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Cross asset class applications of functional data
analysis: Evaluation with controls for data

snooping bias

Fearghal J. Kearney

Abstract

This thesis applies functional data analysis techniques to address a number of speci�c
research questions in �nancial markets. Data snooping bias controls are adopted in parallel
to provide statistical robustness to our inferences. Firstly, we conduct an investigation into
U.S. exchange-traded fund outperformance during the 2008-2012 period. The funds are
tested for net asset value premium, underlying index and market benchmark outperfor-
mance. The study serves as a platform to showcase the data snooping bias problem and
application of generalised multiple hypothesis testing techniques, in advance of their use
for functional data analysis evaluation. Secondly, as the �rst application of functional data
analysis, we examine implied volatility, jump risk, and pricing dynamics within crude oil
markets. Strong evidence is found of converse jump dynamics during periods of demand and
supply side weakness. Next, we demonstrate the performance advantage over traditional
benchmarks of adopting a functional linear model to forecast EUR-USD implied volatil-
ity. Our �ndings are shown to be robust across various moneyness segments, contract
maturities and out-of-sample window lengths. The �nal chapter also uses a functional
data framework to produce forecasts, demonstrating how information can be extracted
from forward contracts to predict future spot foreign exchange rates. The evaluation of
an out-of-sample framework leads to near systematic outperformance in terms of a direct
comparison of performance measures, versus both the restricted vector error correction
model and random walk. Overall, this thesis highlights the usefulness of adopting insight-
ful and novel functional data analysis techniques across various asset classes where multiple
hypothesis testing controls provide robustness around our conclusions. Each of the studies
contributes to the literature individually, with the collection emphasising the bene�ts of
adopting functional approaches to tackle a wide range of empirical �nance problems.
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Chapter 1

Introduction

1.1 Introduction

The core contribution of the thesis is the proposed use of functional data analysis (FDA)

techniques in a cross-security �nancial setting. Multiple hypothesis testing (MHT) controls

are adopted in parallel to robustly identify instances of outperformance. We demonstrate

the power and �exibility of the statistical techniques by applying them across four distinct

asset classes, namely, exchange-traded funds (ETFs), crude oil options, foreign exchange

implied volatility, and foreign exchange forward rate term structure. We outline the use

of recent innovations in controlling for the MHT problem when seeking to identify ETF

outperformance and use functional data analysis techniques to examine implied volatility,

jump risk, and pricing dynamics within crude oil markets. Furthermore, we combine both

FDA and MHT techniques to characterise and forecast underlying processes; forecasting

EUR-USD implied volatility and extracting the informational content from the forward

rate term structure for multiple currencies.

1.2 Context and motivation

Functional data analysis (FDA) provides a framework to produce and interpret func-

tional representations of the process underlying a data set. Functional data analysis begins

with the assumption that there exists an underlying function that generates the observa-

tions. In addition, it is assumed that the underlying function is smooth in some sense, so

that there is a link between consecutive observations. The process is de�ned over a con-

tinuum, where continuum values are generally represented in terms of time or space. This

continuous property distinguishes FDA from other common multivariate techniques which

seek to model and forecast �nancial processes based solely on the discrete observations

observed in the data set. In this thesis the functions are de�ned over the domain spanned

by both the moneyness and deltas of option contracts, and the tenors of forward contracts.

The resultant functions serve to characterise the implied volatility curve and forward rate

term structure.
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Functional data analysis is adopted for this thesis as it boasts many advantages; it

accurately captures underlying smooth process dynamics, there is no assumed parametric

structure, it is computationally e�cient, and it results in a representation that can be

evaluated on an arbitrarily �ne grid (Ramsay and Silverman 2005). Another signi�cant

feature that we exploit to obtain a proxy for jump risk, is that the continuous function can

be di�erentiated at any point to obtain the slope and other higher order derivatives. Func-

tional variants of many traditional multivariate techniques are available with a number of

applications in the bio-mechanical literature bene�tting from functional data frameworks.

However, it has only recently been exploited for �nancial analysis with studies by Benko

et al. (2009) and Muller et al. (2011) highlighting its usefulness in characterising implied

and realised volatility processes, respectively. We adopt a distinct functional framework

to also forecast implied volatility, and further employ functional techniques to characterise

the forward rate term structure in foreign exchange markets. The framework can be used

as an exploratory tool to represent and analyse a �nancial data set in in�nite dimensional

space, such as conducted for crude oil options but also to predict the future evolution of

�nancial market processes.

When constructing a functional data object, a vector of n bases, denoted φ1, ..., φn,

must �rst be speci�ed. The decision of which basis system to specify is driven by the

underlying data's known characteristics. For instance, when modelling periodic data, a

Fourier basis expansion, comprised of successive sine/cosine terms, is most commonly ap-

plied. However, neither the implied volatility or forward curves exhibit strong cyclical

variation, so we choose �exible B-splines for the basis function system. B-spline represen-

tation o�ers a number of strengths, as outlined in de Boor (2001). They are essentially a

number of polynomials joined together smoothly at �xed points called knots. The number

and positioning of the knots are derived from knowledge of the complexity of the under-

lying process over particular ranges. Computations with B-splines are extremely e�cient

as at any one point along the curve they simplify to a polynomial that can be easily eval-

uated. Adjusting the order of the spline allows for the estimation of derivatives of any

degree. Functional structures are approximated as a weighted linear combination of these

bases. We employ a number of distinct functional regression speci�cations to forecast these

structures. Classical linear models seek to describe the dependency between a response

variable and a speci�ed set of predictors. In classical regression, scalar values are used for

both the explanatory and response variables. However, in functional linear regression at

least one of the observed variables is a curve.

The motivation for incorporating multiple hypothesis testing controls is to account for

the issue of data snooping bias. This ensure that the conclusions drawn around the use

of our functional data frameworks in the applied studies are as robust as possible. Data

snooping bias, in this context, is the problem whereby under näive analysis statistically

signi�cant outperformance relationships may be identi�ed by pure chance alone. When

conducting a number of hypothesis tests simultaneously on the same data set one runs

the risk of uncovering random artefacts as statistically signi�cant relationships. This is

2



due to inherent correlations observed between members of any �random� data set. The

false discovery of such random artefacts can inhibit risk management and the pricing and

hedging of derivatives. Data snooping bias links directly to the broader issue of multiple

hypothesis testing in statistical and econometric applications where the issue is commonly

referred to as the multiple comparisons problem. Data snooping bias is well addressed in

scienti�c and medical �elds but largely ignored in empirical �nance literature. A number

of quantitative studies employ such procedures. Sullivan and Timmermann (1999), Hsu

and Kuan (2005), Park and Irwin (2007), Marshall et al. (2008), and Qui and Wu (2008)

apply the reality check bootstrap test of White (2000) to evaluate the pro�tability of a

wide range of technical trading rules commonly used in industry. Further to this, Hsu

et al. (2010) employ a stepwise extension of the superior predictability test of Hansen

(2005) to re-evaluate the pro�tability of technical trading rules. The methodologies used

in previous studies raise concerns around the validity of the inferences drawn, insofar as

they lack data snooping bias controls and in many cases conduct less formal hypothesis

tests. This can greatly mislead an investor's portfolio selection. Addressing this issue is

important as it calls into question, and potentially undermines, the �ndings and conclusions

in the literature. A major contribution of the thesis to the literature is the utilisation of a

generalised data snooping bias procedure in the performance appraisal setting. We apply

the generalised balanced stepdown procedure of Romano and Wolf (2010), which serves as

an improvement over the more conservative seminal reality check bootstrap test of White

(2000) and the superior predictive ability test of Hansen (2005). The generalised balanced

stepdown procedure of Romano and Wolf (2010) boasts a greater ability to reject false null

hypotheses as well as o�ering balance in the sense that all hypotheses are treated equally

in terms of power. It also allows for subsequent iterative steps to identify additional

hypothesis rejections. The technique is outlined in Chapter 2, and is also applied in

Chapters 4 and 5.

1.3 Contribution

1.3.1 Research questions

We will now outline the reasons for our choice of asset class concentrations and research

questions. Exchange-traded funds (ETFs) are variants of mutual funds that �rst came to

prominence in the early 1990s. ETFs allow market participants to trade index portfolios,

similar to how individual investors trade shares of a stock. They seek to track the value

and volatility of an underlying benchmark index through the construction of portfolios

replicative of the index's constituents. They were �rst traded on the Toronto Stock Ex-

change in 1989 and today's market boasts over 1,220 U.S. traded ETFs.1 In relation to the

analysis of ETF outperformance, the majority of research conducted to date has centered

on data sets comprising small numbers of large ETFs, single ETF families or industries,

1Investment company institute June 2012 ETF report:
http://www.ici.org/etf_resources/research/etfs_06_12.
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with measurements being applied inconsistently across the di�ering studies, inhibiting ef-

fective cross comparison. This thesis amends that, primarily through the use of a large,

diverse sample size, which incorporates many sectoral and internationally focused indices.

We investigate a large number of ETF attributes and their ability to dictate net asset

value premium, underlying index and market benchmark outperformance. The e�ect of

replication type and asset class focus on ETF performance for instance has not been rig-

orously tested in the literature and as such we incrementally contribute in this way. This

work may be of interest to a variety of stakeholders. Firstly, investigating ETF outper-

formance is signi�cant from an academic perspective as it furthers our understanding of

the market's pricing dynamics. Secondly, the wider investment community would bene�t

from the work as an aid in identifying speci�c ETF cohorts suitable to individual portfolio

requirements. Lastly, despite it not being the primary focus of this study, the data snoop-

ing bias issues raised o�er broader insights to arbitrageurs by emphasising the importance

of controlling for data snooping bias in order to robustly identify mispricings and trading

signals.

Oil futures are the most actively traded commodity derivatives. An average of one

million light sweet crude oil futures and option contracts are traded every day according

to the CME group.2 The past 10 years have seen elevated levels of price volatility in these

markets. Strong economic pressures have been observed on both the demand side and the

supply side, during the global �nancial crisis and the Arab Spring respectively. Increased

price volatility in oil markets causes profound economic management and socio-political

issues, not only impacting those participants who invest directly in commodities but also

the consumers of re�ned oil products. There is a large body of literature demonstrating the

importance of incorporating jumps into models seeking to capture risk premia and economic

shocks. Traditional geometric Brownian motion based models, such as Black and Scholes'

(1973) di�usion model, do not capture price jumps, which are movements that become

more prevalent during periods of increased market turbulence. For this reason we employ

the use of the Merton (1976) model in line with Yan (2011). Yan (2011) proposes the

use of implied volatility slope information to estimate jump risk. He shows, both directly

and indirectly, the applicability of the at-the-money implied volatility slope as a proxy

for the average jump amplitude in equity markets. We seek to answer a similar question

in crude oil markets. Further contributions relate to the employment of FDA-obtained

Merton model parameters for portfolio hedging where we compare the calculated results

with the standard Black-Scholes delta hedging strategy.

Observed implied volatility di�ers across option contracts, dependent on both money-

ness and expiry date. As well as being a transformation of the option price, and a key

parameter in many asset pricing formulae, implied volatility is also of interest due to its

informational content (see Corrado and Miller 2006, Taylor et al. 2010, Muzzioli 2010,

and Garvey and Gallagher 2012). Yu et al. (2010) demonstrate this by �nding superior

results using implied volatility to predict future return volatility of stock index options,

2http://www.cmegroup.com/trading/energy/�les/en-153_wti_brochure_sr.pdf.

4



when compared to traditional benchmark models in over-the-counter (OTC) and exchange

markets. One such OTC market is that of foreign exchange (FX) options. FX is the largest

asset class in the world with the Bank for International Settlements reporting that trading

levels in FX markets averaged $5.3 trillion per day.3 Many stakeholders are exposed to FX

risk including banks, speculators, traders, multinational �rms, importers, and exporters.

Modelling foreign currency cash �ows, investment decisions, and hedging strategies, are all

greatly dependent on expectations of future FX movements. Relative to previous studies

forecasting the volatility of returns, there is a relative paucity of literature predicting the

evolution of implied volatility.

We add to the existing FX implied volatility literature through the novel proposal of

a functional data analysis-based forecasting model to predict the evolution of the implied

volatility function. The aim is to determine and forecast the function that characterises the

implied volatility relationship among option contracts. Both the scalar response/functional

explanatory and functional explanatory/functional response linear models of Ramsay and

Silverman (2005) are utilised for the analysis, with the forecasts compared to traditionally

proposed benchmarks of Gonclaves and Guidolin (2006) and Konstantinidi et al. (2008),

in an out-of-sample testing framework. We not only contribute from an academic per-

spective, where insights into the dynamics of implied volatility aid our understanding of

option markets, but also from a market practitioner perspective, due to the study's po-

tential hedging and speculation implications. We contribute further by incorporating the

use of a contributory data vendor. This mitigates the idiosyncratic risk, as highlighted

by Chalamandaris and Tsekrekos (2014), associated with obtaining quotes from a single

market participant.

Meese and Rogo� (1983a,b) ascertain that standard exchange rate models do not have

the ability to beat forecasts implied by the random walk in the short run. In an attempt to

explain this, Engel and West (2005) and Engel et al. (2008) demonstrate that such models

imply a near random walk process for the exchange rate, so their power to �beat the random

walk� in out-of-sample forecasts is low. Furthermore, it has been demonstrated that the

forward rate is not the optimal predictor of future spot rates (Hansen and Hodrick 1980,

Frankel 1980, Bilson 1981, Frankel and Rose 1995, and Taylor 1995). Despite this, the

question as to whether or not there is information imbedded in forward FX rates persists.

Clarida and Taylor (1997) seek to answer this by moving beyond such single-equation

methods and conclude that forward premia information is in fact considerable. Their

restricted vector error correction model (VECM) constitutes the leading challenger to the

seminal work of Meese and Rogo� (1983a,b). The approach is applied in a dynamic out-of-

sample forecasting framework resulting in root mean squared error and mean absolute error

metrics over 50% lower than those implied by the random walk. The results are con�rmed

by Clarida et al. (2003) and Sager and Taylor (2014), who establish statistically signi�cant

outperformance across di�erent data sets. Our study adds to the existing literature seeking

to extract the informational content of forward foreign exchange rates through the novel

3http://www.bis.org/publ/rpfx13fx.pdf.
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proposal of a functional data analysis-based forecasting model.

In relation to extracting the informational content of the FX forward curve, we con-

tribute by moving the problem to a functional space to improve on the forecasting perfor-

mance achieved by previous leading benchmark models. To this aim, we adopt the scalar

response model proposed in Ramsay and Silverman (2005) where the in�nite dimensional

beta coe�cient is speci�ed with a functional principal component basis to solve the under-

determination issue. Speci�cally, we determine the underlying process that characterises

the forward rate term structure to establish dependency relations between forward rates

and future spot exchange rates. The �exible functional data approach accurately captures

the forward rate term structure process, whilst mitigating the need to impose restrictive

data structure assumptions on the exchange rate system. For comparative purposes with

previous studies, we initially present a direct comparison of forecasting performance mea-

sures. However, we then apply formal tests to identify instances of statistically signi�cant

outperformance for the scalar response model over both the VECM and random walk

benchmarks. We �rst test the hypothesis of forecasting outperformance by implementing

a simple t-test of performance measures di�erentials. In an important extension of the

literature we contribute by incorporating controls for the multiple comparisons problem in

testing forecast performance. Further to this, our framework tests if exchange rates are in

fact predictable and if the simple risk neutral e�cient market hypothesis holds.

1.3.2 Chapter outline

Chapter 2, �Outperformance in exchange-traded fund pricing deviations: Generalised con-

trol of data snooping bias�, conducts an investigation into exchange-traded fund (ETF)

outperformance during the 2008-2012 period, utilising a data set of 288 U.S. traded secu-

rities. ETFs are tested for net asset value (NAV) premium, underlying index and market

benchmark outperformance, with Sharpe, Treynor, and Sortino ratios employed as risk-

adjusted performance measures. A key contribution is the application of an innovative

generalised stepdown procedure in controlling for data snooping bias.

Chapter 2 key questions:

• What ETFs display a net asset value premium?

• What ETFs outperform their underlying index?

• What ETFs outperform market wide benchmarks?

• How do speci�c groupings of ETFs di�er in terms of outperformance?

Chapter 2 key �ndings:
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• Energy, Precious Metals, Real Estate and Leisure industries beat the market on a
risk adjusted basis.

• Powershares DB Silver and iShares Silver Trust substantially outperform.

• 63% and 79% of Global and International ETFs respectively, show premium Sharpe
Ratio outperformance with only 10% for US funds.

• ETFs exhibiting high expense ratios or recent inception dates have a greater tendency
to outperform their index.

Chapter 3, �An analysis of implied volatility jump dynamics: Novel functional data repre-

sentation in crude oil markets�, proposes a framework to produce and interpret functional

objects that characterise the underlying dynamics of oil future options. The functional data

analysis framework is used to examine implied volatility, jump risk, and pricing dynamics

within crude oil markets. Examining a WTI crude oil sample for the 2007-2013 period,

which includes the global �nancial crisis and the Arab Spring, strong evidence is found

of converse jump dynamics during periods of demand and supply side weakness. This is

used as a basis for an FDA-derived Merton (1976) jump di�usion optimised delta hedging

strategy, which exhibits superior portfolio management results over traditional methods.

Chapter 3 key questions:

• What is the link between the shape of the implied volatility smile and underlying

economic events in crude oil markets?

• Does the implied volatility curve slope contain information useful in specifying the

average jump amplitude for crude oil options, in a similar manner to what Yan (2011)

has shown to be the case for stock returns?

• Can information contained in the implied volatility smile slope be exploited to im-

prove portfolio hedging techniques?

Chapter 3 key �ndings:

• Strong evidence is found of converse jump dynamics during periods of demand and
supply side weakness

• An FDA-derived Merton (1976) jump di�usion optimised delta hedging strategy
exhibits superior portfolio management results over traditional methods

Chapter 4, �Forecasting implied volatility in foreign exchange markets: A robust functional

linear model approach�, utilises functional data analysis techniques to characterise and

forecast implied volatility in foreign exchange markets. The process of interest in this study

is that of the EUR-USD daily implied volatility curve. Superior prediction of the evolution
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of the implied volatility process is exhibited. This evaluation is performed under a rigorous

out-of-sample testing framework that controls for the multiple comparisons problem.

Chapter 4 key questions:

• Can functional linear model techniques be used to characterise and forecast implied

volatility in foreign exchange markets?

• How does the performance of the functional data analysis approach compare to tra-

ditionally employed benchmark models of Gonclaves and Guidolin (2006) and Kon-

stantinidi et al. (2008)?

• Are the �ndings robust across various moneyness segments, contract maturities and

out-of-sample window lengths?

Chapter 4 key �ndings:

• Our FDA techniques uncover predictable patterns in implied volatility

• We robustly demonstrate the performance advantage of adopting an FDA framework
when predicting future implied volatility

• We empirically demonstrate that the speci�cation of a scalar response model provides
a superior implied volatility �t over the fully functional model.

Chapter 5, �Extracting FX forward rate term structure information: Merits of a functional

method�, seeks to extract the informational content of the forward rate term structure

through the implementation of a functional principal component-based scalar response

model. The di�culty of beating the random walk in forecasting spot FX rates is well

documented, with the restricted VECM of Clarida and Taylor (1997) providing the primary

challenge. Our out-of-sample framework leads to near systematic outperformance in terms

of a direct comparison of performance measures, versus both the VECM and random walk.

Chapter 5 key questions:

• Can we extract the informational content of forward foreign exchange rates through

a functional PCA-based forecasting model?

• How does the performance of the functional PCA-based approach compare with both

the random walk and the Clarida and Taylor (1997) VECM?

• Does the forward rate term structure contain information about the evolution of spot

exchange rates?

Chapter 5 key �ndings:
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• Our scalar response model leads to near systematic outperformance in terms of a
direct comparison of performance measures, coupled with multiple instances of truly
signi�cant outperformance versus both the random walk and Clarida and Taylor
(1997) VECM

• Our results indicate that the forward rate term structure contains statistically sig-
ni�cant information about the evolution of the spot exchange rate

• We provide additional evidence supporting the rejection of the simple risk neutral
e�cient market hypothesis

Chapter 6 outlines the major conclusions drawn from the work.

1.4 Research dissemination

This thesis resulted in a paper that was published in the Journal of Financial Markets;

Kearney, F., M. Cummins, and F. Murphy. 2014. Outperformance in exchange-traded fund

pricing deviations: Generalized control of data snooping bias. Journal of Financial Markets

19:86-109. A manuscript based on Chapter 3 received a revise and resubmit decision from

The North American Journal of Economics and Finance (ranked 16th/89 in the Business,

Finance category of the Thomson Reuters ISI list). It has since been amended, in line

with the version presented here and will be resubmitted in the near future. Chapters 4

and 5, �Forecasting implied volatility in foreign exchange markets: A robust functional

linear model approach� and �Extracting FX Forward Rate Term Structure Information:

Merits of a Functional Method�, are both working papers and will be submitted soon.

Research from this thesis have been presented at the In�niti Conference, Prato 2014, the

In�niti Conference, Aix-en-Provence 2013, the Irish Society of New Economists (ISNE)

Conference, UCC 2012, the ISNE Conference, NUIM 2013, the ISNE Conference, NUIG

2014, the DCU brown bag seminar, and the DCU doctoral colloquium. This research also

resulted in the award of the DCU Business School scholarship and separately, in the receipt

of the Irish Accounting and Finance Association research funding bursary.
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Chapter 2

Outperformance in exchange-traded

fund pricing deviations: Generalised

control of data snooping bias

2.1 Introduction

Exchange-Traded Funds (ETFs) are variants of mutual funds that �rst came to promi-

nence in the early 1990s. ETFs allow market participants to trade index portfolios, similar

to how individual investors trade shares of a stock. They seek to track the value and

volatility of an underlying benchmark index through the construction of portfolios replica-

tive of the index's constituents. They were �rst traded on the Toronto Stock Exchange

in 1989 and today's market boasts over 1,220 U.S. traded ETFs.1 Investors seeking ETF

outperformance may be tempted to apply a number of performance measures to a large

data set of ETFs in order to test for those that are pro�table. Given enough tests, they are

virtually certain to uncover individually signi�cant ETFs and may näively use these as a

basis for portfolio selection decisions. However, in such a set-up, there is a likelihood that

these seemingly signi�cant outperformers are due to mere chance alone. As the number of

simultaneous tests conducted increases so too does the likelihood of such false discoveries.

This issue is known as data snooping bias and must be controlled for when studying ETF

outperformance. A key contribution in this study is the use of an innovative procedure,

proposed in the literature, to control for this problem. The paper further uses an extensive

ETF database that o�ers signi�cant geographic and sector coverage. In this way, the paper

provides robust �rst stage guidance to investors of where ine�ciencies may be and, accord-

ingly, where ETFs may provide some investment advantages. The main item of note from

the implementation is that, when performance is analysed on a non-risk-adjusted basis

only, no funds in the sample are identi�ed as displaying any measure of outperformance.

1Investment company institute June 2012 ETF report:
http://www.ici.org/etf_resources/research/etfs_06_12 (Accessed 10/30/12).
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It is only the risk-adjusted performance measures that give statistically signi�cant outper-

formance results and so the insights from these results dominate the commentary. The

key takeaways from the study are, �rstly, a high proportion of optimised replication, debt

asset class, and global/international ETFs exhibit risk-adjusted premiums, highlighting

redemption in kind ine�ciencies. Secondly, cross-sector and sectoral funds display broadly

the same percentage of outperformance. Lastly, high expense ratio and recent inception

date ETFs are more likely to exhibit index outperformance, which is of interest to investors

seeking to outperform their benchmarks.

The reason for the growth in popularity of ETFs over recent years can be attributed

to a number of advantages that they o�er over other index-linked products. Tax e�ciency

and lower expenses are the two most frequently mooted draws for investors, with another

being smaller transaction quantities than equivalent futures products, a feature allowing

retail investors the opportunity to participate in the market. Empirical studies on active

mutual funds have found that, on average, they do not produce above normal returns.

Malkiel (1995) and Gruber (1996) show that this inability to beat the market is primarily

due to the level of management expenses charged. This performance outcome has increased

interest in passive market tracking funds. ETFs aim to replicate index performance but

with lower transaction costs and greater tax e�ciency than observed in comparable mutual

funds. Actively managed ETFs, whose goal is to realise above market returns, only release

information on their speci�c holdings at an end-of-day frequency, whereas the weighted

constituents of the passively managed ETFs are always known. Rompotis (2011) cites

this as a reason why passive ETFs are advantageous in the eyes of potential arbitrageurs

and for their retention as the more popular ETF type. Other miscellaneous strengths

of ETFs that have contributed to their rise in popularity have been explicitly identi�ed.

Firstly, ETFs provide diversi�cation satisfying broad exposure, be it marketwide or sectoral

coverage, with sectoral ETFs facilitating hedging requirements. Secondly, Yu (2005) and

Alexander and Barbosa (2008) observe that ETFs do not have short selling restrictions in

the same manner as regular stocks so they may be more useful for hedging. Lastly, ETFs

are not subject to the uptick rule, which Curcio et al. (2004) suggest as another bene�t

for shareholders.

A set of 288 U.S. traded ETFs is evaluated in this study using hypothesis tests that

seek to identify those that outperform their net asset value (NAV), their underlying index,

or a market benchmark. A major contribution to the literature here is the utilisation of a

generalised data snooping bias procedure in the ETF performance appraisal setting. Data

snooping bias, in this context, is the problem whereby under näive analysis statistically sig-

ni�cant outperformance relationships may be identi�ed by pure chance alone. Controlling

for data snooping bias is important in order to obtain greater levels of con�dence when

analysing ETF performance. The false discovery of such random artefacts can greatly

mislead an investor's portfolio selection.

Data snooping bias links directly to the broader issue of multiple hypothesis testing

in statistical and econometric applications where the issue is commonly referred to as the
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multiple comparisons problem. This problem is well addressed in the scienti�c and medical

�elds but largely ignored in the empirical �nance literature. This paper contributes to the

empirical research on ETFs by applying the generalised balanced stepdown procedure of

Romano and Wolf (2010), which serves as an improvement over the more conservative

seminal reality check bootstrap test of White (2000) and the superior predictive ability

test of Hansen (2005). The generalised balanced stepdown procedure of Romano and Wolf

(2010) boasts a greater ability to reject false null hypotheses as well as o�ering balance in

the sense that all hypotheses are treated equally in terms of power.

A number of quantitative studies employ such procedures to control for data snooping

bias. Sullivan and Timmermann (1999), Hsu and Kuan (2005), Park and Irwin (2007),

Marshall et al. (2008) and Qui and Wu (2008) apply the reality check bootstrap test

of White (2000) to evaluate the pro�tability of a wide range of technical trading rules

commonly used in industry. Qui and Wu (2008) analyse foreign exchange markets while

Marshall et al. (2008) considering a data set of 15 commodities. Hsu et al. (2010) employ

a stepwise extension of the superior predictability test of Hansen (2005) to re-evaluate the

pro�tability of technical trading rules, with Bajgrowicz and Scaillet (2012) utilising a false

discovery rate (i.e., the proportion of false discoveries to the total number of signi�cant

hypothesis tests identi�ed) approach to analyse technical trading rules applied to stock

returns. Controlling for data snooping bias in a statistical arbitrage setting, Cummins

and Bucca (2012) provide a practical comparison of the stepwise procedure of Romano

and Wolf (2007) and the balanced stepdown procedure of Romano and Wolf (2010). They

�nd that the balanced stepdown procedure is unbiased in its approach and is shown to

identify many more pro�table trading strategies compared to the non-balanced stepdown

procedure.

