysis buffer was added. The cells were scraped from 

the bottom of the flask and transferred to a new receptacle. The sample consistency 

should be viscous. The cells were sonicated at 20% amplitude for 30 seconds using the 

Branson Sonifier™ S-450 Digital Sonicator. The cell lysate was then aliquoted.  

2.6.5 Cell counting 

Cells were counted and their viability assessed using trypan blue exclusion. Trypan blue 

is negatively charged, so it is excluded from viable cells. Therefore, only the cells with 
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damaged cell membranes (e.g. dead cells) will stain blue. To count the cells, 10μL of cell 

suspension was added to 90μL of 0.04 % (v/v) trypan blue solution. The sample was 

loaded into the chamber of a Neubauer haemocytometer. Using a UV visible light 

microscope, cells were counted in 5 squares of either side of the chamber (10 in total). 

The concentration of the cells in the suspension (cells/mL) was calculated by multiplying 

the total number of cells in all 10 squares x dilution factor x 1,000.  

2.6.6 Long-term storage of cell lines 

Cells were prepared by aliquoting into 1mL cryovials at a concentration of                      

5-10 x 106cells/mL in freeze medium. Freeze medium consisted of 95% (v/v) of the 

appropriate medium and 5% (v/v) dimethyl sulfoxide (DMSO). Once dispensed, the vials 

were immediately transferred to a Nalgene® Mr. Frosty and placed in a -80ºC freezer for 

slow freezing. Once frozen, the vials were transferred to liquid nitrogen for long-term 

storage.  

2.6.7 Mycoplasma Testing  

Testing for Mycoplasma was carried out using MycoAlert® Mycoplasma Detection Kit 

(Lonza), as per the manufacturer’s instructions. This luminescence-based technique is 

based on the measurement of adenosine triphosphate (ATP) in a culture supernatant. 

Enzymes released from viable Mycoplasma react with the kit substrate (Luciferin), 

catalysing the conversion of ADP to ATP. By measuring the level of ATP in a sample 

both before and after the addition of the MycoAlert™ substrate, a ratio can be obtained 
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which is indicative of the presence or absence of mycoplasma (<0.9 = Negative; 0.9-1.2 

= Borderline and >1.2 = Positive). If these enzymes are not present, the second reading 

shows no increase over the first, while reaction of mycoplasmal enzymes with their 

specific substrates in the MycoAlert™ substrate, leads to elevated ATP levels.  

2.6.8 Fluorescence Microscopy  

Fluorescence microscopy has become an essential tool in biology and the biomedical 

sciences, as well as in materials science due to attributes that are not readily available in 

other contrast modes with traditional optical microscopy. The application of an array of 

fluorochromes has made it possible to identify cells and sub-microscopic cellular 

components with a high degree of specificity amid non-fluorescing material. In fact, the 

fluorescence microscope is capable of revealing the presence of a single molecule. 

Through the use of multiple fluorescence labels, different probes can simultaneously 

identify several target molecules simultaneously. Although the fluorescence microscope 

cannot provide spatial resolution below the diffraction limit of specific specimen features, 

the detection of fluorescing molecules below such limits is readily achieved. 

Fluorescence microscopy uses fluorescence to generate an image. The sample to be 

tested is labelled with a secondary (2o) antibody chemically linked to flurophores, which 

is specific for the target protein. A flurophore is a fluorescent chemical compound which 

can re-emit light upon excitation. The sample is illuminated with light of a specific 

wavelength, which is absorbed by the fluorophores, causing them to emit light of a 
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longer wavelength. This technique was used in the project to look at the expression of 

TRIM28 and β-Actin in the cancer cell lines. 

Cover-slips (0.13mm-0.16mm thickness) were sterilized by placing in 100% (v/v) EtOH 

and flamed through a Bunsen. The cover-slips were placed in a 6-well plate and placed 

under UV light for 30 minutes. SW480 and SW620 cell lines were trypsinsed (section 

3.2) and re-suspended in 10mL of media. The cell suspension (100μL) was added to 

1.9mL of media in the 6 well plate and cells were left to adhere to the coverslip overnight 

at 37oC. The media was removed and 1mL of 3% platelet-activating factor (PAF) solution 

was added, covered and left on ice for 20 minutes. The reaction was quenched with 1mL 

of 50 mM ammonium chloride solution. Perma block buffer solution (1mL) was added to 

the wells and left for 1h at RT. The blocking solution was removed and a square was 

drawn around the cover-slip using a wax pen. The primary antibody (100μL), made up in 

perma block, was added to the cover-slip and incubated at 37oC for 1h. The cover-slip 

was washed 3 times with perma block solution. Fluorescently labelled secondary 

antibody, made up in perma block (100μL), was added to the cover-slip and incubated at 

370C for 1 hour in the dark. Antibody dilutions are indicated in Table 2.6. The cover-slip 

was washed with perma block and 7μL of fluorescence mounting media (DAKO) was 

added, the cover-slip turned and stuck to a glass slide and stored in a dark box. The 

cover-slip was sealed with nail varnish and left at 4oC until imaging. The cells were 

imaged using the OPTIKA XDS-2FL Inverted trinocular EPI fluorescence microscope 
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HBO illumination system with OPTIKAM Pro 3, 3.1Mpixels PC camera and the optika 

vision pro software.  

Table 2.6: Antibody dilutions for use in fluorescence microscopy 

 

2.6.9 Cell Scratch Assay 

Moving cell fronts are features of tissue repair and tumour spreading. Monitoring cell 

fronts give an insight into wound healing, development and disease (Stetler-Stevenson 

et al., 1993). The rate at which the front of a population of cells moves is influenced by 

the rate at which individual cells within the population migrate and proliferate. Cell 

scratch assays are a commonly used method to investigate the motion of cell fronts by 

creating a scratch in a cell monolayer and observing the motion of the cell front (Teppo 

et al., 2013). Images of the cell front are then taken over a period of time. The most cost-

effective and convenient means of analysis is to monitor the location of the cell front as a 

function of time.  This method of analysis is convenient as it is non-destructive and does 

not require labelling, tracking or counting individual cells amongst a population. 

Reporting in this manner presents a qualitative visual comparison between a control 

assay and a different assay where a treatment was applied. Cell scratch assays can be 

used to monitor how drugs which inhibit proliferation will reduce tumour spreading, while 

steroid treatment can be used to analyse wound healing (Johnston et al., 2014). In this 

project a cell scratch assay was used to monitor the movement of the cell front in the 

SW480 and SW620 cell lines, once a scratch had been applied. The scratch assay 

Antibody Primary Antibody Secondary Antibody 

β-Actin 1 in 40 1 in 2,000 

TRIM28 1 in 100 1 in 2,000 
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protocol was taken and amended from a protocol which had previously been described 

(Liang et al., 2007). 

SW480 and SW620 cell lines were trypsinised and centrifuged as discussed in section 

2.6.2 and resuspended in 2mL of media. The cell suspension (50μL) was added to 

1.95mL of media in a 6 well cell culture plate. The cells were incubated at 37oC until they 

reached at least 80% confluency. Once this had occurred the cell monolayer of 

appropriate wells was scratched in a straight line using a p200 pipette tip. The cellular 

debris was removed by washing the wells twice with 2mL of PBS and twice with the 

appropriate media. Finally 2mL of media was added to each well. At various time-points 

(0, 24, 48, or 72hr), the migration associated with wound closure was assessed and 

quantified using a microscope. Images of the front were captured over the 4 day period 

using the OPTIKA XDS-2FL microscope, with images being taken every 24hr.   

 

2.7 Proteomic Network Analysis  

Proteomic network analysis was performed as previously described (Chiechi et al., 

2013). Briefly, Spearman ρ correlation analysis with ρ ≥ 0.75 and p ≤ 0.01 was used to 

build proteomic network graphs (Gephi 0.8.2 beta, The Gephi Consortium, Paris, 

France, www.gephi.org). Nodes in the network represent RPPA endpoint molecules. The 

bigger the node the more significant correlations it has with other endpoint molecules. 

Each line connecting 2 nodes represents a significant correlation between the nodes; the 

thicker the line, the higher the Spearman ρ correlation. Proteins are grouped on the 

basis of Spearman ρ values and the number of connections among a group of nodes; 

strongly correlated nodes are represented close to each other and with the same colour.  
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2.8 Statistical Analysis 

Association between discrete variables was assessed using the 2 test. Five-year 

survival and five-year ‘recurrence-free’ survival were analysed and survival curves were 

plotted according to the Kaplan-Meier method using the generalized log-rank test to 

compare survival curves. Prognostic factors for 5-year survival and 5-year ‘recurrence-

free’ survival were evaluated by univariate and multivariate analyses for TNM stages, 

gender and lymphovascular invasion (Cox proportional hazard regression model). For 

both Kaplan-Meier and Cox regression analyses, patients who had follow-up information 

for more than 5-years, were censored at 5-years post-diagnosis. In survival analysis, the 

hazard ratio (HR) is the ratio of the hazard rates corresponding to the conditions 

described by two levels of an explanatory variable. The confidence interval (CI) indicates 

the level of uncertainty around the measure of effect (precision of the effect estimate) 

which in this case is expressed as CI. Confidence intervals are used because a study 

recruits only a small sample of the overall population so by having an upper and lower 

confidence limit it infers that the true population effect lies between these two points. The 

CI for this study was 95% with is consistent with most other studies. All tests were 

analysed using SPSS 19.0 software (SPSS, Chicago, IL, USA) and the findings were 

considered statistically significant at P < 0.05.  

Unsupervised hierarchical clustering of the RPPA dataset was conducted using JMP 

5.1.2 (SAS Institute Inc. USA). The Spearman rank correlation coefficient, ρ, was 

calculated for each protein pair in the RPPA cohort; ρ ≥ 0.75 with P ≤ 0.01 considered 

significant. 
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3.1 Introduction 

Large bio-repositories of formalin-fixed paraffin-embedded tissue already exist in many 

hospitals and are typically used for immunohistochemical analysis. When tissue samples 

are accompanied by a patient’s medical, genetic, clinical, pathological, and follow-up 

information it provides researchers with an invaluable resource for studying the aetiology 

of the disease. These patient cohorts can also help to identify novel biomarkers of 

diagnosis, disease progression, prognosis, response to therapy etc. These bio-

specimens are now being used to better examine the determinants of cancer prognosis 

and patient survival, as newer proteomic and genomic technologies emerge. Next-

generation sequencing technologies have been used to successfully assess copy 

number variation in as little as 5 ng of DNA extracted from FFPE samples (Wood et al., 

2010; Kerick et al., 2011) and have recently been used to evaluate predictive biomarkers 

in CRC (Peeters et al., 2013). This highlights the importance of having a strong patient 

cohort that accurately reflects the aetiology of the disease, when studying potentially 

novel biomarkers.   

In the current study, we developed a large database containing information on the 

familial history, medical history, clinical and pathological information, treatment regimen, 

disease recurrence and patient outcome for all of the patients in our cohort. This 

provided us with large volumes of information that could then be correlated with the 

levels of expression of antigens of interest to see if there were any significant links to 

CerS5 and TRIM28 expression levels.  
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3.2 Patient Recruitment 

The research conducted in this Ph.D. thesis was approved by the Ethics (Medical) 

Research Committee at Beaumont Hospital, Dublin, Ireland and informed consent was 

obtained from all patients. The recruitment of patients into the colorectal cancer study 

was performed within the Clinical Research Centre, Beaumont Hospital, Dublin, with the 

assistance of full-time clinical research nurses. Patients were recruited either at the time 

of their diagnostic colonoscopy or when they were hospitalized for surgical management 

of their disease. All patients attending for colonoscopy in the hospital’s endoscopy unit 

received a Patient Information Leaflet (PIL) with their appointment. During admission to 

the unit the admitting doctor was required to confirm that the patient had read and 

understood the contents of the PIL, and invite the patient to sign a research consent 

form. Patients were assured that participation was voluntary and that refusal to 

participate would not affect their treatment in any way.  

The clinical notes of all patients attending for colonoscopies were reviewed daily by the 

clinical research nurses. Following the procedure the colonoscopy findings were 

reviewed and patients that were eligible to participate, and who had signed consent, 

were asked to provide a blood sample, if appropriate. If a lesion was identified during the 

colonoscopy additional tissue samples could be taken from consenting patients for 

research purposes.  
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3.3 Results 

3.3.1 Clinicopathological Features 

A total of 137 cases with a diagnosis of CRC met the inclusion criteria and were included 

in the initial study cohort. The median age of the patients at the time of first diagnosis 

was 68 years (range 34-87 years). The cohort included 85 male and 52 female patients 

with a median follow up of 54 months (range 1-122 months). In total, 89 patients had 

colonic carcinoma, whereas 48 had rectal carcinoma. Table 3.1 shows the 

clinicopathological demographics of the patient cohort, along with the follow-up 

information.  

Chemotherapy can alter the balance of sphingolipid metabolism, as previously 

mentioned. Therefore, in the CerS5 arm of the study the cohort was split into neo-

adjuvant and non-neoadjuvantly treated patients. No correlation has been found to date 

between TRIM28 expression and chemotherapy or radiation treatment and therefore all 

137 patients were included.    

In order to characterize the signalling protein networks associated with both TRIM28 and 

CerS5, reverse-phase protein microarray (RPPA) analysis was performed in fresh-frozen 

tissue from an additional 19 patients with colorectal cancer (RPPA cohort). Patients in 

the RPPA cohort were diagnosed with colorectal cancer between 2012 and 2013 and 

met the same inclusion criteria as those of the IHC cohort. Clinical and pathological 

parameters of all patients are presented in Table 3.1.  
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Table 3.1:   Clinicopathological details of patient cohorts 

                 IHC cohort RPPA cohort 

Factor Number of patients = 137          % Number of patients = 19   % 

Gender     
Female 52 37.96 10 52.6 
Male 85 62.04 9 47.4 
Age (years)     
Median 68  - 67  - 
Range 34-87  - 47-88  - 
<65 59 43.1 8 42.1 
≥65 78 56.9 11 57.9 
Tumour site     
Colon 89 65.0 15 78.9 
Rectum 48 35.0 4 21.1 
Tumour stage     
Tis 2 1.5   
T1 9 6.6 0 0 
T2 20 14.6 0 0 
T3 87 63.5 13 68.4 
T4 19 13.9 6 31.6 
Not Stated† 2 1.5  -  - 
Node stage     
N0 75 54.7 11 57.9 
N1 37 27.0 2 10.5 
N2 23 16.8 6 31.6 
Not Stated† 2 1.5 - - 
Metastasis stage     
M0 126 92.0 17 89.5 
M1 11 8.0 2 10.5 
Lymphovascular 
invasion 

    

Yes 30 21.9 7 36.8 
No 105 76.6 12 63.2 
Not Stated† 2 1.5   
Differentiation     
Well  3 2.2 0 0 
Moderately 119 86.9 17 89.5 
Poorly 15 10.9 2 10.5 
Follow-up (months)     
Median 54.3 - N/A* - 
Range 1-122  -  N/A* -  

Abbreviations: n = number of patients; T = tumour; N = node; M = metastasis; †These patients presented with 
terminal metastatic disease and only had biopsies taken; thus, their T and N stage could not be accurately 

determined. *Follow-up information was not available for these patients as they were diagnosed with CRC in 
2012/13. 
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3.3.2 Reported Symptoms in Colorectal Cancer Patients 

The most common presenting symptom amongst our cohort was rectal bleeding; i.e. 

bleeding from lower colon or rectum. Almost half (48%) of the patients reported having 

suffered from rectal bleeding prior to diagnosis of CRC. Other common symptoms 

reported were abdominal pain, anaemia, altered bowel habit and weight loss. Often 

these symptoms are reported in combination with each other, as well as the other 

symptoms mentioned in Fig. 3.1 below.  Interestingly, only 7% of patients diagnosed with 

CRC were discovered by screening for CRC, highlighting the need for a novel diagnostic 

device or biomarker capable of accurately detecting CRC.   

 

Figure 3.1: Most Common Presenting Symptoms in CRC Cohort. The presenting symptoms 

of all the CRC patients in the cohort (n=137) were assessed to find the most commonly reported 

symptoms.  
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3.3.3 Distribution of Tumour sites in Colorectal Cancer Patients 

The majority of patients included in this study  presented with tumour localised on the left 

side (65%), which includes the descending colon, sigmoid colon, recto-sigmoid junction 

and the rectum. 29% of patients presented with a tumour localised to the right colon, 

including the caecum and ascending colon. Only 3% of patients presented with a tumour 

in the transverse colon which joins the left and right colon (Fig. 3.2). The location of the 

tumour within the colorectum can affect both patient outcome and response to therapy, 

(Elsaleh et al., 2000; Wray et al., 2009). 

 

Figure 3.2: Distribution of Sites of Occurrence in CRC patients. The location of the tumour 

within the colon or rectum was reported for the CRC patients in the cohort (n=156).  
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3.3.4 Patient History Information 

The patient history of all cases in the cohort was also recorded. This information, 

together with the physical examination, enables the physician and other health 

professionals to form a diagnosis and treatment plan.  A number of genetic syndromes 

are also associated with higher rates of colorectal cancer (e.g. hereditary nonpolyposis 

colorectal cancer) and 33% of patients in our cohort reported a family history of CRC. 

Smoking is also known to increase a person’s risk of developing cancer and 39% of the 

patients in this cohort are or previously were smokers.  

Table 3.2: Patient History Information from CRC Cohort 

Parameter Measurement Number of Patients = 137 (%) 

Drink Yes 104 76 

  No 33 24 

Smoke Yes  53 39 

  No 84 61 

Aspirin Yes  44 32 

  No 93 68 

History of Polyps Yes  20 15 

  No 117 85 

Family History of Polyps Yes  15 11 

  No 122 89 

Family History of CRC Yes 45 33 

 No 92 67 

Family History of other 
Cancers 

Yes 
91 66 

 No 46 34 
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3.3.5 The Correlation between Dukes Stage and Survival 

Advanced CRC, represented by increasing Dukes stages, correlated significantly (P = 

0.000) with the overall survival of the patients in our cohort. Dukes A patients had the 

best overall survival, with 100% patient survival (25/25). 15% (7/48) of Dukes B and 34% 

(18/53) Dukes C patients died as a result of their disease. The poorest survival rates 

were seen in Dukes D patients, with only 19% (2/11) of patients surviving for 5-years.   

 

Figure 3.3: Dukes Stage predicts survival in colorectal cancer. The Kaplan-Meier plot of 

colorectal cancer specimens (n=137) demonstrates significantly (log-rank test) lower survival is 

associated with increasing Dukes stages.  

  

Dukes Stage 
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3.3.6 The Correlation between T-Stage and Survival 

The increasing extent of the primary tumour, represented by increasing T-Stages, 

correlated significantly (P = 0.000) with the overall survival of the patients in our cohort. 

Primary tumours that were confined to the colon or rectum (Tis-T2) had the best overall 

survival, with none (0/29) of these patients dying as a result of CRC. T3 cases, where 

the tumour had grown completely through the muscularis propria into the serosa layer 

but not into any neighbouring tissues, had the next best survival rate with 25% (22/87) of 

patients dying as a result of CRC. Finally, T4 cases, where the tumour has grown 

through the colon wall and breached the peritoneal layer or invaded other organs or 

tissues, had the worst overall survival rate with 53% (10/19) of patients dying as a result 

of their disease.  
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Figure 3.4: T-Stage predicts survival in colorectal cancer. The Kaplan-Meier plot of colorectal 

cancer specimens (n=135*) demonstrates significantly (log-rank test) lower survival is associated 

with increasing T-Stages. *2 patients presented with terminal metastatic disease and only had 

biopsies taken; thus, their T-Stage could not be accurately determined.   
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3.3.7 The Correlation between N-Stage and Survival 

The amount of lymph node involvement, represented by increasing N-Stages, correlated 

significantly (P = 0.000) with the overall survival of the patients in our cohort. In cases 

where there was no lymph node involvement (N0), the patients survived the longest. 

11% (8/75) of these patients died as a result of CRC. In cases where cancer cells were 

present in local lymph nodes (N1), 35% (13/37) patients died as a result of their disease. 

Finally, in cases where cancer cells were found in distant lymph nodes (N2), 48% 

(11/23) of patients died as a result of CRC.  

 

Figure 3.5: N-Stage predicts survival in colorectal cancer. The Kaplan-Meier plot of colorectal 

cancer specimens (n=135*) demonstrates significantly (log-rank test) lower survival is associated 

with increasing N-Stages. *2 patients presented with terminal metastatic disease and only had 

biopsies taken; thus, their N-Stage could not be accurately determined.  
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3.3.8 The Correlation between M-Stage and Survival  

The presence or absence of metastases in patients with CRC correlated significantly (P 

= 0.000) with the overall survival of the patients in our cohort. In cases where there were 

no metastases present (M0), the patients survived the longest, with 80% of patients 

without metastases present, surviving 5 or more years after their initial diagnosis. In 

cases where metastases were present (M1), only 18% of patients survived 5 or more 

years after their initial diagnosis.  

 

Figure 3.6: M-Stage predicts survival in colorectal cancer. The Kaplan-Meier plot of colorectal 

cancer specimens (n=137) demonstrates significantly (log-rank test) lower survival is associated 

with increasing M-Stages.  
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3.3.9 The Correlation between Differentiation and Survival 

The degree to which a cancer cell differs from a normal cell, represented by decreasing 

stages of differentiation (Well → Moderately → Poorly), correlated significantly (P = 

0.000) with the overall survival of the patients in our cohort (Figure 3.7). Too few patients 

had well differentiated tumours (n = 3) to obtain reliable results and therefore were 

excluded from this analysis. The patients who had poorly differentiated tumours had the 

worst overall survival with 64% of them dying as a result of their disease.  

 

Figure 3.7: Differentiation predicts survival in colorectal cancer. The Kaplan-Meier plot of 

colorectal cancer specimens (n=137) demonstrates significantly (log-rank test) lower survival is 

associated with increasing differentiation.  
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3.3.10 The Correlation Between Age and Survival 

Advancing age, represented by patients over/under 75 years of age, correlated 

significantly (P = 0.017) with the overall survival of the patients in our cohort. CRC 

patients, who were 75 years or older at the time of their diagnosis had a significantly 

shorter survival than patients who were diagnosed under the age of 75.  

 

Figure 3.8: Age predicts survival in colorectal cancer. The Kaplan-Meier plot of colorectal 

cancer specimens (n=137) demonstrates significantly (log-rank test) lower survival is associated 

with increasing age.  

  



100 
 

3.4 Discussion 

Evaluation of the historical, clinical, pathological and patient outcome data for each 

patient in the cohort showed a broad distribution of sex, age, Dukes stage, TNM stage, 

differentiation, disease recurrence, outcome etc. The median age at diagnosis of our 

IHC and RPPA cohorts was 68 and 67, respectively, and the age range across both 

cohorts was 34-88, which is in agreement with previous studies (Maughan et al., 2011; 

Howlader, 2012; Zauber et al., 2012).  In general the incidences of colorectal cancer are 

about 35% to 40% higher in men than women (American;Cancer;Society, 2011), and 

this was also true of our cohort as there were 96 men and 62 women included. The 

reported symptoms and distribution of sites of occurrence in our cohort as depicted 

graphically in Figs. 3.1 & 3.2, respectively, were also consistent with previous studies 

(Austoker, 1994; Davies et al., 2005). These results are important because they 

demonstrate that our cohort is following the same epidemiological patterns of previous 

cohorts and therefore our findings are comparable.  

There was also an even distribution of pathological parameters such as site, TNM-

stages, lymphovascular invasion etc. across the cohort, with the exception of 

differentiation which is generally moderate in CRC adenocarcinomas. These parameters 

were then used to investigate potential correlations with expression levels of the 

antigens in the corresponding CRC tissue samples.  

In conclusion, the patient cohort constructed in this study provided us with an invaluable 

resource from which to accurately investigate the expression levels of the cancer 

specific antigens CerS5 and TRIM28.    
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4.1 Introduction 

CerS5 plays a crucial role in ceramide biosynthesis and is expressed ubiquitously in 

mammalian tissue in an organ specific distribution pattern (Levy and Futerman, 2010; 

Mullen et al., 2012). CerS5 was found to be up-regulated on a gene level in CRC 

patients (Kijanka et al., 2010), and recent studies have shown that reduced gene 

expression levels of CerS2, CerS4 and CerS6 are associated with tumour grade, lymph 

node status and cell proliferation in breast cancer (Ruckhaberle et al., 2009a; 

Schiffmann et al., 2009; Hartmann et al., 2012); while in head and neck tumours, CerS1 

has been shown to negatively regulate tumour growth (Koybasi et al., 2004). While most 

of these studies were based on gene expression analysis and silencing studies of 

specific CerS enzymes, the expression of the ceramide synthases in cancer tissue has 

not yet been well characterised. The aim was to investigate the protein expression levels 

of CerS5 in human CRC tissue and correlate this with clinicopathological data and 

patient outcome.   

An immunohistochemical study of CerS5 in CRC using tissue microarrays generated 

from a well characterised CRC patient cohort (n=102) was performed.  Survival analysis 

was carried out based on CerS5 expression levels in CRC tissue. A TMA with 24 normal 

mucosa cases from surgical margins and further cohort of 10 normal whole sections 

from surgical margins were used to assess the CerS5 staining in normal tissue and used 

for comparison with CRC tissue. The effect of neoadjuvant therapy on patient survival in 

a subset of neoadjuvantly treated patients (n=23) was also investigated. Neoadjuvant 

therapy generally consisted of both chemotherapy (5-FU) and radiation therapy. CerS5 

was further characterised using reverse-phase protein microarrays generated from laser 

capture microdissection-enriched carcinoma cells, enabling measurements of 

phosphorylation and total levels of known signalling proteins involved in apoptosis, 
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autophagy and other cancer related pathways. The quantitative RPPA data was used to 

design protein networks associated with high and Low CerS5 protein expression levels.  

 

4.2 Results 

4.2.1 Antibody Validation 

Western blot analysis was carried out in order to determine if the anti-CerS5 antibody 

was specific. A band was obtained at the expected molecular weight of 57 kDa in both 

the cell lines (SW480 & SW620), suggesting that the anti-CerS5 antibody was binding 

specifically to CerS5.  There is more CerS5 present in the metastatic SW620 cell line.  

