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Abstract 
 

Due to their flexibility, ease of use, low-cost and fast deployment, wireless Mesh 

Networks have been widely accepted as an alternative to wired networks for last-mile 

connectivity. When used in conjunction with Peer-to-Peer data transfer solutions, many 

innovative applications and services such as distributed storage, resource sharing, live 

TV broadcasting or Video on Demand can be supported without any centralized 

administration. However, in order to achieve a good quality of service in such variable, 

error-prone and resource-constrained wireless multi-hop environments, it is important 

that the associated Peer-to-Peer overlay is not only aware of the availability, but also of 

the location and available path link quality of its peers and services. 

This thesis proposes a wireless location-aware Chord-based overlay mechanism for 

Wireless Mesh Networks (WILCO) based on a novel geographical multi-level ID 

mapping and an improved finger table. The proposed scheme exploits the location 

information of mesh routers to decrease the number of hops the overlay messages 

traverse in the physical topology. Analytical and simulation results demonstrate that in 

comparison to the original Chord, WILCO has significant benefits: it reduces the number 

of lookup messages, has symmetric lookup on keys in both the forward and backward 

direction of the Chord ring and achieves a stretch factor of 𝑂(1).  

On top of this location-aware overlay, a WILCO-based novel video segment seeking 

algorithm is proposed to make use of the multi-level WILCO ID location-awareness to 

locate and retrieve requested video segments from the nearest peer in order to improve 

video quality. An enhanced version of WILCO segment seeking algorithm 

(WILCO+) is proposed to mitigate the sometimes suboptimal selection of the WILCO 

video segment seeking algorithm by extracting coordinates from WILCO ID to enable 

location-awareness. Analytical and simulation results illustrate that the proposed scheme 

outperforms the existing state-of-the-art solutions in terms of PSNR and packet loss with 

different background traffic loads. 

While hop count is frequently strongly correlated to Quality of Service, the link quality 

of the underlying network will also have a strong influence on content retrieval quality. 

As a result, a Cross-layer Wireless Link Quality-aware Overlay peer selection 

mechanism (WLO) is proposed. The proposed cross-layer mechanism uses a 

Multiplication Selector Metric (MSM) to select the best overlay peer. The proposed 

MSM overcomes the two issues facing the traditional summation-based metric, namely, 

the difficulty of bottleneck link identification and the influence of hop count on behavior. 

Simulation results show that WLO outperforms the existing state-of-the-art solutions in 

terms of video quality at different background loads and levels of topology 

incompleteness. Real life emulation-based tests and subjective video quality assessments 

are also performed to show that the simulation results are closely matched by the real-life 

emulation-based results and to illustrate the significant impact of overlay peer selection 

on the user perceived video quality. 
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CHAPTER 1: Introduction 

 

 

1.1. Research Motivation 

 

Since their first introduction and commercialization in 1997, the Institute for 

Electrical and Electronics Engineers (IEEE) 802.11 Wi-Fi (Wireless Fidelity) standards 

[1] have become the most widely used wireless data access network standards 

worldwide. As illustrated in Figure 1.1, a survey conducted by Cisco in 2013 [2] shows 

that Wi-Fi was the predominant access technology for mobile devices. According to this 

figure, except in the smartphone category, 80% of the devices in other categories are now 

connecting exclusively through Wi-Fi. More importantly, the popularity of Wi-Fi 

connections is predicted to increase in the future. Another figure on the Cisco Virtual 

Network Index [3] clearly shows this trend by pointing out that by the end of 2018, only 

about 40% of all tablets will be equipped with a cellular connection; while Wi-Fi will 

still be the must-have type of connection on this type of device. Not only numerous in 

number are WiFi enabled devices, users tend to prefer Wi-Fi over cellular network when 

accessing the Internet. Even in the smartphone category, where cellular is a built-in 

technology, users tend to prefer Wi-Fi connections more. According to the Cisco Global 

Mobile Data Traffic Forecast [3], by 2018, it is predicted that an average smartphone 

user will have 52% of his data usage on Wi-Fi, noticeably increased from 44% in 2013. 

All the above statistics illustrate that from the user point of view, Wi-Fi is the first choice 

in terms of technology. 
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Figure 1.1: Distribution of network connectivity by Time, 2013 [2]. 

 

The reasons for the success of Wi-Fi are mostly due to its many benefits in 

comparison to its cellular technology rival. According to [2], users prefer to use Wi-Fi 

due to its superior in network speed, reliability, low cost and ease of use. In terms of 

speed, there have been non-stop bandwidth upgrades for both the IEEE 802.11 and 

cellular technologies; however, until now, 802.11 standards have always a head start in 

this benchmark. For instance, the latest 802.11 standard (802.11ac [4]) is capable of 

providing bandwidth of up to 6.77Gbps while the state-of-the-art on the side of the 

cellular counterpart (Long Term Evolution – LTE [5]) can only provide up to 300Mbps 

downlink and 75Mbps uplink. Moreover, the wider coverage range of a cellular cell with 

more subscribers would further reduce the achievable bandwidth of cellular networks. As 

a matter of fact, according to Cisco study [3], the Wi-Fi off-load traffic is higher on 4G 

networks (56%) than on lower speed networks such as 2G (40%) and 3G (49%) 

networks. The device and data usage cost is another major advantage of Wi-Fi over 

cellular networking. Regarding the device cost, while it costs almost nothing to have a 

Wi-Fi module on a mobile device, there is a significant gap between the same mobile 

device model with and without a cellular module, for instance, the price difference 

between an iPad tablet with and without cellular connection could be as much as 120 

euros
1
. Regarding the data usage fee, although the cellular data cost per Megabyte has 

reduced significantly recently, the drastically increase in size of contents such as high 

                                                           
1
 Comparisons of iPad models - http://www.apple.com/ie/ipad/compare/  

http://www.apple.com/ie/ipad/compare/
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quality video and audio makes the monthly data usage significant and sometimes 

unaffordable to some users such as students. On the other hand, the use of Wi-Fi 

networks is more or less free most of the time. Not only it is free in coffee shops or 

restaurants, but also it gradually becomes free in public areas and public transportations 

(e.g. Dublin Bus free Wi-Fi
2
) in big cities around the globe. With these inevitable 

benefits, it is unlikely that some other technologies could replace Wi-Fi in its leading role 

for mobile access networks in the near future. 

However, there are also disadvantages of Wi-Fi. One of the most substantial 

drawbacks of Wi-Fi is its limited coverage. While Wi-Fi can cover indoor scenarios such 

as in an apartment or a floor of a hotel quite well, its coverage outdoors is quite limited. 

As Wi-Fi hotspots generally require a wired connection of uplink traffic, it is very 

expensive to deploy a single operated Wi-Fi network in a large scale scenario such as in 

a city-wide community network. While the number of Wi-Fi hotspots is undoubtedly 

increasing on a daily basis, they are operated under different administration and use 

different wired networks (in terms of operators, network speed, etc.). As a result, in the 

eyes of users, they appear to be just a collection of isolated “data oases” and not a 

coherent ubiquitous data access network. 

To overcome this problem, in other words, to build a ubiquitous coverage 

network which is capable of providing seamless data connectivity to users, these “data 

oases” need to be connected together to form an infrastructure. One of the promising and 

practical ways of building this infrastructure is to link these Wi-Fi hotspots wirelessly 

and to incorporate into this infrastructure wireless routing to remove the need for wired 

connections. This idea is the major motivation behind Wireless Mesh Network (WMN) 

solutions. WMNs are last-mile access networks which are used for providing wireless 

Internet access or other services for a large coverage area. A typical WMN includes two 

types of components: Mesh Routers (MR) and Mesh Clients (MC). MRs connect to each 

other to form a wireless multi-hop backbone. Some of the MRs have wired connections 

to the Internet or other networks. MCs are user devices which connect to the WMN 

through theses MRs to gain access to the provided network resources. 

                                                           
2
 Dublin Bus notice on July, 03, 2014: Dublin Bus launches Free Wi-Fi - 

http://www.dublinbus.ie/en/News-Centre/Media-Releases-Archive1/All-aboard-Dublin-Bus-with-

Free-Wi-Fi-on-all-routes/  

http://www.dublinbus.ie/en/News-Centre/Media-Releases-Archive1/All-aboard-Dublin-Bus-with-Free-Wi-Fi-on-all-routes/
http://www.dublinbus.ie/en/News-Centre/Media-Releases-Archive1/All-aboard-Dublin-Bus-with-Free-Wi-Fi-on-all-routes/


 
 Chapter 1: Introduction 

 

4 

 

 

Figure 1.2: Wireless Mesh Network applications
3
. 

 

Due to their many advantages such as flexibility, ease of use, low-cost 

deployment and capability of providing high throughput, WMNs have been widely 

deployed for last-mile connectivity. From the very few self-constructed and operated 

WMN such as the National University of Singapore (NUS) Wireless Mesh Testbed
4
 with 

less than 50 nodes, metro-scale Wi-Fi mesh networks have now passed the experimental 

phase and are well into operation and commercial phases. According to Muniwireless
5
, 

the authority on public Wi-Fi networks worldwide, there is an increasing number of 

metro-scale Wi-Fi mesh projects currently underway or in the planning stage, all of 

which are carefully planned and are well supported by governments or enterprises. These 

deployments open up a new horizon of opportunities for many useful applications. These 

applications cover a wide range from the municipality access networks to intelligent 

                                                           
3
 Image source: http://www.strixsystems.com  

4 NUS Wireless Mesh Testbed - http://mesh.ndslab.net/home/index.html   
5 Muniwireless - http://www.muniwireless.com/category/city-county-wifi-
networks/  

http://www.strixsystems.com/
http://mesh.ndslab.net/home/index.html
http://www.muniwireless.com/category/city-county-wifi-networks/
http://www.muniwireless.com/category/city-county-wifi-networks/
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transport management systems and public safety applications as shown in Figure 1.2. For 

instance, in the case of intelligent transport systems, WMN is a cost-effective scalable 

and flexible solution for the information delivery system to control public transportation 

services. With a citywide WMN and a mesh connection on each of the busses, this 

system allows anybody to display real-time information on transportation services such 

as where his/her bus currently is, its ultimate destination and when it is scheduled to 

arrive. Additionally, statistics of the busses (such as current number of passengers, live 

video feed of the onboard camera, etc.) can be reported to the bus central office, enabling 

adaptive allocation and scheduling of buses on each of the routes. Such a system could 

alleviate transportation congestion problems, reduce pollution, improve transportation 

safety, security and greatly enhance passengers’ experience. 

Mesh Router

Mesh Router

Mesh Router

Mesh Router

Mesh Router

Mesh Clients

Mesh Clients

Video server

Video segments

Retrieve video segments from the overlay peer

 

Figure 1.3: VoD overlay over WMN. 

 

Moreover, with the recent evolution of smartphones and tablets, which are now 

equipped with powerful Central Processing Units (CPU) and higher resolution displays, 

users are no longer using their devices only for basic Internet access such as web 
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browsing, email, chat, etc., but also for entertainment purposes with high quality 

contents. According to Cisco [3], video traffic is forecasted to account for 70% of the 

overall traffic by 2018. As a result, besides being a common access network, WMN also 

needs to support the increasing user demands for new, innovative applications such as 

resource sharing, video on demand (VoD) exchange. The introduction of these types of 

applications suggests that the combination of peer-to-peer (P2P) overlay network and 

WMN provides a promising technical solution and is therefore worthy of investigation.  

In P2P VoD application for instance such as CoolStreaming
6
, many users may 

watch the same video at the same time but at different progress points in the video. As a 

result, the same video segment may be simultaneously available at several places in the 

network. In this context, by making use of the existing user community and getting the 

video segment from an overlay peer as shown in Figure 1.3, the server load could 

significantly reduce making P2P VoD a more scalable solution. Moreover, in comparison 

with the non-P2P approach, by getting the content from the overlay peer instead of the 

server, the traffic balance in the network would be greatly enhanced instead of 

concentrating at MRs with wired connections, making bottlenecks in the network. In 

addition, with the supplement of overlay peers, there are more options of where to get the 

content from. If the overlay mechanism is also integrated with an intelligent content 

fetching algorithm, the quality of the provided service could be greatly enhanced. 

However, the integration of P2P overlay network over WMN imposes two 

challenges: how to efficiently deploy P2P overlay network over WMN and how to 

provide good quality services, especially for video traffic to the users. 

 

1.2. Problem Statement 
 

In contrast to wired connections, wireless channels are error-prone, time varying 

and bandwidth limited. These critical characteristics of WMN introduce two main 

challenges for integrating WMN and peer-to-peer overlay networks. 

                                                           
6
 CoolStreaming - http://www.coolstreaming.us/ 
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First, the combination of WMN at lower layer and overlay network at higher layer 

is not straightforward. The current overlay protocols are designed for resource-rich wired 

networks and require high maintenance traffic for ensuring the correctness and integrity 

of the overlay. This amount of maintenance traffic increases with the number of overlay 

peers. While this maintenance overhead may not be a problem in wired networks and is 

usually ignored when introducing these solutions, it is a big issue in the error-prone and 

bandwidth limited wireless multi-hop networks when the traditional overlay protocols 

are used “as is”. As the overlay network increases in size the problem gets worse as 

overlay control messages may have to travel across the physical network many times to 

reach their destination peers. Consequently, there is a need for an overlay protocol 

that is capable of enabling efficient overlay communications on the resource 

constrained WMNs. 

Second, it is well-known in wireless multi-hop networks that the achievable 

bandwidth and packet loss performance degrade sharply with many factors such as the 

number of intermediate nodes between the source and the destination [6], network load, 

etc. As a result, getting the content from just any overlay peer may result in very bad 

quality of service as content or resource can be retrieved from a very remote peer. This is 

especially true for video delivery applications which require critical network conditions 

for bandwidth, delay and packet loss and a small variation in one of these conditions can 

significantly degrade the video quality. Hence, a content delivery overlay service for 

WMN such as VoD should integrate a mechanism to enable the requesting peer to 

select the best peer among all the capable peers to retrieve the resource or content it 

needs for the best quality of service. 

 

1.3. Contributions 

 

The main contributions of this thesis focus on the design, analysis, simulation and 

performance evaluation of an efficient location-aware overlay to combine WMN at lower 

layer and overlay network at higher layer. On top of this, a location-aware and a link 

quality-aware overlay for video delivery overlay are proposed to improve the overlay 

retrieval video quality. The specific contributions of this thesis include: 
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 Wireless Location-aware Chord-based Overlay mechanism for WMN 

(WILCO). The location–awareness of the proposed mechanism is realized 

through a novel geographical multi-level Chord-ID assignment to the MRs on 

WMNs. An improved finger table is proposed to make use of the 

geographical multi-level ID assignment to minimize the underlay hop count 

of overlay communications. An analytical framework is developed to analyse 

the lookup efficiency of WILCO. Analytical and experimental results 

demonstrate that the lookup efficiency and message overhead of WILCO are 

significantly superior to the state-of-the-art solutions. 

 WILCO-based novel geographical location-aware video segment seeking 

algorithm. The proposed video segment seeking algorithm makes use of the 

multi-level WILCO ID location-awareness to locate and retrieve video 

segments from the closest peer to improve video delivery quality. An enhance 

version of this video segment seeking algorithm (WILCO+) is proposed to 

mitigate the suboptimal selection of the WILCO video segment seeking 

algorithm by extracting coordinates from WILCO ID to enable location-

awareness. Simulation results illustrate that the proposed video segment 

seeking algorithms can greatly enhance the retrieved video quality in terms of 

PSNR and packet loss with different background traffic load. 

 Cross-layer Wireless Link Quality-aware Overlay peer selection 

mechanism (WLO). The proposed peer selection mechanism aims at 

providing the requesting peer a measure at link quality level of the path to 

overlay peers so that the requesting peer can select the best peer to get the 

video segment from. A novel Multiplication Selector Metric (MSM) is 

proposed to overcome the two drawbacks of the traditional summation based 

metric (i.e., bottleneck link identification and imitating the hop count 

behaviour). Then, WLO cross-layer mechanism is proposed to select the best 

overlay peer based on MSM. Simulation results show that WLO outperforms 

the existing state-of-the-art solutions in terms of video quality at different 

background loads and levels of topology incompleteness.  

 

1.4. Thesis Structure 

 



 
 Chapter 1: Introduction 

 

9 

 

The thesis is structured in chapters as follows.  

 Chapter 1 – introduces the motivation of the research, states the research 

issues and lists the contributions of the research 

 Chapter 2 - presents the background technologies on wireless access 

protocols and video quality evaluation mechanisms.  

 Chapter 3 - presents a detailed review of the related works and their 

contributions in the research area of this thesis.  

 Chapter 4 - describes the overall system architecture that is used throughout 

the report to enable location-aware overlay and geographical video segment 

seeking.  

 Chapter 5 - presents the proposed WILCO overlay along with the analytical 

framework, simulation setups and results.  

 Chapter 6 - presents the two proposed WILCO-based geographical video 

segment seeking algorithms, the segment retrieval efficiency analysis and 

simulation setups and results.  

 Chapter 7 – presents the Cross-layer Wireless Link Quality-aware Overlay 

peer selection mechanism, the simulation setups and results. Real-life 

emulation-based experiments with subjective tests are also conducted to 

confirm the simulation results and to show the significant impact of overlay 

peer selection on the user perceived video quality. 

 Chapter 8 - concludes the thesis and presents possible future work directions.  

 

1.5. Chapter Summary 

 

This chapter illustrated the growing trend of WMN from both the user’s and 

service provider’s point of view. The motivation of combining WMN with P2P overlay 

network, the problem statement, the research contributions to advancement of the state of 

the art as well as the thesis structure are also included.
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CHAPTER 2: Technical 

Background 

 

 

Abstract 
 

This chapter introduces the technical background of the work presented in this 

thesis. The chapter starts by presenting different architectures of wireless access 

networks and the technologies behind them. An overview of wireless multi-hop routing 

protocols is also introduced. The concept of an overlay network is then illustrated. As 

multimedia traffic is the main type of traffic considered in this work, multimedia delivery 

methods are briefly discussed and video quality assessment techniques are described. 

The chapter concludes with a short summary. 

 

2.1 Wi-Fi Technologies and Network Structures 
 

Wireless communications have evolved very fast over the last 30 years; wireless 

technologies have shaped and changed our lives drastically in many ways. Network-

connected smartphones, laptops, tablets, eBook readers, etc. have now become 

indispensable devices which are extensions of ourselves and accompany us everywhere 

from office to home. Despite having many shortcomings in comparison to wired 

networks such as lower bandwidth and unreliability, the benefits of wireless networks 

including mobility, cost-effectiveness, ease of use and fast deployment, are very 

important especially in terms of user-friendliness. These benefits have made wireless 

access networks the user’s first choice for everyday use [2]. 
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2.1.1 The IEEE 802.11 family 

 

In the mid-1990s, with the advent of portable computing devices such as the 

laptop, users demanded a more convenient way of accessing network support without a 

physical wire attachment. Foreseeing this increasing demand, the IEEE 802.11 

workgroup [7] was formed to draw up a wireless LAN (WLAN) standard. Not very long 

after this initial attempt, the 802.11 standard [8] was introduced in 1997. Using the 

unlicensed 2.4GHz spectrum, the first version of Wi-Fi was capable of providing up to 

2Mbps bit rate. In comparison with the widely used 10Mbps 802.3 wired Ethernet at the 

time, this data rate was an impressive achievement. 

After this first launch, the IEEE 802.11 workgroup has been constantly working 

on enhancing the standard, not only in terms of data transfer rate improvement, but also 

to add value to the existing WLAN such as Quality of Service (QoS) or security. After 

nearly 20 years of technology evolution, many amendments have made their ways to user 

devices. A list of 802.11 standards, amendments and supplements is shown in Table 2.1. 

802.11a [9] is the first enhancement to the original 802.11 which enables data rates up to 

54Mbps over the unlicensed 5GHz frequency band. However, due to the high equipment 

cost and poor performance, 802.11a devices were not widely adopted in the consumer 

space. When manufacturers managed to overcome the technical issues and be able to 

make cheaper 802.11a wireless cards, 802.11b [10] products were already widely 

available on the market. Operating at 2.4GHz frequency band and providing data rates up 

to 11Mbps only, 802.11b gained its popularity in the consumer space due to its low-cost. 

The next Wi-Fi amendment, the 802.11g [11] uses the same 2.4GHz frequency band and 

is backward compatible with 802.11b. However, 802.11g is capable of providing a much 

higher data rate of up to 54Mbps. The reliability, high bit rate communication and 

inexpensive manufacturing cost of 802.11b/g devices made Wi-Fi a big success and led 

to its widespread adoption in both consumer and enterprise market [2]. Today, this 

success is so apparent that no laptop is shipping without a Wi-Fi card, while the wired 

connections may be left out to achieve thinner body, portability and mobility, especially 

for ultra-books such as Apple Macbook Air
7
 and Dell XPS

8
. 

                                                           
7
 Apple Macbook Air - http://store.apple.com/ie/buy-mac/macbook-air  

8
 Dell XPS laptop - http://www.dell.com/ie/p/xps-13-9333/pd?ref=PD_OC   

http://store.apple.com/ie/buy-mac/macbook-air
http://www.dell.com/ie/p/xps-13-9333/pd?ref=PD_OC
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Table 2.1: Overview of 802.11 standard amendments and supplements. 

Standard Year of release Specifications 

802.11 1997 Data rate: 1Mbps and 2Mbps 

Frequency band: 2.4GHz and infrared 

Modulation schemes: FHSS, DSSS and IR 

802.11a 1999 Data rate: up to 54Mbps 

Frequency band: 5GHz 

Modulation schemes: OFDM 

802.11ac 2013 Provide very high throughput of up to 1Gbps over the 

5GHz spectrum band. 802.11ac uses better modulation 

scheme, wider channel and multi-user MIMO in 

comparison with 802.11n. 

802.11b 1999 Data rate: up to 11Mbps 

Frequency band: 2.4GHz 

Modulation schemes: DSSS 

802.11c 2001 Bridge operation procedures 

802.11d 2001 International roaming extensions 

802.11e 2005 QoS Enhancements and periodization of data packets 

802.11f 2003 Inter-Access Point Protocol 

802.11g 2003 Data rate: up to 54Mbps 

Frequency band: 2.4GHz (compatible with 802.11b) 

Modulation schemes: OFDM 

802.11h 2004 Spectrum Managed 802.11a for European 

compatibility 

802.11i 2004 Enhanced Security 

802.11j 2004 Extensions for Japan 

802.11k 2008 Radio Resource Measurement 

802.11m 2007, 2012 Standard maintenance, technical and editorial 

corrections and improvements 

802.11n 2009 Data rate: up to 600Mbps 

Frequency band: 2.4Ghz and 5GHz (compatible with 

802.11a, b, and g) 

Modulation schemes: MIMO-OFDM 

802.11p 2010 Wireless Access for the Vehicular Environment 

(WAVE) 

802.11r 2008 Fast BSS transition 

802.11s 2011 Mesh Networking 

802.11u 2011 Interworking with non-802 networks such as cellular 

 

The 802.11n amendment [12], which was released in 2009, uses both the 

unlicensed band of 2.4GHz and 5GHz and is backward compatible with all the 

802.11a/b/g devices. The new standard uses Multiple Input/Multiple Output (MIMO) 

technology and improved modulation schemes which promise an enhancement in the 

data rate by up to 10 times that of 802.11g with improved reliability and coverage. With 

the continuous evolution of technology today, there are open doors for many 
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possibilities. Products of the just-published 802.11ac amendment are already available in 

the market
9
. Embedded with the state-of-the-art technologies such as extended channel 

binding, increased MIMO spatial streams, multi-user MIMO and high-density 

modulation of up to 256 Quadrature-Amplitude-Modulation (QAM), 802.11ac devices 

are capable of providing very high throughput of up to 1Gbps, which is currently on par 

with a low-end server wired connectivity. 

 

2.1.2 Wi-Fi Access Network Architectures 

 

Regarding network structures, Wi-Fi access networks are arranged in one of the 

three ways illustrated in Figure 2.1, i.e., the infrastructure, ad-hoc and wireless mesh 

architectures. 

 Infrastructure network. In this type of network architecture, an access point 

acts as a central exchange point of the network and mediates all the 

communications between the wireless clients and between the clients and the 

outside world. The access point usually has a wired connection allowing 

wireless clients to connect to the Internet or to other networks. This type of 

network is very simple to deploy in a small scale scenario, easy to manage, 

with a centralized point of management. Infrastructure networks are also very 

stable, as the access point is usually stationary and is connected to a wall 

socket which offers unlimited and uninterrupted power. This type of network 

is also the most widely used in home and office scenarios due to its 

simplicity, ease of maintenance and cost effectiveness. 

 Ad-hoc network. This type of network architecture allows direct 

communications between the wireless clients without the need of an access 

point. In other words, ad-hoc networks are decentralized and do not depend 

on a pre-existing infrastructure to operate which make them extremely 

flexible to deploy. However, the disadvantages of ad-hoc networks include 

limited bandwidth and highly dynamic network topology due to client 

mobility. Moreover, by default, the IEEE 802.11 ad-hoc mode supports only 

                                                           
9
 Cisco Meraki wireless -  https://meraki.cisco.com/solutions/80211ac  
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direct point-to-point connection and does not support multi-hop routing. As a 

result, in order to enable data exchange in a large network consisting of many 

nodes, routing mechanisms must be integrated on all the nodes. This 

integration may not be desirable in many cases due to energy constraints, the 

increase in overhead or computation complexity. 

 

Mesh Router

Mesh Clients

Mesh Clients

Mesh Router

Mesh Router

Access Point

a) Infrastructure 
Network

b) Ad-Hoc Network

c) Wireless Mesh Network
 

Figure 2.1: Architectures of wireless access networks. 

 

 Wireless Mesh network. This type of network architecture is a hybrid 

combination of infrastructure and ad-hoc network. A typical mesh network 

consists of two types of devices: Mesh Routers (MR) and Mesh Client (MC). 
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MRs are stationary, power-unlimited network devices which are used for 

forwarding the network traffic from the source to the destination. The MRs 

connect to each other to form a wireless backbone which acts as the wireless 

backbone infrastructure of the network. Multi-hop routing is integrated into 

the MRs to enable multi-hop communications. Some of the MRs have wired 

connections to the Internet or other networks. These MRs are often referred to 

as gateways to be distinguished from the wireless-only MRs. MCs are user 

devices, which connect to the WMN through these MRs to gain access to the 

provided services. The use of the wireless backbone and the mesh topology 

offers reliability to communication services as the network can self-heal the 

failure of some of the nodes. 

Comparing the above three network architectures, it can be seen that 

infrastructure networks are suitable for providing network access in small areas such as 

homes, shopping malls or public Wi-Fi hotspots. The fast installation, ease of usage, 

reliability and high-speed connection have made infrastructure networks widely available 

in small size deployments, from houses with a single broadband connection to campus-

size or enterprise networks where the access points are connected to an already existed 

wired infrastructure. However, in large-scale deployments such as the wireless 

metropolitan networks, the need for wired connection at every access point introduces a 

substantial installation cost. Beside the budget limitation, in some scenarios such as the 

rural areas, it is still impossible to have a wired connection at every access point since the 

wired infrastructure may not exist. In addition, this type of large-scale network lacks of 

the self-heal ability due to the operational independence among the access points. If the 

wired connection on a certain access point is not operational for some reasons, all the 

communications under that access point will cease until the wired connection is restored 

even if the wireless is still on. Management complexity is another big issue with this type 

of network when deploying in large-scale. 

Ad-hoc networks on the other hand are totally different to the infrastructure 

counterpart where the network is self-constructed by the wireless clients only. At first 

look it seems to be a very good solution for large scale networks, given that some multi-

hop routing is integrated on all the connected devices, and due to the fact that its size can 

be automatically adjusted to the user population. However, since the users and their 

devices move constantly, the ad-hoc network topology changes rapidly. Due to this rapid 
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change in topology, the life of wireless links in the network is relatively short, making 

the whole network unstable and hence this type of network is unsuitable for transmitting 

high traffic loads. The limited bandwidth of user devices is another significant drawback 

of this type of network structure. In order to maximize mobility capability, most user 

devices are optimized for minimum battery usage by using a small radio card and 

antennas which offer very limited bandwidth, capacity and efficiency in comparison with 

even a home access point. As a result, ad-hoc structure with multi-hop routing is only 

suitable for small-scale deployments or low-bandwidth and limited processing 

applications such as wireless sensor networks and not wireless metropolitan area 

networks. 