An acknowledgment of this multiple comparisons issue can be seen in both the hedge

and mutual fund performance literature but this is not the case for ETFs. In assessing

hedge fund performance, Criton and Scaillet (2011) use the false discovery rate to control

for data snooping bias. Cuthbertson et al. (2008) and Barras et al. (2010) also utilise

the false discovery rate in order to �nd the proportion of �lucky� mutual funds amongst

those with signi�cant individual alphas. However, unless the false discovery rate is zero,

it is not possible to identify which of the individual funds are genuinely outperforming.

This study signi�cantly extends this literature, incorporating the more recent balanced

stepdown procedure of Romano and Wolf (2010) and applying this in the ETF realm to

identify both individual ETFs and ETF cohorts that outperform. The Romano and Wolf

(2010) procedure further works on the generalised familywise error rate rather than the

false discovery rate � the former being the actual number of false discoveries from the set

of all true hypotheses.

The methodologies used in previous ETF studies raise concerns around the validity

of the inferences drawn, insofar as they lack data snooping bias controls and in many

cases conduct less formal hypothesis tests. This can greatly mislead an investor's portfo-

lio selection. Addressing this issue is important as it calls into question, and potentially
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undermines, the �ndings and conclusions in the literature. The major argument of this

paper is therefore that in order for one to be robustly con�dent of one's ETF performance

conclusions, one must control for the multiple comparisons problem. The robustness of

one's economic arguments is intrinsically linked to the robustness of the econometric anal-

ysis. This requires a fundamental shift in the way that ETF performance is analysed

econometrically; a fundamental shift that is equally required in the mainstream empirical

�nance literature. The majority of research conducted to date has centred on data sets

comprising small numbers of large ETFs, single ETF families or industries, with measure-

ments being applied inconsistently across the di�ering studies, inhibiting e�ective cross

comparison. This body of work amends that, primarily through the use of a large, diverse

sample size, which incorporates many sectoral and internationally focused indices. We in-

vestigate numerous ETF attributes and their ability to dictate outperformance, alongside

including a recent time period. The e�ect of replication type and asset class focus on ETF

performance for instance has not been rigorously tested in the literature and as such this

study incrementally contributes in this way. This work may be of interest to a variety of

stakeholders. Firstly, investigating ETF outperformance is signi�cant from an academic

perspective as it furthers our understanding of the market's pricing dynamics. Secondly,

the wider investment community would bene�t from the work as an aid in identifying

speci�c ETF cohorts suitable to individual portfolio requirements. Lastly, despite it not

being the focus of this study, the data snooping bias issues raised o�er broader insights to

arbitrageurs by emphasising the importance of controlling for data snooping bias in order

to robustly identify mispricings and trading signals.

The remainder of the paper is organised as follows. In Section 2.2 we discuss in-kind

deviations along with performance di�erences between ETF prices, underlying indices, and

a market benchmark. In section 5.3.4 we discuss the issue of data snooping bias and link

this to the broader issue of multiple hypothesis testing. We also discuss the details of

the balanced stepdown procedure of Romano and Wolf (2010), along with the associated

operative method that allows for computational e�ciency. The empirical analysis is out-

lined in Section 2.4, where we describe the data set and de�ne the formal hypothesis tests.

Section 2.5 presents the results of the empirical analysis and considers various attributes

of outperforming funds. Section 5.5 concludes.

Summary of contributions

• What ETFs display a Net Asset Value premium?

• What ETFs outperform their underlying index?

• What ETFs outperform market wide benchmarks?

• How do speci�c groupings of ETFs di�er in terms of outperformance?
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2.2 Outperformance

We examine ETF outperformance on three levels: ETF NAV premium; ETF price

versus its tracked underlying index; and ETF price versus a market return benchmark.

NAV premium refers to the amount that the secondary market price of the ETF trades

above its calculated NAV. If the amount is negative, it is referred to as a NAV discount. The

creation/redemption/deletion procedure facilitates exploitation in such situations, whereby

the investor can exchange units of trust for the underlying index's stock and vice versa.

The return to optimal Law of One Price levels would occur if there were no limits to

arbitrage, with the most notable observed limitations being market frictions (redemption

fees and bid-ask spreads). There is empirical evidence of an inconsistency in premium levels

between domestic and non-domestic funds, whereby non-domestic funds display persistent

premiums with U.S. domestic funds tracking their NAVs relatively well. Elton et al. (2002)

and Ackert and Tian (2008) both observe that U.S. ETFs are priced close to NAVs, while

Jares and Lavin (2004) and Engle and Sarkar (2006) report that some country ETFs display

premiums/discounts. Elton et al. (2002) report an average annual return from holding

Spiders2 of 21.91% between the years 1994 and 1998, with the NAV return being slightly

lower at 21.89%. However they highlight, that the �gures may overstate the true di�erence

as Spiders continue to trade for up to 15 minutes after the New York Stock Exchange

closes. Engle and Sarkar (2006) use both daily and intra-day data to investigate short-term

deviations between the traded price and NAVs of 21 domestic (U.S.) and 16 international

ETFs between April and September 2000. They �nd that ETFs trade in a premium range

of between -0.1 bps and 4.6 bps. U.S. ETFs show minute premiums that are smaller

than typical bid-ask spreads whereas international ETFs are less accurately priced due to

higher tax and creation/redemption costs. Jares and Lavin (2004) consider mispricings in

two Asian ETFs, namely Hong Kong and Japan country funds. They conclude that the

non-synchronised trading hours between the U.S. and foreign markets induces the presence

of premiums. This study incorporates ETFs from both of these geographic locations.

An ETF is said to have an index tracking error if a fund does not perfectly mirror its

underlying benchmark index. Elton et al. (2002) �nd that Spiders underperform the S&P

500 Index by 28 bps, the two main causes for this underperformance being the management

fee of 18 bps and the dividend being placed in a non-interest bearing account, which results

in another 9.95 bps loss. The in�uence of expense ratio on ETF outperformance is one of

the many factors addressed in Section 2.5. Harper et al. (2006) provide a comparison of

ETFs and closed-end country funds (CEFs), observing no signi�cant tracking error between

iShares ETFs and MSCI3 indices from April 1996 to December 2001. DeFusco et al. (2011)

study the three most liquid ETFs, the Spiders, Diamonds, and Cubes.4 Through setting

2Standard & Poor's Depository Receipts (�Spiders� or SPDRs ) track the performance of the S&P 500
Index.

3MSCI is an abbreviation of Morgan Stanley Capital International. iShares are ETFs tracking the
performance of MSCI individual country market indices.

4Diamonds and Cubes are ETFs tracking the performance the Dow Jones Industrial Average and NAS-
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out �ve hypothesis tests on the non-synchronous price deviations between the ETFs and

the notional price of the index, they conclude that the tracking error is a non-zero, non-

normal, stationary process that is dependent on both the accumulation of dividends and

on the size of the benchmark index. This paper deals with the size issue through the proxy

of each ETF's total assets under management.

Market tracking error in this context refers to how much an ETF under/outperforms

a broad market index. The majority of mutual fund and ETF studies to date utilise the

S&P 500 as their U.S. benchmark index proxy alongside incorporating risk-adjusted returns

into the analysis. Phengpis and Swanson (2009), using monthly data and incorporating

the Wilshire 3000 Index to represent the U.S. market return, �nd that country iShares are

not heavily exposed to U.S. market risk. The results are obtained using a new two factor

test speci�cation with the iShares typically mirroring their underlying market indices up

to the end of March 2007. The relationship between a U.S. market benchmark and country

iShares is revisited in this study. Mateus and Kuo (2008) also study ETF performance,

providing a comparative analysis of 20 country-speci�c ETFs with the S&P 500 Index over

a �ve-year period. Risk-adjusted measures are used, namely, Sharpe, Treynor, and Sortino

ratios. Sharpe and Sortino ratios are again calculated by Rompotis (2011), who shows that

the majority of the 50 selected iShares in his sample outperform the S&P 500 on both an

annual and aggregate basis over the 2002 to 2007 period.

It is necessary to brie�y highlight some methodological de�ciencies contained in the

above papers. These de�ciencies call into question some of the economic reasoning put

forward. A common adjustment method is used to assess the scale of the multiple com-

parisons problem in the literature. This adjustment is the Bonferroni correction which

involves controlling the familywise error rate (i.e., the probability of obtaining one or more

false discoveries) by using for each hypothesis test a per comparison cut-o� value (α̃) equal

to the required signi�cance level (α) divided by the number of hypothesis tests n, i.e.,

α̃=α/n.

Firstly, Ackert and Tian (2008) fail to conduct formal hypothesis tests on the observed

premium, simply reporting 5% and 95% intervals for the 28 individual ETFs. Such a naïve

approach fails to control for the multiple comparisons problem. Even without account-

ing for the multiple comparisons issue, none of the observed premiums are statistically

signi�cant, yet inferences from the tests are used as the basis for the paper's primary

contribution�to uncover a U-shape between illiquidity and fund premium. Harper et al.

(2006) promote the use of international ETFs over CEFs in an analysis of passive versus

active investment strategies. In doing so, a test is conducted whereby Sharpe ratios are

calculated for both the passive ETFs and the active CEFs with t-tests of the Jobson Korkie

statistic reported; 29 simultaneous hypotheses are tested about a data set with rejections

listed at 5% and 10% signi�cance levels. Four passive ETFs are said to signi�cantly outper-

form the active CEFs. Using a simpli�ed correction methodology for illustrative purposes,

a Bonferroni adjustment would lead to lowering an alpha level of 10% to 0.34% (10%/29

DAQ 100 indices, respectively.

15



= 0.34%). None of these four supposedly signi�cant ETFs genuinely outperform the CEFs

after this adjustment is made. Jares and Lavin (2004) �nd that premiums in Japan and

Hong Kong ETFs are positively related to subsequent ETF returns and propose a trading

strategy to exploit this. Comprehensive economic reasoning for this observed dynamic is

not given. One-tailed t-test statistics are given for the hypothesis that the proposed trad-

ing rule exceeds a buy and hold strategy, indicating signi�cance at the 2.5% and 1% levels

for Japan and Hong Kong, respectively. There are 12 (6 years by 2 ETFs) simultaneous

hypotheses tested in the paper, resulting in a Bonferroni adjustment that decreases a 1%

signi�cance level to 0.08% (1%/13 = 0.08%). There is insu�cient information to comment

on the genuine signi�cance of the Hong Kong ETF (it is simply listed as being signi�cant at

the 1% level) but under such an adjustment the pro�table trading strategy associated with

the Japan ETF would be classed as a false discovery. Jares and Lavin (2004) test only two

ETFs, yet generalisations to all foreign ETFs are tentatively made. Another major issue

with the analysis is that it is devised and tested in the same sample period of 1996-2001.

Jares and Lavin (2004) claim that the results uncovered are �almost too good to be true�

and with such �awed in-sample evaluation, this is quite likely to be the case. A much more

rigorous and robust trading strategy analysis, which controls for the data snooping bias,

but within an energy market setting, is that of Cummins and Bucca (2012).

Elton et al. (2002) examines the performance of the Standard and Poor's Depository

Receipts (SPDRs). No formal hypothesis tests are conducted to evaluate the signi�cance

of the tracking errors reported. Instead a di�erence is simply taken between the levels of

the index and ETF and a premium level frequency distribution constructed to form its

inferences. DeFusco et al. (2011) propose �ve hypotheses; namely that ETF tracking error

is (i) a stationary process, (ii) normally distributed, (iii) zero, (iv) linked to dividend accu-

mulation, and (v) that indices with fewer stocks display smaller tracking errors. Utilising a

sample of just three U.S. ETFs, the tracking errors are tested on days when dividends are

paid; when zero, it is inferred that dividends accumulated a�ect the size of the tracking

error. This hypothesis is rejected for the log price of the SPY index at the 5% level and

for the prices SPY index at the 10% level. However no control for the multiple compar-

isons issue is in place here. A family of six simultaneous hypotheses result in a Bonferroni

correction of 10%/6 = 1.667% and 5%/6 = 0.833%, leading to adjusted alphas of 1.67%

and 0.83% for 10% and 5% signi�cance levels, respectively. Under this adjustment, there

would be no hypothesis rejections.

2.3 Multiple hypothesis testing: data snooping bias

The objective of the study is to formally and statistically test for the presence of out-

performance in ETF markets. This will inevitably involve the testing of a large number of

performance measure implementations simultaneously. In particular, 11 pricing deviations

are considered for each of the 288 ETFs, leading to the simultaneous assessment of 3,168

performance measures. This introduces the well-established issue of data snooping bias,
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which in this context, is the problem whereby under näive analysis, statistically signi�cant

outperformance relationships may be identi�ed by pure chance alone. The false discovery

of such random artefacts can greatly mislead an investor's portfolio selection and links

directly to the broader issue of multiple hypothesis testing in statistical and econometric

applications.

The issue with multiple hypothesis testing is that the probability of false discoveries,

i.e., the rejection of true null hypotheses by chance alone, is often signi�cant. There are

a number of approaches described in the literature to deal with this multiple comparisons

problem and control for the familywise error rate (FWER) and related variants. Romano

et al. (2010) provide an excellent summary of the issues and the literature. The FWER

is de�ned as the probability that at least one or more false discoveries occur. Consistent

with the notation of Romano et al. (2010), the following de�nition is made:

FWERθ = Pθ {reject at least one null hypothesis H0,s : s ∈ I (θ)} ,

where H0,s, s = 1, . . . , S, is a set of null hypotheses; and I (θ) is the set of true null

hypotheses. Controlling the FWER involves setting a signi�cance level α and requiring

that FWERθ ≤ α. This approach is particularly conservative given that it does not allow

even for one false discovery and so is criticised for lacking power, where power is loosely

de�ned as the ability to reject false null hypotheses, i.e., identify true discoveries (Romano

et al. 2010). The greater S, the more di�cult it is to make true discoveries.

To deal with this weakness, generalised FWER approaches have been proposed in the

literature. The generalised FWER seeks to control for k (where k ≥ 1) or more false

discoveries and, in so doing, allows for greater power in multiple hypothesis testing. The

generalised k-FWER is de�ned as follows:

k-FWERθ = Pθ {reject at least k null hypothesis H0,s : s ∈ I (θ)} .

Towards building a framework to identify outperforming ETFs, with statistical signi�cance,

the following one-sided hypothesis test is considered:

H0,s : θs ≤ 0 vs. H1,s : θs > 0.

The objective is to control for the multiple comparisons in this scenario through the gen-

eralised FWER, which o�ers greater power while also implicitly accounting for the de-

pendence structure that exists between the tests. Before outlining the balanced stepdown

procedure of Romano and Wolf (2010), it is �rst necessary to present the (inferior) single-

step procedure designed around the generalised FWER. The advantages of the Romano

and Wolf (2010), procedure are better appreciated with this context.

2.3.1 Single-step procedure

Assume a set of test statistics Tn,s = θ̂n,s associated with the hypothesis tests, where n
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denotes the sample size of the data used for estimation. Letting A ≡ {1, . . . , S}, the single-
step procedure proceeds by rejecting all hypotheses where Tn,s ≥ cn,A (1− α, k), and where

cn,A (1− α, k) represents the (1− α)-quantile of the distribution of k-max
(
θ̂n,s − θs

)
un-

der Pθ. With Pθ unknown, the critical value cn,A (1− α, k) is also unknown. However,

an estimate critical value may be determined using appropriate bootstrapping techniques.

That is, the critical value ĉn,A (1− α, k) is estimated as the (1− α)-quantile of the dis-

tribution of k-max
(
θ̂∗n,s − θ̂n,s

)
for P̂θ an unrestricted estimate of Pθ. See Romano et al.

(2010) for further technical details.

2.3.2 Balanced stepdown procedure

The single-step procedure is improved upon with the balanced stepdown procedure of

Romano and Wolf (2010) by allowing for subsequent iterative steps to identify additional

hypothesis rejections. It also o�ers balance by construction in the sense that each hypoth-

esis is treated equally in terms of power. The stepdown procedure is constructed such

that at each stage, information on the rejected hypotheses to date is used in re-testing for

signi�cance on the remaining hypotheses.

Again assume a set of test statistics Tn,s = θ̂n,s associated with the hypothesis tests,

where n is again the sample size of the data used for estimation. Introducing some notation,

let Hn,s (·, Pθ) denote the distribution function of
(
θ̂n,s − θs

)
and let cn,s (γ) denote the

γ-quantile of this distribution. The con�dence interval

{
θs : θ̂n,s − θs ≤ cn,s (γ)

}
then has coverage probability γ. Balance is the property that the marginal con�dence

intervals for a population of S simultaneous hypothesis tests have the same probability

coverage. Within the context of controlling the generalised k-FWER, the overall objective

is to ensure that the simultaneous con�dence interval covers all parameters θs, s = 1, ..., S,

except for at most (k − 1) of them, for a given limiting probability (1− α), while at the

same time ensuring balance (at least asymptotically). So, what is sought is that

Pθ

{
θ̂n,s − θs ≤ cn,s (γ) for all but at most (k − 1)of the hypotheses

}

≡ Pθ
{
Hn,s

(
θ̂n,s − θs, Pθ

)
≤ γ for all but at most (k − 1)of the hypotheses

}

≡ Pθ
{
k-max

(
Hn,s

(
θ̂n,s − θs, Pθ

))
≤ γ

}
= 1− α.

Letting Ln,{1,...,S} (k, Pθ) denote the distribution of k-max
(
Hn,s

(
θ̂n,s − θs, Pθ

))
, the ap-

propriate choice of the coverage probability γ is then L−1
n,{1,...,S} (1− α, k, Pθ).

Given that Pθ is unknown, it necessary to use appropriate bootstrapping techniques
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to generate an estimate of the coverage probability L−1
n,{1,...,S}

(
1− α, k, P̂θ

)
, under P̂θ

. Therefore, from this development it is possible to de�ne the simultaneous con�dence

interval

{
θs : θ̂n,s − θs ≤ H−1

n,s

(
L−1
n,{1,...,S}

(
1− α, k, P̂θ

)
, P̂θ

)}
.

The right-hand side of the above inequality will form the basis of the critical value def-

initions used within the stepdown procedure. See Romano and Wolf (2010) for further

technical details. Note that although the above development was made assuming the full

set of hypothesis tests, it equally applies to any subset K ⊆ {1, . . . , S} . Hence, the bal-
anced stepwise algorithm may now be described as follows.

• Step 1: Let A1 denote the full set of hypothesis indices, i.e. A1 ≡ {1, . . . , S}. If for
each hypothesis test, the associated test statistic Tn,s is less than or equal to the corre-

sponding critical value estimate, ĉn,A1,s (1− α, k) ≡ H−1
n,s

(
L−1
n,A1

(
1− α, k, P̂θ

)
, P̂θ

)
,

then fail to reject all null hypotheses and stop the algorithm. Otherwise, proceed

to reject all null hypotheses H0,s for which the associated test statistics exceeds the

critical value level, i.e., where Tn,s > ĉn,A1,s (1− α, k).

• Step 2: Let R2 denote the set of indices for the hypotheses rejected in Step 1 and

let A2 denote the indices for those hypotheses not rejected. If the number of ele-

ments in R2 is less than k, i.e., |R2| < k, then stop the algorithm, as the probability

of k or more false discoveries is zero in this case. Otherwise, the appropriate criti-

cal value to be applied for each hypothesis test s at this stage is calculated as follows:

d̂n,A2,s (1− α, k) = max
I⊆R2,|I|=k−1

{ĉn,K,s (1− α, k) : K ≡ A2 ∪ I} .

Hence, additional hypotheses from A2 are rejected if Tn,s > d̂n,A2,s (1− α, k) , s ∈ A2.

If no further rejections are made then stop the algorithm.
...

• Step j: Let Rj denote the set of indices for the hypotheses rejected up to Step (j−1)

and let Aj denote the indices for those hypotheses not rejected. The appropriate crit-

ical value to be applied for each hypothesis test s at this stage is calculated as follows:

d̂n,Aj ,s (1− α, k) = max
I⊆Rj ,|I|=k−1

{ĉn,K,s (1− α, k) : K ≡ Aj ∪ I} .

Hence, additional hypotheses from Aj are rejected if Tn,s > d̂n,Aj ,s (1− α, k) , s ∈ Aj .
If no further rejections are made then stop the algorithm.
...
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At each step j in the stepwise procedure, the hypotheses that are not rejected thus far are

re-tested over a smaller population of hypothesis tests than previously. The size of this

smaller population is given (|Aj |+ k − 1), which includes all the hypotheses within Aj , in

addition to (k − 1) hypotheses drawn from those hypotheses already rejected, i.e., drawn

from Rj . Given that control of the generalised k-FWER is the premise of the procedure, it

is expected that there are at most (k − 1) false discoveries amongst the set of hypotheses

rejected Rj . However, it is not known which of the rejected hypotheses may represent

false discoveries. Hence, it is necessary to circulate through all combinations of Rj , of

size (k − 1) , in order to obtain the appropriate critical values. A maximum critical value

d̂n,Aj ,s (1− α, k) must be determined for each hypothesis test s. This adds an additional

layer of computational burden on the algorithm.

2.3.2.1 Operative method

In requiring to circulate through all subsets of Rj , of size (k − 1) , in order to obtain the

maximum critical value to apply at each stage of the stepdown procedure, the algorithm can

become highly, if not excessively, computationally burdensome. Depending on the |Rj | and
the value of k, the number of combinations |Rj |Ck−1 can become very large. Romano and

Wolf (2010) therefore suggest an operative method that reduces this computational burden,

while at the same time maintaining much of the attractive properties of the algorithm.5

It is �rst necessary to be able to order the hypothesis tests rejected up to step (j − 1)

in terms of signi�cance. To this end, it is noted that marginal p-values can be obtained as

follows:

p̂n,s ≡ 1−Hn,s

(
θ̂n,s, P̂θ

)
.

This gives the following ascending order for the signi�cance of the hypothesis tests:

p̂n,r1 ≤ p̂n,r2 ≤ . . . ≤ p̂n,r|Rj|
,

where
{
r1, r2, . . . , r|Rj |

}
is the appropriate permutation of associated hypothesis test in-

dices that gives this ordering. As before, a maximum number of combinations, Nmax,

at each step of the algorithm is de�ned. Then an integer value M is chosen such that
MCk−1 ≤ Nmax, leading to the calculation of the critical values as follows:

d̂n,Aj ,s (1− α, k) = max
I⊆

{
r
max(1,|Rj|−M+1),...,r|Rj|

}
,|I|=k−1

{ĉn,K,s (1− α, k) : K ≡ Aj ∪ I} .

What this serves to do is to replace circulating through all the hypothesis tests rejected

to date with that of circulating through only the M least signi�cant hypothesis tests

5Attractive properties include conservativeness, which allows for �nite sample control of the k-FWER
under Pθ, and provides asymptotic control in the case of contiguous alternatives Romano and Wolf (2007).
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rejected. Of course, in the case where M ≥ |Rj |, then this amounts to circulating through

all the hypotheses rejected. Although this approach is premised on the assumption that

the (up to k− 1) false discoveries lie within the least signi�cant hypotheses rejected so far,

it does o�er signi�cant computational e�ciencies for the algorithm. It is this operative

method that is used for the empirical analysis in subsequent sections of this chapter, as

well as in Chapters 4 and 5.6

2.4 Empirical analysis: framework and data

The balanced stepdown procedure described in the previous section o�ers a more gener-

alised and �exible approach to controlling data snooping bias than previous methodologies

in the literature. In particular, it controls the generalised FWER using a superior stepwise

procedure that o�ers balance by construction. This property of balance ensures that each

outperformance measure is treated equally in terms of power, i.e., the ability to reject false

null hypotheses, and so outperformance measures with large deviations do not dominate

those with lower deviations. This is one of the key motivations for using the balanced step-

down procedure for the empirical analysis of this study. Firstly, in order to test for ETF

premiums, the di�erences between the mean daily log return of the quoted ETF price and

the mean daily log return of its reported NAV are examined, with the null hypothesis being

that the ETF return is less than or equal to the NAV return, i.e., no outperformance.7

The analysis is extended through the implementation of traditional risk-adjusted measures

such as the Sharpe, Sortino, and Treynor ratio test statistics with the null hypotheses of

no outperformance again in place. The same approach is employed in constructing index

and market outperformance hypothesis tests, replacing the NAV series with the fund's

underlying index and the S&P 500 series respectively.

The three risk-adjusted ratios are now examined. The Sharpe ratio (Sharpe 1966), is the

most commonly used ex post measure of risk-adjusted performance in the ETF literature.

It is a measure of an investment's performance per unit of risk, whereby standard deviation

is used as a proxy for the portfolio's risk. The Treynor ratio is a variant of the Sharpe ratio

that incorporates a CAPM-based excess return component, e�ectively giving excess return

per unit of market risk. Where the normality assumption is not in place for returns, it

is bene�cial to consider the Sortino ratio, the third risk-adjusted measure of performance

considered. It is again based on the Sharpe Ratio but di�erentiates between upside and

downside risk whereby it does not penalised for upside volatility. Formally, these risk-

adjusted measures are summarised as follows:

ρp =
Rp − rf
ηp

,

6The resampling based and p-value based MHT algorithms were made available to me by Dr Mark
Cummins.

7Use of the log return methodology is in line with Engle and Sarkar (2006).
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where ρp = portfolio's Sharpe, Sortino or Treynor ratios, Rp = portfolio return, ηp

= standard deviation of portfolio for Sharpe, standard deviation of negative returns for

Sortino or market beta for Treynor ratios and rf = risk-free rate.8

As referred to previously, for each of the 288 ETFs, 11 pricing deviations are calculated

on a daily basis.9 To complete the set-up of the empirical analysis, it is necessary to

discuss the choice of generalising parameter k and the probability parameter α to be used

within the balanced stepdown procedures. To ensure tight control of the number of false

discoveries while at the same time o�ering power to the tests, k is chosen to ensure that

no more than 1% of the tests represent false discoveries. The signi�cance level α chosen is

5% alongside an Nmax value of 100 combinations in line with Romano and Wolf (2010).

The data set comprises 288 U.S. domiciled equity, commodity, and debt ETFs with

pre-2008 inception dates. The period of study is 2008-2012, a time span that is chosen

to strike an acceptable balance between being su�ciently long to retain power in the

proposed econometric tests and recent enough to be representative of the vast array of

ETFs. Data on end-of-day market price, reported NAV, and the notional value of the

tracked is downloaded from Bloomberg for each fund. Supplementary data on total asset

value, underlying asset class, replication strategy, expense ratio, industry and country focus

is also gathered. Table 2.1 provides the cohort proportions of the data set. It includes funds

in the assets under management range of $9.72 million to $101,187.40 million with a broad

industry split; 18 from the energy sector, 14 from technology, 12 from �nancial services,

and 11 from health and biotechnology, for example.10 The median expense ratio is 0.51,

with a range of 0.09 to 2.55. The sample includes both many U.S. and non U.S. focused

funds,11 along with full, optimised, and derivative replication types. A major contribution

of this study is borne out of the inclusion of these additional factors as they allow for more

informed portfolio selection decisions. Average daily risk free rates are downloaded from

the website of Kenneth French12 in a manner similar to Rompotis (2011). These are to be

utilised in the calculation of risk-adjusted performance measures.

