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Abstract

This paper describes the DCU-UVT
team’s participation in the Language Iden-
tification in Code-Switched Data shared
task in the Workshop on Computational
Approaches to Code Switching. Word-
level classification experiments were car-
ried out using a simple dictionary-based
method, linear kernel support vector ma-
chines (SVMs) with and without con-
textual clues, and a k-nearest neighbour
approach. Based on these experiments,
we select our SVM-based system with
contextual clues as our final system and
present results for the Nepali-English and
Spanish-English datasets.

1 Introduction

This paper describes DCU-UVT’s participation
in the shared task Language Identification in
Code-Switched Data (Solorio et al., 2014) at
the Workshop on Computational Approaches to
Code Switching, EMNLP, 2014. The task is to
make word-level predictions (six labels: lang1,
lang2, ne, mixed, ambiguous and other) for mixed-
language user generated content. We submit pre-
dictions for Nepali-English and Spanish-English
data and perform experiments using dictionaries, a
k-nearest neighbour (k-NN) classifier and a linear-
kernel SVM classifier.

In our dictionary-based approach, we investi-
gate the use of different English dictionaries as
well as the training data. In the k-NN based
approach, we use string edit distance, character-
n-gram overlap and context similarity to make
predictions. For the SVM approach, we experi-
ment with context-independent (word, character-
n-grams, length of a word and capitalisation in-
formation) and context-sensitive (adding the pre-

vious and next word as bigrams) features in differ-
ent combinations. We also experiment with adding
features from the k-NN approach and another set
of features from a neural network. Based on per-
formance in cross-validation, we select the SVM
classifier with basic features (word, character-n-
grams, length of a word, capitalisation information
and context) as our final system.

2 Background

While the problem of automatically identify-
ing and analysing code-mixing has been iden-
tified over 30 years ago (Joshi, 1982), it has
only recently drawn wider attention. Specific
problems addressed include language identifica-
tion in multilingual documents, identification of
code-switching points and POS tagging (Solorio
and Liu, 2008b) of code-mixing data. Ap-
proaches taken to the problem of identifying code-
mixing include the use of dictionaries (Nguyen
and Doğruöz, 2013; Barman et al., 2014; El-
fardy et al., 2013; Solorio and Liu, 2008b), lan-
guage models (Alex, 2008; Nguyen and Doğruöz,
2013; Elfardy et al., 2013), morphological and
phonological analysis (Elfardy et al., 2013; El-
fardy and Diab, 2012) and various machine learn-
ing algorithms such as sequence labelling with
Hidden Markov Models (Farrugia, 2004; Ros-
ner and Farrugia, 2007) and Conditional Random
Fields (Nguyen and Doğruöz, 2013; King and
Abney, 2013), as well as word-level classifica-
tion using Naive Bayes (Solorio and Liu, 2008a),
logistic regression (Nguyen and Doğruöz, 2013)
and SVMs (Barman et al., 2014), using features
such as word, POS, lemma and character-n-grams.
Language pairs that have been explored include
English-Maltese (Farrugia, 2004; Rosner and Far-
rugia, 2007), English-Spanish (Solorio and Liu,
2008b), Turkish-Dutch (Nguyen and Doğruöz,



2013), modern standard Arabic-Egyptian di-
alect (Elfardy et al., 2013), Mandarin-English (Li
et al., 2012; Lyu et al., 2010), and English-Hindi-
Bengali (Barman et al., 2014).

3 Data Statistics

The training data provided for this task consists of
tweets. Unfortunately, because of deleted tweets,
the full training set could not be downloaded. Out
of 9,993 Nepali-English training tweets, we were
able to download 9,668 and out of 11,400 Spanish-
English training tweets, we were able to download
11,353. Table 1 shows the token-level statistics of
the two datasets.

Label Nepali-English Spanish-English
lang1 (en) 43,185 76,204
lang2 (ne/es) 59,579 32,477
ne 3,821 2,814
ambiguous 125 341
mixed 112 51
other 34,566 21,813

Table 1: Number of tokens in the Nepali-English
and Spanish-English training data for each label

Nepali (lang2) is the dominant language in
the Nepali-English training data but for Spanish-
English, English (lang1) is dominant. The third
largest group contains tokens with the label other.
These are mentions (@username), punctuation
symbols, emoticons, numbers (except numbers
that represent words such as 2 for to), words in a
language other than lang1 and lang2 and unintel-
ligible words. Named entities (ne) are much less
frequent and mixed language words (e.g. ramri-
ness) and words for which there is not enough con-
text to disambiguate them are rare. Hash tags are
annotated as if the hash symbol was not there, e.g.
#truestory is labelled lang1.

