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ABSTRACT 

We have produced isotopically enriched ZnO nanorods using Zn-enriched ZnO source 

powder by vapour phase transport on silicon substrates buffer-coated with unenriched ZnO 

seed layers.  SEM and XRD data confirm successful growth of high quality, dense, c-axis 

aligned nanorods over a substantial surface area.   Raman data show a shift of >1 cm
-1

 in the 

peak position of the Raman scattered peaks due to the E2
low

 and E2
high

 phonon modes when 

the Zn isotope is changed from 
64

Zn to 
68

Zn, consistent with previous work, thus confirming 

successful isotopic enrichment. SIMS data provides additional confirmation of enrichment. 

The optical quality (as determined by photoluminescence feature intensity and linewidth) is 

excellent.  Samples with Zn isotopic enrichment ranging from 
64

ZnO to 
68

ZnO display a shift 

in recombination energy of the bound excitons at the band edge (3.34 - 3.37 eV) of ~ 0.6 

meV.  This blue shift is also consistent with previously published data, further confirming 
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both the excellent optical quality and successful isotopic substitution of ZnO nanorods using 

this relatively simple growth method. 
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B2. Semiconducting II-VI materials. 

 

1. INTRODUCTION 

 

Nanostructures of ZnO have received much interest in the research literature over the 

past decade and  have been produced in many morphologies including thin films[1], 

nanorods, nanowires[2–5], nanowalls[6], nanodisks[7], nanohelixes, nanosprings, nanorings, 

nanobelts[8] and nanobowls.[9]  One area of particular interest has being the production of 

ZnO nanorods for use in optical applications and studies.  These have been produced using a 

number of growth methods including chemical bath deposition (CBD), vapour phase 

transport, chemical vapour deposition (CVD) and hydrothermal deposition.[2,3,5,10–13]  

Furthermore, isotopic enrichment is a very useful technique in the study of crystal structure 

and impurities in semiconductor materials such as ZnO, and comparable materials including 

Si, GaN and GaP, particularly using optical methods.[14–19]  Reports using isotopically 

enriched ZnO samples have included studies of bandgap energies, phonon positions and 

linewidths and heat capacity, but in all cases using bulk single crystal samples with quite poor 

optical quality.[20–23]  In this work, we report a relatively fast, easy and reliable method of 

producing Zn-isotopically enriched ZnO nanorods of very high structural quality, as well as 

excellent optical quality as determined by low temperature photoluminescence (PL) studies, 
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requiring small quantities of source materials.   The natural isotopic abundance in ZnO is 

48.6% 
64

ZnO, 27.9% 
66

ZnO, 4.1% 
67

ZnO, 18.8% 
68

ZnO and 0.6% 
70

ZnO.[20]  Natural ZnO 

therefore has an average atomic mass of 
65.4

ZnO.  In this study we have grown ZnO samples 

enriched with 
64

Zn, 
66

Zn and 
68

Zn, as well as samples with engineered isotopic abundances. 

 

2. MATERIALS AND METHODS 

 

The growth method used is a three step process involving the deposition of a buffer 

layer of ZnO nanorods using drop coating and chemical bath deposition (CBD), followed by 

the main growth of the nanorods using carbothermal reduction vapour phase transport (VPT).  

CBD, VPT and carbothermal reduction VPT are common methods used to grow ZnO 

nanorods.[2,5,10,11,24]  The growth method used here was developed in our group and was 

based upon other work both in our group and reports in the literature.[2,3,25]  It is further 

modified in this work.  The growth method yields material with excellent optical quality (in 

terms of both emission intensity and spectral linewidths), which allow high resolution PL 

investigations to be carried out.  The growth method is also quick and relatively easy to carry 

out. 

The ZnO nanorods were grown on silicon (100) substrates typically 1-4 cm
2
 in size.  