For large-scale networks, such as metropolitan area networks, connectivity is just 

one of the requirements. With the increasing demand in data traffic, users also demand 

high bandwidth at a reasonable cost. In this context, wireless mesh becomes the most 

promising network structure that is suitable for large-scale wireless access deployment. 

With the wireless infrastructure built by stationary, power-unlimited MRs, WMN 

provides a solid and stable backbone, which is capable of providing high-speed, 

uninterrupted services for the MCs. As opposed to infrastructure networks which are 

used for public access (Wi-Fi hotspots), where each access point has to have a wired 

connection, in WMN, only 10-20% of the MRs require a direct connection to the wired 

backhaul network for an adequate service [13]-[14]. This relaxation enables flexible and 

fast deployment of WMNs at a significantly reduced cost. Moreover, with the mesh 

wireless backbone, the network traffic can be dynamically rerouted in response to the 

failure of some MRs (even with the failure of a MR with wired connection) making the 

network self-healing and fault-tolerant. It is noted that the power requirements of MRs 

are rather easy to fulfil as modern MRs are small and versatile enough to be mounted on 

streetlights or traffic lights and use the available power source. Moreover, the power 

consumption of these MRs is generally very small; in extreme cases, they can operate 

independently without any available infrastructure by mounting outside of buildings or 

on trees with a solar panel and batteries. 

Technology-wise, the solution of using dedicated MRs for backbone connections 

enables the WMN to be upgradeable and customisable to user and operator needs without 

changing anything in the MC devices. In particular, the MRs can be upgraded in 

hardware with multi-channel, multi-radio or directional antennas which can further 
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extend the coverage, significantly increase the backbone/access bandwidth and reduce 

wireless interference [15]-[17]. Moreover, MRs can also be customized in firmware to 

enable sophisticated resource allocation techniques for improving the quality of service 

and supporting user or operator specific services such as VoIP or video streaming [15], 

[18]-[19]. 

For its many advantages, it is believed that WMNs are the appropriate answer to 

the question of enabling metropolitan-scale networks to provide seamless and ubiquitous 

network access to users [2]. 

 

2.2 Overview of Wireless Routing Protocols 
 

In order to enable multi-hop communications in networks such as WMNs, it is 

important that the MRs in the network are aware of the route between the source and 

destination so that they can correctly redirect the packet stream towards the destination. 

As a result, one of the essential components of a wireless multi-hop network is routing. 

Without multi-hop routing, the network cannot be deployed on a large scale and cannot 

self-heal against node failures. In contrast to a wired network where the topology is fixed 

for a relatively long time, nodes in wireless multi-hop networks need to be able to 

connect to other nodes dynamically due to node mobility or fluctuations in 

communication channels which may be considered arbitrary. Consequently, in wireless 

multi-hop networks, nodes are not familiar with the topology of their networks and they 

have to discover it before any communications can take place. Typically, the discovery 

process includes broadcast-based advertisement messages from recently joined nodes 

about their presence. By listening to these advertisement messages, a node learns about 

its neighbours and may advertise that it can reach them too, so that a two-way 

relationship can be established. For routing to take place, each node behaves as a router 

and takes part in the discovery and maintenance of routes to other nodes in the network.  

Depending on how this route discovery and maintenance process is conducted, 

the wireless routing protocols can be classified into two main categories: reactive or on-

demand routing protocols and proactive or table driven routing protocols. Essentially, in 

proactive routing protocols, consistent and up-to-date routing information to all nodes is 
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maintained at each node even when this information is not needed for routing the current 

traffic. In reactive routing protocols, the routes are discovered when they are needed to 

route the traffic only and this process is started by the source host. 

 

2.2.1 Reactive Routing Protocols for Wireless Multi-hop Networks 

 

In reactive routing protocols, route discovery mechanisms run when necessary 

only, i.e., when there is traffic to be sent to a distant node and there is not an already 

established route to that node. The triggering traffic has to wait in the buffer of the 

sending node until the complete route to the destination node is discovered or the timeout 

expires. In case the route is discovered, the traffic will be sent along the discovered route, 

otherwise, these packets are discarded. Once a route is established, it is maintained by the 

route maintenance procedure until either the source does not need the route any longer or 

the destination node is unreachable for some reasons along that route.  

Since a route is discovered when needed only, wireless nodes stay silent most of 

the time when there is no traffic. As a result, protocol overhead and energy consumption 

is significantly reduced. However, since a route is discovered on-demand, there is always 

a delay for this procedure to finish before the traffic can be sent. For a large network, this 

procedure can be long and a high rate traffic source can overrun the node’s buffer 

causing packet loss.  

Among the available reactive routing protocols, such as Dynamic Source Routing 

(DSR) [20], Ad hoc On-Demand Distance Vector (AODV) [21]-[22]; the AODV routing 

protocol is perhaps the most commonly used and is widely mentioned in the literature. 

Overview of Ad-hoc On-Demand Distance Vector (AODV) routing protocol 

[21] 

AODV is an efficient reactive routing protocol designed for wireless multi-hop 

networks. In AODV, each node maintains a neighbour table of all the directly connected 

neighbours in order to provide quick response for new route establishment requests and 

for routing maintenance. For route discovery, AODV uses a broadcast-based route 

discovery mechanism in which a route request is broadcast from the source node across 
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the network. When the route request message reaches the destination node or a node that 

knows the route to the destination node, a route reply is unicasted back to the source 

node. Routing information is built at intermediate nodes based on the forwarding of route 

request and route reply messages. The detailed operation process of AODV can be 

summarized in five processes: Local Connectivity Management, Route Discovery, 

Reverse Route Setup, Forward Route Setup and Route Maintenance. 

 Local Connectivity Management 

AODV enables nodes to learn about their neighbours and establish a bidirectional 

connectivity with them by periodically broadcasting “Hello” messages. Each “Hello” 

message includes the sending node identity and the identities of all of its neighbours. 

Whenever a node receives a broadcast “Hello” message from a neighbour, the receiving 

node updates the sending node identity to its local neighbour tables, which includes all its 

directly connected neighbours. In the subsequent “Hello” messages, the receiving node 

also adds the newly discovered neighbour to its list of neighbours. If a node receives a 

“Hello” message with itself in the neighbour list, it declares the link to sending neighbour 

as a bidirectional link. In an AODV “Hello” message, the time to live (TTL) value is set 

to 1 to prevent the message from being rebroadcasted outside the neighbourhood of the 

node. 

If a node fails to receive a predefined consecutive number of “Hello” messages 

from a neighbour, the node assumes that neighbour is down and removes it from its 

neighbour table. In the case the failed neighbour is part of an active link, the active 

neighbours using that next hop will be notified of the link failure. This link failure 

notification belongs to the route maintenance process which will be described latter. 

 Route Discovery 

The AODV path discovery process begins when a source node needs to 

communicate with another node for which it has no routing information in its routing 

table. The source node initiates route discovery by broadcasting a “Route Request” 

(RREQ) message. The RREQ contains the following fields: 

<source_addr, source_seq_no, broadcast_id, dest_addr, dest_seq_no, hop_cnt> 
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source_addr and dest_addr are the source and destination address, respectively. 

Together they uniquely identify a RREQ. broadcast_id is incremented whenever the 

source issues a new RREQ.  

The source_seq_no is used to maintain freshness information about the reverse 

route to the source. The dest_seq_no is the last destination sequence number known to 

the source and this number specifies how fresh a route to the destination must be before 

it can be accepted by the source. The source_seq_no and the dest_seq_no are used in the 

Reverse Route Setup and the Forward Route Setup which will be shown next. 

Upon receiving the RREQ, each node in the network either sends a “Route 

Reply” (RREP) message to the source node, if it has the routing information to the 

destination or re-broadcasts the RREQ after increasing the hop_cnt. If a node does not 

have the routing information for the RREQ, it also keeps track of the dest_addr, 

source_addr, broadcast_id, source_seq_no, and the expiration time for the reverse path 

route entry of the RREQ in order to process the reverse and forward path setup 

procedures. Together, the source_addr and broadcast_id are also used to eliminate 

redundant packets in case a node receives multiple copies of the same broadcast RREQ 

packet. 

 

 Reverse Route Setup 

 

As the RREQ travels from a source node to various intermediate nodes, the 

reverse route back to the source is automatically set up at each of these intermediate 

nodes which received the RREQ. This reverse route is constructed by recording the 

address of the neighbour from which the first copy of the RREQ was received. The 

reverse route entries are maintained for a predefined expiration time which is at least 

long enough for the RREQ to traverse the network and for the reply to get back. Figure 

2.2 illustrates the reverse route pointers that points back to the neighbours from which 

the RREQ was received. In this figure, S and D are the source and destination node, 

respectively. 
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Figure 2.2: AODV reverse route setup. [21] 

 

 Forward Route Setup 

 

If the RREQ was received from a bidirectional link, when the RREQ arrives at the 

destination node or a node that knows the route to the destination, the forward route 

setup procedure starts. If the receiving node is an intermediate node to the destination, it 

first determines if the routing information it has is current by comparing the dest_seq_no 

in its own route entry with that in the RREQ. If the dest_seq_no in the RREQ is higher, 

the intermediate node considers its own routing information out of date and rebroadcasts 

the RREQ without sending the RREP. If the dest_seq_no in the route entry of the 

intermediate node is greater or equal to that in the RREQ and the RREQ has not been 

processed previously (use source_addr and broadcast_id to eliminate the redundant 

packets), the intermediate node will unicast a RREP to the source node through the 

neighbour from which it receives the RREQ. The RREP contains the following fields: 
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<source_addr, dest_addr, dest_seq_no, hop_cnt, lifetime> 

 

S

D

timeout

Reverse route
Forward route

 

Figure 2.3: AODV forward path formation. [21] 

 

Since the reverse route was already setup when the RREQ travels the network 

using the pointers in the Reversed Route Setup Procedure, the RREP follows this reverse 

route to travel back to the source node. As the RREP travels back to the source node, 

each node along the path sets up a forward pointer to the node from which the RREP was 

received. The timeout information and the latest dest_seq_no are also updated. 

Figure 2.3 illustrates the forward route setup from the destination node D to the 

source node S. The solid arrows are the forward pointers to the destination. The dotted 

arrows are the reverse route pointers which are constructed during the propagation of the 

RREQ. Since the RREQ broadcasts to the whole network, multiple reverse paths are 
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built, even between nodes that are not along the route to the destination. However, these 

reverse routes will be deleted after a predetermined timeout duration. 

An intermediate node propagates the first RREP for a given source node through 

the reverse path towards that source. It suppresses all further RREP for this source node 

unless the RREP contains either a greater dest_seq_no or the same dest_seq_no but with 

a smaller hop count. In this case, it updates its routing information and propagates this 

better RREP. The source node can start data transmission as soon as the first RREP is 

received and can latter update its routing table with a better route. 

Receive AODV 
message

Check message 
type

Update routing 
table using Forward 

Route Setup

End

Update route to 
origin using 

Reversed Route 
Setup

Remove affected 
routes

Is destination? Is origin?

Already has the 
route?

Forward RREP to 
next hop

Send queued 
messages

If not in buffer, 
forward RREQ to 

neighbours
Send RREP

Update routing 
table using Forward 

Route Setup

RREQ RERR

RREP

No Yes

Yes

No

Yes No

 

Figure 2.4: AODV operation flowchart. 
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 Path Maintenance 

A route is considered active as long as there are data packets travelling from the 

source to the destination along that path. Once the route becomes idle, the reverse and 

forward pointers will time out and be deleted from the intermediate node routing tables. 

As long as the route remains active, each intermediate node monitors the links 

towards the source and the destination by monitoring its neighbours on the paths using 

the local connectivity management mechanism described earlier. If a link break occurs at 

an intermediate node while the route is active, the node propagates a Route Error 

(RERR) message to the source node to inform it of the now unreachable destination(s). 

Upon receiving this notification of a broken link, the source node can restart the 

discovery process if it still requires a route to the destination. 

Figure 2.4 summarizes the basic operations of AODV in the form of a flowchart 

when processing different types of AODV messages. HELLO messages are excluded 

from the diagram for brevity 

 

2.2.2 Proactive routing protocols for wireless multi-hop networks 

 

Proactive routing protocols take a totally different approach than reactive routing 

protocols, as they are based on periodic exchange of control messages. Some of these 

messages (which are similar to AODV “Hello” messages) are exchanged locally between 

network nodes to provide participating network nodes the information about their local 

neighbourhood. Beside these locally exchanged messages, there are types of messages 

that are sent to the entire network in order to exchange knowledge of network topology 

among the nodes in the network. By using this information, each and every node in the 

network can construct the topology of the whole network and have the optimized routing 

information to all the nodes in the network. 

Since the routing information is already available whenever data packets need to 

be sent, there is no routing delay and no packet loss of buffer overrun due to this delay. 

However, since the routing information is calculated beforehand, periodic topology 
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updates cause additional overhead even when the routing information is not needed or 

when there is no data traffic for routing. 

Among the available proactive routing protocols such as Destination-Sequenced 

Distance Vector routing (DSDV) [23], Optimized Link State Routing (OLSR) [24]-[25], 

the OLSR protocol is perhaps the most commonly used and widely mentioned in the 

literature. 

 

Overview of Optimized Link State Routing (OLSR) routing protocol [24]-

[25]  

OLSR is an efficient proactive routing protocol for wireless multi-hop networks. 

As its name suggests, OLSR uses the link-state scheme to diffuse and calculate routing 

information. However, instead of flooding the link-state information throughout the 

network, in order to preserve network bandwidth, OLSR-enable nodes elect a subset of 

their directly connected neighbours as their Multipoint Relays (MPR). By using these 

MPRs as their communication gateway for both routing information and data exchange 

to the rest of the network, OLSR greatly reduces the routing messaging overhead. OLSR 

MPR, neighbour sensing, MPR selection, MPR information declaration and routing table 

calculation will be discussed next to give an overview of OLSR protocol. 

 

 OLSR Multipoint relays (MPR) 

The motivation behind multipoint relays is to minimize the flooding broadcast of 

routing packets in the network by reducing the duplicate retransmissions in the same 

region. Each node selects its multipoint relays, i.e., the multipoint relay set, among its 

one hop neighbours so that the set of selected nodes covers all the nodes that are two 

hops away. These multipoint relays of a node 𝑁, called 𝑀𝑃𝑅(𝑁), are a subset of 𝑁’s 

bidirectional neighbours in which every node in the two hop neighbourhood of 𝑁 must 

have a bidirectional link towards 𝑀𝑃𝑅(𝑁).  
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Routing packet 
propagation

 

a. Flooding a packet in a wireless multi-hop network without MPRs. 

Routing packet 
propagation

MPR

 

b. Flooding a packet in a wireless multi-hop network with MPRs (solid filled 

nodes). 

Figure 2.5: Flooding a packet in a wireless multi-hop network with and without 

MPRs 

 

Only nodes in 𝑀𝑃𝑅(𝑁) process and retransmit the routing information received 

from node 𝑁. Other neighbours of 𝑁 process the packet, but do not retransmit the packet. 

Figure 2.5 illustrates the significant reduction of duplicated packets by using MPR when 
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flooding the routing information in a wireless multi-hop scenario. OLSR-enable nodes 

also use these multipoint relays to calculate routes to other nodes in the network. 

 Neighbour sensing 

To discover bidirectional neighbours in the neighbourhood, each node 

periodically broadcasts its “Hello” messages. The TTL of these “Hello” messages is set 

to 1 so that they can be received by all one hop neighbour, but they are not retransmitted 

any further. A “Hello” message contains the list of addresses of all the bidirectional 

neighbours of the transmitted node and the list of addresses of the neighbours which are 

heard by this node (a Hello has been previously received) but the link is not yet 

bidirectional. 

When receiving a “Hello” message from a neighbour, if a node finds its own 

address in the Hello message, it considers the link to the sender node as a bidirectional 

link.  

Since the “Hello” message contains information about the one hop neighbours of 

a node, it allows each node to learn the knowledge of its neighbours of up to two hops. 

Based on the exchange of “Hello” messages, each node maintains a neighbour table 

about its one hop neighbours and a list of two hop neighbours that these one hop 

neighbours give access to. Each of the one hop neighbours in the neighbour table is 

marked with a link status of either unidirectional, bidirectional or MPR (the selection of 

MPR will be discussed later). Each entry in the neighbour table also would be removed if 

its associated holding time expires. 

 MPR selection 

Each node in the network selects its own MPR set independently so that all the 

members of the MPR set cover the entire two hop neighbour set of the node. The MPR 

set does not need to be optimal, but it should be small enough for the benefit of the 

multipoint relays. 

The MPR set is recalculated when a change in the neighbourhood is detected 

(either a bidirectional neighbour fails or a new bidirectional neighbour is added) or when 

there is a change in the two hop neighbour set (with a bidirectional link). 
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After it is calculated, the MPR set information is also embedded into the “Hello” 

messages so that the MPRs can receive this information as well. When a node receives a 

“Hello” message with itself as a MPR, it adds the sending neighbour into its MPR 

selector table. 

 MPR information declaration 

In order to build the topology table, a “Topology Control” (TC) message is sent 

periodically by each node in the network to declare its MPR Selector set. The TC 

message contains the list of neighbours who have selected the sender node as a 

multipoint relay. The TC messages are forwarded as broadcast messages to the entire 

network. A node with an empty MPR selector set, i.e. no other node selects it as a 

multipoint relay, does not generate any TC message. A TC message could be sent earlier 

than the predefined interval if there is a change in its MPR Selector set during this 

duration. 

Upon receiving these TC messages, each node in the network populates its 

topology table with the multipoint relays of other nodes obtained from the received TC 

messages. Each entry in the topology table also has a holding time after which the entry 

is removed.  

Each entry in the topology table consists of a pair of addresses [last-hop, node] 

where the node is the address of the MPR selector in the received TC message and last-

hop is the originator of the TC message. This information in the topology table is then 

used to calculate the routing table at each node. 

 Routing table calculation 

The routing table is calculated independently at each node from its topology table 

and neighbour table and contains all the routing information for the node to reach other 

nodes in the network.  

Since the entries in the topology table are in the form of pairs of [last-hop, node] 

addresses, the routing table is constructed by tracking the connected pairs of nodes in the 

topology table. The tracking starts from the source node, through its neighbours 

(specified in the neighbour table) and spreading outwards to all the possible destination 

nodes in the network. In order to restrict to the optimal paths, the source node selects the 
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connected pairs on the minimal path only. Each of the final route entries in the routing 

table consists of the destination address, next hop address, and the estimated distance to 

the destination.  

Since the routing table is calculated based on the information contained in the 

neighbour and the topology tables, if there is any change in either of these tables, the 

routing table is recalculated to update the routing information. It is remarked that the 

recalculation of the routing table is the result of the changes in the neighbour table or the 

topology table, this recalculation does not generate any packet to be transmitted. 

 

2.2.3 Routing Protocol Discussion 

 

With both many advantages and disadvantages, it is hard to tell whether proactive 

or reactive protocols are best suited for all wireless multi-hop scenarios. Perhaps, it 

depends on the specific use case that the advantages of one protocol are more noticeable 

than those of the others. 

Since the reactive protocols explore routes when they are needed only, if the 

communication demand is not high, the nodes in the network stay quiet most of the time. 

As a result, reactive routing protocols like AODV require only a small amount of energy 

to operate. This low energy consumption can significantly prolong the battery life of the 

participating nodes which is very important in wireless scenarios. In addition, the routing 

procedures of reactive protocols are fairly simple in terms of calculation complexity and 

do not require a large amount of memory to store routing database of the whole network 

such as the topology database of the proactive routing protocols. These benefits make it 

easier to implement reactive protocols at low cost for sensor networks.  

On the other hand, since the routing information is always available beforehand, 

proactive routing protocols can start transmitting the data packets as soon as they arrive 

without any additional delay. This is extremely beneficial when the network is under 

constant load, since in reactive protocols the network latency tends to result in dropped 

packets due to buffer overflow while the routing protocol is still computing the route to 

the destination. Moreover, having the full topology information of the network, it is 

easier for proactive routing protocols like OLSR to optimize the routing information. As 
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a result, the routing entries in the routing table always indicate the best route which can 

significantly improve the performance of the whole network. 

In a metropolitan wireless mesh network, the node density is quite high with a 

large number of hosts and sporadic but high volume traffic. In this scenario, the proactive 

routing protocols have an edge over the reactive protocols due to their low delay in route 

setup and optimized routing information. Indeed, in [26] the authors show that the OLSR 

protocol is more efficient in networks with high density, large number of hosts and high 

but sporadic traffic. In [27], the authors further show that OLSR exhibits the best 

performance in terms of data delivery rate and end-to-end delay in comparison to 

reactive protocols such as AODV and DSR [28]. Moreover, in a dense network with high 

traffic load, the network-wide flooding style of reactive protocols can lead to network 

clogging. In [29], the authors demonstrate how for vehicular networks (VANET), OLSR 

has smaller routing overhead, end-to-end delay and route lengths than AODV protocol. 

Considering the advantages and disadvantages of proactive and reactive routing 

protocols as discussed above, OLSR is chosen to use throughout the tests as the underlay 

routing protocol in this dissertation. 

 

2.3 Overview of Peer-to-Peer (P2P) Overlay Networks 
 

An overlay network is a virtual computer network which is built on the top of 

another physical network. Nodes in the overlay are connected by virtual or logical links 

which may be realised by one or more physical paths in the underlying network. A P2P 

overlay network is a content-sharing overlay network where peers come together and 

help each other to store and distribute the content. The peers in overlay networks are 

often simple home computers, laptops or any network-enabled devices, such as Network-

attached storage (NAS) devices or a micro-computer such as the raspberry pi
10

, which are 

capable of installing the overlay client application. Unlike the client-server paradigm, 

there is no dedicated infrastructure or a central point of control in a peer-to-peer network. 

Instead, each and every peer participates in the task of storing and distributing the 

content. Thus, there is no dedicated infrastructure making P2P overlay networks scalable, 

                                                           
10

 Raspberry Pi - http://www.raspberrypi.org/  

http://www.raspberrypi.org/
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self-organizing and self-healing with the join and leave of peers. A second advantage of 

P2P overlay networks is that the capacity of the network scales with the number of peers. 

Since each peer plays both the role of the client and server at the same time (uploading 

and downloading simultaneously), all the capacity of the peers can be used efficiently to 

distribute content. In other words, P2P overlay networks are self-scaling: the more peers 

participate in the overlay, the more capacity the overlay can offer. These distinctive 

advantages of overlay networks have made them very well received by internet users 

from their first introduction in 1999.  

Peer-to-peer overlay networks can be classified into two types based on their 

structure, namely unstructured overlay and structured overlay. Both of these types will be 

briefly introduced next. It is remarked that from this point on, the term “overlay” is used 

to refer to P2P overlay. 

2.3.1 Overview of Unstructured Overlay 

 

Just as its name implies, unstructured overlay imposes no rigid structure on the 

relationship between the overlay topology and where the resources are stored. Instead, in 

an unstructured P2P network overlay, the links between the peers are established 

arbitrarily. Among the unstructured overlays protocols, BitTorrent [30] is the most 

commonly used and accounts for the most P2P traffic on the Internet [31]. 

 

Figure 2.6: The operation of BitTorent [32]. 
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Figure 2.6 illustrates the operation of BitTorrent. In BitTorrent, for each piece of 

shared contents, a content description (torrent) is created. The torrent, which is the 

metadata of the content and is much smaller than the content itself, contains the 

information about a server (tracker) that keeps track of the peers that are actively 

downloading and uploading the content and a list of equal-sized pieces (chunks) of the 

content. In order to download the content, a peer first contacts the tracker to get the list of 

the peers storing the content. The requesting peer then starts downloading and 

exchanging the chunks of data with the peers in the list. To prevent bottleneck traffic, the 

chunks are not downloaded in order of play but instead, rare chunks are chosen to be 

downloaded first. This strategy has three main benefits. First, it ensures all the chunks 

will be widely available in the network after a short time. Second, as the peers 

simultaneously download chunks that they do not have and upload the chunks which are 

already available in their storage, this strategy makes better use of the network capacity 

since all the peers participate in the chunk exchange. Third, since rare chunk are 

prioritized to download first, the departure of a peer does not greatly affect the content 

distribution process. 

Variations of unstructured overlay protocols such as Gnutella [33] and Freenet 

[34] replace the central directory tracker by a flooding process to search for the content. 

In this process, each computer connects to random peers and sends queries for content to 

these neighbours. If a neighbour peer has the content, it sends a reply to the requesting 

peer, otherwise, it keeps on propagating the query. This process continues until the query 

is resolved. Since there is no rigid structure, unstructured overlays are simple, easy to 

implement and deploy. However, due to the reliance on either a centralized tracker or an 

expensive process of flooding the network to find the shared content, unstructured 

overlays are not scalable when deployed in wireless scenarios. The search operation may 

take a long time and consume significant network resources.  

 

2.3.2 Structured overlay 

 

The centralized tracker in unstructured overlays introduces the problem of a 

single point of failure while the flood-based request process is network intensive; thus 

both solutions are not scalable. In other words, although the upload and download 
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processes are fully distributed, the unstructured overlays are only partly decentralized or 

are fully decentralized but are not efficient. The need for a fully distributed P2P overlay 

without the disadvantages of unstructured overlays drives the motivation of the study of a 

new type of overlay – the structured overlay. 

In structured overlays, to implement a fully distributed directory service, each 

peer is assigned an identifier and a structure is imposed on the overlay topology. In order 

to enable routing on the overlay, an overlay routing table is systematically built and 

maintained at each of the peers. The routing table for each peer is different and covers 

only a small part of the overlay network, but allows the peer to query another arbitrary 

peer in the overlay within a limited number of requests (usually log𝑁, where 𝑁 is 

number of peers on the overlay). As the result, structured overlays are also called 

Distributed Hash Tables (DHT). The imposed structure and routing strategy allows the 

constructed overlay to be fully distributed, scalable and performs well without any 

centralized point of management or network-wide flooding process. First, since the 

routing table of each peer is relatively small, the routing table maintenance is quick and 

not very expensive. Second, the usually small number of requests to resolve a query 

ensures the lookup process is quick and accurate. Last but not least, since each node 

stores routing information about only a small subset of the overlay network nodes, the 

joining and leaving of peers does not seriously affect the structural integrity of the 

overlay. 

Among the proposed structured overlays, Chord [35] is the most widely used. In 

this thesis, Chord is also used as the base overlay protocol due to its simplicity and 

popularity. An overview of Chord protocol is performed next as a background material to 

our study. 

Overview of Chord Protocol 

In the Chord protocol, in order to identify peers and resources on the overlay, an 

𝑚-bit ID space is used (to avoid ambiguity, from this point on, the term key is used for 

the resource identity while ID implies peer identifier). The IDs are ordered in an ID 

circle of modulo 2𝑚 positions (the Chord ring). Each key is managed by a peer with the 

smallest ID greater or equal to that key. In order to enable routing on the overlay and 

efficiently locate a key, a peer with ID 𝑖 builds and maintains a finger table which stores 
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the IP addresses of 𝑚 other peers at ID (𝑖 + 2𝑘)𝑚𝑜𝑑 2𝑚 (1 ≤ 𝑘 ≤ 𝑚) (the finger ID). 

Each entry in the finger table has a structure of 

<finger ID, IP address of the peer at the finger ID> 

To locate a key, the peer sends a lookup message to the peer in the finger table 

with the greatest ID less than or equal to the key. Upon receiving the lookup message, 

the receiving peer checks if it manages the key; if so, it sends back a reply, otherwise it 

forwards the lookup message to its finger peer with the greatest ID less than or equal to 

the key. The process continues until the lookup message reaches the peer that manages 

the key.  

Finger table of P7:
P7+1 P17
P7+2 P17
P7+4 P17
P7+8 P17
P7+16 P24
P7+32 P48

P7

Chord ring

P48

P17

P24

P33

P56

P1

Lookup (54)

Lookup (54)

Finger table of P48:
P48+1 P56
P48+2 P56
P48+4 P56
P48+8 P56
P48+16 P1
P48+32 P17

K54

 

Figure 2.7: Overview of Chord operations for m=6. 