As identi�ed earlier, the use of the Sortino ratio is appropriate and valid where returns

are shown to be non-normal. For completeness, the normality of returns is formally tested

for each of the 288 ETF price, the 288 NAV and the 288 index series. The hypothesis that

the returns are normal is tested using the Jarque-Bera two-sided goodness-of-�t test.13

8A wealth of alternative risk measures exist in the portfolio management literature, some of which may
lead to di�erent results and distinct inferences being drawn. However, we chose to adopt those used by
both Mateus and Kuo (2008) and Rompotis (2011).

9Note that the construction of the Treynor ratio, which incorporates the market beta, is the reason for
the omission of a Mkt TE TR measure. TE is �tracking error�.

10�No Industry Focus Given� is used to denote sector ETFs where no industry focus has been provided
by Bloomberg.

11International ETFs refer to investments targeted at multiple geographic locations outside of the home
market (U.S.) whereas global ETFs refer to investments targeted at multiple geographic locations inclusive
of the home market (U.S.).

12Kenneth French's website:
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html (accessed 06/30/12).
13The null hypothesis is that the deviations are normally distributed with unspeci�ed mean and standard

deviation, whereas the alternative is that the deviations are not normally distributed.
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The multiple comparisons problem presents itself here again due to conducting 864 Jarque-

Bera normality tests simultaneously. Given the availability of p-values from the Jarque-

Bera tests, the use of a p-value-based multiple hypothesis testing (MHT) procedure is

appropriate here.14 The MHT framework of Romano and Shaikh (2006) used that controls

for what is referred to as the false discovery proportion (FDP). It is de�ned as:

FDP ≡

FR
TR , TR > 0

0, TR = 0
,

where FR denotes the number of false rejections and TR denotes the total number of

rejections. Romano and Shaikh (2006) propose a stepdown procedure that controls the

FDP, whereby for a given proportion γ̃ and signi�cance level α̃,

P {FDP > γ̃} ≤ α̃

.

For the set of hypothesis tests H0,i, i = 1, . . . , 864, there are available p-values, p̂i, i =

1, . . . , s. The p-values are ordered from the most signi�cant to the least signi�cant, i.e.,

p̂(1) ≤ p̂(2) . . . ≤ p̂(s), and the associated ordered null hypotheses H0,(i) are rejected if and

only if p̂(i) ≤ α̃′(i) with the cut-o� values de�ned as:15

α̃′(i) ≡ α̃(i)/C,

where

α̃(i) =
(bγ̃ic+ 1)α̃

s+ bγ̃ic+ 1− i

and

C ≡ C(γ̃, α̃, s) = max
|I|

S(γ̃, α̃, |I|),

S(γ̃, α̃, |I|) ≡ |I|
N∑
j=1

βj − βj−1

j

,

N ≡ N(γ̃, α̃, |I|) = min

{
bγ̃sc+ 1, |I| ,

⌊
γ̃

(
s− |I|
1− γ̃

+ 1

)⌋
+ 1

}
,

and where

14There are two classi�cations of procedure identi�ed in the MHT literature: (i) re-sampling-based
and (ii) p-value-based. The balanced stepdown procedure outlined in Section 4 is of the re-sampling type,
involving a bootstrapping component. See Romano and Wolf (2010) for more details on both classi�cations.

15It is important to emphasise the subtle di�erence in notation. H0,i is the i-th hypothesis test considered
and p̂i is the associated p-value. In contrast, H0,(i) is used to denote the i-th hypothesis when all hypotheses
are ordered in terms of signi�cance from the most signi�cant to the least signi�cant, with p̂(i) denoting the
associated ordered p-value.
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β0 ≡ 0,

βm ≡
m

max
{
s+m−

⌈
m
γ̃

⌉
+ 1, |I|

} ,m = 1, ..., bγ̃sc ,

and

βbγ̃sc+1 ≡
bγ̃sc+ 1

|I|
.

This approach boasts robustness to the dependence structure of the p-values. The

proportion parameter γ̃ is chosen to be 5% with the signi�cance level α̃ set at 5% also. See

Romano and Shaikh (2006) for further details.

Upon implementing the procedure, signi�cant non-normality is observed for all price,

NAV, and underlying index series, con�rming the use of the Sortino ratio as appropri-

ate. Even though the sample ETF returns are not normally distributed, traditional risk-

adjusted ratios, Sharpe and CAPM-based Treynor ratios are extensively used in previous

studies and this study as well. They provide an intuitive way of comparing results between

studies and o�er numerous practical applications in measuring both ETF and mutual fund

performance (Mateus and Kuo 2008). Plantinga et al. (2001) examine the application

of risk-adjusted ratios to Euronext mutual funds and �nd that there is a high correlation

between the classic Sharpe ratio and a ratio controlling for downside risk, adding further

weight to the applicability of such performance measures. The next section presents the

results subsequent to applying the balanced stepdown procedure described in Section 5.3.4

to the data set.

2.5 Empirical analysis: results

The results of the operative balanced stepdown procedure of Romano and Wolf (2010)

are presented in Figure 2.1, giving the percentage (the actual numbers are given in paren-

these) of ETFs in the sample that show speci�c outperformance measures. The main item

of note is that none of the log return outperformance measures are signi�cant under the

balanced stepdown procedure. This leads to relying primarily on inferences made around

the risk-adjusted measures for the remainder of the paper. The various measures display

di�ering numbers of outperforming funds; for instance, 56 funds show market benchmark

outperformance under the Sharpe ratio with almost twice that �gure, 105 funds, outper-

forming the market under the Sortino ratio measure. Summary statistics for the signi�cant

outperforming funds are given in Table 2.3, providing the average outperformance measure.

The results highlight the importance of controlling for data snooping bias. On the basis of

the three non-risk-adjusted measures, i.e., premium, index tracking error and market track-

ing error, none of the funds outperform. Failure to apply the data snooping bias control

procedure would have led to the näive identi�cation of outperformance and so investing
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on such a basis would constitute näive and misinformed fund.

A number of ETF attributes are now analysed to determine what classes of ETFs are

most likely to demonstrate risk-adjusted outperformance and speci�cally what outperfor-

mance measures they show. Geographic and industry focus are the �rst to be considered.

The geographic focus of ETFs is studied in Figure 2.2, with a high proportion of global,

international and other focused funds showing some measure of outperformance. U.S. fo-

cused funds on the other hand show a lower proportion of outperformance, although in

absolute terms of course the number of funds outperforming is higher at 118. Risk-adjusted

premium is a primary driver of these results, as seen in Table 2.4; 63% and 79% of global

and international ETFs respectively, show premium Sharpe ratio outperformance, with

only 10% for U.S. funds. These �ndings are in line with Jares and Lavin (2004) and Engle

and Sarkar (2006) who also observe premiums among a high percentage of foreign ETFs,

and Elton et al. (2002) and Ackert and Tian (2008), who document a low proportion of

U.S. focused funds displaying premiums. A lack of synchronisation between NAV calcu-

lations and underlying market closes coupled with the time-snap used for exchange rate

conversions are often cited reasons for the presence of premiums in ETFs focused over mul-

tiple countries/time zones. Further to this, country-speci�c trading taxes, prohibitions on

transactions made by foreigners, longer delivery periods, and greater price risk in assem-

bling packages, all reduce the ability to hedge such positions and increase the likelihood of

premiums. In contrast to this, liquidity, latency advantages, and reduced market frictions

may allow for easier exploitation of deviations among U.S. focused ETFs.

Figure 2.3 graphs the percentage of ETFs exhibiting some measure of outperformance,

split by industry focus. The main item of interest is the comparison of cross-sectoral and

single-sector funds. The proportion of funds in each group displaying outperformance is

almost identical at 74% and 72%,16 for cross-sectoral and single-sector funds, respectively.

This indicates that ine�ciencies are as likely/unlikely to appear in either category. A more

in-depth breakdown of the speci�c industries is also available.

Relatively high percentages of energy, precious metals and real estate ETFs exhibit out-

performance with lower numbers observed for �nancial services ETFs. The high proportion

of outperformance observed for these funds are borne out of market TE Sharpe ratios, as

shown in Table 2.5, indicating that 56%, 71%, and 50% of energy, precious metals and real

estate ETFs, respectively, outperform the market. Precious metals became a safe haven

for investors due to the poor performance of equities over the turbulent 2008-2012 period,

with the energy sector being buoyed by increased manufacturing demand from China and

real estate bene�ting from a global decrease in the cost of capital. Financial services in

contrast register no ETFs outperforming the market, primarily due to the credit crisis of

2007-2009 and its regulatory legacy.

The next attributes analysed are the assets each ETF attempts to replicate and how

they conduct the replication. Full replication is the most widely employed strategy in

the data set but only 68% of its funds exhibit outperformance, as shown in Figure 2.4.

16Seventy-two percent is an aggregation of the individual sector funds results.
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In comparison, 29 ETFs pursuing derivative replication display at least one signi�cant

outperformance measure, equating to 83% of its sample. They do not incur the same level

of transaction fees as other strategies, which induces outperformance; however, they do

house greater counterparty credit risk concentration, which is signi�cantly re-evaluated

over the period. Table 2.6 gives an insight into what outperformance measures are seen in

these groups. The main item of note is the presence of signi�cant premium outperformance

and an absence of signi�cant market outperformance among optimised ETFs, with 50%

of optimised funds having a signi�cant Sharpe ratio premium, in contrast to just 11%

showing Sharpe ratio market outperformance. An optimised replication strategy involves

constructing a portfolio that is a representative subset of the underlying index when full

replication of an index's constituents is not possible, be it for cost, liquidity, or regulatory

reasons. Such trading impediments, alongside a reliance on historical data to select an

index's representative constituents can lead to redemption in kind ine�ciencies.

In relation to asset class, the majority of ETFs in the data set have an equity focus;

263 out of 288 (91%). The prevalence of outperformance is broadly in line with these

proportions, as seen in Figure 2.4. When looking at the small number of non-equity

ETFs in the sample, it can be seen that all of the asset allocation-focused and almost

90% of the debt-focused funds register signi�cant outperformance measures. A signi�cant

Sharpe ratio premium is observed for 78% of debt funds with asset allocation-focused ETFs

demonstrating index outperformance, according to Table 2.7. Such ine�ciencies reside in

debt ETFs due to a lack automated trading in the asset class as transactions occur primarily

in large blocks between trading desks and institutional clients. Asset allocation-focused

ETFs comprise a diverse range of underlyings, which makes exact replication costly.

The �nal attributes to be examined are the size of the ETF, how much it costs, and

when it is �rst traded. Table 2.8 demonstrates what particular cohorts are most likely

to exhibit signi�cant outperformance measures. The results show that ETFs with either

high expense ratios or recent inception dates are more likely to display signi�cant outper-

formance. The process for replication evolves and becomes more re�ned over time, hence

such outperformance for recently incepted ETFs. Table 2.9 shows that the outperformance

is primarily due to index TEs being present; in other words, these funds outperform their

underlying indices. The expense ratio result is in line with Elton et al. (2002) and Harper

et al. (2006), who �nd that more expensive ETFs tend to produce greater returns but the

di�erence dissipates once the increased market frictions are accounted for. The economic

interpretation here is that ETFs with more pro�table replication strategies charge more.

In addition, larger ETFs have a greater tendency to display signi�cant Sharpe ratios pre-

miums than smaller ETFs. This could be due to larger ETFs �nding rebalancing more

di�cult as it takes greater resources for less nimble ETFs to rebalance accurately.

Table 2.10 shows the top 10 funds under each performance measure, compiled and

ranked using mean daily outperformance �gures. The ETFs in the top 10 for Sharpe and

Sortino ratios across various performance measures highlight the interdependency between

these calculations. The distinction between these standard deviation-based ratios and the
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Treynor ratio, which utilises the CAPM derived β, or co-movement between the market

and ETF price, as a risk proxy, is apparent when analysing the cross-measure top ten

ranking composition.

PCY US and LQD US are tickers of particular interest as they appear in the top three

NAV and index outperformers under both the Sharpe and Sortino ratio measures. PCY US

is the ticker symbol for the PowerShares Emerging Market Sovereign Debt Portfolio, which

is based on the DB Emerging Market USD Liquid Balanced Index. Its portfolio is comprised

of U.S. dollar-denominated government bonds issued by, at present, in 64 emerging market

countries.17 It is one of the more recent ETFs in the data set, being incepted in October

2007. It follows a full replication strategy with an expense ratio of 0.50%. The volatility

and diversity of the underlyings creates replication di�culties, particularly for a recently

incepted ETF which can lead to such substantial outperformance.

LQD US is the ticker symbol for iBoxx $ Investment Grade Corporate Bond Fund,

which tracks the iBoxx $ Liquid Investment Grade Index. Its portfolio is comprised of

liquid, U.S. dollar-denominated, investment-grade corporate bonds for sale in the U.S..

It is a cross-sectoral fund with over 34% currently invested in �nancial services.18 Its

inception date of the July 26, 2002 is older than the data set median. It also follows a

full replication strategy with an expense ratio of 0.15%. Combining the volatile �nancial

services sector with corporate credit rating re-evaluations due to increased market fear and

slow reacting debt markets gives rise to substantial outperformance. These ETFs provide

an insight into the attribute mix of ETF whose prices substantially outperform their NAVs

and underlying indices.

DBS US and SLV US are tickers in the top three market benchmark outperformers

across both Sharpe and Sortino ratios. DBS is the Powershares DB Silver ETF, with SLV

the ticker symbol for the iShares Silver Trust. Both funds provide exposure to the market

price of silver which substantially outperforms the market over the period. Demand from

private investors in Asia is a mooted reason for the increase in the price of silver.

2.6 Conclusion

This study seeks to identify ETFs that outperform their calculated NAVs, underlying

indices, and/or the overall market. Extending the existing ETF literature, an innovative

generalised stepwise procedure is used to control for data snooping bias. We argue in this

paper that controlling for data snooping bias is important in order to obtain robust eco-

nomic conclusions on ETF performance. This paper is the �rst amongst the ETF literature

to take this approach. The balanced stepdown procedure of Romano and Wolf (2010) is

applied, serving as an improvement over more conservative single step approaches, such as

common techniques like the reality check bootstrap test of White (2000) and the superior

17PowerShares PCY emerging markets sovereign debt portfolio fund holdings:
http://www.invescopowershares.com/products/holdings.aspx?ticker=PCY (accessed 10/30/12).

18iShares iBoxx dollar investment grade corporate bond ETF factsheet:
http://us.ishares.com/content/stream.jsp?url=/content/en_us/repository/resource/fact_sheet/lqd.pdf
(accessed 10/30/12).
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predictive ability test of Hansen (2005). generalised procedures o�er greater power to re-

ject false null hypotheses, with the balanced stepdown procedure additionally o�ering equal

treatment in the identi�cation of outperformance. Given the geographical and sector cover-

age of the extensive ETF database considered, we provide �rst-stage guidance to investors

of where ine�ciencies may be and, accordingly, where ETFs may provide some investment

advantages. The main item of note from the implementation is that, when performance

is analysed on a non-risk-adjusted basis only, no funds in the sample are identi�ed as dis-

playing any measure of outperformance. It is only the risk-adjusted performance measures

that give statistically signi�cant outperformance results and so the insights from these

results dominate the commentary. The three key takeaways from the study are, �rstly, a

high proportion of optimised replication, debt asset class, and global/international ETFs

exhibit risk-adjusted premiums, highlighting redemption in kind ine�ciencies. Secondly,

cross-sector and sectoral funds display broadly the same percentage of outperformance.

Finally, high expense ratio and recent inception date ETFs are more likely to exhibit index

outperformance, which may be of interest to investors seeking to outperform benchmarks.

Our study is the �rst to test the e�ect of replication type on performance. We �nd

that 50% of optimised replication ETFs register signi�cant Sharpe ratio premiums. This

�nding may, in part, be due to trading restrictions and by less than optimal replication

strategies. We are also the �rst to examine asset class focus. We �nd that 78% of debt-

focused ETFs exhibit signi�cant Sharpe ratio premiums, which is well above the average

and gives an indication that debt-focused ETFs are more likely to outperform their NAV

than other asset classes. The performance of sectoral ETFs on the other hand has been

addressed previously. In this work, energy, precious metals and real estate are industries

that beat the market on a risk-adjusted basis. Further to this, precious metal-focused funds

Powershares DB Silver and the iShares Silver Trust substantially outperform the market,

exhibiting large mean daily outperformance levels. Precious metals became a safe haven

for investors due to poor performance in equities over the turbulent 2008-2012 period, with

the energy sector being buoyed by increased manufacturing demand from China. 19 The

�nancial services sector, in contrast, registers no market beating funds, primarily due to

the credit crisis of 2007-2009 and its legacy.

Global (63%) and international (79%) ETFs, show premium Sharpe ratio outperfor-

mance compared to U.S. funds (10%). These �ndings are in line with and Jares and Lavin

(2004) and Engle and Sarkar (2006), who also observe premiums among a high percentage

of foreign ETFs. Elton et al. (2002) and Ackert and Tian (2008) record a low proportion

of U.S. focused funds displaying premiums. A lack of synchronisation between NAV cal-

culations and underlying market closes is an oft-cited reason for the presence of premiums

in funds focused over multiple countries/time zones. Furthermore, liquidity, latency ad-

vantages, and reduced market frictions allow for easier exploitation of deviations among

U.S. focused funds. ETFs exhibiting high expense ratios or recent inception dates have

19Given the strength of the �ight to safe haven assets observed in this 2008-2012 period investors are
urged to thread with caution when utilising this result for portfolio selection decisions out-of-sample.
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a greater tendency to outperform their index. This expense ratio result is in line with

Elton et al. (2002) and Harper et al. (2006), who �nd that more expensive ETFs tend to

produce greater returns but the di�erence dissipates once the increased market frictions

are accounted for. This paper succeeds in increasing the understanding of ETF perfor-

mance alongside providing investors with �rst-stage guidance in identifying ETFs suitable

for their portfolios.

Table 2.1: Data set properties

Industry Focus Count

Cross Sector 193

Energy 18

Technology Sector 14

Financial Services 12

Health & Biotechnology 11

Real Estate Sector 10

Utility Sector 7

Precious Metals Sector 7

Environmentally Friendly 4

Internet/Telecommunications 4

Leisure Industry Sector 2

Food/Beverage Sector 1

No Industry Focus Given 5

Geographic Focus Count

United States 188

International 34

Global 27

China 5

European Region 3

Japan 3

Asian Paci�c Region ex Japan 2

Latin American Region 2

Other 24

Asset Allocation Count

Equity 263

Commodity 13

Debt 9

Asset Allocation 3

Derivative Replication Count

Full 145

optimised 62

Unknown 46

Derivative 35

Count of ETFs in data set split by various attributes. �No Industry Focus Given� is used to denote sector ETFs where no industry

focus has been provided by Bloomberg.

Table 2.2: Outperformance measures

Outperformance Measure Assigned Name

ETF price log return− ETF NAV log return Premium

ETF price log return−Underlying index's log return Index TE

ETF price log return−S&P 500 log return Mkt TE

ETF price log return Sharpe ratio− ETF NAV log return Sharpe ratio Premium SR

ETF price log return Sharpe ratio−Underlying index's log return Sharpe ratio Index TE SR

ETF price log return Sharpe ratio−S&P 500 log return Sharpe ratio Mkt TE SR

ETF price log return Sortino ratio−ETF NAV log return Sortino ratio Premium SorR

ETF price log return Sortino ratio−Underlying index's log return Sortino ratio Index TE SorR

ETF price log return Sortino ratio−S&P 500 log return Sortino ratio Mkt TE SorR

ETF price log return Treynor ratio−ETF NAV log return Treynor ratio Premium TR

ETF price log return Treynor ratio−Underlying index's log return Treynor ratio Index TE TR
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Table 2.3: Signi�cant sample summary statistics

Mean Std. Dev. Max (ETF Ticker) Min (ETF Ticker)

Premium N/A

Index TE N/A

Mkt TE N/A

Premium SR 0.02567 0.04385 0.32094 (PCY) 0.00101 (FIW)

Index TE SR 0.02859 0.05158 0.39317 (PCY) 0.00190 (DBC)

Mkt TE SR 0.03228 0.01447 0.06579 (AGG) 0.01090 (PLW)

Premium SorR 0.19738 0.28069 1.88967 (DBS) 0.01190 (SLY)

Index TE SorR 0.21858 0.34545 2.77124 (QLD) 0.01060 (IJH)

Mkt TE SorR 0.25455 0.11153 0.51299 (PCY) 0.07473 (VXF)

Premium TR 0.00751 0.01465 0.08015 (GXC) 0.00002 (RWM)

Index TE TR 0.00861 0.01130 0.06282 (AGG) 0.00001 (IJJ)

Mean (Column 2) refers to the average daily outperformance levels across the 2008-2012 period. Max and Min (Columns 4 & 5)

identify those ETF tickers which display the highest and lowest aggregated daily outperformance level. All funds are U.S.- based

with the Bloomberg ticker appendage �U.S.� being omitted for brevity.

Table 2.6: ETFs outperformance by replication type

Full optimised Derivative Unknown

% (Count) % (Count) % (Count) % (Count)

Premium 0% (0) 0% (0) 0% (0) 0% (0)

Index TE 0% (0) 0% (0) 0% (0) 0% (0)

Mkt TE 0% (0) 0% (0) 0% (0) 0% (0)

Premium SR 27% (39) 50% (31) 26% (12) 9% (3)

Index TE SR 21% (31) 19% (12) 17% (8) 26% (9)

Mkt TE SR 21% (30) 11% (7) 22% (10) 26% (9)

Premium SorR 25% (36) 40% (25) 28% (13) 3% (1)

Index TE SorR 24% (35) 35% (22) 22% (10) 26% (9)

Mkt TE SorR 37% (54) 40% (25) 37% (17) 26% (9)

Premium TR 15% (22) 55% (34) 46% (16) 39% (18)

Index TE TR 23% (33) 52% (32) 57% (20) 37% (17)

Percentage of ETFs in each replication strategy which have speci�c outperformance measures under the balanced stepdown

procedure of Romano and Wolf (2010). The �gure in parenetheses gives the ETF count in each group.
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Table 2.7: ETFs displaying speci�c outperformance by asset class

Equity Commodity Debt Asset Allocation

% (Count) % (Count) % (Count) % (Count)

Premium 0% (0) 0% (0) 0% (0) 0% (0)

Index TE 0% (0) 0% (0) 0% (0) 0% (0)

Mkt TE 0% (0) 0% (0) 0% (0) 0% (0)

Premium SR 28% (73) 23% (3) 78% (7) 67% (2)

Index TE SR 19% (51) 31% (4) 22% (2) 100% (3)

Mkt TE SR 19% (51) 38% (5) 0% (0) 0% (0)

Premium SorR 25% (65) 8% (1) 89% (8) 33% (1)

Index TE SorR 25% (67) 15% (2) 44% (4) 100% (3)

Mkt TE SorR 38% (99) 46% (6) 0% (0) 0% (0)

Premium TR 33% (88) 0% (0) 11% (1) 33% (1)

Index TE TR 38% (99) 0% (0) 22% (2) 33% (1)

Percentage of ETFs in each asset class which speci�c outperformance measures under the balanced stepdown procedure of Romano

and Wolf (2010). The �gure in parentheses gives the ETF count in each group.

Table 2.8: Outperformance by asset/ER/inception date

Assets ($M) Expense Ratio Inception Date

Data Set

Mean 2965.02 0.52%

Median 421.89 0.51% 15/09/2005

Outperforming ETFs

Mean 2774.50 0.56%

Median 429.92 0.52% 01/02/2006

# ≥ Data set median (%) 107 (51%) 132 (63%) 121 (58%)

# < Data set median (%) 103 (49%) 78 (37%) 89 (42%)
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Table 2.9: ETFs outperformance by total assets/expense ratio/inception date

Total Assets Expense Ratio Inception Date

≥ $421.89m < $421.89m ≥ 0.51% < 0.51% ≥ 15-Sep-05 < 15-Sep-05

% (Count) % (Count) % (Count) % (Count) % (Count) % (Count)

Premium 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0)

Index TE 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0)

Mkt TE 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0)

Premium SR 37% (53) 22% (32) 35% (50) 24% (35) 36% (52) 23% (33)

Index TE SR 34% (49) 18% (26) 27% (39) 25% (36) 28% (41) 24% (34)

Mkt TE SR 8% (11) 6% (8) 10% (14) 3% (5) 9% (13) 4% (6)

Premium SorR 8% (11) 15% (21) 19% (28) 3% (4) 18% (26) 4% (6)

Index TE SorR 29% (42) 24% (34) 33% (47) 20% (29) 33% (48) 20% (28)

Mkt TE SorR 23% (33) 19% (27) 26% (38) 15% (22) 30% (43) 12% (17)

Premium TR 37% (53) 26% (37) 40% (57) 23% (33) 34% (50) 28% (40)

Index TE TR 36% (52) 35% (50) 46% (66) 25% (36) 43% (62) 28% (40)

Percentage of ETFs with outperformance measures under the balanced stepdown procedure of Romano and Wolf (2010). The �gure

in parentheses gives the ETF count.

Figure 2.1: % of ETFs with speci�c outperformance measures

(102)

(90)

(105)

(76)

(75)

(56)

(60)

(85)

(0)

(0)

(0)

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00%

Index TE TR

Premium TR

Mkt TE SorR

Index TE SorR

Premium SorR

Mkt TE SR

Index TE SR

Premium SR

Mkt TE

Index TE

Premium

% of total sample outperformance

Percentage of ETFs with speci�c outperformance measures deemed signi�cant under the balanced stepdown procedure of Romano

and Wolf (2010). The �gure in parentheses gives the fund count in each group.