The silicon was cleaned by sonication in acetone followed by ethanol and dried in a nitrogen 

stream.  No attempt was made to remove the native oxide layer.  In the first stage of the 

growth process, the seed layer was deposited by drop coating 3.75 µL of 0.005 M zinc acetate 

in absolute ethanol solution per cm
2
 of sample area to the substrate.  This droplet was left for 

20 seconds before being rinsed off the surface with copious amounts of fresh ethanol.  This 

process was repeated four more times for each sample.  The substrates were then annealed at 

350 °C in air for 30 minutes to decompose the zinc salt into zinc oxide.  This process 
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produces a thin layer of crystallographically aligned ZnO crystallites on the surface which act 

as nucleation sites for nanorod growth at later stages. 

The second phase of the growth process is the deposition of a buffer layer of ZnO 

nanorods on the silicon substrate by CBD.  A 0.02 M zinc nitrate solution was then slowly 

added to an equal volume of 0.8 M NaOH solution while stirring vigorously.  The mixture 

was heated to approximately 70 °C and stirred gently.  The sample was then submerged in the 

solution for 25 minutes while the temperature is maintained at 70 °C and the solution stirred 

gently.  The sample was then removed, washed with copious amounts of DI-H2O and dried 

with a gentle nitrogen stream.  This process leaves a layer of c-axis textured ZnO nanorods 

which acts as a buffer layer for subsequent growth of larger nanorods using VPT.  Neither the 

seed nor buffer layers are isotopically enriched; they have the natural Zn isotope abundances. 

The third stage in the growth of ZnO nanorods is carbothermal reduction VPT.  10 mg 

of ZnO powder and 10 mg of graphite powder were carefully mixed to produce a fine 

homogeneous powder mixture.  This powder was then spread over a length of about 2 cm in 

an alumina boat.  The silicon wafer was suspended above the powder with the ZnO buffer 

layer facing downwards towards the powder.  The alumina boat was then placed into a quartz 

tube (inner diameter 37 mm) in a single temperature zone horizontal tube furnace. The quartz 

tube was purged with an Ar flow of 90 sccm for about 5-10 minutes.  The temperature was 

then increased to 925 ˚C for 1 hour with the Ar flow remaining at 90 sccm.  The furnace was 

then allowed to cool for several hours.  When the temperature reached about 350 °C, the Ar 

flow was stopped and the alumina boat removed.  This results in the growth of ZnO nanorods 

aligned with their c-axes normal to the substrate. 

 Isotopically enriched ZnO nanorod samples were grown by substituting the natural 

ZnO powder with Zn-enriched ZnO powders.  Samples of 
64

ZnO, 
66

ZnO and 
68

ZnO were 

grown as well as samples with equal proportions of two different isotopes using 5 mg of each 
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powder along with 10 mg of graphite (
64/66

ZnO, 
66/68

ZnO and 
64/68

ZnO).  Similarly, a sample 

containing three different Zn isotopes was produced using 3 mg of each powder along with 

10 mg of graphite (
64/66/68

ZnO).  The Zn isotopically enriched material in this study was 

enriched to 99.9% for 
64

ZnO, 99.3% for 
66

ZnO and 99.3% for 
68

ZnO (Isoflex).  The oxygen 

was in its natural isotopic abundance state (i.e. 99.76% 
16

O).   

The samples were characterised using scanning electron microscopy (SEM; Karl-

Zeiss EVO series), x-ray diffraction (XRD; Bruker AXS D8 Advance Texture 

Diffractometer), secondary ion mass spectroscopy (SIMS), Raman spectroscopy and low 

temperature PL.  Secondary ion mass spectroscopy (SIMS) analysis was performed in an 

ultra-high vacuum (UHV) system with a base pressure of 1x10
-9

 mbar. The SIMS setup 

included a Hiden Analytical IG20 ion gun operating with a positive argon ion beam of 5 KeV 

at a chamber partial pressure of 5x10
-5

 mbar 99.99% purity argon with the analysis chamber 

not exceeding 2x10
-8

 mbar during analysis. The sample current during analysis ranged from 

90 nA to 110 nA. All samples were analysed at an angle of ~20° off normal incident in order 

to reduce effects from the underlying substrate. Secondary Zn ions were detected using a 