4 Experiments

All experiments are carried out for Nepali-English
data. Later we apply the best approach to Spanish-
English. We train our systems in a five-fold cross-
validation and obtain best parameters based on
average cross-validation results. Cross-validation
splits are made based on users, i.e. we avoid the
occurrence of a user’s tweets both in training and
test splits for each cross-validation run. We ad-
dress the task with the following approaches:

1. a simple dictionary-based classifier,

Resource Accuracy
BNC 43.61
LexNorm 54.60
TrainingData 89.53
TrainingData+BNC+LexNorm 90.71

Table 2: Average cross-validation accuracy of
dictionary-based prediction for Nepali-English

2. classification using supervised machine
learning with k-nearest neighbour, and

3. classification using supervised machine
learning with SVMs.

4.1 Dictionary-Based Detection
We start with a simple dictionary-based approach
using as dictionaries (a) the British National Cor-
pus (BNC) (Aston and Burnard, 1998), (b) Han
et al.’s lexical normalisation dictionary (LexNorm)
(Han et al., 2012) and (c) the training data.
The BNC and LexNorm dictionaries are built by
recording all words occurring in the respective
corpus or word list as English. For the BNC, we
also collect word frequency information. For the
training data, we obtain dictionaries for each of the
six labels and each of the five cross-validation runs
(using the relevant 4/5 of training data).

To make a prediction, we consult all dictionar-
ies. If there are more than one candidate label,
we choose the label for which the frequency for
the query token is highest. To account for the fact
that the BNC is much larger than the training data,
we normalise all frequencies before comparison.
LexNorm has no frequency information, hence it
is added to our system as a simple word list (we
consider the language of a word to be English if it
appears in LexNorm). If a word appears in multi-
ple dictionaries with the same frequency or if the
word does not appear in any dictionary or list, the
predicted language is chosen based on the domi-
nant language(s)/label(s) of the corpus.

We experiment with the individual dictionar-
ies and the combination of all three dictionaries,
among which the combination achieves the high-
est cross-validation accuracy (90.71%). Table 2
shows the results of dictionary-based detection ob-
tained in five-fold cross-validation.

4.2 Classification with k-NN
For Nepali-English, we also experiment with a
simple k-nearest neighbour (k-NN) approach. For
each test item, we select a subset of the training
data using string edit distance and n-gram overlap



and choose the majority label of the subset as our
prediction. For efficiency, we first select k1 items
that share an n-gram with the token to be classi-
fied.1 The set of k1 items is then re-ranked ac-
cording to string edit distance to the test item and
the best k2 matches are used to make a prediction.

Apart from varying k1 and k2, we experiment
with (a) lowercasing strings, (b) including context
by concatenating the previous, current and next
token, and (c) weighting context by first calcu-
lating edit distances for the previous, current and
next token separately and using a weighted aver-
age. The best configuration we found in cross-
validation uses lowercasing with k1 = 800 and
k2 = 16 but no context information. It achieves
an accuracy of 94.97%.

4.3 SVM Classification
We experiment with linear kernel SVM classifiers
using Liblinear (Fan et al., 2008). Parameter opti-
misation2 is performed for each feature set combi-
nation to obtain best cross-validation accuracy.

4.3.1 Basic Features
Following Barman et al. (2014), our basic features
are:

Char-N-Grams (G): We start with a charac-
ter n-gram-based approach (Cavnar and Trenkle,
1994). Following King and Abney (2013), we se-
lect lowercased character n-grams (n=1 to 5) and
the word as the features in our experiments.

Dictionary-Based Labels (D): We use presence
in the dictionary of the 5,000 most frequent words
in the BNC and presence in the LexNorm dictio-
nary as binary features.3

Length of words (L): We create multiple fea-
tures for token length using a decision tree (J48).
We use length as the only feature to train a deci-
sion tree for each fold and use the nodes obtained
from the tree to create boolean features (Rubino et
al., 2013; Wagner et al., 2014).

1Starting with n = 5, we decrease n until there are at
least k1 items and then we randomly remove items added in
the last augmentation step to arrive at exactly k1 items. (For
n = 0, we randomly sample from the full training data.)

2C = 2i with i = −15,−14, ..., 10
3We chose these parameters based on experiments with

each dictionary, combinations of dictionaries and various fre-
quency thresholds. We apply a frequency threshold to the
BNC to increase precision. We rank the words according to
frequency and used the rank as a threshold (e.g. top-5K, top-
10K etc.). With the top 5,000 ranked words and C = 0.25,
we obtained best accuracy (96.40%).

Features Accuracy Features Accuracy
G 96.02 GD 96.27
GL 96.11 GDL 96.32
GC 96.15 GDC 96.20
GLC 96.21 GDLC 96.40

Table 3: Average cross-validation accuracy of 6-
way SVMs on the Nepali-English data set; G =
char-n-gram, L = binary length features, D = dict.-
based labels and C = capitalisation features

Context Accuracy(%)
GDLC + P1 96.41
GDLC + P2 96.38
GDLC + N1 96.41
GDLC + N2 96.41
GDLC + P1 + N1 96.42
GDLC + P2 + N2 96.41

Table 4: Average cross-validation accuracy of 6-
way SVMs using contextual features for Nepali-
English

Capitalisation (C): We choose 3 boolean
features to encode capitalisation information:
whether any letter in the word is capitalised,
whether all letters in the word are capitalised and
whether the first letter is capitalised.