34



T
ab
le
2.
10
:
T
op

10
E
T
F
s
b
y
m
ea
n
d
ai
ly

ou
tp
er
fo
rm

an
ce

R
a
n
k

P
re
m
iu
m

S
R

P
re
m
iu
m

S
o
rR

P
re
m
iu
m

T
R

In
d
e
x
T
E
S
R

In
d
e
x
T
E
S
o
rR

In
d
e
x
T
E
T
R

M
k
t
T
E
S
R

M
k
t
T
E
S
o
rR

1
P
C
Y
(0
.3
2
0
9
4
)

P
C
Y
(1
.8
8
9
6
7
)

G
X
C
(0
.0
8
0
1
5
)

P
C
Y
(0
.3
9
3
1
7
)

P
C
Y
(2
.7
7
1
2
4
)

A
G
G
(0
.0
6
2
8
2
)

Q
L
D
(0
.0
6
5
7
9
)

D
B
S
(0
.5
1
2
9
9
)

2
L
Q
D
(0
.1
8
2
1
4
)

L
Q
D
(1
.0
6
7
3
9
)

E
W
M

(0
.0
7
2
1
)

L
Q
D
(0
.1
3
1
3
3
)

P
Z
A
(1
.0
3
7
9
7
)

E
W
M

(0
.0
5
7
5
4
)

D
B
S
(0
.0
5
9
1
9
)

S
L
V
(0
.5
0
3
7
5
)

3
H
Y
G
(0
.1
6
9
6
8
)

H
Y
G
(1
.0
4
5
0
2
)

A
G
G
(0
.0
6
2
1
3
)

D
D
M

(0
.0
5
3
5
3
)

L
Q
D
(0
.8
2
6
2
1
)

H
Y
G
(0
.0
4
9
7
9
)

S
L
V
(0
.0
5
9
0
2
)

U
.S
.D

(0
.4
9
5
0
0
)

4
M
U
B
(0
.1
1
5
8
3
)

M
U
B
(0
.9
5
1
9
8
)

E
P
P
(0
.0
5
0
5
9
)

R
S
U
(0
.0
4
9
0
3
)

M
U
B
(0
.7
9
0
6
1
)

E
W
H
(0
.0
4
7
6
3
)

M
V
V
(0
.0
5
8
5
7
)

D
IG

(0
.4
9
4
1
1
)

5
A
G
G
(0
.0
8
7
8
0
)

E
M
B
(0
.4
3
9
2
6
)

E
W
H
(0
.0
4
0
0
2
)

S
S
O
(0
.0
4
8
3
3
)

D
D
M

(0
.4
3
8
5
9
)

E
W
T
(0
.0
3
5
0
2
)

U
W
M

(0
.0
5
6
0
0
)

Q
L
D
(0
.4
9
2
5
2
)

6
E
M
B
(0
.0
5
4
6
0
)

A
G
G
(0
.4
3
7
4
6
)

E
W
T
(0
.0
2
9
3
4
)

M
V
V
(0
.0
4
6
1
6
)

R
S
U
(0
.4
1
8
8
7
)

A
IA

(0
.0
2
7
8
3
)

D
IG

(0
.0
5
5
3
2
)

U
W
M

(0
.4
8
7
8
8
)

7
IX
J
(0
.0
3
7
7
5
)

P
Z
A
(0
.4
0
8
7
1
)

A
IA

(0
.0
2
3
2
9
)

IX
J
(0
.0
3
9
9
2
)

S
S
O
(0
.3
8
2
9
8
)

G
M
F
(0
.0
2
5
4
6
)

S
A
A
(0
.0
5
5
1
2
)

M
V
V
(0
.4
8
7
0
7
)

8
D
G
S
(0
.0
3
7
0
4
)

D
G
S
(0
.3
2
1
1
1
)

E
W
S
(0
.0
2
1
8
5
)

K
X
I
(0
.0
3
9
2
0
)

U
U
P
(0
.3
4
8
3
3
)

IT
F
(0
.0
2
0
3
8
)

U
.S
.D

(0
.0
5
1
7
2
)

S
A
A
(0
.4
6
0
9
6
)

9
U
U
P
(0
.0
3
6
9
4
)

P
B
P
(0
.2
7
8
4
6
)

D
B
V
(0
.0
1
9
3
8
)

S
A
A
(0
.0
3
8
7
8
)

M
V
V
(0
.3
3
5
7
1
)

E
W
S
(0
.0
2
0
1
6
)

P
X
I
(0
.0
4
8
5
4
)

P
X
I
(0
.4
4
4
9
1
)

1
0

D
E
M

(0
.0
3
5
8
3
)

IX
J
(0
.2
7
7
2
3
)

IY
M

(0
.0
1
8
7
9
)

G
A
F
(0
.0
3
8
0
0
)

J
X
I
(0
.3
3
0
3
5
)

E
E
V
(0
.0
1
8
7
5
)

P
X
E
(0
.0
4
6
9
6
)

P
X
E
(0
.4
3
6
9
3
)

S
ig
n
i�
c
a
n
t
o
u
tp
e
rf
o
rm

in
g
E
T
F
s
u
n
d
e
r
th
e
b
a
la
n
c
e
d
st
e
p
d
o
w
n
p
ro
c
e
d
u
re

o
f
R
o
m
a
n
o
a
n
d
W
o
lf
(2
0
1
0
)
a
re

ra
n
k
e
d
b
y
th
e
si
z
e
o
f
th
e
ir
m
e
a
n
d
a
il
y
o
u
tp
e
rf
o
rm

a
n
c
e
m
e
a
su
re
s.
T
h
e
o
u
tp
e
rf
o
rm

a
n
c
e
m
e
a
su
re

�
g
u
re

is

g
iv
e
n
in

p
a
re
n
th
e
se
s.
A
ll
fu
n
d
s
a
re

U
.S
.
b
a
se
d
w
it
h
th
e
B
lo
o
m
b
e
rg

ti
c
k
e
r
a
p
p
e
n
d
a
g
e
�U
.S
.�
b
e
in
g
o
m
it
te
d
fo
r
b
re
v
it
y
.

35



Figure 2.2: % of ETFs displaying outperformance by geographic focus
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Figure 2.3: % of ETFs displaying outperformance by industry focus
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Chapter 3

An analysis of implied volatility jump

dynamics: Novel functional data

representation in crude oil markets

3.1 Introduction

Oil futures are the most actively traded commodity derivatives. An average of one million

light sweet crude oil futures and option contracts are traded every day according to the

CME group.1 The past 10 years have seen elevated levels of price volatility in these markets.

Strong economic pressures have been observed on both the demand side and the supply side,

during the global �nancial crisis and the Arab Spring respectively. Increased price volatility

in oil markets causes profound economic management and socio-political issues, not only

impacting those participants who invest directly in commodities but also the consumers

of re�ned oil products. We use a functional data analysis (FDA) approach to examine

implied volatility, jump risk, and pricing dynamics within crude oil markets. FDA provides

a framework to uncover the continuous processes underlying a data set. The process of

interest in this study is that of the implied volatility curve. The FDA methodology has

many advantages; it accurately captures implied volatility dynamics, there is no assumed

parametric structure, it is computationally e�cient, and the process can be evaluated on

an arbitrarily �ne grid.2 This facilitates the consistent comparison of identical option

contracts through time. Implied volatility is of interest as it is a transformation of the

option price and a key parameter in many asset pricing and regulatory capital calculations.

Implied volatility also contains informational content as shown by Corrado and Miller

2006, Taylor et al. 2010, Muzzioli 2010, and Garvey and Gallagher 2012. Furthermore,

Yan (2011) proposes the use of implied volatility slope information to estimate jump risk.

He demonstrates both directly and indirectly, the applicability of at-the-money implied

1http://www.cmegroup.com/trading/energy/�les/en-153_wti_brochure_sr.pdf accessed on
11/11/2013.

2The FDA advantages listed here are outlined in Ramsay and Silverman (2005).
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volatility slope as a proxy for the average jump amplitude in equity markets. We seek

to answer three related questions pertaining to crude oil markets. Firstly, what is the

link between the shape of the implied volatility smile and underlying economic events in

crude oil markets? Secondly, does the implied volatility slope contain information useful

in specifying the average jump amplitude for crude oil options, in a similar manner to

what Yan (2011) has shown to be the case for stock returns?3 Thirdly, can information

contained in the implied volatility smile slope be exploited to improve portfolio hedging

techniques?

Traditional geometric Brownian motion (GBM) based models, such as Black and Sc-

holes' (1973) di�usion model (�Black-Scholes� henceforth), do not capture price jumps,

which are movements that become more prevalent during periods of increased market tur-

bulence. There is a large body of literature demonstrating the importance of incorporating

jumps into models seeking to capture risk premia and economic shocks. Cont and Tankov

(2004) argue that discontinuous shifts are the most important element of pricing in crude

oil markets, and propose the use of a Lévy process to model such movements.4 Askari

and Krichene (2008) �nd that 2002-2006 WTI oil price dynamics are dominated by jumps;

the variance due the �tted model's di�usion component is high and signi�cant, but the

variance due to the jump component is even higher. In line with Yan (2011), we adopt the

Merton (1976) jump di�usion framework (�Merton model� henceforth), which augments

the Black-Scholes di�usion model with a jump process in order to model continuous price

innovation and discontinuous price shock movements simultaneously. The model has two

elements: a Black-Scholes drift for capturing regular price movements and a jump com-

ponent for capturing large irregular and infrequent price shifts. The continuous di�usion

follows a GBM model with constant drift and volatility, while the discontinuous jumps

are modelled by a Poisson process. The relationship between the volatility smile shape

and the parameters of the Merton jump di�usion model is assessed both theoretically and

empirically. As in Yan (2011), this one-dimensional Brownian motion and Poisson process

model is adopted for tractability. Using a 2007-2013 sample period, strong evidence is

found of converse jump dynamics during periods of demand and supply side weakness.

Furthermore, using FDA to systematically analyse underlying economic forces highlights

periods of economic weakness in advance of their occurrence.

The speci�cation of the correct jump parameter level is necessary to accurately capture

implied volatility curve skewness and kurtosis, according to Borensztein and Dooley (1987),

Jorion (1988), and Bates (1996). The jump component in Askari and Krichene (2008)

for instance, displays high intensity and variance, with a negative mean jump size being

associated with negative skewness in the empirical distribution. Nomikos and Soldatos

(2010) �nd that the presence of jumps in the related power options market, generates

3Chang et al. (2013) emphasise the importance of crude oil markets by outlining a strong link with
stock market movements.

4Bakshi et al. (1997) and Trolle and Schwartz (2009) also advocate the incorporation of jumps in the
accurate pricing of short-term derivatives, with Wilmot and Mason (2013) emphasising the importance of
jumps when studying daily data.
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implied volatility skews, which again depend on the sign of the mean jump size. Our study

outlines the e�ect of Merton model parameter speci�cation on implied volatility curve

shape and build on this relationship to specify the level of average jump size using a simple

FDA-derived proxy.

A number of applications in the bio-mechanical literature have included FDA; how-

ever, it has only recently been exploited for �nancial analysis. Benko et al. (2009) propose

a new functional principal component analysis (fPCA) technique to study similarities in

the implied volatility dynamics for di�erent maturities using both one- and three-month

option maturities on the German-Swiss exchange. In doing so, they �nd that FDA accu-

rately captures the implied volatility dynamics. Muller et al. (2011) propose a functional

volatility process to model volatility trajectories for high-frequency observations in �nan-

cial markets. Their model shows patterns in volatility and by combining it with prediction

techniques and functional regression, it can be used to predict future volatility. Our re-

search is unique as it utilises FDA representation of implied volatility curves to analyse

changes in economic forces over time, specify Merton model jump parameters, and empir-

ically demonstrate portfolio hedging bene�ts.

The relationship between jump amplitude and implied volatility skewness is studied in

detail. This is achieved by combining FDA techniques with the Merton model to extract

implied jump size probability and direction. The signi�cance here is that the continuous

implied volatility function can be di�erentiated to obtain the slope and other higher order

derivatives. We show how the slope levels at various moneyness points provide great

insight into the demand and supply forces observed. A strong economic link is also made

between the average jump amplitude level and these demand and supply side forces. This

leads to the FDA obtained at-the-money (ATM) slope being utilised as a novel proxy for

the average jump amplitude value in specifying the Merton model. Further contributions

of our paper relate to the employment of FDA obtained Merton model parameters for

portfolio hedging. We compare the calculated results against the standard Black-Scholes

delta hedging strategy. The Merton delta hedging strategy outperforms the Black-Scholes

delta hedging strategy by 8% in terms of implementation cost, over the entire sample.

Breaking the sample down into periods split by predominantly positive and predominantly

negative implied volatility slopes, we see that the Merton strategy outperforms the Black-

Scholes when jump direction is positive and broadly matches its performance when jump

direction is negative.

The rest of the paper is organised as follows. Section 5.3 introduces the FDA method-

ology, analyses the dynamics of varying parameters in the Merton model, and presents

some stylised facts about crude oil options. Section 4.4 details the data set utilised, while

Section 3.4 presents a discussion of the implied volatility curve shape in terms of demand

and supply side weaknesses observed in the sample period. The optimised delta hedging

results are also reported in Section 3.4, with concluding remarks given in Section 5.5.
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3.2 Methodology

3.2.1 Implied volatility curve shape

The shape of the implied volatility curve is formed through the interaction of economic

forces, namely demand and supply. The inherent fear in equity markets is that of a price

crash, similar to the losses observed on days such as Black Monday 1987. When fear of

a price crash is prevalent in the market, it tends to lower OTM implied volatility while

raising ITM implied volatility.5 Bates (1991) shows an S&P 500 volatility curve for call

options that demonstrate a negative (reverse) skew, whereby in-the-money (ITM) call op-

tions exhibit a higher implied volatility than their out-of-the-money (OTM) counterparts

in periods preceding such crashes. It is associated with the intuition that investors are

willing to pay more for downside protection. On the contrary however, when fear of a

price spike is prevalent in the market, it tends to lower ITM implied volatility while raising

OTM volatility. Evidence of this dynamic is put forward for commodities in Askari and

Krichene (2008) and Liu and Tang (2011). They investigate crude oil markets and �nd a

distribution that is positively (forward) skewed.6 It is interpreted from an economic per-

spective that commodity market participants assign a higher relative value to OTM options

in comparison to their ITM counterparts due to a fear of price spikes. This interesting

dynamic is a primary reason why crude oil options are chosen for this study. Commodity

investors are less worried about downward drops in prices than upward jumps. Under these

circumstances, the intuition is that investors are willing to pay more for upside protection.

Figure 3.1 shows the typical skew pattern in the crude oil implied volatility curve for

a WTI CL02 call option according to the forward skew identi�ed by Askari and Krichene

(2008) and Liu and Tang (2011). The curve is steeper at the OTM point to indicate

fear of a price spike. A higher absolute slope value is recorded at the OTM point versus

that of the ITM. Furthermore, the volatility used to price ITM options is lower than the

volatility used to price OTM options. This shape corresponds to an implied distribution

with heavier right tail and a less heavy left tail than that of the Black-Scholes assumed

lognormal distribution. There is a higher price and hence higher volatility attached to

OTM options to protect against the expectation of positive market jumps.

3.2.2 Functional data representation

Our analysis extends the prevailing literature on crude oil implied jump dynamics by com-

bining FDA techniques with the Merton model to extract implied jump size probability

and direction. FDA uncovers the smooth process underlying the data. This sets it apart

5The commentary presented here is for call options, the opposite e�ect is true for put options.
6The presence of a skew is also in line with studies by Mandelbrot (1963), Fama (1965), and Clark

(1973).
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Figure 3.1: Typical crude oil implied volatility curve (11th June 2010)
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from regular interpolation techniques which simply seek to �nd the best �t to the pos-

sibly noisy data set. This true function is represented in an in�nite dimensional space

over a continuum of values. A continuum is generally de�ned in terms of time or space;

however, in this paper the functions are de�ned in the moneyness domain, as an option's

implied volatility is related to how ITM [i.e., K/F (strike/forward rate)] it is. The FDA

methodology has many advantages; it accurately captures volatility dynamics, there is

no assumed parametric structure, it is computationally e�cient, and the process can be

evaluated on an arbitrarily �ne grid. This FDA representation allows us to consistently

identify the ATM (and ITM and OTM) implied volatility level for each day. It serves as

an improvement over Yan (2011)'s near the money implied volatility calculation that only

encompasses information obtained from -0.5 delta puts and 0.5 delta calls.

Our goal is to interpret the daily discrete option volatility data, x(mk), as a functional

data object or, more simply, as a function, denoted x̃(mk).
7 When constructing a function,

a vector of n basis function, denoted φ1,....,n, must �rst be speci�ed. Functional structures

are approximated as a weighted linear combination of these bases:

x̃(m) = c1φ1(m) + c2φ2(m) + ...+ cnφn(m),

where c1, ..., cn represent the parameters of the expansion's coe�cients.

As in Ramsay and Silvermann (2005), the coe�cients cj are chosen in order to minimise:

SSE(c1, ..., cn) ≡
N∑
k=1

x(mk)−
n∑
j=1

cjφj(mk)

2

(1).

The decision of which basis system to specify is driven by the underlying data's known

characteristics. For instance, when modelling periodic data, a Fourier basis expansion,

comprised of successive sine/cosine terms, is most commonly applied. However, an implied

volatility process does not exhibit strong cyclical variation, so B-spline functions are chosen

for the basis function system. B-splines are essentially a number of polynomials joined

together smoothly at �xed points called knots. The number and positioning of the N knots:

mk : m1 ≤ ... ≤ mN , are derived from knowledge of the complexity of the underlying

process over particular ranges. The range of the various sub-intervals, [mk,mk+1], are

de�ned through the placement of these knots. Within each sub-interval, the spline is

simply a polynomial of order n. The order is calculated as:

order = 1 + degree of the polynomial.

B-spline representation is useful as it has a number of strengths. At any one point along

the curve, it simpli�es to a polynomial that can be easily evaluated. Adjusting the order

of the spline allows for the estimation of derivatives of any degree. In this paper, a fourth

7The standard notation utilised, x(t), signi�es a dependence on time; however, here the domain is that
of the moneyness (K/F) levels, hence the use of x(m).
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order basis, or cubic polynomial is speci�ed. Modelling the process as a cubic polynomial

provides a good balance as it retains the function's continuous property up to the second

derivative, while simultaneously smoothing the noise within the daily data.8 The knots

are placed at the discrete quoted option moneyness levels that are available from the data

set, with polynomials describing the moneyness interval between the knots.

Given that a smooth function underlies the observed implied volatility curve a smooth-

ing penalty is applied to remove noise/wiggles in the data. This can be caused by liquidity

issues, misquotes or other data irregularities masking the true function. The e�ect of such

non-trading and noise issues on the volatility function has been highlighted by Bannouh

et al. (2013). Without the use of a smoothing penalty the uncovered function may simply

converge to a �tted spline interpolant of the data. In line with Ramsay and Silvermann

(2005) a limitation is placed on the variation of the curvature. The total curvature of the

process is found through integrating its squared second derivative:9

R(x̃) ≡
ˆ (

d2

dm2
x̃(m)

)
2dm.

This is also called the roughness of the function.

In an extension of (1), the coe�cients characterising the smoothed curve are found
using the penalised sum of squared errors:

PENSSE(c1, ..., cn) ≡
N∑
k=1

x(mk)−
n∑
j=1

cjφj(mk)

2

+ λ∗
ˆ (

d2

dm2
x̃(m)

)
2dm.

As λ∗ increases, more weight is placed on the roughness penalty and the uncovered

function converges towards a straight line, possibly missing some of the process' dynam-

ics.10 As λ∗ decreases, less weight is placed on the roughness penalty and only data �tting

matters in uncovering the function.

In order to balance the competing goals of retaining features and removing noise from

the data, an optimal smoothing level, λ∗, must be selected. Inherent knowledge of variation

in the underlying process is useful here and can be used in conjunction various data-driven

techniques such as information criteria and cross validation. Cross validation is based

on the principal of removing one observation from the sample and using this sub-sample

to see how well the removed observation can be predicted. We apply generalised cross

validation (GCV), proposed by Craven and Wahba (1979). Without smoothing, noise in

the relatively small number of discrete values available can distort the results for that

range. This is particularly evident at extreme moneyness levels as prices may be contorted

due to illiquidity.

8This is required as we examine the curvature of the implied volatility function.
9The second derivative is also denoted as D2x(m) in the literature.
10The symbol λ∗ is used here to distinguish this smoothing weight for calculating coe�cients under

penalised sum of squared errors, from the jump intensity λ parameter speci�ed in the Merton model.
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FDA allows a systematic analysis of implied volatility curves over time. It provides

a framework to obtain the slope and curvature at any point along the implied volatility

curve. Therefore, the slope and curvature levels are evaluated consistently at three points

along the daily implied volatility curve, namely, ATM, 10% ITM, and 10% OTM. The

evolution of these levels over time is analysed in order to further understand how demand

and supply side weaknesses alter its shape.

3.2.3 Merton model

In line we Yan (2011) we adopt the one-dimensional Brownian motion and one-dimensional

Poisson process of Merton (1976) to model discontinuous price moves. Yan (2011) note

that it can be extended to incorporate multi-dimensional Brownian motions and Poisson

processes. Under the Merton (1976) jump di�usion (JD) framework, Poisson jumps are

combined with a continuous Black and Scholes (1973) di�usion model. A call option is

priced as:

j(λ′, T )cn(FT , X, T, rn, q, σn),

where j(λ′, T ) =
∞∑
n=0

e−λ
′T (λ′T )n

n!
, σ2

n = σ2 +
nδ2

T
,

rn = r − λk̂ +
nln(1 + k̂)

T
, λ′ = λ(1 + k̂) and q = r.

Both components can be seen here. cn(FT , X, T, rn, q, σn) (denoted as cn(·) henceforth)
represents the continuous drift whereby the asset price follows a GBM process with constant

drift and volatility. j(λ′, T ) (denoted as j(·) henceforth) describes the jump process, where

λ is the jump intensity, k̂ is the average jump process amplitude, δ is the variance of

the jump process amplitude, and σ2 is the variance of the di�usion process. A normal

distribution is assumed for the jump size. The Merton model results in fatter tails than

that of the Black-Scholes formula, a distribution that is more closely aligned to empirical

asset prices observed. This is particularly evident over turbulent periods, such as those

analysed in this study.

The e�ect of di�erent parameter levels can be examined from a theoretical perspec-

tive. Parsing the jump and di�usion components and analysing these separately aids our

understanding. Firstly, look at the situation when λ is equal to zero. This leads to a �at

Black-Scholes implied volatility curve, as the expectation is that there will be no jump

occurrences within the next year. For this reason, the jump component has no impact.

Given that λ cannot be negative, the only other scenario is that λ is greater than zero.

In this case, if k̂ and δ are both zero, then a �at Black-Scholes implied volatility curve is

also produced. There is positive expectation of a jump occurring but the jump size has an
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expected value of zero with no variation, so jumps do not impact prices.

Some more interesting volatility curve shapes are seen when k̂ is greater than zero. As

the absolute value of k̂ increases, the option value increases. This is due to a larger average

jump size. The larger the speci�ed k̂, in either direction, the more jump occurrences a�ect

the option price. This additional volatility results in a higher price as the probability of

the option being exercised increases. As the k̂ value increases, the higher orders of the

summation term n have an increasing in�uence on j(·). The same dynamic is also true

for cn(·), as values associated with higher orders of n become larger as k̂ increases. Given

that the option value is a product of these terms, they interact to increase the option

value. δ is the variance of the jump process amplitude and is incorporated in cn(·), as
an adjustment to the standard drift volatility input of the Black-Scholes model. There is

a positive relationship between volatility and option price in the Black-Scholes formula.

Therefore, an increase in δ increases the option value.

Other parameter inputs that a�ect the option price are the strike and futures prices.

These are inputs of the Black-Scholes formula and do not in�uence the Poisson jump pro-

cess. As a result, moneyness levels only impact cn(·). The lower the moneyness (i.e., more
ITM), the higher the option premium, as it is more likely to be pro�table at the exercise

date. An interesting dynamic is that higher orders of n impact the various moneyness

levels of options di�erently. Higher order values of the summation term n have a greater

impact on the pricing of OTM options as opposed to ITM options. This drives the dynamic

that a move from negative to positive k̂ results in cn(·) increasing proportionately less for

ITM values than for OTM values, whereas k̂ being negative results in cn(·) increasing pro-
portionately less for OTM values than for ITM values. The e�ect of this is a skew when

analysing the implied volatility curve associated with such prices. It results in a positive

skew being observed for positive k̂ values and a negative skew for negative k̂ values.

Figure 3.2 graphically conveys the stylised facts for the k̂ parameter in the Merton

model. The red and blue lines on the graph represent the volatility curves when negative

k̂ parameters are speci�ed, showing a negative skew in the volatility smile. There is a

downward slope between ITM and ATM with relatively small increases in implied volatility

as progression is made towards higher moneyness levels. A k̂ value of zero leads to an

almost symmetrical volatility curve as observed from the green curve with the Black-Scholes

di�usion component driving the dynamic. Positive values for k̂, however, the orange and

purple lines on the graph, lead to a change in dynamic with a positive skew being observed,

as the modelled expectation is that prices will rise.

To summarise, as downward jump fear increases, the ATM volatility smile slope be-

comes more negative and as upward jump fear intensi�es, the ATM slope becomes more

positive. This is exhibited through analysing both the empirical data graphs and a theo-

retical examination of the Merton call option pricing formula for di�ering levels. Indeed,

the slope of the implied volatility curve is proportional to the jump size and direction. In

line with the proxy employed for equity markets by Yan (2011) the relationship can be

used to specify the average jump amplitude level in the Merton framework.
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Figure 3.2: Implied volatility curve derived from various Merton model kHat levels
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The Merton jump di�usion model is parameterised by δ=0.2, λ=0.3 and σ=0.35 and various k̂ levels. The ATM slope is given in the

legend.
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Cont and Tankov (2004) and Giot et al. (2010) show that simultaneously optimising all

the Merton model parameter can lead to a calibration problem that is ill-posed, even for

simple jump di�usion models. In other words, there is a large range of parameter values

that match observed market prices to within a reasonable error tolerance and calibration

errors can have serious hedging consequences. Our approach is to select reasonable values

of λ and δ and then extract the implied k̂. k̂ is of particular importance as it indicates

both the market expectation of jump size and jump direction. In the selection of reasonable

values for λ and δ, the heuristic approach of Murphy and Ronn (2015) is followed. They

employ a Ball and Torous (1983) analysis of the same underlying futures data set and

calculate the average number of jumps above three, four, and �ve standard deviations to

set λ to 0.3. Again using mean values in line with Ball and Torous (1983), δ is set at

0.1. The focus of this paper is on the market implied jump size and direction from a

relative historical setting, and �xing λ and δ to appropriate values in this regard, does not

signi�cantly impinge on the results.

3.2.4 Delta hedging application

A key innovation of this paper is the application of FDA techniques to portfolio man-

agement, in particular a delta hedging example. The hypothesis is that the use of FDA

analysis to obtain parameter levels for the Merton model leads to superior hedging perfor-

mance. The cumulative next day pro�t and loss is used to measure the cost of implementing

the hedge with performance compared to that of the standard Black-Scholes delta strategy

in line with Murphy and Ronn (2015). Moschini and Myers (2002) outline how important

it is to hedge in commodity markets. First, a portfolio is constructed consisting of long

one call option and short delta underlying future contracts. Utilising the following day's

closing option and future prices, the pro�t and loss of the portfolio is calculated. The

hedging error is also recorded, which is the absolute value of this daily pro�t and loss

�gure. It measures how closely the hedge tracks the portfolio, regardless of whether the

hedge represents a pro�t or loss. This procedure is repeated for each day in the sample

with both the cumulative pro�t and loss, as well as the cumulative hedging error being

calculated.

Two di�erent delta hedging ratios will be calculated and compared:

1. The widely implemented delta as calculated from the d1 component of the Black-

Scholes formula:

d1 =
ln( SK ) + (r + σ2

2 )T

σ
√
T

.

Delta is equal to N(d1), where N(�) is the cumulative distribution function of the

standard normal distribution.