Hiden Analytical mass spectrometer EQS quadrupole analyser.  SIMS measurements were 

repeated using the benchtop Millbrook miniSIMS alpha system using a positive gallium ion 

beam at 6 KeV and a quadrupole analyser, with the samples at a 45° angle, as an addition 

measurement of Zn isotopic distribution in the nanorods.  Raman measurements were 

performed at room temperature using a Horiba LabRAM micro-Raman system.  Non-

resonant excitation was used to make Raman measurements in the ( , ) zz x y x y   back-

scattering geometry using the 532 nm line of a solid state laser with z-direction coinciding 

with the direction of the c-axis of ZnO.   

PL was carried out using a 325 nm HeCd laser as the excitation source directed onto 

the sample in a Janis model SHI-950-5 cryostat at ~14 K and a diffraction grating 
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spectrometer system.  The spectroscopic system consisted of a 1 m model SPEX 1701 

monochromator and Hamamatsu model R3310-02 photomultiplier tube which was cooled to 

approximately -20 °C.  The monochromator contained a grating blazed at 330 nm (ISA model 

510-05).  A Hg spectral lamp was placed on the optical table such that some of its emission 

also scattered into the spectrometer entrance slit.  The spectral lines from this lamp were used 

to calibrate the spectra recorded to correct for minor irreproducibility from scan to scan.  In 

addition, the spectra have been corrected for the refractive index of air. 

 

3. RESULTS AND DISCUSSION 

 

3.1. Scanning electron microscopy 
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Fig. 1:  SEM images showing typical morphology of the ZnO nanorods; (a) plan view of 

64
ZnO sample; (b) cross-sectional view of 

64
ZnO sample; (c) cross-sectional view of 

66/68
ZnO 

sample with CBD buffer layer visible; (d) tilted view (at 30° to the vertical) of longer 

nanorods in 
66

ZnO sample which have lost vertical alignment and become entangled. 

 

Figure 1 shows SEM images illustrating the morphology of the ZnO nanorod 

deposits. The silicon substrates in all cases have been covered with a dense pattern of 

nanorods which are vertically well aligned with their c-axes normal to the substrate due to the 

preferential growth in this direction ultimately caused by the textured seed layer.  Coverage 

of nanorods on the substrates is generally excellent, with good growth occurring over the 

whole substrate, except for the edges where the sample slightly overhung the edges of the 

alumina boat which blocked deposition.   

 Figure 1(a) shows a plan view of the nanorods in a 
64

ZnO sample.  The dense and 

widespread coverage is clearly observed.  These nanorods are shown in cross section in 

figure 1(b).  The cross section is along a freshly cleaved edge through the centre of the 

sample.  The nanorods are approximately 1-2 µm in height, although the variation in a single 

sample is much smaller than this range.   Similar morphology is observed in all other 

samples.  Previous studies carried out in our group investigated the relationship between the 

nanorod height and diameter.[26]  Nanorods of length 1-2 µm typically have diameters of 

~100 nm, with shorter nanorods having larger diameters than longer ones.  Based on 

observation of the SEM images shown in this section, the samples in this work appear to fit 

the patterns identified in these earlier reports.  Figure 1(c) shows 
66/68

ZnO nanorods, again in 

cross section.  The CBD buffer layer is clearly visible with nanorods growing on the 

nucleation sites from the buffer layer.  Figure 1(d) is taken from a part of the 
66

ZnO sample.  

In this case the nanorods are much longer than usual.  They have lost their c-axis alignment 
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and have become entangled.  Slight variations from the morphology seen here occur from 

time to time as the growth process is sensitive to a number of parameters including 

temperature, distance of the sample from the powder, the source powder mixing and 

particulate size, although in general the batch-to-batch reliability of the growth process is 

very good. 