Figure 2.7 shows an illustrative example of Chord operations with 𝑚=6. The 

Chord ring comprises of 7 peers: P1, P7, P17, P24, P33, P48 and P56 (the indexes of the 

peers are also their Chord IDs). A resource identified by key 54 will be managed at P56 

since 56 is the smallest ID greater or equal to 54. As an example, the Chord finger tables 

for P7 and P48 pointing to other peers at ID (𝑖 + 2𝑘)𝑚𝑜𝑑 2𝑚 (1 ≤ 𝑘 ≤ 6) are also 

shown. Since keys 8, 9, 11, 15 are managed by P17, these entries in the finger table of P7 

point to P17. Suppose that P7 wants to retrieve the resource at key 54, it sends a lookup 

message to its finger peer with the greatest ID less than or equal to the key (P48) to 
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locate the key. As P48 does not manage K54, it forwards the lookup query to its finger 

peer (P56), according to its finger table, in the same manner as described for P7. Since 

P56 manages K54, P56 sends a reply to P7 after receiving the lookup message. This 

reply finishes the lookup process.  

It is proved in [35] that this approach of lookup-through-finger table can resolve a 

lookup within 𝑂(𝑚) messages to other peers. However, since the finger table of Chord 

contains only IDs on half of the Chord ring entries in the forward direction (the 

increasing IDs direction of the Chord ring), Chord lookup is not symmetric (i.e., a lookup 

for a key close to the requested peer in the forward direction travels through much less 

intermediate peers than that in backward direction of the Chord ring). Another remark is 

that the Chord overlay IDs and the finger tables are independent of the physical topology 

and hence Chord is not location-aware. Consequently, lookup and overlay maintenance 

messages may travel across the entire physical topology many times and tremendously 

increase the overlay overhead and response time. In the case of wireless multi-hop 

network, these problems can severely affect the performance of other co-existing traffic 

and degrades the performance of Chord itself. More details about the related works will 

be presented in Chapter 3. The study in this dissertation seeks to overcome these 

drawbacks of Chord in the context of WMN to improve the lookup efficiency, to reduce 

the lookup delay and also to reduce the overlay overhead. 

 

2.4 Multimedia Content Delivery and Quality Evaluation 
 

Over the years, multimedia has evolved and becomes an essential part of modern 

life. Youtube
11

, Daily Motion
12

 and Vimeo
13

 are just some of the most popular video 

content providers that are available on the Internet. People subscribe to Youtube channels 

not only for entertainment content such as movies or videos but also for technical 

contents. From cooking recipes, instructions on a do-it-your-self project or how to fix 

common issues around the home, to tutorials for a computer programming language, how 

to build a server or complete lectures for university courses. Perhaps, the main 

                                                           
11

 Youtube - http://www.youtube.com/  
12

 Daily Motion - http://www.dailymotion.com/  
13

 Vimeo - https://vimeo.com/  
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motivation that drives the development of communication technology is this explosion of 

media-rich content with a non-stop increase in bandwidth demand. However, 

transporting multimedia content, especially, videos is not easy and the quality of the 

content can be significantly degraded depending on network conditions. Even if the 

network throughput is sufficient for transporting the video, network related parameters 

such as delay, jitter and packet loss could negatively affect the quality of the received 

video. 

In this section, multimedia delivery methods and some of the most important the 

network related parameters that could affect the quality of received videos will be 

discussed. In addition, metrics for evaluating video user perceived quality are also 

described. 

 

2.4.1 Multimedia Delivery Methods 

 

High-quality video streaming has become the core component of media-rich 

content. Typically, streaming protocols are associated with the Real-Time Streaming 

Protocol (RTSP) [40] and the Real-Time Transport Protocol (RTP) [41]. RTP is designed 

for real-time streaming between end-to-end devices, which requires timely rich-media 

content delivery. Due to its real-time requirement, RTP is normally used with 

connectionless transport layer protocols like User Datagram Protocol (UDP) instead of 

connection-oriented transport protocols like Transmission Control Protocol (TCP). RTP 

uses timestamps for synchronization and sequence number for packet loss detection and 

reordering. Synchronization between media streams is handled by the RTSP. RTSP is 

used to provide remote media playback controls such as play/pause commands from user 

devices. In RSTP, the playback state on the device is monitored by the streaming server 

during the connection period so that the server can encode the multimedia content at a 

suitable rate according to the available bandwidth of the user. 

 

2.4.2 Quality of Service (QoS)-related parameters 
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When streaming multimedia through a network, especially in a dynamically 

changing environment resulting from network fluctuation or user mobility, the quality of 

the received video depends largely on a number of network related QoS parameters such 

as end-to-end delay, jitter and packet loss. These QoS parameters and their influences on 

multimedia streaming are described as follows. 

End-to-end Delay 

End-to-end delay refers to the time taken for a packet to be transmitted across a 

network from the source to the destination. End-to-end delay is a summation of the three 

components as shown in (2.1): transmission delay, propagation delay and processing 

delay. 

 end-to-end delay = transmission delay + propagation delay + processing delay (2.1)  

  Transmission delay. Transmission delay is the time taken to transmit a packet 

into a medium. Transmission delay is negligible when the transmission is 

over a high bandwidth link but is very significant when the bandwidth is low, 

e.g., the transmission delay of a packet of 1500 bytes is 12𝜇s over a 1Gbps 

link and over 23ms on a 512Kbps modem line. 

 Propagation delay. Propagation delay refers to the time to deliver a bit over 

the transmission medium. Propagation delay depends on the characteristics of 

the medium, such as materials (copper wire, optical fiber, wireless, etc.) or 

the length of the link (e.g., propagation delay over a 1km fiber is nearly 

negligible while propagation delay on satellite links are noticeable). 

 Processing delay. Processing delay is the summation of the time taken to 

process a packet at the destination or at intermediate networking devices. The 

processing delay at the destination includes the decoding delay, buffering 

delay, etc. The processing delay at intermediate devices consists of queuing 

delay, routing processing delay, etc. 

In real-time applications as considered in this thesis, such as live streaming or 

interactive services, long end-to-end delay can severely affect the user perceived quality. 

For instance, a long wait between conversations in video Internet calling service would 

negatively affect user experience although the voice and video quality could be perfect. 

Jitter 
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Jitter or packet delay variation refers to the difference between the current packet 

delay and the delay of the reference packet which usually is the packet with the lowest 

delay in the packet stream. Jitter is caused by many reasons but mainly by the network 

dynamics. Since the network is changing constantly, different packets belonging to the 

same video stream may experience different queuing delays and processing delays on the 

intermediate nodes even if they are taking the same path. Moreover, since different 

packets in the same packet stream may have different sizes, especially for video packets, 

their end-to-end delay may be very different from each other. 

In multimedia transmission, the effect of jitter is even worse than end-to-end 

delay. High jitter may result in distortion or jerkiness videos, both of which would 

severely affect user perceived quality. 

Packet loss 

Packet loss is the percentage of the packet stream which gets lost during the 

transmission through the network. Generally, during a transmission session, a packet 

might be lost due to one of the following reasons: 

 Queue drop caused by network congestion or buffer overflow at intermediate 

network nodes. 

 Erroneous channels, especially in wireless communications. 

 Channel contentions and collisions. 

 Expired packets, i.e., packets that are received after its deadline has passed 

and hence is useless and is discarded. 

 Device failure. 

Since video frames are typically split over multiple packets, when a packet is lost, 

this loss is amplified to the inability to recover a part or a whole video frame and the 

received multimedia quality can be greatly impaired.  

Throughput 

Network throughput is the rate of successful message delivery over a 

communication channel. Throughput is usually measured in bits per second or packets 

per second. Network throughput relies heavily on the physical network capacity and the 

network condition at the point of measurement: 
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 Physical network capacity, i.e., the physical bit rate limitation that a network 

can accommodate in perfect propagation conditions. 

 Network condition. In a multi-access network such as wireless network, the 

network usage of one user can lead to network contention and collisions 

which would greatly reduce the network throughput of other users. Bad or 

noisy channels also affect the achievable throughput. 

Low network throughput can cause long transmission times and low user 

perceived quality, especially for real-time services. 

Network Requirements for Common Applications 

Table 2.2: Y.1541 IP network performance requirements for different applications 

[42]. 

Network 

performance 

parameters 

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 

Delay 100ms 400ms 100ms 400ms 1s - 

Jitter 50ms 50ms - - - - 

Packet loss 

ratio 

10
-3

 10
-3

 10
-3

 10
-3

 10
-3

 - 

Applications Real-time, 

Highly 

interactive, 

Delay 

variation 

sensitive 

(VoIP, 

video 

conference, 

VoD) 

Real-time, 

Interactive, 

Delay 

variation 

sensitive 

(VoIP) 

Transaction 

Data, highly 

interactive 

(signalling) 

Transaction 

data, 

interactive 

Low loss 

only (short 

transactions, 

bulk data) 

Traditional 

application 

of default IP 

networks 

“-” means unspecified in this table. 

 

Different applications have different demands on the discussed above network 

parameters in order to achieve a good quality of service. Table 2.2 illustrates the network 

performance requirements for common IP applications according to the International 

Telecommunication Union (ITU). 
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2.4.3 Approaches for Measuring Video quality 

 

To evaluate the perceived satisfaction of viewers regarding the delivered video 

content, different methods have been developed to quantify the received video quality. It 

is important to note that video quality refers to the user perception while all of the 

network requirements, as listed in the previous part, are purely technical concepts and 

improving the network requirements does not always guarantee better video quality 

retrieval. 

Table 2.3: ITU MOS quality and impairment scale [44]. 

MOS Scale Quality Impairment 

5 Excellent Imperceptible 

4 Good Perceptible but not annoying 

3 Fair Slightly annoying 

2 Poor Annoying 

1 Bad Very annoying 

There are two major approaches for evaluating video quality, namely subjective 

and objective quality methods. For both of the methods, the most commonly used metric 

in assessing the video quality is Mean Opinion Score (MOS). The MOS scale includes 

five quality levels representing human quality impression on the video. The five levels 

are from 5 (excellent quality) to 1 (bad quality) as shown in Table 2.3[44]. 

 

2.4.3.1 Subjective Quality Evaluation 

 

In subjective methods, video quality measurement is performed by human by 

letting human subjects watch the actual videos and mark the video quality based on their 

own perception. Typically, each viewer is asked to rate the videos based on the MOS 

scale. 

The International Telecommunication Union-Telecommunication Standardisation 

Sector (ITU-T) has defined standards and recommendations for subjective assessment. 

These standards recommend the viewing conditions and the assessment procedures. For 

instance, the ITU-R BT-500 [42] proposes tests for assessing the video quality of 

television images. 
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Subjective methods are accurate since they truly reflect human perception about 

the video quality; however, they are extremely costly, highly time consuming, and 

require a lot of human resources to conduct the tests and process the results. Moreover, in 

subjective methods special equipment is normally needed. These disadvantages make it 

impossible to conduct subjective video assessment in real time applications or at a large 

scale. 

 

2.4.3.2 Objective Quality Evaluation 

 

On the other hand, objective methods are automated methods based on 

mathematical models and algorithms that try to approximate human perception. 

Objective methods are relatively inexpensive, fast and do not require a lot of manpower 

to accomplish; however, the results from these methods could be incorrect due to the 

possibility of poor correlation with the human perception.  

The metrics used in objective quality assessment can be classified into three types 

based on the presence of the reference videos: full reference, reduced reference and no 

reference. The full reference metrics rely on the comparison between the original video 

(before transmission) and the received video. The reduced reference metrics require a 

feature vector derived from the statistical model of the reference video for quality 

evaluation. No reference metrics use information contained in the received video only, 

which make it easy to implement in real-time tests. The quality evaluation result is more 

precise for full reference metrics in comparison with the reduced/no reference metrics; 

however the computation complexity involved also increases. As the full reference 

metrics are more precise, they will be discussed in more detail in this Section. Some of 

the most known full reference objective metrics including Peak Signal to Noise Ratio 

(PSNR), Video Quality Metric (VQM), Structural Similarity Index (SSIM), etc.  

The PSNR metric is the most commonly and widely used metric for assessing 

video quality. The PSNR can be calculated as shown in equation (2.2). 

 
𝑃𝑆𝑁𝑅𝑑𝐵 = 20 log10

255

√𝑀𝑆𝐸
 

(2.2)  
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Where Mean Squared Error (MSE) represents how the original video is different 

from the received one. The popularity of PSNR is due to its low computational 

complexity. However, PSNR does not consider the effect of visual masking, i.e., any 

pixel error will cause a decrease of PSNR even if it is not perceived [46]. 

In [47], another estimation model for PSNR is proposed using only the network 

related parameters such as the received and transmitted bit stream. According to [47], the 

PSNR can be estimated using only the transmitted and received bit rate as in (2.3) 

Where: 

 𝐵𝑖𝑡𝑟𝑎𝑡𝑒 is the average bit rate of the data stream transmitted. 

 𝐸𝑋𝑃_𝑇ℎ𝑟 is the average throughput expected to be obtained. 

 𝐶𝑅𝑇_𝑇ℎ𝑟 is the actual average measured throughput. 

For the simulations in this thesis, PSNR is used as the video quality measurement 

metric and the estimated PSNR value of simulated video streaming service is evaluated 

using (2.3). 

Table 2.4: PSNR to MOS conversion [48]. 

PSNR [dB] MOS 

>37 5 (Excellent) 

31-37 4 (Good) 

25-31 3 (Fair) 

20-25 2 (Poor) 

<20 1 (Bad) 

In [48] the authors proposed that PSNR metric values can be mapped to MOS 

scale by using the conversion table as in Table 2.4. 

SSIM metric [49] is another known full reference objective metrics which aims 

at being more consistent with the human vision by comparing the similarities between 

two frames based on luminance, contrast and structural similarity. The SSIM metric sits 

between [0, 1] where 0 means there is no correlation with the original video frame 

(totally different frames) and 1 means full correlation (identical frames). SSIM metrics is 

highly correlated with subjective quality assessment methods; however, the 

computational complexity of SSIM is also much higher than that of PSNR. 

 
𝑃𝑆𝑁𝑅 = 20 log10 (

𝐵𝑖𝑡𝑟𝑎𝑡𝑒

√(𝐸𝑋𝑃𝑇ℎ𝑟 − 𝐶𝑅𝑇𝑇ℎ𝑟)
2
) (2.3)  
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VMQ metric [50] is a novel objective video assessment metric developed by The 

Institute of Telecommunication Science (ITS). In VMQ, the perceptual effects of video 

impairments such as blurring, noise and distortion are assessed and combined. The 

computational complexity of VMQ is even higher than SSIM, yet the correlation with 

subjective quality assessment method is better. 

 

2.5 Chapter summary 

 

This chapter presents an overview of the main technical background information 

related to this thesis, including Wi-Fi access network technologies and architectures, 

wireless multi-hop routing protocols, structured and unstructured overlay networks and 

subjective/objective quality assessment methods for video streaming services. 

Considering the advantages and disadvantages of proactive and reactive routing 

protocols, OLSR was chosen to be used as the underlay routing protocol in this 

dissertation and therefore was used in the tests. In addition, acknowledging the 

drawbacks of overlay protocols in wireless scenarios, this thesis aims at finding a 

solution to improve overlay communication for wireless multi-hop scenarios. Finally, 

both subjective and objective approaches for measuring video quality were also 

summarized and discussed. 
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CHAPTER 3: Related Work 

 

 

Abstract 

 

This Chapter discusses the research works related to the proposed solutions 

including methods for overlay construction and techniques to improve overlay content 

delivery in the context of wireless multi-hop networks. For each study, the advantages 

and disadvantages of the proposed mechanisms are highlighted. The methods for 

constructing the overlays over wireless multi-hop networks are categorized as either 

unstructured or structured. The techniques for improving overlay content delivery 

include link-aware methods and solutions for enhancing seek and jump operations for 

Video on Demand (VoD) services. 

 

3.1 Overlay Network Construction over Wireless Multi-hop 

Network 

 

Due to the common nature of their distributed components (wireless nodes in 

multi-hop networks and peers in overlay networks), P2P overlay networks and wireless 

multi-hop networks share many common characteristics such as self-organization and 

decentralization. Moreover, in both kinds of networks, nodes can join and leave the 

network at any given time, and the degree of dynamicity is very high. When integrating 

an overlay network on top of a wireless multi-hop network, these similarities impose an 

additional layer of complexity in order to accommodate topology changes in both the 

overlay and physical network. As a result, designing an overlay protocol that is efficient 
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and well-suited to wireless multi-hop networks is a challenging task to be solved. The 

suitability of applications that rely on P2P overlay architecture over a wireless multi-hop 

network introduces several technical challenges including accommodating bandwidth 

and reliability issues, the overlay maintenance overhead, and overlay routing stretch, 

which will be discussed next.  

Bandwidth and reliability issues. P2P overlays were initially designed for the 

Internet which mostly relies on wired networks where bandwidth is plentiful and 

connections are in general reliable. In contrast to wired networks, wireless multi-hop 

networks are limited in bandwidth. In addition, wireless channels are changing constantly 

and wireless transmission is error prone due to collisions and multipath fading. These 

critical characteristics of wireless multi-hop networks make the implementation of 

overlay networks very challenging. If existing overlay protocols for wired networks are 

used without modification in wireless multi-hop networks, the high volume of their 

maintenance traffic eventually overwhelms the network capability, imposing excessive 

delay and packet loss on overlay data exchange and other types of background traffic.  

Overlay maintenance overhead. In order to enable routing on the overlays and 

also keep the overlay structure consistent, overlay peers have to exchange overlay control 

messages with other peers. This maintenance traffic contributes to congestion and 

collisions on the underlay network. Moreover, since the overlay network is built on top 

of the physical network, it imposes another layer of complexity for overlay maintenance. 

In addition to the dynamicity at the overlay network due to leave and join of peers, 

changes in the physical network topology could also indirectly affect the overlay 

consistency. These two layers of dynamicity further increase the maintenance overhead 

over the resource-constrained wireless multi-hop networks. 

Overlay routing stretch. In wireless multi-hop scenario, whenever an overlay 

peer wants to contact a neighbour peer, the query message may have to go through 

multiple wireless hops across the network. For instance, when routing a query message to 

a destination through Chord, the node selects and forwards the message to its finger 

neighbour which is closest in the ID space towards the destination peer. When the 

message reaches the overlay neighbour, it repeats the same overlay routing procedure 

until the message reaches the destination peer. As a result, routing an overlay message 

happens at two levels: overlay routing from one neighbour peer to another according to 
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the overlay routing strategy and underlay routing through the hop-by-hop wireless multi-

hop routing protocols. Since the overlay is constructed independently of the physical 

topology, the overlay routing from one neighbour peer to another could travel across the 

whole network, which is highly inefficient. 

Overlay routing stretch is defined as the ratio between the cost of the route from 

the source to the destination peer using the overlay routing relative to the cost of the 

optimal path routing using the underlay wireless multi-hop routing protocol if the source 

and the destination peers are known. A small overlay routing stretch means that the 

overlay route is efficient in comparison to the shortest underlay path. Minimizing overlay 

route stretch could significantly reduce the overlay resource consumption, increase the 

overlay reliability and therefore, make the overlay network more scalable. 

Because of the different possible strategies and also the numerous techniques and 

approaches involved, in this chapter the related proposed overlay construction solutions 

are categorized into two wide categories, namely unstructured and structured. 

 

3.1.1 Unstructured Overlay Construction over Wireless Multi-hop Networks 

 

As previously described in Chapter 2, unstructured overlay imposes no rigid 

structure on the relationship between the overlay topology and where the resources are 

stored. Resource searches in an unstructured overlay are normally based on flooding 

mechanism where the peer asks its neighbours for the resource, these neighbour peers in 

turn asks their neighbours until the resource is found. In this Section, the different 

solutions to deploy unstructured overlay network over wireless multi-hop networks are 

presented. The discussions on these solutions are then shown in Section 3.2.3. 

In [51] A. Klemm et al. proposed Optimized Routing Independent Overlay 

Nework (ORION) for P2P file sharing on MANET (Mobile Ad-hoc Network) based on 

the Gnutella protocol. ORION comprises an algorithm for on-demand (reactive-like) 

overlay construction in which route discovery of network layer could be integrated with 

an application-layer query process to reduce the overlay and routing overhead. In 

ORION, query messages are flooded to the whole network to search for the requested 

file. Based on the response messages, each peer in the network along the path to the 
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requesting peer builds a file routing table containing the next hop nodes on the paths to 

the shared file. Based on this routing table, overlay messages and data packets can be 

routed efficiently between the overlay nodes towards the requested node. A packet 

scheduling scheme was further introduced to replace the TCP transport mechanism, 

aiming at reducing retransmission overhead when there is a change in physical topology. 

The ORION packet scheduling scheme divides the sharing files into equal size blocks, 

each block is transferred and received independently (not necessarily in order) and only 

lost blocks are re-requested. Simulation results show that ORION outperforms Gnutella 

with TCP transport mechanism in search accuracy and reduces overlay overhead. 

However, in the proposed mechanism, in the case that there is more than one peer 

containing the requested file, there is no indication of how to select the best peer to get 

the file from. Moreover, for large networks with high dynamicity, the flooding process is 

network intensive and may take a long time, during which the route to the shared file 

may have already changed, which makes the file routing table inaccurate. 

Application (MPP)

Presentation

Session (HTTP)

Transport (TCP)

Network (IP) EDSR

Link

Physical

M
P

C
P

Data Routing
 

Figure 3.1: Layered architecture of Mobile Peer-to-Peer (MPP) [52] 

 

I. Gruber et al. proposed Mobile Peer-to-Peer (MPP) [52] as a file sharing system 

in MANET. In contrast to ORION, MPP introduces cross-layer communication between 
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the network layer and P2P application layer to adapt the overlay structure to the physical 

structure of MANET. As shown in Figure 3.1, MPP includes a file sharing application at 

the application layer, a P2P extended Enhanced Dynamic Source Routing (EDSR) at the 

network layer for both overlay and underlay network routing and a Mobile Peer Control 

Protocol (MPCP) which acts as an interlayer communication protocol between the MMP 

and EDSR. At the network layer, EDSR combines Gnutella-style flooding and Dynamic 

Source Routing (DSR) [20] for overlay search as well as underlay routing. In MPP, when 

a node wants to locate a desired file, it issues a search request that is flooded throughout 

the MANET using the route discovery mechanism of DSR with additional fields for the 

search string. Intermediate peers add their own addresses to the search request to create a 

DSR-style route while the search request is flooded throughout the network. At the 

destination, a response message is sent back to the requester using the reverse route. At 

the application layer, MPP uses HyperText Transfer Protocol (HTTP) to provide file 

transfer service to support download resume. Simulation results show that MPP can 

reduce overlay overhead in comparison with ORION. However, the flooding-style 

request would result in a network-wide broadcast which is bandwidth intensive and is not 

suitable for large scale networks with high request rate. 

C. C. Hog et al. proposed a P2P file sharing system over MANET based on 

Swarm Intelligence (P2PSI) [53] to enable efficient and scalable file sharing. The 

proposed P2PSI is based on a hybrid push-pull approach, which comprises of 

advertisement (push) and discovery (pull) processes to locate shared files on the network. 

In the advertisement process, peers periodically broadcast advertisement messages about 

their shared files. The advertisements are bounded in a limited area using TTL to prevent 

broadcast storms. In the discovery process, a peer sends a request message to look for the 

shared file and based on the reply message, each intermediate peer builds and maintains a 

pheromone table which records reply message intensity through its neighbours. The 

pheromone table is used to forward subsequent queries. The pheromone table entries are 

reinforced with each subsequent reply and are also periodically evaporated to help reflect 

network changes. The authors further proposed a cross-layer architecture to integrate 

P2PSI with swarm-based ARA routing protocol [54] to integrate the overlay discovery 

process with the routing process. This integration combines the overlay discovery and the 

underlay route establishment processes, further reducing route establishment overhead. 

Simulation results show that in comparison with existing cross-layer design using DSR 
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and Destination Sequenced Distance Vector Routing (DSDV) [23], P2PSI achieves better 

performance in terms of control overhead, request success ratio and path length. 

However, the overhead of pheromone table may have a significant negative impact on 

the peer operation when the number of shared items increases. Besides, it is not clear 

from the paper how to choose a suitable parameter set, such as the limit of broadcast 

range, pheromone evaporate parameters, etc., for different network sizes and levels of 

mobility. 

W. Kellerer et al. proposed the Zone-based P2P (ZP2P) [55] to reduce the 

overlay maintenance traffic and to replace the network-flood approach of Gnutella. In the 

proposed scheme, each overlay peer builds and maintains a zone around its vicinity (in 

terms of hop count). A peer periodically exchange advertisement messages, which 

includes all its shared resources and routing information with all the peers in its zone. 

Through this advertisement exchange, each peer knows the complete P2P overlay 

network topology and the available content in its zone. To search for a piece of content, a 

peer first searches among the available content in its zone. If the searched content is not 

found locally, the peer issues request messages to the peers at the border of its zone. The 

search process proceeds in a similar way, step by step, until the content is found. 

Simulation results illustrate that the proposed ZP2P outperforms the conventional 

Gnutella protocol in terms of overlay maintenance overhead. It can be seen that this 

zone-based approach can reduce some broadcast traffic as the node-to-node flooding 

process is transformed into zone-to-zone propagation. However, to a certain degree, this 

zone-to-zone search process behaves the same way as the flooding search and the utility 

of local zones will not scale with growing network sizes. Besides, the periodic content 

update of peers in a zone will further introduce some traffic overhead to the protocol. 

Moreover, peer mobility is not considered in the proposed scheme which may severely 

affect the performance of ZP2P. 

C.L. Liu et al. proposed Mobile Chord (MChord) [56] to enhance the P2P 

performance over vehicular ad hoc networks (VANET). MChord removes the overlay 

structure of Chord by replacing the Chord finger table structure with an overlay table 

containing all other nodes which are currently in the P2P overlay. An overlay peer keeps 

the overlay table updated by periodical exchanging its overlay table with all its one-hop 

neighbours by making use of the broadcast nature of the wireless channel. To speed up 

the overlay synchronization process, the overlay table is further piggybacked into overlay 
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messages, such as query messages. MChord also makes use of the broadcast nature of the 

wireless channel so that all the overlay messages passing through a peer are investigated 

even if they are not destined for the peer and overlay knowledge is harvested. Using this 

piggyback and cross-layer information harvesting, all intermediate peers along the 

forwarding path of an overlay message can update their overlay information upon 

receiving a message. Simulation results show that MChord outperforms Chord in the 

number of overlay forwarding steps, success query ratio, and query delay. However, for 

large networks, it would be impossible to maintain a consistent overlay table across all 

the peers, especially in high dynamic scenarios. Besides, the periodic one-hop broadcast 

of overlay tables occurs at a network wide scope, therefore is similar to the flooding 

mechanism, and can significantly increase the overlay maintenance overhead. Moreover, 

piggybacking the overlay table into all overlay messages may cause excessive overhead 

on the network, which would increase dramatically as the number of overlay peers 

increases, making the scheme un-scalable. Complexity is another issue as each and every 

message have to be inspected according to the cross-layer mechanism. 

G. Ding et al. proposed OverMesh [57] - an architecture to deploy services across 

mobile nodes in WMN. The proposed architecture is built over IEEE 802.11s and 

includes four components: Central, Gateway, Mesh nodes and Clients. The Central 

component is a dedicated machine which is responsible for centralized overlay 

management and node authorization. The Gateway component is a network device which 

is used for connecting the mesh network to external networks such as the Internet or 

other wireless networks. The Mesh nodes provide wireless multi-hop communication and 

overlay services. Mesh nodes are also partitioned into multiple virtual machines, where 

each virtual machine provides a service to an overlay. These virtual machines are 

managed by the Central. The Clients connect to the nearest Mesh nodes to gain access to 

the overlay services, but they do not contribute to providing of overlay services. Another 

contribution of the study is the proposal of a cross-layer searching method. In OverMesh, 

each of the queries for resource content is broadcasted to the whole network. This 

broadcast-based query replaces the query mechanism in the Distributed Hash Table 

(DTH) protocols to reduce the search complexity and response time. Making use of the 

network layer broadcast, the cross-layer mechanism allows nodes to look into the 

broadcasted queries received (even if they are not the destination) and reply if the nodes 

know routing information about the queried key. However, the centralized management 
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in this study does not scale well over a large-scale deployed WMN. Besides, the 

broadcast-based queries are inefficient as the query messages flood the whole network. 

Moreover, the authors have not investigated the effect of node failures to the 

performance of the proposed scheme. 