 

Figure 4.1: Western blot validation of the anti-CerS5 antibody (LS-B3152). Whole-cell lysate 

was prepared from human colon cancer cell lines SW480 and SW620 and standard Western blot 

analysis with the anti-CerS5 (LS-B3152) and anti-β-Actin antibodies was performed. 
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4.2.2 CerS5 is expressed in both normal and cancerous colorectal tissue  

In previous studies, it was shown that CerS5 is upregulated at a gene level in colorectal 

cancer (Kijanka et al., 2010). Although CerS5 has been shown to be expressed at low 

basal levels in most non-cancerous tissues, studies have yet to show protein expression 

levels of CerS5 in colorectal cancer. The results show distinct membranous CerS5 

staining in both the normal mucosa and cancerous tissue (Figs. 4.2 & 4.3). In the 34 

cases which had matched normal mucosa and cancerous tissue, high membranous 

CerS5 staining intensity (2+ & 3+) was found in 55.9% (19/34) of cancerous tissue 

samples when compared with patient-matched adjacent normal mucosa. In the total IHC 

cohort, Low CerS5 staining (0 & 1+) was observed in 45.1% (46/102) and High CerS5 

staining (2+ & 3+) was observed in 54.9% (56/102) of CRC patient tissue in the IHC 

cohort. The RPPA cohort was also evaluated by immunohistochemistry with 42.1% 

(8/19) of CRC patient tissue demonstrating low staining intensity (0 & 1+) and 57.9% 

(11/19) showing high (2+ & 3+) staining intensity of CerS5.  

 

Figure 4.2: Membranous staining for CerS5 in colorectal adenocarcinoma. CerS5 staining 

was seen in the membrane and in the cytoplasm.  
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Figure 4.3: IHC staining for CerS5 in colorectal adenocarcinoma and normal colorectal 

mucosa. (A) Normal colorectal mucosa from tumour-free adjacent surgical margins with negative 

membranous CerS5 staining. (B) Colorectal cancer tissue with weak membranous CerS5 

staining. (C) Colorectal cancer tissue with strong membranous CerS5 staining.  
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4.2.3 High CerS5 expression in colorectal cancer tissue correlates with 

poor patient survival  

To assess if CerS5 staining intensity correlated with patient survival, the 5-year follow-up 

data of the 102 non-neoadjuvantly treated cases in the IHC cohort was analysed.  

Kaplan-Meier analysis showed (Fig. 4.4) that High CerS5 staining in colorectal cancer 

was found to have a significant negative prognostic value. Overall 5-year survival rates 

for patients with High CerS5 membranous intensity were significantly lower than those 

with Low CerS5 membranous intensity (P = 0.001, Fig. 4.4A). Five-year ‘recurrence-free’ 

survival was also significantly lower for patients with High CerS5 membranous intensity, 

when compared with those showing Low CerS5 membranous intensity (P = 0.002, Fig. 

4.4B).  
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Figure 4.4: High CerS5 expression is associated with poor prognosis in non-neoadjuvantly 

treated CRC patients. (A) Kaplan-Meier analysis revealed that High CerS5 expression correlates 

significantly with lower 5-year overall survival (log-rank test, P = 0.001) and  (B) lower 5-year 

‘recurrence-free’ survival (log-rank test, P = 0.002).  

(A) 

(B) 

(A) 



108 
 

4.2.4 CerS5 expression is an independent predictor of survival and 

disease recurrence  

Multivariate analysis showed that the intensity of membranous CerS5 expression was an 

independent predictor of 5-year overall survival and 5-year ‘recurrence-free’ survival (P = 

0.019 & P = 0.011, respectively) in CRC patients (Tables 4.1 & 4.2). Membranous CerS5 

expression was independent of TNM stage, gender, differentiation and lymphovascular 

invasion in its ability to predict prognosis. The hazard ratio for 5-year overall survival in 

CerS5 High patients was 4.7 times higher than in CerS5 Low patients and for 5-year 

‘recurrence-free’ survival the hazard ratio in CerS5 High patients was 4.3 times higher 

than in CerS5 Low patients. 
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Table 4.1: Cox uni- and multivariate analysis of relative risk of death from colorectal cancer within 

5 years 

 

Table 4.2: Cox uni- and multivariate analysis of relative risk of recurrence of colorectal cancer 

within 5 years 

 5-Year Overall Survival 
  

Univariate 
  

Multivariate 

Variable p value HR 95% CI for HR  p value HR 95% CI for HR 

 
CerS5 High/Low 

 
0.004 

 
4.855 

 
1.666 

 
14.152 

  
0.019 

 
4.712 

 
1.287 

 
17.250 

Gender 0.460 1.373 0.592 3.183  0.939 1.040 0.382   2.829 

T-stage 0.000 4.062 1.984 8.317  0.053 2.226 0.989   5.007 

N-stage 0.002 2.017 1.284 3.170  0.530 1.259 0.613   2.587 

M-stage 0.000 8.140 3.515 18.851  0.464 1.600 0.455   5.620 

Differentiation 0.000 4.903 2.037 11.801  0.041 3.165 1.049   9.547 

Lymphovascular    

invasion 

0.001 3.612 1.642 7.946  0.381 1.715 0.514   5.721 

 5-Year Recurrence-Free Survival 
  

Univariate 
 

Multivariate 

Variable p value HR 95% CI for HR  p value HR 95% CI for HR 

 
CerS5 High/Low 

 
0.005 

 
   4.047 

 
 1.532 

 
  10.690 

  
  0.011 

 
     4.322 

 
1.407 

 
13.280 

Gender 0.551 1.275 0.573    2.840   0.870 1.079 0.434  2.681 

T-stage 0.002 2.809 1.455    5.424   0.131 1.721 0.851  3.479 

N-stage 0.004 2.883 1.221    2.903   0.677 1.152 0.591  2.246 

M-stage - *N/A - -        - *N/A - - 

Differentiation 0.002 3.920 1.667    9.224   0.046 2.667 1.018  6.987 

Lymphovascular    

invasion 

0.001 3.455 1.621    7.362   0.132 2.359 0.773  7.194 

Abbreviations: HR = Hazard Ratio; CI = confidence interval; T = tumour; N = node; M = metastasis; *5-
year Recurrence-Free Survival analysis not applicable for patients with metastatic disease. 
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4.2.5 Unsupervised hierarchical clustering analysis identifies two 

distinct groups of patients  

 

On the basis of the results thus far, the aim was to understand the underlying molecular 

interplay associated with the significant effects of CerS5 expression levels on patient 

outcomes. The RPPA cohort was applied to investigate protein networks associated with 

sphingolipid metabolism, apoptosis, autophagy and other cancer related pathways in 

CerS5 High and Low tumours. 30 antibody substrates were quantified in the RPPA 

patient cohort for proteomic analysis. Unsupervised hierarchical clustering analysis of 

RPPA signalling endpoint-measurements identified two distinct clusters as represented 

by a heat map in Fig. 4.5. These two clusters support the results seen by 

immunohistochemical analyses; the first cluster (red) on the dendrogram is composed 

mainly of CerS5 High patients (9 cases) and with three CerS5 Low patients. The second 

cluster on the dendrogram (green) contains mainly CerS5 Low patients (5 cases) and 

with 2 CerS5 High cases.  
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Figure 4.5: Unsupervised hierarchical cluster analysis in 19 CRC patients based on RPPA 

measurements of 30 endpoints. Patients (CerS5 High and CerS5 Low) are shown on the 

vertical axis, 30 endpoints are outlined on the horizontal axis. Higher relative levels of signal are 

represented in red; intermediate in black and lower levels are in green. The analysis identifies two 

groups of patients; the first cluster (red) is mainly composed of CerS5 High patients, whereas the 

second cluster contains mainly CerS5 Low patients. 
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4.2.6 CerS5 High and CerS5 Low proteomic networks differ in colorectal 

cancer  

Spearman ρ rank correlation analysis was used to determine significant protein 

interactions identified by RPPA measurements. The analysis of 30 signalling endpoints 

revealed that 49 of 435 protein pairs were positively and significantly correlated (ρ > 

0.75, P ≤ 0.01) in both CerS5 High and Low patients (Appendix; Supplementary Table 2 

& 3). Sixty three positive significant correlations were found exclusively in the CerS5 Low 

group (Fig. 4.6A, Appendix; Supplementary Table 2), whereas 54 protein pairs showed a 

significant Spearman ρ value exclusively in the CerS5 High group (Fig. 4.6B, Appendix; 

Supplementary Table 3). No significant RPPA protein interactions that correlated 

negatively were observed. The protein interaction network of colorectal cancer 

specimens associated with a CerS5 High IHC staining intensity was distinctly different 

from the CerS5 Low network (Fig. 4.6). 

4.2.7 CerS5 Low proteomic network is associated with apoptosis  

The CerS5 Low proteomic network constructed from the Spearman ρ rank correlation 

analysis revealed four main sub-networks (Fig. 4.6A, Appendix; Supplementary Table 2). 

The sub-networks were defined by proteins strongly correlated with and in close 

proximity to each other and these were represented by the same colour in the network. 

The four main CerS5 Low sub-networks were dominated by proteins linked to apoptosis, 

including PP2A, survivin and the cleaved caspases 3 and 7. These dominant nodes 

radiated outward to interconnect with other cancer-associated molecules within their 

respective sub-networks. These results provide evidence for the activation of the 

ceramide driven apoptotic pathways in CerS5 Low tumours, potentially resulting in better 

outcomes seen in colorectal cancer patients with weak membranous CerS5 staining.  
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4.2.8 CerS5 High proteomic network is associated with autophagy  

The CerS5 High proteomic network was composed of 3 main sub-networks as shown 

(Fig. 4.6B, Appendix; Supplementary Table 3). When the CerS5 High and CerS5 Low 

proteomic networks were compared, it was found that the CerS5 High network is not 

dominated by proteins associated with apoptosis, as seen in the CerS5 Low network. 

However, in CerS5 High patients, one sub-network mostly composed of proteins linked 

to autophagy was identified (Fig. 4.6B light blue). The autophagy sub-network is 

composed of the initiators of autophagy beclin-1 and JNK and the autophagy regulators 

Akt, AMPK and LC3B. Interestingly, the autophagy sub-network is linked through mTOR, 

to the sphingolipid metabolism proteins PP2A and SPHK1, both associated with 

autophagy through mTOR pathway activation (Taniguchi et al., 2012). Taken together 

these results suggest a dysregulation of the ceramide-driven apoptotic pathways and 

activation of autophagy in CerS5 High patients, which may account for the correlation of 

strong CerS5 expression and poor survival.  
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Figure 4.6: RPPA analysis identifies distinct proteomic networks in CerS5 High and low 

CRC patients. (A) CerS5 Low proteomic network consists of four main sub-networks dominated 

by proteins linked to apoptosis; including PP2A, survivin and the cleaved caspases 3 and 7. (B) 

CerS5 High proteomic network consists of three sub-networks with one sub-network mainly 

composed of proteins linked to the autophagy (blue); including the initiators of autophagy beclin-1 

and JNK and the autophagy regulators Akt, AMPK, and LC3B. 
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4.2.9 CerS5 expression levels appear to have opposing prognostic values 

in Neoadjuvant treated patients 

Tissue samples from a small number of neoadjuvantly treated patients (n = 23) had 

been incorporated onto the TMAs and these were used to investigate the prognostic 

significance of CerS5 expression levels in these patients. It was found that the 5-year 

overall-survival and 5-year ‘recurrence-free’ survival for neoadjuvantly treated patients 

with High CerS5 membranous intensity was better than the neoadjuvantly treated 

patients with Low CerS5 membranous intensity, (Fig. 4.7, P = 0.089 & P = 0.201). This 

was the opposite of what had been seen previously in the non-neoadjuvantly treated 

patients.  
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Figure 4.7: CerS5 expression levels have different prognostic values in Neoadjuvant 

treated patients. In neoadjuvantly treated colorectal cancer patients, High CerS5 expression is 

indicative of; (A) better 5-year overall survival (P = 0.089) and (B) better 5-year ‘recurrence-free’ 

survival (P = 0.201).   

(B) 

(A) 



117 
 

4.2.10 CerS5 expression levels are predictive of response to 

Neoadjuvant therapy  

 

The survival of the neoadjuvantly treated CerS5 High patients was then compared with 

the non-neoadjuvantly treated CerS5 High patients and found that the neoadjuvantly 

treated CerS5 High patients had a significantly better 5-year overall survival, (Fig. 4.8A, 

P = 0.037). The survival of CerS5 Low patients with and without neo-adjuvant treatment 

was also compared and  it was found that the neoadjuvantly treated CerS5 Low patients 

had a significantly poorer 5-year ‘recurrence-free’ survival when compared with the non-

neoadjuvantly treated CerS5 Low patients, (Fig. 4.8D, P = 0.017). Neo-adjuvant therapy 

has a significant positive influence on survival in CerS5 High patients and has a 

significant negative influence on ‘recurrence-free’ survival in CerS5 Low patients. 
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Figure 4.8: CerS5 expression levels are predictive of response to therapy. (A&B): In CerS5 

High patients only, neoadjuvant treated patients had; (A) significantly better 5-year overall 

survival (P = 0.037*) and (B) better 5-year ‘recurrence-free’ survival (P = 0.158), compared with 

non-neoadjuvantly treated patients. (C&D): In CerS5 Low patients only, neoadjuvant treated 

patients had; (C) poorer 5-year overall survival (P = 0.074) and (D) significantly poorer 5-year 

‘recurrence-free’ survival (P = 0.017*) compared with non-neoadjuvantly treated patients. 
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4.2.11 Potential of RPPA technology to stratify patients based on antigen 

expression levels 

Up until now we have used IHC to stratify the patients in our cohort into CerS5 High or 

Low groups. However, RPPA is a viable alternative to IHC for rapid experimental 

screening and validation of candidate biomarkers in tissue samples. Robust 

quantification is achieved through having serial dilutions of each tissue sample. To 

investigate the potential of RPPA to stratify patients based on the level of expression of 

a biomarker, we calculated the median CerS5 RPPA intensity value from our RPPA 

cohort of 18 patients. We assigned with an RPPA intensity score on or above the 

median as being RPPA CerS5 High (n=10) and with an RPPA intensity score below the 

median as RPPA CerS5 Low (n=8).  

Unsupervised hierarchical clustering analysis identified three distinct clusters as 

represented by a heat map in Figure 4.9. The first cluster (red) on the dendrogram is 

composed of RPPA CerS5 High patients only (5 cases). The second cluster on the 

dendrogram (green) is composed mainly of RPPA CerS5 High patients (5) and only 2 

RPPA CerS5 Low patients. The third cluster (blue) contains only RPPA CerS5 Low 

patients (6 cases).  
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Figure 4.9: Unsupervised hierarchical cluster analysis in 18 CRC patients based on RPPA 

measurements of 30 endpoints. Patients (RPPA CerS5 High and CerS5 Low) are shown on the 

vertical axis, 30 endpoints are outlined on the horizontal axis. Higher relative levels of signal are 

represented in red; intermediate in black and lower levels are in green. The analysis identifies 

three groups of patients; the first cluster (red) is composed only of CerS5 High patients, the 

second cluster (green) is also mainly composed of CerS5 High patients, whereas the third cluster 

contains only CerS5 Low patients. 

  



121 
 

4.2.12 Unsupervised hierarchical clustering analysis of patients based 

on sphingolipid signalling 

 

To investigate what effect the differing expression levels of CerS5 was having on the 

other members of the sphingolipid metabolic pathway, the RPPA cohort was again 

applied. The relative expression levels of ceramide, as well as the other Ceramide 

Synthases (CerS 1, 2, 3, 6), Acid Ceramidase, Sphinosine-1-kinase, Sphingosine-1-

phosphate phosphatase were probed. The CerS4 antibody did not work on the RPPAs 

and so was excluded from this study. Unsupervised hierarchical clustering analysis 

identified three distinct clusters as represented by a heat map in Figure 4.10. The first 

cluster (red) on the dendrogram is composed mainly of CerS5 High patients (5 cases), 

with only 1 CerS5 Low patient. The second cluster on the dendrogram (blue) has 5 

CerS5 High patients and 2 CerS5 Low patients. The third cluster (green) contains mainly 

CerS5 Low patients (4 cases) and 2 CerS5 High cases. However, not all of the 

antibodies (CerS 6, Acid Ceramidase, Sphingosine-1-phosphatase) have been validated 

using Western blot analysis and, therefore, no definitive conclusions can been drawn 

until the antibody validation is complete.  
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Figure 4.10: Unsupervised hierarchical cluster analysis in 18 CRC patients based on RPPA 

measurements of 9 endpoints. Patients (CerS5 High and CerS5 Low) are shown on the vertical 

axis. Nine endpoints are outlined on the horizontal axis. Higher relative levels of signal are 

represented in red, intermediate in black and lower levels are in green. The analysis identified 

three groups of patients: the first cluster (red) is primarily composed of CerS5 High patients (4 

CerS5 High and 1 CerS5 Low patients), the second cluster (blue) is also predominantly 

composed of CerS5 High patients (5 CerS5 High and 2 CerS5 Low patients), whereas the third 

cluster contains mainly CerS5 Low patients (4 CerS5 Low and 2 CerS5 High patients). 
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4.2.13 CerS5 High and CerS5 Low proteomic networks differ in 

colorectal cancer  

Spearman ρ rank correlation analysis was again used to determine significant protein 

interactions between members of the sphingolipid metabolic pathway identified by RPPA 

measurements. The analysis of 9 signalling endpoints revealed that 19 of 36 protein 

pairs were positively and significantly correlated (ρ > 0.75, P ≤ 0.01) in CerS5 High 

patients and 21 positive significant correlations were found in the CerS5 Low group (Fig. 

4.11). No significant RPPA protein interactions that correlated negatively were observed. 

The protein interaction network of colorectal cancer specimens associated with a CerS5 

High IHC staining intensity was distinctly different from the CerS5 Low network (Fig. 

4.11). 
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Figure 4.11: RPPA analysis identifies distinct proteomic networks in CerS5 High and Low 

CRC patients. (A) CerS5 Low proteomic network consists of two main inter-connected sub-

networks. (B) CerS5 High proteomic network consists of one dominant network and a separate 

minor sub-network.     

CerS5 Low 

CerS5 High 
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4.3 DISCUSSION 

The results indicate that strong membranous CerS5 staining correlates with poor 

prognosis in patients with CRC. A favourable prognosis was observed in CRC patients 

with negative or weak CerS5 staining, which was also found in the majority of normal 

colorectal mucosae. CerS5 staining intensity was also found to be independent of 

disease stage in its ability to predict prognosis. This data suggests that elevated CerS5 

expression is associated with increased tumour aggressiveness, which may be 

regulated by altered levels of bioactive ceramides, though the mechanisms involved 

have yet to be elucidated. Interestingly, altered expression levels of CerS5 in colon 

cancer may distort the balance of ceramides, thereby contributing to tumour progression 

(Hartmann et al., 2012). Proteomic network analysis in this study demonstrates a shift 

from apoptosis-related pathways in CerS5 Low cases to autophagy in CerS5 High 

cases, suggesting a causative link between poor survival in CerS High cases and a 

dysregulation of programmed cell-death pathways. Finally, it was shown that CerS5 

expression levels are predictive of response to neoadjuvant therapy.  

CerS5 was previously identified as a marker in CRC and showed that it is upregulated at 

a gene level (Kijanka et al., 2010). Other studies have shown CerS5 expression at low 

basal levels in non-cancerous tissues (Levy and Futerman, 2010; Mullen et al., 2012). 

However, there is a paucity of literature on protein expression of CerS5 in cancer tissue. 

It was shown that down-regulation of the CerS2 gene in breast cancer is associated with 

poor patient outcomes (Fan et al., 2013). In addition, the overexpression of specific 

enzymes of sphingolipid metabolism has been shown to have both a negative prognostic 

value (ceramide kinase) and a positive prognostic value (galactosyl ceramide synthase, 

ganglioside GD3 synthase) in breast cancer  (Ruckhaberle et al., 2009b). In the current 

study, elevated protein levels of CerS5 in CRC tissue were confirmed using 

immunohistochemistry with CerS5 overexpression shown to correlate with poor 
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prognosis in patients with CRC and this was found to be a stage-independent predictor 

of prognosis. This suggests that elevated CerS5 expression is associated with increased 

tumour aggressiveness and therefore, CerS5 could be used as a novel prognostic 

biomarker in CRC.  

Ceramides are generally assumed to be pro-apoptotic (Bose et al., 1995; Veret et al., 

2011); and as such, one would expect that increased CerS would lead to increased 

ceramides in tumour tissue with resultant cell death. However, the data presented in this 

study suggests that strong membranous CerS5 staining in CRC tissue is associated with 

tumour progression. Recent studies support our findings demonstrating that elevated 

levels of ceramides increase tumour growth in SCID mice, and that silencing rather than 

overexpression of the CerS6 gene can lead to apoptosis in cancer cell lines (Senkal et 

al., 2010; Senkal et al., 2011). Furthermore, Hartmann et al. demonstrated that 

overexpression of CerS2, despite having no direct impact on ceramide levels, leads to 

increased cell proliferation in breast and colon cancer cell lines (Hartmann et al., 2012). 

These studies, in conjunction with our findings, suggest that although apoptosis is a 

recognised feature of ceramides, specific ceramide synthase expression levels and 

ceramide fatty acid chain lengths in different tissues may provide alternative survival 

modes in cancer.  

The proteomic data presented in this study offer some insights into the tumour 

suppressive and tumour promoting effects of CerS5 in CRC. Analysis of the RPPA 

results revealed two distinct signalling networks for CerS5; a CerS5 Low proteomic 

network associated with apoptosis and a CerS5 High proteomic network associated with 

autophagy. The apoptotic pathway which emerged from our CerS5 Low network 

included apoptosis-related proteins such as PP2A, Survivin and Caspases 3 and 7. 

Veret et al. recently showed that overexpression of CerS4 in pancreatic β-cell-induced 
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apoptosis and was associated with increased caspase 3 and 7 activities through de novo 

synthesis of C18:0 ceramide species (Veret et al., 2011). By contrast, another study 

showed that down-regulation of CerS6 in SCID mice was linked to caspase 3 activation 

and subsequent apoptosis (Senkal et al., 2011). In our CerS5 High proteomic network, 

LC3B, Beclin-1 and JNK were identified as key signalling molecules for autophagy, a 

phagolysosome process whereby damaged proteins and organelles are removed to 

prevent cell damage and intracellular molecules are sequestered for cell survival (Maes 

et al., 2013). Espina et al. have recently shown that autophagy is required to promote 

abnormal breast cancer progenitor cells into invasive breast cancer by providing 

necessary survival mechanisms under stress (Espina et al., 2010). Another study in 

pancreatic cancer showed that autophagy was required for tumour growth (Yang et al., 

2011). LC3B dominates a central node in our CerS5 High network and has been 

previously been shown to induce mitochondrial autophagy in human cancer cells by 

directly binding to ceramides (Sentelle et al., 2012). Although CerS5 has not been linked 

to autophagy in cancer, a model of diabetic cardiomyopathy showed that CerS5 

promoted cardiac autophagy through de novo synthesis of C14-ceramide (Russo et al., 

2012). Furthermore, cardiac autophagy required CerS5 for sphingolipid-mediated 

induction of Beclin 1 protein and overexpression of LC3B, both of which dominate 

central nodes in our CerS5 High proteomic network. 

Although two distinct signalling networks associated with apoptosis and autophagy are 

identified, there are also dominant nodes common to both networks such as Bcl-2 and 

Sphingosine Kinase 1 (SPHK1). This may be explained by the fact that apoptosis and 

autophagy are intimately linked through common signalling pathways. Binding of Bcl-2 to 

phosphorylated Beclin1 induces autophagy while cleavage of Beclin1 by effector 

caspases is pro-apoptotic (Delgado et al., 2014). SPHK1, a central enzyme in 

sphingolipid metabolism, activates anti-apoptotic signal transduction in a model of 
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Kaposi’s sarcoma in SCID mice (Qin et al., 2014); while other studies have shown that 

overexpression of SPHK1 stimulates autophagy in breast cancer cells by increasing the 

formation of LC3B-positive autophagosomes (Lavieu et al., 2006). 

Cancer is ultimately the uncontrolled growth of cells coupled with malignant behaviour, 

such as invasion and metastasis. The BCL2 family of proteins and bioactive 

sphingolipids are intricately linked during apoptotic cell death with many 

chemotherapeutic drugs known to cause accumulation of the pro-apoptotic sphingolipid 

ceramide (Beverly et al., 2013). A recent study, has demonstrated that treatment with 

ABT-263, a potent inhibitor of three anti-apoptotic BCL2-like proteins; BCL2, BCLxL and 

BCLw (Mérino et al., 2012),  induces the generation of C16-ceramide in multiple cell 

lines.  They also present a feed-forward model by which activation of CerS by 

chemotherapeutic drugs leads to elevated ceramide levels that result in synergistic 

channel formation by ceramide (or one of its metabolites) and BAX/BAK, (Beverly et al., 

2013). In support of this it was found that non-neoadjuvantly treated CerS5 High CRC 

patients had poorer overall survival and rates of recurrence, suggesting that, in the 

cancer cells, pro-survival signals outweighed the pro-apoptotic signals. Conversely, 

patients with High CerS5 after neoadjuvant treatment had better overall survival and 

rates of recurrence, suggesting that neoadjuvant therapy stimulates the apoptotic 

pathway and ceramide-driven apoptosis is restored (Figure 4.12). In the CerS5 Low 

cohort, non-neoadjuvantly treated patients had good 5-year overall survival and rates of 

recurrence, suggesting that the pro-apoptotic cell signals outweighed the pro-survival 

signals and tissue homeostasis is working correctly. However, patients with Low CerS5 

after neoadjuvant treatment had significantly higher rates of recurrence, suggesting that 

neoadjuvant therapy has an overall negative effect on these patients. In non-

neoadjuvantly treated CerS5 Low patients, the levels of the pro-apoptotic ceramide and 

Sphingosine and the pro-survival Sphingosine-1-phosphate seem to be balanced, 
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replicating normal tissue homeostasis (Sliva et al., 2000). However, when these patients 

receive possibly unnecessary chemotherapy treatment, the balance between pro-

apoptotic and pro-survival signals is disturbed potentially accounting for the poorer 

survival and ‘recurrence-free’ survival seen in the neoadjuvant-treated patients.   These 

results suggest that CerS5 membranous intensity could potentially identify CRC patients 

that would benefit from neoadjuvant therapy (CerS5 High) and patients that neoadjuvant 

therapy would have a negative effect on their survival (CerS5 Low). This would need to 

be evaluated further in a larger patient cohort to confirm these findings.   
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Figure 4.12: Neoadjuvant therapy reverses cell survival in CerS5 High and Low patients. 

Under normal circumstances, tissue homeostasis is a perfectly choreographed process balancing 

pro-survival and death signals. When shifted in favour of proliferative signals, the imbalance leads 

to deregulated cell growth that contributes to malignancy, as happens in colorectal cancer. Non-

neoadjuvantly treated CerS5 High CRC patients had poor overall survival and rates of 

recurrence, suggesting that the pro-survival cell signals outweighed the pro-apoptotic signals. 