 

3.2. X-ray diffraction 

 

Fig. 2 (color online):  2θ-ω spectra of various ZnO samples showing the dominant Si (004) 

reflection peak at 69.1° and the ZnO (002) reflection at 34.4°.  A number of other features are 

marked and are described in the text.  Inset shows the rocking curves of the 34.4° (0002) ZnO 

reflection. 

 

Figure 2 shows the XRD 2θ-ω scans for the 
nat

ZnO, 
64

ZnO, 
66

ZnO and 
68

ZnO samples.  

These spectra are typical of those obtained from the other samples.  The X-ray source was a 

copper Kα line with an effective mean wavelength of 0.15418 nm.  The 2θ-ω spectra are 
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dominated by the 69.1° silicon peak from the (004) Si planes of the substrate and the 34.4° 

ZnO peak from the (0002) planes in the deposited ZnO nanorods.[27]  The second order 

(0004) ZnO planes are also present as well as the ZnO (10-10) reflection with a small 

intensity.[28]  The kinematically forbidden Si (002) is also present in some samples due to 

double diffraction effects.[29]  A number of smaller peaks are observed and are attributed to 

the plastic backed adhesive tape used to mount the samples on the stage.  These are labelled 

as T.  A number of features are also visible due to Kβ radiation at ~62° from the x-ray tube 

and tungsten Lα radiation at ~66° from contamination of the x-ray tube Cu target by the 

electron gun filament.[28]  These features are marked as X.  The ZnO (0002) is far more 

intense than the other ZnO reflections, indicating a high degree of alignment of 

nanostructures with their c-axes normal to the substrate surface.  The narrow FWHM (~0.20-

0.22°) of the 34.4° ZnO peaks indicate that the crystal quality of the nanorods is excellent.  

These widths imply a coherence length of ~41-47 nm from the Scherrer relation[30] (when 

the instrumental peak broadening of ~0.10° is taken into account).  The XRD data are 

consistent with the SEM data in figure 1 showing well aligned nanorods.   The rocking curves 

of the 34.4° (0002) ZnO peak from the 
nat

ZnO, 
64

ZnO, 
66

ZnO and 
68

ZnO samples are shown 

in the inset in figure 2, and are representative of the other samples (note the linear scale on 

the inset).  The high quality of the crystal structure and c-axis alignment shown in SEM 

images and 2θ-ω scans above is further confirmed by the narrow FWHM of the rocking 

curves which fall in the range of 2.26-3.25° for all eight samples.  The rocking curve peak 

positions vary slightly due to small variations in sample tilt on the stage, due to the mounting 

process.[27]   

The SEM and XRD data have illustrated that the growth of isotopically enriched ZnO 

nanorods utilising this three-step process is very successful in terms of sample crystallinity 

and morphology.  This has been achieved by simply substituting the normal, natural isotope 
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content ZnO source powder used in VPT with isotopically enriched powder and 

implementing the practical step of reducing the amount of powder used.  This easy, reliable 

and inexpensive method has produced well- aligned nanorods of a very high quality with 

dense coverage over a wide substrate area.  This makes them ideal for use in further optical 

studies such as Raman and PL.   

3.3. SIMS 
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Fig. 3 (color online):  SIMS spectra from (a) 
64

ZnO; (b) 
66

ZnO; and (c) 
68

ZnO nanorod 

samples. 

 

Figure 3 shows representative SIMS spectra for the set from the 
64

ZnO, 
66

ZnO and 
68

ZnO 

nanorod samples.  This provides key evidence as to whether isotopic enrichment has been 

successful during the growth procedure by measuring the masses of the Zn atoms in the 

samples.  It is clear that the expected Zn isotope is dominant in each respective sample, 

thereby showing that the samples have been enriched to a very high level. This is of course 

consistent with the Raman results and PL spectra below. For each enriched isotope, there are 

smaller peaks at the masses of the other two isotopes.  For example, in figure 3(a) for 
64

ZnO, 

small peaks are observed at 66 and 68 amu. These small peaks are attributed to some ions of 

these isotopes arising from the CBD buffer layer, which is not isotopically enriched, and to 

other ions from any surface contaminants at these masses. The samples were tilted during 