 

3.1.2 Structured Overlay Construction over Wireless Multi-hop Networks 

 

As previously described in Chapter 2, structured overlays such as the Chord Ring 

[35] impose a structure on the overlay topology. In order to enable routing on the 

overlay, an overlay routing table is maintained at each of the peers. This routing table for 

each peer is different and covers only a small part of the overlay network, but allows the 

peer to query another peer in a limited number of overlay steps. In this Section, the 

different solutions to deploy structured overlay network over wireless multi-hop 

networks are presented. The discussions on these solutions are also shown in the next 

Section. 

S. Ratnasamy et al. proposed Data-Centric Storage [58]-[60], an overlay-based 

data dissemination method for sensor networks aiming at minimizing communication 

costs. In their works, the authors first assume that sensor data can be classified into 

events (based on some combination of sensor readings) and the data can be summarized 

(such as count of events, average values, etc.) to provide meaningful indicators about the 

network. In the proposed scheme, each data event is named with a key, a unique 

identifier, and the communications regarding the data event (storage and retrieval of an 

event) are performed using this key rather than the actual node addresses. The authors 

then proposed Geographic Hash Table (GHT) to hash the keys into geographic 

coordinates. The data associated with the key is stored at the sensor node in the vicinity 

of this location using Greedy Perimeter Stateless Routing (GPSR) [61] (assuming each 

sensor node knows its own location a priori). To make the key available in case of node 

failure, the key-data combination is duplicated to the node’s neighbours. The 

communication cost of the proposed scheme is analysed and compared with the External 

Storage scheme (when all data are sent for storage at an outside external node) and Local 

Storage scheme (when data is stored at the observed sensor and queries for data are done 

through flooding). An analysis framework is provided to show that the Data-Centric 
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Storage scheme is superior in terms of overlay communication overhead to External 

Storage and Local Storage especially when summaries of the data events are required 

instead of a listing of all the individual data events. Nevertheless, since data is only 

replicated to nodes near the location of the key, it is not geographically distributed and 

failure of nodes in a certain area would result in loss of all information associated with 

the key. Moreover, a centralized storage at one sensor node for a certain type of data for 

the whole sensor network, although promising for handling queries, may overwhelm the 

sensor storage and deplete the battery of the node due to excessive communications. 

Using the same principle of GHT, O. Landsiedel et al. propose Mobile Hash 

Table (MHT) [62] to integrate a DHT into mobile ad-hoc networks. This integration 

allows resource sharing when experiencing frequent changes in physical topology due to 

node mobility. In order to make MHT feasible, each node in the overlay periodically 

broadcasts its own position, speed and direction to the surrounding nodes. In this scheme, 

each data item is assigned a key that indicates its position in the physical network and is 

stored on a mobile node that is closest to this position and is within the transmission 

range. When the node which stores the data item moves away from the data’s position, 

the data will be transferred to another node in the vicinity of the data item’s original 

position. In order to query a data item, the requesting node computes the item’s position 

using its key. Each query contains the data location for reaching the stored node, and the 

current position, speed and direction of the requesting node for the response. In order to 

adapt to the direction changes of the requesting node, whenever the requesting node 

changes its direction or speed, a temporary data item (a buoy) is generated to store the 

change in node’s movement and is placed at the current positon of the source and moves 

with the old direction and old speed of the source. The authors also proposed a traffic 

adaptation method for reducing data transfer overhead in which the data item is moving 

around its location along traffic paths shaped by roads. Local redundancy and global 

redundancy solutions are also proposed to ensure the availability of data items. However, 

the proposed scheme is strongly relyant on the movement data (direction and movement 

speed) which is hard to collect and may not be reliable. Moreover, as a data item 

transfers among the mobile nodes to retain its location, it would cause excessive 

communications and can lead to network congestion or may not be possible when the 

data is large and the node is moving at high speed. 



 

 Chapter 3: Related Works 

 

53 

 

P. Desnoyers et al. proposed Tiered Storage ARchitecture for sensor networks 

(TSAR) [63] – a two-tier storage architecture for Wireless Sensor Networks. In TSAR, 

an Interval Skip Graph, a distributed indexing structure, was proposed for efficiently 

supporting both temporal queries and queries for sensor data in a certain range. The 

architecture includes two tiers: the proxy tier and the sensor tier. The sensor tier 

comprises energy-limited sensors which store data locally and send only summary of 

data (metadata) to the proxies for indexing. This metadata includes only the time stamp 

interval of the sensor data and the coarse description of the sensor data, such as the max-

min data values in the interval. The proxy tier consists of resource-rich proxy nodes 

which exchange the metadata received from the sensors to provide a unified logical view 

of all data in the system. In order to index the metadata for further queries from users, the 

authors propose the Interval Skip Graph – a multi-resolution ordered distributed index 

structure. The metadata is ordered using the summary information and log2 𝑛 pointers (𝑛 

is the number of the data elements) are constructed for each of the metadata in order to 

enable overlay search with 𝑂(log2 𝑛) messages. Since the data elements can be indexed 

using the range values in the summary, this interval-based data structure allows data 

range queries instead of searching for a particular value. However, the authors have not 

investigated the effect of proxy failures on the framework performance. Moreover, since 

the overlay structure is indexed by the data values which are likely to change drastically 

with each update, the overlay maintenance at the proxy tier could be very significant. 

L. Galluccio et.al. proposed Georoy [64], an algorithm for efficient retrieval of 

information for overlay networks on WMN. The Georoy algorithm is based on Viceroy 

protocol [65] for the basic lookup mechanism. The authors introduced a two-tier overlay 

architecture design. The lower-tier includes leaf peers which provide overlay services. 

The upper-tier comprises super peers (access points) which manage a distributed 

catalogue of available resources and maintain the overlay structure. In order to make the 

overlay nodes aware of the physical topology, the author introduced a super peer - 

location ID mapping scheme. This location-aware ID exploits the location information of 

the super peers to speed up the search process. The geographical ID mapping is shown in 

Figure 3.2 and mathematically formulated by equation (3.1) in which node IDs are 

marked based on their 𝑥 and 𝑦 coordinates sequentially on each ∆ slide which define the 

granularity of the location awareness. Intuitively, the Georoy ID assignment divides the 

deployment region into slides and assigns ID to nodes in each slide consecutively 
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according to 𝑥 coordinate in each slide; the ID assignment order is reversed in the next 

slide to preserve the location proximity. This geographical ID mapping aims at enabling 

nodes close together physically lay in an ID range close together. The paper also 

illustrates mobility management procedures including joining/leaving of leaf nodes, 

update distributed resource catalogue, retrieval of information and handoff management. 

However, the proposed scheme is not designed with data replication and failure of a 

super peer that manages the resources would make the resource unavailable globally. 

Moreover, since resources are mapped to keys which are fixed, failure or joining of a 

super peer would lead to key transfer and movement of the data associated with the 

transferred key which may lead to congestion in dynamic networks. Besides, the 

mapping scheme although is location-aware, can lead to ID duplication which is not 

mentioned in the paper. 

D 

S

D 

S

Location awareness granulariry

Side of the deployment region

Order of ID assignment
 

Figure 3.2: Node ID assignment of Georoy [64]. 
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where  

ID(x, y) is the ID of a peer with coordinates (𝑥, 𝑦). 

𝑠 is the side of the deployment region. 

Δ is a parameter which defines the granularity of location awareness. 

C. Canali et al proposed MeshChord. [66] - [68], an efficient overlay mechanism 

for peer-to-peer resource sharing in WMN with reduced overlay message overhead and 

improved overlay lookup performance. The proposed scheme adopts the two-tier design 

and includes location aware ID assignment, which is the same as in [64], to incorporate 

location information into node-ID assignment. However, instead of using Viceroy, 

MeshChord uses the Chord overlay protocol. Another contribution of the paper includes 

a MAC layer cross-layer mechanism to speed up the lookup process. In this cross-layer 

mechanism, overlay nodes examine all the received messages at the data-link layer (even 

those not destined for them) and answer to lookup requests if they can resolve the lookup 

locally. The authors also proposed the stretch factor as a metric to measure how close 

the overlay to the physical topology. The stretch factor is calculated the same way as the 

overlay routing stretch which was mentioned in Section 3.2. Their analysis results show 

that the stretch factor of MeshChord is 𝑂(√𝑁 log𝑁), i.e., an overlay lookup traverses 

𝑂(√𝑁 log𝑁) times on average through overlay routing more than the hop count between 

the two overlay peers in the physical network. The performance evaluation shows that 

location-awareness could greatly reduce message overhead while cross-layering could 

decrease the response time. However, the study is basically an extension of [64] and 

hence shares the weaknesses of [64]. Besides, the cross-layer mechanism would 

introduce an additional processing overhead and delay on intermediate peers as all 

messages relaying through an intermediate node have to be examined for overlay query. 

With an increase in the size of the network this processing overhead increases 

dramatically which makes the scheme not scalable. 

F. Delmastro et al. proposed CrossROAD [70], an optimized solution which 

exploits a cross-layer architecture to reduce the communication overhead introduced in 

Pastry [37]. The authors first evaluate the messaging overhead influence of Pastry on an 

actual Mobile ad hoc test bed. The tests show that Pastry overlay introduces a heavy 

overhead in ad hoc networks, reducing the overall system performance. The authors then 
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proposed CrossROAD to integrate the overlay operations with the underlay routing 

protocol. Making use of this integration, CrossROAD exploits additional information at 

routing layer to optimize the overlay management. In particular, additional overlay 

information fields are embedded in the OLSR routing packets. These fields include 

overlay service information and are periodically sent by the OLSR instances in the 

wireless nodes. In this way, each node in the network becomes aware of the other peers 

in the overlay network as well as aware of underlay network changes with only a 

marginal increase in network overhead. This piggyback approach seems promising in 

reducing overlay overhead, however, CrossROAD requires the routing layer of the 

protocol stack to be changed accordingly, which may not be practical in real networks 

and can lead to incompatibility issues between devices. Besides, this integration only 

works with proactive wireless multi-hop routing protocols which also limits the usage 

scope of the scheme. Last but not least, in this study, the authors only illustrated the 

concept of CrossROAD, and no scenario-based testing and verifications were presented 

to show the overlay performance metrics of CrossROAD. 

 

3.1.3 Discussions and Architectural Design Decisions 

A summary of the advantages and disadvantages of unstructured and structured 

overlay mechanism over wireless networks is illustrated in Table 3.1. 

 Underlay Network Structure Choice 

In order to achieve efficiency when deploying an overlay network over a 

wireless multi-hop network, a suitable underlay network structure must be 

carefully selected. As shown below, this choice of underlay network structure 

seriously affects the overlay performance. 

In terms of underlay network structure, among the various overlay 

solutions, two underlay network structures are commonly used, namely 

Mobile Ad-hoc Network (MANET) and Wireless Mesh Networks (WMN). 

MANETs are composed of the wireless clients only and allow direct 

communications between them. On the other hand, WMNs include two types 

of network devices: the Mesh Routers (MRs) and the Mesh Clients (MCs). 

MRs are stationary, power-unlimited network devices which are used for 

forwarding the network traffic from the source to the destination. The MRs 
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connect to each other to form a wireless backbone which acts as the wireless 

backbone infrastructure of the network. Multi-hop routing is integrated into 

the MRs to enable multi-hop communications. MCs are user devices, which 

connect to the WMN through these MRs to gain access to the provided 

services.  

Table 3.1: Summary of advantages and disadvantages of unstructured and 

structured overlay schemes over wireless scenarios. 

Category Scheme  Advantages Disadvantages 

Unstructured 

overlay 

ORION [51] Integrates route discovery 

into overlay 

communications 

Uses flooding based 

search which is not 

efficient 

MPP [52] Integrates overlay 

communication into DSR 

routing 

Uses flooding based 

search which is not 

efficient 

Needs to modify existing 

routing protocol 

P2PSI [53] Uses pheromone table to 

maintain the freshness of 

shared files’ location 

information 

Introduces additional 

networking and 

computational overhead 

ZP2P [55] Uses zones to reduce 

overlay messaging overhead 

Still uses flooding 

process in each zone to 

search for shared items 

MChord 

[56] 

Piggybacks overlay table 

into query message to 

reduce overlay messaging 

Has difficulty 

maintaining consistent 

overlay table in large 

networks 

OverMesh 

[57] 

Uses cross-layer mechanism 

to speed up the query 

process 

Uses flooding based 

search which is not 

efficient 

Structured 

overlay 

Data-

Centric 

Storage [58] 

Stores data at geographic 

coordinates to reduce 

overlay communications 

Is sensitive to node 

mobility and node failure 

MHT [62] Integrates node position, 

speed and direction into 

overlay messages to support 

mobility 

Introduces additional 

networking overhead 

TSAR [63] Uses a two-layer architecture 

Support summary of data 

Is sensitive to node 

failure 

Georoy, 

MeshChord 

[64]-[68] 

Uses a two-layer architecture 

Uses location-aware ID to 

speedup search process 

The location-aware ID 

mapping could be 

improved 

CrossROAD 

[70] 

Integrates overlay 

communications into OLSR 

to avail physical information 

on the overlay 

Requires the change of 

existing routing protocols 

No scenario-based testing 

to verify the idea. 
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For deploying overlay networks, the low capability and highly dynamic 

nature of wireless clients of MANETs make them un-scalable and 

inapplicable. First, wireless clients are normally battery-powered user devices 

which are not designed for relaying traffic. Their small wireless card and 

power-constraints clearly puts a limit on the offered bandwidth and 

transmission range. Besides, the power-limited characteristic also puts a 

constraint on their operational lifetime. On top of this, wireless clients could 

be highly mobile which leads to frequent connection disruptions. These 

characteristics make the underlay network unreliable for high volume traffic 

such as videos. Deploying overlay network over such unreliable underlay 

structure would cause instability in overlay connections. This instability in 

overlay connections makes the overlay communication inefficient and also 

results in constantly excessive overlay maintenance traffic trying to maintain 

overlay consistency. This effect can be illustrated by the lookup success rate 

of less than 50% for large network or high mobility scenarios in [53]-[55], 

[72]-[73]. 

On the other hand, in WMNs, the stationary wireless backbone 

constructed by the MRs offers a more suitable facility to deploy overlay 

networks over. With the hardware highly specified for traffic relaying tasks 

and an unlimited power source, MRs offer a much higher bandwidth at a 

much wider coverage of up to hundreds of meters. By deploying the overlay 

network on top of these MRs, the MCs only connect to the MRs to access the 

overlay resources or to share their own resources as in [63], [65]-[67]. In this 

way, the control messages can be kept to minimal as the underlay and overlay 

networks do not change much. Moreover, since the overlay is deployed over 

the MRs, the overlay maintenance traffic remains constant regardless of the 

number of the MCs. Besides, in the WMN scenario, mobility of MCs would 

not overly affect the overlay performance due to the wide area coverage of 

the MRs. For instance, assume that the coverage radius of one MR is 100m, a 

MC with average moving speed of 10m/s will stay connected to one MR at 

least for 10 seconds, which is sufficient for a transfer session of small pieces 

of data (a video segment or a block of data). Moreover, it is easier to install 

and maintain overlay applications on the MRs to provide services for the MCs 
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than install them on all MC devices and expect the users to maintain the 

overlay application. In recent research works, even wireless sensor network 

have begun to make a switch to a layered network structure [63]. 

Due to the many of the advantages described above, it is believed that 

deploying an overlay on top of a WMN with overlay maintenance conducted 

on the MRs is the most scalable and efficient approach. Hence, this type of 

underlay network architecture is chosen to be employed throughout this 

study. 

 

 Overlay Structure Choice 

When deploying overlay services over a resource-constrained wireless 

multi-hop network, a direct use of legacy P2P protocols would lead to high 

maintenance overhead and scalability problems since they operate 

independently of the underlay network topology. As a result, in order for an 

overlay protocol to perform efficiently over a wireless multi-hop network 

such as WMN, it should not only operate at the application layer alone, but 

also integrate the underlay physical network topology into the overlay 

structure and operations. 

Unstructured overlays have been proved to work very well in wired 

networks. However, when deploying over wireless multi-hop scenarios, their 

flooding-based query becomes a severe weakness. The network wide flooding 

process for each resource search from one peer will result in a network wide 

traffic burst. This traffic burst makes the overlay network un-scalable, 

especially when many peers search for resources at the same time. Although 

many studies have tried to improve the efficiency of the unstructured overlay 

by integrating overlay protocol with underlay routing [51]-[52], using swarm-

based intelligence [53] or dividing the network into multiple zones [55], the 

basic searching process is still based on network flooding which could lead to 

network wide broadcast storms, network congestion and disruption of other 

services. 
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On the other hand, in structured overlays, each peer builds and maintains 

a small overlay routing table. These distributed routing tables ensure overlay 

communications between any two peers that are accomplished within a 

predetermined number of overlay forwarding steps. It is remarked that these 

overlay queries are unicast based on the structure of the overlay routing table 

and are much less network intensive than the flooding based query of the 

unstructured overlay protocols. Of course, in order to maintain this overlay 

routing table, some level of maintenance traffic is required. However, 

different from the bursty traffic of unstructured overlay, structured overlay 

maintenance traffic is unicast periodically. As each overlay peer has its own 

overlay routing table, the effect of increasing query rate is much less network 

intensive than the flooding-based query of unstructured overlay. 

However, if there is no linkage between the overlay network and the 

physical underlay topology, overlay routing table may point to distant peers in 

the underlay network. As a result, the overlay routing process towards the 

destination peer could route an overlay message across the entire physical 

network many times. As illustrated above, this lack of underlay network 

awareness could result in inefficient underlay routing, significantly increasing 

the protocol overhead and a high overlay routing stretch. Not only affecting 

the underlay performance, this inefficiency could also significantly degrade 

the overlay performance and efficiency, as well as seriously affect the 

transport of other types of traffic. 

Based on the above discussions, the structured overlay is chosen as the 

overlay protocol to be studied in this thesis. An integration mechanism 

between overlay network and physical topology is further proposed. This 

overlay-underlay integration mechanism makes use of the stationary 

characteristics of MRs to realize a location-aware overlay for locating and 

retrieving resources and contents. 
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3.2 Improving Peer-to-Peer Overlay Content Delivery over 

Wireless Multi-hop Networks 

 

One of the most significant aspects of original overlay networks is that the P2P 

overlay is independent of the underlay network topology. This means the overlay 

identification of a peer is only used to uniquely identify the peer in the overlay network 

and the true identity of the peer (such as IP address) stays anonymous. However, this 

independence also results in a drawback: two peers whose identifications are close to 

each other in the overlay network are not necessarily close to each other in the physical 

topology. This characteristic is not a serious problem for deploying P2P networks across 

the Internet, which is the initial idea of P2P, as topology-awareness across the Internet, 

through many continents, is hard to achieve and connections across the Internet are 

usually wired-based which are resource-rich and very reliable. 

However, when deploying overlay applications in a wireless multi-hop scenario 

with bandwidth-limited, dynamically changing and error-prone links, this independence 

becomes a significant disadvantage. In particular, in an overlay network, overlay content 

such as a data item or a video segment can be available at many peers in the network. If 

the requesting peer selects a peer to download the content from at random, the data 

retrieval performance could be very bad as it is well-known that the achievable 

bandwidth of a wireless multi-hop network degrades quickly with the number of hops 

between the source and destination node [2]. Especially, in multimedia applications, such 

as video streaming, Video on Demand (VoD), etc., this data retrieval degradation is very 

noticeable as it often results in a very poor Quality of Service (QoS) and a poor viewing 

experience for the users. As a result, how to select the best peer to get the content from in 

order to improve the overlay content delivery in a dynamic wireless multi-hop scenario is 

an open question to be studied. 

In this dissertation, the methods in the literature for improving peer-to-peer 

content delivery over wireless multi-hop scenarios are classified into two main 

categories, namely link aware methods and solutions for improving VoD through seek 

and jump operations. 
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3.2.1 Link Quality-aware Methods 

 

E. Karasabun et al. proposed Wi-Share [74], a path quality aware P2P file sharing 

protocol for mobile Ad-hoc networks. The scheme integrates a P2P file sharing 

application with reactive wireless multi-hop routing at network layer to enable efficient 

search and download of shared files. In Wi-Share, search requests for shared files are 

broadcast to the entire network. As the search request message travels the network, the 

list of traversed nodes is recorded so that the route establishment at network layer to the 

requesting node is not needed. The authors further introduce additional parameters to 

quantify the quality of the path. These additional parameters include the current available 

power, path length to the requesting node and the current traffic rate at each node along 

the path. These parameters are appended to the search request at each of the intermediate 

nodes which receives the search request. These parameters are used as the routing 

metrics to build the routing table to the requesting node. These additional parameters are 

also included in the response packet back to the requesting node by the nodes that stored 

the requested file. The requesting node uses these parameters to calculate the path cost to 

each of the matching files as follows: 

  

 

Where 𝐶ℎ, 𝐶𝑏 , 𝐶𝑡 are constants. 

𝐻𝑜𝑝𝐶𝑜𝑢𝑛𝑡  is the number of hops between the nodes, 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑚𝑖𝑛 is the battery level of the node with the least battery power on 

the path. 

𝑇𝑟𝑎𝑓𝑓𝑖𝑐𝑚𝑎𝑥 is the traffic load of the node with the highest load. 

The requesting node uses this path cost to select the best peer to get the file from. 

Path costs are also calculated as in equation (3.2) in intermediate nodes to select the best 

path for routing. During a download session, a periodic search request mechanism is 

introduced to update routing tables with the most recent path cost and also to enable 

newly joined nodes to contribute to the download session. The performance of Wi-Share 

is evaluated on a real test bed of nine nodes. However, in the proposed scheme, the 

 𝑃𝑎𝑡ℎ 𝐶𝑜𝑠𝑡 = 𝐶ℎ × 𝐻𝑜𝑝𝐶𝑜𝑢𝑛𝑡 + 𝐶𝑏 × (100 − 𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑚𝑖𝑛) 
+𝐶𝑡 × 𝑇𝑟𝑎𝑓𝑓𝑖𝑐𝑚𝑎𝑥 

(3.2)  
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constant to calculate the path cost is topology dependent and a general method or a 

learning mechanism to determine these parameters is not shown. Besides, as discussed in 

the previous section, the broadcast based request is not suitable for large networks with 

high content request rates. 

A. A. Asaad et al. proposed P2PMesh [75], a structured-based P2P overlay for 

file sharing over WMN. The authors first proposed a two-level architecture to deploy an 

overlay network over WMN. On the top level, a structured P2P protocol is constructed 

on the MRs. The constructed overlay takes advantage of the stationarity of the MRs to 

reduce overlay overhead and mitigate the end-user mobility. In addition, the MRs are 

also equipped with high storage capabilities to cache the shared files from the users. At 

the bottom level, end user devices connect to the MRs to upload the shared files and to 

download the needed files. To select the best file provider, the MR to which the requester 

is connected sends file request messages (FREQ) to all the potential providers. Upon 

receipt the FREQ message, the potential provider replies with a file acceptance message 

(FACC). The FACC message also includes the list of all the routes to each of the other 

peers that the provider is uploading the same file to. Based on this information, P2PMesh 

enables peers that are downloading the same file from the same provider at the same time 

to share wireless links, thus minimizing route coupling, hop distance and number of 

disjoint nodes. In addition, a file segment retrieval algorithm is proposed to minimize 

wireless transmissions. The requester selects the best provider as above to be its main 

source and other sources as secondary sources. The requester tries to collect segments 

from secondary sources and only requests the missing segments from its main source. 

However, since the routes between sources and requesters may not always overlap, the 

proposed scheme requires many requesters to request the same file from the same 

provider to have a significant efficiency improvement which may not be feasible in 

practice. Besides, it is not clear from the paper how minimizing route coupling, hop 

distance and number of disjoint nodes can be done at the same time, as it is very hard to 

do so in a general scenario. 

N. Mastronarde et al. proposed a distributed framework for transmitting delay-

sensitive multimedia among multiple peers over WMN [76]. The authors first partition 

all the video flows in the network into sub-flows or quality layers. Upon receiving a 

video sub-flow at the destination peer, it is assumed that the quality of the video can be 

incrementally increased. The authors further assume that the underlying Signal to 
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Interference plus Noise Ratios (SINR) of all the intermediate nodes along the path to the 

destination node are known a priori so that the expected goodput at those intermediated 

nodes can be determined. The authors define two utility functions: one for maximizing 

the total quality of all video flows and one for maximizing the minimum quality for all 

video flows to determine the end-to-end system performance. Using the incremental 

quality of each sub-flow and the goodput at the intermediate nodes along the path to the 

destination, a collaborative and a non-collaborative path provisioning algorithms for sub-

flow admission control are proposed to determine which sub-flow can be admitted into 

the network to maximize the desired utility function. In the collaborative path 

provisioning algorithm, source peers exchange information about the relative importance 

(in terms of the quality) of each sub-flow, and perform the optimization for each sub-

flow. In the non-collaborative path provisioning algorithm, a source node resolve the 

paths for its sub-flows without considering the sub-flows of other nodes. Simulation 

results illustrate that the collaborative distributed scheme outperforms the non-

collaborative case and is close to the performance of a centralized optimal scheme. 

However, the proposed study requires all wireless peers to perform optimization and be 

aware of video’s service layers which would result in extreme computational complexity 

and high volume of network overhead in a topology with many nodes or when there are 

many video flows to be transmitted.  

H. Luo et al. proposed a cross-layer optimized scheduling algorithm for peer-to-

peer video streaming applications over multi-hop Wireless Mesh Networks [77]. In the 

proposed scheme, the requesting peer sends query messages to all of its peers which have 

the requested video. As shown in Figure 3.3, the queries include the link information 

(SNR, queue length, etc.) of the requesting peer and all the intermediate nodes along the 

path. The requested peer jointly optimizes the video transmission at different layers using 

this information in order to minimize the video distortion. The parameters for the 

optimization include the quantization step and prediction mode at application layer, the 

frame size at MAC layer and the modulation and channel coding mode at the physical 

layers of all the nodes along the path. The requesting node then uses the optimized values 

from all the requested peers to select the best peer to get the video from. Using the 

parameters for optimization as described above, a video distortion –delay optimization 

problem is formulated under the constraint of the packet playback deadline. To reduce 

the computation complexity, an algorithmic solution to the formulated problem based on 
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dynamic programming is provided. The simulation results in NS-2 [94] showed that an 

enhancement of 5-15dB in terms of PSNR can be achieved using the proposed algorithm.  

 

Link Information (SNR, Queue length, etc.) feedback

MAC Layer

P2P Overlay Layer

Application Layer 

Video Encoding

Buffer

Link 

Adaptation

Link 

Adaptation

Link 

Adaptation

C
o

n
tr

o
ll

er MAC Layer

P2P Overlay Layer

Application Layer 

Video Encoding

Buffer

Input Video Sequence Output Video Sequence

Video Codec

Packet Scheduling

Fragmentation / 

Combination
Frame size

Modulation 

and coding

Quantization, 

prediction mode

 

Figure 3.3: System architecture of the scheduling algorithm in [77] 

 

However, for wireless multi-hop networks, the SNR and queue length of the 

intermediate nodes could vary dynamically with channel conditions and the network 

traffic. As a result, the optimized link adaptation on all the intermediate nodes along the 

path is impractical in reality. Besides, the cross-layer optimization  mechanism requires 

fine tuning parameters on the entire protocol stack in order to improve the video quality, 

i.e., it requires the modification of the entire protocol stack to integrate the scheme, 

which is very hard for implementation. 
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3.2.2 Methods for Improving VoD Seek and Jump Operations 

 

D. Wang et al. studied intra and inter-video VoD operations [78]-[79] to reduce 

the latency of user seek and jump operations by exploiting the locality of reference in 

user access patterns. In order to support P2P VoD, each video is divided into blocks of 

equal size and a set of continuous blocks are grouped into a chunk. The chunks are 

indexed in the overlay network using DHT to enable content searching. A chunk holder 

updates its chunk ownership to peers whose IDs are closest to the hash of the chunk for 

redundancy. Since a chunk holder also knows about 𝛾 peers closest to the hash of the 

chunk (which is called a publish cache), a cached publish scheme is proposed to reduce 

the overlay lookup time. In this scheme, upon receiving an overlay query, a peer can 

forward the query to the destination directly if it knows the destination peer through its 

publish cache, skipping the DHT routing in order to speed up the lookup process. 

For intra-video seeking, the authors claimed that video delivery can be improved 

without doing an overlay search by using the set of neighbours the peer is currently 

downloading the video segment from. First, the authors argue and prove that if a peer is 

downloading a video chunk from a set of neighbouring peers who hold the chunk, it is 

highly probable that its next video chunk is also available in that set of neighbours even 

in the case of a user doing a seek operation within the video. As a result, the requesting 

peer can request the next segment from this set of neighbours without issuing a lookup 

request. 