Conversely, patients with High CerS5 after neoadjuvant treatment had better overall survival and 

lower rates of recurrence, suggesting that neoadjuvant therapy stimulates the apoptotic pathway. 

Contrastingly, in the CerS5 Low cohort, non-neoadjuvantly treated patients had good overall 

survival and rates of recurrence, suggesting that the pro-apoptotic cell signals outweighed the 

pro-survival signals. However, patients with Low CerS5 after neoadjuvant treated had poorer 

overall survival and rates of recurrence, suggesting that neoadjuvant therapy has an overall 

negative effect on these patients. Therefore, CerS5 membranous intensity can identify CRC 

patients that would benefit from neoadjuvant therapy (CerS5 High) and patients in whom 

neoadjuvant therapy would have a negative effect on their survival (CerS5 Low).   
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CerS5 is part of a family of ceramide synthases which along with other enzymes such as 

Acid Ceramidase, Sphingosine-1-kinase and Sphingosine-1-phosphate phosphatase 

regulate the sphingolipid metabolic pathway. Abnormalities in sphingolipid metabolism 

disturb the balance between these various sphingolipid species and in order to 

investigate what effect the differing expression levels of CerS5 was having on the other 

members of the sphingolipid metabolic pathway, the RPPA cohort was again applied. 

The results from the unsupervised hierarchical clustering analysis suggest that there is 

deregulation and high expression levels of the sphingolipid metabolic enzymes in CerS5 

High patients.  This supports our earlier unsupervised hierarchical clustering analysis 

finding that analysis of signalling endpoints linked to apoptosis, autophagy and other 

cancer related pathways, splits the cohort into 2 clusters of patients, one mainly 

composed of CerS5 High patients and a second composed of CerS5 Low patients. The 

proteomic networks constructed from the endpoints linked to the sphingolipid metabolic 

pathway also differed between CerS5 High and Low patients. Taken together these 

findings suggest that, in addition to the previous findings that linked the proteomic 

network of CerS5 High patients to autophagy, there is also deregulation and high 

expression levels of the sphingolipid metabolic enzymes in these patients. Whether the 

imbalance of sphingolipid enzymes causes the changes seen in apoptotic, autophagic 

and other cancer related pathways in CerS5 High patients or vice versa is yet to be 

elucidated. However, as previously mentioned, not all of the sphingolipid antibodies 

(CerS 6, Acid Ceramidase, Sphingosine-1-phosphatase) have been validated using 

Western blot analysis and therefore no definitive conclusions can been drawn until the 

antibody validation is complete.  
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Immunohistochemistry is no longer a technique used solely for diagnosis as often a 

semi-quantitative evaluation of the level of expression of a diagnostic/therapeutic 

biomarker is now required. There are many factors that can affect the 

immunohistochemical staining intensity of an antigen including tissue fixation, antigen 

retrieval, detection systems, and different scoring systems and hence, RPPA is 

emerging as a promising novel approach for the quantitative assessment of antigens in 

human tissue (Charboneau et al., 2002). In this study we crudely assigned patients as 

being RPPA CerS5 High or Low based solely on whether their RPPA CerS5 expression 

levels were above or below the median CerS5 expression level of the eighteen patients 

in the cohort. We found that unsupervised hierarchical clustering analysis stratified the 

patients into three main clusters, the first cluster being composed of RPPA CerS5 High 

patients only, while the second cluster is composed mainly of RPPA CerS5 High patients 

(5) and only 2 RPPA CerS5 Low patients. The third cluster contains only RPPA CerS5 

Low patients. When this heatmap (Fig. 4.9) is compared with the previous heatmap 

where patients are labelled based on IHC CerS5 intensity (Fig. 4.5), we can see that 

using RPPA analysis stratifies the patients more accurately. This may be due to the fact 

that RPPA is a quantitative analysis method and IHC is a subjective semi-quantitative 

method of analysis. RPPA has already been used to show that the activating state of the 

PI3K-AKT pathway can stratify patients who could benefit from neoadjuvant treatment in 

CRC (Mammano et al., 2012). RPPAs have the potential to accurately stratify patients 

based on antigen expression levels and this could prove to be an invaluable resource for 

accurately assessing the expression levels of prognostic and predictive biomarkers, 

such as CerS5, in clinical samples.  
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In conclusion, it is shown for the first time that CerS5 is expressed in CRC tissue and 

that CerS5 High expression is associated with poor patient survival. Two distinct 

signalling CerS5 protein networks which may influence the fate of the cancer cell by 

switching between apoptosis and autophagy are delineated. This study highlights the 

importance of CerS5 in the tumourigenic process and that selective targeting of products 

of sphingolipid metabolism may prove beneficial in the therapeutic treatment of 

colorectal cancer.  Targeting the sphingolipid biosynthesis pathway is emerging as a 

novel method for treating tumour progression in colorectal cancer, and most 

chemotherapeutic drugs ultimately work by stimulating apoptosis. The results of our 

study suggest that as well as being a novel prognostic marker of apoptosis, CerS5 

expression can identify colorectal cancer patients that would benefit from neoadjuvant 

therapy (CerS5 High) and patients that neoadjuvant therapy would have an overall 

negative effect on (CerS5 Low). 
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4.4 Future Work  

As previously described, membranous staining intensity of CerS5 could potentially 

identify CRC patients that would benefit from neoadjuvant therapy (CerS5 High) and 

patients that neoadjuvant therapy would have a negative effect on their survival (CerS5 

Low).  Ideally, in order to use this to the benefit of patients the findings need to be 

verified in a larger patient cohort. Furthermore, the over-expression of the CerS5 gene in 

HEK293 cells has previously been shown to increase sensitivity to doxorubicin and 

vincristine, but not to cisplatin and carboplatin (Min et al., 2007). Therefore it would also 

be interesting to determine if the overexpression of CerS5 in CRC tissue can predict a 

response to a particular drug, family of drugs, or combination of drugs.  
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Chapter 5 
 

TRIM28 and its Role in Colorectal Cancer 
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5.1 Introduction 

Tumour cells generally modulate their stromal microenvironment by producing stroma-

modulating growth factors, which disrupt normal tissue homeostasis and activate 

surrounding stromal cells, such as fibroblasts, smooth-muscle cells and adipocytes. 

Fibroblasts, in particular, can affect the stromal microenvironment leading to an increase 

in tumour aggressiveness (Stuelten et al., 2010). Although numerous studies have 

investigated the tumour-promoting and tumour-suppressor activity of TRIM28 in cancer, 

little is known about the expression of TRIM28 in the tumour microenvironment. The 

balance of TRIM28 expression in cancer epithelium and the surrounding stroma may be 

a critical determinant of the tumour-promoting or tumour-suppressing phenotype of the 

protein. By dissecting the effects of TRIM28 in stromal fibroblasts and epithelial tumour 

cells, the aim was to elucidate the complex relationship between stromal and epithelial 

compartments in colorectal cancer as it was previously shown that the TRIM28 gene is 

overexpressed in CRC (Kijanka et al., 2010).   

An immunohistochemistry-based study to investigate the levels of expression of TRIM28 

in both epithelial and stromal compartments using tissue microarrays was performed. 

Fluorescence microscopy was used to confirm the nuclear location of TRIM28. Survival 

analysis was performed based on TRIM28 expression ratios between epithelial and 

stromal cells in CRC tissue. TRIM28 was further characterised using Reverse-Phase 

Protein Microarrays generated from laser capture microdissected epithelial and stromal 

cells. The quantitative RPPA data was used to design protein networks associated with 

High and Low TRIM28 expression ratios.   
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5.2 Results 

5.2.1 TRIM28 Antibody Validation  

The TRIM28 protein was expressed in E.coli and purified using IMAC purification as 

outlined in the methods chapter (2.3.1-2.3.3). SDS-PAGE and Western blot analyses 

were run in parallel to ensure that the TRIM28 protein was successfully expressed and 

purified to give an approximate location of the size of the protein and also to validate that 

the anti-TRIM28 antibody used binds specifically to TRIM28. As seen in Figure 5.1. (A), 

the TRIM28 protein was successfully expressed and purified, with bands believed to 

represent TRIM28 observed at approximately 100 kDa. The anti-TRIM28 antibody 

(C42G12, Cell Signalling Technology Inc) also detected the band at 100 kDa in lane 2 of 

the Western Blot (Figure 5.1B). Thus, it would appear that the anti-TRIM28 antibody was 

binding specifically to TRIM28.  
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Figure 5.1: Validation of the anti-TRIM28 antibody using SDS-PAGE and Western Blotting. 

(A) SDS-PAGE Gel: Lane 1 represents the Fermentas pageruler
TM

 marked for protein size 

determination; lanes 2 and 3 represent the eluted samples containing the TRIM28 protein. (B) 

Western Blot using TMB chromogenic substrate for detection: Gel: Lane 1 represents the 

Fermentas pageruler
TM

 marked for protein size determination; lanes 2 and 3 represent the eluted 

samples containing the TRIM28 protein. 
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5.2.2 Investigation of the level of expression of TRIM28 in CRC cancer 

cell lines.  

The cells were lysed using cell lysis buffer as described previously in section 2.6.4. A 

Lowry assay was then carried out in order to quantify the levels of protein in two CRC 

cell lines (SW480 and SW620). This was done to ensure that the same amount of 

protein (50μg/ml) would be loaded onto the lanes when carrying out SDS-PAGE and 

Western Blot analysis to ensure an accurate comparison of TRIM28 expression between 

cell lines. Standard concentrations of BSA were used to construct a protein standard 

curve and curve-linear regression was used to extrapolate the unknown protein 

concentrations of the SW480 and SW620 cell lines from the standard curve. A 1 in 5 

dilution of both cell lines (SW480 and SW620) was used to calculate the protein 

concentration, as it best fit the linear region of the curve.  The results of the Lowry Assay 

indicated that there was a slightly higher protein content in the SW480 cell lines (Fig. 

5.2). Therefore it was calculated that 10.9µls of the SW480 cells and 17.8µls of the 

SW620 cells needed to be added to each lane of the SDS-PAGE gel, which 

corresponded to 50μg/ml.  
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Figure 5.2: Lowry Assay for Protein Quantification in cell lines. (A) Standard Curve using 

various concentrations of BSA Standards versus absorbance at A750nm. (B) Protein Concentration 

in varying dilutions of the SW480 and SW620 cell lines, extrapolated from standard curve.  
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β-Actin and TRIM28 expression levels were evaluated using Western Blot analysis 

based on the information which had been obtained from the Lowry Assay. β-Actin was 

chosen as the housekeeping, control protein, as it is found in abundance in all eukaryotic 

cells. Housekeeping proteins are used as an internal control for protein loading as well 

as reference in Western blotting analysis (Ruan and Lai, 2007). The SDS-PAGE results 

indicate that similar amounts of protein are present for both cell lines (Fig. 5.3 C). The 

Western Blot analysis for β-Actin confirmed this as the level of expression was very 

similar for both cell lines, indicating that the correct amount of protein had been loaded 

to each well (Fig. 5.3 A). The Western Blot analysis for TRIM28 shows a slightly higher 

level of TRIM28 expression in the SW620 cell line, when compared with the SW480 cell 

line (Fig. 5.3 B).  
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Figure 5.3: Detection of TRIM28 and β-Actin in cancer cell lines, using SDS-PAGE and 

Western Blotting. (A) Western Blot for β-Actin in cancer cell lines. (B) Western Blot for TRIM28 

in cancer cell lines. (C) SDS-PAGE gel for validation of protein content in cell lysates. In each 

case; lane 1 represents the page ruler marked for protein size determination; lane 2 represents a 

neat sample SW480 or SW620 cell lysates; lane 3 represents a 1:2 dilution of SW480 or SW620 

cell lysates.  
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5.2.3 TRIM28 expression determined to be in the cell nuclei 

The expression of TRIM28 and β-Actin was evaluated in the cancer cell lines using 

fluorescence microscopy. β-Actin was chosen as the housekeeping, control protein as 

homogenous levels are found in all eukaryotic cells. β-Actin is expressed uniformly 

throughout the cells, while TRIM28 expression is localised to the nucleus (Fig. 5.4).  

 

Figure 5.4: β-Actin and TRIM28 expression in SW480 and SW620 cells. The cells were fixed 

with PAF solution and incubated with the primary antibodies (anti-β-Actin or anti-TRIM28) 

overnight, followed by incubation with the fluorescently labelled secondary antibody (Alexo-Fluoro 

488) Anti-Rabbit IgG for 1 hour. The red arrows highlight the cell nuclei.   

 

Cell Nuclei 



144 
 

5.2.4 TRIM28 is overexpressed in epithelial CRC tissue 

The tissue sections were evaluated using immunohistochemical staining for the 

expression of the TRIM28 within the epithelium and the surrounding stroma, in both 

cancerous tissue and adjacent normal mucosa. There was distinct nuclear staining for 

TRIM28 and the intensity and staining distribution was usually homogeneous within a 

case (Fig. 5.5). In both the normal and cancerous epithelial tissue TRIM28 staining was 

confined to cell nuclei. In normal stromal tissue TRIM28 expression was also nuclear 

and was predominantly found in lamina propria fibroblasts and occasionally in lymphoid 

cells in the germinal centres of lymphoid follicles. In tumour stromal tissue the nuclear 

TRIM28 expression was present in fibroblasts and was occasionally present in 

lymphocytes. 

The majority of normal epithelial and stromal tissue showed weak to moderate TRIM28 

positivity (83.3% and 91.8%, respectively). However, markedly higher TRIM28 

expression levels were found in the epithelium of CRC tissue, when compared with 

normal colorectal epithelium. A total of 57 out of 137 (42%) CRC cases showed strong 

epithelial TRIM28 staining (intensity 3+) in the nuclei of epithelial cells (Fig. 5.5). The 

TRIM28 expression was independent of any clinicopathological features investigated, 

including survival and ‘recurrence-free’ survival. 
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Figure 5.5:  Sections from colorectal cancer tissue demonstrating epithelial and stromal 

staining for TRIM28. Panel (A) shows strong expression of TRIM28 in epithelial cells (black 

arrow) and moderate expression in stromal compartments, particularly in fibroblasts (red arrow). 

Panel (B) shows strong expression of TRIM28 in epithelial cells (black arrows) and weak 

expression in stromal compartments, fibroblasts (white arrow). (x400). 

 

5.2.5 TRIM28 expression ratios  

The relationship between the epithelial and stromal intensity was calculated by 

determining the ratio of TRIM28 expression between the two compartments (Fig. 5.6). A 

High TRIM28 expression ratio was defined as at least 2 units of difference in staining 

intensity (e.g. epithelium strong (3+) and stroma weak (1+), or epithelium moderate (2+) 

and stroma negative (0)). A Low TRIM28 expression ratio was defined as 1 or 0 units of 

difference in staining intensity (e.g. epithelium moderate (2+) and stroma weak (1+), or 

epithelium weak (1+) and stroma weak (1+)).  

  

(A) (B) 
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Figure 5.6. Epithelial to stromal TRIM28 expression ratios in colorectal cancer tissue. 

Negative (0), weak (1+), moderate (2+) or strong (3+) TRIM28 expression was found in cell nuclei 

of epithelial and stromal colorectal cancer tissue. Panel (A) shows strong expression of TRIM28 

in epithelial cells and moderate expression in stromal compartments resulting in a low epithelial to 

stromal TRIM28 expression ratio. Panel (B) shows weak expression of TRIM28 in both epithelial 

and stromal cells resulting in a low epithelial to stromal TRIM28 expression ratio. Panel (C) shows 

strong expression of TRIM28 in epithelial cells and weak expression in stromal compartments 

resulting in a High epithelial to stromal TRIM28 expression ratio. Panel (D) shows moderate 

expression of TRIM28 in epithelial cells and negative staining in stromal compartments resulting 

in a High epithelial to stromal TRIM28 expression ratio. (x200). 

 

In total, 103 cases had a Low ratio of epithelial to stromal TRIM28 expression and 34 

cases had a High ratio of epithelial to stromal TRIM28 expression (Fig. 5.7).  
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Figure 5.7: Graphical representation of the epithelial to stromal TRIM28 expression ratios 

in the colorectal cancer cohort. Negative (0), weak (1+), moderate (2+), or strong (3+) TRIM28 

staining intensities were found in both epithelial and stromal tissue compartments. The TRIM28 

expression ratios are labelled by (○) epithelial and (■) stromal symbols, which are linked with 

straight lines for matched cases. The numbers above the connection lines depict the total number 

of cases for each specific distribution of epithelial to stromal TRIM28 expression ratios. 

 

5.2.6 A High TRIM28 expression ratio is associated with shorter survival 

Kaplan-Meier curves for patients with colorectal carcinoma, categorized according to 

High or Low TRIM28 expression ratios between the epithelium and patient-matched 

stromal tissue are shown in Fig. 5.8. The ratio of the intensity of TRIM28 expression in 

patient-matched epithelial and stromal tissue had a significant prognostic value. Overall 

5-year survival rates (OS) for patients with a High TRIM28 expression ratio (≥2 units of 

difference) were significantly lower than those with a Low TRIM28 expression ratio (≤1 

units of difference), (P = 0.033). Five-year ‘recurrence-free’ survival (RFS) was also 

significantly lower for patients with a High intensity ratio of TRIM28 expression (≥2 units 

of difference) than those with a Low TRIM28 expression ratio (≤1 units of difference), (P 

= 0.043).  
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Figure 5.8:   Epithelial to stromal TRIM28 expression ratios predict survival in colorectal 

cancer. (A) High TRIM28 expression ratio in colorectal cancer correlates with lower 5-year 

overall survival (OS). The Kaplan-Meier plot of colorectal cancer specimens (n = 137) 

demonstrates significantly lower (P = 0.033; log-rank test) survival associated with High TRIM28 

expression ratios. (B) High TRIM28 expression ratio in colorectal cancer correlates with lower 5-

year ‘recurrence-free’ survival (RFS). The Kaplan-Meier plot of colorectal cancer specimens 

(n=137) demonstrates significantly lower (P = 0.043; log-rank test) ‘recurrence-free’ survival 

associated with High TRIM28 expression ratio. 

  

(A) 

(B) 
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5.2.7 TRIM28 Expression is an Independent Predictor of Prognosis 

In addition, multivariate analysis showed that the epithelial to stromal TRIM28 

expression ratio was an independent predictor of 5-year overall survival (P = 0.046; 

Table 5.1) and 5-year ‘recurrence-free’ survival (P = 0.035; Table 5.2). 

 

Table 5.1.   Cox uni- and multivariate analysis of relative risk of death from colorectal cancer 

within 5 years 

 

Abbreviations: CI = confidence interval; T = tumour; N = node; M = metastasis. 

  

5-year Overall Survival 

 

Univariate Multivariate 

Variable Hazard Ratio (95% CI) p Value Hazard Ratio (95% CI) p Value 

TRIM28 Ratio 2.070  (1.036-4.137) 0.039 2.136  (1.015-4.498) 0.046 

Age <75> 2.398  (1.184-4.858) 0.015 4.119  (1.825-9.293) 0.001 

Gender 1.094  (.542-2.211) 0.802 0.998  (0.441-2.260) 0.997 

T-Stage 2.092  (1.203-3.641) 0.009 2.628  (1.315-5.255) 0.006 

N-Stage 2.390  (1.561-3.658) 0.000 2.243  (1.392-3.615) 0.001 

M-Stage 8.091  (3.699-17.697) 0.000 3.879  (1.440-10.453) 0.007 
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Table 5.2.   Cox uni- and multivariate analysis of relative risk of recurrence of colorectal cancer 

within 5 years 

 

Abbreviations: CI = confidence interval; T = tumour; N = node; M = metastasis; *5-year 

Recurrence-Free Survival analysis not applicable for patients with metastatic disease. 

  

5-year Recurrence-Free Survival 

Univariate Multivariate 

Variable Hazard Ratio (95% CI) p Value Hazard Ratio (95%CI) p Value 

TRIM28 Ratio 1.944  (1.005-3.759) 0.048 2.100  (1.052-4.191) 0.035 

Age <75> 2.084  (1.050-4.139) 0.036 2.979  (1.404-6.321) 0.004 

Gender 1.135  (.581-2.220) 0.710 1.297  (0.609-2.760) 0.500 

T-Stage 1.709  (1.040-2.807) 0.034 2.267  (1.232-4.173) 0.009 

N-Stage 2.053  (1.386-3.040) 0.000 2.055  (1.340-3.151) 0.001 

M-Stage *N/A 

 

*N/A 
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5.2.8 Cell Scratch Assay to Monitor CRC Cancer Cells Migration Patterns 

A cell scratch assay was performed, as described previously (2.6.9), to investigate the 

migration capabilities of the SW480 and SW620 CRC cancer cell lines. The SW480 cell 

line appeared to migrate more rapidly than the SW620 cell line (Fig. 5.9). By 48hr, the 

SW480 cell line had almost completely closed the scratch and by 72hr the scratch was 

no longer visible. The SW620 cell line also showed cell migration following the scratch. 

However, the scratch had not closed by 48hr and at 72hr the scratch was still clearly 

visible.  

 

Figure 5.9:  Cell Scratch Assay to monitor Cancer Cell Migration. (A) SW480 and (B) SW620 

cells were grown and subjected to an in vitro scratch assay, with images captured at 0, 24, 48, 

and 72 h incubation. The rate of migration was measured by the closing of the scratch, (n = 1). 

  

0hr 24hr 48hr 72hr 

0hr 24hr 48hr 72hr 
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5.2.9 Cancer Cell Co-Culture with Fibroblasts affects cancer cell growth  

To determine the effect that fibroblasts have on cancer cell growth, the cancer cell lines 

were co-cultured with fibroblasts (CCD-18Co) and cell growth was monitored at various 

time-points (0, 24 and 48hr). Cell growth was not effected in either of the SW480 and 

SW620 cell lines at 24hr, (Fig. 5.10). At 48hr, there is to be cell death occurring in both 

the SW480 and SW620 control groups, which had not been co-cultured with fibroblasts 

(Fig. 5.10). After 48hr in the co-culture there was no noticeable level of cell death, and 

the cancer cell lines were continuing to grow (Fig. 5.10). This suggests that the fibroblast 

cells are affecting the rate of growth of both the primary (SW480) and metastatic 

(SW620) cell lines.  
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Figure 5.10: Cancer Cell Growth when co-cultured with Fibroblasts. (A) SW480 and (B) 

SW620 cell lines were cultured alone or in the presence of fibroblasts. The black arrows highlight 

areas of cell death, (n = 1).  

  

0hr 24hr 48hr 

0hr 24hr 48hr 
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5.2.10 RPPA expression levels of antibodies included in the proteomic 

analysis 

The underlying molecular interactions at play in the tumour microenvironment were 

investigated in order to further understand the significant effects of TRIM28 expression 

ratios on patient outcome. The RPPA cohort was used to investigate protein networks 

associated with apoptosis, autophagy and other cancer related pathways in TRIM28 

High and Low ratio tumours.  The TRIM28 staining intensity was high (2+ or 3+) in the 

epithelium of all TRIM28 High and Low ratio cases and hence, all of these samples were 

grouped together (n = 14).  The stromal cases were split into TRIM28 High Ratio cases 

(n=8) and TRIM28 Low Ratio cases (n=6) (Fig. 5.11).  

 

Figure 5.11: Graphical representation of the epithelial to stromal TRIM28 expression ratios 

in the CRC proteomic cohort. Negative (0), weak (1+), moderate (2+), or strong (3+) TRIM28 

staining intensities were found in both epithelial and stromal tissue compartments. The TRIM28 

expression ratios are labelled by (○) epithelial and (■) stromal symbols, which are linked with 

straight lines for matched cases. The numbers above the connection lines depict the total number 

of cases for each specific distribution of epithelial to stromal TRIM28 expression ratios. 
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The level of expression of each of the 26 endpoints in pure populations of cells isolated 

from epithelial and stromal tissue samples following laser capture microdissection was 

investigated. The expression level of each endpoint, in each tissue type is shown 

graphically in the box-plot image in figure 5.12. In the stroma of TRIM28 High and Low 

ratio patients, the difference in expression levels of a numbers of endpoints are 

approaching significance: Cleaved Caspase 3 (p=0.067); Cleaved Caspase 7 (p=0.091); 

EGFR1148 (p=0.082) and RUNX1 (p=0.065).  



156 
 

 

Figure 5.12: Box plot diagram showing RPPA expression levels of all 26 endpoints 

included in the proteomic analysis. (A): TRIM28 High and Low Ratio Patients Epithelium 

RPPA Expression Levels (B): TRIM28 High Ratio and (C): TRIM28 Low Ratio Patients Stroma 

RPPA Expression Levels. The median (line within the box), mean (centre of the diamond), 25th 

and 75th percentiles and maximum and minimum values are all displayed on each box-plot. The 

black arrows represent endpoints where the difference in expression levels between the stromal 

cells is approaching significance.   
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5.2.11 MDM2 expression is significantly lower in TRIM28 High Ratio patients  

In the TRIM28 High ratio cases, there is significantly less MDM2 expressed in the 

stroma than in the epithelium (p = 0.017, Fig. 5.13). There is no significant difference in 

MDM2 intensity between the epithelium and stroma in TRIM28 Low ratio cases (p = 

0.873, Fig. 5.13). MDM2 is a RING domain ubiquitin E3 ligase and a major regulator of 

the p53 tumour suppressor. Importantly, TRIM28 was previously identified as an MDM2-

binding protein and shown to form a complex with MDM2 and p53 in vivo (Wang et al., 

2005). The binding is mediated by the N-terminal coiled-coil domain of TRIM28 and the 

central acidic domain of MDM2. This is an important finding as it supports our previous 

finding that there is less TRIM28 in the stroma of TRIM28 High ratio patients and, taken 

together, these results suggest that there is a dysregulation of the p53 tumour 

suppressor in these patients. This may account for their significantly poorer 5-year 

overall survival and 5-year ‘recurrence-free’ survival. Interestingly, no significant 

correlations were seen in the TRIM28 Low ratio cases.  
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Figure 5.13: Box plot diagram showing MDM2 RPPA intensity levels.  MDM2 RPPA intensity 

levels in the epithelium and stroma of TRIM28 High and Low ratio patients are represented by 

box-plot diagrams.  There is significantly less MDM2 expressed in the stroma than in the 

epithelium of TRIM28 High ratio patients (p = 0.017). There is no significant difference in MDM2 

intensity between the epithelium and stroma in TRIM28 Low ratio cases (p = 0.873). The median 

(line within the box), mean (centre of the diamond), 25th and 75th percentiles and maximum and 

minimum values are all displayed on each box-plot. 