SIMS measurements, as described above, in order to reduce effects from the underlying 

substrate, but even with this precaution the VPT nanorod coverage is not complete and a 

small fraction of the buffer layer is exposed to the ion beam. Despite this, it is clear from the 

SIMS data that the nanorod samples have been successfully isotopically enriched to a very 

high level using this growth method.  Data obtained the miniSIMS system as a further 

independent check were consistent with this result. 
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3.4. Raman spectroscopy 

 

 

Fig. 4 (color online):   Raman spectra of isotopically enriched 
64

ZnO, 
66

ZnO and 
68

ZnO 

nanorods.  Inset shows the signal from the Si substrate. 

Sample Mode 
Wavenumber 

(cm
-1

) 

ΔWavenumber 

(cm
-1

) 

FWHM 

(cm
-1

) 

ΔFWHM 

(cm
-1

) 
64

ZnO E2
high

 439.03 - 8.11 - 
66

ZnO E2
high

 437.73 -1.30 6.94 -1.17 
68

ZnO E2
high

 436.86 -2.17 5.59 -2.52 
64

ZnO E2
low

 100.60 - 1.70 - 
66

ZnO E2
low

 99.57 -1.03 1.70 -0.00 
68

ZnO E2
low

 98.79 -1.81 1.73 -0.03 

 

Table 1:  Frequencies and FWHM of the E2
low

 and E2
high

 phonons for 
64

ZnO, 
66

ZnO and 

68
ZnO samples. 

 

Data from Raman spectroscopy measurements performed on 
64

ZnO, 
66

ZnO and 
68

ZnO 

samples at room temperature are presented in figure 4.  In the inset of figure 4, the signal 

from the underlying Si substrate at around 520 cm
-1

 is shown for reference.  For all structures, 

the Raman spectra contain first-order E2
low

 and E2
high

 phonon modes that are typical for 

crystalline wurtzite ZnO.  The two Raman modes gradually shift to lower frequencies with 

increasing Zn isotope mass from 
64

ZnO to 
68

ZnO, by 1.81 cm
-1

 for E2
low

 and 2.17 cm
-1

 for 
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E2
high

, consistent with previous findings of shifts of 1.59 cm
-1

 for E2
high

 at low temperatures 

(~6 K).[31]  The frequencies of the E2
low

 and E2
high

 phonon modes (100.60 cm
-1

 and 439.03 

cm
-1

 respectively for 
64

ZnO) in each sample and their FWHM are summarized in table 1.   

Shifting phonon frequencies for O and Zn isotopic substitution in ZnO have been 

observed previously in a number of papers by Serrano et al.[22,31] and are observed here for 

the E2
high

 and E2
low

 phonon modes. Since only the natural abundance of O (>99% 
16

O) was 

used during nanorod growth in this work the changing Zn mass is solely responsible for the 

shifting phonon frequencies. For the E2
high

 phonon mode the observed frequency change for 

different Zn masses (around 2 cm
-1

) is less pronounced than that for different O masses 

(around 20 cm
-1

) due to the dominating O eigenvector.[22]  A similar shift (<2 cm
-1

) is 

observed for the E2
low

 phonon with changing Zn mass. 

However, the significant broadening of the FWHM for the E2
high

 mode is not isotopic 

in nature. The changing FWHM for different Zn masses results from a change in the overlap 

of the two-phonon density of states due to changes in phonon frequency. Ab initio 

calculations performed by Serrano et al.[22] show that the E2
high

 phonon mode is near a sharp 

‘ridge’ in the two-phonon density of states, the interaction with which results in the variation 

in FWHM. The overlap is less clearly observed for the E2
low

 mode with no change observed 

in the FWHM with changing Zn mass. Our data are consistent with the results reported by 

Serrano et al.   