In addition, in order to reduce the jump delay, the authors use association rules 

learning to discover the reference in inter-video access patterns from other peers to 

predict the videos that are likely to be watched next. Knowing this information enables 

the peer to do lookup or even pre-fetch the content of the predicted next video in advance 

in order to avoid long delay. The proposed scheme however, does not show how to 

choose the best peer from the available peers which holds the video chunk for the best 

video quality retrieval. 

W-P. K. Yiu et al. proposed VMesh [80], a distributed P2P VoD streaming 

scheme for supporting random user seeking functionality. VMesh utilizes the aggregate 

storage capacity of peers to amplify the supply of video segments to achieve user 

scalability. VMesh utilizes DHT to locate the video segments, however in order to 
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support faster user interactivity, each peer keeps a list of the peers who have the previous 

and the next segment depending on the segment it currently stores, as shown in Figure 

3.4. The authors argue that since the segment access order of users is highly correlated, 

i.e, a user who is accessing the current segment also wants to access the next segment, 

using this list could enhance the overlay search efficiency. The authors further argue that 

even if the seek point is not far from the current playing point, traversing this list to find 

the provider of the sought segment is faster than looking up through the DHT network. 

To enable load balancing, each peer also keeps a list of peers storing the same segment 

so that when a supplier peer is overloaded, it can direct some of the new requests to other 

peers storing the same requested segment. To reduce maintenance overhead for these 

lists, a feedback-based maintenance mechanism is proposed in which the requesting peer 

validates the pointers in the lists returned by the requested peer and feeds back to the 

requested peer if the percentage of invalid pointers is large. 

 

 

Figure 3.4: VMesh segment pointer structure [80] 

 

In addition, the authors proposed a popularity-based segment storage in which the 

peers store segments in order of popularity to increase serving capability of the more 

frequently accessed segments. A distributed consensus is first introduced to estimate the 

distribution of all segments’ popularity in a distributed manner by periodic 
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communications between peers. An adaptive segment caching mechanism is then 

presented to enable caching of segments according to their popularity. 

Simulation results show that VMesh can reduce server stress, continuity of 

playback, start-up and jump latency. However, VMesh is not efficient in case the seeking 

point is far from the current playing point. Besides, the feedback-based maintenance is 

not efficient since it does not allow newly joined peers to contribute to the download as 

well as guarantee consistency in the previous/current/next segment lists across the peers. 

Moreover, it is hard to maintain the consistency of the previous/current/next segment 

lists when the number of peers in the network is large. 

C. Xu et al. proposed a QoE driven User-centric solution for VoD services 

(QUVoD) [81] in urban vehicular network environments. QUVoD architecture is 

composed of two wireless networks, a lower layer VANET via vehicle-to-vehicle 

communication WAVE interfaces [82] for data transfer and an upper layer on top of 

cellular network via 4G interfaces for maintaining a Chord P2P overlay. The authors 

argue that a cellular connection is used because in comparison with the vehicle-to-

vehicle connections, cellular connections are more stable and hence suitable for 

maintaining the Chord overlay even when the vehicles are moving with high dynamicity. 

This innovative architecture enables a high lookup success rate and good data delivery at 

the same time. The authors then proposed a distributed grouping-based video segments 

storage in which all vehicles playing the same video will be assigned the same prefix in 

Chord ID (video ID) and hence those vehicles form a Chord sub-circle. This sub-circle is 

further sub-divided into multiple groups according to the number of video segments. The 

nodes in the same group will store several consecutive segments starting with the same 

segment index. The first node in the group acts as the group scheduler. The group 

scheduler distributes downloading sessions to members in the group on a round robin 

basis to ensure load balancing among the members in the group. In addition, a 

speculation-based pre-fetching strategy is proposed to estimate video segment playback 

order by analyzing users’ playback logs obtained by users’ interactive viewing 

behaviours while playing the video. Based on this estimation, pre-fetching of the 

expected segments is employed to smooth the video playback. However, the proposed 

QUVoD does not give recommedations on which peer to choose to download the video 

segment from. The employed round robin approach, which aims to guarantee load 
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balancing, cannot ensure the best retrieved video quality as the source and destination 

peers are possibly geographically far from each other. 

D. Wang et al. proposed a superchunk-based fast search network (SURFNET) 

[83]-[84] to provide reliable and fast search in P2P VoD systems. In SURFNet, each 

video is divided into chunks, and then several chunks are grouped into a superchunk. 

Based on which super chunk the peers hold, SURFNet two-layer structure network is 

formed as shown in Figure 3.5. This structured network consists of two layers: the 

Adelson-Velskii and Landis (AVL) tree [85] layer and the holder-chain layer. For 

stability, the AVL tree layer is constructed using superchunk ID and formed by stable 

peers which are supposed to be online for a long time. At holder-chain layer, each 

holder-chain is a linked list which groups all peers holding the chunks belonging to the 

same superchunk. This holder-chain is attached to a stable peer in the AVL tree (a chain 

head).  

 

 

Figure 3.5: The two-layer SURFNet search network. [84] 
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Using this search network, content discovery in SURFNet involves two steps: 

chunk search and superchunk search. In the chunk search, the requesting peer sends 

query messages to its neighbours in the local holder-chain, requesting the required 

chunk. If no neighbour holds the required chunk, a superchunk search will take place. In 

the superchunk search, the query message traverses the AVL tree to the chain head of the 

superchunk which will search its holder-chain to find the requested chunk. The provided 

analysis shows that the superchunk search path length is bounded by 𝑂(log𝑁𝑠) (𝑁𝑠 is the 

total number of superchunks). The simulation results show that by using superchunks, 

SURFNet can significantly reduce the search hops, search latency and search failure for 

jumps. However, the tree-based structure is not flat like DHT and failure of peers higher 

in the hierarchy such as the root peer would severely affect the overlay performance. In 

addition, the search cost analysis stops at the superchunk level which does not reveal the 

complete search complexity up to the chunk level. Finally, the search network cannot 

give a reference on which peer holding the chunk is the best peer to get the video chunk 

from in order to improve the video retrieval quality. 

 

3.2.3 Discussions 

 

A summary of the advantages and disadvantages of methods to improve P2P 

overlay content delivery over wireless multihop networks is illustrated in Table 3.2. 

In wireless multi-hop scenarios, if an overlay network is constructed 

independently from the physical network, an overlay peer has no reference on which peer 

is better for getting the content from when the content is available at multiple peers 

across the network. For instance, if a peer selects a content provider which is far from 

itself in terms of hop count rather than a closer peer, the download path spans a longer 

route which make it more vulnerable to interference, and bandwidth contention with 

other traffic. A bad selection of peer would result in a poor achievable bandwidth, higher 

delay and a degraded quality experienced by users. This is especially true for bandwidth-

hungry applications such as multimedia. As a result, in order to improve overlay content 

retrieval over wireless multi-hop, it is essential that the overlay network be aware of the 

underlying physical topology.  
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Table 3.2: Summary of advantages and disadvantages of methods to improve P2P 

overlay content delivery over wireless multihop networks. 

Category Scheme Advantages Disadvantages 

Link Quality-

aware 

methods 

Wi-Share [74] Uses hopcount, 

battery levels and 

traffic load to select 

the best peer 

It is not clear how to 

determine the weight for 

each metric 

Uses broadcast based request 

which is not efficient 

P2PMesh [75] Shares wireless 

links, minimizing 

the route coupling 

Computationally expensive 

Sub-flow 

admission and 

path 

provisioning 

[76] 

Uses SINR for sub-

flow admission 

control. 

It is hard to have accurate 

SINR values of all the nodes 

along the path available to 

do the optimization 

Optimize P2P 

video transfer 

using lower 

layer parameters 

[77] 

Uses parameters 

from different layers 

to optimize flow 

admission 

Computationally expensive 

It is hard to have all the 

accurate information from 

all the intermediate nodes for 

optimization 

Improving 

VoD Seek 

and Jump 

Operations 

VMesh [80] Each peer keeps a 

list of the peers who 

have the previous 

and next segments 

to reduce the jump 

delay 

It is hard to maintain the 

consistency of the 

previous/current/next 

segment list when the 

number of peers is large 

QUVoD [81] Groups peers with 

the same video into 

a Chord sub-circle 

and then uses round 

robin to enable load 

balancing 

Does not give the references 

on which is the best peer to 

download the segment from 

SURFNET [83]-

[84] 

Uses AVL tree and 

holder chain to 

arrange peers and to 

speed up segment 

search 

Sensitive to peer failure 

 

Among the proposed approaches in the literature, hop count which is used in [74]-

[75] is the most commonly used metric. Other metrics used to find the best peer to 

download the content from include the battery level, traffic load of intermediate nodes 

[74], or route coupling [75]. Ideally, a combination of these metrics would be one of the 

best solutions, but it is very hard to find the right weight to balance these metrics in a 

single combined metric as they reflect different network characteristics and are topology 
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dependent. Moreover, most of the above studies use reactive route discovery processes to 

resolve the metrics for peer selection. Since these reactive solutions are based on network 

flooding, they can cause broadcast storms in the network and easily reduce the available 

bandwidth when the request rate increases. Besides, these processes are usually done 

only once before the peer selection, are susceptible to noise and may not accurately 

reflect the actual network conditions between the source and the destination peers. 

Following the above discussions, it can be concluded that a close match between 

the overlay network and the physical topology is key to improve overlay content delivery 

in wireless multi-hop network. In WMN, since the MRs are generally stationary, a 

location-aware content retrieval promises to greatly improve the overlay services without 

incurring much overhead traffic. In this thesis, a location-aware video segment seeking 

algorithm is proposed in order to improve the video content retrieval. Moreover, 

throughout this study, traffic load is shown to have a significant impact on the content 

retrieval quality. As a result, in this study, a link aware peer selection for video delivery 

is also proposed to enable overlay peer selection based on underlying traffic load and to 

mitigate from bad selections such as provider peer with bottleneck link or with high 

loaded background traffic path. 

 

3.3 Chapter Summary 

 

This chapter has presented related works in the area of overlay construction 

schemes over different wireless scenarios and methods for improving overlay content 

retrieval over wireless multi-hop networks. The overlay construction schemes over 

wireless networks are categorized into unstructured and structured schemes. A discussion 

was provided to show the pros and cons of each method and has concluded that a 

structured overlay is more scalable and more suitable in WMN. The methods for 

improving overlay content retrieval over wireless multi-hop networks are classified into 

link quality aware methods and solutions for improving interactive operation in VoD 

applications. A discussion is also provided and it has identified the need for an overlay 

network that is aware of the underlying network topology and the link conditions in order 

to make high quality overlay content retrieval feasible. 
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CHAPTER 4: System 

Architecture 

 

 

Abstract 

 

This chapter describes the proposed system architecture for both the location-

aware overlay construction and the peer-to-peer video streaming application. The basic 

operational principles of the proposed architecture are also presented. This system 

architecture will be used throughout this thesis and serves as the basis of the proposed 

location-aware overlay and the video segment seeking algorithms.  

 

4.1 Introduction 
 

Since its first introduction and commercialization in 1997, Wireless Fidelity (Wi-

Fi) has made a huge leap forward to become the most widely used wireless data access 

network solution today. While the number of Wi-Fi hotspots is increasing on a daily 

basis, from a user’s perspective, they appear to be just a collection of isolated “data 

oases”. In order to become a ubiquitous coverage access network, these oases need to be 

connected together. This idea is one of the motivating factors behind the development of 

Wireless Mesh Network (WMN) technology. In a WMN network, Mesh Routers (MR) 

connect to each other to form a wireless backbone in order to provide data connectivity 

and services to the Mesh Clients (MCs) which are user devices which consume data. 
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However, the usage of WMN technology is not limited to a metropolitan wireless 

access network. When used in conjunction with Peer-to-Peer (P2P) data transfer 

solutions, the potential of WMN is widely open for the implementation of many 

innovative applications such as distributed data storage, resource sharing, and P2P Video 

on Demand (VoD) delivery. In particular, in a P2P VoD application, since many users 

may watch the same video at the same time, the same video segment may be 

simultaneously available at several peers across the network. If the P2P VoD application 

is integrated with an intelligent overlay mechanism, the huge community of peers that 

already had the segment can assist the playback of a peer. This mechanism can 

significantly improve the video quality retrieval for the user, reduce the server load and 

can enhance the traffic load balance across the network. 

Nevertheless, this integration of overlay network over WMN is not 

straightforward. First, the current overlay protocols are designed for resource-rich wired 

networks with a high volume of maintenance traffic and behave poorly in a wireless 

multi-hop scenario with limited bandwidth and high channel variations. Second, in 

wireless multi-hop network, since the achievable bandwidth and packet loss performance 

degrade sharply with many factors such as the hop length of the path and the traffic load, 

selecting from which peer segments are retrieved is a key factor in improving the quality 

of service.  

In this context, this thesis presents three major contributions: 1) Wireless 

Location-aware Chord-based Overlay mechanism for WMN (WILCO) – a location-

aware overlay with integrated physical topology to improve overlay efficiency; 2) 

WILCO-based novel geographical location-aware video segment seeking 

mechanism – a video segment seeking mechanism with underlay topology awareness in 

order to enable locating and retrieving video segments from the closest peer; 3) Cross-

layer Wireless Link Quality-aware Overlay peer selection mechanism (WLO) – a 

cross-layer video segment seeking mechanism with link quality awareness to enable 

locating and retrieving video segments from the peer with the best path link quality. In 

this chapter, the system architecture upon which the three contributions are built is 

described. The detailed descriptions and analysis of each contribution are presented in 

the following chapters. 
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4.2 Proposed System Architecture 

4.2.1 System Architecture 

 

Backbone Layer

Service Layer

Mesh Router

Mesh Router

Mesh Router

Mesh Router

Mesh Router

Mesh Clients

Mesh Clients

Service 1

Resource 1

Service i

Resource i

Service n

Physical 
Network

Overlay 
Network

 

Figure 4.1: Proposed system architecture. 

 

To accommodate resource sharing on WMN, a two-layer architecture composed 

of service and backbone layers is employed as illustrated in the Physical Network part in 

Figure 4.1. The service layer includes MCs as end user devices, which share services and 

resources and use those shared by others. The backbone layer includes stationary, power-

unlimited MRs, with some of the MRs having wired Internet connectivity. These MRs 

run WILCO, the proposed Chord-based location-aware protocol to build up an overlay 

network for locating resources and services within the WMN to serve the MCs as 

illustrated in the Overlay Network part in Figure 4.1. An overview of the operations of 

the Chord protocol, is included in chapter 2 and further details can be found in [35]. 
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WILCO uses a location-aware overlay with multi-level ID mapping and an improved 

finger table is proposed to improve the overlay communication efficiency. Details of 

WILCO will be presented in chapter 5. Moreover, in order to improve the overlay video 

delivery, WILCO-based and WLO video segment selection mechanisms are proposed. 

The WILCO-based location-aware video segment seeking mechanisms use WILCO 

location-aware ID mapping to select the best peer in terms of hop count distance for 

video content retrieval. The details regarding WILCO-based location-aware video 

segment seeking mechanisms are to be presented in chapter 6. Different from WILCO-

based video segment seeking mechanism, WLO selects the best peers based on the link 

quality using a novel Multiplication Metric Selector (MMS) and a cross-layer selection 

mechanism. The details regarding WLO are to be presented in chapter 7. 

 

4.2.2 Block-level Architecture 

                                            Multimedia application

Application
layer

Network
layer

Data Link
layer

                                                    Data Link Layer

                                                         Channel
Physical

layer

Transport
layer

                                                             UDP

WILCO Overlay 
Agent

Segment 
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WLO Segment 
Seeking 

Mechanism 

                                          Multi-hop Routing Protocol
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queries and responses

Request for next segment

Segment 

Location
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Figure 4.2: Block-level structure of the mesh router system with integrated video 

overlay. 
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Since a typical wireless mesh network is very large in terms of number of nodes, 

in order to simplify the implementation and also to reduce the simulation run time, the 

functionalities of the mesh clients are also integrated into the mesh routers. In 

comparison to a real implementation of a WMN, this simplification removes the service 

layer with the mesh clients; however, since the MRs normally have different wireless 

interfaces for connecting to the mesh backbone and for serving the mesh clients, this 

simplification just removes a constant delay for this last hop connection from the results. 

Since all the comparisons between different schemes throughout this thesis are based on 

this simplification model, the comparisons are fair and valid. 

Figure 4.2 illustrates the block-level architecture of the mesh routers with the 

proposed video sharing peer-to-peer overlay with respect to the TCP/IP protocol stack. In 

this protocol stack, at the application layer, as well as the multimedia application, the 

video segment storage, the proposed WILCO Overlay Agent and the proposed Segment 

Seeking Mechanism block are implemented to realize the peer-to-peer VoD application.  

The WILCO overlay agent which implements the proposed WILCO location-

aware overlay is the heart of the application. This agent is responsible for the overlay 

communications among the overlay peers. The overlay communications include overlay 

maintenance and processing of queries and responses according to the Chord protocol 

[35] which were described in chapter 2. Additionally, the agent provides the Segment 

Storage block which stores the requested segment for peer selection.  

The Segment Seeking Mechanism block chooses the best peer from all the peers 

that stored the requested segment and request this best peer to stream the segment to the 

requested peer. Upon receiving the requested segment, this segment is forwarded to the 

multimedia application for playing and is also stored in the segment storage for further 

sharing purpose. 

 

4.2.3 Overlay Video Distribution Mechanism 

 

For P2P video distribution, each shared video will be assigned a unique key and is 

managed by a MR according to the Chord protocol [35]. To efficiently support video 

delivery on a peer-to-peer overlay, the server divides each video into equal size segments 
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and assigns consecutive segment sequence numbers to them in the order of playback. 

During the distribution process, many segments of the video become available in several 

places within the WMN. These segments are registered and periodically updated to the 

MR which manages the video and are stored in a database in the structure of  

[𝐼𝐷𝑖, 𝑆𝑖, 𝐿𝑖] 

Where:  

𝐼𝐷𝑖 is the ID of the MR which stores the video segments. 

𝑆𝑖 is the start segment sequence. 

𝐿𝑖 is the number of segments the node stores. 

It is noted that a MR can have multiple contiguous/noncontiguous segments; in 

this case the MR segments are represented using multiple entries. In order to protect the 

system from single node failures, the successor of the MR with respect to the Chord ring 

which manages the key also stores and updates a copy of this database. 

When a peer requests the segment 𝑆𝑗, the MR searches its database for the set of 

peers that have this segment, i.e., 𝑆𝑗 ∈ [𝑆𝑖, 𝑆𝑖 + 𝐿𝑖], and replies to the requesting peer 

with this set of peers. Based on the ID of the requesting and destination peers, the 

proposed WILCO-based or the WLO segment seeking mechanism is performed to select 

the best destination peer to retrieve the segment. 

Segment lookup

WILCO Overlay Agent
Segment seeking Mechanism

Get Available 
Peers

Select the best 
peer

Segment Streaming 
Request

(1) Find Available Peers

(2) List of Available Peers

(3) List of 
Available Peers

(4) Best Peer

 

Figure 4.3: Overlay Video segment seeking procedure. 

 

The video segment seeking procedure is illustrated in Figure 4.3 and the message 

flow for overlay video distribution is illustrated in Figure 4.4. When the next video 

segment is needed, the Segment seeking mechanism requests the list of available peers 
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which store this segment from the WILCO Overlay Agent. The WILCO Overlay Agent 

requests this peer list from the peer which manages the video and returns this list to the 

Segment Seeking Mechanism.  

Upon receiving the list of all potential serving peers, the Segment Seeking 

Mechanism performs the peer selection to select the best peer from which to retrieve the 

segment. In this thesis, two WILCO-based location-aware peer selection algorithms are 

proposed to enable enable location and retrieval of the video segments from the closest 

peer in terms of hop count. In addition, WLO - a cross-layer video segment seeking 

algorithm with link quality awareness is proposed to enable location and retrieval of the 

video segments from the peer with the best path link quality. In WLO, a Multiplication 

Selector Metric (MSM) extension is integrated into the underlay routing protocol (as 

shown in Figure 4.2) to enable link quality awareness across the peers. This MSM 

extension calculates the MSM metric for each of the path in the MR routing table. 

Moreover, a cross-layer connection is constructed between the MSM extension and the 

Segment Seeking Mechanism block to enable overlay peer selection with underlay link 

quality awareness. Details about the peer selection mechanisms are to be presented in 

chapter 6 and chapter 7. 
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Figure 4.4: Overlay video distribution message flow. 
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After selecting the best peer for retrieving the video segment, the requested peer 

will send a request to this best peer and the streaming of the video segment will be 

started from the best peer to the requested peer.  

 

4.3 Chapter Summary 

 

This chapter presents the architecture on which the proposed solutions rely, 

including WILCO, WILCO-based location-aware segment seeking algorithms and the 

WLO link-aware segment seeking algorithm. The placement and the principle of each 

contribution with respect to the TCP/IP protocol stack are described. Details of each 

contribution and numerical results will be described in the following chapters. 
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CHAPTER 5: WILCO – Wireless 

Location-aware 

Chord-based 

Overlay for WMN 

 

 

Abstract 
 

In this Chapter, the proposed Wireless Location-aware Chord-based Overlay 

mechanism for WMN (WILCO) is described. The location-awareness of the proposed 

mechanism is realized through a novel geographical multi-level Chord-ID assignment to 

the MRs on grid WMNs. An improved finger table is proposed to make use of the 

geographical multi-level ID assignment to minimize the underlay hop count of overlay 

messages. An analytical framework is developed to analyze the lookup efficiency of the 

proposed scheme. This study proves that in comparison with the original Chord, WILCO 

can reduce the maximum number of lookup messages by half, and has symmetric lookup 

behaviour in both forward and backward directions of the Chord ring. The analytical 

framework also shows that the proposed scheme has a stretch factor of 𝑂(1), which 

implies that the constructed overlay closely matches the physical topology. Simulation 

results show that in comparison with Chord and MeshChord, WILCO significantly 

improves lookup efficiency in terms of the average number of lookup messages, the 

number of hops a lookup travels on the physical network, lookup time and stretch factor. 

Additionally, simulation results also show that the proposed scheme greatly reduces 
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messaging overhead and provides more overhead balance among the MRs, which 

indicates that WILCO is able to scale to large WMNs. 

 

5.1 Introduction 
 

Recently, innovative applications such as distributed storage, resource sharing, 

and peer-to-peer Video on Demand, have become more and more popular. These 

applications rely on peer-to-peer overlay structures which offer many benefits that the 

traditional client–server paradigm lacks. These benefits include self-scaling, i.e., the 

capacity of the overlay increases as more users participate in the overlay; self-

organization, i.e., the overlay network is composed of overlay peers which require no 

dedicated infrastructure and self-healing the overlays update their structure after the 

joining and leaving of peers. With these advantages, by using the peer-to-peer overlays, 

these and other innovative applications promise to greatly enhance the user experience. 

However, when deploying peer-to-peer overlay networks over wireless multi-hop 

networks such as WMNs, many challenges arise mainly due to issues such as bandwidth 

constraints of the WMN, high maintenance overhead of the overlay network and routing 

stretch. The latter refers to the overlay routing inefficiency due to the independence 

between the overlay network and the physical topology which actually does the packet-

level routing. A literature review of the existing methods of enhancing overlay efficiency 

over wireless multi-hop network has been presented in Chapter 2. Most of the solutions 

proposed in the literature use network flooding to enable overlay communications which 

introduces significant overhead and can result into broadcast storm, greatly degrading the 

performance of the network. 

This chapter proposes WILCO, a location aware Chord-based overlay over 

WMNs. WILCO makes use of MR locations to integrate the physical topology into the 

overlay network through a multi-level location-aware ID mapping. In order to further 

improve the overlay communication and achieve a better stretch factor over WMN, an 

improved finger table is proposed. The detailed WILCO mechanisms, overlay 

efficiency analysis and simulation results are introduced in the following sections of this 

chapter. 
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5.2 WILCO Multi-level Location-aware ID Mapping 
 

5.2.1 Assumptions 

The principle behind the mechanism of the proposed multi-level location-aware 

ID mapping is to make use of the locations of the MRs and integrate them into the ID 

space of the Chord Ring (described in chapter 2). This interaction aims to have MRs 

which are close together in the underlay topology also be identified as close together in 

the overlay network. This location-awareness is very important in reducing the overlay 

overhead, stretch factor and in increasing the overlay communication efficiency as 

overlay messaging is restricted to some physical boundary instead of traversing across 

the actual WMN many times to reach another overlay peer. 

There are two assumptions for the proposed location-aware ID mapping 

mechanism. Firstly, the WILCO location-aware ID mapping assumes that MRs are 

stationary, i.e., the positions of the MRs do not change over time. This assumption is 

essentially the basic assumption for most of the two-layer architecture wireless multi-hop 

networks including WMN. Secondly, for ease of explanation, it is assumed that MRs are 

laid out in a grid network, almost equally distanced between each other. However this is 

not strictly needed as explained later on in this thesis (end of section 5.2.2).. This grid-

like WMN is used since it is shown in [86] that a random topology is unsuitable for 

large-scale mesh deployment and the grid topology provides the best balance between 

MR density, backbone connectivity and network capacity.  

 

5.2.2 WILCO Multi-level Location-aware ID Mapping Mechanism 
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Figure 5.1: The first step division in WILCO ID allocation. 
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Consider a planned WMN deployment over an approximately square area with 

𝑁 = 2𝑚 stationary MRs laid out in a grid manner: i.e., MRs are almost equally distanced 

between each other.  
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Figure 5.2: WILCO location-aware ID mapping for m=4. 

 

An 𝑚-bit binary addressing scheme is used. In the WILCO location-aware ID 

mapping, the location of the MR is encoded as follows. It is first assumed that 𝑚 is even 

(the topology represents a square grid). The deployment area is divided into 2𝑚 equal 

areas each containing a single MR in log4𝑁 steps. Each step subdivides the deployment 

area into 4 subareas, divided along the vertical axis (𝑦 axis) and the horizontal axis (𝑥 

axis). The two bits of the ID space are assigned to the MRs according to this division as 

follows and recursively use the subdivisions to assign a unique 𝑚-bit address to each 

MR. In the first step (Figure 5.1), the division on the 𝑦 axis separates the deployment 

area into two halves and all the MRs residing on the upper half have the most significant 

bit set to 1. Likewise, all of the MRs residing on the lower half have the most significant 
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bit set to 0. Next, the division on the 𝑥 axis partitions each of these two halves into two 

areas: MRs on the left side get their second significant bit set to 0 and the MRs on the 

right side have their second significant bit set to 1. In the subsequent steps, each of the 

four areas from the previous step will be partitioned further into four smaller areas 

following the same mechanism as in the first step. After log4 2
𝑚 steps, the deployment 

network is divided into 2𝑚 areas, each containing one MR with a unique ID, expressed 

in binary form.  

Let define the areas produced after step 𝑖 division as level 𝑖 areas. Following this 

definition, the area at level 0 is the whole WMN deployment area containing all the MRs 

and the level log4𝑁 areas contain a single MR each. Figure 5.2 illustrates WILCO 

location-aware ID mapping for 16 MRs (𝑚 = 4) and the resulting areas at level 0, 1 and 

2.  

Let 𝑁𝑖 be the number of MRs at a level 𝑖 area. An intuitive interpretation of a 

WILCO ID is that at level 𝑖, the most significant (𝑚 − log2𝑁𝑖) bits represent a unique 

identification of the level 𝑖 area in which the MR resides in among the other level 𝑖 areas 

and the least significant log2𝑁𝑖 bits represent a unique identification of a MR within the 

given area. Note that in each step, each of the areas in the previous step is divided into 4 

equal-sized areas, and hence, the number of MRs in an area at level 𝑖 is 𝑁𝑖 = 4
𝑚

2
−𝑖

. 