 

5.2.12 Proteomic Networks in the tumour microenvironment of TRIM28 High 

and Low ratio patients 

Spearman ρ rank correlation analyses were used to determine significant protein 

interactions identified by RPPA measurements. No significant RPPA protein interactions 

that correlated negatively were observed. As the IHC score was always 2+ or 3+ in the 

epithelial cells, a proteomic network composed of the significant positive correlations in 

all of the epithelial tissue samples (both TRIM28 High and Low ratio) was constructed. 
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The analysis of 26 signalling endpoints revealed that 101 of 325 protein pairs were 

positively and significantly correlated (ρ > 0.75, P ≤ 0.01) in the epithelium of both 

TRIM28 High and Low ratio patients (Fig. 5.14, Appendix; Supplementary Table 4).  

 

Epithelial Tissue Network (TRIM28 High and Low Ratio Patients) 

 

Figure 5.14: Proteomic network identified from the epithelial tissue of TRIM28 High and 

Low ratio patients. The epithelial proteomic network consists of two main sub-networks (blue 

and yellow).   

 

124 positive significant correlations were found exclusively in the stroma of the TRIM28 

High ratio group (Fig. 5.15 A, Appendix; Supplementary Table 5), whereas 152 protein 

pairs showed a significant Spearman ρ value exclusively in the stroma of the TRIM28 

Low ratio group (Fig. 5.15 B, Appendix; Supplementary Table 6).  
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TRIM28 High Ratio Patients Stromal Tissue Network: 

 

 TRIM28 Low Ratio Patients Stromal Tissue Network: 

 

Figure 5.15: Proteomic networks identified from the stromal tissue of TRIM28 High and 

Low ratio patients. (A) TRIM28 High ratio stromal network consists of 2 main sub-networks 

(green and pink). (B) TRIM28 Low ratio stromal network consists of 3 main sub-networks (green, 

pink and cyan). 

 

(A) 

(B) 
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Interestingly the proteomic network constructed from the stromal tissue of the TRIM28 

High ratio cases is very similar to that of the proteomic network constructed from the 

epithelial samples. The TRIM28 High ratio stromal proteomic network also consists of 

two main sub-networks (green and pink). As can be seen from the Venn-diagram in 

figure 5.16, 18 of the 26 endpoints are located in the same sub-networks in both of these 

proteomic networks. Only 12 of the 26 endpoints are located in the same sub-networks 

in the epithelial and TRIM28 Low ratio stromal proteomic networks (Fig 5.16). This 

suggests that protein networks in epithelium and stroma of TRIM28 High ratio cases are 

similar, indicating that the epithelial cells may potentially have undergone epithelium to 

mesenchymal transition (EMT). 

 

 

Figure 5.16: Venn-diagram showing the overlap between each of the proteomic networks. 

Eighteen of the 26 endpoints are located in the same sub-networks in both the epithelial and High 

ratio stroma networks. Only 12 of the 26 endpoints are located in the same sub-networks in the 

epithelial and Low ratio stromal proteomic networks.  
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5.3 Discussion 

An accumulating body of evidence suggests that the crosstalk between the epithelial and 

stromal microenvironment plays a crucial role in tumour progression (Tlsty and Hein, 

2001; Buhrmann et al., 2014). Fibroblasts and tumour cells act on each other and on 

other cellular components of the tumour microenvironment through the secretion of 

cytokines and growth factors (Bhowmick et al., 2004). Several studies have previously 

shown that altered protein expression in cells of the stromal tissue compartment, rather 

than tumour cells alone, can influence survival in lung, prostate and breast cancer 

(Ogawa et al., 2004; Sloan et al., 2009; Hagglof et al., 2010). These interactions, 

however, are complex, reciprocal and stage-dependent. Since the molecular and cellular 

basis of this crosstalk is not yet fully understood, it warrants further in-depth 

investigation.  

Immunohistochemical analysis was used to demonstrate that TRIM28 is overexpressed 

in human colorectal cancer and TRIM28 expression was localised to the nuclei of CRC 

cells. It was found that the epithelial to stromal TRIM28 expression ratio correlates 

significantly with patient survival. Furthermore, Cox regression analyses revealed that 

high epithelial to stromal TRIM28 expression ratio is an independent prognostic factor for 

both poor survival and poor ‘recurrence-free’ survival. RPPA analysis showed that the 

proteomic networks of TRIM28 High and Low ratio patients differ and MDM2 expression 

is significantly lower in the stroma than in the epithelium of TRIM28 High ratio patients. 

To our knowledge, this is the first study to examine the correlation between TRIM28 

expression in CRC tissue and patient survival.  
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Based on these novel findings we propose that the pathophysiological role of TRIM28 in 

carcinogenesis is highly dependent on the expression of the protein in specific types of 

cells and that the balance of TRIM28 expression in cancer epithelium and the 

surrounding stroma may be a critical determinant of the tumour-promoting or tumour-

suppressing phenotype of the protein. In addition, we speculate that TRIM28 may act on 

different pathways in stromal fibroblasts and tumour epithelial cells, resulting in an 

altered molecular outcome in each compartment. 

 

Figure  5.17: Schematic Representation of the proposed model of TRIM28. The balance of 

TRIM28 expression in cancer epithelium and the surrounding stroma may be a critical 

determinant of the tumour-promoting or tumour-suppressing phenotype of the protein.  
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In order to investigate this further laser capture microdissection was employed to isolate 

pure populations of epithelial and stromal cells from TRIM28 High and Low ratio cases. 

The isolated cell lysates were used to make RPPAs, which were stained with the 

antibodies against the endpoints of interest and finally used to investigate the underlying 

molecular interactions at play in the tumour microenvironment. Recent studies from our 

group propose that during the epithelial to mesenchymal transformation  of tumour cells, 

a carcinoma cell can take on some characteristics of stromal fibroblasts (Sheehan et al., 

2007). EMT is thought to be required physiologically during embryogenesis, but its 

persistence in tumour cells is suggested to play a role in the promotion of an invasive 

phenotype. The proteomic network constructed from the significant protein correlations 

in the stroma of TRIM28 High ratio patients was almost identical to that of the proteomic 

network of the epithelial cells. This suggests that that EMT may have taken place in the 

stroma of the TRIM28 High ratio patients which could account for the poorer patient 

survival seen in this cohort. By dissecting the effects of TRIM28 in stromal fibroblasts 

and epithelial tumour cells, we were able to elucidate the complex relationship between 

stromal and epithelial compartments in CRC and the proteomic data offers some insights 

into the tumour suppressive and tumour promoting effects of the TRIM28 protein in the 

stroma of CRC patients. 

The tumour-suppressor p53 has previously been shown through immunohistochemical 

analysis to be accumulated in between 42-55% of CRC tissue samples (Scott et al., 

1991). In our patient cohort, p53 was overexpressed in 50% of CRC samples, which is 

consistent with previous studies (Appendix; Supplementary Table 1). Wang 

demonstrated that TRIM28 does not interact with p53 on its own, but through its co-

operation with MDM2 (Wang et al., 2005). The MDM2 protein regulates the stability of 

p53 and the abnormal accumulation of the MDM2 protein is observed in many tumours 

(Onel and Cordon-Cardo, 2004). TRIM28 can influence p53 acetylation, stimulate p53 
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ubiquitination and inhibit p53 transcription and apoptotic functions (Wang et al., 2005). In 

the TRIM28 High ratio cases, there is significantly less MDM2 expressed in the stroma 

than in the epithelium (p = 0.017). This is an important finding as it supports our previous 

finding that there is less TRIM28 in the stroma of TRIM28 High ratio patients. This 

indicates that either the level of TRIM28 in the stroma affects the level of MDM2 or vice 

versa. Taken together these results suggest that the low levels of TRIM28 and MDM2 

seen in the stroma of TRIM28 High ratio patients are involved in the dysregulation of the 

p53 tumour suppressor in these patients.  

Western blot analysis suggested that higher levels of TRIM28 are present in the 

metastatic SW620 cell line than in the primary SW480 cell line and this could affect the 

aggressiveness of the CRC cell lines. In order to investigate if the higher levels of 

TRIM28 expression had an impact on the migration of CRC cells a cell scratch assay 

was carried out. The results suggest that the primary cell line (SW480) showed a greater 

migratory capacity than the metastatic cell line (SW620). This could be explained by the 

fact that throughout the course of the project the SW480 cells grew faster in culture than 

the SW620 cell line. Therefore, the closing of the scratch could be as a result of faster 

cell growth and not cell migration, so it cannot be definitively concluded that the 

marginally higher levels of TRIM28 present in the SW620 cell line affect the 

aggressiveness of CRC cells.  
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In conclusion, the pathophysiological role of TRIM28 in carcinogenesis may be 

contextual, depending on cell type of expression and the balance of expression levels 

between epithelial and stromal compartments, determining the tumour-promoting or 

tumour-suppressing phenotype. As multiple cellular processes including normal cell 

development, cell differentiation, neoplastic transformation, DNA repair and apoptosis, 

converge on this evolutionary conserved TRIM28 protein, it may emerge as a key player 

in the proliferation and differentiation of both normal and tumour cells. With this study 

demonstrating both TRIM28 expression in the tumour microenvironment and its potential 

as a prognostic marker, a combinatorial approach assessing the tumour cells as well as 

the corresponding stromal cells may prove to be a more effective way of predicting 

survival in human cancers.  

5.4 Future Work 

In order to fully elucidate the effects that TRIM28 is having on CRC aggressiveness, 

TRIM28 would need to be silenced and/or over-expressed in both cell lines (SW480 & 

SW620) and then cell migration monitored using scratch assays and appropriate 

controls. The co-culture model could also be improved by using cell culture inserts with 

porous membranes to keep the co-cultivated cell populations separated. This in vitro 

study would allow for the carcinoma and stromal cells to be separated and each 

component to be examined separately. This would mimic the in vivo isolation of separate 

populations of cells using LCM. In order to investigate the link between TRIM28 and 

MDM2 further we intend to carry out qPCR analysis on the epithelial and stromal cells 

extracted from TRIM28 High and Low ratio CRC cases to detect and quantitate the gene 

expression levels of MDM2 and TRIM28.  
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Chapter 6 
 

General Discussion 
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Although KRAS mutations, B-RAF mutations and mismatch repair deficiency have all 

demonstrated their utility as prognostic biomarkers in CRC (Andreyev et al., 2001; Popat 

et al., 2005; Richman et al., 2009), disease stage at diagnosis remains the most 

accurate predictor of prognosis. However, using the TNM stage to predict response to 

therapy is not as accurate owing to the fact that CRC is a heterogeneous disease that 

results in differences in disease progression and response to therapy. For example 20–

30% of patients with locally restricted stage II colon cancer will suffer from disease 

recurrence and TNM staging alone cannot identify these high-risk patients (Strambu et 

al., 2014) and in metastatic CRC, a significant proportion of patients receiving various 

chemotherapy regimens do not respond. Therefore, there is a niche for both novel 

prognostic biomarkers and novel predictive biomarkers that can identify subgroups of 

patients who may benefit from specific treatment regimens. Advances in genomic and 

proteomic technologies have enhanced our understanding of CRC and identified many 

potentially useful biomarkers. The challenge now is to determine which of these 

biomarkers are clinically useful and the research and validation of these novel 

biomarkers is key in terms of the development of optimized and personalized regimens 

for the treatment of CRC (Van Schaeybroeck et al., 2011).  

In this study two potential novel biomarkers have been identified and validated. In a 

previous study in this group, high-density protein arrays were used to screen serum 

samples and auto-antibodies to the antigens CerS5 and TRIM28 were found in 

colorectal cancer patients. In this study it was demonstrated using 

immunohistochemistry that both proteins are also overexpressed in the tumour tissue of 

CRC patients. Differing expression patterns of both proteins in CRC cancer tissue have 

also been shown to correlate significantly with both overall-patient survival and 

‘recurrence-free’ survival and the underlying molecular interplay associated with the 

significant effects of both CerS5 and TRIM28 were elucidated using proteomic analysis.   
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Cancer therapy resistance is another major problem leading to treatment failure and 

results from a variety of factors including individual variations in patients and somatic cell 

genetic differences in tumours (Gottesman, 2002). The ability of cancer cells to avoid the 

generation and/or accumulation of intracellular pro-apoptotic ceramide, coupled with the 

knowledge that exogenously increasing ceramide can induce apoptosis, suggests that 

drug resistance may be linked to the sphingolipid metabolism and targeting the related 

pathways may provide new insights in cancer therapy. Neoadjuvant treatment in 

colorectal cancer is administered for rectal cancer management as determined by the 

treating physician. In addition, colon cancer patients usually do not receive neoadjuvant 

treatment due to risks associated with the treatment outweighing potential benefits. 

Currently there are no molecular biomarkers available supporting clinical decision-

making to identify responders and non-responders to neoadjuvant therapy. There is an 

evident need for novel biomarkers capable of predicting a patient’s likelihood to respond 

to a particular therapy.  

This study identifies CerS5 as a novel biomarker of response to current adjuvant 

therapy, as well as being a prognostic biomarker. CerS5 can be used as a biomarker to 

support the clinical decision-making and identify responsive rectal cancer patients that 

benefit from neoadjuvant treatment and non-responsive rectal cancer patients that 

benefit from exclusion from neoadjuvant treatment. Furthermore, colon cancer patients 

are generally not treated neoadjuvantly even though it has been suggested that certain 

colon cancer patients may benefit from it. CerS5 may help to change this clinical 

decision-making process as it could potentially identify responsive colon cancer patients 

that would benefit from neoadjuvant treatment and non-responsive colon cancer patients 

that would benefit from exclusion from neoadjuvant treatment. 
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The traditional focus in cancer research has been on the malignantly transformed cell, 

but in recent years there has been increasing interest in the role of the tumour stroma in 

the development and progression of tumours. In the process of tumour progression, the 

initial local growth of a tumour, the subsequent spreading of the malignant cells into the 

vasculature and/or lymphatic system, and finally the establishment of a distant 

metastasis are all processes in which host-derived factors are highly involved (Kalluri 

and Zeisberg, 2006). However, the tumour-microenvironment surrounding the malignant 

cells also affects the growth of the tumour. Although the stromal cells appear to be non-

malignant in the sense of genetic mutations, they do exhibit epigenetic changes, which 

affect their behaviour and protein expression (Kalluri and Zeisberg, 2006; Polyak, 2007). 

For example, cancer-associated fibroblasts and tumour-associated macrophages have 

been shown to have a significant prognostic value (Finak et al., 2008). Therefore, the 

expression levels of tumour biomarkers in the tumour microenvironment, together with 

the cancer cell-derived biomarkers, are areas of cancer research that are gaining a lot of 

interest in recent years.    

We found variations in the expression of TRIM28 in stromal fibroblast cells correspond 

significantly with both 5-year survival and ‘recurrence-free’ survival. The ratio of the 

intensity of TRIM28 expression in patient-matched epithelial and stromal tissue had a 

significant prognostic value. Overall 5-year survival and 5-year ‘recurrence-free’ survival 

for patients with a High TRIM28 expression ratio were significantly lower than those with 

a Low TRIM28 expression ratio. We propose that the pathophysiological role of TRIM28 

in carcinogenesis is highly dependent on the expression of the protein in specific types 

of cells. TRIM28 may act on different pathways in stromal fibroblasts and tumour 

epithelial cells, resulting in an altered molecular outcome in each compartment. In 

addition, the balance of TRIM28 expression in cancer epithelium and the surrounding 

stroma may be a critical determinant of the tumour-promoting or tumour-suppressing 
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phenotype of the protein. Therefore, a combinatorial approach, measuring the levels of 

TRIM28 in the stromal fibroblasts and comparing it with the levels of expression in the 

cancerous epithelial cells, may prove TRIM28 to be a good biomarker for predicting 

prognosis and recurrence in CRC patients.  

Laser capture microdissection is an extremely useful tool for investigating the tumour 

microenvironment. It facilitates the analysis of individual populations of cells isolated 

from tissue samples. This is particularly important in light of the aforementioned recent 

shift in focus of cancer research from the malignantly transformed cell to a more 

comprehensive analysis that incorporates the tumour microenvironment. RPPA 

technology allows for the quantitative analysis of numerous phosphorylated, 

glycosylated, cleaved, or total cellular proteins from a limited amount of sample and can 

be used for tissue samples, cells, serum and body fluids. Understanding protein 

networks is important because most drugs currently in development and on the market 

today are designed to target proteins, not genes and this makes RPPA an extremely 

powerful tool as we move towards an era of personalised medicine. For example 

proteomic network analysis in this study demonstrated a shift from apoptosis-related 

pathways in CerS5 Low cases to autophagy in CerS5 High cases. This suggests a 

causative link between poor survival in CerS High cases and a dysregulation of 

programmed cell-death pathways. Therefore, CerS5 High patients could potentially be 

treated using an autophagy inhibitor and/or agents that stimulate apoptosis. 

In conclusion, the data in this thesis suggests that both TRIM28 and CerS5 will prove to 

be very useful prognostic biomarkers of CRC and may also prove to be useful for 

measuring the aggressiveness of the tumour, predicting ‘recurrence-free’ prognosis and 

response to therapy of CRC patients, and, possibly, may even be novel therapeutic 

targets for the treatment of CRC. 
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Appendix 1: Buffers for protein 
purification under denaturing conditions 

IMAC purification involves the following steps: 

 Incubation of the cell lysate with Ni-NTA resin to allow the target molecule in the 

sample to bind to the immobilized ligand 

 Washing away of non-bound sample components from the column using 

appropriate wash buffers that maintain the binding interaction between target and 

ligand 

 Elution of the target molecule from the immobilized ligand by altering the buffer 

conditions so that the binding interaction no longer occurs. 

Under denaturing conditions, the 6xHis tag on a protein will be fully exposed so that 

binding to the Ni-NTA matrix will improve and the efficiency of the purification procedure 

will be maximized by reducing the potential for nonspecific binding. Elution of the tagged 

proteins from the column can be achieved either by reducing the pH, or by competition 

with imidazole. 
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Lysis buffer: 

Buffer A (Denaturing lysis/binding buffer, 1 Litre): 

8 M Urea     480.5 g urea (60.06 g/mol) 

100 mM NaH2PO4    13.80 g NaH2PO4·H2O (MW 137.99 g/mol) 

100 mM Tris·Cl     12.10 g Tris base (MW 121.1 g/mol) 

Adjust pH to 8.0 using HCl.  

 

Wash buffer: 

Buffer B (Denaturing wash buffer, 1 litre): 

8 M Urea     480.5 g urea (60.06 g/mol) 

100 mM NaH2PO4    13.80 g NaH2PO4·H2O (MW 137.99 g/mol) 

100 mM Tris·Cl     12.10 g Tris base (MW 121.1 g/mol) 

Adjust pH to 6.3 using HCl. 

 

Elution buffer: 

Buffer C (Denaturing elution buffer, 1 litre): 

8 M Urea     480.50 g urea (60.06 g/mol) 

100 mM NaH2PO4    13.80 g NaH2PO4·H2O (MW 137.99 g/mol) 

100 mM Tris·Cl     12.10 g Tris base (MW 121.1 g/mol) 

Adjust pH to 4.5 using HCl. 
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Appendix 2: Supplementary Data 

In a sub-cohort of 38 patients, p53 was found to be overexpressed in 50% of CRC 

samples, which is consistent with previous studies. 

Supplementary Table 1: p53 Immunohistochemistry Scores: 

Patient No:  Tissue p53 IHC: 
Tissue p53 IHC  

Neg=0, Weak=1,  Mod=2, Strong=3 

CR00213 Moderate 2 
CR00240 Strong 3 
CR00035 Strong 3 
CR00036 Strong 3 
CR00202 Strong 3 
CR00223 Strong 3 
CR00225 Strong 3 
CR00034 Strong 3 
CR00060 Strong 3 
CR00227 Weak 1 
CR00009 Moderate 2 
CR00208 Moderate 2 
CR00214 Moderate 2 
CR00237 Moderate 2 
CR00008 Strong 3 
CR00210 Strong 3 
CR00216 Strong 3 
CR00222 Strong 3 
CR00226 Strong 3 
CR00231 Strong 3 
CR00234 Strong 3 
CR00037 Strong 3 
CR00209 Strong 3 
CR00220 Strong 3 
CR00224 Strong 3 
CR00022 Negative 0 
CR00232 Weak 1 
CR00244 Weak 1 
CR00018 Weak 1 
CR00253 Weak 1 
CR00204 Moderate 2 
CR00228 Moderate 2 
CR00251 Moderate 2 
CR00067 Moderate 2 
CR00219 Moderate 2 
CR00217 Negative 0 
CR00250 Negative 0 
CR00238 Negative 0 
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Supplementary Table 2: Spearman's Rho correlation analysis results for CerS5 Low 

Patients, using RPMA data. 

CerS5 Low 

Source Target Spearman ρ Prob>|ρ| 

Beclin 1 Bax 0.976190476 3.3144E-05 

JNK S183/185 eNos 0.976190476 3.3144E-05 

MDM2 eNos 0.976190476 3.3144E-05 

PI3K mTor 0.976190476 3.3144E-05 

Survivin PI3K 0.976190476 3.3144E-05 

PI3K Beclin 1 0.952380952 0.0002604 

RAGE AMPKB s108 0.952380952 0.0002604 

RAGE Bax 0.952380952 0.0002604 

Ras GFR s91 MDM2 0.952380952 0.0002604 

Survivin mTor 0.952380952 0.0002604 

Bcl-2 Ser70 AMPKB s108 0.928571429 0.000862968 

MDM2 JNK S183/185 0.928571429 0.000862968 

Ras GFR s91 eNos 0.928571429 0.000862968 

mTor E-Cadherin 0.928571429 0.000862968 

PP2A AMPKB s108 0.928571429 0.000862968 

PP2A LC3B 0.928571429 0.000862968 

RAGE Bcl-2 Ser70 0.928571429 0.000862968 

Survivin Beclin 1 0.928571429 0.000862968 

eNos Bcl-2 Ser70 0.904761905 0.002008276 

mTor Beclin 1 0.904761905 0.002008276 

PI3K Bax 0.904761905 0.002008276 

TNFR1 LC3B 0.904761905 0.002008276 

VEGFR y117 Bcl-2 Ser70 0.904761905 0.002008276 

Bax SPHK1 0.904761905 0.002008276 

RAGE SPHK1 0.904761905 0.002008276 

TNFR1 Cleaved Caspase 3 0.904761905 0.002008276 

TNFR1 Cleaved Caspase 7 0.904761905 0.002008276 

VEGFR y117 EGFR y1045 0.904761905 0.002008276 

JNK S183/185 Bcl-2 Ser70 0.880952381 0.00385032 

mTor Bax 0.880952381 0.00385032 

RAGE Beclin 1 0.880952381 0.00385032 

Ras GFR s91 JNK S183/185 0.880952381 0.00385032 

Survivin Bax 0.880952381 0.00385032 

E-Cadherin Bcl-2 Ser70 0.880952381 0.00385032 

LC3B Cleaved Caspase 3 0.880952381 0.00385032 

RAGE PP2A 0.880952381 0.00385032 

TNFR1 PP2A 0.880952381 0.00385032 

EGFR y1045 E-Cadherin 0.857142857 0.006530017 
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mTor AKT 0.857142857 0.006530017 

PI3K E-Cadherin 0.857142857 0.006530017 

Beclin 1 SPHK1 0.857142857 0.006530017 

mTor Bcl-2 Ser70 0.857142857 0.006530017 

AMPKB s108 SPHK1 0.833333333 0.01017554 

Bax AMPKB s108 0.833333333 0.01017554 

PI3K AKT 0.833333333 0.01017554 

Bcl-2 Ser70 Bax 0.833333333 0.01017554 

EGFR y1148 Beclin 1 0.833333333 0.01017554 

EGFR y1148 Cleaved Caspase 7 0.833333333 0.01017554 

eNos AMPKB s108 0.833333333 0.01017554 

JNK S183/185 E-Cadherin 0.833333333 0.01017554 

LC3B EGFR y1045 0.833333333 0.01017554 

MDM2 Bcl-2 Ser70 0.833333333 0.01017554 

mTor JNK S183/185 0.833333333 0.01017554 

PP2A SPHK1 0.833333333 0.01017554 

PP2A Bcl-2 Ser70 0.833333333 0.01017554 

PP2A Cleaved Caspase 3 0.833333333 0.01017554 

RAGE eNos 0.833333333 0.01017554 

RAGE mTor 0.833333333 0.01017554 

Survivin E-Cadherin 0.833333333 0.01017554 

Survivin EGFR y1148 0.833333333 0.01017554 

VEGFR y117 AMPKB s108 0.833333333 0.01017554 

EGFR y1045 Bcl-2 Ser70 0.80952381 0.014902668 

RAGE PI3K 0.80952381 0.014902668 

VEGFR y117 Cox2 0.80952381 0.014902668 

Cleaved Caspase 7 Beclin 1 0.80952381 0.014902668 

Cox2 Bcl-2 Ser70 0.80952381 0.014902668 

LC3B Cleaved Caspase 7 0.80952381 0.014902668 

PP2A Bax 0.80952381 0.014902668 

RAGE JNK S183/185 0.80952381 0.014902668 

Survivin AKT 0.80952381 0.014902668 

VEGFR y117 PP2A 0.80952381 0.014902668 

Beclin 1 Bcl-2 Ser70 0.785714286 0.020815127 

JNK S183/185 AKT 0.785714286 0.020815127 

PI3K Bcl-2 Ser70 0.785714286 0.020815127 

PI3K EGFR y1148 0.785714286 0.020815127 

TNFR1 AMPKB s108 0.785714286 0.020815127 

TNFR1 Bax 0.785714286 0.020815127 

Bcl-2 Ser70 SPHK1 0.785714286 0.020815127 

eNos E-Cadherin 0.785714286 0.020815127 

VEGFR y117 E-Cadherin 0.785714286 0.020815127 

LC3B AMPKB s108 0.761904762 0.028004939 
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PI3K SPHK1 0.761904762 0.028004939 