 The observed shifts in the phonon vibration energies in our samples follow estimates 

based on the harmonic oscillator approach, are consistent with previous findings in the 

literature and, therefore, demonstrate clearly, and independently of the SIMS data above and 

the PL experiments below, that the desired isotopic enrichment of the samples has been 

successful.   
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3.5. Low temperature photoluminescence 

 

 

 

Fig. 5 (color online):  PL spectra of the 
66

ZnO sample taken at ~14 K showing (a) a broad 

range spectrum displaying the typical PL emission from ZnO nanorods, (b) the intense UV 

band edge emission in detail, and (c) the Cu-related 2.86 eV ZPL and associated structured 

green band (from annealed portion).  (Note that (a) is a composite of (b) and (c)). 
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Low temperature PL was carried out on all samples.  Figure 5(a) shows a broad 

spectrum including the band edge region, as well as the Cu-related zero phonon line (ZPL) at 

2.86 eV and its associated structured green band in 
66

ZnO (note the linear y-scale 

here).[32,33]  
66

ZnO was chosen to illustrate the general features of these spectra as its 

spectrum was representative of those obtained from the other samples and typical of the PL 

spectrum obtained from ZnO nanorods reported in the literature.[34]  Note that figure 5(a) is 

a composite of the spectra in figures 5(b) and (c) in order to show a broad spectrum. 

Figure 5(b) shows the band edge region of the 
66

ZnO sample in detail (note the 

logarithmic y-scale).  The intense band edge emission due to shallow donor bound excitons 

(BX) is dominant at ~3.36 eV.  The free exciton (FX) position can also be seen, although this 

was not clearly observed in all samples.  The longitudinal optical (LO) phonon replicas of the 

bound excitons are also present (BX-1LO, BX-2LO and BX-3LO), spaced at intervals of ~72 

meV, the characteristic LO phonon energy of the ZnO crystal structure.[35]  The two electron 

satellite (TES) feature is also present, as are its LO replicas (TES-1LO and TES-2LO).  The 

intense peaks and narrow line widths (<1 meV) of the BX lines indicate the excellent optical 

quality of the nanorods as grown, as discussed further below.  This is consistent with the 

excellent optical characteristics of ZnO nanorods grown by similar methods reported 

elsewhere and demonstrates the ability to grow isotopically enriched ZnO materials with 

excellent optical quality using the straightforward carbothermal reduction VPT method, with 

mg quantities of source material.[36]  Note that the PL emission is associated with the VPT-

grown nanorods and there is not a significant emission from the underlying buffer layer.[37] 

 Figure 5(c) shows the green band emission region for 
66

ZnO.  This was recorded 

using a portion of the 
66

ZnO sample which was annealed for ten minutes at 900 °C to increase 

the ZPL and green band intensity.[36,38]  The Cu-related ZPL at 2.86 eV is present and its 
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associated structured green band is the dominant feature.  Indeed, the structured green band is 

the primary feature of the PL spectrum in addition to the UV band edge emission.  The LO-

phonon replicas of the ZPL are clearly seen in the structured green band at intervals of ~72 

meV below the ZPL energy.  Some weak lines from the Hg lamp used to calibrate the spectra 

are also observed. 

 

 

Fig. 6 (color online):  Typical PL spectra of selected enriched ZnO nanorod samples showing 

the band edge region including the I9 line (~14 K, spectra shifted vertically for clarity). 

 

 

 

 

 

 

 

Table 2:  Energies and FWHM of the I9 exciton recombination in samples with different Zn 

isotopes. 

 

Sample 

Average Zn 

isotopic content 

(amu) 

I9 energy 

(eV) 

I9 FWHM 

(meV) 

64
ZnO 64 3.35629 0.44 

66
ZnO 66 3.35662 0.36 

68
ZnO 68 3.35689 0.41 

64/66
ZnO 65 3.35641 0.33 

66/68
ZnO 67 3.35682 0.33 

64/68
ZnO 66 3.35643 0.35 

64/66/68
ZnO

 
66 3.35603 0.35 

nat
ZnO

 
65.4 3.3565 0.31 
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 Figure 6 shows representative band edge spectra from selected samples.  The 

dominant feature in the band edge spectra is the I9 line attributed to indium[39] donor bound 

impurities.  The I6 line attributed to aluminium impurities is also clearly observed.[40,41]  

The I2 line attributed to ionised indium impurities[42] and the surface exciton[43] (SX) 

emission are also visible and labelled in the figure.  