Furthermore, since the most significant (𝑚 − log2𝑁𝑖) bits represent a unique 

identification of the level 𝑖 area in which the MR resides in among the other level 𝑖 areas, 

two MRs with IDs 𝑝 and 𝑘 share the same area at level 𝑖 if:  

It is remarked that after the (log4 2
𝑚 − 1)-th step, there are only 4 MRs in each 

area and all but the last two ID bits are determined. Since the last 2 bits are decided in the 

next step, those MRs have consecutive IDs. This ensures that MRs that are close together 

in the physical topology stay also close to each other in the overlay. Assuming that the 

communication range of each MR covers the distance from itself to the nearest MR in 

diagonal direction (i.e., in Figure 5.2, MR 0 can connect MR 3 directly), then all four 

MRs with consecutive IDs can directly communicate with each other. It is noted that 

there are peers with consecutive IDs but are not placed next together; this issue will be 

 
⌊
𝑝

𝑁𝑖
 ⌋ = ⌊

𝑘

𝑁𝑖
 ⌋ 

(5.1)  
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addressed and resolved by using WILCO’s improved finger table which will be 

introduced in the next section. The last, but not least important remark is that each area at 

level 𝑖 contains a quarter of the number of MRs as an area at level (𝑖 − 1), and hence, the 

maximum number of physical hops between two MRs residing in the same area at level 𝑖 

is half of that between two MRs residing in the same area at level (𝑖 − 1). This remark 

plays a central role in our location-aware ID mapping in terms of reducing the underlay 

hop count and in the proof related to the stretch factor to be presented.  

It is noted that 𝑚 is not necessarily even. It is easy to see that the proposed 

location-aware ID mapping also holds when 𝑚 is odd. In this case, in the first step one 

division is performed and the most significant bit is allocated only; all subsequent bit 

allocation steps remain unchanged, as already described. It is also noted that the location 

of each MR can be determined easily with a location-based solution such as using GPS 

or WiFi localization [87] for example; and that since the MRs are assumed stationary, the 

mapping of IDs needs to be done once only at the planning stage and remains unchanged 

thereafter. 

 

Figure 5.3: A streetlight mounted MR (Image source: 

http://computer.howstuffworks.com/how-wireless-mesh-networks-work.htm). 

http://computer.howstuffworks.com/how-wireless-mesh-networks-work.htm
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5.2.3 WILCO Multi-level Location-aware ID Mapping Mechanism 

It is noted that for the deployment of real WMNs, the MRs do not need to be 

strictly equally separated for the location-awareness of WILCO to be feasible. From 

Figure 5.2, it can be seen that WILCO location-aware ID mapping only requires each 

MR to reside in its lowest level area (level 2 in this case) so that each MR has a unique 

ID. For a real network deployment, assuming the separation between the MRs is 

designed to be 100m, the size of each lowest level area is 10,000m
2
. Finding a suitable 

place to install a MR in such a large area is not a very big issue, especially since MRs 

nowadays are so versatile that they can be easily mounted on streetlights
14

 as shown in 

Figure 5.3. 

 

5.3 WILCO Finger Table 
 

The WILCO location-aware ID mapping maps a two-dimensional position of a 

MR into a one-dimensional ID space of the Chord Ring and makes the MRs which are 

close together in the physical topology close together in the overlay Chord Ring. 

However, overlay communications are enabled through finger table lookup in which the 

overlay message is sent to the closest peer in the finger table with respect to the Chord 

Ring. As a result, if the overlay finger table is also location-aware, overlay 

communication efficiency can be further improved. 

In order to speed up the lookup process and make use of the proposed multi-level 

location-aware ID mapping, a new Chord finger table of 3 × log4𝑁 entries is proposed. 

Starting from the highest level (log4𝑁 − 1), at every level 𝑖 area, each MR maintains 

three entries (fingers) pointing to MRs with the lowest ID in each of the other areas at 

level 𝑖 with which it shares the same level (𝑖 − 1) area. For example, the finger table of 

MR 9 in Figure 5.2 (shown as dash-dot arrows) is as follows:  

 Level 1 fingers: ID 8, 10, 11.  

 Level 0 fingers: ID 0, 4, 12.  

                                                           
14

 Motorola Mesh Wide Area Network products – 

http://www.motorola.com/Business/US-EN/Business+Product+and+Services/Wireless+

Broadband+Networks/Mesh+Networks 

http://www.motorola.com/Business/USEN/Business+Product+and+Services/Wireless+Broadband+Networks/Mesh+Networks
http://www.motorola.com/Business/USEN/Business+Product+and+Services/Wireless+Broadband+Networks/Mesh+Networks
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In general, the finger table of MR with ID 𝑝 at level 𝑖 (0 ≤ 𝑖 < 𝑚/2) is expressed 

as described next: 

Then: 

where 𝑁𝑖 = 4
𝑚

2
−𝑖

 is the number of MRs in an area at level 𝑖. 

The operation and usage of the updated finger table is the same as in the original 

Chord. For instance, for MR 9 to locate key 5, MR 9 searches its finger table for a finger 

with the greatest ID less than or equal to 5 (MR 4) and sends a lookup message to this 

peer. When MR 4 receives the lookup message, it searches its finger table and finds MR 

5 as its level 1 finger entry. It then forwards the lookup message to MR 5 to complete the 

lookup process. As depicted in Figure 5.2 (curved lines), this example further illustrates 

that the proposed ID indexing and finger table is location-aware. It is illustrated from this 

figure that, by using WILCO finger table, the lookup message gradually descends from 

the geographically larger areas to smaller areas. In our example, the lookup goes from 

MR 9  MR 4 on level 1 and then from MR 4  MR 5 on level 2. Hence, the search is 

geographically limited on a step by step basis. 

Similar to a Chord finger table, a WILCO finger table provides higher resolution 

information at lower level areas (large 𝑖) giving more location information about MRs in 

the immediate vicinity than at higher level areas. Another important remark is that since 

three level 0 fingers of any MRs point to the three MRs with the lowest IDs in three areas 

at level 1 (except the level 1 area where the MR resides), in the lookup for key 𝑘 at MR 

𝑝, the proposed finger table provides at least one finger 𝑓 that shares the same area at 

level 1 with 𝑘. In other words, if 𝑝 and 𝑘 share the same area at level (𝑖 < log4𝑁), the 

proposed finger table of 𝑝 provides at least one finger 𝑓 that shares the same area at level 

(𝑖 + 1) with 𝑘. Compared to the finger table of Chord, with log2𝑁 entries, WILCO 

 
Let 𝐼𝐷 = 𝑁𝑖−1𝑘 + ⌊

𝑝

𝑁𝑖−1
⌋𝑁𝑖−1, 𝑘 = 1, 2, 3 

 

(5.2)  

 

𝐹𝑖𝑛𝑔𝑒𝑟𝑖,𝑘 =

{
 

 𝐼𝐷                                   , 𝑖𝑓 ⌊
𝐼𝐷

𝑁𝑖
⌋ = ⌊

𝑝

𝑁𝑖
⌋

{⌊
𝑝

𝑁𝑖
⌋ + 1}𝑁𝑖 − 𝐼𝐷 + {⌊

𝑝

𝑁𝑖−1
⌋ − 1}𝑁𝑖−1, 𝑖𝑓 ⌊

𝐼𝐷

𝑁𝑖
⌋ ≠ ⌊

𝑝

𝑁𝑖
⌋

 (5.3)  
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finger table has 3 ×
log4𝑁

log2𝑁
= 1.5 times more entries. This overhead of the new WILCO 

finger table is just a scale factor from that of Chord [35], i.e., 𝑂(log𝑁); hence, with the 

increase in network size WILCO finger table is as scalable as that of Chord. 

5.4 Lookup Efficiency Analysis 
 

To investigate the lookup efficiency of WILCO, an analysis framework is 

developed. Lemma 1 and Theorem 1 provide an upper bound on the number of overlay 

messages needed to resolve a lookup from any node. Lemma 2 proves the symmetric 

lookup characteristic of WILCO. Last but not least, by using the stretch factor (as 

defined in [64]-[67]), Theorem 2 proves that WILCO overlay is location-aware with a 

stretch factor of 𝑂(1).  

5.4.1 Number of overlay messages per lookup 

Lemma 1:  

Suppose MR 𝑝 wishes to resolve a query for key 𝑘. If 𝑝 and 𝑘 share the same 

area at level 𝑖, (0 ≤ 𝑖 ≤ 𝑙𝑜𝑔4𝑁 − 1) then (𝑙𝑜𝑔4𝑁 − 𝑖) lookup messages are 

required for 𝑝 to resolve the lookup. 

 

Proof: Induction is used to prove the lemma. 

It is first show that the Lemma holds when 𝑝 and 𝑘 share the two lowest levels 

(𝑖 = log4𝑁 − 1 and 𝑖 = log4𝑁 − 2): 

 For 𝑖 = log4𝑁 − 1: Since the area at level 𝑖 includes only 4 directly 

connected MRs and according to the definition of the improved finger table, 

level 𝑖 finger table of 𝑝 has already included all of these fingers, including 𝑘. 

Hence, 𝑝 can reach MR 𝑘 with only one lookup message. 

 For 𝑖 = log4𝑁 − 2: Since the finger table of 𝑝 at level 𝑖 includes three fingers 

for each area at level (𝑖 + 1) that share the same area at level 𝑖, 𝑝 sends 

lookup request to finger 𝑓 with greatest ID less than 𝑘. Since 𝑓 is the MR 

with lowest ID in this area, 𝑓 and 𝑘 share the same area at level (𝑖 + 1). 

When 𝑓 receives the lookup request, it forwards this request to 𝑘 as in the 
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case of 𝑖 = log4𝑁 − 1. Hence, log4𝑁 − 𝑖 = 2 lookup messages are required 

for 𝑝 to reach MR 𝑘. 

Suppose this lemma holds until level 𝑖 (𝑖 > 0), the lemma is proved that it also 

holds for level (𝑖 − 1): 

 Since 𝑝 and 𝑘 share the same area at level (𝑖 − 1) and p holds a level 𝑖 finger 

𝑓 that shares the same area at level 𝑖 with 𝑘 (according to the definition of our 

improved finger table); 𝑝 needs one lookup message to reach 𝑓. Since 𝑓 and 𝑘 

share the same area at level 𝑖, another (log4𝑁 − 𝑖) lookup messages are 

needed to get to 𝑘. Hence, in total, there are (log4𝑁 − (𝑖 − 1)) lookup 

messages. This concludes the proof.∎ 

 

Theorem 1:  

With the proposed finger table, a lookup for any key 𝑘 from any MR 𝑝 

requires at most 𝑙𝑜𝑔4𝑁 lookup messages. 

 

Proof: Suppose MR 𝑝 wishes to lookup key 𝑘, the number of lookup messages 

needed to reach MR 𝑘 is analyzed. 

Let 𝑖 be the lowest level for which 𝑝 and 𝑘 share an area. According to Lemma 1, 

(log4𝑁 − 𝑖) lookup messages are required to find 𝑘. Since 𝑖 ≥ 0, the maximum lookup 

messages required is log4𝑁.∎ 

5.4.2 Symmetric lookup 

Lemma 2:  

The proposed finger table gives symmetric lookup on both directions of the 

Chord Ring. 

 

Proof: Suppose MR 𝑝 wants to resolve lookups for key 𝑘 and 𝑘′. Assume that 

level 𝑖 is the lowest level where 𝑘 and 𝑘′ share the same area. Further assume that 𝑝 < 𝑘 

and 𝑝 > 𝑘′. It is show that using the proposed finger table, 𝑝 can find 𝑘 and 𝑘′ with the 

same number of lookup messages. 
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According to Lemma 1, since 𝑝, 𝑘 and 𝑘′ share the same area at level 𝑖, it requires 

(log4𝑁 − 𝑖) lookup messages to resolve for 𝑘 as well as (log4𝑁 − 𝑖) lookup messages 

to resolve for 𝑘′ ∎. 

To evaluate the location-awareness of the proposed scheme, the definition of 

stretch factor in [64]-[67] is adopted. 

5.4.3 Location awareness 

Definition: Stretch factor of network 𝐴 is defined as 

Where: 

𝑃(𝑘) is the shortest path traversed by the lookup for key 𝑘 in the overlay 

network. 

𝑙(𝑃(𝑘)) is the shortest hop length of 𝑃(𝑘) in the physical network. 

𝑙(𝑘) is the hop length in the physical network between the MR at which the 

lookup is invoked and the MR that manages the key range to which 𝑘 belongs. 

 

Theorem 2:  

The stretch factor of the proposed location-aware ID mapping and modified 

finger table is 𝑂(1). 

 

Proof: From the proposed location-aware ID mapping, each area at level 𝑖 

contains a quarter the number of MRs as at level (𝑖 − 1); hence, the maximum number of 

physical hops between two MRs residing in the same level 𝑖 area is only half of that 

between two MRs residing in the same area at level (𝑖 − 1). 

From Lemma 1, every time a MR forwards a lookup message on the overlay, it 

forwards the message to its finger which shares the same area with the key, but at one 

level lower than itself. As a result, for each finger lookup on the overlay, the searching 

 
𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝐴) =

𝑙(𝑃(𝑘))

𝑙(𝑘)
  (5.4)  
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area shrinks by a quarter and the maximum number of physical hops from the next finger 

shrinks to half. It is noted that the maximum number of hops a lookup message needs to 

travel in the physical topology at level 0 area is √𝑁. From Theorem 1, the proposed 

scheme requires the maximum of log4𝑁 lookups; hence, the maximum number of hops a 

lookup traverses in the physical topology is: 

Since lim𝑚→∞∑
1

2𝑖
𝑚
𝑖=0 = 2, for large topologies (𝑚 → ∞), it is shown that 

𝑙(𝑃(𝑘)) ≤ 2√𝑁. 

For the considered grid topology, the hop distance in physical network between 

two MRs is 𝑙(𝑘) = 𝑂(√𝑁). Hence, the stretch factor can be calculated as follows: 

5.4.4 Comparison with MeshChord 

Table 5.1: Overlay communication efficiency comparison. 

 Overlay Communication Efficiency 

 Maximum overlay steps Symmetric Lookup Stretch factor 

MeshChord log2𝑁 No 𝑂(√𝑁log 𝑁) 

WILCO log4𝑁 Yes 𝑂(1) 

 

Remark 1: In comparison with Chord [35] and MeshChord [66]-[68] which 

require at most log2𝑁 overlay lookup steps, by utilizing the improved finger table, 

WILCO reduces this number by 50% (
log4𝑁

log2𝑁
= 0.5). This improvement significantly 

reduces the overlay messaging overhead and also enables faster overlay lookup.  

Moreover, in comparison to the Chord mechanism, WILCO lookup is symmetric 

on both directions of the Chord Ring which further reduces the overlay steps required to 

resolve a lookup and hence, reduces the lookup response time. 

 

max
𝑘
{𝑙(𝑃(𝑘)) } = √𝑁 +

√𝑁

2
+⋯+

√𝑁

2log4𝑁
= √𝑁 ∑

1

2𝑖

log4𝑁

𝑗=0

 (5.5)  

 
𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝐴) =

𝑙(𝑃(𝑘))

𝑙(𝑘)
= 𝑂 (

2√𝑁

√𝑁
) = 𝑂(1) ∎ (5.6)  
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Remark 2: In comparison with MeshChord with a stretch factor of 𝑂(√𝑁log 𝑁) 

[67], WILCO location-aware scheme with a stretch factor of 𝑂(1) significantly reduces 

the stretch factor.  

Since 𝑂(𝑁) > 𝑂(log𝑁), as shown in equation (5.7), this reduction of stretch 

factor is by at least a magnitude order. This reduction in the stretch factor proves that 

WILCO has a better location-awareness and a better overlay-underlay integration in 

comparison to MeshChord. A stretch factor of 𝑂(1) shows that WILCO overlay 

communications efficiency is bounded by a constant scale factor in comparison to the 

direct underlay network communications. In addition, since WILCO overlay 

communications are closely matched to the underlay direct communications, it promises 

a significant reduction in the overlay overhead and a significant reduction in the overlay 

lookup time. 

 

5.5 Simulation-based Testing and Result Analysis 

5.5.1 Simulation Overview 

 

The performance of WILCO, the proposed location-aware scheme is evaluated 

through detailed, packet-level simulations using Network Simulator NS-3 [88], a discrete 

event-based simulator which is widely used in networking research. The simulated 

topology follows the descriptions from Section 5.2, consisting of 𝑁 MRs arranged in a 

grid topology. The distance between two adjacent MRs is set to 100m (a common 

network scenario for WMN simulations, i.e., [64]-[69]). In the simulations, all MRs are 

equipped with IEEE 802.11b radios (the physical and data link details are described in 

Table 5.2) and OLSR is used as the underlay routing protocol. For the purpose of 

comparison, the original Chord with IDs of MRs randomly assigned from the ID space 

with no overlap and a finger table as in [35] and MeshChord [67] with geographical ID 

mapping, but not the MAC cross-layer support, are also considered on the same topology 

and with the same settings. The cross layer support of MeshChord was not implemented 

since there is little difference in the overlay performance between MeshChord with and 

 𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑀𝑒𝑠ℎ𝐶ℎ𝑜𝑟𝑑(𝐴)

𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑊𝐼𝐿𝐶𝑂(𝐴)
= 𝑂(√𝑁log 𝑁) > 𝑂(√log𝑁 log 𝑁) = 𝑂(log𝑁) (5.7)  
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without the cross layer mechanism as shown in paper [67]. In each of the simulation 

scenarios, 5000 lookups are generated; each from a MR to a random key following a 

uniform distribution and the results are averaged. 

Table 5.2: NS-3 wireless simulation parameters 

Radio Technology 802.11b (Ad-hoc) 

Peak Data Rate 11Mbps 

Rate control algorithm AARF-CD 

Channels Sharing CSMA/CA 

Slot time 9µs 

SIFS 16 µs 

CTS Timeout 75 µs 

ACK Timeout 75 µs 

Antenna Type Omni Antenna 

Wireless transmission range 150m 

 

The performance of WILCO is compared with that of the original Chord and 

MeshChord in terms of both lookup efficiency and message overhead efficiency. In 

particular, the lookup time, number of lookup messages for lookup and message overhead 

are monitored. These are important parameters for evaluating the overlay performance 

and are commonly used in the literature. In addition, the underlay hop count and stretch 

factor are also investigated to show the location-awareness of the proposed scheme in 

comparison to the two alternative schemes. The descriptions of the performance 

measurement parameters are as follows. 

 Underlay hop count: average number of hops a lookup traverses in the 

physical topology. 

 Lookup time: average amount of time for a lookup request to be resolved. 

 Number of lookup messages for each lookup: average number of fingers a 

lookup traverses to reach its destination. 

 Stretch factor: the ratio between the hop count the lookup traverses on the 

overlay (through intermediate fingers) and the actual physical hop count 

between the MR source and destination. This metric evaluates the location-

awareness of the proposed scheme and is adopted from [64]-[67]. 

 Message overhead: is the packet rate received at each MR to maintain the 

overlay and to resolve the lookups. 
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5.5.2 Lookup Efficiency 

 

 

Figure 5.4: Average number of lookup messages versus the number of MRs (N) 

 

The lookup efficiency of WILCO is first examined. Figure 5.4 shows the average 

number of lookup messages for each lookup with increasing number of MRs, when 

WILCO and the two compared schemes are employed, respectively. It is observed that 

both Chord and MeshChord require the same number of lookup messages on average to 

resolve a lookup. This is due to the fact that both of the two mentioned schemes use the 

Chord finger table, and as a result, the finger lookup behaviours are identical to each 

other. 

Figure 5.4 also illustrates that WILCO, with the improved finger table, requires 

the least number of lookups among the three compared solutions and although this 

number increases logarithmically for all compared schemes, the rate of increase is the 

slowest for WILCO. According to the numerical result in Figure 5.4, it is shown that the 

proposed scheme consistently saves up to 22% of the number of lookup messages in 

comparison with Chord and MeshChord for all of the testing scenarios. This trend is 

similar with that resulted from theoretical analysis. In Section 5.4, it is shown that the 

maximum number of lookup messages to resolve a lookup when using WILCO with its 
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modified finger table is log
4
(𝑁); hence, the average number of lookup messages should 

increase with log
4
(𝑁). In contrast, the number of lookup messages exchanged by Chord 

should increase with log
2
(𝑁), following the same argument. 

 

Figure 5.5: Average hop count versus the number of MRs (N) 

 

Figure 5.6: Average lookup time versus the number of MRs (N) 
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Table 5.3: Numerical comparison of Chord, MeshChord and WILCO for N=128. 

 WILCO MeshChord Chord 

Lookup efficiency 

Number of Lookup 

messages 
2.77 3.57 3.55 

Improvement of WILCO - 22.31% 21.90% 

Hop count 10.19 14.23 20.80 

Improvement of WILCO - 28.40% 51.01% 

Lookup time (ms) 12.50 21.76 26.89 

Improvement of WILCO - 42.57% 53.51% 

Stretch factor 1.96 3.52 5.21 

Improvement of WILCO - 44.42% 62.41% 

Message 

overheads 

Average overhead (pk/s) 30.01 35.98 63.52 

Improvement of WILCO - 16.58% 52.74% 

90-percentile overhead 

(pk/s) 
51.16 52.56 94.87 

Improvement of WILCO - 2.66% 46.07% 

 

Figure 5.5 compares the average undelay hop count of Chord, MeshChord and 

WILCO. It is observed that for all network sizes, both the average hop count and its rate 

of increase are the highest for Chord, MeshChord comes second and the proposed 

WILCO is the most efficient scheme in this category. In particular, whenever 𝑁 is 

doubled, the underlay hop count of Chord increases approximately 2 times, while that of 

MeshChord increases approximately 1.5 times. The underlay hopcount for WILCO only 

doubles every time 𝑁 increases by 4. Since both MeshChord and WILCO are location-

aware, this figure implies that geographical ID assignment plays a central role in 

reducing the number of underlay hops and hence, improves the lookup efficiency. 

However, since WILCO requires a lower number of hops to resolve a lookup, this result 

suggests that its multi-level location-aware ID mapping is better than the geographical ID 

mapping of MeshChord, especially for large WMNs. Figure 5.5 illustrates that WILCO 

can reduce by 50% the number of underlay hops as compared to Chord and roughly by 

30% as compared to MeshChord. This result is confirmed by Figure 5.6 where WILCO 

outperforms Chord by approximately 50% and MeshChord by approximately 40% 

respectively in terms of lookup time. 

Figure 5.7 compares the stretch factor of the three schemes with the increase in 𝑁. 
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The graph has log(𝑁) on the 𝑥 axis. This figure illustrates that the stretch factor of Chord 

increases linearly with log(𝑁), showing that the number of hops a lookup traverses on 

the underlay increases with the network size. Hence, on a large WMN, communication 

over the overlay is very inefficient and introduces a significant overhead. The stretch 

factor for MeshChord also increases linearly with log(𝑁), confirming the result of the 

proof presented in [67] with the stretch factor of 𝑂(√𝑁 log𝑁). However, the increase 

rate of the stretch factor of MeshChord is noticeably lower than that of Chord, which 

confirms the analysis presented previously that location ID assignment can significantly 

improve overlay communications. 

 

 

Figure 5.7: Stretch factor versus log(N) 

 

Following MeshChord geographical ID assignment which zigzags across the 

network row by row as shown in section 3.1.2, it is easy to see that lookup messages also 

zigzag the network towards theirs destinations making the stretch factor increase with the 

size of the network and hence not being very efficient. Table 5.3 shows that the stretch 

factor of WILCO is significantly lower than the two schemes it is compared against with 

only 1.96 for a network size of 128 MRs (roughly 60% lower than Chord and 40% lower 
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than MeshChord). Moreover, the curve fitted representation in this figure illustrates the 

trend of the WILCO stretch factor towards saturation. This result confirms the 𝑂(1) 

stretch factor which is proved earlier in Theorem 2. This efficient stretch factor of 

WILCO comes from the proposed multi-level ID assignment and the use of the modified 

finger table which narrows down the search to a quarter of the network for each 

intermediate lookup. These results illustrate that the proposed location-aware ID 

assignment and modified finger table reflect the physical topology accurately, i.e., 

communications on the overlay should be as efficient as the communication between the 

same MRs on the physical topology. 

 

5.5.3 Overhead Efficiency 

 

The overall overhead efficiency of the three schemes considered is studied first by 

measuring the average message overhead, illustrated in Figure 5.8. It is observed that 

WILCO introduces the lowest message overhead, significantly lower than Chord and 

noticeably lower than MeshChord. This result shows that the random ID assignment of 

Chord is not efficient since overlay maintenance and lookup messages have to travel 

across the entire network to reach its successor, predecessor or finger peers. This results 

in a massive message exchange and the situation gets substantially worse with the 

increase in network size. On the other hand, a systematic planned ID assignment such as 

that of MeshChord and especially WILCO restricts geographically overlay messaging 

and hence, significantly reduces the network overhead. For a reasonably large WMN of 

128 MRs as shown in Table 5.3, the message overhead of WILCO is approximately 50% 

and 20% lower than those of Chord and MeshChord, respectively. Consequently, among 

the three schemes, WILCO is the most scalable, especially for large-scale WMN. 

The 90-percentile messaging overhead is examined next in Figure 5.9, in order to 

evaluate the load balance of the three schemes. The Chord value is almost two times 

higher than those of WILCO and MeshChord. This result illustrates that in the worst-case 

scenario, 90% of the MRs in Chord must withstand a double message overhead in 

comparison with MeshChord and WILCO, and hence, Chord provides not only the 

highest overhead, but also the poorest load balance. A highly unbalanced network 

overhead results in more chance of collisions and congestions which make the network 
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unstable. Compared to MeshChord, the 90-percentile of WILCO is always lower, but not 

by a large margin. For a WMN of 128 MRs as shown in Table 5.3, the improvement is 

roughly 3%. Perhaps MeshChord already provides good load balancing and the multi-

level ID assignment of WILCO can further improve this by a small amount only. 

 

Figure 5.8: Message overhead versus the number of MRs (N) 

 

Figure 5.9: 90-percentile overhead versus the number of MRs (N) 
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5.6 Discussion 

 

Existing WMN 
deployment area

Expanded area

New ID

Exisiting ID0

 

Figure 5.10: WILCO deployment area expanding 

The analytical and simulation results show how a location-aware ID 

assignment improves the overlay lookup efficiency in terms of average hop count on 

the underlay and lookup time. Depending on the location-aware indexing scheme, the 

overlay routing (finger table) has to be tweaked accordingly and an appropriate 

enhancement of the finger table could greatly improve the overlay communication. 

For example, in the case of WILCO, a stretch factor of 𝑂(1) can be obtained. 

Furthermore, an appropriate location-aware overlay is also the key to a lightweight 

peer-to-peer protocol on WMN that can support many services without greatly 

affecting the overall network performance. 

It is observed that the hierarchical addressing scheme used in WILCO presents 

advantages over MeshChord in terms of rescaling of existing networks. A 

geographical ID assignment like that of MeshChord is based on a predetermined 

fixed size of the deployment area. Consequently, such a scheme is not flexible, 

especially when the network needs to be expanded beyond the previous planned 

boundary (which may happen quite often in reality). In such case, the whole network 

has to be re-planned and all MRs have to be reassigned with new IDs. As the network 

gets bigger, the task is more and more complicated which makes it impractical. On 

the other hand, the proposed multi-level ID assignment of WILCO is modular as the 

allocation of two areas at the same level only differs from each other in their 

prefixes. Figure 5.10 shows an illustrative example when the network size is doubled. 
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In this case, the existing MRs only need to add a prefix bit to their current IDs 

without the need of redo the ID mapping procedure. This demonstrates how the 

proposed multi-level location-aware ID assignment is scalable and is suitable for real 

WMN deployment. 

 

5.7 Chapter Summary 

 

This chapter proposed WILCO, a location-aware ID mapping scheme and an 

improved finger table for building a Chord-based overlay on grid-like WMNs. The 

proposed scheme exploits the location information of MRs to build up an overlay in 

which neighbouring MRs in the physical topology are also closely located in the overlay. 