TNFR1 Beclin 1 0.761904762 0.028004939 

TNFR1 RAGE 0.761904762 0.028004939 

VEGFR y117 eNos 0.761904762 0.028004939 

Cleaved Caspase 3 AMPKB s108 0.761904762 0.028004939 

Cleaved Caspase 7 Bax 0.761904762 0.028004939 

EGFR y1045 Cleaved Caspase 3 0.761904762 0.028004939 

eNos Cox2 0.761904762 0.028004939 

JNK S183/185 AMPKB s108 0.761904762 0.028004939 

MDM2 AMPKB s108 0.761904762 0.028004939 

mTor eNos 0.761904762 0.028004939 

PP2A Beclin 1 0.761904762 0.028004939 

PP2A EGFR y1045 0.761904762 0.028004939 

Survivin RAGE 0.761904762 0.028004939 

TNFR1 SPHK1 0.761904762 0.028004939 

Beclin 1 AMPKB s108 0.738095238 0.036552761 

Cox2 AMPKB s108 0.738095238 0.036552761 

E-Cadherin AKT 0.738095238 0.036552761 

E-Cadherin Beclin 1 0.738095238 0.036552761 

EGFR y1148 Bax 0.738095238 0.036552761 

LC3B Beclin 1 0.738095238 0.036552761 

mTor SPHK1 0.738095238 0.036552761 

RAGE E-Cadherin 0.738095238 0.036552761 

RAGE MDM2 0.738095238 0.036552761 

Ras GFR s91 Bcl-2 Ser70 0.738095238 0.036552761 

Ras GFR s91 Cox2 0.738095238 0.036552761 

Survivin Cleaved Caspase 7 0.738095238 0.036552761 

VEGFR y117 LC3B 0.738095238 0.036552761 

VEGFR y117 MDM2 0.738095238 0.036552761 

VEGFR y117 RAGE 0.738095238 0.036552761 

Cleaved Caspase 7 Cleaved Caspase 3 0.714285714 0.046528232 

E-Cadherin AMPKB s108 0.714285714 0.046528232 

E-Cadherin Bax 0.714285714 0.046528232 

EGFR y1045 AMPKB s108 0.714285714 0.046528232 

JNK S183/185 Bax 0.714285714 0.046528232 

JNK S183/185 Cox2 0.714285714 0.046528232 

LC3B SPHK1 0.714285714 0.046528232 

LC3B Bax 0.714285714 0.046528232 

MDM2 E-Cadherin 0.714285714 0.046528232 

mTor AMPKB s108 0.714285714 0.046528232 

mTor EGFR y1045 0.714285714 0.046528232 

mTor EGFR y1148 0.714285714 0.046528232 

PI3K JNK S183/185 0.714285714 0.046528232 
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RAGE LC3B 0.714285714 0.046528232 

Ras GFR s91 LCK y505 0.714285714 0.046528232 

Survivin SPHK1 0.714285714 0.046528232 

Survivin Bcl-2 Ser70 0.714285714 0.046528232 

Beclin 1 AKT 0.69047619 0.057990318 

eNos AKT 0.69047619 0.057990318 

eNos Bax 0.69047619 0.057990318 

LC3B Bcl-2 Ser70 0.69047619 0.057990318 

MDM2 Cox2 0.69047619 0.057990318 

PI3K Cleaved Caspase 7 0.69047619 0.057990318 

PI3K EGFR y1045 0.69047619 0.057990318 

PP2A Cleaved Caspase 7 0.69047619 0.057990318 

RUNX1 RAGE 0.69047619 0.057990318 

VEGFR y117 JNK S183/185 0.69047619 0.057990318 

Bax AKT 0.666666667 0.070987654 

MDM2 AKT 0.666666667 0.070987654 

mTor MDM2 0.666666667 0.070987654 

PI3K AMPKB s108 0.666666667 0.070987654 

PI3K LC3B 0.666666667 0.070987654 

PP2A PI3K 0.666666667 0.070987654 

RAGE Cox2 0.666666667 0.070987654 

Ras GFR s91 AMPKB s108 0.666666667 0.070987654 

Survivin JNK S183/185 0.666666667 0.070987654 

TNFR1 Survivin 0.666666667 0.070987654 

VEGFR y117 Ras GFR s91 0.666666667 0.070987654 

Cleaved Caspase 7 SPHK1 0.642857143 0.085558891 

EGFR y1045 Beclin 1 0.642857143 0.085558891 

JNK S183/185 Beclin 1 0.642857143 0.085558891 

LCK y505 eNos 0.642857143 0.085558891 

PI3K eNos 0.642857143 0.085558891 

PP2A eNos 0.642857143 0.085558891 

PP2A mTor 0.642857143 0.085558891 

RAGE Cleaved Caspase 3 0.642857143 0.085558891 

RAGE EGFR y1045 0.642857143 0.085558891 

Ras GFR s91 E-Cadherin 0.642857143 0.085558891 

RUNX1 Bax 0.642857143 0.085558891 

Survivin EGFR y1045 0.642857143 0.085558891 

TNFR1 EGFR y1045 0.642857143 0.085558891 

TNFR1 PI3K 0.642857143 0.085558891 

VEGFR y117 Cleaved Caspase 3 0.642857143 0.085558891 

VEGFR y117 mTor 0.642857143 0.085558891 

Cleaved Caspase 3 Bcl-2 Ser70 0.619047619 0.101733037 

LCK y505 JNK S183/185 0.619047619 0.101733037 
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MMP9 AKT 0.619047619 0.101733037 

MDM2 LCK y505 0.619047619 0.101733037 

MDM2 MMP9 0.619047619 0.101733037 

PP2A E-Cadherin 0.619047619 0.101733037 

RAGE Cleaved Caspase 7 0.619047619 0.101733037 

RUNX1 AMPKB s108 0.619047619 0.101733037 

Survivin AMPKB s108 0.619047619 0.101733037 

Survivin LC3B 0.619047619 0.101733037 

TNFR1 Bcl-2 Ser70 0.619047619 0.101733037 

Bcl-2 Ser70 AKT 0.595238095 0.119529806 

Cleaved Caspase 3 SPHK1 0.595238095 0.119529806 

Cleaved Caspase 3 Bax 0.595238095 0.119529806 

E-Cadherin SPHK1 0.595238095 0.119529806 

E-Cadherin Cleaved Caspase 3 0.595238095 0.119529806 

E-Cadherin Cox2 0.595238095 0.119529806 

EGFR y1045 Bax 0.595238095 0.119529806 

eNos SPHK1 0.595238095 0.119529806 

eNos Beclin 1 0.595238095 0.119529806 

LC3B E-Cadherin 0.595238095 0.119529806 

mTor LC3B 0.595238095 0.119529806 

PP2A MDM2 0.595238095 0.119529806 

RAGE AKT 0.595238095 0.119529806 

Ras GFR s91 RAGE 0.595238095 0.119529806 

RUNX1 SPHK1 0.595238095 0.119529806 

RUNX1 JNK S183/185 0.595238095 0.119529806 

Survivin PP2A 0.595238095 0.119529806 

TNFR1 EGFR y1148 0.595238095 0.119529806 

VEGFR y117 Bax 0.595238095 0.119529806 

Cleaved Caspase 3 Beclin 1 0.571428571 0.138959957 

EGFR y1045 Cox2 0.571428571 0.138959957 

EGFR y1148 E-Cadherin 0.571428571 0.138959957 

eNos EGFR y1045 0.571428571 0.138959957 

JNK S183/185 SPHK1 0.571428571 0.138959957 

LCK y505 AMPKB s108 0.571428571 0.138959957 

MDM2 Bax 0.571428571 0.138959957 

mTor Cleaved Caspase 7 0.571428571 0.138959957 

RUNX1 Cox2 0.571428571 0.138959957 

RUNX1 eNos 0.571428571 0.138959957 

Survivin Cleaved Caspase 3 0.571428571 0.138959957 

Survivin eNos 0.571428571 0.138959957 

TNFR1 mTor 0.571428571 0.138959957 

VEGFR y117 SPHK1 0.571428571 0.138959957 

VEGFR y117 Beclin 1 0.571428571 0.138959957 



211 
 

VEGFR y117 PI3K 0.571428571 0.138959957 

Cleaved Caspase 7 AMPKB s108 0.547619048 0.160025643 

EGFR y1045 SPHK1 0.547619048 0.160025643 

EGFR y1045 Cleaved Caspase 7 0.547619048 0.160025643 

JNK S183/185 EGFR y1045 0.547619048 0.160025643 

LC3B EGFR y1148 0.547619048 0.160025643 

PI3K Cleaved Caspase 3 0.547619048 0.160025643 

PI3K MDM2 0.547619048 0.160025643 

PP2A Cox2 0.547619048 0.160025643 

PP2A JNK S183/185 0.547619048 0.160025643 

RAGE EGFR y1148 0.547619048 0.160025643 

VEGFR y117 TNFR1 0.547619048 0.160025643 

Cox2 SPHK1 0.523809524 0.182720751 

EGFR y1148 AKT 0.523809524 0.182720751 

EGFR y1148 EGFR y1045 0.523809524 0.182720751 

LCK y505 Cleaved Caspase 3 0.523809524 0.182720751 

MDM2 EGFR y1045 0.523809524 0.182720751 

mTor Cleaved Caspase 3 0.523809524 0.182720751 

Ras GFR s91 AKT 0.523809524 0.182720751 

Ras GFR s91 mTor 0.523809524 0.182720751 

RUNX1 Bcl-2 Ser70 0.523809524 0.182720751 

EGFR y1148 SPHK1 0.5 0.20703125 

LCK y505 Bcl-2 Ser70 0.5 0.20703125 

LCK y505 Cox2 0.5 0.20703125 

LCK y505 E-Cadherin 0.5 0.20703125 

MMP9 eNos 0.5 0.20703125 

PI3K MMP9 0.5 0.20703125 

RUNX1 Beclin 1 0.5 0.20703125 

TNFR1 E-Cadherin 0.5 0.20703125 

VEGFR y117 MMP9 0.5 0.20703125 

Cox2 Bax 0.476190476 0.232935535 

EGFR y1148 Bcl-2 Ser70 0.476190476 0.232935535 

MMP9 E-Cadherin 0.476190476 0.232935535 

MMP9 EGFR y1045 0.476190476 0.232935535 

MDM2 SPHK1 0.476190476 0.232935535 

MDM2 Beclin 1 0.476190476 0.232935535 

mTor Cox2 0.476190476 0.232935535 

mTor MMP9 0.476190476 0.232935535 

RUNX1 LCK y505 0.476190476 0.232935535 

VEGFR y117 LCK y505 0.476190476 0.232935535 

VEGFR y117 Survivin 0.476190476 0.232935535 

Cleaved Caspase 7 Bcl-2 Ser70 0.452380952 0.260404767 

MMP9 Bcl-2 Ser70 0.452380952 0.260404767 
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MMP9 JNK S183/185 0.452380952 0.260404767 

MMP9 LC3B 0.452380952 0.260404767 

PP2A MMP9 0.452380952 0.260404767 

Survivin MDM2 0.452380952 0.260404767 

AKT SPHK1 0.428571429 0.289403225 

AMPKB s108 AKT 0.428571429 0.289403225 

E-Cadherin Cleaved Caspase 7 0.428571429 0.289403225 

eNos Cleaved Caspase 3 0.428571429 0.289403225 

PP2A EGFR y1148 0.428571429 0.289403225 

RAGE LCK y505 0.428571429 0.289403225 

Ras GFR s91 EGFR y1045 0.428571429 0.289403225 

Ras GFR s91 MMP9 0.428571429 0.289403225 

Ras GFR s91 PP2A 0.428571429 0.289403225 

RUNX1 MDM2 0.428571429 0.289403225 

RUNX1 mTor 0.428571429 0.289403225 

RUNX1 Ras GFR s91 0.428571429 0.289403225 

LC3B eNos 0.404761905 0.319888641 

Survivin RUNX1 0.404761905 0.319888641 

TNFR1 RUNX1 0.404761905 0.319888641 

Cox2 Beclin 1 0.380952381 0.351812553 

EGFR y1045 AKT 0.380952381 0.351812553 

EGFR y1148 AMPKB s108 0.380952381 0.351812553 

EGFR y1148 Cleaved Caspase 3 0.380952381 0.351812553 

LCK y505 EGFR y1045 0.380952381 0.351812553 

MMP9 Beclin 1 0.380952381 0.351812553 

MDM2 Cleaved Caspase 3 0.380952381 0.351812553 

p53 Ser15 Cleaved Caspase 3 0.380952381 0.351812553 

p53 Ser15 EGFR y1045 0.380952381 0.351812553 

Ras GFR s91 Bax 0.380952381 0.351812553 

RUNX1 PP2A 0.380952381 0.351812553 

TNFR1 eNos 0.380952381 0.351812553 

JNK S183/185 Cleaved Caspase 3 0.357142857 0.385120644 

JNK S183/185 EGFR y1148 0.357142857 0.385120644 

MDM2 LC3B 0.357142857 0.385120644 

RAGE MMP9 0.357142857 0.385120644 

Ras GFR s91 PI3K 0.357142857 0.385120644 

RUNX1 PI3K 0.357142857 0.385120644 

Survivin MMP9 0.357142857 0.385120644 

VEGFR y117 Cleaved Caspase 7 0.357142857 0.385120644 

LC3B Cox2 0.333333333 0.419753086 

LC3B JNK S183/185 0.333333333 0.419753086 

MMP9 AMPKB s108 0.333333333 0.419753086 

MMP9 Bax 0.333333333 0.419753086 
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mTor LCK y505 0.333333333 0.419753086 

p53 Ser15 E-Cadherin 0.333333333 0.419753086 

p53 Ser15 LCK y505 0.333333333 0.419753086 

PI3K Cox2 0.333333333 0.419753086 

PP2A AKT 0.333333333 0.419753086 

PP2A LCK y505 0.333333333 0.419753086 

Ras GFR s91 SPHK1 0.333333333 0.419753086 

RUNX1 EGFR y1148 0.333333333 0.419753086 

TNFR1 JNK S183/185 0.333333333 0.419753086 

TNFR1 LCK y505 0.333333333 0.419753086 

VEGFR y117 AKT 0.333333333 0.419753086 

VEGFR y117 EGFR y1148 0.333333333 0.419753086 

Cleaved Caspase 7 AKT 0.30952381 0.455644891 

RUNX1 Cleaved Caspase 7 0.30952381 0.455644891 

Cox2 Cleaved Caspase 3 0.285714286 0.492726245 

LCK y505 AKT 0.285714286 0.492726245 

MMP9 Cleaved Caspase 3 0.285714286 0.492726245 

Ras GFR s91 Cleaved Caspase 3 0.285714286 0.492726245 

RUNX1 AKT 0.285714286 0.492726245 

RUNX1 E-Cadherin 0.285714286 0.492726245 

Survivin Ras GFR s91 0.285714286 0.492726245 

TNFR1 MDM2 0.285714286 0.492726245 

LC3B AKT 0.261904762 0.530922862 

LCK y505 Bax 0.261904762 0.530922862 

Ras GFR s91 Beclin 1 0.261904762 0.530922862 

Survivin Cox2 0.261904762 0.530922862 

Survivin LCK y505 0.261904762 0.530922862 

TNFR1 AKT 0.261904762 0.530922862 

TNFR1 Cox2 0.261904762 0.530922862 

Cleaved Caspase 3 AKT 0.238095238 0.570156321 

eNos EGFR y1148 0.238095238 0.570156321 

p53 Ser15 EGFR y1148 0.238095238 0.570156321 

Survivin p53 Ser15 0.238095238 0.570156321 

VEGFR y117 RUNX1 0.238095238 0.570156321 

p53 Ser15 Cleaved Caspase 7 0.214285714 0.610344416 

TNFR1 p53 Ser15 0.214285714 0.610344416 

JNK S183/185 Cleaved Caspase 7 0.19047619 0.651401496 

LCK y505 LC3B 0.19047619 0.651401496 

MMP9 SPHK1 0.19047619 0.651401496 

PI3K LCK y505 0.19047619 0.651401496 

RUNX1 Cleaved Caspase 3 0.19047619 0.651401496 

TNFR1 MMP9 0.19047619 0.651401496 

Cox2 AKT 0.166666667 0.693238812 
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eNos Cleaved Caspase 7 0.166666667 0.693238812 

Ras GFR s91 LC3B 0.166666667 0.693238812 

EGFR y1148 Cox2 0.142857143 0.73576486 

LCK y505 Beclin 1 0.142857143 0.73576486 

MMP9 Cleaved Caspase 7 0.142857143 0.73576486 

MMP9 EGFR y1148 0.142857143 0.73576486 

p53 Ser15 LC3B 0.142857143 0.73576486 

p53 Ser15 mTor 0.142857143 0.73576486 

LCK y505 SPHK1 0.119047619 0.778885726 

p53 Ser15 Cox2 0.119047619 0.778885726 

RUNX1 LC3B 0.119047619 0.778885726 

TNFR1 Ras GFR s91 0.119047619 0.778885726 

VEGFR y117 p53 Ser15 0.119047619 0.778885726 

LCK y505 Cleaved Caspase 7 0.095238095 0.82250543 

MDM2 EGFR y1148 0.095238095 0.82250543 

PI3K p53 Ser15 0.095238095 0.82250543 

MMP9 Cox2 0.071428571 0.866526271 

p53 Ser15 Bcl-2 Ser70 0.071428571 0.866526271 

Cox2 Cleaved Caspase 7 0.047619048 0.910849169 

LCK y505 EGFR y1148 0.047619048 0.910849169 

MMP9 LCK y505 0.047619048 0.910849169 

MDM2 Cleaved Caspase 7 0.047619048 0.910849169 

p53 Ser15 AMPKB s108 0.047619048 0.910849169 

RUNX1 EGFR y1045 0.047619048 0.910849169 

p53 Ser15 SPHK1 0.023809524 0.955374012 

p53 Ser15 Beclin 1 0.023809524 0.955374012 

RUNX1 p53 Ser15 0 1 

p53 Ser15 Bax -0.023809524 0.955374012 

PP2A p53 Ser15 -0.023809524 0.955374012 

p53 Ser15 JNK S183/185 -0.047619048 0.910849169 

RAGE p53 Ser15 -0.047619048 0.910849169 

Ras GFR s91 EGFR y1148 -0.095238095 0.82250543 

Ras GFR s91 p53 Ser15 -0.095238095 0.82250543 

p53 Ser15 eNos -0.119047619 0.778885726 

p53 Ser15 AKT -0.142857143 0.73576486 

Ras GFR s91 Cleaved Caspase 7 -0.166666667 0.693238812 

p53 Ser15 MDM2 -0.238095238 0.570156321 

p53 Ser15 MMP9 -0.476190476 0.232935535 

The Spearman rank correlation coefficient, ρ, was calculated for each protein pair in the 
RPMA quantitative expression profiles of the CerS5 Low patients (n= 9) in the fresh-frozen 

cohort, ρ ≥ 0.75 with P ≤ 0.01 was considered significant. Correlations that are unique for the 
CerS5 Low cohort are marked in Red. Correlations that are consistent in both the CerS5 High 

and Low cohorts are marked in Blue. 
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Supplementary Table 3: Spearman's Rho correlation analysis results for CerS5 High 