2. The second delta hedging ratio is based on the Merton delta algorithm derived by
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Murphy and Ronn (2015):

4 =
δc
δS |λ=0 σ

2S24t+ δc
δS |σ=0 λδ

2

σ2S24t+ λδ2
,

where δc
δS |λ=0and

δc
δS |σ=0 are taken from the Merton model.

3.3 Data set

The data have been downloaded on a daily basis from the CME Group's FTP site.

The data set spans from 2 April 2007 to 31 January 2013 and includes traded WTI call

oil option price, underlying future price, maturity length, strike, implied volatility, and the

associated discount rate on each trading day. All option quotes are subject to the following

screening criteria:11

• The option must have a minimum dollar value of $0.05. Options with such a low

market value might display di�ering characteristics due to very little active trading.

Illiquidity can distort the data.

• 0.5 ≤ Strike Price/Futures Price ≤ 2.0, i.e., it must trade between these two money-

ness bounds. This is to ensure su�cient liquidity as there are fewer markets partici-

pants at extreme moneyness levels.

• Options have a maturity date of between 1 and 2 months (WTI CL02). This is the

most frequently traded maturity contract available.

3.4 Empirical results

3.4.1 Impact of economic factors on implied volatility

Fourth order B-spline basis functions are applied to reduce the dimensionality of the

continuous process underlying the daily implied volatility curves.12 Each curve is de�ned

over the range of moneyness values in the data set, [0.72, 1.24]. To construct the functional

data objects, a smoothing parameter value, λ∗, of 0.001 is selected. The plot of the values

of the GCV criterion presented in Figure 1 of the Appendix is used as an indicator.13

Functional data objects of implied volatility curves for each day over the �ve-year period

11The historical data has kindly been made available to the authors by University of Texas at Austin
for which they are extremely grateful.

12The fda package in R is used for the analysis.
13GCVs are calculated for a number of other periods in the sample, with no material di�erences observed.
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Figure 3.3: Crude oil implied volatility over time [2007-2013]

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Implied Volatility over time [2007−2013]

V
ol

at
ili

ty

20
07
−

04
−

02

20
07
−

06
−

27

20
07
−

09
−

21

20
07
−

12
−

17

20
08
−

03
−

14

20
08
−

06
−

10

20
08
−

09
−

04

20
08
−

11
−

28

20
09
−

02
−

26

20
09
−

05
−

22

20
09
−

08
−

18

20
09
−

11
−

11

20
10
−

02
−

09

20
10
−

05
−

06

20
10
−

08
−

02

20
10
−

10
−

26

20
11
−

01
−

21

20
11
−

04
−

18

20
11
−

07
−

14

20
11
−

10
−

10

20
12
−

01
−

10

20
12
−

04
−

09

20
12
−

07
−

06

20
12
−

10
−

03

20
13
−

01
−

03

0.9 K/F
1.0 K/F
1.1 K/F

FDA obtained implied volatility curve values at three points�0.9 moneyness, 1.0 moneyness, and 1.1 moneyness�plotted daily

between April 2007 and January 2013.

are shown in Figure 3.3. This representation allows us to obtain slope and curvature values

directly. The slope and curvature values are evaluated at three points along the moneyness

curve, namely ATM, 10% ITM, and 10% OTM. Figure 3.4 presents the dynamics of the

slope values, with Figure 3.5 showing the curvature levels through time. These graphs lead

an analysis of the implied volatility curve shape in terms of the supply and demand side

weaknesses observed during the 2007-2013 period. The slope values for each moneyness

level in Figure 3.4 are �rst analysed in order to obtain an understanding of the shape of

the implied volatility curve.

During the benign pre-�nancial crisis period of 2007, the ATM slope levels �uctuate

around zero, signifying that the turning point of the smile is located in this range. Con-

current with this, the ITM slope is negative while the OTM slope is positive, in agreement

with a typical U-shaped volatility smile. The fear in crude oil markets during benign peri-

ods is that of a price spike, so the prevailing expectation is that the price will be higher by

the expiration date. This should lead to a positive skew being demonstrated through larger
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Figure 3.4: Crude oil implied volatility slope 2007-2013
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Figure 3.5: Crude oil implied volatility curvature 2007-2013
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absolute OTM slope levels than absolute ITM slope levels. However, this is not evident

in the lead up to the recent global �nancial crisis and could perhaps be interpreted as an

early indicator of demand side weakness, where the expectation is that of a price drop.

The recent global �nancial crisis is a period of extreme volatility levels as seen in Figure

3.3. It brings about a large drop in demand, resulting in a �atter volatility smile. This is

demonstrated through the three slope levels in Figure 3.4 converging towards zero. During

this period, the elevated level of volatility across the moneyness spectrum dominates any

nuances concerning the skew. This is in contrast to Chuang et al. (2013) who �nd that

implied volatility curves in equity markets are less skewed when volatility levels are lower.

As the extreme volatility levels of the �nancial crisis slowly dissipate, a small positive

ATM slope level, a negative ITM, and a positive OTM slope are observed in Figure 3.4.

The negative ITM and positive OTM slope in this 2009-2010 period suggest convergence

to a more conventional implied volatility curve shape. Furthermore, the absolute value of

the OTM slope is higher than that of the ITM slope, indicating a return of the positive

skew that is typical of commodity options. The �rst full year of the Arab Spring in 2011

results in a dramatic change, however, as volatility levels, shown in Figure 3.3, increase

once again. Tunisia is the source of the revolution outbreak beginning in late December

2010 but never experiences a signi�cant disruption in crude oil production. The prevailing

fear in the early stage, circa January 2011-March 2011, is that of demand side weakness

due to escalating security anxiety. The three curves in Figure 3.4 exhibit this through

each slope level shifting downwards in tandem. The ITM negative slope steepens and

the OTM positive slope �attens. This dynamic more closely represents the negative skew

observed in equity markets where the predominant fear is that of a price crash. March

2011 sees Libya experience a full-scale war, resulting in long-lasting logistical disruptions

to crude oil exports and potential for further unrest. The remainder of 2011 is dominated

by a contagion e�ect across the region, with related protests erupting in other key crude

oil producers in the region, such as Bahrain, Iraq, Saudi Arabia, Kuwait and Syria. The

shape of the volatility smile acts accordingly with positive ATM, ITM, and OTM slope

values. Lower levels of volatility are observed in the 2012-2013 period, as demonstrated

in Figure 3.3. This corresponds with Figure 3.4 exhibiting a return to a more typical

commodity smile slope whereby the ITM slope is negative, the OTM slope is positive, and

the ATM slope registers a small positive level too. The fear of a price spike is still evident

here, however it has quelled somewhat from the extreme positive skew observed during the

height of the Arab Spring in 2011.

The focus of the analysis now shifts to the curvature plot in Figure 3.5. Analysing

curvature levels for the three moneyness ranges collectively, highlights the underlying eco-

nomic dynamics. The scale of the curvature levels increase over time due to greater market

turbulence, with large absolute values, as high as +12 for ITM, and as low as -2 for OTM,

registered in the latter years of the sample. The curvature values are predominantly pos-

itive, which, indicate a function that is predominantly concave down (convex). This is

consistent with a general increase in the slope magnitude across the moneyness spectrum,

as shown in Figure 3.3. A strangle is an option strategy whereby the holder bene�ts from

a large movement away from the current underlying price, in either direction. The implied

volatility curvature is a measure of the strangle premium, as it indicates how much the two
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Figure 3.6: k̂ proxy used over time
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The Merton (1976) jump di�usion model k̂ input parameter values obtained using the FDA obtained ATM slope.

OTM strangle volatilities are above the ATM volatility (Beber et al. 2010). The contrast

between the lower underlying volatility levels and the increasing implied volatility curva-

ture can be interpreted as a strangle market, with participants placing a higher probability

on a large move in either direction and demand driving the strangle premium upwards.

When coupled with di�ering slope levels, the primarily positive curvature values lead

to quite di�erent dynamics during the benign and crisis periods in the sample. Relatively

low curvature levels are seen across the moneyness spectrum during both crisis periods,

be it the �nancial crisis or the Arab Spring. This is in comparison to benign times in the

lead up and aftermath of such shocks, whereby the implied volatility slope changes become

signi�cantly less sharp through the ITM range and show sharper slope changes through

the ATM and OTM points.

3.4.2 Delta hedging performance

We now compare the performance of delta hedging approaches utilising both the Black-

Scholes and our FDA-optimised Merton model. The Black-Scholes and optimised Merton

deltas are calculated and used to get the next day pro�t and loss for a strategy that is long

one ATM strike call option and short delta times the underlying future contract. Given the

linear relationship between the k̂ parameter of the Merton model and the implied volatility

curve's ATM slope established in the previous section and by Yan (2011), the ATM slope

is used as a proxy for average jump amplitude.

Figure 3.6 shows the average jump amplitude levels obtained utilising our proposed

proxy. Over the entire sample, the majority of k̂ values observed are positive. This can

be viewed as a signal that even during turbulent times the predominant fear in crude oil
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markets is that of a price spike. The k̂ magnitude increases with the passing of time,

�uctuating in the -0.2 to +0.2 range up to the beginning of 2009, with extreme values

between -0.5 and +0.8 exhibited in 2011. Signi�cant changes in k̂ levels are an indicator

of di�erent underlying economic forces. Beginning at the start of the sample period, April

2007-November 2007 shows small positive k̂. November 2007-January 2009 corresponds to

a predominantly negative k̂ as a result of the demand side weakness brought about from the

global �nancial crisis and its lead-in period. An extended period, January 2009-January

2011, of positive and relatively stable k̂ is seen as indicating a more benign time within

crude oil markets. The onset of the Arab Spring in late 2010 however, shows a sharp drop

in the level of k̂, with values as low as -0.5 in February 2011. The initial prevailing fear

in crude oil markets being that of demand side weakness, brought about due to escalating

security anxiety in the Middle East. As the movement spreads, disruptions to supply

are deemed to be more probable. This is represented by increasing k̂ values in Figure

3.6. March 2011 saw Libya experience a full-scale war, resulting in long-lasting logistical

disruptions to crude oil exportation and the potential for further unrest, leading to high

positive k̂ �gures, such as the +0.8 level in late 2011. The contagion e�ect across the region

accelerated the shift from negative to positive k̂, with related protests erupting in other

key oil producers in the Middle East, such as Bahrain, Iraq, Saudi Arabia, Kuwait, and

Syria. The 2012-2013 period following the uncertainty of the Arab Spring corresponds to

high k̂ as the market corrects prices to pre-supply shock levels coupled with the restoration

of economic growth. These period breakdowns are used to provide a more granular view

of the sample's hedging performance.

The results of the analysis are summarised in Table 3.1. When implementing a hedge, a

key consideration for the portfolio manager is how much the strategy costs, so the primary

focus here is the pro�t and loss �gure, which is calculated daily and aggregated over the

period. The Merton model delta hedging strategy, optimised with the ATM slope derived

k̂ parameter, outperforms the Black-Scholes strategy over the entire period, with a mean

daily loss of only 0.0069 compared to 0.0075. This gives an indication that our optimised

Merton strategy is preferable to the commonly implemented Black-Scholes based strategy

as it equates to an 8% reduction in cost. The daily variation of the pro�t and loss for both

strategies is very similar at 1.0373 for our optimised Merton strategy versus 1.0365 for the

Black-Scholes model. When looking at the hedging error over the entire sample period,

there is very little di�erence between both strategies also with our optimised Merton model

showing a hedging error of 0.7678 with 0.7673 seen for the Black-Scholes model. Therefore

over the entire sample it can be concluded that our Merton strategy provides superior

performance. With a view to identifying the implied volatility shape under which the

Merton model outperforms the Black-Scholes, the sample is broken down into periods

of di�erent underlying market activity, split by k̂ variation; April 2007-November 2007,

November 2007-January 2009, January 2009-January 2011, February 2011-May 2011, and

�nally May 2011-December 2011.14 First, the pre-�nancial crisis months of April 2007-

14The December 2011 to January 2013 period is not listed as it constitutes a period of multiple positive
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Table 3.1: Delta hedging results

Period BS Delta PnL Merton Delta PnL BS Hedge Error Merton Hedge Error k̂

Apr 2007-Jan 2013

Mean -0.0075 -0.0069 0.7673 0.7678 0.1828

SD 1.0365 1.0373 0.6966 0.6973 0.1766

Max 5.1935 5.1654 6.6877 6.7011 0.7570

Min -6.6877 -6.7011 0.0004 0.0003 -0.4634

Apr 2007-Nov 2007

Mean -0.0610 -0.0557 0.4791 0.4788 0.0771

SD 0.5991 0.6006 0.3626 0.3647 0.0577

Nov 2007-Jan 2009

Mean 0.0952 0.0953 1.0968 1.0970 -0.0011

SD 1.4243 1.4241 0.9115 0.9108 0.0700

Jan 2009-Jan 2011

Mean -0.0534 -0.0523 0.6550 0.6549 0.2548

SD 0.8443 0.8438 0.5346 0.5339 0.0607

Jan 2011-May 2011

Mean -0.1860 -0.1875 0.7166 0.7184 -0.1192

SD 0.9235 0.9257 0.6051 0.6069 0.1483

May 2011-Dec 2011

Mean 0.0468 0.0467 0.9613 0.9624 0.4307

SD 1.2697 1.2708 0.8273 0.8278 0.1795

The recorded performance of implementing both a Merton (1976) jump di�usion model derived delta hedging strategy, and a

standard Black-Scholes (1973) delta hedging strategy, between January 2007 and January 2013. Mean is the average daily value. SD

is the standard deviation of this value. PnL is an abbreviation for Pro�t and Loss and Hedge Error is the absolute value of the daily

PnL.

56



November 2007 were a relatively benign period in the market where the risk is assessed

as being that of a small upward spike in prices. This is shown in Figures 3.3 and 3.4.

Table 3.1 exhibits a daily mean pro�t and loss of -0.0557 versus -0.0610 and an average

hedging error of 0.4791 versus 0.4788 for our optimised Merton strategy and Black-Scholes

models respectively. This indicates both lower cost and lower absolute hedging error in this

period for our optimised Merton strategy. During the demand side weakness of the global

�nancial crisis (2007-2009), it can be seen in Table 3.1 that a pro�t is made through the

implementation of either strategy. These pro�ts are almost identical at 0.0952 and 0.0953

for the Black-Scholes and our optimised Merton model, respectively. This dynamic is seen

throughout the sample, during periods in which there is a cost to implementing the Black-

Scholes hedging strategy, the Merton strategy outperforms. These periods correspond

to positive implied volatility slopes/k̂ values. However, during periods where a pro�t

is made implementing the Black-Scholes hedge the Merton strategy broadly matches its

performance.

Each investor has individual hedging performance requirements, which of course take

precedence in the decision of which strategy to implement.15 That said, our FDA optimised

Merton delta hedging strategy outperforms the Black-Scholes delta hedging strategy by

8% in terms of implementation cost, over the entire sample. Breaking the sample down

into periods split by predominantly positive and predominantly negative implied volatility

slopes, we see that the Merton strategy outperforms the Black-Scholes when k̂ values are

positive and broadly matches its performance in periods of negative k̂ values.

3.5 Conclusion

The entire set of price dynamics within crude oil markets cannot be fully represented

by traditional multivariate analysis. We combine the application of FDA techniques, jump

components from the Merton model, and an analysis of underlying economic pressures to

better understand market implied volatility and jump dynamics in the 2007-2013 sample

period. The analysis should be of interest to both academics and market participants

seeking to understand prevailing implied volatility, jump expectations, and crucially, jump

direction. The study contributes through three major �ndings.

Firstly, we demonstrate that the implied volatility smile exhibits a positive skew in pe-
riods of supply side weakness and a negative skew in periods of demand side weakness. We
clearly ex-post demonstrate the link between implied volatility shape and contemporary
socio-economic events, especially during the turbulent years we examine. In our sample,
the systematic analysis of implied volatility also highlights periods of economic weakness in
advance of their occurrence. Secondly, we provide both theoretical and empirical evidence
establishing a relationship between implied volatility shape information and jump ampli-
tude for crude oil options, in a similar manner to what Yan (2011) has shown to be the case
for stock returns. We achieve this by combining the constructed functional data objects

and multiple negative k̂ values.
15Hammoudeh et al. (2013) emphasise the increased importance of risk management in volatile environ-

ments.
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with key attributes of the Merton model to derive implied values for the average jump
amplitude. Finally, we demonstrate how information contained in the implied volatility
smile slope can be exploited to improve portfolio hedging techniques. Our FDA optimised
Merton delta hedging strategy outperforms the Black-Scholes delta hedging benchmark by
8% in terms of implementation cost over the entire sample. Breaking the sample down
into periods split by predominantly positive and predominantly negative implied volatility
slopes, we see that the Merton strategy outperforms the Black-Scholes when k̂ values are
positive and broadly matches its performance in periods of negative k̂ values.
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Chapter 4

Forecasting implied volatility in

foreign exchange markets: A robust

functional linear model approach

4.1 Introduction

The Black-Scholes (1973) model assumes that volatility is constant. This assumption,

if true, should result in a �at implied volatility curve; the market's expectation of average

price volatility for the underlying asset to an option contract between now and its expiry

date. Of course in practice, observed implied volatility di�ers across option contracts,

dependent on both moneyness and expiry date. As well as being a transformation of the

option price, and a key parameter in many asset pricing formulae, implied volatility is also

of interest due to its informational content (see Corrado and Miller 2006, Taylor et al.

2010, Muzzioli 2010, and Garvey and Gallagher 2012). Yu et al. (2010) demonstrate this

by �nding superior results using implied volatility to predict future return volatility of stock

index options, when compared to traditional benchmark models in over-the-counter (OTC)

and exchange markets. One such OTC market is that of foreign exchange (FX) options. FX

is the largest asset class in the world with the Bank for International Settlements reporting

that trading levels in FX markets averaged $5.3 trillion per day.1 Many stakeholders are

exposed to FX risk including banks, speculators, traders, multinational �rms, importers,

and exporters. Modelling foreign currency cash �ows, investment decisions, and hedging

strategies, are all greatly dependent on expectations of future FX movements. Our study

adds to the existing literature through the novel proposal of a functional data analysis-

based forecasting model to predict the evolution of the implied volatility function. The

aim is to determine and forecast the function that characterises the implied volatility

relationship among option contracts. We not only contribute from an academic perspective,

where insights into the dynamics of implied volatility aid our understanding of option

1http://www.bis.org/publ/rpfx13fx.pdf
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markets, but also from a market practitioner perspective, due to the study's potential

hedging and speculation implications.

Compared to previous studies forecasting the volatility of returns, there is a rela-

tive paucity of literature predicting the evolution of implied volatility. Examples in-

clude Goncalves and Guidolin (2006), Konstantinidi et al. (2008), Chalamandaris and

Tsekrekos (2010), Dunis et al. (2013), Bernales and Guidolin (2014), and Chalamandaris

and Tsekrekos (2014). Konstantinidi et al. (2008), for instance, use a number of economic

indicators to construct a forecasting model that �nds statistically signi�cant predictable

patterns in the evolution of European and U.S. implied volatility indices. Dunis et al.

(2013) apply the same economic model to predict the evolution of implied volatility in the

EUR-USD exchange rate, a currency pair which we also study. They �nd that implied

volatility is only predictable at short time horizons of up to 5 hours ahead. Chalaman-

daris and Tsekrekos (2014) study Euro OTC FX options, and �nd that none of their

proposed implied volatility models consistently outperform the autoregressive benchmark

in short horizon forecasts, of less than 5 days ahead. They also conclude that structured

parametric implied volatility forecasting models lead to superior out-of-sample results, a

conclusion that we seek to disprove through the use of a �exible functional data model.

Such a functional approach aims to uncover the process underlying a data set and incor-

porates shape into its forecast. It o�ers in�nite dimensional space representation which

exposes additional dynamics missed by traditional multivariate techniques. Furthermore,

functional data analysis boasts the advantages of being computationally e�cient and of

allowing functions to be evaluated on an arbitrarily �ne grid. These and other advantages

of FDA are outlined in Ramsay and Silverman (2005).

A number of applications in the bio-mechanical literature have incorporated functional

data analysis. However, it has only recently been exploited for �nancial analysis. Muller et

al. (2011) study high frequency S&P 500 Index levels, and propose a functional volatility

process to model volatility trajectories. Their model shows patterns in volatility and by

combining it with prediction techniques and functional regression, it can be used to predict

future volatility. Benko et al. (2009) focus on implied volatility, by presenting a new two-

sample common factor FPCA technique and applying it to analyse similarities in stochastic

behaviours between implied volatility curves of one- and three- month option contracts on

the German-Swiss exchange (EUREX). They highlight the strength of using functional

data analysis techniques to characterise the implied volatility function, an approach which

we also adopt.

Our study is distinct, in that we use a functional linear model to obtain superior out-of-

sample forecasts. Both the scalar response/functional explanatory and functional explana-

tory/functional response linear models of Ramsay and Silverman (2005) are utilised for the

analysis. We show that these models outperform traditionally proposed AR, GARCH, and

ARFIMA benchmarks with the results being statistically signi�cant in out-of-sample test-

ing. We contribute by incorporating the use of a contributory data vendor. This mitigates

the idiosyncratic risk, as highlighted by Chalamandaris and Tsekrekos (2014), associated
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with obtaining quotes from a single market participant.

We contribute further by incorporating controls for the multiple comparisons problem

in our forecasting framework. This robust testing framework adjusts for the likelihood that

seemingly signi�cant ouperformance can be due to mere chance alone. As the number of

simultaneous tests conducted increases, so too does the likelihood of such false discoveries.

This issue is known as the multiple comparisons problem and must be controlled for when

studying forecasting performance. To solve this issue we implement the operative bal-

anced stepdown procedure of Romano and Wolf (2010), the �rst time it has been applied

in the volatility forecasting literature.2 The balanced stepdown procedure o�ers a more

generalised and �exible approach to controlling for the multiple comparisons problem than

previous frameworks proposed. The methodologies used in previous implied volatility fore-

casting studies raise concerns around the validity of the inferences drawn, insofar as many

lack multiple comparisons controls. We demonstrate intertemporal dependency across the

moneyness range, as well as implied volatility predictability in the highly liquid EUR-USD

pair that we study. The results are of interest to both academics, given potential market

e�ciency implications, and market practitioners, who may seek to exploit the uncovered

patterns. The remainder of the paper is organised as follows. Section 5.3 provides a back-

ground to the functional data analysis methodology and the forecast evaluation procedure.

Section 5.3.4 details the multiple comparisons problem and the Romano and Wolf (2010)

operative balanced stepdown procedure. Section 4.4 introduces the EUR-USD FX op-

tions data set. Section 4.5 presents and discusses the empirical results, with Section 5.5

concluding the paper.

Summary of contributions

• Can functional linear model techniques be used to characterise and forecast implied

volatility in foreign exchange markets?

• How does the performance of the functional data analysis approach compare to tra-

ditionally employed benchmark models?

• Are the �ndings robust across various moneyness segments, contract maturities and

out-of-sample window lengths?

4.2 Methodology

4.2.1 Functional representation

Functional data analysis (FDA) provides a functional representation of the process

underlying a data set. The process is de�ned over a continuum of values, where the

2The application of the balanced stepdown procedure of Romano and Wolf (2010) is in line with
Cummins and Bucca (2012) and Kearney et al. (2014), who adopt the framework in the identi�cation of
pro�table statistical arbitrage opportunities and exchange traded fund outperformance, respectively.
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continuum is generally represented in terms of time or space. In this paper the functions

are de�ned in the moneyness domain, as we characterise and forecast the evolution of the

implied volatility process. As will be outlined in this section, the FDA methodology has

many advantages; it accurately captures implied volatility dynamics (Benko et al. 2009),

there is no assumed parametric structure, it is computationally e�cient, and it results in

a process that can be evaluated on an arbitrarily �ne grid. These and other advantages of

FDA are outlined in Ramsay and Silverman (2005).

Using daily observed option implied volatility data, x(m), we uncover a functional

data object, or more simply, the function, denoted x̃(m), that determines the daily implied

volatility curve dynamics. The domain,m, is that of the moneyness level (in terms of delta).

When constructing a functional data object, a vector of n bases, denoted φ1, ..., φn, must

�rst be speci�ed. The decision of which basis system to specify is driven by the underlying

data's known characteristics. For instance, when modelling periodic data, a Fourier basis

expansion, comprised of successive sine/cosine terms, is most commonly applied. However,

an implied volatility process does not exhibit strong cyclic variation, so we choose B-splines

for the basis function system. B-spline representation o�ers a number of strengths, as

outlined in de Boor (2001). Computations with B-splines are extremely e�cient as at

any one point along the curve they simplify to a polynomial that can be easily evaluated.

Adjusting the order of the spline allows for the estimation of derivatives of any degree.

In this paper, a fourth order basis, or cubic polynomial is speci�ed. Specifying a cubic

polynomial provides a good balance as it retains the function's continuous property up to

the second derivative. B-splines are essentially a number of polynomials joined together

smoothly at �xed points called knots. The number and positioning of the knots are derived

from knowledge of the complexity of the underlying process over particular ranges. We

place knots at the discrete quoted option moneyness levels available from the data set, with

polynomials describing the moneyness interval between the knots. This results in q knots:

mk : m1 ≤ ... ≤ mq, with the range of the various sub-intervals, [mk,mk+1], being de�ned

through the placement of these knots. Within each sub-interval, the spline is simply a

polynomial of order n. The order is calculated as:

order = 1 + degree of the polynomial.

Functional structures are approximated as a weighted linear combination of these bases:

x̃(m) ≡ c1φ1(m) + c2φ2(m) + ...+ cnφn(m),

where c1, ..., cn represent the parameters of the expansion's coe�cients. As in Ramsay

and Silvermann (2005), the coe�cients cj can be chosen by minimising:

SSE(c1, ..., cn) ≡
q∑

k=1

[x(mk)− x̃(mk)]
2 =

q∑
k=1

x(mk)−
n∑
j=1

cjφj(mk)

2

(1)
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where SSE stands for the sum of squared errors and q represents the number of implied

volatility observations.

4.2.1.1 Smoothing parameter

To avoid over-�tting the data, a smoothing penalty is applied in calculating the basis

coe�cients of the implied volatility process. The smoothing penalty helps to remove noise

from the data. Noise may be present due to liquidity issues, misquotes or other data

irregularities masking the true function. Without smoothing, noise in the relatively small

number of discrete values available can distort the results for that range. This can be

particularly evident at extreme moneyness levels. In line with Ramsay and Silvermann

(2005) and Liu et al. (2012), a limitation is placed on the variation of the curvature. The

total curvature of the process is found by integrating its squared second derivative:

R(x̃) ≡
ˆ (

d2

dm2
x̃(m)

)2

dm.

This is also called the roughness of the function.

In an extension of (1), the coe�cients characterising the smoothed curve are found

using the penalised sum of squared errors:

PENSSE(c1, ..., cn) ≡
q∑

k=1

x(mk)−
n∑
j=1

cjφj(mk)

2

+λR(x̃).

As λ increases, more weight is placed on the roughness penalty, possibly missing some

of the process' dynamics. As λ decreases, less weight is placed on the roughness penalty

and only data �tting matters in uncovering the function. In order to balance the competing

goals of retaining features and removing noise from the data, an optimal smoothing level,

λ, must be selected. Using generalised cross validation developed in Craven and Wahba

(1979), and adopted by Ramsay et al. (2009), and Liu et al. (2012), we select λ = 10−3.