The simulation results show how WILCO significantly improves lookup efficiency in 

terms of lookup time, number of lookup messages and stretch factor (up to 50% and 40% 

in comparison with Chord and MeshChord respectively). It also noticeably reduces the 

overlay overhead (up to 50% and 20% in comparison with Chord and MeshChord, 

respectively). With a location-aware overlay scheme that is well-suited for WMN, the 

next chapters will focus on proposing algorithms to efficiently make use of location-

awareness to improve service quality, especially for P2P VoD services. 
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CHAPTER 6: WILCO Location-

aware Video 

Segment Seeking 

Algorithms 

 

 

Abstract 

 

When using WMN in conjunction with peer-to-peer data transfer solutions, many 

innovative applications and services such as distributed storage, resource sharing and live 

video delivery can be deployed without any centralized administration. However, in 

order to achieve a good quality of service in wireless multi-hop environments, it is 

important that the associated peer-to-peer overlay is not only aware of the availability, 

but also of the location, of its peers and services. Focusing on the quality of video 

delivery, in this chapter, a WILCO-based novel video segment seeking algorithm is 

proposed to make use of WILCO multi-level area ID assignment to locate and retrieve 

requested video segments from the nearest peers in order to improve video quality. An 

improvement of WILCO segment seeking algorithm, WILCO+ is also proposed to 

mitigate WILCO suboptimal selections by using a coordinate-based segment seeking 

algorithm. An analysis framework is proposed to show the superiority of WILCO and 

WILCO+ in terms of content retrieval efficiency. Simulation results show how the 

proposed WILCO and WILCO+ outperform existing state-of-the-art solutions in terms of 

video quality in different network scenarios, background loads and number of segment 

replicas. 
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6.1 Introduction 

 

One of the important characteristics of an overlay network is that they are 

constructed independently from the underlay network topology. This is not a serious 

problem when deploying over wired networks with rich bandwidth and reliable 

connections. However, when the overlay network is implemented on top of a wireless 

multi-hop network, this independence becomes a significant disadvantage. In particular, 

in wireless multi-hop networks, a large number of intermediate hops between two peers 

could greatly reduce the content retrieval quality. As a result, how to select the best 

overlay peer to get the content from in order to improve the content delivery is an 

important question to be researched. 

As discussed in chapter 4, in P2P VoD, there may be many users watching the 

same video at the same time, but at different points in the video stream. Hence, the same 

segment of the video may be simultaneously available at several places in the network. In 

this context, downloading the video segment from the geographically closest peer (in 

terms of hop count) promising to greatly improve quality of the retrieved video. This 

observation is especially true for wireless multi-hop networks such as WMN since it is 

well-known that the achievable bandwidth degrades sharply with an increasing number 

of hops between the source and destination peers. Motivated by this observation, a 

WILCO-based novel geographical location-aware video segment seeking algorithm is 

proposed for peers to get requested segments from the geographically closest peer for 

improved video quality retrieval. In addition, WILCO+, an improvement of WILCO 

location-aware video segment seeking algorithm is proposed to improve WILCO 

location-awareness by mitigating WILCO suboptimal geographical selections. A data 

retrieval efficiency analysis and comparison is provided to illustrate the benefit of 

WILCO algorithms. The simulation results in different scenarios also confirm that 

WILCO location-aware algorithms significantly improve the video retrieval quality in 

terms of PSNR and packet loss in comparison with an existing state-of-the-art distributed 

approach and a centralized server-based solution. 
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6.2 WILCO Geographical Location-aware Video Segment 

Seeking Algorithm 
 

The aim of WILCO location-aware video segment seeking algorithm is to 

improve the overlay video retrieval quality by enabling overlay peers to select the best 

peer in terms of hop count from which to retrieve the requested video segment.  

Let 𝑟 be the ID of the requesting peer and 𝐷 = {𝑑𝑗, 𝑗 = 1,… , 𝑘 } be the set of 

destination peers that store the requested video segment, where 𝑑𝑗 is the ID of the 

destination peer 𝑗. The principle behind WILCO segment seeking algorithm is based on 

its multi-level location-aware ID assignment. WILCO location-aware segment seeking 

algorithm includes three steps to select the closest peer in terms of hop count. 

 

Step 1 – Coarse selection  

r
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Figure 6.1: Step 1 of WILCO segment seeking algorithm - Coarse selection. 
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The goal of the first step is to refine the set of destination peers 𝐷 to a smaller set, 

namely the coarse destination set, 𝐷𝑐𝑜𝑎𝑟𝑠𝑒. Using the WILCO multi-level ID assignment, 

the requesting peer selects all of the destination peers which share with it the same lowest 

level area. According to Chapter 5, two MRs with IDs 𝑝 and 𝑘 share the same area at 

level 𝑖 if equation (6.1) is satisfied: 

Where 𝑁𝑖 = 4
𝑚

2
−𝑖

 is the number of MRs in the level 𝑖 area (𝑚 is the number of 

bits used for the WILCO ID assignment). 

 

Algorithm 6.1: Coarse selection step 

Compute 𝑖𝑚𝑎𝑥 = max {𝑖: ⌊
𝑑𝑗

𝑁𝑖
 ⌋ = ⌊

𝑟

𝑁𝑖
 ⌋ , 𝑗 = 1,… , 𝑘 } 

𝐷𝑐𝑜𝑎𝑟𝑠𝑒 = {∅}  

𝑁𝑖𝑚𝑎𝑥 = 4
𝑚

2
−𝑖𝑚𝑎𝑥   

for 𝑗 = 1 to 𝑘 

      if (⌊
𝑑𝑗

𝑁𝑖𝑚𝑎𝑥
 ⌋ == ⌊

𝑟

𝑁𝑖𝑚𝑎𝑥
 ⌋) 

           𝐷𝑐𝑜𝑎𝑟𝑠𝑒 = 𝐷𝑐𝑜𝑎𝑟𝑠𝑒 .append{𝑑𝑗} 

      end if 

end for 

 

By using equation (6.1), WILCO IDs of all destination peers in 𝐷 are checked to 

find all of the destination peers which share the lowest level area 𝑖𝑚𝑎𝑥 with the 

requesting peer 𝑟. Algorithm 6.1 presents in details the pseudo-code of this coarse 

selection step. 

Figure 6.1 illustrates an instantiation of the application of this coarse selection 

step. As illustrated in this figure, there are six destination peers 𝐷 = {𝑑1, 𝑑2, … , 𝑑6} 

available in the network with the requested video segment. Using the WILCO multi-level 

area division, it is shown that among the six destination peers, only 𝑑1, 𝑑2, 𝑑3 share the 

lowest level area (smallest area) with the requesting peer 𝑟. The coarse destination peer 

set in this case is 𝐷𝑐𝑜𝑎𝑟𝑠𝑒 = {𝑑1, 𝑑2, 𝑑3}. 

 

Step 2 – Fine selection 

 
⌊
𝑝

𝑁𝑖
⌋ = ⌊

𝑘

𝑁𝑖
⌋ (6.1)  
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The goal of this second step is to further reduce the coarse destination set 𝐷𝑐𝑜𝑎𝑟𝑠𝑒 

into a smaller set, namely fine destination set, 𝐷𝑓𝑖𝑛𝑒. Different from step 1, in this step, 

the selection is between the destination peers that share the same lowest level area. After 

the completion first step described above, if there is only one destination peer left in 

𝐷𝑐𝑜𝑎𝑟𝑠𝑒, 𝑟 chooses this peer to retrieve the video segment from, otherwise the algorithm 

continues with the second step. In the second step, the requesting peer assigns costs to all 

destination peers in the coarse destination set, 𝐷𝑐𝑜𝑎𝑟𝑠𝑒. These costs are calculated based 

on the relative distance between the area at level (𝑖𝑚𝑎𝑥 + 1) which contains the 

requesting peer and each of the destination peers. 

This step consists of (𝑚 2⁄ − 𝑖𝑚𝑎𝑥 − 1) iterations. In each iteration, the area at 

level 𝑡 (𝑡 ∈ [𝑖𝑚𝑎𝑥 + 1,𝑚 2⁄ − 1]), in which destination 𝑑𝑗 resides is divided into two 

regions. These two regions are anotated as the “near” and the “far” regions. The near 

and far regions are named with respect to the position of the area at level (𝑖𝑚𝑎𝑥 + 1) in 

which 𝑟 resides. Figure 6.2 illustrates the first division step following the example in 

Figure 6.1. If a destination peer 𝑑𝑗 in 𝑑𝑐𝑜𝑎𝑟𝑠𝑒 is in the far region, a cost of 2
𝑚

2
−𝑡

 is added 

to the cost associated with 𝑑𝑗. 

 

r

d2
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Figure 6.2: Step 2 of WILCO segment seeking algorithm - Fine selection 
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The cost of 2
𝑚

2
−𝑡

 is used in each step so that the early divisions contribute more to 

the accumulated cost than latter division. This cost calculation comes from the 

observation that the early divisions cover more physical area than the later divisions. As 

a result, a destination peer which resides in the far region in the first division is farther 

from the requesting peer than the furthest destination peer in the near region and hence, 

it should have a higher cost. 

Based on the resulting accumulated costs, 𝑟 selects the destination peers with the 

lowest accumulated costs. These destination peers are kept in the fine destination set 

𝐷𝑓𝑖𝑛𝑒. This fine destination set forms a collar of minimum distance around the level 

(𝑖𝑚𝑎𝑥 + 1) area containing 𝑟 similar to the illustration in Figure 6.3. Algorithm 6.2 

describes the fine selection step in details with three main parts: calculating the cost 

associated with each peers in 𝐷𝑐𝑜𝑎𝑟𝑠𝑒, finding the lowest cost and adding all peers with 

the lowest cost into 𝐷𝑓𝑖𝑛𝑒. 

An illustrative example is shown in Figure 6.2 and Figure 6.3 which follows 

Figure 6.1. In this figure, destination peer 𝑑1 and 𝑑3 have the lowest cost and therefore, 

are retained in the fine destination set 𝑑𝑓𝑖𝑛𝑒. 

Algorithm 6.2: Fine selection step 

// Calculate the cost associated with each 𝑑𝑗 ∈ 𝐷𝑐𝑜𝑎𝑟𝑠𝑒 

for each 𝑑𝑗 ∈ 𝐷𝑐𝑜𝑎𝑟𝑠𝑒 

    for 𝑡 = 𝑖𝑚𝑎𝑥 + 1 to 𝑚 2⁄ − 1 

        divide level 𝑡 area containing 𝑑𝑗 into near and far 

regions with respect to level 𝑖𝑚𝑎𝑥 containing 𝑟 

        if 𝑑𝑗 ∈ far region 

            𝑐𝑜𝑠𝑡𝑑𝑗 = 𝑐𝑜𝑠𝑡𝑑𝑗 + 2
𝑚

2
−𝑡

 

        end if 

    end for 

end for 

// Find the lowest cost 

Compute 𝑐𝑜𝑠𝑡𝑚𝑖𝑛 = min {𝑐𝑜𝑠𝑡𝑑𝑗 , 𝑑𝑗 ∈ 𝐷𝑐𝑜𝑎𝑟𝑠𝑒}  

// Select all peers with cost == lowest cost into 𝐷𝑓𝑖𝑛𝑒 

𝐷𝑓𝑖𝑛𝑒 = {∅}  

for each 𝑑𝑗 ∈ 𝑑𝑐𝑜𝑎𝑟𝑠𝑒 

    if 𝑐𝑜𝑠𝑡𝑑𝑗 == 𝑐𝑜𝑠𝑡𝑚𝑖𝑛 

        𝐷𝑓𝑖𝑛𝑒 = 𝐷𝑓𝑖𝑛𝑒 .append{𝑑𝑗} 

    end if 

end for 
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Step 3: Tie break 

The goal of this step is to finalize the selection to a single destination peer to 

retrieve the requested video segment from. 

If there are more than one destination peers in 𝑑𝑓𝑖𝑛𝑒, the algorithm continues with 

the tie break step.  

In this step, the (𝑖𝑚𝑎𝑥 + 1) level area containing 𝑟 is divided into 4 equal level 

(𝑖𝑚𝑎𝑥 + 2) subareas and depending on which area 𝑟 resides in, 𝑟 prefers to select the 

destination peer which is adjacent to the requesting peer’s subarea as illustrated by the 

arrows in Figure 6.3. If there is more than one peer after this selection, the requesting 

peer will select the destination peer closest to it in the ID space. WILCO’s tie break step 

is described in details in Algorithm 6.3 including the selection based on adjacent area and 

the selection based on closest peer in the ID space. 

Figure 6.3 also shows an illustrative example, which follows Figure 6.1 and 

Figure 6.2, of this final step selection in the WILCO segment seeking algorithm where 

destination peer 𝑑1 is chosen to download the video segment from, since its area is 

adjacent to the requesting peer sub-area. 

 

r

d2

d1

d3

 

Figure 6.3: Step 3 of WILCO segment seeking algorithm - Tie break. 
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Algorithm 6.3: Tie break step 

// Select base on adjacent area  

if (⌊
𝑟

𝑁𝑖𝑚𝑎𝑥+1
 ⌋mod 4) ≠ (⌊

𝑟

𝑁𝑖𝑚𝑎𝑥+2
 ⌋mod 4) 

    𝐷𝑡𝑏 = {𝑑𝑗 ∈ 𝐷𝑓𝑖𝑛𝑒: (⌊
𝑑𝑗

𝑁𝑖𝑚𝑎𝑥+1
 ⌋mod 4) = (⌊

𝑟

𝑁𝑖𝑚𝑎𝑥+2
 ⌋mod 4)} 

else 

    𝐷𝑡𝑏 = 𝐷𝑓𝑖𝑛𝑒 

end if 

// Select base on closest peer in the ID space  

if 𝑠𝑖𝑧𝑒(𝐷𝑡𝑏) > 1 

    𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑒𝑟 = {𝑑𝑗 ∈ 𝐷𝑡𝑏: |𝑟 − 𝑑𝑗| = min𝑗{|𝑟 − 𝑑𝑗|}} 

else 

    𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑒𝑟 = 𝐷𝑡𝑏 

end if 

 

6.3 WILCO+ Coordinate-based Location-aware Video Segment 

Seeking Algorithm 
 

6.3.1 WILCO Suboptimal Selections 
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Figure 6.4: WILCO location-aware segment seeking suboptimal scenario. 
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Figure 6.4 illustrates a WILCO location-aware indexing for a topology of 64 

MRs. Since WILCO location-aware segment seeking algorithm is based on the WILCO 

multi-level area border, as formulated by equation (6.1), suboptimal selection may 

happen. For instance, consider a network layout as in Figure 6.4, the requesting peer 𝑟 is 

located at node 15 (the shaded node) and the two destination peers reside at node 0 and 

node 26 (the square nodes). In this scenario, using the WILCO segment seeking 

algorithm, the requesting peer would select node 0 as its best peer to download the video 

segment since node 15 and 0 share the same lower level area (as with step 1 of 6.3). This 

selection is suboptimal as it is clear from Figure 6.4 that node 26 is actually the closest 

peer in terms of hop count to 𝑟. This suboptimal selection results from the WILCO area 

border selection in WILCO step 1 using equation (6.1) and may be severe if the network 

size is large or when the segments are randomly distributed. For instance, in the example 

in Figure 6.4, instead of getting the content from the adjacent peer, the requesting peer 

selects the peer four physical hops away which would significantly reduce the retrieval 

quality. This suboptimal selection could also greatly affect other network traffic as the 

video streaming traffic is carried across the network via a longer path, competing for 

network resources with other network flows. 

WILCO+ is proposed to overcome WILCO border area effect using a different 

approach based on WILCO location-aware ID mapping scheme. By extracting the 

location coordinate information from the MRs’ ID, the requesting peer can calculate the 

distance in terms of hop count using Euclidean distance. Upon comparing this distance, 

the closest destination peer can be accurately determined regardless of whether they 

reside in the same level area or not. 

 

6.3.2 WILCO+ Coordinate-based Location-aware Video Seeking Algorithm 

 

In contrast to the WILCO location-aware segment seeking algorithm, the 

WILCO+ segment seeking algorithm first extracts the coordinate information of the 

requesting and the destination peer based on WILCO location-aware ID assignment by 

using the peer overlay IDs. 
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Recall the WILCO location-aware ID mapping introduced in Chapter 5. In the 

WILCO ID mapping, each step consecutively assigns two bits to the MRs IDs. The 

division on 𝑦 axis decides the first bit and the division on the 𝑥 axis decides the second 

bit. As a result, the odd bits from the WILCO ID represent the 𝑦 coordinate while the 

even bits represent the 𝑥 coordinate of the MR in the network topology. In order to 

determine the Euclidean distance between the requesting peer 𝑟 and a destination peer 𝑗, 

the Pythagorean Theorem can be applied using these coordinate information as in 

equation (6.2) 

Where 𝑥𝑟, 𝑥𝑗 and 𝑦𝑟, 𝑦𝑗 are the 𝑥 and 𝑦 coordinates extracted from the IDs of the 

two MRs. 

In the WILCO ID assignment, since each lowest level area contains only one MR, 

this distance indicates the number of hops between the two peers. As a result, using only 

the WILCO overlay IDs, the requesting peer can easily find the closest destination peer 

to get the video segment from by performing a new algorithm denoted as WILCO+ 

segment seeking algorithm. This WILCO+ segment seeking algorithm is described in 

Algorithm 6.4.  

Algorithm 6.4: WILCO+ coordinate-based location-aware video 

segment seeking 

𝑥𝑟  = even bits extracting from the ID of the requesting peer. 

𝑦𝑟  = odd bits extracting from the ID of the requesting peer. 

𝑥𝑗 = even bits extracting from the ID of each of the destination peers, 

𝑗 = 1,… , 𝑘. 

𝑦𝑗 = odd bits extracting from the ID of each of the destination peers, 

𝑗 = 1,… , 𝑘. 

for each 𝑑𝑗 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗 = 𝑠𝑞𝑟𝑡 ((𝑥𝑟 − 𝑥𝑗)
2
+ (𝑦𝑟 − 𝑦𝑗)

2
)   

end for 

𝑑𝑚𝑖𝑛 = {𝑑𝑗: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗 = min {𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗 , 𝑗 = 1,… , 𝑘}}  

 

In comparison with the three-step WILCO segment seeking algorithm, WILCO+ 

uses only one step to determine the best destination peer and therefore is simpler. In 

addition, WILCO+ is also more accurate. As described earlier, the multi-level area 

border effect can affect the WILCO segment seeking resulting in suboptimal selection by 

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 = (𝑥𝑟 − 𝑥𝑗)
2
+ (𝑦𝑟 − 𝑦𝑗)

2
 (6.2)  
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referring the destination peer to a node in the same area instead of choosing the closest 

destination peer which may reside in a different area. On the other hand, the WILCO+ 

segment seeking algorithm is based on coordination extraction from the IDs of MRs 

which resolves the suboptimal problem in WILCO segment seeking and promises a 

better retrieval video performance.  

 

6.4 Overlay Content Retrieval Efficiency 
 

Consider a WMN of 𝑁 MRs using WILCO location-aware ID mapping. Assume 

that the number of replicas of a video segment is 𝑛 and these replicas are uniformly 

distributed over the network.  

This section analyses and compares the overlay content retrieval efficiency of a 

non-location-aware approach, of the WILCO location-aware segment seeking algorithm 

and of the WILCO+ coordinate-based location-aware seeking algorithm. 

 

6.4.1 Non-location-aware Peer Selection Approach. 

 

In this approach, since the requesting peer has no reference on which peer is 

better, it can randomly choose any destination peer to retrieve the video segment from or 

select the destination peer in a round-robin fashion in order to evenly distribute the traffic 

load across the serving peers as in QUVoD [81]. 

Since the network size is 𝑁 nodes, the network diameter is √𝑁 hops. As the 

destination peer is picked randomly, the average distance between the requesting and 

destination peer is 

It can be seen from this result that the number of segment replicas does not play a 

role in equation (6.3). As a result, even when number of replicas is high, i.e., there are 

more peers which store the requested video segment, the hop distance between the source 

and the destination peer is unlikely to reduce and hence, the data retrieval performance is 

unlikely to improve. Another important remark from studying equation (6.3) is that since 

 𝑑𝑁𝐿𝐴 = 𝑂(√𝑁) (6.3)  
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the number of segment replicas does not contribute to 𝑑𝑁𝐿𝐴, a non-location-aware 

overlay segment retrieval strategy should perform no better than the single server 

strategy where a single server is used. 

 

6.4.2 WILCO Segment Seeking Location-awareness 

 

Recall from chapter 5 that when using the WILCO location-aware ID assignment, 

the number of MRs in a level 𝑖 area is 𝑁𝑖 = 4
𝑚

2
−𝑖

 and the area diameter is √𝑁𝑖 = 4
1

2
(
𝑚

2
−𝑖)

 

hops. The probability that there is at least one destination peer which has the requested 

segment residing in the same level 𝑖 area with the requesting peer is expressed as in 

equation (6.4). 

where P𝑠 =
𝑁𝑖

𝑁
 is the probability that the destination peer which has the requested 

segment resides in the same level 𝑖 area with the requesting peer if there is only one 

segment available in the network. 

Let 𝑋𝑖’s be the areas at level 𝑖’s that both the destination peer and the requesting 

peer reside in and 𝑥𝑖’s are the corresponding area diameters. Since WILCO segment 

seeking algorithm prefers the destination peer which share the lowest level area with the 

requesting peer, the hop distance between the requesting peer and the destination peer 

according to the WILCO algorithm is presented in equation (6.5) 

As illustrated in equation (6.4), when the number of segment replicas increases, 

the probability that both the destination peer and the requesting peer resides in the same 

level 𝑖 area increases. By applying Bernoulli’s inequality to the left side of equation 

(6.4), an upper bound of this probability is achieved, as shown in equation (6.6): 

Since  

(1 −
𝑁𝑖
𝑁
)
𝑛

≥ 1 −
𝑛𝑁𝑖
𝑁

 

 
Pr𝑖 = 1 − (1 − P𝑠)

𝑛 = 1 − (1 −
𝑁𝑖
𝑁
)
𝑛

 (6.4)  

 𝑑𝑊𝐼𝐿𝐶𝑂 = min{𝑥𝑖} (6.5)  
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Hence, 

As illustrated in equation (6.6), since (1 −
𝑁𝑖

𝑁
)
𝑛

 decreases with the increase of 𝑛, 

the probability Pr𝑖 increases with the increase in the number of replicas. The Bernoulli’s 

upper bound shows that the increase rate of this probability could be as good as linear 

relative to the number of segment replicas. As a result, WILCO is not only capable of 

finding the closest peer to retrieve the segment from, but also can make use of the 

segment replica number to improve its data retrieval efficiency. 

 

6.4.3 WILCO+ Segment Seeking Location-awareness 

 

Since the location-awareness of WILCO is affected by the WILCO multi-level 

area border effect, suboptimal selections may happen as discussed before. WILCO+ is 

designed to overcome this limitation. By extracting the location coordinate information 

from the MR IDs, the accurate distance in terms of hop count can be determined as in 

equation (6.2). When considering this distance, the closest destination peer can be 

accurately determined. 

Let 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗 (𝑘 = 1,… , 𝑛) be the hop distance from the requesting peer to each 

of the destination peers. Using WILCO+, the hop distance between the requesting peer 

and the selected peer is expressed as in equation (6.7) 

The comparisons of WILCO+, WILCO and the non-location-aware approaches in 

terms of data retrieval efficiency are summarized in Table 6.1. It is shown from this table 

that both WILCO and WILCO+ have superior data retrieval efficiency in terms of hop 

count in comparison with a non-location-aware approach. Moreover, while the number of 

segment replicas 𝑛 does not play any role in non-location-aware approach, the data 

retrieval efficiency of WILCO and WILCO+ improves with the increase of this number, 

effectively exploiting the benefits of a peer-to-peer approach. 

 
Pr𝑖 = 1 − (1 −

𝑁𝑖
𝑁
)
𝑛

≤ 1 − (1 −
𝑛𝑁𝑖
𝑁
) =

𝑛𝑁𝑖
𝑁

 (6.6)  

 𝑑𝑊𝐼𝐿𝐶𝑂+ = min {𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗 , 𝑗 = 1,… , 𝑛} 
(6.7)  
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Table 6.1: Overlay content retrieval efficiency comparison between WILCO+, 

WILCO and non-location-aware approaches. 

 
Data retrieval efficiency 

Hop distance between requesting and destination peer 

WILCO+ 
Nearest destination peer: 

𝑑𝑊𝐼𝐿𝐶𝑂+ = min {𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗, 𝑖 = 1,… , 𝑛} 

WILCO 

𝑑𝑊𝐼𝐿𝐶𝑂 = 4
1

2
(
𝑚

2
−𝑖)

 hops 

with probability 

 Pr𝑖 = 1 − (1 −
𝑁𝑖

𝑁
)
𝑛

 

where: 

2𝑚 = 𝑁 , 

𝑁𝑖 = 4
𝑚
2
−𝑖  

Non-location-aware 

(e.g. QUVoD) 
𝑑𝑁𝐿𝐴 = 𝑂(√𝑁) hops 

 

6.5 Simulation Results 
 

The performance of WILCO and WILCO+, the two proposed location-aware 

schemes is evaluated through detailed, packet-level simulations using Network Simulator 

NS-3 [88]. The simulated network topology follows the descriptions from Chapter 5, and 

consists of 𝑁 = 64 MRs arranged in an 8x8 grid, with the distance between two adjacent 

MRs set to 100m. In the simulations, the detail wireless settings are the same as described 

in chapter 5, all MRs are equipped with IEEE 802.11b radios and OLSR is chosen as the 

routing protocol. The simulation scenario is illustrated in Figure 6.6. 

In our simulations, real video trace files are used to simulate the retrieval of three 

video segments (𝑆 = {𝑆1, 𝑆2, 𝑆3}) by each of the overlay peers. The trace file is obtained 

from the MPEG-4 video clip Akiyo [89] with video bit rate of 341Kbps; is 10 seconds 

long and about 0.44MB in size. The video trace file includes details at the level of packet 

transmissions with streaming deadline. Figure 6.5 illustrates a video trace file after this 

conversion. In a trace file, each row denotes the information required to transmit a video 

frame. The first and second columns are the video frame number and frame type 

accordingly. The third and fourth columns are the number of bytes and the number of 
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packets needed for transmitting a video frame. The last column is the relative timing 

deadline from the streaming session starting time that the frame has to be transmitted in 

seconds, for instance, in Figure 6.5, the second frame has to be transmitted after 33ms 

from the starting time of the streaming session. 

 

Figure 6.5: A video trace file. 

In order to simulate video streaming, an implementation of the EvalVid video 

streaming model [90] on NS-3 is used. In particular, whenever the streaming deadline of 

a frame is met (according to the last column), a number of User Datagram 

Protocol(UDP) packets as specified in the fourth column with the total number of bytes 

as specified in the third column are sent to the requested node. Since the size of a video 

frame may be large, the frame content can be divided into many packets. The size of 

each packet is restricted to 1000 bytes in order to accommodate the headers at network 

and data link layers without being further fragmented. Since each frame has a deadline 

when it should be transmitted, UDP is used and hence, dropped packets will not be 

resent. At the receiver, a receive trace file is built based on the received packets. Using 

the video trace file and the receive trace file, the quality of the streaming video is 
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calculated in terms of PSNR for each segment using equation (6.8) [47], which translates 

the effect of bit rate and packet loss to user perceived quality. 

Where: 

 𝐵𝑖𝑡𝑟𝑎𝑡𝑒 is the average bit rate of the data stream transmitted. 

 𝐸𝑋𝑃_𝑇ℎ𝑟 is the average throughput expected to be obtained. 

 𝐶𝑅𝑇_𝑇ℎ𝑟 is the actual average measured throughput. 

It is noticed that in the case where there are very good channel conditions and the 

video is streamed between very close peers (in terms of hop count), 𝐶𝑅𝑇𝑇ℎ𝑟 is close or 

even equal to 𝐸𝑋𝑃𝑇ℎ𝑟. As a result, the calculated 𝑃𝑆𝑁𝑅 is very high as the denominator 

of equation (6.8) is very close to 0. Instead of leaving the resulting 𝑃𝑆𝑁𝑅 value very 

high for this case, this PSNR value is capped at 50dB. The reason for this is that when 

there is no packet loss and the packets arrived at the destination peer on time for video 

playback, there is no significant difference between the received video and the original 

one and a very high quality of the received video is used. 

The video server is located at MR 51 (diamond node in Figure 6.6) and contains 

all the three video segments. Throughout our simulations, unless otherwise stated, the 

number of replicas for each video segment is three. Regarding the placement of the 

replica segments, two scenarios are considered. Each simulation is repeated 10 times and 

the results are averaged.  

Scenario 1 represents content replication by a network operator. In this case, 

replicator servers are spread evenly throughout the network. For this scenario, video 

segments are partly available at MR 12 ({𝑆1, 𝑆2}), 25 ({𝑆2, 𝑆3}) and 38 ({𝑆3, 𝑆1}) (square 

nodes in Figure 6.6). It is important to note that not all video segments are available at 

these positions. 

Scenario 2 represents P2P content sharing via an overlay network where video 

segments are only stored in the user’s storage. In this scenario, the placements of the 

segment replicas are randomly distributed across the network. 