Patients, using RPMA data 

CerS5 High 
Source Target Spearman ρ Prob>|ρ| 

PI3K Beclin 1 0.990909091 3.76257E-09 
LCK y505 EGFR y1148 0.972727273 5.14218E-07 
TNFR1 Beclin 1 0.963636364 1.85204E-06 
LC3B Bcl-2 Ser70 0.954545455 4.9889E-06 
TNFR1 PI3K 0.954545455 4.9889E-06 
TNFR1 RAGE 0.945454545 1.1183E-05 
mTor SPHK1 0.945454545 1.1183E-05 
RAGE Beclin 1 0.936363636 2.20821E-05 
Ras GFR s91 eNos 0.936363636 2.20821E-05 
PI3K AMPKB s108 0.936363636 2.20821E-05 
RAGE E-Cadherin 0.936363636 2.20821E-05 
Beclin 1 Bax 0.927272727 3.97377E-05 
PI3K Bax 0.918181818 6.66145E-05 
RAGE PI3K 0.909090909 0.000105593 
Beclin 1 AMPKB s108 0.909090909 0.000105593 
AMPKB s108 SPHK1 0.9 0.000159971 
MDM2 SPHK1 0.890909091 0.000233458 
JNK S183/185 eNos 0.881818182 0.000330169 
Ras GFR s91 MDM2 0.881818182 0.000330169 
Ras GFR s91 JNK S183/185 0.881818182 0.000330169 
TNFR1 Bax 0.881818182 0.000330169 
mTor AMPKB s108 0.881818182 0.000330169 
AKT SPHK1 0.872727273 0.000454615 
PP2A mTor 0.872727273 0.000454615 
Bcl-2 Ser70 AMPKB s108 0.863636364 0.000611694 
JNK S183/185 Bcl-2 Ser70 0.863636364 0.000611694 
PI3K Bcl-2 Ser70 0.863636364 0.000611694 
TNFR1 AMPKB s108 0.863636364 0.000611694 
LC3B AKT 0.863636364 0.000611694 
mTor MDM2 0.863636364 0.000611694 
TNFR1 E-Cadherin 0.863636364 0.000611694 
LC3B AMPKB s108 0.854545455 0.000806674 
AMPKB s108 AKT 0.854545455 0.000806674 
E-Cadherin Beclin 1 0.854545455 0.000806674 
PI3K LC3B 0.854545455 0.000806674 
EGFR y1045 E-Cadherin 0.845454545 0.001045182 
MMP9 LC3B 0.845454545 0.001045182 
PP2A eNos 0.845454545 0.001045182 
MDM2 eNos 0.836363636 0.001333185 
mTor Beclin 1 0.827272727 0.001676974 
PI3K mTor 0.818181818 0.002083145 
PI3K AKT 0.818181818 0.002083145 
PI3K E-Cadherin 0.818181818 0.002083145 
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RAGE Bax 0.818181818 0.002083145 
Bcl-2 Ser70 AKT 0.818181818 0.002083145 
LCK y505 EGFR y1045 0.818181818 0.002083145 
Beclin 1 Bcl-2 Ser70 0.809090909 0.00255858 
mTor Bax 0.809090909 0.00255858 
RAGE AMPKB s108 0.809090909 0.00255858 
LC3B Beclin 1 0.809090909 0.00255858 
LC3B JNK S183/185 0.809090909 0.00255858 
Bax AMPKB s108 0.8 0.003110428 
EGFR y1148 Bcl-2 Ser70 0.8 0.003110428 
E-Cadherin Bax 0.8 0.003110428 
MMP9 Bcl-2 Ser70 0.8 0.003110428 
eNos Bcl-2 Ser70 0.790909091 0.003746083 
JNK S183/185 AKT 0.790909091 0.003746083 
TNFR1 LC3B 0.790909091 0.003746083 
Beclin 1 AKT 0.790909091 0.003746083 
PP2A MDM2 0.790909091 0.003746083 
RAGE Cleaved Caspase 7 0.790909091 0.003746083 
TNFR1 mTor 0.790909091 0.003746083 
PI3K SPHK1 0.781818182 0.004473162 
VEGFR y117 Cox2 0.781818182 0.004473162 
VEGFR y117 eNos 0.781818182 0.004473162 
EGFR y1148 EGFR y1045 0.781818182 0.004473162 
LCK y505 Bcl-2 Ser70 0.781818182 0.004473162 
MDM2 AMPKB s108 0.781818182 0.004473162 
MMP9 AKT 0.781818182 0.004473162 
PI3K LCK y505 0.781818182 0.004473162 
RAGE EGFR y1045 0.781818182 0.004473162 
TNFR1 Bcl-2 Ser70 0.781818182 0.004473162 
TNFR1 LCK y505 0.781818182 0.004473162 
MDM2 JNK S183/185 0.772727273 0.005299487 
mTor AKT 0.772727273 0.005299487 
PI3K EGFR y1148 0.772727273 0.005299487 
Survivin Bax 0.772727273 0.005299487 
Beclin 1 SPHK1 0.772727273 0.005299487 
TNFR1 EGFR y1148 0.772727273 0.005299487 
VEGFR y117 Bcl-2 Ser70 0.763636364 0.00623306 
LCK y505 E-Cadherin 0.763636364 0.00623306 
PP2A LCK y505 0.763636364 0.00623306 
LC3B EGFR y1148 0.754545455 0.007282041 
Ras GFR s91 PP2A 0.754545455 0.007282041 
VEGFR y117 JNK S183/185 0.754545455 0.007282041 
VEGFR y117 LC3B 0.754545455 0.007282041 
LCK y505 Beclin 1 0.745454545 0.008454729 
Ras GFR s91 Bcl-2 Ser70 0.745454545 0.008454729 
EGFR y1148 Beclin 1 0.736363636 0.009759536 
LCK y505 AMPKB s108 0.736363636 0.009759536 
PI3K EGFR y1045 0.736363636 0.009759536 
PP2A EGFR y1148 0.736363636 0.009759536 
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Bax SPHK1 0.727272727 0.011204967 
EGFR y1045 Beclin 1 0.727272727 0.011204967 
eNos AMPKB s108 0.727272727 0.011204967 
MDM2 AKT 0.727272727 0.011204967 
mTor eNos 0.727272727 0.011204967 
RAGE LCK y505 0.727272727 0.011204967 
TNFR1 Cleaved Caspase 7 0.727272727 0.011204967 
Bcl-2 Ser70 Bax 0.718181818 0.012799598 
EGFR y1148 E-Cadherin 0.718181818 0.012799598 
JNK S183/185 AMPKB s108 0.718181818 0.012799598 
LCK y505 LC3B 0.718181818 0.012799598 
PP2A SPHK1 0.718181818 0.012799598 
RAGE mTor 0.718181818 0.012799598 
TNFR1 SPHK1 0.718181818 0.012799598 
TNFR1 AKT 0.718181818 0.012799598 
Bax AKT 0.709090909 0.014552052 
eNos SPHK1 0.709090909 0.014552052 
JNK S183/185 SPHK1 0.709090909 0.014552052 
LC3B Cox2 0.709090909 0.014552052 
LC3B eNos 0.709090909 0.014552052 
PP2A AMPKB s108 0.709090909 0.014552052 
VEGFR y117 Cleaved Caspase 3 0.709090909 0.014552052 
VEGFR y117 RUNX1 0.709090909 0.014552052 
TNFR1 EGFR y1045 0.7 0.016470979 
Bcl-2 Ser70 SPHK1 0.690909091 0.018565033 
E-Cadherin Cleaved Caspase 7 0.690909091 0.018565033 
LC3B SPHK1 0.690909091 0.018565033 
LC3B Bax 0.690909091 0.018565033 
MMP9 AMPKB s108 0.690909091 0.018565033 
MMP9 Cox2 0.690909091 0.018565033 
mTor Bcl-2 Ser70 0.690909091 0.018565033 
RUNX1 Cleaved Caspase 3 0.690909091 0.018565033 
VEGFR y117 MMP9 0.690909091 0.018565033 
EGFR y1148 AMPKB s108 0.681818182 0.020842854 
EGFR y1148 Bax 0.681818182 0.020842854 
LCK y505 eNos 0.681818182 0.020842854 
E-Cadherin AMPKB s108 0.672727273 0.02331304 
mTor E-Cadherin 0.672727273 0.02331304 
PI3K MMP9 0.672727273 0.02331304 
RAGE EGFR y1148 0.672727273 0.02331304 
Ras GFR s91 SPHK1 0.672727273 0.02331304 
RUNX1 Cox2 0.672727273 0.02331304 
MDM2 Bcl-2 Ser70 0.663636364 0.025984134 
PP2A Bax 0.663636364 0.025984134 
PP2A Bcl-2 Ser70 0.663636364 0.025984134 
PP2A JNK S183/185 0.663636364 0.025984134 
Ras GFR s91 AMPKB s108 0.663636364 0.025984134 
Survivin E-Cadherin 0.663636364 0.025984134 
Cleaved Caspase 7 Beclin 1 0.654545455 0.028864599 
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EGFR y1045 Bax 0.654545455 0.028864599 
eNos EGFR y1148 0.654545455 0.028864599 
LCK y505 Bax 0.654545455 0.028864599 
MMP9 Beclin 1 0.654545455 0.028864599 
mTor LC3B 0.654545455 0.028864599 
PP2A PI3K 0.654545455 0.028864599 
Ras GFR s91 mTor 0.654545455 0.028864599 
mTor JNK S183/185 0.645454545 0.031962799 
PP2A Beclin 1 0.645454545 0.031962799 
eNos AKT 0.636363636 0.035286981 
JNK S183/185 EGFR y1148 0.636363636 0.035286981 
RAGE SPHK1 0.636363636 0.035286981 
RAGE Bcl-2 Ser70 0.636363636 0.035286981 
RAGE LC3B 0.636363636 0.035286981 
TNFR1 PP2A 0.636363636 0.035286981 
mTor LCK y505 0.627272727 0.038845254 
PI3K JNK S183/185 0.627272727 0.038845254 
Ras GFR s91 AKT 0.627272727 0.038845254 
Ras GFR s91 LC3B 0.627272727 0.038845254 
VEGFR y117 Ras GFR s91 0.627272727 0.038845254 
EGFR y1045 Bcl-2 Ser70 0.618181818 0.04264557 
Ras GFR s91 LCK y505 0.618181818 0.04264557 
Survivin RAGE 0.618181818 0.04264557 
PI3K MDM2 0.609090909 0.046695709 
PP2A E-Cadherin 0.609090909 0.046695709 
Survivin Beclin 1 0.609090909 0.046695709 
TNFR1 Survivin 0.609090909 0.046695709 
PI3K Cleaved Caspase 7 0.6 0.051003261 
TNFR1 MMP9 0.6 0.051003261 
VEGFR y117 AKT 0.6 0.051003261 
Cox2 Bcl-2 Ser70 0.590909091 0.055575604 
LCK y505 JNK S183/185 0.590909091 0.055575604 
MMP9 JNK S183/185 0.590909091 0.055575604 
mTor EGFR y1148 0.590909091 0.055575604 
RAGE AKT 0.590909091 0.055575604 
Ras GFR s91 EGFR y1148 0.590909091 0.055575604 
RUNX1 LC3B 0.590909091 0.055575604 
Cox2 Cleaved Caspase 3 0.581818182 0.060419896 
EGFR y1045 AMPKB s108 0.581818182 0.060419896 
MMP9 eNos 0.581818182 0.060419896 
eNos Cox2 0.572727273 0.065543053 
MMP9 EGFR y1148 0.572727273 0.065543053 
MDM2 Beclin 1 0.572727273 0.065543053 
Survivin Cleaved Caspase 7 0.572727273 0.065543053 
MDM2 LC3B 0.563636364 0.070951734 
PI3K eNos 0.563636364 0.070951734 
Survivin PI3K 0.563636364 0.070951734 
MMP9 SPHK1 0.554545455 0.076652333 
PP2A LC3B 0.554545455 0.076652333 
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Ras GFR s91 MMP9 0.554545455 0.076652333 
VEGFR y117 AMPKB s108 0.554545455 0.076652333 
JNK S183/185 Bax 0.545454545 0.082650957 
JNK S183/185 Beclin 1 0.545454545 0.082650957 
MMP9 LCK y505 0.545454545 0.082650957 
TNFR1 MDM2 0.545454545 0.082650957 
EGFR y1148 AKT 0.536363636 0.088953418 
PP2A AKT 0.536363636 0.088953418 
RAGE PP2A 0.536363636 0.088953418 
MDM2 Bax 0.527272727 0.095565218 
TNFR1 JNK S183/185 0.527272727 0.095565218 
VEGFR y117 PP2A 0.527272727 0.095565218 
Cleaved Caspase 7 Bax 0.518181818 0.10249154 
E-Cadherin Bcl-2 Ser70 0.518181818 0.10249154 
LC3B Cleaved Caspase 3 0.518181818 0.10249154 
mTor MMP9 0.518181818 0.10249154 
Survivin EGFR y1045 0.518181818 0.10249154 
VEGFR y117 EGFR y1148 0.518181818 0.10249154 
EGFR y1045 Cleaved Caspase 7 0.509090909 0.109737232 
JNK S183/185 Cox2 0.509090909 0.109737232 
LCK y505 Cleaved Caspase 7 0.509090909 0.109737232 
PP2A EGFR y1045 0.509090909 0.109737232 
RAGE MMP9 0.509090909 0.109737232 
E-Cadherin SPHK1 0.5 0.117306803 
eNos Beclin 1 0.5 0.117306803 
LC3B EGFR y1045 0.5 0.117306803 
MDM2 LCK y505 0.5 0.117306803 
Ras GFR s91 PI3K 0.5 0.117306803 
LCK y505 AKT 0.490909091 0.125204407 
MDM2 MMP9 0.490909091 0.125204407 
RUNX1 Bcl-2 Ser70 0.490909091 0.125204407 
Survivin mTor 0.490909091 0.125204407 
EGFR y1148 Cleaved Caspase 7 0.481818182 0.133433838 
EGFR y1148 Cox2 0.481818182 0.133433838 
LCK y505 SPHK1 0.481818182 0.133433838 
MMP9 Cleaved Caspase 3 0.481818182 0.133433838 
TNFR1 eNos 0.481818182 0.133433838 
VEGFR y117 LCK y505 0.481818182 0.133433838 
Cleaved Caspase 7 AMPKB s108 0.472727273 0.14199852 
LCK y505 Cox2 0.472727273 0.14199852 
VEGFR y117 PI3K 0.472727273 0.14199852 
Cleaved Caspase 3 Bcl-2 Ser70 0.463636364 0.150901499 
LC3B E-Cadherin 0.463636364 0.150901499 
VEGFR y117 SPHK1 0.463636364 0.150901499 
LC3B Cleaved Caspase 7 0.454545455 0.160145437 
Cleaved Caspase 3 Beclin 1 0.445454545 0.169732605 
EGFR y1148 SPHK1 0.445454545 0.169732605 
eNos Bax 0.445454545 0.169732605 
MDM2 EGFR y1148 0.445454545 0.169732605 
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mTor Cleaved Caspase 3 0.445454545 0.169732605 
VEGFR y117 MDM2 0.445454545 0.169732605 
Cox2 AKT 0.436363636 0.179664877 
Cox2 AMPKB s108 0.436363636 0.179664877 
mTor EGFR y1045 0.436363636 0.179664877 
RAGE MDM2 0.436363636 0.179664877 
Ras GFR s91 Cox2 0.436363636 0.179664877 
TNFR1 Ras GFR s91 0.436363636 0.179664877 
VEGFR y117 mTor 0.436363636 0.179664877 
Cleaved Caspase 7 Cleaved Caspase 3 0.427272727 0.189943725 
Ras GFR s91 Beclin 1 0.427272727 0.189943725 
Cleaved Caspase 3 AMPKB s108 0.418181818 0.200570217 
E-Cadherin AKT 0.418181818 0.200570217 
eNos Cleaved Caspase 3 0.418181818 0.200570217 
MMP9 Bax 0.418181818 0.200570217 
PP2A MMP9 0.418181818 0.200570217 
RUNX1 MMP9 0.418181818 0.200570217 
Survivin EGFR y1148 0.418181818 0.200570217 
VEGFR y117 Beclin 1 0.418181818 0.200570217 
Cleaved Caspase 3 SPHK1 0.409090909 0.21154501 
PI3K Cleaved Caspase 3 0.409090909 0.21154501 
RUNX1 JNK S183/185 0.409090909 0.21154501 
Cleaved Caspase 3 Bax 0.4 0.22286835 
PP2A Cleaved Caspase 3 0.4 0.22286835 
Cleaved Caspase 3 AKT 0.390909091 0.234540067 
MMP9 EGFR y1045 0.390909091 0.234540067 
Survivin PP2A 0.390909091 0.234540067 
Cox2 Cleaved Caspase 7 0.381818182 0.246559576 
mTor Cleaved Caspase 7 0.381818182 0.246559576 
Survivin SPHK1 0.381818182 0.246559576 
MDM2 E-Cadherin 0.372727273 0.258925874 
RUNX1 AKT 0.372727273 0.258925874 
RUNX1 EGFR y1148 0.372727273 0.258925874 
TNFR1 Cleaved Caspase 3 0.372727273 0.258925874 
RUNX1 Cleaved Caspase 7 0.363636364 0.271637541 
Survivin AMPKB s108 0.363636364 0.271637541 
Survivin LCK y505 0.363636364 0.271637541 
MMP9 E-Cadherin 0.354545455 0.284692741 
p53 Ser15 MMP9 0.354545455 0.284692741 
Ras GFR s91 p53 Ser15 0.354545455 0.284692741 
VEGFR y117 Bax 0.354545455 0.284692741 
PI3K Cox2 0.345454545 0.298089221 
Ras GFR s91 Bax 0.345454545 0.298089221 
EGFR y1045 AKT 0.336363636 0.311824314 
p53 Ser15 MDM2 0.336363636 0.311824314 
RUNX1 PI3K 0.336363636 0.311824314 
VEGFR y117 p53 Ser15 0.336363636 0.311824314 
eNos EGFR y1045 0.327272727 0.325894941 
MMP9 Cleaved Caspase 7 0.327272727 0.325894941 
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p53 Ser15 EGFR y1045 0.327272727 0.325894941 
RUNX1 Bax 0.327272727 0.325894941 
Survivin RUNX1 0.327272727 0.325894941 
Cleaved Caspase 7 Bcl-2 Ser70 0.318181818 0.340297614 
RAGE Cleaved Caspase 3 0.318181818 0.340297614 
RAGE eNos 0.318181818 0.340297614 
Ras GFR s91 EGFR y1045 0.318181818 0.340297614 
RUNX1 Beclin 1 0.318181818 0.340297614 
Survivin AKT 0.318181818 0.340297614 
VEGFR y117 TNFR1 0.318181818 0.340297614 
JNK S183/185 Cleaved Caspase 3 0.309090909 0.35502844 
JNK S183/185 EGFR y1045 0.309090909 0.35502844 
p53 Ser15 AMPKB s108 0.309090909 0.35502844 
RAGE JNK S183/185 0.309090909 0.35502844 
TNFR1 Cox2 0.309090909 0.35502844 
Cleaved Caspase 7 SPHK1 0.3 0.370083122 
Cox2 Beclin 1 0.3 0.370083122 
Cleaved Caspase 7 AKT 0.290909091 0.38545697 
EGFR y1045 SPHK1 0.290909091 0.38545697 
p53 Ser15 SPHK1 0.281818182 0.401144898 
Ras GFR s91 RAGE 0.281818182 0.401144898 
VEGFR y117 EGFR y1045 0.281818182 0.401144898 
p53 Ser15 eNos 0.272727273 0.417141437 
Survivin Cleaved Caspase 3 0.272727273 0.417141437 
TNFR1 RUNX1 0.272727273 0.417141437 
Cox2 SPHK1 0.263636364 0.433440738 
eNos E-Cadherin 0.263636364 0.433440738 
p53 Ser15 Cleaved Caspase 3 0.263636364 0.433440738 
PP2A Cox2 0.263636364 0.433440738 
MDM2 EGFR y1045 0.254545455 0.450036577 
RUNX1 LCK y505 0.254545455 0.450036577 
Survivin Bcl-2 Ser70 0.254545455 0.450036577 
Survivin LC3B 0.254545455 0.450036577 
RUNX1 eNos 0.245454545 0.466922367 
EGFR y1148 Cleaved Caspase 3 0.236363636 0.484091162 
p53 Ser15 AKT 0.236363636 0.484091162 
p53 Ser15 Bcl-2 Ser70 0.236363636 0.484091162 
RUNX1 EGFR y1045 0.236363636 0.484091162 
LCK y505 Cleaved Caspase 3 0.227272727 0.501535668 
PP2A Cleaved Caspase 7 0.227272727 0.501535668 
Ras GFR s91 E-Cadherin 0.227272727 0.501535668 
RUNX1 AMPKB s108 0.227272727 0.501535668 
p53 Ser15 Cox2 0.218181818 0.519248248 
mTor Cox2 0.209090909 0.537220935 
RAGE p53 Ser15 0.209090909 0.537220935 
JNK S183/185 E-Cadherin 0.2 0.555445442 
MDM2 Cleaved Caspase 3 0.2 0.555445442 
RAGE Cox2 0.2 0.555445442 
p53 Ser15 mTor 0.190909091 0.573913168 
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E-Cadherin Cleaved Caspase 3 0.181818182 0.592615213 
MDM2 Cox2 0.181818182 0.592615213 
PI3K p53 Ser15 0.181818182 0.592615213 
Ras GFR s91 Cleaved Caspase 3 0.181818182 0.592615213 
EGFR y1045 Cleaved Caspase 3 0.172727273 0.611542385 
EGFR y1045 Cox2 0.172727273 0.611542385 
p53 Ser15 Beclin 1 0.172727273 0.611542385 
Survivin JNK S183/185 0.172727273 0.611542385 
VEGFR y117 RAGE 0.172727273 0.611542385 
p53 Ser15 JNK S183/185 0.154545455 0.650033965 
RUNX1 RAGE 0.154545455 0.650033965 
p53 Ser15 LC3B 0.136363636 0.689309021 
PP2A p53 Ser15 0.127272727 0.709214626 
Survivin MDM2 0.127272727 0.709214626 
p53 Ser15 E-Cadherin 0.1 0.769875 
RUNX1 SPHK1 0.1 0.769875 
Cox2 Bax 0.090909091 0.790372738 
p53 Ser15 LCK y505 0.090909091 0.790372738 
RUNX1 PP2A 0.090909091 0.790372738 
RUNX1 mTor 0.072727273 0.831716405 
RUNX1 Ras GFR s91 0.072727273 0.831716405 
VEGFR y117 Cleaved Caspase 7 0.063636364 0.852539073 
VEGFR y117 E-Cadherin 0.054545455 0.873446578 
TNFR1 p53 Ser15 0.045454545 0.894426997 
Survivin eNos 0.036363636 0.915468317 
eNos Cleaved Caspase 7 0.027272727 0.936558448 
RUNX1 E-Cadherin 0.018181818 0.957685241 
E-Cadherin Cox2 0.009090909 0.9788365 
RUNX1 p53 Ser15 0.009090909 0.9788365 
VEGFR y117 Survivin 0 1 
JNK S183/185 Cleaved Caspase 7 -0.009090909 0.9788365 
MDM2 Cleaved Caspase 7 -0.018181818 0.957685241 
p53 Ser15 Cleaved Caspase 7 -0.018181818 0.957685241 
p53 Ser15 EGFR y1148 -0.027272727 0.936558448 
p53 Ser15 Bax -0.036363636 0.915468317 
Survivin Ras GFR s91 -0.036363636 0.915468317 
Survivin MMP9 -0.063636364 0.852539073 
Ras GFR s91 Cleaved Caspase 7 -0.090909091 0.790372738 
RUNX1 MDM2 -0.127272727 0.709214626 
Survivin p53 Ser15 -0.154545455 0.650033965 
Survivin Cox2 -0.163636364 0.630685215 

The Spearman rank correlation coefficient, ρ, was calculated for each protein pair in the 
RPMA quantitative expression profiles of the CerS5 High patients (n= 11) in the fresh-frozen 

cohort, ρ ≥ 0.75 with P ≤ 0.01 was considered significant. Correlations that are unique for the 
CerS5 Low cohort are marked in Red. Correlations that are consistent in both the CerS5 High 

and Low cohorts are marked in Blue.  
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Supplementary Table 4: Spearman's Rho correlation analysis results in the Epithelial 

cells of all TRIM28 Patients (n=14), using RPMA data 

Source Target Spearman Rho Prob>|Rho| 

PI3K Beclin 1 0.967857143 3.59654E-09 

Beclin 1 Bax 0.960714286 1.30275E-08 

RAGE E-Cadherin 0.95 6.08626E-08 

mTor Beclin 1 0.946428571 9.44794E-08 

Beclin 1 AMPKB s108 0.942857143 1.42477E-07 

PP2A AMPKB s108 0.942857143 1.42477E-07 

mTor Bax 0.935714286 3.01065E-07 

PI3K Bax 0.935714286 3.01065E-07 

PI3K mTor 0.928571429 5.86794E-07 

mTor AMPKB s108 0.925 7.98746E-07 

Ras GFR s91 eNos 0.925 7.98746E-07 

JNK S183/185 eNos 0.921428571 1.07132E-06 

PI3K AMPKB s108 0.917857143 1.4177E-06 

PI3K EGFR y1148 0.917857143 1.4177E-06 

TNFR1 Beclin 1 0.917857143 1.4177E-06 

RAGE Beclin 1 0.914285714 1.85311E-06 

LC3B Bcl-2 Ser70 0.910714286 2.39502E-06 

PP2A Beclin 1 0.910714286 2.39502E-06 

LC3B EGFR y1148 0.907142857 3.06331E-06 

VEGFR y117 LC3B 0.903571429 3.8805E-06 

JNK S183/185 AKT 0.896428571 6.06614E-06 

RAGE Bax 0.892857143 7.49474E-06 

TNFR1 PP2A 0.892857143 7.49474E-06 

PP2A mTor 0.889285714 9.19297E-06 

JNK S183/185 Bcl-2 Ser70 0.882142857 1.35582E-05 

LC3B AMPKB s108 0.882142857 1.35582E-05 

PP2A LC3B 0.882142857 1.35582E-05 

Ras GFR s91 JNK S183/185 0.878571429 1.63153E-05 

VEGFR y117 Bcl-2 Ser70 0.878571429 1.63153E-05 

TNFR1 mTor 0.871428571 2.32365E-05 

Bax AMPKB s108 0.867857143 2.75181E-05 

EGFR y1148 Beclin 1 0.867857143 2.75181E-05 

PI3K LC3B 0.867857143 2.75181E-05 

EGFR y1148 Bcl-2 Ser70 0.864285714 3.24337E-05 

PP2A PI3K 0.864285714 3.24337E-05 

RAGE PI3K 0.864285714 3.24337E-05 

TNFR1 PI3K 0.864285714 3.24337E-05 

RAGE mTor 0.860714286 3.80553E-05 

Bcl-2 Ser70 AMPKB s108 0.857142857 4.446E-05 

E-Cadherin Beclin 1 0.857142857 4.446E-05 

LC3B Beclin 1 0.853571429 5.17314E-05 
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TNFR1 RAGE 0.85 5.99589E-05 

E-Cadherin Bax 0.846428571 6.92382E-05 

EGFR y1148 AMPKB s108 0.846428571 6.92382E-05 

mTor E-Cadherin 0.846428571 6.92382E-05 

eNos Bcl-2 Ser70 0.842857143 7.9672E-05 

TNFR1 AMPKB s108 0.842857143 7.9672E-05 

TNFR1 Bax 0.842857143 7.9672E-05 

eNos AKT 0.839285714 9.13694E-05 

JNK S183/185 AMPKB s108 0.835714286 0.000104447 

PI3K Bcl-2 Ser70 0.835714286 0.000104447 

TNFR1 EGFR y1148 0.835714286 0.000104447 

AMPKB s108 AKT 0.832142857 0.000119028 

mTor AKT 0.832142857 0.000119028 

PI3K AKT 0.832142857 0.000119028 

TNFR1 Cleaved Caspase 7 0.825 0.000153236 

Beclin 1 AKT 0.821428571 0.000173148 

mTor AcetylCoA 0.821428571 0.000173148 

PI3K E-Cadherin 0.821428571 0.000173148 

PP2A Bax 0.821428571 0.000173148 

MDM2 AKT 0.814285714 0.000219366 

RAGE AMPKB s108 0.810714286 0.000246008 

Ras GFR s91 MDM2 0.807142857 0.000275244 

TNFR1 LC3B 0.807142857 0.000275244 

Cleaved Caspase 7 Beclin 1 0.803571429 0.000307265 

VEGFR y117 AMPKB s108 0.803571429 0.000307265 

PP2A EGFR y1148 0.8 0.00034227 

PP2A Bcl-2 Ser70 0.796428571 0.000380468 

Ras GFR s91 AKT 0.796428571 0.000380468 

MDM2 JNK S183/185 0.792857143 0.000422077 

E-Cadherin AMPKB s108 0.785714286 0.000516455 

LC3B JNK S183/185 0.785714286 0.000516455 

RAGE PP2A 0.785714286 0.000516455 

EGFR y1148 Bax 0.782142857 0.00056971 

EGFR y1148 Cleaved Caspase 7 0.782142857 0.00056971 

eNos AMPKB s108 0.782142857 0.00056971 

mTor EGFR y1148 0.782142857 0.00056971 

PI3K Cleaved Caspase 7 0.782142857 0.00056971 

mTor JNK S183/185 0.778571429 0.00062735 

TNFR1 E-Cadherin 0.778571429 0.00062735 

VEGFR y117 PP2A 0.778571429 0.00062735 

Beclin 1 Bcl-2 Ser70 0.775 0.000689645 

Bax AKT 0.767857143 0.00082933 

mTor LC3B 0.767857143 0.00082933 

PP2A AKT 0.767857143 0.00082933 

VEGFR y117 EGFR y1148 0.767857143 0.00082933 
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RAGE Cleaved Caspase 7 0.764285714 0.00090731 

Bax AcetylCoA 0.760714286 0.000991129 

E-Cadherin AcetylCoA 0.760714286 0.000991129 

PI3K JNK S183/185 0.760714286 0.000991129 

Bcl-2 Ser70 AKT 0.757142857 0.001081108 

PP2A E-Cadherin 0.757142857 0.001081108 

VEGFR y117 Cleaved Caspase 3 0.757142857 0.001081108 

LC3B AKT 0.753571429 0.001177583 

PP2A AcetylCoA 0.753571429 0.001177583 

PP2A JNK S183/185 0.753571429 0.001177583 

Beclin 1 AcetylCoA 0.75 0.001280898 

LC3B eNos 0.75 0.001280898 

MMP9 LC3B 0.75 0.001280898 

PP2A EGFR y1045 0.75 0.001280898 

Ras GFR s91 Bcl-2 Ser70 0.75 0.001280898 

mTor Cleaved Caspase 7 0.742857143 0.001509489 

Cleaved Caspase 7 Bax 0.739285714 0.001635511 

LC3B Cleaved Caspase 7 0.739285714 0.001635511 

AMPKB s108 AcetylCoA 0.735714286 0.001769869 

LC3B Cleaved Caspase 3 0.735714286 0.001769869 

RAGE AcetylCoA 0.735714286 0.001769869 

VEGFR y117 PI3K 0.735714286 0.001769869 

JNK S183/185 Beclin 1 0.732142857 0.001912964 

LC3B Bax 0.732142857 0.001912964 

mTor Bcl-2 Ser70 0.732142857 0.001912964 

VEGFR y117 MMP9 0.732142857 0.001912964 

MDM2 AcetylCoA 0.728571429 0.00206521 

JNK S183/185 EGFR y1148 0.725 0.002227032 

VEGFR y117 Beclin 1 0.725 0.002227032 

VEGFR y117 EGFR y1045 0.725 0.002227032 

Cleaved Caspase 7 AMPKB s108 0.717857143 0.002581165 

EGFR y1148 AKT 0.717857143 0.002581165 

Cleaved Caspase 7 Cleaved Caspase 3 0.714285714 0.002774384 

RAGE EGFR y1045 0.710714286 0.002978995 

RAGE EGFR y1148 0.707142857 0.003195481 

eNos EGFR y1148 0.703571429 0.003424337 

MMP9 Bcl-2 Ser70 0.703571429 0.003424337 

MDM2 eNos 0.703571429 0.003424337 

E-Cadherin Cleaved Caspase 7 0.7 0.003666068 

PP2A Cleaved Caspase 7 0.7 0.003666068 

E-Cadherin AKT 0.696428571 0.003921191 

PI3K eNos 0.696428571 0.003921191 

mTor MDM2 0.692857143 0.004190233 

EGFR y1045 E-Cadherin 0.689285714 0.004473734 

MMP9 AKT 0.689285714 0.004473734 
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MDM2 AMPKB s108 0.689285714 0.004473734 

Ras GFR s91 LCK y505 0.689285714 0.004473734 

Bcl-2 Ser70 Bax 0.685714286 0.004772245 

Cleaved Caspase 3 Beclin 1 0.685714286 0.004772245 

LCK y505 AKT 0.685714286 0.004772245 

mTor eNos 0.685714286 0.004772245 

VEGFR y117 JNK S183/185 0.685714286 0.004772245 

LCK y505 EGFR y1148 0.682142857 0.005086326 

TNFR1 AcetylCoA 0.682142857 0.005086326 

TNFR1 AKT 0.682142857 0.005086326 

EGFR y1045 AMPKB s108 0.678571429 0.00541655 

EGFR y1045 Beclin 1 0.678571429 0.00541655 

JNK S183/185 Bax 0.678571429 0.00541655 

PP2A eNos 0.678571429 0.00541655 

Ras GFR s91 AMPKB s108 0.675 0.005763499 

MMP9 eNos 0.667857143 0.006509957 

RAGE AKT 0.667857143 0.006509957 

EGFR y1045 AcetylCoA 0.664285714 0.006910683 

LC3B EGFR y1045 0.664285714 0.006910683 

PI3K Cleaved Caspase 3 0.664285714 0.006910683 

PI3K LCK y505 0.664285714 0.006910683 

TNFR1 EGFR y1045 0.664285714 0.006910683 

LCK y505 Bcl-2 Ser70 0.660714286 0.00733057 

VEGFR y117 eNos 0.657142857 0.007770251 

AKT AcetylCoA 0.653571429 0.008230371 

eNos Beclin 1 0.653571429 0.008230371 

LCK y505 AMPKB s108 0.653571429 0.008230371 

LCK y505 eNos 0.646428571 0.009214551 

MMP9 EGFR y1148 0.646428571 0.009214551 

PI3K MMP9 0.646428571 0.009214551 

PP2A MMP9 0.646428571 0.009214551 

PP2A MDM2 0.646428571 0.009214551 

RAGE LC3B 0.642857143 0.009739945 

Cleaved Caspase 3 AMPKB s108 0.639285714 0.010288447 

LCK y505 JNK S183/185 0.635714286 0.010860746 

PI3K AcetylCoA 0.635714286 0.010860746 

TNFR1 Bcl-2 Ser70 0.635714286 0.010860746 

TNFR1 Cleaved Caspase 3 0.635714286 0.010860746 

EGFR y1148 Cleaved Caspase 3 0.614285714 0.014833955 

PI3K EGFR y1045 0.614285714 0.014833955 

VEGFR y117 TNFR1 0.614285714 0.014833955 

LCK y505 Beclin 1 0.607142857 0.016381307 

EGFR y1045 Cleaved Caspase 3 0.603571429 0.017200138 

VEGFR y117 AKT 0.603571429 0.017200138 

LCK y505 E-Cadherin 0.6 0.018050088 
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RAGE LCK y505 0.6 0.018050088 