 The position of the I9 indium bound exciton recombination in unenriched material at 

~3.356 eV was used to measure changes in the band edge positions with changing Zn isotope 

enrichment.  The peak positions of the I9 line were extracted by fitting Gaussian curves to the 

data.  The position of the I9 line in each sample is given in table 2, along with their FWHM.  

The I9 bound exciton energy increases with increasing Zn isotopic mass from 
64

ZnO to 
68

ZnO 

by 0.6 meV.  The blue shift in energy recorded in the band edge region when the Zn isotope 

mass is changed (0.6 meV) is comparable to that previously reported in the literature.  Tsoi et 

al. report an increase of ~1.0 meV in the A-exciton band gap over this range.[21]  This is 

further verification of the successful isotopic enrichment of our samples.  We note that 

Manjón et al. report blue shifts in the band edge region of ~1.7 meV from 
64

ZnO to 
68

ZnO for 

single crystals.[20] However since Manjón at al.’s results come from measurements of the I4 

bound exciton recombination and since this emission has been attributed to hydrogen at an 

oxygen site[44] (i.e. a hydrogen atom surrounded by Zn atoms), this recombination may be 

more strongly affected by Zn isotopic changes (due to both local and extended vibronic 

modes) and undergo a different shift than other shallow donor bound excitons on Zn sites 

surrounded by O atoms (such as the In-related I9).   

 The very narrow FWHM of the exciton recombinations in these nanorod samples 

demonstrates their excellent optical quality and therefore their suitability for use in defect and 

impurity studies using PL.  The I9 FWHMs here are in the range of 0.31-0.44 meV as shown 

in table 2 (comparable to very high optical quality commercial single crystal ZnO[42]).  This 
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is much narrower than the line widths observed by others in single crystal isotopically 

enriched ZnO.  Manjón et al. have reported line widths of < 5 meV[20] and  Tsoi et al. 

observed BX PL features of widths of ~2-8 meV[21] in single crystal isotopically enriched 

ZnO samples.  Given this excellent optical quality, we intend on using these samples to carry 

out a number of detailed optical studies of defects in ZnO, including the Cu-related emission 

ZPL at 2.86 eV, as well as the manifold of closely spaced near band edge I lines due to donor 

bound exciton emission. 

 

4. CONCLUSION 

 

 The three-step growth process previously developed in our group, has been 

successfully adapted in order to grow nanorods of ZnO isotopically enriched with different 

Zn isotopes.  Samples of 
nat

ZnO, 
64

ZnO, 
66

ZnO, 
68

ZnO, 
64/66

ZnO, 
66/68

ZnO, 
64/68

ZnO and 

64/66/68
ZnO were grown.  SEM revealed a dense coverage of vertical, c-axis aligned nanorods 

over a large sample area for nearly all samples, with slight variations seen in one sample.  

XRD confirmed the presence of ZnO and the excellent nanorod alignment and crystal quality. 

SIMS data confirm the successful isotopic enrichment.  Raman data show a shift of >1 cm
-1

 

in the peak position of the Raman scattered peaks due to the E2
low

 and E2
high

 phonon modes 

when the Zn isotope is changed from 
64

Zn to 
68

Zn, consistent with previous work on samples 

with different isotopic enrichments, again confirming successful isotopic substitution.   

 Low temperature PL measurements revealed the excellent optical quality of the 

samples with an increase in the I9 position of ~0.6 meV with Zn isotopic content changes 

from 
64

ZnO to 
68

ZnO and narrow line widths of <1 meV.  This is consistent with previous 

results reported for single crystals, further confirming successful isotopic substitution of these 

high structural and optical quality nanorods using this simple and reliable growth method.  
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The excellent optical quality also suggests possible applications for defect and impurity 

studies using PL. 
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