4.2.2 Functional linear model

A functional linear model is utilised to predict the evolution of the implied volatility

process. Classical linear models seek to describe the dependency between a response vari-

able and a speci�ed set of predictors. In classical regression, scalar values are used for both

the explanatory and response variables. However, in functional linear regression at least

one of the observed explanatory variables are curves. This means that functional analogs of

classical linear regression coe�cients must be constructed. The procedure varies according

to the model structure. Given that the explanatory variable adopted in our study is the

implied volatility function we employ the use of:

1. Scalar response/functional explanatory which takes the form y = α+
´
β(m)x̃(m)dm+

ε (Hovarth and Kokoszka 2012) (�scalar response model�, henceforth)
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2. Functional response/functional explanatory which takes the form y(m) = α(m) +´
β(m, s)x̃(s)ds + ε (Hovarth and Kokoszka 2012) (�fully functional model�, hence-

forth)

The forthcoming sections discuss these two models in detail.

4.2.2.1 Scalar response model

We utilise the scalar response framework to �nd the dependency between the current

day, t, implied volatility function, x̃t(m), and the one-day ahead, t + 1, implied volatility

scalar response for a particular contract, xt+1(mk):

xt+1 (mk) = α+

ˆ

Ωm

β(m)x̃t(m)dm+ εt,

where Ωm is the de�ned moneyness range, and where β̂(m) is found by minimising:

T−1∑
t=1

xt+1(mk)− α−
ˆ

Ωm

β(m)x̃t(m)dm

2

. (4)

In classical linear regression, there must be fewer explanatory variables than obser-

vations. Using a functional explanatory variable, however, acts as an in�nite-dimensional

predictor of a �nite set of responses. This means that an exact �t is always possible, leading

to ε = 0. It also means that an in�nite number of possible β(m) coe�cients will produce

the same predictions. Dimension reduction through a basis expansion of β(m), as in Sec-

tion 4.2.1, is proposed by Ramsay and Silvermann (2005) to solve this underdetermination

issue. The smaller the number of basis functions, the smoother the estimate function β̂(m).

However, a low-dimensional basis may not be appropriate as it has the potential to omit

important dependency dynamics. To allow for the use of a high-dimensional basis, β̂(m)

can be smoothed to obtain an appropriate estimate for the continuum-varying coe�cient

β(m). This is done by imposing a roughness penalty which minimises deviations from
d2

dm2 β̂(m) = 0. After incorporating the penalty, a smoothed β̂(m) is found by minimising:

T−1∑
t=1

xt+1(mk)− α−
ˆ

Ωm

β(m)x̃t(m)dm

2

+ λβ

ˆ [
d2

dm2
β(m)

]2

dm,

where λβ is the weighting attributed to the smoothing penalty. Given that 5 and 95

represent the lower and upper bound delta values in the data set, we can de�ne our model

as:
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xt+1 (mk) = α+

95ˆ

5

β(m)x̃t(m)dm+ εt.

4.2.2.2 Fully functional model

We utilise the fully functional model as an exploratory tool only to assess the de-

pendency between the current day, t, implied volatility function, x̃t(m), and the one-day

ahead, t+ 1, implied volatility function, x̃t+1(m). Given that both variables are expressed

in terms of moneyness, we use the notation m and m′ to distinguish between the money-

ness domains of the current day, t, and the next day, t + 1 implied volatility functions,

respectively. We specify a fully functional model based on the historical linear framework

proposed by Malfait and Ramsay (2003):

x̃t+1(m
′
) = α(m′) +

ˆ

Ωm

β(m,m′)x̃t(m)dm+ εt(m
′) (5)

where Ωm contains the domain range of m over which x̃t(m) is considered to in�uence

x̃t+1(m′). We predict x̃t+1(m′) using the entire range of the x̃t(m) function, i.e., 5 to 95

delta.

In a similar view to the scalar response model, dimension reduction through a double

basis expansion of β(m,m′), in terms of both m and m′, is used to solve the underde-

termination issue. The smaller the number of basis functions, the smoother the estimate

function β̂(m,m′). However, two low-dimensional bases may not be appropriate as they

have the potential to omit important curve dynamics. To overcome this issue, Ramsay and

Silverman (2005) apply an additional roughness penalty, to smooth in terms of both the

range speci�ed by m and m′. Weightings for the penalties are de�ned as λ1 and λ2, with

the penalty being structured as follows:

λ1

ˆ [
∂2

∂m′2
β(m,m′)

]2

dmdm′ + λ2

ˆ [
∂2

∂m2
β(m,m′)

]2

dmdm′.

Given that the speci�ed explanatory and responses are both curves, the resultant

β̂(m,m
′) value takes the form of a 3-dimensional surface object, which we present in Section

4.5.

In order to assess how well the functional models �t the data, functional versions of

the widely employed R2 statistic and F-Ratio are applied:

R2(m) = 1−
∑T−1

t (xt+1(mk)− x̂t+1(mk))
2∑T−1

t (xt+1(mk)− x̄t+1(mk))2

where xt+1(mk) is the observed response, x̄t+1(mk) is the mean of the observed re-

sponse, and x̂t+1(mk) is the model's estimated response value.
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F −Ratio =
(
∑T−1

t (xt+1(mk)− x̄t+1(mk))
2 −

∑T−1
t (xt+1(mk)− x̂t+1(mk))

2)/(df − 1)∑T−1
t (xt+1(mk)− x̂t+1(mk))2/(T − df)

where T is the number of days in the sample and df is the equivalent degrees of freedom

for the �t.

4.2.3 Forecast evaluation

We assess the forecast performance of the FDA models using the following measures:

1. Mean absolute error (MAE) is the average of the absolute di�erences between the

forecast, x̂t+1(mk), and the corresponding observation, xt+1(mk). It measures the

average error magnitude in the forecasts, regardless of error direction and serves to

aggregate the errors into a single measure of predictive power.

MAE =
1

T

T−1∑
i=1

|xt+1(mk)− x̂t+1(mk)| ,

where xt+1(mk) are the observed values and x̂t+1(mk) are the values predicted from

the model.

2. Root mean squared error (RMSE) is a measure of the di�erence between values pre-

dicted by a model and values realised. The RMSE is de�ned as the square root of the

mean squared error, and again serves to aggregate the errors into a single measure

of predictive power.

RMSE =

√∑T−1
i=1 (xt+1(mk)− x̂t+1(mk))2

T
,

where xt+1(mk) are the observed values and x̂t+1(mk) are the values predicted from

the model.

3. Mean mixed error (MME) is an asymmetric loss function. MME(U) penalises under-

predictions more heavily, while MME(O) penalises over-predictions more heavily.

This is very important for investors in option markets, as an under (over)-prediction

of implied volatility is more likely to be of greater concern to a seller (buyer) than

a buyer (seller). The measure has been employed previously in studies evaluating

volatility forecasting techniques such as Brailsford and Fa� (1996) and Fuertes et al.

(2009).

MME(U) =
1

T

 tON∑
t=tO1

|xt+1(mk)− x̂t+1(mk)|+
tUN∑

t=tU1

√
|xt+1(mk)− x̂t+1(mk)|
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and

MME(O) =
1

T

 tON∑
t=tO1

√
|xt+1(mk)− x̂t+1(mk)|+

tUN∑
t=tU1

|xt+1(mk)− x̂t+1(mk)|

 ,
where tUN is the number of under-predictions and tON is the number of over-predictions.

tO1 ,...,t
O
N represent the indices of the over-predictions, and tU1 ,...,t

U
N represent the in-

dices of the under-predictions.

4. The mean correct predictor of direction of change (MCPDC) is the percentage of

predictions for which the forecast, x̂t+1(mk), has the same sign as the corresponding

observation, xt+1(mk). MCPDC measures how well the model can forecast the di-

rection of movement, regardless of error magnitude. It is also employed in Bernales

and Guidolin (2014).

The out-of-sample performance of the FDA-based forecast is benchmarked against tradi-

tional models used in the literature:

1. Autoregressive (AR(1)) process of order 1 (Konstantinidi et al. 2008 and Dunis et

al. 2013)

2. Generalised autoregressive conditional heteroskedastic (GARCH(1, 1)) model (Yu et

al. 2010 and Dunis et al. 2013). The conditional mean speci�ed is an ARMA(1,1)

process, with a normal conditional distribution being assumed.

3. Autoregressive fractionally integrated moving average (ARFIMA(1, z, 1)) (Konstan-

tinidi et al. 2008). The integrated order of di�erence is z, where 0 < z < 1. z is

selected using maximum likelihood recursion.

To control for sensitivity to speci�c out-of-sample periods, various window lengths are

tested: 100 day (out-of-sample: July 2013 to November 2013), 200 day (out-of-sample:

February 2013 to November 2013), 500 day (out-of-sample: December 2011 to November

2013), and 1000 day (out-of-sample: January 2010 to November 2013). The out-of-sample

forecast, between the end of the in-sample period and November 2013, are obtained us-

ing a recursive scheme. Each day an additional observation is added to an expanding

training window and the models are re-estimated. This is in line with Chalamandaris and

Tsekrekos (2010) who adopt a recursive 1-day strategy scheme. Konstantinidi et al. (2008)

and Goncalves and Guidolin (2006), also implement out-of-sample recursive schemes by

expanding the training window size at 100-day intervals. We choose to expand the training

67



set and re-estimate the model at each time step, daily, to more incorporate all available

up-to-date information into our prediction. This approach more accurately simulates the

action likely to be taken by a market practitioner who seeks to predict the following day's

movement. The accuracy of these predictions are evaluated using the measures outlined in

Section 5.3.3. Subsequently, a formal cross-model comparison is undertaken through the

construction of multiple hypothesis tests to ascertain if the FDA-based model produces a

more accurate forecast compared to the benchmark models.

4.3 Multiple hypothesis testing

We contribute to the existing literature by incorporating controls for the multiple com-

parisons problem in our forecasting framework. This robust testing framework adjusts

for the likelihood that seemingly signi�cant ouperformance can be due to mere chance

alone. As we are simultaneously testing, for each out-of-sample window, 300 hypotheses,

given 5 forecast evaluation measures, 3 comparative benchmark models, 4 contract matu-

rity lengths, and 5 delta values, the multiple comparisons problem is an issue that must

be addressed. The multiple comparison problem states that given enough simultaneous

hypothesis tests, statistically signi�cant results may be found by pure chance alone. To

control for such false discoveries, the operative balanced stepdown procedure of Romano

and Wolf (2010) is employed. The balanced stepdown procedure o�ers a more generalised

and �exible approach to controlling for the multiple comparisons problem than previous

frameworks proposed. See Chapter 2 for further motivation. It works by controlling the

probability that at least k or more false discoveries occur. Consistent with the notation of

Romano and Wolf (2010), the following de�nition is made for the generalised familywise

error rate:

k-FWERθ = Pθ {reject at least k null hypothesis H0,s : s ∈ I (θ)} .

I (θ) is de�ned as the set of true null hypotheses and k is a user-de�ned parameter

such that we control for k ≥ 1 false discoveries. A signi�cance level α is chosen such that

k-FWER≤ α. The stepdown procedure is constructed such that at each stage, information

on the rejected hypotheses to date is used in re-testing for signi�cance on the remaining

hypotheses. Within the context of controlling the generalised k-FWER, the overall ob-

jective is to ensure that the simultaneous con�dence interval covers all parameters except

for at most (k − 1) of them, for a given limiting probability (1− α), while at the same

time ensuring balance (at least asymptotically). Attractive properties of the framework

include conservativeness, which allows for �nite sample control of the k-FWER under Pθ,

and provides asymptotic control in the case of contiguous alternatives.

Towards building a framework to identify outperformance in implied volatility forecast-
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ing models, the following hypotheses are considered:

H0 : θbenchmark − θFM ≤ 0

H1 : θbenchmark − θFM > 0

where θFM is a given forecast evaluation measure for a functional model, and θbenchmark

is the corresponding measure for a given comparative benchmark model. We utilise all

�ve forecast evaluation measures set out in Section 5.3.3, i.e., MAE, RMSE, MME(U),

MME(O), and (1-MCPDC). In the latter case, the complement of MCPDC is adopted to

conform with the hypothesis setup above. In requiring to circulate through all (k − 1)-

sized subsets of hypotheses rejected up to the current step, to obtain the maximum critical

value to apply at each stage of the stepdown procedure, the algorithm can become highly, if

not excessively, computationally burdensome. Romano and Wolf (2010) therefore suggest

an operative method that reduces this computational burden, while at the same time

maintaining much of the attractive properties of the algorithm.3 It is this operative method

that is used for the empirical analysis in subsequent sections.4

4.4 Data description

The data set comprises, at-the-money, risk reversal, and butter�y composition implied

volatility quotes for the Euro/United States Dollar (EUR-USD) currency pair obtained

from Bloomberg. We focus on this single heavily traded currency pair to minimise issues

around data quality (i.e., stale and out-of-context quotes). The EUR-USD pair constitutes

a developed pair whereby option contracts are the main avenue through which investors

exploit the interest rate di�erentials between the di�erent countries. The use of a con-

tributory data vendor such as Bloomberg, mitigates the idiosyncratic e�ect speci�c to

individual market participants providing quotes. This issue is cited by Chalamandaris and

Tsekrekos (2014), with Bloomberg being used to validate their proprietary J.P. Morgan

data set. Through the use of this J.P. Morgan database, Chalamandaris and Tsekrekos

(2014) �nd that implied volatility is more predictable for very liquid currency pairs, cit-

ing EUR-USD as an example. EUR-USD is also the sole focus of the study by Dunis et

al. (2013). The constant option maturities utilised are: 1, 3, 6 and 9 months. Delta

values of 5, 10, 15, 25, 35, 50, 65, 75, 85, 90, 95 are constructed from the at-the-money,

risk reversal, and butter�y implied volatility quotes using the Black-Scholes (1973) and

Garman and Kohlagen (1983) option pricing formulae. Log changes in implied volatility

are calculated for the January 2006 to November 2013 period. As in Chalamandaris and

Tsekrekos (2011), we limit our forecast prediction to the surfaces with the highest lev-

els of liquidity. The most liquid contracts are delta values of 10, 25, 50, 75, and 90. It

is for this reason that our out-of-sample forecasts concentrate on these particular contracts.

3Further technical implementation details can be found in Chapter 2 and Romano and Wolf (2010).
4The resampling based MHT algorithms were made available to me by Dr Mark Cummins.
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4.5 Empirical results

Firstly, this section presents the results of modelling the evolution of implied volatility

using both the fully functional model and the scalar response model for the entire sample,

January 2006 to November 2013. The fully functional model is �tted in-sample to ascertain

if implied volatility demonstrates intertemporal dependency across the moneyness range.

The resultant three-dimensional beta coe�cient is plotted and used as an exploratory tool

to provide a broad sense of what drives the evolution of implied volatility. Secondly, the

results of the scalar response model in-sample �tting are presented with the quality of �t

being compared to that of the fully functional model. Thirdly, the out-of-sample forecasts

for the scalar response model and the comparative benchmark models only, are evaluated.

This is conducted using the measures outlined in Section 5.3.3. Finally, formal testing

incorporating the operative balanced stepdown procedure of Romano and Wolf (2010), as

set out in Section 5.3.4, is implemented to test if the scalar response model outperforms

traditional benchmark models in terms of forecast accuracy.

4.5.1 In-sample functional linear model �t

The fully functional model seen in Equation 5, is employed as an exploratory tool

to determine if there is a dependency between implied volatility functions over time. The

calculated estimates for the intercept function of the fully functional model are insigni�cant.

For this reason we turn the focus of the analysis to the bivariate regression coe�cient

function, β(m,m′), which de�nes the dependence between the functional predictor and

the functional response at each point across the delta range. β̂(m,m′) estimated from

EUR-USD implied volatility for the full sample January 2006 to November 2013 is plotted

in Figure 4.1. In line with the success achieved by Konstantinidi et al. (2008) and Dunis

et al. (2013), in modelling implied volatility evolution using autoregressive processes, one

might intuitively expect the primary driver of the change in the current day's ATM (50

delta) implied volatility to be the change in the previous day's ATM implied volatility.

However, it can be seen in Figure 4.1, that the previous day's ATM implied volatility,

while important, has less of an impact on the following day's ATM implied volatility than

those contracts traded at 20 delta either side of ATM. This gives an empirical indication

that the shape and dynamic of the implied volatility function should be incorporated into

implied volatility forecasts. The dynamic could be due to non-uniform trading across the

curve, as cited by Chalamandaris and Tsekrekos (2010), whereby segments of the implied

volatility surface adjust to information at di�erent rates. Ramsay et. al (2009) note that

B-spline functions are less stable as they approach their interval boundaries due to less data

being available to de�ne their values, with the beginning and end values being determined

by only a single coe�cient. This feature is evident in Figure 4.1 with large peaks observed

at the 5 delta and 95 delta extremities of the response function. To assess model �t

and thusly the validity of the inferences drawn, we calculate the R2 statistic for the fully
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Figure 4.1: Fully functional model �tting bivariate regression coe�cient

Resp
onse

: IV
 C

urve
 day

 t+
1

20

40

60

80

Predictor: IV Curve day t

20

40

60

80

B
eta coefficient value 0.0

0.1

0.2

The dependency value uncovered when �tting the fully functional model to the EUR-USD implied volatility data set for the January

2006 to November 2013 period. Option maturity=1 month. �IV� is used as an abbreviation for implied volatility.

functional. R2 is an informal test that seeks to explain how the models �t the data. The

R2 statistic values for the fully functional model for all deltas and option maturities are

given in Table 4.1. The values for the one month maturity contract range from 0.14 to 0.37

across various moneyness levels. Lower R2 values are observed at in- and out-of-the-money

levels, suggesting that the fully functional model provides a comparatively better �t for

ATM contracts.

Turning our attention to the scalar response model, it is noted that this model speci�es

the discrete t + 1 implied volatilities for each contract as the response, and the implied

volatility function on day t as the predictor. As with the fully functional model �tting,

intercept values are again insigni�cant. The estimate of the dependency coe�cient, β̂(m),

is plotted in Figure 4.2. 95% con�dence intervals are represented by the dashed lines.

Examining β̂(m) across the range of moneyness contracts mirrors the results of the fully

functional model, whereby the previous day's change observed for contracts traded at in-

and out-of-the-money values of delta 20-40 and delta 60-80 range, have a greater impact on

the ATM implied volatility level observed today. This parallels the indication of the fully

functional model that an FDA-based model may outperform the forecasting performance of

a traditionally employed discrete autoregressive process through incorporating information

across the entire curve. Analysing the graph also suggests that negative autocorrelation is

present, as a positive (negative) previous day ATM implied volatility change is associated

with a negative (positive) ATM implied volatility change today. The high R2 values and
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Figure 4.2: Scalar response model �tting regression coe�cient
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The dependency value uncovered when �tting the scalar response model to the EUR-USD implied volatility data set for the January

2006 to November 2013 period. Delta=50 and option maturity=1 month.

signi�cant F-ratio results calculated in Table 4.2 suggest that the quality of the �t for the

scalar response model is far better than one would expect by chance alone.5

4.5.2 Out-of-sample forecast evaluation

It is established in the previous section that the scalar response model provides a good

�t for modelling the evolution of implied volatility. We now turn our attention to out-of-

sample forecasting. A summary of the out-of-sample forecast measures calculated for at-

the-money implied volatility under a recursive parameter estimation scheme and a 500 day

out-of-sample window length are presented in Table 4.3. The measures calculated for other

delta values are given in the Appendix.6 The results give clear indications that the scalar

response model outperforms the traditionally used AR, GARCH and ARFIMA models

in forecasting implied volatility out-of-sample. The scalar response model outperforms in

terms of both RMSE and MAE across all maturity lengths. The MCPDC results specify

that the scalar response model correctly predicts the direction of implied volatility change

88.4%-93.4% of the time. The ARFIMA model is the next best for predicting the direction

of change with MCPDC results of 61.4%-79%. The asymmetric mean mixed error loss

functions give an indication of which models systematically under- and over- predict implied

volatility changes. The closer the MME(U) and MME(O) values for a given model, the

lower the level of systematic under- or over- prediction. The MME(U) and MME(O)

results presented in Table 4.3 indicate that the scalar response model has a slight tendency

to over-predict future implied volatility change. The one month maturity MME(U) and

MME(O) values of 0.0298 and 0.0377, respectively, are quite close however, indicating that

5In conventional multivariate analysis such high R2 values could be symptomatic of a problem. However,
as documented by Malfait and Ramsay (2003), when a �ne evaluation grid is speci�ed, high R2 follow. For
example, R2 values as high as 99.7% are exhibited in Section 5 of Malfait and Ramsay (2003).

6Other out-of-sample window periods, of 100, 200 and 1000 days, are utilised with similar results
obtained.
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Table 4.1: Fully functional model �tting R2 statistic values

Delta R2 1 month R2 3 month R2 6 month R2 9 month

5 0.273 0.294 0.425 0.370

10 0.180 0.224 0.360 0.264

15 0.145 0.173 0.285 0.213

25 0.207 0.171 0.244 0.246

35 0.310 0.217 0.273 0.295

50 0.373 0.248 0.296 0.322

65 0.300 0.204 0.262 0.283

75 0.197 0.144 0.211 0.212

85 0.140 0.124 0.222 0.158

90 0.176 0.149 0.280 0.184

95 0.262 0.196 0.359 0.269

The R2 statistic values calculated after �tting the fully functional model to the EUR-USD implied volatility data set over the

January 2006 to November 2013 period. Option maturities are 1, 3, 6, and 9 months respectively.

any bias is minor and may be data set speci�c. The GARCH model produces the most

unbiased predictions with one month maturity values of 0.0805 and 0.0846 exhibited for

the MME(U) and MME(O) asymmetric loss functions respectively.

As an important contribution to the existing literature, we rigorously evaluate the

competing models in an out-of-sample forecast. For this, the operative balanced stepdown

procedure of Romano and Wolf (2010) is applied to control for the multiple comparisons

problem, as set out in Section 2.3.2. In particular, it controls the generalised FWER

using a stepwise procedure that o�ers balance by construction. This property of balance

ensures that each measure is treated equally in terms of power, i.e., the ability to reject

false null hypotheses, so measures with large deviations do not dominate those with lower

deviations. This is one of the key motivations for using the balanced stepdown procedure

for the empirical analysis of this study. To ensure tight control of the number of false

discoveries while at the same time o�ering power to the tests, the generalizing parameter,

k, is chosen to ensure that no more than 5% of the 300 tests (per out-of-sample window)

represent false discoveries. The probability parameter, α, is set at 5%, such that the

probability of 300 × 5% = 15 or more false discoveries is less than or equal to 5%. An

Nmax value of 100 combinations is speci�ed, in line with Romano and Wolf (2010). We

specialise the hypotheses set out in Section 5.3.4 as follows:

H0 : θbenchmark − θSR ≤ 0

H1 : θbenchmark − θSR > 0

where θSR is a given forecast evaluation measure for the scalar response model, and

θbenchmark is the corresponding measure for a given comparative benchmark model.
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Table 4.3: Scalar response (SR), AR, GARCH, and ARFIMA models out-of-sample forecast

evaluation measures (Delta=50)

Maturity 1 Month 3 Month

ATM RMSE MAE MCPDC MME(O) MME(U) RMSE MAE MCPDC MME(O) MME(U)

SR 0.0061 0.0047 0.9340 0.0377 0.0298 0.0041 0.0032 0.9100 0.0294 0.0257

AR 0.0326 0.0251 0.4760 0.0884 0.0808 0.0243 0.0182 0.4320 0.0751 0.0644

GARCH 0.0312 0.0240 0.7500 0.0846 0.0805 0.0225 0.0169 0.7320 0.0693 0.0653

ARFIMA 0.0314 0.0241 0.7900 0.0866 0.0792 0.0227 0.0170 0.7680 0.0721 0.0632

Maturity 6 Month 9 Month

ATM RMSE MAE MCPDC MME(O) MME(U) RMSE MAE MCPDC MME(O) MME(U)

SR 0.0039 0.0029 0.9140 0.0276 0.0246 0.0042 0.0031 0.8840 0.0305 0.0229

AR (1) 0.0193 0.0144 0.4520 0.0661 0.0565 0.0170 0.0127 0.5160 0.0595 0.0549

GARCH 0.0175 0.0131 0.7440 0.0596 0.0568 0.0157 0.0118 0.6140 0.0580 0.0524

ARFIMA 0.0186 0.0139 0.7900 0.0645 0.0559 0.0197 0.0148 0.1600 0.0685 0.0558

The forecast evaluation measures calculated after �tting the scalar response model to the EUR-USD implied volatility data set.

Delta=50, the in-sample period is January 2006 to December 2011, with the out-of-sample period spanning December 2011 to

November 2013.

After applying the Romano and Wolf (2010) procedure, the scalar response model

demonstrates truly signi�cant outperformance versus the comparative benchmarks in pre-

dicting EUR-USD implied volatility for all 10, 25, 50, 75, and 90 deltas, and all 1, 3, 6, and

9 month option contracts, under the 100, 200, and 500 day out-of-sample window periods.

This is concluded for each of the following measures: MAE, RMSE, MCPDC, MME(U),

and MME(O). It must be noted however, that the scalar response model, is not shown to

signi�cantly outperform the forecast of the AR, ARFIMA, or GARCH models under the

RMSE measure, for 50 and 75 delta 9 month maturity contracts, using the 1000 day out-of-

sample window. This lack of signi�cance is RMSE-measure speci�c, as all the alternative

forecast evaluation measures calculated for these contracts, MAE, MCPDC, MME(U), and

MME(O), are found, in contrast, to be signi�cant. It is only these 6 RMSE tests, from a

suite of 1200, that are deemed not to be signi�cant under the Romano and Wolf (2010)

framework. Overall, the results clearly indicate that the scalar response model outperforms

the traditionally proposed benchmarks in forecasting EUR-USD implied volatility.

4.6 Conclusion

We propose the use of a functional framework to characterise and forecast FX option

implied volatility. A major contribution of the study is that of robustly demonstrating

the performance advantage of adopting a scalar response model framework to predict fu-

ture implied volatility movements. The performance of the proposed FDA-based model is

benchmarked against the more traditionally employed approaches of the AR, ARFIMA,

and GARCH models. FDA boasts the advantages of being computationally e�cient, of

allowing functions to be evaluated on an arbitrarily �ne grid and of removing the need

to impose strict parametric structure assumptions. These and other advantages of FDA
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are outlined in Ramsay and Silverman (2005). Statistically signi�cant out-of-sample per-

formance is uncovered utilising the adopted measure of MAE, RMSE, MCPDC, MME(U)

and MME(O). This is an empirical demonstration that in�nite dimensional representation

o�ered by the FDA-based methodology uncovers additional dependencies missed by tradi-

tional forecasting models. The �ndings contradict the conclusion by Dunis et al. (2013)

that there is only predictability in the EUR-USD implied volatility process at forecasting

horizons of up to 5 hours ahead, and of Chalamandaris & Tsekrekos (2014) who only �nd

predictability at forecast horizons of greater than 5 days. Through the implementation

of the fully functional model as an exploratory tool, we conclude that there is intertem-

poral dependency across the moneyness range. The shape along the implied volatility

curve contains important features which should be incorporated to improve the accuracy

of forecasts. This is in line with the �nding by Chalamandaris and Tsekrekos (2010) who

emphasise the need to incorporate the dynamics along the implied volatility function in

order to produce accurate forecasts. However, none of their proposed models consistently

outperform autoregressive based benchmarks whereas our scalar response model does. An-

other key �nding, is that today's implied volatility function shape can be used to predict

the implied volatility level tomorrow, indicating persistence in the process evolution. This

study incorporates the novel use of a contributory data vendor to the literature. This mit-

igates the idiosyncratic risk, highlighted previously by Chalamandaris & Tsekrekos (2014),

associated with obtaining quotes from a single market participant.