EGFR y1148 E-Cadherin 0.596428571 0.018931925 

JNK S183/185 AcetylCoA 0.596428571 0.018931925 

Ras GFR s91 LC3B 0.596428571 0.018931925 

VEGFR y117 mTor 0.596428571 0.018931925 

MMP9 AMPKB s108 0.592857143 0.019846422 

MMP9 Beclin 1 0.592857143 0.019846422 

MMP9 JNK S183/185 0.592857143 0.019846422 

Ras GFR s91 PP2A 0.592857143 0.019846422 

EGFR y1045 Bcl-2 Ser70 0.589285714 0.020794358 

LC3B E-Cadherin 0.589285714 0.020794358 

Ras GFR s91 MMP9 0.589285714 0.020794358 

TNFR1 JNK S183/185 0.585714286 0.021776518 

MDM2 Beclin 1 0.582142857 0.022793687 

mTor Cleaved Caspase 3 0.582142857 0.022793687 

RAGE Bcl-2 Ser70 0.582142857 0.022793687 

VEGFR y117 Bax 0.582142857 0.022793687 

PP2A Cleaved Caspase 3 0.578571429 0.023846659 

RAGE Cleaved Caspase 3 0.578571429 0.023846659 

TNFR1 LCK y505 0.578571429 0.023846659 

Cleaved Caspase 3 Bax 0.575 0.024936228 

LCK y505 LC3B 0.575 0.024936228 

MDM2 E-Cadherin 0.575 0.024936228 

mTor EGFR y1045 0.567857143 0.027228357 

eNos Bax 0.564285714 0.028432522 

PP2A LCK y505 0.564285714 0.028432522 

EGFR y1045 Bax 0.560714286 0.029676496 

mTor LCK y505 0.560714286 0.029676496 

Ras GFR s91 mTor 0.560714286 0.029676496 

VEGFR y117 LCK y505 0.560714286 0.029676496 

VEGFR y117 Ras GFR s91 0.560714286 0.029676496 

Cleaved Caspase 3 Bcl-2 Ser70 0.557142857 0.030961087 

E-Cadherin Cleaved Caspase 3 0.557142857 0.030961087 

MDM2 Bax 0.557142857 0.030961087 

VEGFR y117 Cleaved Caspase 7 0.557142857 0.030961087 

Cleaved Caspase 7 Bcl-2 Ser70 0.546428571 0.03506666 

PI3K MDM2 0.539285714 0.038021656 

VEGFR y117 RAGE 0.539285714 0.038021656 

MDM2 Bcl-2 Ser70 0.535714286 0.039566972 

MDM2 LCK y505 0.535714286 0.039566972 

Ras GFR s91 PI3K 0.532142857 0.04115858 

LC3B AcetylCoA 0.528571429 0.042797289 

E-Cadherin Bcl-2 Ser70 0.521428571 0.046219234 

RUNX1 Bcl-2 Ser70 0.521428571 0.046219234 

Cleaved Caspase 7 AKT 0.510714286 0.051725498 
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EGFR y1148 EGFR y1045 0.510714286 0.051725498 

Ras GFR s91 EGFR y1148 0.510714286 0.051725498 

RUNX1 EGFR y1148 0.503571429 0.055654517 

VEGFR y117 RUNX1 0.5 0.057698841 

p53 Ser15 EGFR y1045 0.496428571 0.059797414 

RAGE JNK S183/185 0.496428571 0.059797414 

TNFR1 eNos 0.496428571 0.059797414 

eNos Cleaved Caspase 7 0.492857143 0.061951007 

JNK S183/185 E-Cadherin 0.492857143 0.061951007 

Ras GFR s91 Beclin 1 0.492857143 0.061951007 

RUNX1 Cleaved Caspase 3 0.492857143 0.061951007 

LCK y505 Bax 0.489285714 0.064160386 

LCK y505 EGFR y1045 0.489285714 0.064160386 

MMP9 EGFR y1045 0.489285714 0.064160386 

RAGE MDM2 0.489285714 0.064160386 

VEGFR y117 E-Cadherin 0.489285714 0.064160386 

MMP9 LCK y505 0.485714286 0.066426312 

Cleaved Caspase 3 AKT 0.482142857 0.068749538 

Bcl-2 Ser70 AcetylCoA 0.478571429 0.071130808 

Cleaved Caspase 3 AcetylCoA 0.478571429 0.071130808 

MMP9 Bax 0.475 0.073570862 

eNos E-Cadherin 0.471428571 0.076070429 

mTor MMP9 0.471428571 0.076070429 

EGFR y1045 AKT 0.467857143 0.078630231 

TNFR1 MMP9 0.467857143 0.078630231 

RAGE eNos 0.460714286 0.083933381 

Cleaved Caspase 7 AcetylCoA 0.453571429 0.0894859 

MMP9 Cleaved Caspase 3 0.45 0.092357375 

MMP9 Cleaved Caspase 7 0.45 0.092357375 

RUNX1 JNK S183/185 0.442857143 0.098294066 

MMP9 E-Cadherin 0.439285714 0.101360571 

RAGE MMP9 0.439285714 0.101360571 

MDM2 LC3B 0.435714286 0.104493357 

RUNX1 LC3B 0.435714286 0.104493357 

TNFR1 MDM2 0.428571429 0.110960214 

EGFR y1045 Cleaved Caspase 7 0.425 0.114295475 

eNos AcetylCoA 0.425 0.114295475 

VEGFR y117 AcetylCoA 0.425 0.114295475 

MDM2 MMP9 0.421428571 0.117699396 

JNK S183/185 Cleaved Caspase 3 0.417857143 0.121172536 

Ras GFR s91 AcetylCoA 0.417857143 0.121172536 

JNK S183/185 Cleaved Caspase 7 0.410714286 0.128328646 

VEGFR y117 MDM2 0.410714286 0.128328646 

RUNX1 eNos 0.407142857 0.132012664 

RUNX1 PI3K 0.4 0.139595129 
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MDM2 EGFR y1045 0.396428571 0.143494531 

Ras GFR s91 E-Cadherin 0.396428571 0.143494531 

JNK S183/185 EGFR y1045 0.392857143 0.147466655 

RUNX1 LCK y505 0.389285714 0.151511937 

EGFR y1148 AcetylCoA 0.385714286 0.155630795 

eNos Cleaved Caspase 3 0.382142857 0.15982363 

Ras GFR s91 Bax 0.382142857 0.15982363 

LCK y505 Cleaved Caspase 7 0.375 0.16843275 

RUNX1 Beclin 1 0.364285714 0.181910259 

LCK y505 Cleaved Caspase 3 0.357142857 0.191274763 

TNFR1 Ras GFR s91 0.35 0.200945351 

Ras GFR s91 RAGE 0.342857143 0.210923793 

RUNX1 AKT 0.342857143 0.210923793 

MDM2 EGFR y1148 0.335714286 0.221211538 

RUNX1 Bax 0.335714286 0.221211538 

Ras GFR s91 EGFR y1045 0.325 0.237225438 

p53 Ser15 Cleaved Caspase 3 0.317857143 0.248290566 

RUNX1 AMPKB s108 0.314285714 0.253940016 

RUNX1 Cleaved Caspase 7 0.307142857 0.265472686 

LCK y505 AcetylCoA 0.285714286 0.301936351 

eNos EGFR y1045 0.282142857 0.308284457 

VEGFR y117 p53 Ser15 0.25 0.368846292 

RUNX1 Ras GFR s91 0.246428571 0.375950516 

RUNX1 MMP9 0.242857143 0.383128342 

RUNX1 mTor 0.232142857 0.405098741 

MMP9 AcetylCoA 0.228571429 0.41256617 

RUNX1 RAGE 0.228571429 0.41256617 

TNFR1 RUNX1 0.221428571 0.427713719 

Ras GFR s91 Cleaved Caspase 7 0.214285714 0.443140935 

Ras GFR s91 Cleaved Caspase 3 0.210714286 0.450957865 

MDM2 Cleaved Caspase 3 0.207142857 0.458842805 

p53 Ser15 LCK y505 0.189285714 0.499263033 

MDM2 Cleaved Caspase 7 0.153571429 0.584764095 

RUNX1 PP2A 0.15 0.593630203 

p53 Ser15 AcetylCoA 0.128571429 0.647916329 

p53 Ser15 E-Cadherin 0.121428571 0.666401114 

Ras GFR s91 p53 Ser15 0.114285714 0.685065763 

p53 Ser15 Bcl-2 Ser70 0.092857143 0.74204501 

RUNX1 p53 Ser15 0.092857143 0.74204501 

RAGE p53 Ser15 0.089285714 0.751672517 

RUNX1 E-Cadherin 0.085714286 0.761334126 

RUNX1 EGFR y1045 0.082142857 0.771028565 

p53 Ser15 AMPKB s108 0.071428571 0.800295987 

p53 Ser15 LC3B 0.064285714 0.819947965 

RUNX1 MDM2 0.064285714 0.819947965 
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RUNX1 AcetylCoA 0.035714286 0.899446993 

p53 Ser15 MDM2 0.021428571 0.939577904 

p53 Ser15 AKT 0.003571429 0.989921407 

PP2A p53 Ser15 -0.014285714 0.959699765 

p53 Ser15 Beclin 1 -0.017857143 0.949635304 

PI3K p53 Ser15 -0.039285714 0.88944593 

p53 Ser15 MMP9 -0.042857143 0.879460313 

p53 Ser15 JNK S183/185 -0.05 0.859540943 

p53 Ser15 eNos -0.064285714 0.819947965 

TNFR1 p53 Ser15 -0.071428571 0.800295987 

p53 Ser15 EGFR y1148 -0.078571429 0.780754552 

p53 Ser15 mTor -0.085714286 0.761334126 

p53 Ser15 Cleaved Caspase 7 -0.1 0.722897325 

p53 Ser15 Bax -0.15 0.593630203 

The Spearman rank correlation coefficient, ρ, was calculated for each protein pair in the 
RPMA quantitative expression profiles of the Epithelial cells in all TRIM28 patients (n= 14) in 

the fresh-frozen cohort, ρ ≥ 0.75 with P ≤ 0.01 was considered significant.  

 

 

Supplementary Table 5: Spearman's Rho correlation analysis results in the Stromal 

cells of the TRIM28 High Ratio Patients (n=8), using RPMA data 

Source Target Spearman Rho Prob>|Rho| 

Cleaved Caspase 3 AcetylCoA 0.976190476 3.3144E-05 
mTor LC3B 0.976190476 3.3144E-05 

PI3K LC3B 0.976190476 3.3144E-05 
PP2A Cleaved Caspase 3 0.976190476 3.3144E-05 
PP2A EGFR y1148 0.976190476 3.3144E-05 

PP2A MDM2 0.976190476 3.3144E-05 
EGFR y1148 Cleaved Caspase 3 0.952380952 0.0002604 

MDM2 Cleaved Caspase 3 0.952380952 0.0002604 
MDM2 EGFR y1148 0.952380952 0.0002604 

mTor Beclin 1 0.952380952 0.0002604 
PI3K Beclin 1 0.952380952 0.0002604 

PI3K mTor 0.952380952 0.0002604 
TNFR1 Beclin 1 0.952380952 0.0002604 
TNFR1 PI3K 0.952380952 0.0002604 
VEGFR y117 JNK S183/185 0.952380952 0.0002604 
E-Cadherin AMPKB s108 0.928571429 0.000862968 

LC3B Beclin 1 0.928571429 0.000862968 
LCK y505 Cleaved Caspase 7 0.928571429 0.000862968 
PP2A AcetylCoA 0.928571429 0.000862968 
PP2A AKT 0.928571429 0.000862968 
RAGE Bcl-2 Ser70 0.928571429 0.000862968 
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RAGE EGFR y1148 0.928571429 0.000862968 

Ras GFR s91 eNos 0.928571429 0.000862968 
TNFR1 mTor 0.928571429 0.000862968 
Beclin 1 Bax 0.904761905 0.002008276 
E-Cadherin Bcl-2 Ser70 0.904761905 0.002008276 
EGFR y1148 AcetylCoA 0.904761905 0.002008276 

EGFR y1148 AKT 0.904761905 0.002008276 
JNK S183/185 Cleaved Caspase 3 0.904761905 0.002008276 
LC3B Cleaved Caspase 3 0.904761905 0.002008276 
LCK y505 AMPKB s108 0.904761905 0.002008276 
MMP9 EGFR y1045 0.904761905 0.002008276 

MDM2 AcetylCoA 0.904761905 0.002008276 
MDM2 JNK S183/185 0.904761905 0.002008276 

mTor AKT 0.904761905 0.002008276 

mTor Bax 0.904761905 0.002008276 
PI3K Bax 0.904761905 0.002008276 
RAGE Cleaved Caspase 3 0.904761905 0.002008276 

RAGE MDM2 0.904761905 0.002008276 
Ras GFR s91 EGFR y1045 0.904761905 0.002008276 
TNFR1 Bax 0.904761905 0.002008276 

TNFR1 LC3B 0.904761905 0.002008276 
VEGFR y117 Bcl-2 Ser70 0.904761905 0.002008276 

Cleaved Caspase 3 AKT 0.880952381 0.00385032 
eNos AMPKB s108 0.880952381 0.00385032 

JNK S183/185 AMPKB s108 0.880952381 0.00385032 
JNK S183/185 Bcl-2 Ser70 0.880952381 0.00385032 

LC3B AcetylCoA 0.880952381 0.00385032 
LC3B AKT 0.880952381 0.00385032 
LC3B Bax 0.880952381 0.00385032 

LC3B EGFR y1148 0.880952381 0.00385032 
LCK y505 E-Cadherin 0.880952381 0.00385032 

MDM2 Bcl-2 Ser70 0.880952381 0.00385032 
PP2A JNK S183/185 0.880952381 0.00385032 
RAGE AcetylCoA 0.880952381 0.00385032 
RAGE PP2A 0.880952381 0.00385032 
VEGFR y117 AMPKB s108 0.880952381 0.00385032 

VEGFR y117 MDM2 0.880952381 0.00385032 
EGFR y1045 E-Cadherin 0.857142857 0.006530017 

EGFR y1148 Bcl-2 Ser70 0.857142857 0.006530017 
JNK S183/185 EGFR y1148 0.857142857 0.006530017 
JNK S183/185 eNos 0.857142857 0.006530017 
LC3B JNK S183/185 0.857142857 0.006530017 
MDM2 AKT 0.857142857 0.006530017 

PI3K Cleaved Caspase 3 0.857142857 0.006530017 
PI3K EGFR y1148 0.857142857 0.006530017 
PP2A LC3B 0.857142857 0.006530017 

RAGE JNK S183/185 0.857142857 0.006530017 

RAGE PI3K 0.857142857 0.006530017 
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VEGFR y117 Cleaved Caspase 3 0.857142857 0.006530017 

VEGFR y117 E-Cadherin 0.857142857 0.006530017 
VEGFR y117 RAGE 0.857142857 0.006530017 
Bcl-2 Ser70 AMPKB s108 0.833333333 0.01017554 
Beclin 1 AKT 0.833333333 0.01017554 
Cleaved Caspase 3 Bcl-2 Ser70 0.833333333 0.01017554 

JNK S183/185 AcetylCoA 0.833333333 0.01017554 
JNK S183/185 AKT 0.833333333 0.01017554 
mTor Cleaved Caspase 3 0.833333333 0.01017554 
mTor EGFR y1148 0.833333333 0.01017554 
PI3K AcetylCoA 0.833333333 0.01017554 

PI3K AKT 0.833333333 0.01017554 
RAGE LC3B 0.833333333 0.01017554 

TNFR1 AKT 0.833333333 0.01017554 

VEGFR y117 AcetylCoA 0.833333333 0.01017554 
VEGFR y117 LCK y505 0.833333333 0.01017554 
AKT AcetylCoA 0.80952381 0.014902668 

eNos EGFR y1045 0.80952381 0.014902668 
mTor AcetylCoA 0.80952381 0.014902668 
PI3K JNK S183/185 0.80952381 0.014902668 

PP2A Bcl-2 Ser70 0.80952381 0.014902668 
PP2A mTor 0.80952381 0.014902668 

PP2A PI3K 0.80952381 0.014902668 
RAGE LCK y505 0.80952381 0.014902668 

Ras GFR s91 MMP9 0.80952381 0.014902668 
VEGFR y117 EGFR y1045 0.80952381 0.014902668 

VEGFR y117 PP2A 0.80952381 0.014902668 
Bcl-2 Ser70 AcetylCoA 0.785714286 0.020815127 
EGFR y1045 AMPKB s108 0.785714286 0.020815127 

JNK S183/185 Beclin 1 0.785714286 0.020815127 
JNK S183/185 E-Cadherin 0.785714286 0.020815127 

LCK y505 Bcl-2 Ser70 0.785714286 0.020815127 
LCK y505 JNK S183/185 0.785714286 0.020815127 
MDM2 AMPKB s108 0.785714286 0.020815127 
MDM2 Cleaved Caspase 7 0.785714286 0.020815127 
MDM2 E-Cadherin 0.785714286 0.020815127 

MDM2 LC3B 0.785714286 0.020815127 
mTor JNK S183/185 0.785714286 0.020815127 

RAGE E-Cadherin 0.785714286 0.020815127 
VEGFR y117 EGFR y1148 0.785714286 0.020815127 
Cleaved Caspase 7 AMPKB s108 0.761904762 0.028004939 
E-Cadherin Cleaved Caspase 7 0.761904762 0.028004939 
EGFR y1045 Bcl-2 Ser70 0.761904762 0.028004939 

EGFR y1148 Beclin 1 0.761904762 0.028004939 
eNos E-Cadherin 0.761904762 0.028004939 
MDM2 LCK y505 0.761904762 0.028004939 

RAGE AMPKB s108 0.761904762 0.028004939 

RAGE Cleaved Caspase 7 0.761904762 0.028004939 
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Ras GFR s91 AMPKB s108 0.761904762 0.028004939 

Ras GFR s91 E-Cadherin 0.761904762 0.028004939 
TNFR1 Cleaved Caspase 3 0.761904762 0.028004939 
TNFR1 EGFR y1148 0.761904762 0.028004939 
VEGFR y117 Cleaved Caspase 7 0.761904762 0.028004939 
VEGFR y117 eNos 0.761904762 0.028004939 

VEGFR y117 LC3B 0.761904762 0.028004939 
Bax AcetylCoA 0.738095238 0.036552761 
Beclin 1 AMPKB s108 0.738095238 0.036552761 
Cleaved Caspase 3 Beclin 1 0.738095238 0.036552761 
EGFR y1148 AMPKB s108 0.738095238 0.036552761 

JNK S183/185 Cleaved Caspase 7 0.738095238 0.036552761 
JNK S183/185 EGFR y1045 0.738095238 0.036552761 

LC3B Bcl-2 Ser70 0.738095238 0.036552761 

PI3K MDM2 0.738095238 0.036552761 
RAGE AKT 0.738095238 0.036552761 
RAGE Beclin 1 0.738095238 0.036552761 

RAGE mTor 0.738095238 0.036552761 
Ras GFR s91 JNK S183/185 0.738095238 0.036552761 
TNFR1 AcetylCoA 0.738095238 0.036552761 

TNFR1 PP2A 0.738095238 0.036552761 
TNFR1 RAGE 0.738095238 0.036552761 

AMPKB s108 AKT 0.714285714 0.046528232 
Cleaved Caspase 7 Bcl-2 Ser70 0.714285714 0.046528232 

EGFR y1148 E-Cadherin 0.714285714 0.046528232 
eNos AKT 0.714285714 0.046528232 

eNos Bcl-2 Ser70 0.714285714 0.046528232 
MMP9 E-Cadherin 0.714285714 0.046528232 
MDM2 EGFR y1045 0.714285714 0.046528232 

MDM2 eNos 0.714285714 0.046528232 
mTor MDM2 0.714285714 0.046528232 

PI3K Bcl-2 Ser70 0.714285714 0.046528232 
PP2A AMPKB s108 0.714285714 0.046528232 
PP2A Beclin 1 0.714285714 0.046528232 
Ras GFR s91 Bcl-2 Ser70 0.714285714 0.046528232 
TNFR1 JNK S183/185 0.714285714 0.046528232 

VEGFR y117 PI3K 0.714285714 0.046528232 
Bax AKT 0.69047619 0.057990318 

Beclin 1 AcetylCoA 0.69047619 0.057990318 
Cleaved Caspase 3 AMPKB s108 0.69047619 0.057990318 
Cleaved Caspase 3 Bax 0.69047619 0.057990318 
EGFR y1045 Cleaved Caspase 7 0.69047619 0.057990318 
LC3B AMPKB s108 0.69047619 0.057990318 

LCK y505 EGFR y1045 0.69047619 0.057990318 
LCK y505 EGFR y1148 0.69047619 0.057990318 
LCK y505 eNos 0.69047619 0.057990318 

MMP9 eNos 0.69047619 0.057990318 

PP2A Cleaved Caspase 7 0.69047619 0.057990318 
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RAGE Bax 0.69047619 0.057990318 

VEGFR y117 AKT 0.69047619 0.057990318 
VEGFR y117 Ras GFR s91 0.69047619 0.057990318 
EGFR y1148 Bax 0.666666667 0.070987654 
EGFR y1148 Cleaved Caspase 7 0.666666667 0.070987654 
MDM2 MMP9 0.666666667 0.070987654 

mTor AMPKB s108 0.666666667 0.070987654 
PI3K AMPKB s108 0.666666667 0.070987654 
PP2A E-Cadherin 0.666666667 0.070987654 
PP2A eNos 0.666666667 0.070987654 
PP2A LCK y505 0.666666667 0.070987654 

Ras GFR s91 p53 Ser15 0.666666667 0.070987654 
VEGFR y117 Beclin 1 0.666666667 0.070987654 

VEGFR y117 mTor 0.666666667 0.070987654 

Bcl-2 Ser70 AKT 0.642857143 0.085558891 
Cleaved Caspase 7 Cleaved Caspase 3 0.642857143 0.085558891 
E-Cadherin Cleaved Caspase 3 0.642857143 0.085558891 

eNos Cleaved Caspase 7 0.642857143 0.085558891 
eNos EGFR y1148 0.642857143 0.085558891 
JNK S183/185 Bax 0.642857143 0.085558891 

LCK y505 Beclin 1 0.642857143 0.085558891 
LCK y505 Cleaved Caspase 3 0.642857143 0.085558891 

MDM2 Beclin 1 0.642857143 0.085558891 
Ras GFR s91 MDM2 0.642857143 0.085558891 

TNFR1 MDM2 0.642857143 0.085558891 
AMPKB s108 AcetylCoA 0.619047619 0.101733037 

Beclin 1 Bcl-2 Ser70 0.619047619 0.101733037 
eNos Beclin 1 0.619047619 0.101733037 
eNos Cleaved Caspase 3 0.619047619 0.101733037 

MMP9 AMPKB s108 0.619047619 0.101733037 
mTor Bcl-2 Ser70 0.619047619 0.101733037 

PI3K LCK y505 0.619047619 0.101733037 
PP2A Bax 0.619047619 0.101733037 
VEGFR y117 Bax 0.619047619 0.101733037 
Bax AMPKB s108 0.595238095 0.119529806 
E-Cadherin AcetylCoA 0.595238095 0.119529806 

LC3B eNos 0.595238095 0.119529806 
LCK y505 AcetylCoA 0.595238095 0.119529806 

LCK y505 AKT 0.595238095 0.119529806 
MMP9 Cleaved Caspase 7 0.595238095 0.119529806 
p53 Ser15 EGFR y1045 0.595238095 0.119529806 
TNFR1 AMPKB s108 0.595238095 0.119529806 
TNFR1 LCK y505 0.595238095 0.119529806 

VEGFR y117 MMP9 0.595238095 0.119529806 
VEGFR y117 TNFR1 0.595238095 0.119529806 
Cleaved Caspase 7 AcetylCoA 0.571428571 0.138959957 

Cleaved Caspase 7 AKT 0.571428571 0.138959957 

LCK y505 LC3B 0.571428571 0.138959957 
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MMP9 Bcl-2 Ser70 0.571428571 0.138959957 

mTor eNos 0.571428571 0.138959957 
PP2A EGFR y1045 0.571428571 0.138959957 
RAGE eNos 0.571428571 0.138959957 
Ras GFR s91 Cleaved Caspase 7 0.571428571 0.138959957 
Ras GFR s91 LCK y505 0.571428571 0.138959957 

RUNX1 AcetylCoA 0.571428571 0.138959957 
RUNX1 Bax 0.571428571 0.138959957 
E-Cadherin AKT 0.547619048 0.160025643 
EGFR y1045 Cleaved Caspase 3 0.547619048 0.160025643 
LC3B E-Cadherin 0.547619048 0.160025643 

LCK y505 Bax 0.547619048 0.160025643 
MMP9 JNK S183/185 0.547619048 0.160025643 

MDM2 Bax 0.547619048 0.160025643 

PP2A MMP9 0.547619048 0.160025643 
RAGE EGFR y1045 0.547619048 0.160025643 
Ras GFR s91 PP2A 0.547619048 0.160025643 

Bcl-2 Ser70 Bax 0.523809524 0.182720751 
E-Cadherin Beclin 1 0.523809524 0.182720751 
EGFR y1148 EGFR y1045 0.523809524 0.182720751 

MMP9 LCK y505 0.523809524 0.182720751 
mTor LCK y505 0.523809524 0.182720751 

PI3K E-Cadherin 0.523809524 0.182720751 
PI3K eNos 0.523809524 0.182720751 

Ras GFR s91 EGFR y1148 0.523809524 0.182720751 
TNFR1 Bcl-2 Ser70 0.523809524 0.182720751 

TNFR1 RUNX1 0.523809524 0.182720751 
p53 Ser15 eNos 0.5 0.20703125 
PI3K Cleaved Caspase 7 0.5 0.20703125 