Context (Pi and Nj): We consider the previous
i and next j token to be combined with the current
token, forming an (i+1)-gram and a (j+1)-gram,
which we add as features. Six settings are tested.
Table 4 shows that using the bigrams formed with
the previous and next word are the best combina-
tion for the task (among those tested).

Among the eight combinations of the first four
feature sets that contain the first set (G), Table 3
shows that the 6-way SVM classifier4performs
best with all features sets (GDLC), achieving
96.40% accuracy. Adding contextual information
PiNj to GDLC, Table 4 shows best results for
i=j=1, achieving 96.42% accuracy, only slightly
ahead of the context-independent system.

4.3.2 Neural Network (Elman) and k-NN
Features

We experiment with two additional features sets
not covered by Barman et al. (2014):

Neural Network (Elman): We extract features
from the hidden layer of a recurrent neural net-

4We also test 3-way SVM classification (lang1, lang2 and
other) and heuristic post-processing, but it does not outper-
form our 6-way classification runs.



Systems Accuracy
GDLC 96.40
k-NN 95.10
Elman 89.96
GDLC+k-NN 96.31
GDLC+Elman 96.46
GDLC+k-NN+Elman 96.40
GDLC+P1N1 96.42
k-NN+P1N1 95.11
Elman+P1N1 91.53
GDLC+P1N1+k-NN 96.33
GDLC+P1N1+Elman 96.45
GDLC+P1N1+k-NN+Elman 96.40

Table 5: Average cross-validation accuracy of 6-
way SVMs of combinations of GDLC, k-NN, El-
man and P1N1 features for Nepali-English

work that has been trained to predict the next char-
acter in a string (Chrupała, 2014). The 10 most ac-
tive units of the hidden layer for each of the initial
4 bytes and final 4 bytes of each token are bina-
rised by using a threshold of 0.5.

k-Nearest Neighbour (kNN): We obtain fea-
tures from our basic k-NN approach (Section 4.2),
encoding the prediction of the k-NN model with
six binary features (one for each label) and a nu-
meric feature for each label stating the relative
number of votes for the label, e.g. if k2 = 16
and 12 votes are for lang1 the value of the fea-
ture votes4lang1 will be 0.75. Furthermore, we
add two features stating the minimum and maxi-
mum edit distance between the test token and the
k2 selected training tokens.

Table 5 shows cross-validation results for these
new feature sets with and without the P1N1 con-
text features. Excluding the GDLC features, we
can see that best accuracy is with k-NN and P1N1

features (95.11%). For Elman features, the accu-
racy is lower (91.53% with context). In combina-
tion with the GDLC features, however, the Elman
features can achieve a small improvement over
the GDLC+P1N1 combination (+0.04 percentage
points): 96.46% accuracy for the GDLC+Elman
setting (without P1N1 features). Furthermore, the
k-NN features do not combine well.5

4.3.3 Final System and Test Results
At the time of submission of predictions, we had
an error in our GDLC+Elman feature combiner re-

5A possible explanation may be that the k-NN features
are based on only 3 of 5 folds for the training data (3 folds
are used to make predictions for the 4th set) but 4 of 5 folds
are used for test data predictions in each cross-validation run.

Tweets
Token-Level Tweet-Level

Nepali-English 96.3 95.8
Spanish-English 84.4 80.4

Surprise Genre
Token-Level Post-Level

Nepali-English 85.6 77.5
Spanish-English 94.4 80.0

Table 6: Test set results (overall accuracy) for
Nepali-English and Spanish-English tweet data
and surprise genre

sulting in slightly lower performance. Therefore,
we selected SVM-GDLC-P1N1 as our final ap-
proach and trained the final two systems using the
full training data for Nepali-English and Spanish-
English respectively. While we knew that C =
0.125 is best for Nepali-English from our experi-
ments, we had to re-tune parameter C for Spanish-
English using cross-validation on the training data.
We found best accuracy of 94.16% for Spanish-
English with C = 128. Final predictions for the
test sets are made using these systems.

Table 6 shows the test set results. The test
set for this task is divided into tweets and a sur-
prise genre. For the tweets, we achieve 96.3%
and 84.4% accuracy (overall token-level accuracy)
in Nepali-English and in Spanish-English respec-
tively. For this surprise genre (a collection of posts
from Facebook and blogs), we achieve 85.6% for
Nepali-English and 94.4% for Spanish-English.

5 Conclusion

To summarise, we achieved reasonable accuracy
with a 6-way SVM classifier by employing basic
features only. We found that using dictionaries
is helpful, as are contextual features. The perfor-
mance of the k-NN classifier is also notable: it is
only 1.45 percentage points behind the final SVM-
based system (in terms of cross-validation accu-
racy). Adding neural network features can further
increase the accuracy of systems.

Briefly opening the test files to check for for-
matting issues, we notice that the surprise genre
data contains language-specific scripts that could
easily be addressed in an English vs. non-English
scenario.
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