In a further contribution to the existing literature, a large number of hypotheses are

simultaneously tested with robust multiple comparison controls implemented to adjust for

false discoveries. This rigorous testing framework concludes that in order to forecast the

evolution of implied volatility, the proposed scalar response model provides the greatest

level of performance. This paper adds to the growing body of implied volatility modelling

literature and could be useful for academics seeking to further understand market e�ciency.

It has potential pricing implications as the market's expectation of average future volatility

between now and option expiry is a major component of many asset pricing models. There

may also be potential for speculative traders to exploit the uncovered predictability.7

7We refrain from presenting an examination of a trading strategy, due to an inability to realistically
simulate a live market environment. Previous studies rely on idiosyncratic market assumptions, as well
as ignoring implementation issues such as liquidity, strategy drawdowns, margin calls, bid-ask spread
considerations, and microstructure e�ects that might distort any calculated pro�ts.
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Chapter 5

Extracting FX forward rate term

structure information: Merits of a

functional method

5.1 Introduction

Our study adds to the existing literature seeking to extract the informational content

of forward foreign exchange rates through the novel proposal of a functional data analysis-

based forecasting model. Meese and Rogo� (1983a,b) ascertain that standard exchange

rate models do not have the ability to beat forecasts implied by the random walk in the

short run. In an attempt to explain this, Engel and West (2005) and Engel et al. (2008)

demonstrate that such models imply a near random walk process for the exchange rate,

so their power to �beat the random walk� in out-of-sample forecasts is low. Furthermore,

it has been demonstrated that the forward rate is not the optimal predictor of future spot

rates (Hansen and Hodrick 1980, Frankel 1980, Bilson 1981, Frankel and Rose 1995, and

Taylor 1995). Despite this, the question as to whether or not there is information imbedded

in forward FX rates persists. Clarida and Taylor (1997) seek to answer this by moving

beyond such single-equation methods and conclude that forward premia information is in

fact considerable. Their restricted vector error correction model (VECM) constitutes the

leading challenger to the seminal work of Meese and Rogo� (1983a,b). The approach is

applied in a dynamic out-of-sample forecasting framework resulting in root mean squared

error and mean absolute error metrics over 50% lower than those implied by the random

walk. The results are con�rmed by Clarida et al. (2003) and Sager and Taylor (2014), who

establish statistically signi�cant outperformance across di�erent data sets.

We move the problem to an in�nite-dimensional space to improve on the forecasting

performance achieved by Clarida and Taylor (1997). To this aim, we adopt the scalar

response model proposed in Ramsay and Silverman (2005). Speci�cally, we determine the

underlying process that characterises the forward rate term structure, and use its func-
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tional principal components, to establish dependency relations between the forward rate

term structure and future spot exchange rates. The �exible functional data approach ac-

curately captures the forward rate term structure process, whilst mitigating the need to

impose restrictive data structure assumptions on the exchange rate system. A number of

applications in the bio-mechanical literature have bene�ted from functional data frame-

works. However, it has only recently been exploited for �nancial analysis. Muller et al.

(2011) for instance study high frequency S&P 500 Index levels, and propose a functional

volatility process to model volatility trajectories. Their model shows patterns in volatility

and by combining it with prediction techniques and functional regression, it can be used

to predict future volatility. Benko et al. (2009) focus on implied volatility, by presenting

a new two-sample common factor functional principal component analysis technique and

applying it to analyse similarities in stochastic behaviours between implied volatility curves

of one- and three- month option contracts on the German-Swiss exchange (EUREX). They

highlight the strength of using functional data analysis techniques to characterise market

data, an approach which we also adopt.

Claims of superior forecasting performance relative to the random walk outlined in

previous foreign exchange forecasting literature are often based on a direct comparison of

performance measures without formal tests of statistical signi�cance. What sets the VECM

apart is that Clarida et al. (2003) and Sager and Taylor (2014) go beyond a direct com-

parison of performance measures, by establishing statistically signi�cant outperformance.

For comparative purposes with previous studies, we initially present a direct comparison

of forecasting performance measures. However, we then apply formal tests to identify in-

stances of statistically signi�cant outperformance for the scalar response model over both

the VECM and random walk benchmarks. We �rst test the hypothesis of forecasting out-

performance by implementing a simple t-test of performance measures di�erentials. In

an important extension of the literature we contribute further by incorporating controls

for the multiple comparisons problem in testing forecast performance. This robust test-

ing framework adjusts for the likelihood that seemingly signi�cant ouperformance can be

due to mere chance alone. As the number of simultaneous tests conducted increases, so

too does the likelihood of such false discoveries. To solve the multiple comparisons prob-

lem issue, we implement the operative balanced stepdown procedure of Romano and Wolf

(2010); the �rst time it has been applied in forecasting the evolution of spot foreign ex-

change rates.1 The balanced stepdown procedure o�ers a generalised and �exible approach

to controlling for the multiple comparisons problem. The methodologies used in previous

studies raise concerns around the validity of the inferences drawn, insofar as many lack

multiple comparisons controls. Our results provide a robust signal of improved forecasting

performance relative to the random walk indicating that the forward rate term structure

contains statistically signi�cant information about the evolution of the spot exchange rate,

1The application of the balanced stepdown procedure of Romano and Wolf (2010) is in line with
Cummins and Bucca (2012) and Kearney et al. (2014), who adopt the framework in the identi�cation of
pro�table statistical arbitrage opportunities and exchange traded fund outperformance, respectively.
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above what is embedded in the historic spot rate series itself. Further to this our results

provide additional evidence supporting the rejection of the simple risk neutral e�cient

market hypothesis.

In the next section we provide the theoretical background of the forward rate term

structure, while Section 5.3 introduces the scalar response model and Clarida and Taylor

(1997) models. Section 5.3.4 details the forecast evaluation framework and the Romano

andWolf (2010) operative balanced stepdown procedure. Section 5.4 presents and discusses

the empirical results, with Section 5.5 concluding the paper and drawing implications for

future studies.

Summary of contributions

• Can we extract the informational content of forward foreign exchange rates through

a functional PCA-based forecasting model?

• How does the performance of the functional PCA-based approach compare with both

the random walk and the Clarida and Taylor (1997) VECM?

• Does the forward rate term structure contain information about the evolution of spot

exchange rates?

5.2 Risk neutral e�cient market hypothesis

A major strength of both our proposed scalar response forecasting model and the

Clarida and Taylor (1997) framework, is that they work in spite of the failure of the simple

risk neutral e�cient market hypothesis (RNEMH) and are agnostic to the precise cause

of rejection. RNEMH is predicated on both risk-neutrality and rational expectations, and

postulates that the k-period forward rate at time t, fkt , is equal to the expectation of the

spot rate at time t+ k, st+k. This is conditional on information available at time t, Ωt:

0 ≡ fkt − E (st+k | Ωt) .

In other words, it hypothesises that the forward rate is the optimal predictor of the future

spot rate. The RNEMH is derived from the combination of two theorems, namely, covered

and uncovered interest parity (CIP and UIP, respectively). CIP states that the k-period

eurodeposit interest rate di�erential between the domestic, denoted rk, and foreign country,

denoted rk
′
, is equal to the spot-forward premium, fkt − st:

0 ≡ rkt − rk
′
t −

(
fkt − st

)
.

Whereas, UIP is a related no-arbitrage condition that is satis�ed without the use of a

forward contract. It deems that the interest rate di�erential is equal to the expected

forward rate:

79



0 ≡ rkt − rk
′
t − E (st+k − st | Ωt) .

Empirically it has been shown that CIP holds (Taylor 1987 and 1989) whereas Chaboud

and Wright (2005) show that UIP is rejected at horizons above a few hours, yet Chinn and

Merdith (2004) �nd that UIP cannot be rejected at horizons above �ve years. Therefore,

given the average investor's time horizon it can be taken that UIP does not hold empirically.

It follows that the simple RNEMH has been decisively rejected (Hodrick 1987, Froot and

Thaler 1990, Taylor 1995, Sarno and Taylor 2002). Various phenomena have been proposed

to explain the rejection, including the presence of risk premia (Backus et al. 2001, Farhi

and Gabaix 2008, Kellard and Sarantis 2008, Alvarez et al. 2009, and Lustig et al. 2011),

ine�cient information processing (Froot and Frankel 1989), institutional investor currency

�ows (Froot and Ramadorai 2005), rational bubbles (Lewis 1989), and the well documented

peso problem (Rogo� 1979, Evans and Lewis 1995, Burnside et al. 2011). Our proposed

scalar response functional model is contingent on the existence of empirical departures

from the RNEMH, therefore it serves as an indirect test for its failure.

5.3 Methodology

This section provides the detail of the functional scalar response model, the Clarida

and Taylor (1997) comparative benchmark model and the forecasting evaluation framework

employed in the study. It begins by outlining the process of producing a functional repre-

sentation of the forward rate term structure at each time point. This representation is sub-

sequently forecast using the adopted scalar response model where the in�nite-dimensional

beta coe�cient is speci�ed with a functional principal component basis to solve the under-

determination issue. The theoretical basis of Clarida and Taylor (1997)'s forward premia

restrictions and how departures from the RNEMH are accommodated in the VECM frame-

work are given in Subsection 5.3.2. Next, we introduce the performance measures adopted

for the empirical analysis section, alongside the formal framework being utilised to evaluate

the forecasting performance of each model. Finally, the importance of multiple hypothesis

testing controls in the context of our study is highlighted, in conjunction with an overview

of Romano and Wolf (2010)'s operative balanced stepdown procedure.

5.3.1 Scalar response model

Functional data analysis (FDA) provides a functional representation of the process

underlying a data set. The process is de�ned over a continuum, where continuum values

are generally represented in terms of time or space. In this paper the functions are de�ned

over the domain spanned by the tenors of the forward contracts, k. The function serves to

characterise the forward foreign exchange rate process. The FDA methodology has many

advantages; it accurately captures the forward rate term structure dynamics, there is no

assumed parametric structure, it is computationally e�cient, and it results in a process
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that can be evaluated on an arbitrarily �ne grid.2

Using a system of weekly observed spot and forward foreign exchange rates

x (kq) :=
{
fk0t, f

k1
t , f

k2
t , ..., , f

kN
t

}
, we uncover a functional data object, or more simply, the

function, denoted x̃(k), that determines the forward rate term structure dynamics.3 When

constructing a functional data object, a vector of n bases, denoted φ1, ..., φn, must �rst

be speci�ed. The decision of which basis system to specify is driven by the underlying

data's known characteristics. For instance, when modelling periodic data, a Fourier basis

expansion, comprised of successive sine/cosine terms, is most commonly applied. However,

the forward curve does not exhibit strong cyclical variation, so we choose �exible B-splines

for the basis function system. B-spline representation o�ers a number of strengths, as

outlined in de Boor (2001). They are essentially a number of polynomials joined together

smoothly at �xed points called knots. The number and positioning of the knots are derived

from knowledge of the complexity of the underlying process over particular ranges. We

place knots at the discrete forward rate tenors available from the data set, with polynomials

describing the tenor interval between the knots. This results in N + 1 knots: kq : k0 ≤
... ≤ kN , with the range of the various sub-intervals, [kq, kq+1], being de�ned through the

placement of these knots. Within each sub-interval, the spline is simply a polynomial of

order n. The order is calculated as:

order = 1 + degree of the polynomial.

Computations with B-splines are extremely e�cient as at any one point along the curve

they simplify to a polynomial that can be easily evaluated. Adjusting the order of the spline

allows for the estimation of derivatives of any degree. In this paper, a second order basis or

polygonal, is speci�ed, signi�cantly aiding computational e�ciency. Functional structures

are approximated as a weighted linear combination of these bases:

x̃(k) ≡ c1φ1(k) + c2φ2(k) + ...+ cnφn(k),

where c1, ..., cn represent the parameters of the expansion's coe�cients. As in Ramsay

and Silverman (2005), the coe�cients cj can be chosen by minimising:

SSE(c1, ..., cn) ≡
N∑
q=0

[x(kq)− x̃(kq)]
2 =

N∑
q=0

x(kq)−
n∑
j=1

cjφj(kq)

2

where SSE stands for �sum of squared errors�. The structure of the obtained func-

tional representation, x̃t(k), relies on the assumption that there is a inherent link between

consecutive observations along the forward rate tenor curve at a given point in time, t.

This is a reasonable assumption that does not in itself constitute a failure of the RNEMH.

However, we now proceed by forecasting x̃t(k), with the view that the market mechanism

2These and other advantages of FDA are outlined in Ramsay and Silverman (2005).
3We utilise the representation fk0t, for the spot rate at time, st, for ease of notation.
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imparts signi�cant information into the term structure of the forward rates, an exercise

dependent on departures from the RNEMH.

A functional linear model is used to predict the evolution of the spot rate. Classical

linear models seek to describe the dependency between a response variable and a speci�ed

set of predictors. In classical regression, scalar values are used for both the explanatory

and response variables. However, in functional linear regression at least one of the ob-

served variables is a curve. Given that the explanatory variable adopted in our study

is the forward rate term structure, we employ the use of the scalar response/functional

explanatory model (�scalar response� henceforth) of Hovarth and Kokoszka (2012). We

utilise the scalar response framework to �nd the dependency between the current day, t,

functional representation of the forward rate term structure, x̃t(k), and the k-day ahead,

st+k, scalar response:

st+k = α+

ˆ

Ωk

β(k)x̃t(k)dk + εt,

where Ωk is the de�ned forward rate tenor range, and where an estimate, β̂(k) is found

by minimising:

T−k∑
t=1

st+k − α− ˆ
Ωk

β(k)x̃t(k)dk


2

.

In classical linear regression, there must be fewer explanatory variables than observations.

Using a functional explanatory variable, however, acts as an in�nite-dimensional predictor

of a �nite set of responses. This means that an exact �t, leading to ε = 0, is always

possible. It also means that an in�nite number of possible β(k) coe�cients produce the

same predictions. Dimension reduction through a functional principal component basis

representation of β(k) can be used to solve this underdetermination issue. In this vein,

we now brie�y outline the procedure for obtaining functional principal components as

proposed by Ramsay and Silverman (2005).

Functional principal component analysis is the search for weight functions, ξ, that

correspond to probe scores, ρξ, with the highest possible levels of variation. The probe

scores are de�ned as:

ρξ (x̃ (k)) ≡
ˆ
ξ (k) x̃ (k) dk.

As mean is a common mode of variation across functional observations, it is removed, with

the residuals, x̃ (k)− ¯̃x (k), being probed. The probe score variance,

V ar

[ˆ
ξ (k) (x̃t (k)− ¯̃x (k)) dk

]
,

corresponding to probe weight ξ, is calculated as:
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maxξ

{
T∑
t=1

ρ2
ξ (x̃t (k))

}
.

A natural size restriction of
´
ξ2 (k) dk = 1 is imposed. To ensure that each new prin-

cipal component function captures a distinct mode of variation, they are required to be

orthogonal to those computed previously:

ˆ
ξh (k) ξl (k) dk = 0 h = 1, ..., l − 1.

To construct the functional linear model, we regress the response, st+k, on the principal

components of the constructed forward rate term structure function, x̃ (k). We �nd that

specifying three functional principal components provide a good �t for the forward rate

term structure. After absorbing the mean function into the intercept term, we can now

de�ne our model, with 0 and 52-week tenor values representing the lower and upper bounds,

as:

st+k = α+

52ˆ

0

3∑
j=1

βj (k) ξj (k) x̃t(k)dk + εt.

5.3.2 Clarida and Taylor (1997) VECM

To date, the restricted vector error correction model (VECM) of Clarida and Taylor

(1997) is the leading challenger to the seminal work of Meese and Rogo� (1983a,b). For

this reason this study adopts the VECM as a comparative benchmark model, alongside the

traditionally used random walk. Clarida and Taylor (1997) move beyond single-equation

methods and conclude that the information contained in the forward premiums is in fact

considerable. The approach is applied in a dynamic recursive out-of-sample forecasting

framework that results in root mean squared error and mean absolute error metrics that

are up to 50% lower than those implied by the random walk. The framework is also

adopted by Clarida et al. (2003) and Sager and Taylor (2014) who con�rm the results and

demonstrate statistically signi�cant outperformance when applying the model to di�erent

data sets. We now outline the theoretical basis for the Clarida and Taylor (1997) approach.

Clarida and Taylor (1997)'s framework shows that, given stationary departures from

the RNEMH, γt, both spot and forward rate series inherit a common stochastic drift.

Based on Beveridge and Nelson (1981) and Stock and Watson (1988), Clarida and Taylor

(1997) express the spot exchange rate, st, as the sum of two processes:

st = zt + qt, (1)

with zt representing a random walk with drift and qt being a zero mean stationary process

with �nite variance. Clarida and Taylor (1997) then make the assumption that γt is I (0),

leading to:
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fkt = γt + kθ + Et (qt+k | Ωt) + zt, (2)

where θ is a constant, representing the drift component of the random walk process, zt.

Comparing (1) and (2), we see that both the spot, st, and the forward series, fkt , share a

common stochastic trend, zt. As de�ned above, θ, γt and Et (qt+k − qt | Ωt) all constitute

I (0) series. It follows, therefore, that the forward premium, fkt −st, is also stationary, and
that the forward and spot rates are cointegrated according to the vector [1,−1]:

fkt − st = γt + kθ + Et (qt+k − qt | Ωt) . (3)

Given that this is true for any forecasting horizon, k, the cointegrating relationship can be

generalised to an (N + 1)-dimensional system, comprised of the spot and N forward rates,{
st,f

k1
t , f

k2
t , ..., , f

kN
t

}
. In this case, an N -sized vector encompassing the system's forward

premia represent the system's cointegrating equilibria. The strength of the approach is

that it identi�es both the components and coe�cient parameters de�ning the system's

cointegrating space. Consistent with Engle and Granger (1987), a system of spot and

N forward rates can be well represented by a vector error correction model (VECM).

Therefore, following Clarida and Taylor (1997), we estimate a restricted linear VECM

using the maximum likelihood method of Johansen (1991), to obtain 4, 13, 26, and 52-

week ahead forecasts of the foreign exchange spot rate4.

5.3.3 Forecast evaluation

The out-of-sample forecasts for a given horizon k are obtained using a recursive scheme.

Each week an additional observation is added to an expanding training window and the

models are re-estimated. We choose this testing framework in line with Clarida and Taylor

(1997), Clarida et al. (2003) and Sager and Taylor (2014). It ensures that forecasting

is conditional only on information available at the time of the forecast, while the weekly

expansion and re-estimating procedure serves to incorporate all available up-to-date infor-

mation into the prediction. The accuracy of the forecasts are evaluated using the following

measures:

1. Mean absolute error (MAE) is the average of the absolute di�erences between the

forecast, ŝt+k, and the corresponding observation, st+k. It measures the average error

magnitude in the forecasts, regardless of direction and serves to aggregate the errors

into a single measure of predictive power.

MAE =
1

T−k

T−k∑
i=1

|st+k − ŝt+k| ,

4Other alternative VECM estimation techniques, such as the two step methdology detailed in Bredin
and Muckley (2011), which attempts to explicitly account for heteroskedasticity in the estimation of rank
of the long-run information matrix within the VECM speci�cation could be used. However we adopt
Johansen (1991) estimation in line with previous studies.
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where st+k are observed values and ŝt+k are the values predicted from the model.

2. Root mean squared error (RMSE) is a measure of the di�erence between values pre-

dicted by a model and values realised. The RMSE is de�ned as the square root of the

mean squared error, and again serves to aggregate the errors into a single measure

of predictive power.

RMSE =

√∑T−k
i=1 (st+k − ŝt+k)2

T − k
,

where st+k are observed values and ŝt+k are the values predicted from the model.

We present three di�erent levels of forecast evaluation. Firstly, we assess performance

across the models through a direct comparison of forecasting measures. This is in line with

the approach of Clarida and Taylor (1997). Secondly, we formally test the hypothesis of

outperformance using a standard t-test approach, as outlined in the next section. Thirdly,

in an important extension of the existing literature, we employ the use of a resampling-

based multiple comparisons testing technique to control for data snooping bias. This

forecasting evaluation framework o�ers robust cross-model comparison, allowing us to as-

certain scalar response outperformance relative to both benchmark models, Clarida and

Taylor (1997)'s VECM and the notoriously hard-to-beat random walk. The next section

details the multiple hypothesis testing technique.

5.3.4 Multiple hypothesis testing

We contribute to the existing literature by incorporating controls for the multiple com-

parisons problem in our forecasting framework. This robust testing framework adjusts

for the likelihood that seemingly signi�cant ouperformance can be due to mere chance

alone. As we are simultaneously testing 48 hypotheses, given two performance measures,

two comparative benchmark models, four forecasting horizons, and three currencies, the

multiple comparisons problem is an issue that must be addressed. The problem states that

given enough simultaneous hypothesis tests, statistically signi�cant results may be found by

pure chance alone. To control for such false discoveries, the operative balanced stepdown

procedure of Romano and Wolf (2010) is employed. The balanced stepdown procedure

o�ers a more generalised and �exible approach to controlling for the multiple comparisons

problem than previous frameworks proposed. It improves upon formerly proposed single

step procedures, by allowing for subsequent iterative steps to identify additional hypothesis

rejections and o�ers balance by construction in the sense that each hypothesis is treated

equally in terms of power. It works by controlling the probability that at least k or more
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false discoveries occur.5 Consistent with the notation of Romano and Wolf (2010), the

following de�nition is made for the generalised familywise error rate:

k-FWERθ = Pθ {reject at least k null hypothesis H0,s : s ∈ I (θ)} .

I (θ) is de�ned as the set of true null hypotheses and k is a user-de�ned parameter such

that we control for k ≥ 1 false discoveries. A signi�cance level α is chosen where k-

FWER≤ α. The stepdown procedure is constructed such that at each stage, information

on the rejected hypotheses to date is used in re-testing for signi�cance on the remaining

hypotheses. Within the context of controlling the generalised k-FWER, the overall ob-

jective is to ensure that the simultaneous con�dence interval covers all parameters except

for at most (k − 1) of them, for a given limiting probability (1− α), while at the same

time ensuring balance (at least asymptotically). Attractive properties of the framework

include conservativeness, which allows for �nite sample control of the k-FWER under Pθ,

and provides asymptotic control in the case of contiguous alternatives. Towards building

a framework to identify outperformance in the foreign exchange forecasting models, the

following hypotheses are considered:

H0 : θbenchmark − θSR ≤ 0

H1 : θbenchmark − θSR > 0

where θSR is a given forecast evaluation measure for a functional scalar response

model, and θbenchmark is the corresponding measure for the comparative benchmark models;

VECM from Clarida and Taylor (1997) and a driftless random walk. We utilise the forecast

evaluation performance measures set out in Section 5.3.3, namely MAE and RMSE.

In requiring to circulate through all (k − 1)-sized subsets of hypotheses rejected up

to the current step, to obtain the maximum critical value to apply at each stage of the

stepdown procedure, the algorithm can become highly, if not excessively, computationally

burdensome. Romano and Wolf (2010) therefore suggest an operative method that reduces

this computational burden, while at the same time maintaining much of the attractive

properties of the algorithm.6 It is this operative method that is used for the empirical

analysis in subsequent sections.7

5In an attempt to stay consistent with the notation of Romano and Wolf (2010) we reuse the letter k
here. In this context k represents the number of false discoveries in the Romano and Wolf (2010) framework
and not the forward tenors as de�ned in previous sections.

6Further technical implementation details can be found in Chapter 2 and Romano and Wolf (2010).
7The resampling based MHT algorithms were made available to me by Dr Mark Cummins.
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5.4 Data and empirical results

5.4.1 Data

Our data set comprises observations of spot, 4, 13, 26, and 52-week forward rates for

Euro, Japanese Yen and British Sterling all versus the U.S. Dollar.8 Weekly exchange

rates are obtained over the period of the 26th week of 1990 (02-Jul-1990) to the 26th week

of 2014 (30-Jun-2014), 1253 observations in total for each exchange rate series. Following

Sager and Taylor (2014) and Della Corte et al. (2009), our Euro series is proxied by use of

the German Deutschmark over the July 1990 to January 1999 period.9 For the purposes

of providing a relative comparison with the results presented previously by Clarida et al.

(2003), we designate all but the �nal three years of the data set as in-sample. The data set

is sourced from Thomson Reuters Datastream. The strong theoretical priors outlined in

Section 5.3.2 dictate that each currency's forward premia, fkt − st, span the cointegration

space according to the vector [1,−1].10 Therefore we proceed by restricting the basis of

the cointegration space through imposing the following condition on the VECM:

β′xt =


−1 1 0 0 0

−1 0 1 0 0

−1 0 0 1 0

−1 0 0 0 1




st

f4
t

f13
t

f26
t

f52
t

 .

The VECM is dynamically estimated through the maximum likelihood method of Johansen

(1991) to obtain 4, 13, 26, and 52-week ahead forecasts.11 The sample expands recursively

with the optimised VECM being re-estimated at each time step (weekly) as outlined in

Section 5.3.3. The out-of-sample forecasting performance of both the scalar response and

VECM are outlined in the next section.

5.4.2 Numerical comparison

The goal of the paper is to assess the usefulness of the functional model. To this end the

measures RMSE and MAE are adopted to examine out-of-sample forecasting performance.

The results presented in Tables 5.1, 5.2 and 5.3, compare the forecasting accuracy of our

8We choose the same three currency pairs as Sager and Taylor (2014), who cite that they are the most
actively traded pairs according to the Bank for International Settlements (2010).

9The use of a weekly data frequency is in line with Clarida and Taylor (1997), Clarida et al. (2003)
and Sager and Taylor (2014).

10As in Clarida et al. (2003) and Sager and Taylor (2014), we proceed with the restrictions, [1,−1],
despite the likelihood ratio test indicating that the null hypothesis of four linearly independent forward
premiums comprising the basis for the cointegration space is rejected. Clarida et al. (2003) conclude that
although the departures from the precise overidentifying restrictions are statistically signi�cant, they are
very small in magnitude.