Ras GFR s91 AKT 0.5 0.20703125 
Ras GFR s91 Cleaved Caspase 3 0.5 0.20703125 

TNFR1 Cleaved Caspase 7 0.5 0.20703125 
Cleaved Caspase 7 Beclin 1 0.476190476 0.232935535 
EGFR y1045 AcetylCoA 0.476190476 0.232935535 
eNos AcetylCoA 0.476190476 0.232935535 
MMP9 EGFR y1148 0.476190476 0.232935535 

mTor E-Cadherin 0.476190476 0.232935535 
Ras GFR s91 RAGE 0.476190476 0.232935535 

RUNX1 PI3K 0.476190476 0.232935535 
LC3B Cleaved Caspase 7 0.452380952 0.260404767 
MMP9 Cleaved Caspase 3 0.452380952 0.260404767 
p53 Ser15 MMP9 0.452380952 0.260404767 
RUNX1 Cleaved Caspase 3 0.452380952 0.260404767 

RUNX1 LC3B 0.452380952 0.260404767 
TNFR1 eNos 0.452380952 0.260404767 
E-Cadherin Bax 0.428571429 0.289403225 

EGFR y1045 AKT 0.428571429 0.289403225 

MMP9 AKT 0.428571429 0.289403225 
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RUNX1 mTor 0.404761905 0.319888641 

MMP9 AcetylCoA 0.380952381 0.351812553 
mTor Cleaved Caspase 7 0.380952381 0.351812553 
RAGE MMP9 0.380952381 0.351812553 
Ras GFR s91 LC3B 0.380952381 0.351812553 
TNFR1 E-Cadherin 0.380952381 0.351812553 

Ras GFR s91 AcetylCoA 0.357142857 0.385120644 
Cleaved Caspase 7 Bax 0.333333333 0.419753086 
eNos Bax 0.333333333 0.419753086 
LC3B EGFR y1045 0.333333333 0.419753086 
Ras GFR s91 Beclin 1 0.333333333 0.419753086 

RUNX1 Beclin 1 0.333333333 0.419753086 
RUNX1 RAGE 0.333333333 0.419753086 

Ras GFR s91 mTor 0.30952381 0.455644891 

RUNX1 PP2A 0.30952381 0.455644891 
VEGFR y117 RUNX1 0.30952381 0.455644891 
Ras GFR s91 PI3K 0.285714286 0.492726245 

VEGFR y117 p53 Ser15 0.285714286 0.492726245 
p53 Ser15 JNK S183/185 0.261904762 0.530922862 
RUNX1 JNK S183/185 0.261904762 0.530922862 

EGFR y1045 Beclin 1 0.238095238 0.570156321 
mTor EGFR y1045 0.238095238 0.570156321 

p53 Ser15 AMPKB s108 0.238095238 0.570156321 
p53 Ser15 E-Cadherin 0.238095238 0.570156321 

PI3K EGFR y1045 0.238095238 0.570156321 
RUNX1 AKT 0.238095238 0.570156321 

RUNX1 EGFR y1148 0.238095238 0.570156321 
RUNX1 MDM2 0.238095238 0.570156321 
p53 Ser15 Bcl-2 Ser70 0.19047619 0.651401496 

MMP9 LC3B 0.166666667 0.693238812 
TNFR1 Ras GFR s91 0.142857143 0.73576486 

mTor MMP9 0.119047619 0.778885726 
RUNX1 Cleaved Caspase 7 0.119047619 0.778885726 
EGFR y1045 Bax 0.095238095 0.82250543 
RUNX1 Bcl-2 Ser70 0.095238095 0.82250543 
RUNX1 LCK y505 0.095238095 0.82250543 

TNFR1 EGFR y1045 0.095238095 0.82250543 
MMP9 Beclin 1 0.047619048 0.910849169 

PI3K MMP9 0.047619048 0.910849169 
Ras GFR s91 Bax 0.047619048 0.910849169 
p53 Ser15 MDM2 0.023809524 0.955374012 
p53 Ser15 Cleaved Caspase 3 -0.023809524 0.955374012 
p53 Ser15 LCK y505 -0.023809524 0.955374012 

p53 Ser15 Cleaved Caspase 7 -0.047619048 0.910849169 
RUNX1 AMPKB s108 -0.047619048 0.910849169 
TNFR1 MMP9 -0.047619048 0.910849169 

p53 Ser15 LC3B -0.071428571 0.866526271 

PP2A p53 Ser15 -0.071428571 0.866526271 
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MMP9 Bax -0.095238095 0.82250543 

p53 Ser15 AcetylCoA -0.095238095 0.82250543 
p53 Ser15 AKT -0.095238095 0.82250543 
p53 Ser15 Beclin 1 -0.142857143 0.73576486 
p53 Ser15 EGFR y1148 -0.142857143 0.73576486 
p53 Ser15 mTor -0.142857143 0.73576486 

RAGE p53 Ser15 -0.142857143 0.73576486 
RUNX1 E-Cadherin -0.142857143 0.73576486 
RUNX1 EGFR y1045 -0.19047619 0.651401496 
PI3K p53 Ser15 -0.214285714 0.610344416 
RUNX1 eNos -0.214285714 0.610344416 

p53 Ser15 Bax -0.285714286 0.492726245 
RUNX1 p53 Ser15 -0.30952381 0.455644891 

RUNX1 MMP9 -0.333333333 0.419753086 

TNFR1 p53 Ser15 -0.357142857 0.385120644 
RUNX1 Ras GFR s91 -0.380952381 0.351812553 

The Spearman rank correlation coefficient, ρ, was calculated for each protein pair in the RPMA 
quantitative expression profiles of the Stromal cells in the TRIM28 High Ratio patients (n= 8) in 

the fresh-frozen cohort, ρ ≥ 0.75 with P ≤ 0.01 was considered significant.  

 

  



238 
 

Supplementary Table 6: Spearman's Rho correlation analysis results in the Stromal 

cells of the TRIM28 Low Ratio Patients (n=6), using RPMA data 

Source Target Spearman Rho Prob>|Rho| 

EGFR y1045 Bcl-2 Ser70 1 0 

EGFR y1148 Bcl-2 Ser70 1 0 

EGFR y1148 EGFR y1045 1 0 

LC3B Bax 1 0 

PP2A AMPKB s108 1 0 

Ras GFR s91 eNos 1 0 

TNFR1 AcetylCoA 1 0 

VEGFR y117 AMPKB s108 1 0 

VEGFR y117 PP2A 1 0 

AMPKB s108 AcetylCoA 0.942857143 0.004804665 

Bax AKT 0.942857143 0.004804665 

Beclin 1 Bax 0.942857143 0.004804665 

JNK S183/185 AKT 0.942857143 0.004804665 

LC3B AKT 0.942857143 0.004804665 

LC3B Beclin 1 0.942857143 0.004804665 

MMP9 AKT 0.942857143 0.004804665 

MMP9 AMPKB s108 0.942857143 0.004804665 

MDM2 AcetylCoA 0.942857143 0.004804665 

MDM2 eNos 0.942857143 0.004804665 

mTor AKT 0.942857143 0.004804665 

mTor AMPKB s108 0.942857143 0.004804665 

mTor Beclin 1 0.942857143 0.004804665 

PI3K AMPKB s108 0.942857143 0.004804665 

PI3K Beclin 1 0.942857143 0.004804665 

PP2A AcetylCoA 0.942857143 0.004804665 

PP2A MMP9 0.942857143 0.004804665 

PP2A mTor 0.942857143 0.004804665 

PP2A PI3K 0.942857143 0.004804665 

RAGE Cleaved Caspase 3 0.942857143 0.004804665 

RAGE PI3K 0.942857143 0.004804665 

Ras GFR s91 MDM2 0.942857143 0.004804665 

TNFR1 AMPKB s108 0.942857143 0.004804665 

TNFR1 MDM2 0.942857143 0.004804665 

TNFR1 PP2A 0.942857143 0.004804665 

VEGFR y117 AcetylCoA 0.942857143 0.004804665 

VEGFR y117 MMP9 0.942857143 0.004804665 

VEGFR y117 mTor 0.942857143 0.004804665 

VEGFR y117 PI3K 0.942857143 0.004804665 

VEGFR y117 TNFR1 0.942857143 0.004804665 

AMPKB s108 AKT 0.885714286 0.018845481 

Beclin 1 AKT 0.885714286 0.018845481 
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Beclin 1 AMPKB s108 0.885714286 0.018845481 

JNK S183/185 eNos 0.885714286 0.018845481 

MMP9 Bax 0.885714286 0.018845481 

MMP9 Bcl-2 Ser70 0.885714286 0.018845481 

MMP9 EGFR y1045 0.885714286 0.018845481 

MMP9 EGFR y1148 0.885714286 0.018845481 

MMP9 JNK S183/185 0.885714286 0.018845481 

MMP9 LC3B 0.885714286 0.018845481 

mTor AcetylCoA 0.885714286 0.018845481 

mTor Bax 0.885714286 0.018845481 

mTor LC3B 0.885714286 0.018845481 

mTor MMP9 0.885714286 0.018845481 

PI3K Bax 0.885714286 0.018845481 

PI3K Cleaved Caspase 3 0.885714286 0.018845481 

PI3K LC3B 0.885714286 0.018845481 

PI3K MMP9 0.885714286 0.018845481 

PI3K mTor 0.885714286 0.018845481 

PP2A AKT 0.885714286 0.018845481 

PP2A Beclin 1 0.885714286 0.018845481 

RAGE Beclin 1 0.885714286 0.018845481 

Ras GFR s91 JNK S183/185 0.885714286 0.018845481 

TNFR1 mTor 0.885714286 0.018845481 

VEGFR y117 AKT 0.885714286 0.018845481 

VEGFR y117 Beclin 1 0.885714286 0.018845481 

Bax AMPKB s108 0.828571429 0.041562682 

Bcl-2 Ser70 Bax 0.828571429 0.041562682 

EGFR y1045 Bax 0.828571429 0.041562682 

EGFR y1148 Bax 0.828571429 0.041562682 

eNos AcetylCoA 0.828571429 0.041562682 

JNK S183/185 Bax 0.828571429 0.041562682 

LC3B AMPKB s108 0.828571429 0.041562682 

LC3B Bcl-2 Ser70 0.828571429 0.041562682 

LC3B EGFR y1045 0.828571429 0.041562682 

LC3B EGFR y1148 0.828571429 0.041562682 

LC3B JNK S183/185 0.828571429 0.041562682 

LCK y505 AMPKB s108 0.828571429 0.041562682 

MMP9 AcetylCoA 0.828571429 0.041562682 

MMP9 Beclin 1 0.828571429 0.041562682 

MMP9 eNos 0.828571429 0.041562682 

MDM2 AMPKB s108 0.828571429 0.041562682 

mTor JNK S183/185 0.828571429 0.041562682 

PI3K AcetylCoA 0.828571429 0.041562682 

PI3K AKT 0.828571429 0.041562682 

PI3K Bcl-2 Ser70 0.828571429 0.041562682 

PI3K EGFR y1045 0.828571429 0.041562682 
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PI3K EGFR y1148 0.828571429 0.041562682 

PP2A Bax 0.828571429 0.041562682 

PP2A LC3B 0.828571429 0.041562682 

PP2A LCK y505 0.828571429 0.041562682 

PP2A MDM2 0.828571429 0.041562682 

RAGE AMPKB s108 0.828571429 0.041562682 

RAGE PP2A 0.828571429 0.041562682 

Ras GFR s91 AcetylCoA 0.828571429 0.041562682 

Ras GFR s91 MMP9 0.828571429 0.041562682 

RUNX1 Bax 0.828571429 0.041562682 

RUNX1 LC3B 0.828571429 0.041562682 

TNFR1 eNos 0.828571429 0.041562682 

TNFR1 MMP9 0.828571429 0.041562682 

TNFR1 PI3K 0.828571429 0.041562682 

TNFR1 Ras GFR s91 0.828571429 0.041562682 

VEGFR y117 Bax 0.828571429 0.041562682 

VEGFR y117 LC3B 0.828571429 0.041562682 

VEGFR y117 LCK y505 0.828571429 0.041562682 

VEGFR y117 MDM2 0.828571429 0.041562682 

VEGFR y117 RAGE 0.828571429 0.041562682 

AKT AcetylCoA 0.771428571 0.072396501 

Bcl-2 Ser70 AKT 0.771428571 0.072396501 

Bcl-2 Ser70 AMPKB s108 0.771428571 0.072396501 

Beclin 1 AcetylCoA 0.771428571 0.072396501 

Cleaved Caspase 3 AMPKB s108 0.771428571 0.072396501 

Cleaved Caspase 3 Beclin 1 0.771428571 0.072396501 

EGFR y1045 AKT 0.771428571 0.072396501 

EGFR y1045 AMPKB s108 0.771428571 0.072396501 

EGFR y1148 AKT 0.771428571 0.072396501 

EGFR y1148 AMPKB s108 0.771428571 0.072396501 

eNos AKT 0.771428571 0.072396501 

eNos AMPKB s108 0.771428571 0.072396501 

JNK S183/185 AMPKB s108 0.771428571 0.072396501 

LCK y505 Bcl-2 Ser70 0.771428571 0.072396501 

LCK y505 EGFR y1045 0.771428571 0.072396501 

LCK y505 EGFR y1148 0.771428571 0.072396501 

MMP9 LCK y505 0.771428571 0.072396501 

MDM2 JNK S183/185 0.771428571 0.072396501 

MDM2 MMP9 0.771428571 0.072396501 

mTor MDM2 0.771428571 0.072396501 

PI3K LCK y505 0.771428571 0.072396501 

PP2A Bcl-2 Ser70 0.771428571 0.072396501 

PP2A Cleaved Caspase 3 0.771428571 0.072396501 

PP2A EGFR y1045 0.771428571 0.072396501 

PP2A EGFR y1148 0.771428571 0.072396501 
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PP2A eNos 0.771428571 0.072396501 

PP2A JNK S183/185 0.771428571 0.072396501 

RAGE AcetylCoA 0.771428571 0.072396501 

RAGE Bax 0.771428571 0.072396501 

RAGE LC3B 0.771428571 0.072396501 

RAGE mTor 0.771428571 0.072396501 

Ras GFR s91 AKT 0.771428571 0.072396501 

Ras GFR s91 AMPKB s108 0.771428571 0.072396501 

Ras GFR s91 PP2A 0.771428571 0.072396501 

RUNX1 Beclin 1 0.771428571 0.072396501 

RUNX1 RAGE 0.771428571 0.072396501 

TNFR1 AKT 0.771428571 0.072396501 

TNFR1 Beclin 1 0.771428571 0.072396501 

TNFR1 RAGE 0.771428571 0.072396501 

VEGFR y117 Bcl-2 Ser70 0.771428571 0.072396501 

VEGFR y117 Cleaved Caspase 3 0.771428571 0.072396501 

VEGFR y117 EGFR y1045 0.771428571 0.072396501 

VEGFR y117 EGFR y1148 0.771428571 0.072396501 

VEGFR y117 eNos 0.771428571 0.072396501 

VEGFR y117 JNK S183/185 0.771428571 0.072396501 

VEGFR y117 Ras GFR s91 0.771428571 0.072396501 

Beclin 1 Bcl-2 Ser70 0.714285714 0.110787172 

Cleaved Caspase 3 AcetylCoA 0.714285714 0.110787172 

E-Cadherin Cleaved Caspase 7 0.714285714 0.110787172 

EGFR y1045 Beclin 1 0.714285714 0.110787172 

EGFR y1148 Beclin 1 0.714285714 0.110787172 

JNK S183/185 AcetylCoA 0.714285714 0.110787172 

JNK S183/185 Beclin 1 0.714285714 0.110787172 

LCK y505 AcetylCoA 0.714285714 0.110787172 

LCK y505 Cleaved Caspase 3 0.714285714 0.110787172 

MDM2 AKT 0.714285714 0.110787172 

mTor eNos 0.714285714 0.110787172 

p53 Ser15 LCK y505 0.714285714 0.110787172 

RAGE MMP9 0.714285714 0.110787172 

Ras GFR s91 mTor 0.714285714 0.110787172 

RUNX1 PI3K 0.714285714 0.110787172 

TNFR1 Cleaved Caspase 3 0.714285714 0.110787172 

TNFR1 JNK S183/185 0.714285714 0.110787172 

TNFR1 LCK y505 0.714285714 0.110787172 

Bax AcetylCoA 0.657142857 0.156174927 

JNK S183/185 Bcl-2 Ser70 0.657142857 0.156174927 

JNK S183/185 EGFR y1045 0.657142857 0.156174927 

JNK S183/185 EGFR y1148 0.657142857 0.156174927 

LC3B AcetylCoA 0.657142857 0.156174927 

mTor Bcl-2 Ser70 0.657142857 0.156174927 
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mTor Cleaved Caspase 3 0.657142857 0.156174927 

mTor EGFR y1045 0.657142857 0.156174927 

mTor EGFR y1148 0.657142857 0.156174927 

mTor LCK y505 0.657142857 0.156174927 

p53 Ser15 Bcl-2 Ser70 0.657142857 0.156174927 

p53 Ser15 EGFR y1045 0.657142857 0.156174927 

p53 Ser15 EGFR y1148 0.657142857 0.156174927 

PI3K JNK S183/185 0.657142857 0.156174927 

PI3K MDM2 0.657142857 0.156174927 

RAGE AKT 0.657142857 0.156174927 

RAGE Bcl-2 Ser70 0.657142857 0.156174927 

RAGE EGFR y1045 0.657142857 0.156174927 

RAGE EGFR y1148 0.657142857 0.156174927 

RUNX1 AKT 0.657142857 0.156174927 

TNFR1 Bax 0.657142857 0.156174927 

TNFR1 LC3B 0.657142857 0.156174927 

Cleaved Caspase 3 Bax 0.6 0.208 

Cleaved Caspase 3 Bcl-2 Ser70 0.6 0.208 

EGFR y1045 Cleaved Caspase 3 0.6 0.208 

EGFR y1148 Cleaved Caspase 3 0.6 0.208 

eNos Bax 0.6 0.208 

LC3B Cleaved Caspase 3 0.6 0.208 

LC3B eNos 0.6 0.208 

LCK y505 AKT 0.6 0.208 

LCK y505 Beclin 1 0.6 0.208 

MMP9 Cleaved Caspase 3 0.6 0.208 

MDM2 Beclin 1 0.6 0.208 

p53 Ser15 Cleaved Caspase 7 0.6 0.208 

PI3K eNos 0.6 0.208 

RAGE LCK y505 0.6 0.208 

RAGE MDM2 0.6 0.208 

Ras GFR s91 Bax 0.6 0.208 

Ras GFR s91 LC3B 0.6 0.208 

Ras GFR s91 PI3K 0.6 0.208 

RUNX1 Bcl-2 Ser70 0.6 0.208 

RUNX1 EGFR y1045 0.6 0.208 

RUNX1 EGFR y1148 0.6 0.208 

RUNX1 JNK S183/185 0.6 0.208 

RUNX1 MMP9 0.6 0.208 

RUNX1 mTor 0.6 0.208 

Bcl-2 Ser70 AcetylCoA 0.542857143 0.265702624 

EGFR y1045 AcetylCoA 0.542857143 0.265702624 

EGFR y1148 AcetylCoA 0.542857143 0.265702624 

eNos Bcl-2 Ser70 0.542857143 0.265702624 

eNos Beclin 1 0.542857143 0.265702624 
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eNos EGFR y1045 0.542857143 0.265702624 

eNos EGFR y1148 0.542857143 0.265702624 

LCK y505 Bax 0.542857143 0.265702624 

LCK y505 Cleaved Caspase 7 0.542857143 0.265702624 

LCK y505 LC3B 0.542857143 0.265702624 

MDM2 Bax 0.542857143 0.265702624 

MDM2 LC3B 0.542857143 0.265702624 

MDM2 LCK y505 0.542857143 0.265702624 

Ras GFR s91 Bcl-2 Ser70 0.542857143 0.265702624 

Ras GFR s91 Beclin 1 0.542857143 0.265702624 

Ras GFR s91 EGFR y1045 0.542857143 0.265702624 

Ras GFR s91 EGFR y1148 0.542857143 0.265702624 

RUNX1 AMPKB s108 0.542857143 0.265702624 

RUNX1 Cleaved Caspase 3 0.542857143 0.265702624 

RUNX1 PP2A 0.542857143 0.265702624 

TNFR1 Bcl-2 Ser70 0.542857143 0.265702624 

TNFR1 EGFR y1045 0.542857143 0.265702624 

TNFR1 EGFR y1148 0.542857143 0.265702624 

VEGFR y117 RUNX1 0.542857143 0.265702624 

Cleaved Caspase 3 AKT 0.485714286 0.328723032 

Cleaved Caspase 7 Cleaved Caspase 3 0.485714286 0.328723032 

LCK y505 eNos 0.485714286 0.328723032 

MDM2 Cleaved Caspase 3 0.485714286 0.328723032 

RAGE eNos 0.485714286 0.328723032 

RAGE JNK S183/185 0.485714286 0.328723032 

Ras GFR s91 LCK y505 0.485714286 0.328723032 

Ras GFR s91 RAGE 0.485714286 0.328723032 

LCK y505 JNK S183/185 0.428571429 0.396501458 

MDM2 Bcl-2 Ser70 0.428571429 0.396501458 

MDM2 EGFR y1045 0.428571429 0.396501458 

MDM2 EGFR y1148 0.428571429 0.396501458 

p53 Ser15 Cleaved Caspase 3 0.428571429 0.396501458 

RUNX1 AcetylCoA 0.428571429 0.396501458 

RUNX1 eNos 0.428571429 0.396501458 

RUNX1 Ras GFR s91 0.428571429 0.396501458 

TNFR1 RUNX1 0.428571429 0.396501458 

Cleaved Caspase 7 AcetylCoA 0.371428571 0.468478134 

p53 Ser15 MMP9 0.371428571 0.468478134 

PI3K p53 Ser15 0.371428571 0.468478134 

RUNX1 MDM2 0.371428571 0.468478134 

TNFR1 Cleaved Caspase 7 0.371428571 0.468478134 

eNos Cleaved Caspase 3 0.314285714 0.544093294 

MDM2 Cleaved Caspase 7 0.314285714 0.544093294 

p53 Ser15 AMPKB s108 0.314285714 0.544093294 

PP2A p53 Ser15 0.314285714 0.544093294 
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Ras GFR s91 Cleaved Caspase 3 0.314285714 0.544093294 

VEGFR y117 p53 Ser15 0.314285714 0.544093294 

Cleaved Caspase 7 AMPKB s108 0.257142857 0.622787172 

JNK S183/185 Cleaved Caspase 3 0.257142857 0.622787172 

PP2A Cleaved Caspase 7 0.257142857 0.622787172 

RAGE Cleaved Caspase 7 0.257142857 0.622787172 

RAGE p53 Ser15 0.257142857 0.622787172 

VEGFR y117 Cleaved Caspase 7 0.257142857 0.622787172 

p53 Ser15 E-Cadherin 0.2 0.704 

PI3K Cleaved Caspase 7 0.2 0.704 

eNos Cleaved Caspase 7 0.142857143 0.787172012 

MDM2 E-Cadherin 0.142857143 0.787172012 

p53 Ser15 AcetylCoA 0.142857143 0.787172012 

p53 Ser15 Bax 0.142857143 0.787172012 

p53 Ser15 LC3B 0.142857143 0.787172012 

Ras GFR s91 Cleaved Caspase 7 0.142857143 0.787172012 

RUNX1 LCK y505 0.142857143 0.787172012 

TNFR1 p53 Ser15 0.142857143 0.787172012 

Cleaved Caspase 7 Bcl-2 Ser70 0.085714286 0.87174344 

EGFR y1045 Cleaved Caspase 7 0.085714286 0.87174344 

EGFR y1148 Cleaved Caspase 7 0.085714286 0.87174344 

eNos E-Cadherin 0.085714286 0.87174344 

MMP9 Cleaved Caspase 7 0.085714286 0.87174344 

p53 Ser15 AKT 0.085714286 0.87174344 

p53 Ser15 Beclin 1 0.085714286 0.87174344 

p53 Ser15 eNos 0.085714286 0.87174344 

Ras GFR s91 E-Cadherin 0.085714286 0.87174344 

Ras GFR s91 p53 Ser15 0.085714286 0.87174344 

p53 Ser15 MDM2 0.028571429 0.957154519 

p53 Ser15 mTor 0.028571429 0.957154519 

E-Cadherin AcetylCoA -0.028571429 0.957154519 

mTor Cleaved Caspase 7 -0.028571429 0.957154519 

p53 Ser15 JNK S183/185 -0.028571429 0.957154519 

RUNX1 p53 Ser15 -0.028571429 0.957154519 

TNFR1 E-Cadherin -0.028571429 0.957154519 

Cleaved Caspase 7 Beclin 1 -0.085714286 0.87174344 

LCK y505 E-Cadherin -0.085714286 0.87174344 

E-Cadherin Cleaved Caspase 3 -0.142857143 0.787172012 

Cleaved Caspase 7 AKT -0.2 0.704 

Cleaved Caspase 7 Bax -0.257142857 0.622787172 

E-Cadherin AMPKB s108 -0.257142857 0.622787172 

JNK S183/185 Cleaved Caspase 7 -0.257142857 0.622787172 

LC3B Cleaved Caspase 7 -0.257142857 0.622787172 

PP2A E-Cadherin -0.257142857 0.622787172 

RAGE E-Cadherin -0.257142857 0.622787172 
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VEGFR y117 E-Cadherin -0.257142857 0.622787172 

MMP9 E-Cadherin -0.314285714 0.544093294 

RUNX1 Cleaved Caspase 7 -0.314285714 0.544093294 

E-Cadherin Bcl-2 Ser70 -0.371428571 0.468478134 

EGFR y1045 E-Cadherin -0.371428571 0.468478134 

EGFR y1148 E-Cadherin -0.371428571 0.468478134 

JNK S183/185 E-Cadherin -0.371428571 0.468478134 

PI3K E-Cadherin -0.371428571 0.468478134 

mTor E-Cadherin -0.485714286 0.328723032 

RUNX1 E-Cadherin -0.485714286 0.328723032 

E-Cadherin AKT -0.542857143 0.265702624 

E-Cadherin Beclin 1 -0.6 0.208 

E-Cadherin Bax -0.657142857 0.156174927 

LC3B E-Cadherin -0.657142857 0.156174927 

The Spearman rank correlation coefficient, ρ, was calculated for each protein pair in the RPMA 
quantitative expression profiles of the Stromal cells of the TRIM28 Low ratio patients (n= 6) in 

the fresh-frozen cohort, ρ ≥ 0.75 with P ≤ 0.01 was considered significant.  
 

 

 

 

 