11For further technical VECM estimation details, the reader is directed to Johansen (1991) and Clarida
and Taylor (1997). A �rst-order lag is chosen in line with Clarida and Taylor (1997) who cite algorithmic
instability using higher-order lag speci�cations.
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Table 5.1: Results of forecasting exercises: Dollar-Euro

k (weeks) SR (level) VECM (ratio) Random Walk (ratio)

Root mean square error (RMSE)

4 0.0247 0.971 0.977

13 0.0368 0.936 0.947

26 0.0440 0.949 0.970

52 0.0621 1.090 1.139

Mean absolute error (MAE)

4 0.0201 0.973 0.979

13 0.0319 0.952 0.972

26 0.0361 0.936 0.949

52 0.0556 1.153 1.213

The performance measure for the functional speci�cation is given in the �rst column of the table with the second and third columns

containing the ratio of the scalar response performance measure to the corresponding VECM and random walk performance

measures respectively. Therefore, superior relative performance by the Scalar Response model is indicated by a ratio of less than 1.

Forecast period is July 2011 to July 2014. �SR� corresponds to �scalar response� with �VECM� corresponding to �vector error

correction model�.

Table 5.2: Results of forecasting exercises: Dollar-Sterling

k (weeks) SR (level) VECM (ratio) Random Walk (ratio)

Root mean square error (RMSE)

4 0.0213 0.993 0.998

13 0.0299 0.992 1.001

26 0.0365 0.960 0.969

52 0.0430 0.825 0.842

Mean absolute error (MAE)

4 0.0166 0.979 0.982

13 0.0239 0.972 0.983

26 0.0291 0.932 0.941

52 0.0360 0.896 0.912

The performance measure for the functional speci�cation is given in the �rst column of the table with the second and third columns

containing the ratio of the scalar response performance measure to the corresponding VECM and random walk performance

measures respectively. Therefore, superior relative performance by the Scalar Response model is indicated by a ratio of less than 1.

Forecast period is July 2011 to July 2014. �SR� corresponds to �scalar response� with �VECM� corresponding to �vector error

correction model�.
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Table 5.3: Results of forecasting exercises: Dollar-Yen

k (weeks) SR (level) VECM (ratio) Random Walk (ratio)

Root mean square error (RMSE)

4 0.0277 0.989 0.994

13 0.0575 0.927 0.936

26 0.0922 0.894 0.905

52 0.1444 0.919 0.935

Mean absolute error (MAE)

4 0.0214 1.020 1.023

13 0.0439 0.956 0.964

26 0.0667 0.865 0.878

52 0.1261 0.948 0.970

The performance measure for the functional speci�cation is given in the �rst column of the table with the second and third columns

containing the ratio of the scalar response performance measure to the corresponding VECM and random walk performance

measures respectively. Therefore, superior relative performance by the Scalar Response model is indicated by a ratio of less than 1.

Forecast period is July 2011 to July 2014. �SR� corresponds to �scalar response� with �VECM� corresponding to �vector error

correction model�.

proposed scalar response model against those of the VECM and random walk alternatives.

The performance measure for the functional speci�cation is given in the �rst column of

the table with the second and third columns containing the ratio of the scalar response

performance measure to the corresponding VECM and random walk performance mea-

sures respectively. Superior relative performance by the scalar response model is indicated

by a ratio of less than one. The ratios are calculated for each of the forecasting horizons

4, 13, 26, and 52-week. All forecasts are produced using the same recursive estimation

approach. A direct comparison of the performance measures indicate that the scalar re-

sponse model generally outperforms both the VECM and random walk. This result is

broadly similar across all currencies, with the exception of some measure speci�c under-

performance exhibited at the 4-week forecasting horizon for the Japanese Yen. The pockets

of under performance exhibited at the 52-week forecasting horizon for the Euro could be

attributed to instability in the extrema values the constructed function.12 Overall, these

out-of-sample results are impressive in that they show almost systematic outperformance

of the scalar response model over the VECM and random walk approaches. This provides

an initial indication of an improvement in the ability of our model to extract useful fore-

casting information from the term structure of the forward rates over the leading models

12We note, as outlined in Section 5.3, that the function characterising the forward rate term structure is
de�ned over the tenor range of 0 weeks to 52 weeks, with the constructed function subsequently being used
as an explanatory covariate in the scalar response speci�cation. In constructing the 52-week tenor, there
is only one single weekly forward rate data point available to de�ne the coe�cients in this range. Such
a set-up has been noted to lead to instability in the estimations of the range (see Ramsay and Silverman
(2005)), and in turn, as may be the case here, can lead to more volatile forecast predictions in the range.
A possible remedy is to use neighbouring forward rates to enrich the data, the 9 month and 2 year tenors
for instance, however the use of additional forward rates would be inconsistent with the approach taken in
previous studies, against which we aim to provide a relative comparison.

89



in the literature.

5.4.3 Hypothesis tests

The literature has been split on how best to evaluate forecasting performance; Meese

and Rogo� (1983a,b) and Clarida and Taylor (1997) infer model superiority using a direct

comparison of performance measure di�erences such as presented in Section 5.4.2, whilst

both Clarida et al. (2003) and Sager and Taylor (2014) statistically test for outperformance.

To provide a comparison with these two latter studies we also formally test the hypothesis

of outperformance, by implementing a t-test on the performance measure di�erences. The

following hypotheses are considered:

H0 : θbenchmark − θSR ≤ 0

H1 : θbenchmark − θSR > 0

where θSR is a given forecast evaluation measure (RMSE or MAE) for the functional

scalar response model, and θbenchmark is the corresponding measure for the VECM and

random walk benchmarks.

The resulting t-statistics and p-values of the tests are given in Tables 5.4, 5.5, and 5.6.

The scalar response model demonstrates statistically signi�cant outperformance among

the majority (27/48 instances) of the 4, 13, 26, and 52-week ahead forecasts across the

three currencies. The results are even more impressive when we focus on the Euro and

Japanese Yen; �nding signi�cant out-of-sample outperformance in 22/32 hypothesis tests

conducted. There are only 5 instances of statistically signi�cant outperformance for the

British Pound, however, separate testing concludes that it does not exhibit any instances

of either the VECM or random walk models outperforming the scalar response approach.

Given that we are simultaneously testing 48 hypotheses; two performance measures,

two comparative benchmark models, four forecasting horizons, and three currencies, the

multiple comparisons problem is an issue that must be addressed. As the number of si-

multaneous tests conducted increases, so too does the likelihood of such false discoveries.

Omitting multiple comparisons controls could lead to invalid inferences being drawn. This

�nal step of the analysis goes beyond the approaches taken previously and o�ers an im-

portant extension to the literature through the implementation of the Romano and Wolf

(2010) framework. The procedure takes account of the number of simultaneous hypothe-

sis conducted and adjusts for the chances of seemingly signi�cant instances of outperfor-

mance. As expected, implementing the MHT framework reduces the number of discoveries,

however we still �nd instances of truly signi�cant outperformance in both the Euro and

Japanese Yen. Where the naive t-test �nds ten instances of functional outperformance for

the Euro, four of these discoveries still hold after implementing the MHT controls. In the

case of the Japanese Yen, the 12 identi�ed instances of statistical outperformance under

the t-test drops to seven under the Romano and Wolf (2010) framework. The reduction
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Table 5.4: Signi�cant outperformance: Dollar-Euro

k (weeks) SR Vs VECM (t-stats) SR Vs Random Walk (t-stats)

Root mean square error (RMSE)

4 2.950∗∗∗,† 2.355∗∗,†

(0.002) (0.010)

13 3.727∗∗∗,† 2.718∗∗∗

(0.000) (0.004)

26 1.789∗∗ 0.948

(0.038) (0.173)

52 -1.893 -2.757

(0.969) (0.997)

Mean absolute error (MAE)

4 2.488∗∗∗,† 1.789∗∗

(0.007) (0.038)

13 2.533∗∗∗ 1.216

(0.006) (0.114)

26 1.876∗∗ 1.337∗

(0.032) (0.092)

52 -3.159 -3.962

(0.999) (1.000)

�SR Vs VECM� corresponds to statistical outperformance of the scalar response model relative to the Clarida and Taylor (1997)

VECM framework for a given performance measure. �SR Vs Random Walk� corresponds to statistical outperformance of the scalar

response model relative to a driftless random walk. The calculated t-statistics and p-values of the naive hypothesis test of scalar

response model outperformance relative to a benchmark are given. The superscripts ∗,∗∗ , and ∗∗∗ indicate that the hypothesis

tests are signi�cant at the 90%, 95% , and 99% levels respectively. The superscript †, is used to represent an instance of truly

signi�cant outperformance after applying the resampling based balanced operative stepdown framework of Romano and Wolf

(2010). The forecast period is July 2011 to July 2014
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Table 5.5: Signi�cant outperformance: Dollar-Sterling

k (weeks) SR Vs VECM (t-stats) SR Vs Random Walk (t-stats)

Root mean square error (RMSE)

4 0.752 0.276

(0.227) (0.391)

13 0.292 -0.037

(0.385) (0.515)

26 0.856 0.680

(0.197) (0.249)

52 2.612∗∗∗ 2.442∗∗∗

(0.005) (0.008)

Mean absolute error (MAE)

4 1.623∗ 1.556∗

(0.054) (0.061)

13 0.831 0.508

(0.204) (0.306)

26 1.226 1.090

(0.112) (0.139)

52 1.425∗ 1.244

(0.079) (0.108)

�SR Vs VECM� corresponds to statistical outperformance of the scalar response model relative to the Clarida and Taylor (1997)

VECM framework for a given performance measure. �SR Vs Random Walk� corresponds to statistical outperformance of the scalar

response model relative to a driftless random walk. The calculated t-statistics and p-values of the naive hypothesis test of scalar

response model outperformance relative to a benchmark are given. The superscripts ∗,∗∗ , and ∗∗∗ indicate that the hypothesis

tests are signi�cant at the 90%, 95% , and 99% levels respectively. The superscript †, is used to represent an instance of truly

signi�cant outperformance after applying the resampling based balanced operative stepdown framework of Romano and Wolf

(2010). The forecast period is July 2011 to July 2014
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Table 5.6: Signi�cant outperformance: Dollar-Yen

k (weeks) SR Vs VECM (t-stats) SR Vs Random Walk (t-stats)

Root mean square error (RMSE)

4 0.897 0.683

(0.186) (0.248)

13 4.628∗∗∗,† 4.468∗∗∗,†

(0.000) (0.000)

26 6.712 ∗∗∗,† 6.388∗∗∗,†

(0.000) (0.000)

52 5.195 ∗∗∗,† 4.439∗∗∗

(0.000) (0.000)

Mean absolute error (MAE)

4 -1.144 -1.640

(0.872) (0.948)

13 1.631∗ 1.466∗

(0.053) (0.073)

26 6.045∗∗∗,† 5.727∗∗∗,†

(0.000) (0.000)

52 2.230∗∗ 1.324∗

(0.014) (0.094)

�SR Vs VECM� corresponds to statistical outperformance of the scalar response model relative to the Clarida and Taylor (1997)

VECM framework for a given performance measure. �SR Vs Random Walk� corresponds to statistical outperformance of the scalar

response model relative to a driftless random walk. The calculated t-statistics and p-values of the naive hypothesis test of scalar

response model outperformance relative to a benchmark are given. The superscripts ∗,∗∗ , and ∗∗∗ indicate that the hypothesis

tests are signi�cant at the 90%, 95% , and 99% levels respectively. The superscript †, is used to represent an instance of truly

signi�cant outperformance after applying the resampling based balanced operative stepdown framework of Romano and Wolf

(2010). The forecast period is July 2011 to July 2014
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in the number of identi�ed hypothesis rejections is most dramatic however, for the British

Pound, whereby none of the 5 signi�cant measures under the t-test are deemed to be true

discoveries under the Romano and Wolf (2010) procedure. Despite the truly signi�cant

outperformance being con�ned to just two of the three currency pairs, the results are still

encouraging, in that the functional model demonstrates multiple instances of outperfor-

mance against the benchmark alternatives of the widely lauded VECM and notoriously

hard-to-beat random walk.

5.5 Conclusion

It has been proven that the forward rate is not the optimal predictor of the future

spot rate (Hansen and Hodrick 1980, Frankel 1980, Bilson 1981, Frankel and Rose 1995,

and Taylor 1995). However, the market mechanism may still impart a signi�cant degree

of information into the forward rates. The informational content of the forward rate

term structure has been most successfully exploited by Clarida and Taylor (1997) with

their dynamic VECM approach predicting spot exchange rates out-of-sample with high

precision. Building on this work we o�er a novel functional data analysis alternative to

exploit the informational content of the forward rates.

While it would be disingenuous to claim that the functional model conclusively beats

the VECM across all forecasting horizons, it shows great promise as a forecasting tool.

The scalar response model leads to near systematic outperformance in terms of a direct

comparison of performance measures, coupled with multiple instances of truly signi�cant

outperformance. These favourable functional results are cast in the context of remark-

able VECM performance documented in numerous studies to date. The use of the �exible

functional framework has the advantage of removing the need to impose prescriptive as-

sumptions on the system of foreign exchange rates. Clarida and Taylor (1997) outline the

advantages of moving beyond single-equation methods, whereas this study achieves even

greater forecasting performance, by exploiting an in�nite-dimensional space representa-

tion. The analysis serves to highlight the importance of MHT controls, the absence of

which would falsely identify in�ated levels of outperformance. This may raise concerns

about the validity of inferences drawn in previous studies that do not account for this

problem.

The improvement in forecasting performance relative to the random walk indicates

that the forward rate term structure contains signi�cant information about the evolution

of the spot exchange rate, above what is embedded in the historic spot rate series itself.

Further to this, the results reinforce the rejection of the RNEMH. Elliott and Ito (1999) and

Dunis and Miao (2007) highlight how even small pockets of predictability can be exploited

pro�tably, with our study providing additional evidence supporting the view that exchange

rates are in fact predictable. Therefore, our results further vindicate the use of forward

bias currency strategies. In this vein, an assessment of pro�tability of the scalar response

framework in a trading context, may constitute a possible avenue for future research.
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Chapter 6

Conclusion

This thesis examines the application of functional data analysis across a number of asset

classes, using multiple hypothesis testing techniques to control for data snooping bias. Each

of the studies contribute to the literature individually, with the collection emphasising the

bene�ts of adopting both econometric approaches to tackle a wide range of empirical �nance

problems.

Chapter 2 applies data snooping bias controls to identify ETF pricing deviations. We

show that when performance is analysed on a non-risk-adjusted basis only, no ETFs in

our sample are identi�ed as displaying any measure of outperformance. It is only the risk-

adjusted performance measures that give statistically signi�cant outperformance results.

The three key takeaways from the study are, �rstly, a high proportion of optimised repli-

cation, debt asset class, and global/international ETFs exhibit risk-adjusted premiums,

highlighting redemption in kind ine�ciencies. Secondly, cross-sector and sectoral funds

display similar levels of outperformance. However, energy, precious metals and real estate

are industries that beat the market on a risk-adjusted basis. Precious metals became a

safe haven for investors due to poor performance in equities over the turbulent 2008-2012

period, with the energy sector being buoyed by increased manufacturing demand from

China. The �nancial services sector, in contrast, registers no market beating funds, pri-

marily due to the credit crisis of 2007-2009 and its legacy. Finally, high expense ratio

and recent inception date ETFs are more likely to exhibit index outperformance, which

may be of interest to investors seeking to outperform benchmarks. This study succeeds

in increasing the understanding of ETF performance alongside providing investors with

�rst-stage guidance in identifying ETFs suitable for their portfolios.

Chapter 3 examines implied volatilty, jump risk and pricing dynamics in crude oil mar-

kets using functional representation. We �nd strong evidence of converse jump dynamics

in crude oil markets during periods of demand and supply side weakness. The entire set of

price dynamics within crude oil markets cannot be fully represented by traditional multi-

variate analysis so we combine the application of FDA techniques, jump components from

the widely implemented Merton model, and an analysis of underlying economic pressures

to better understand market implied volatility and jump dynamics in the 2007-2013 sample
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period. This is used as a basis for a functional data analysis-derived Merton (1976) jump

di�usion optimised delta hedging strategy, which exhibits superior portfolio management

results over traditional methods. We make several contributions to the discussion of the

relationship between volatility smile slope and curvature dynamics and the parameters of

the Merton model. We achieve this by combining the resultant functional data object

with key attributes of the Merton model to derive implied values for the average jump

amplitude in a manner similar to Yan (2011). We can clearly ex-post demonstrate the link

between these values and contemporary socio-economic events, especially during the tur-

bulent years we examine. In our sample, the systematic analysis of implied volatility also

highlights periods of economic weakness in advance of their occurrence. Our FDA opti-

mised Merton delta hedging strategy outperforms the Black-Scholes delta hedging strategy

by 8% in terms of implementation cost, over the entire sample. Breaking the sample down

into periods split by predominantly positive and predominantly negative implied volatility

slopes, we see that the Merton strategy outperforms the Black-Scholes when k̂ values are

positive and broadly matches its performance in periods of negative k̂ values.

Chapter 4 robustly demonstrates the performance advantage of adopting a scalar re-

sponse model framework to predict future implied volatility movements in FX markets.

The performance of the proposed FDA-based model is benchmarked against traditionally

employed approaches of Gonclaves and Guidolin (2006) and Konstantinidi et al. (2008).

The study constitutes an empirical demonstration that in�nite dimensional representation

uncovers additional dependencies missed by traditional forecasting models. Through the

implementation of the fully functional model as an exploratory tool, we conclude that

there is intertemporal dependency across the moneyness range. The shape along the im-

plied volatility curve contains important features that should be incorporated to improve

the accuracy of forecasts. This is in line with the �nding by Chalamandaris and Tsekrekos

(2010) who emphasise the need to incorporate the dynamics along the implied volatil-

ity function in order to produce accurate forecasts. Another key �nding, is that today's

implied volatility function shape can be used to predict the implied volatility level to-

morrow, indicating persistence in the evolution of the process. Statistically signi�cant

out-of-sample performance is uncovered utilising the adopted performance measures. The

�ndings contradict the conclusion by Dunis et al. (2013) that there is only predictability

in the EUR-USD implied volatility process at forecasting horizons of up to 5 hours ahead,

and of Chalamandaris & Tsekrekos (2014) who only �nd predictability at forecast horizons

of greater than 5 days.

Chapter 5 forecasts spot foreign exchange rates using a functional model to exploit the

information contained in currency forwards. We �nd that the scalar response model leads

to near systematic outperformance in terms of a direct comparison of performance mea-

sures, verus both the VECM and RW, coupled with multiple instances of truly signi�cant

outperformance. These favourable functional results are cast in the context of remark-

able VECM performance documented in numerous studies to date. The use of the �exible

functional framework has the advantage of removing the need to impose prescriptive as-
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sumptions on the system of foreign exchange rates. The analysis also serves to highlight

the importance of multiple hypothesis testing controls, the absence of which would falsely

identify in�ated levels of outperformance. The improvement in forecasting performance

relative to the random walk indicates that the forward rate term structure contains signif-

icant information about the evolution of the spot exchange rate, above what is embedded

in the historic spot rate series itself. Further to this, the results reinforce the rejection of

the RNEMH. Elliott and Ito (1999) and Dunis and Miao (2007) highlight how even small

pockets of predictability can be exploited pro�tably, with our study providing additional

evidence supporting the view that exchange rates are in fact predictable. As a result, our

results further vindicate the use of forward bias currency strategies.

Overall, exploiting the in�nite dimensional representation o�ered by functional data

techniques are shown to result in forecasting and hedging performance bene�ts. This

conclusion is reinforced through the application of the MHT framework, as economic ar-

guments are intrinsically linked to the robustness of the econometric analysis. We demon-

strate forecasting success in Chapters 4 and 5 using a functional data framework that its

robust to generalised correction for data snooping bias. Therefore, it can be concluded that

the implementation of a joint FDA and MHT approach constitutes a powerful empirical

�nance forecasting tool. Furthermore, the techniques outlined here are of bene�t to the

wider investment community as an aid in identifying speci�c investments suitable to indi-

vidual portfolio requirements. Potential limitations of the thesis centre on data availability,

as ideally we would have access to intraday ETF quotes, given that additional pricing de-

viations may only hold at a higher frequency than our daily data indicates. Despite having

not fully exhausted the application of FDA and MHT procedures in respect to the ques-

tions asked in this thesis, a separate strand of research could look at the application of

functional data techniques to forecast yield curve evolution. Furthermore, evaluating e�-

ciency relations in foreign exchange markets represents another potential avenue for future

research.
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Appendix A

Figure 1: Generalised cross validation results
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The values of the GCV criterion for choosing the optimal smoothing parameter, λ∗, when constructing implied volatility curve

functional data objects. The plots are for the �rst four days of the sample.
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Table 1: Scalar response (SR), AR, GARCH, and ARFIMA models out-of-sample forecast evalu-

ation measures (Delta=10)

Maturity 1 Month 3 Month

ATM RMSE MAE MCPDC MME(O) MME(U) RMSE MAE MCPDC MME(O) MME(U)

SR 0.0063 0.0048 0.9540 0.0374 0.0300 0.0045 0.0034 0.9280 0.0310 0.0249

AR 0.0358 0.0274 0.4360 0.0931 0.0855 0.0271 0.0199 0.4380 0.0799 0.0671

GARCH 0.0375 0.0287 0.3940 0.0949 0.0887 0.0258 0.0189 0.7660 0.0751 0.0674

ARFIMA 0.0366 0.0281 0.5380 0.0951 0.0860 0.0257 0.0189 0.7960 0.0772 0.0653

Maturity 6 Month 9 Month

ATM RMSE MAE MCPDC MME(O) MME(U) RMSE MAE MCPDC MME(O) MME(U)

SR 0.0040 0.0029 0.9380 0.0279 0.0230 0.0039 0.0027 0.9320 0.0281 0.0206

AR (1) 0.0211 0.0159 0.4380 0.0710 0.0589 0.0180 0.0137 0.5200 0.0626 0.0570

GARCH 0.0205 0.0153 0.6520 0.0667 0.0600 0.0180 0.0137 0.5280 0.0618 0.0579

ARFIMA 0.0212 0.0160 0.5220 0.0716 0.0590 0.0201 0.0153 0.0800 0.0688 0.0583

The forecast evaluation measures calculated after �tting the scalar response model to the EUR-USD implied volatility

data set. Delta=10, the in-sample period is January 2006 to December 2011, with the out-of-sample period spanning

December 2011 to November 2013.

Table 2: Scalar response (SR), AR, GARCH, and ARFIMA models out-of-sample forecast evalu-

ation measures (Delta=25)

Maturity 1 Month 3 Month

ATM RMSE MAE MCPDC MME(O) MME(U) RMSE MAE MCPDC MME(O) MME(U)

SR 0.0043 0.0033 0.9740 0.0318 0.0242 0.0024 0.0018 0.9680 0.0226 0.0177

AR 0.0338 0.0259 0.4620 0.0909 0.0823 0.0255 0.0190 0.4560 0.0777 0.0663

GARCH 0.0325 0.0249 0.7560 0.0869 0.0819 0.0239 0.0179 0.7720 0.0722 0.0668

ARFIMA 0.0325 0.0248 0.8100 0.0884 0.0803 0.0240 0.0179 0.8020 0.0747 0.0646

Maturity 6 Month 9 Month

ATM RMSE MAE MCPDC MME(O) MME(U) RMSE MAE MCPDC MME(O) MME(U)

SR 0.0021 0.0015 0.9680 0.0199 0.0163 0.0021 0.0016 0.9500 0.0227 0.0153

AR (1) 0.0199 0.0148 0.4420 0.0683 0.0565 0.0174 0.0128 0.5320 0.0599 0.0544

GARCH 0.0187 0.0139 0.7120 0.0634 0.0575 0.0168 0.0124 0.5980 0.0586 0.0538

ARFIMA 0.0193 0.0144 0.7300 0.0670 0.0558 0.0198 0.0146 0.1560 0.0674 0.0557

The forecast evaluation measures calculated after �tting the scalar response model to the EUR-USD implied volatility

data set. Delta=25, the in-sample period is January 2006 to December 2011, with the out-of-sample period spanning

December 2011 to November 2013.
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Table 3: Scalar response (SR), AR, GARCH, and ARFIMA models out-of-sample forecast evalu-

ation measures (Delta=75)

Maturity 1 Month 3 Month

ATM RMSE MAE MCPDC MME(O) MME(U) RMSE MAE MCPDC MME(O) MME(U)

SR 0.0046 0.0036 0.9800 0.0330 0.0255 0.0025 0.0019 0.9680 0.0220 0.0193

AR 0.0320 0.0246 0.4860 0.0873 0.0802 0.0241 0.0182 0.4640 0.0736 0.0664

GARCH 0.0310 0.0238 0.7020 0.0842 0.0799 0.0223 0.0169 0.7720 0.0684 0.0663

ARFIMA 0.0316 0.0243 0.6660 0.0867 0.0796 0.0228 0.0172 0.8000 0.0709 0.0647

Maturity 6 Month 9 Month

ATM RMSE MAE MCPDC MME(O) MME(U) RMSE MAE MCPDC MME(O) MME(U)

SR 0.0023 0.0016 0.9580 0.0200 0.0172 0.0023 0.0018 0.9700 0.0225 0.0172

AR (1) 0.0200 0.0152 0.4740 0.0669 0.0605 0.0169 0.0127 0.5260 0.0592 0.0556

GARCH 0.0192 0.0146 0.6460 0.0629 0.0616 0.0154 0.0116 0.6260 0.0561 0.0531

ARFIMA 0.0203 0.0154 0.4220 0.0675 0.0605 0.0198 0.0148 0.2040 0.0678 0.0569

The forecast evaluation measures calculated after �tting the scalar response model to the EUR-USD implied volatility

data set. Delta=75, the in-sample period is January 2006 to December 2011, with the out-of-sample period spanning

December 2011 to November 2013.

Table 4: Scalar response (SR), AR, GARCH, and ARFIMA models out-of-sample forecast evalu-

ation measures (Delta=90)

Maturity 1 Month 3 Month

ATM RMSE MAE MCPDC MME(O) MME(U) RMSE MAE MCPDC MME(O) MME(U)

SR 0.0068 0.0052 0.9460 0.0389 0.0320 0.0045 0.0034 0.9440 0.0311 0.0253

AR 0.0330 0.0256 0.5200 0.0885 0.0831 0.0255 0.0192 0.5020 0.0751 0.0692

GARCH 0.0352 0.0273 0.2960 0.0907 0.0879 0.0259 0.0195 0.4060 0.0739 0.0718

ARFIMA 0.0355 0.0276 0.2620 0.0936 0.0861 0.0265 0.0199 0.3200 0.0774 0.0698

Maturity 6 Month 9 Month

ATM RMSE MAE MCPDC MME(O) MME(U) RMSE MAE MCPDC MME(O) MME(U)

SR 0.0041 0.0029 0.9380 0.0282 0.0233 0.0040 0.0027 0.9320 0.0269 0.0214

AR (1) 0.0223 0.0170 0.5000 0.0690 0.0668 0.0183 0.0139 0.5220 0.0607 0.0599

GARCH 0.0227 0.0172 0.4460 0.0679 0.0688 0.0188 0.0143 0.4420 0.0633 0.0594

ARFIMA 0.0237 0.0180 0.2340 0.0730 0.0672 0.0223 0.0170 0.1040 0.0725 0.0629

The forecast evaluation measures calculated after �tting the scalar response model to the EUR-USD implied volatility

data set. Delta=90, the in-sample period is January 2006 to December 2011, with the out-of-sample period spanning

December 2011 to November 2013.
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