 
𝑃𝑆𝑁𝑅 = 20 log10 (

𝐵𝑖𝑡𝑟𝑎𝑡𝑒

√(𝐸𝑋𝑃𝑇ℎ𝑟 − 𝐶𝑅𝑇𝑇ℎ𝑟)2
) (6.8)  
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Figure 6.6: Simulation scenario 

Video quality retrieval performance is then analyzed to show the benefit of the 

proposed location-aware video segment seeking schemes in terms of Peak Signal-to-

Noise Ratio (PSNR), Mean Opinion Score (MOS) and packet loss. WILCO and 

WILCO+ will be compared against a server only solution (Server) in which the video 

segments are obtained from the server only; and the state of the art QUVoD [81] 

algorithm which obtains the video segments from the peers in a round robin manner and 

does not consider the location information of peers. Peak Signal-to-noise Ratio (PSNR), 

Mean Opinion Score (MOS) and packet loss of the four schemes are compared in the two 

segment placement scenarios (as mentioned above) with different background load and 

replication rates to show their overlay data retrieval performance and benefits.  

 

6.5.1 Video Retrieval Performance with No Background Load 

 

The performance of WILCO and WILCO+ is first analyzed with the segment 

placement as in Scenario 1 and with no background traffic. 
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Table 6.2: PSNR and packet loss comparisons 

 
PSNR (dB) 

Average packet Loss(%) 
Average PSNR PSNR Variance 

WILCO+ 39.72 (+75%) 12.23 (-27%) 2.17 (-82%) 

WILCO 39.22 (+72.78%) 13.15 (-21.07%) 2.38 (-79.85%) 

QUVoD 25.64 (+12.95%) 17.31 (+3.9%) 8.38 (-29.04%) 

Server 22.70 16.66 11.81 

 

Table 6.3: PSNR to MOS mapping [48] 

PSNR MOS (Mean Opinion Score) Value 

>37 5 (excellent) Imperceptible 

31-37 4 (good) 
Perceptible but not 

annoying 

25-31 3 (fair) Slightly annoying 

20-25 2 (poor) Annoying 

<20 1 (bad) Very Annoying 

 

Table 6.2 shows the average PSNR and packet loss results when WILCO, 

WILCO+ and the other two schemes are employed in turn. Using Server as the baseline 

for comparison, the numbers in brackets show the improvement of the mentioned scheme 

from the baseline. 

It is observed that WILCO and WILCO+ outperform both the two other schemes 

by a significant margin of more than 14dB in terms of average PSNR (72% 

improvement). Moreover, the PSNR variances of WILCO and WILCO+ are also the 

lowest among the four compared schemes with roughly 4dB difference (21% 

improvement). These results illustrate that the video quality delivered by WILCO and 

WILCO+ is not only the highest, but also the most consistent across the peers. 

When applying pair-wise comparison between WILCO and WILCO+ results and 

those of the two other schemes based on a t-test, it can be said that there is a statistically 

significant difference in favor of WILCO and WILCO+ with confidence level of 99% in 

terms of PSNR. This improvement is achieved due to their ability to intelligently choose 
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the nearest peer to get the video segment from, greatly improving the throughput and 

reducing the packet loss, positively affecting user perceived quality. 

Table 6.2 also shows that packet loss is the lowest in the case of WILCO and 

WILCO+, more than 5 times lower than the baseline and 3 times lower than that of 

QUVoD. As packet loss is one of the key factors that decide the received video quality 

level, this result confirms the PSNR-based evaluation and gives another view on the 

effectiveness of the proposed WILCO algorithms. 

 

 

Figure 6.7: MOS distribution of WILCO and the two compared schemes. 

 

The MOS distribution of the video streams of the four schemes is investigated to 

show the distribution of perceived video quality across different MOS levels. Perceived 

video quality levels are mapped from the PSNR results according to Table 6.3 which is 

recommended in [48]. Figure 6.7 demonstrates that the user perceived video quality level 

is the best when WILCO and WILCO+ are employed. This figure shows that 64% and 

68% of the streaming sessions of WILCO and WILCO+ are of excellent quality, 

outperforming the two compared schemes by roughly 30%. In addition, while in the case 

of WILCO and WILCO+ only 15% and 12% of streaming sessions suffer from “bad” 

videos, this figure is more than 50% for the other two compared schemes. These numbers 
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clearly illustrate the inconsistency in video quality retrieval of the compared schemes 

versus WILCO and WILCO+. 

In comparison to WILCO, as illustrated in Table 6.2, WILCO+ improves the 

video quality and packet loss by only a small margin. This small improvement is 

explained by the fact that in this scenario, the video segments are placed evenly across 

the network topology and it is rare to have a suboptimal selection of the overlay peer to 

retrieve the segment from. As a result, the video retrieval performance of both WILCO 

and WILCO+ are very similar. This difference is more pronounced in Scenario 2 in 

which the segment replica placements are randomly distributed across the network 

topology. 

 

6.5.2 Video Retrieval Performance with Background Load 

 

This section presents the performance evaluation of WILCO algorithms with 

different background traffic loads in both Scenario 1 and 2. Again, the video retrieval 

performance of WILCO and WILCO+ are compared against QUVoD and Server. In 

order to simulate background load, in each simulation, 𝑛/4 constant bit rate (CBR) UDP 

streams are generated between 𝑛/2 source and destination peers. The peers which 

generate the background traffic are randomly selected. The load of the background 

streams are varied from 0 (no load) to 50Kbps. 

Figure 6.8 illustrates the PSNR performance of the four schemes. It is observed 

that throughout all the background load levels, WILCO+ and WILCO outperform the 

two compared schemes by a significant gap of at least 50%. This improvement is most 

pronounced when the background load is low to moderate (≤30Kbps) where WILCO+ 

and WILCO improve the received video quality levels significantly with more than 

10dB. According to Table 2.4, this difference in PSNR translates into two video quality 

levels on the MOS scale. When the background traffic is heavy, the PSNR performance 

of all schemes reduces rapidly and the video quality becomes very bad.  
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Figure 6.8: PSNR comparisons in Scenario 1 with different background loads 

 

Figure 6.9: Packet loss comparisons in Scenario 1 with different background loads. 

 

It is interesting to see that the difference between the QUVoD and Server 

approaches is not very substantial across all the background load levels. This remark 

clearly shows that an overlay over a wireless multi-hop network, cannot greatly improve 

the video delivery quality without the consideration of the underlay network topology 

such as location information. Figure 6.9 confirms this result, showing that WILCO 

significantly reduces the packet loss by at least 50% compared to the two other schemes. 
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In comparison with WILCO, WILCO+ is always better, but only by a very small 

margin of about 0.5dB in terms of PSNR. This is because with the regular segment 

placement as in Scenario 1, video segments are almost uniformly distributed 

geographically across the network and the multi-level area border suboptimal issue is not 

pronounced. 

Table 6.4: PSNR comparison at 20Kbps background load. 

 
Scenario 1 Scenario 2 

PSNR (dB) Improvement PSNR (dB) Improvement 

WILCO+ 31.51 54.82% 25.23 42.72% 

WILCO 30.82 53.81% 23.62 38.81% 

QUVoD 15.96 10.83% 12.59 -6.34% 

Server 14.23 N/A 14.45 N/A 

 

The PSNR performance changes drastically when the video segments are 

distributed randomly (Scenario 2), as illustrated in Figure 6.10 and in Table 6.4. It is 

observed that the retrieved video quality reduces significantly for all the peer-to-peer 

schemes due to the suboptimal segment placement. However, WILCO+ and WILCO are 

able to retain a very high PSNR of over 30dB, greatly outperforming the other two 

schemes. The random segment placement clearly reveals the superiority of WILCO+ in 

comparison to WILCO, as it outperforms WILCO by roughly 2dB throughout the 

background loads. This is because the multi-level area border effect affecting WILCO’s 

segment seeking which tends to prefer a more distant destination peer that resides in the 

same area to a closer peer but in a different area, as described in Section 6.4.1. 

It is interesting to observe that according to Figure 6.10, QUVoD is inferior to 

Server when the video segments are randomly placed with light background load. When 

the background load is high, QUVoD becomes better than Server, but the achievable 

PSNR is already very low anyway. This result agrees with our data retrieval efficiency 

analysis performed in section 6.5 on wireless multi-hop network scenarios, which state 

that deploying P2P services “as is” without considering the physical topology is not 

better than using single server solution for all overlay peers. 

 



 

 Chapter 6: WILCO Location-aware Video Segment Seeking Algorithms 

 

125 

 

 

Figure 6.10: PSNR comparison in Scenario 2 with random segment placement at 

different background loads 

 

Figure 6.11: Packet loss comparison in Scenario 2 with random segment placement 

at different background loads. 

 

The better packet loss figure of QUVoD in Figure 6.11 can be explained by the 

fact that in the Server scheme, all the peers get video segments from the server, hence, 

the peers which are close to the server can get high quality videos with very little packet 

loss while the peers far away basically get very low quality video with high loss. As a 

result, on average, the PSNR quality of Server is better than that of QUVoD, but its 
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packet loss performance is worse. On the other hand, the round-robin peer selection of 

QUVoD makes the quality and packet loss variation among the peers less pronounced. 

In addition, the average hop distance between the requesting and destination peer 

of WILCO and WILCO+ was also calculated in the simulation to further demonstrate the 

superiority of WILCO+. Our results indicate that this figure of WILCO is 2.4 hops on 

average while that of WILCO+ is 2.2 hops on average. These figures show an 

approximately 10% reduction in terms of hop length between requesting and destination 

peer with WILCO+. This reduction in hop count is the result of the very good location-

awareness in video segment seeking algorithm. 

 

6.5.3 Video Retrieval Performance with Different Number of Segment 

Replicas 

 

Furthermore, an investigation of the effect of the number of segment replicas to 

the achievable PSNR of the four considered schemes is conducted. In this simulation, the 

random segment placement as in Scenario 2 is considered for its generality with the 

background load of 10Kbps. The number of segment replicas varies from 2 to 7 (10% 

replication rate). It is remarked that in this scenario, the replication rate does not affect 

the performance of the Server scheme since the overlay peers get all the segments from 

the server anyway. 

As shown in Figure 6.12, when the number of segment replicas increases, the 

PSNR performance of all P2P schemes also increases. Among all the schemes, WILCO+ 

does not only perform the best, but its rate of increase in terms of PSNR is also the most 

pronounced. This improvement is more than 10dB (37% improvement) as the number of 

replicas increases from 2 to 7. The PSNR gap between WILCO+ and WILCO increases 

from roughly 1dB to 3dB with the growth of the number of segment replicas. This 

growing performance gap between the two schemes illustrates that WILCO+ can make a 

better use of location information than WILCO by mitigating the suboptimal selections 

in WILCO to shorten the transfer path. 
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Figure 6.12: PSNR comparison with different number of segment replicas. 

 

Analyzing Figure 6.12, it is interesting to remark that the PSNR performance of 

QUVoD does not noticeably increase with the number of segment replicas and is even 

worse than that of the Server scheme even when there are seven segment replicas in the 

network. This can be explained by its round-robin based peer selection which does not 

consider the physical network information such as the locations of peers. As a result, 

peers may end up seeking content from a distant destination peer even when the 

replication rate is high. This result also agrees with our data retrieval efficiency analysis 

performed in Section 6.5 which already indicated that a non-location-aware scheme 

cannot make use of the high number of content replicas in the network in order to 

improve the content retrieval efficiency. 

 

6.6 Chapter Summary 

 

This chapter proposed a WILCO-based novel location aware video segment 

seeking algorithm for video distribution overlays over WMN. The WILCO segment 

seeking algorithm uses an innovative WILCO multi-level area ID assignment to locate 

and retrieve the requested video segments from the nearest peers in order to improve 
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video quality. In addition, WILCO+, an improvement of WILCO segment seeking 

algorithm is proposed to provide a better location-awareness by mitigating WILCO 

border area effect and avoid potential suboptimal selections. A content retrieval 

efficiency analysis is provided to analyse the content retrieval efficiency of WILCO and 

WILCO+, and compare with that of a non-location-aware overlay peer selection 

mechanism. The analysis shows that WILCO and WILCO+ are not only more efficient in 

content retrieval by utilizing a shorter path, but also can productively make use of the 

number of segment replicas in the network to improve this efficiency. Additionally, 

simulations were performed and the results show that WILCO and WILCO+ 

significantly improve the video delivery quality up to 50% in comparison with other 

solutions in terms of PSNR and have lower packet loss at different background loads and 

replication rates. 
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Abstract 
 

In the previous chapter, a location-aware video segment seeking algorithm is 

proposed to make use of the MR locations to select the closest peer in term of physical 

(or underlay) hop count to retrieve the video segments with improved quality. However, 

on a WMN, many other factors beside the hop count distance contribute to the end-to-

end video delivery quality such as the background traffic load or the link quality. As a 

result, selecting the peer with the best link quality to retrieve the video segment from, 

could further improve the video retrieval quality. In this chapter, a Multiplication 

Selector Metric (MSM) for overlay peer selection is proposed. The proposed 

multiplicative metric selector resolves the two major drawbacks of the traditional 

summation-based metric approaches for overlay peer selection, i.e., the bottleneck link 

identification and the hop count behaviour. MSM can employ any link-aware metric 

without any additional networking overhead. Then, a cross-layer Wireless Link quality-

aware Overlay peer selection mechanism (WLO) is proposed, using MSM to identify the 

best peer to retrieve the video content from. Simulation-based testing using OLSR-ETX 

shows how the proposed peer-to-peer solution for WMN outperforms the existing state-

of-the-art solutions in terms of video quality. Finally, real-life emulation test-beds and 
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experiments are deployed to confirm the simulation results. Subjective video quality 

assessment tests are also conducted to show the significant impact of overlay peer 

selection on the user perceived video quality. 

 

7.1 Introduction 
 

When an overlay network is deployed over a wireless multi-hop network such as 

a WMN, the wireless link quality between the peers in the network plays a significant 

role in the delivery quality of the overlay content. For instance, it is well-known that the 

achievable bandwidth of wireless multi-hop network degrades quickly with the number 

of hops between the source and the destination node. With this observation in mind, an 

intuitive solution should be selecting the closest peer in terms of hop count for content 

retrieval. Indeed it was shown in chapter 6 that one such algorithm, namely WILCO 

greatly enhance the delivery quality of overlay videos. However, although this 

intermediate hop minimizing approach is effective over a non-location-aware approach, 

wireless hop count is not the only factor that contributes to the quality of service and 

overlay content retrieval can still be enhanced. 

Picking up the closest peer in terms of hop count does not always guarantee the 

best choice among the overlay peers. For instance, if the path to the closest peer is highly 

loaded, the resulting video retrieval quality may not be as good as retrieving the video 

from a further peer, but on a load-free path. The same argument can be generalized to the 

link quality in general. If the path to the closest peer is very bad in terms of link quality, 

excessive packet loss, delay or jitter may occur which greatly degrade the quality of the 

content retrieval process, especially in the case of video streaming service. In this case, it 

could be better to select a peer on a longer path in terms of hop count, but with a better 

link quality. The objective of this chapter is to provide a better way of selecting peers 

based on wireless link quality. 

Motivated by this observation, a Multiplication Selector Metric (MSM) for 

overlay peer selection is first proposed. The proposed selector metric is shown to be 

superior to the traditional summation-based metric when it is used to select among 

multiple peers on different paths by overcoming the two major limitations of the 
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traditional summation-based metric: bottleneck link identification and hop count 

minimization behaviour. The proposed MSM can be implemented with any existing 

routing protocol without any additional networking overhead by using an existing link-

aware metric. A Wireless Link quality-aware overlay (WLO) peer selection mechanism 

is then proposed. Using a cross-layer approach, WLO selects for retrieval the peer with 

the best path quality in terms of MSM among all the peers that possess the requested 

video content. Simulation results with different background loads and different degrees 

of topology incompleteness show how WLO improves the quality of video retrieval in 

WMN in terms of average PSNR and packet loss. 

Furthermore, a real-life emulation test-bed was setup and real-life video streaming 

tests were performed in order to confirm the similarity between the results of simulations 

and real-life emulation experiments. Besides, subjective video assessment tests are 

conducted on several video sequences in several real-life emulation-based test cases to 

show the importance of overlay peer selection on the user perceived video quality. 

 

7.2 Multiplication Selector Metric for Overlay Peer Selection 
 

The proposed Wireless Link Quality – Aware Overlay (WLO) solution aims at 

improving the overlay video retrieval by selecting from among peers storing the content 

the one to which the requesting peer has the best quality path. In terms of peer selection 

metric, it is first shown that the basic summation metric does not work well in a large 

WMN network. A novel Metric Selector Multiplication (MSM) is then proposed to 

overcome the drawbacks of the traditional summation-based metric for overlay peer 

selection. 

In order to achieve link level awareness on the overlay for peer selection, it is 

natural and straightforward to use a link quality aware routing protocol and then employ 

a cross-layer mechanism to get and compare the path metrics of all the destination peers 

to select the best peer. However, the following analysis shows that this simple 

mechanism is not efficient for overlay peer selection due to the nature of the summation-

based metric. 
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According to [91], in spite of the metric diversity, in most recent routing 

protocols, the path metric is computed as a summation of all the link metrics along the 

path as in equation (7.1) 

 𝑀 =∑𝑚𝑛𝑖,𝑛𝑖+1

𝑘−1

𝑖=1

 (7.1)  

In equation (7.1), 𝑀 is the path metric along a route of 𝑘 nodes (𝑛1, 𝑛2, … , 𝑛𝑘) 

and 𝑚𝑛𝑖,𝑛𝑖+1 is the link metric between node 𝑛𝑖 and node 𝑛𝑖+1. 

In comparison to other operators such as multiplication, this additive way of 

computing the path metric is well-suited for route selection to a single destination due to 

its ability to prevent small variations in one link along the path from significantly 

changing the whole accumulated metric as well as changing the whole route. As a result, 

the use of a summation–ased metric increases the route stability by reducing the flipping 

between routes, especially when a link-aware metric is used which may vary quickly 

with time. However, when evaluating the path quality to different destinations on 

different routes such as is the case of selecting the best peer from multiple overlay peers, 

this approach is not suitable for the two major reasons which will be discussed next. It is 

noted that these discussions apply to the case of selecting the best destination among 

multiple different destinations and not in the case of selecting the best path from multiple 

different paths to the same destination. 

First, the summation metric calculation fails to identify the bottleneck along the 

path. If a link quality – aware metric is used, one bad link along the path will severely 

affect the overall end-to-end service. However, the link metric of this bad link 

contributes only a small part to the summation-based path metric. As a result, this 

bottleneck can be easily buried by small fluctuations in metric calculation of the other 

links along the path. This weakness in bottleneck identification can be severe when 

selecting among multiple different destination peers as destinations with very different 

end-to-end path characteristics could have very similar metric values. 

Second, the summation of link metrics, in fact, imitates the hop-count 

behaviour. Since the path metric increases after each traversed link, the accumulated 

metric can be recognized of the summation of hops along with the link-aware metrics as 



 

 Chapter 7: WLO - Wireless Link-aware Overlay for Video Delivery over WMN 

 

133 

 

the weights. This hop-count behaviour tends to prefer the destination with the least-hop-

path although of its path quality on the component links could be worse than that of a 

longer path. For example, if the Expected Transmission Count (ETX) metric [92] is used, 

a link metric of 1 implies a perfect link while a link metric of 2 implies that the packet 

loss on this link could be as high as 50%. As a result, a destination on a one-hop path 

with a 50% loss link would be preferred over a three-hop path with little or no loss. 

 

7.2.1 The Proposed MSM 

Motivated by these observations, a novel Multiplication Selector Metric (MSM) is 

proposed. MSM is used as the metric for peer selection on the overlay and is calculated 

as a product of all component link metrics as in equation (7.2). 

 𝑀𝑆𝑀 =∏𝑚𝑛𝑖,𝑛𝑖+1

𝑘−1

𝑖=1

 (7.2)  

In equation (7.2), 𝑀𝑆𝑀 is the Multiplication Selector Metric along a route of 𝑘 

nodes (𝑛1, 𝑛2, … , 𝑛𝑘) and 𝑚𝑛𝑖,𝑛𝑖+1 is the link metric between node 𝑛𝑖 and node 𝑛𝑖+1. 

Since the link metrics are multiplied together, a bottleneck with a significantly 

higher link metric will boost the resulting MSM by a few times and cannot be hidden by 

small fluctuations in metric calculation of the other links. In addition, the multiplicative 

way of calculating MSM mitigates the hop-count behaviour of the traditional additive 

metric by emphasizing the quality of the links along the path rather than the path-length. 

As a result, a peer on a longer path with very good link quality will be preferred over the 

one on a shorter path but with bad link quality. 

It is noted here that the use of a multiplicative metric for underlay routing has 

already been proposed in the literature (e.g. [93]). However, since the aim of underlay 

routing is to choose the best path among multiple different paths to a single destination, 

multiplying small changes in link metrics could change the whole route virtually with 

every routing update. If a link-aware metric is in used, the link metric could change 

constantly with time causing route flipping, making routing unstable. Moreover, the 

objective of this research is different, i.e., choosing the best overlay peer for content 

retrieval among different destination overlay peers. For this purpose, the proposed study 
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suggests the use of multiplicative metric for overlay peer selection, but still uses an 

additive metric, as is, for underlay routing. The simulation results in section 5 of this 

chapter illustrate that the proposed approach is well suited to overlay peer selection. 

Moreover, since the proposed solution uses MSM for selecting the best overlay peer and 

use the underlay routing protocol as is with the traditional (summation-based) metric that 

came along with the routing protocol, the proposed solution does not have to tie to any 

link-aware routing protocol or metric. 

 

7.2.2 MSM Computational Complexity 

In comparison with other approaches which either introduce additional 

networking overhead, are incompatible with the existing standard routing protocols, or 

are very computationally intensive, the computational processing of MSM is negligible. 

In order to get the MSM metric values, as well as the traditional additive metric, MSM 

multiplication metric is also calculated by multiplying the component path metric values 

whenever a new node is added into the path in the routing table construction process. 

In particular, let 𝑙 be the number of links in the route, the exact number of 

additional multiplication operators needed for calculating MSM is (𝑙 − 1) operators. In 

general, since the diameter of a network of 𝑁 nodes is √𝑁, the additional multiplication 

operations of each path is only 𝑂(√𝑁), depending on the number of links in the route. 

Since MSM is calculated along during the routing table construction process, which is a 

distributed process, the MSM calculation is also distributed and does not require any 

centralized administration.  

 

7.2.3 MSM Networking Overhead Requirements 

In comparison with other approaches to evaluating path quality which usually 

require the exchange of probing packets for link quality estimation, MSM is calculated 

using the existing link-aware metric which is already built-in with any existing routing 

protocol. As a result, no extra networking overhead is required for MSM calculation. 

This advantage makes MSM easy to implement and integrate into any existing WMNs as 



 

 Chapter 7: WLO - Wireless Link-aware Overlay for Video Delivery over WMN 

 

135 

 

an MSM extension is required only and there is no need to modify the whole network 

layer or build an additional block for overlay path quality-awareness. 

 

7.3 WLO Cross-Layer Overlay Peer Selection Mechanism 
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Figure 7.1: WLO Cross-layer architecture. 

In order to enable link quality - aware overlay peer selection using MSM, the 

MSM calculation is integrated into the WMN routing protocol by adding a MSM 

extension ash shown in Figure 7.1. During the construction of the routing table, this 

MSM extension of the routing protocol calculates MSM values for the best route to each 

of the underlay peer. This MSM values are inserted into the routing table with the 

corresponding route for overlay peer selection use later on. As discussed in the previous 

section, the integration of MSM extension requires a negligible additional computation 

complexity (𝑙 − 1 additional multiplication operators, where 𝑙 is the number of links in 

the path or 𝑂(√𝑁) multiplication operators in general, where 𝑁 is the number of nodes 
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in the network), requires no additional networking overhead and can be easily 

implemented to the existing Network Layer without any significant change in the 

existing routing protocols and metrics. 

 

7.3.1 WLO Algorithm 

Algorithm 7.1: WLO overlay peer selection mechanism using 

MSM 

for each requested segment 𝑆𝑗  

Get the addresses of all overlay peers {𝑑1, 𝑑2, … , 𝑑𝑘} which store 

the requesting video segment 𝑆𝑗. 

for each overlay peer 𝑑𝑖 ∈ {𝑑1, 𝑑2, … , 𝑑𝑘}  

Perform cross-layer lookup for 𝑀𝑆𝑀𝑖 in local routing table 

end for 

𝑀𝑀𝑆𝑚𝑖𝑛 = min {𝑀𝑀𝑆𝑖, 𝑖 = 1,… , 𝑘}  
Select overlay peer 𝑑𝑚𝑖𝑛 with 𝑀𝑆𝑀𝑚𝑖𝑛 to retrieve 𝑆𝑗. 

end for 

 

As detailed in Algorithm 7.1, when the overlay application wants to select the 

best peer to get the video segment from, WLO performs a cross-layer lookup to the 

Network Layer routing table with MSM. Using the IP address of the overlay peers which 

store the requested video segment, WLO retrieves all the MSM values of all those 

destination peers from the local routing table. Based on the acquired MSM values of the 

overlay peers, WLO selects the peer with the lowest MSM as the best peer to retrieve the 

video content from.  

 

7.3.2 Computational Complexity of WLO 

Let 𝑘 be the number of replicas of a segment in the network. The WLO has to 

loop through all of the MSM of the 𝑘 peers to find the best peer with a minimum MSM. 

As a result, the computational complexity of WLO is linearly with 𝑘, or 𝑂(𝑘). Although 

this computational complexity would increase linearly with the number of replicas in the 

network, this number of replicas is generally small so the computational complexity of 

WLO cross-layer lookup is negligible in practice. 
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7.3.3 Expected Transmission Count (ETX) Metric 

The link-aware metric that will be used along with MSM in this chapter is the 

Expected Transmission Count (ETX) metric. ETX metric is chosen due to its simplicity 

in implementation and yet is an effective link-aware metric. 

The Expected Transmission Count (ETX) metric was proposed by Douglas S. J de 

Couto et al. in [92]. In a wireless multi-hop environment, ETX aims at finding a path 

with the fewest expected number of transmissions (including the number of 

retransmissions) required to deliver a packet all the way to its destination. ETX metric 

predicts the number of transmission required by using the link-by-link measurement of 

packet loss ratios in both directions of each wireless link. As a result, using ETX metric, 

the best path is the path to the destination with the highest throughput, despite the packet 

losses. 

The ETX of a link is calculated using the forward and reverse delivery ratios of 

the link. Let 𝑑𝑓 and 𝑑𝑟 be the forward and reverse delivery ratios of a link respectively. 

The forward deliver ratio, 𝑑𝑓, is the measured probability that a data packet successfully 

arrives at the recipient. The reverse delivery ratio, 𝑑𝑟, is the probability that a ACK 

packet travels in a reverse direction can be received successfully. The expected 

probability that a transmission is successfully received and acknowledgement is 𝑑𝑓 × 𝑑𝑟. 

If either the data packet transmission or the acknowledgement fails, a retransmission is 

required. Since the transmissions are independent, the expected number of transmissions 

required is expressed in equation (7.3) 

 𝐸𝑇𝑋 =
1

𝑑𝑓 × 𝑑𝑟
 (7.3)  

Since there is no implementation of ETX on NS-3, an OLSR – ETX model based 

on the OLSR – ETX model on NS-2[94] was implemented on NS-3. The delivery ratios 

𝑑𝑓 and 𝑑𝑟 are measured using dedicated link probing packets. Each node broadcasts a 

link probing packet at an average period 𝜏. To avoid the synchronization problem when 

neighbouring nodes broadcast probing packets at the same time, a random jitter of 0.1𝜏 is 

added to the probing broadcast period. By counting the number of probing packets a 

node received from a neighbour during a measured window of 𝑤 seconds, the reverse 

delivery ratio can be calculated using equation (7.4) 
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 𝑑𝑟 =
𝑐𝑜𝑢𝑛𝑡(𝑤)

𝑤 𝜏⁄
 (7.4)  

In equation (7.4), 𝑐𝑜𝑢𝑛𝑡(𝑤) is the number of probes received from the neighbour 

during the window 𝑤, and 𝑤 𝜏⁄  is the number of probes that should have been received. 

By using this method, the reverse delivery ratio 𝑑𝑟 can be obtained at all the 

communication nodes. Consider a link between node 𝑋 and 𝑌, it is clear that the reverse 

delivery ratio calculated at 𝑋 is the forward delivery ratio 𝑑𝑓 of 𝑌 on the link. In order to 

let 𝑌 know its forward delivery ratio, 𝑑𝑓, each probing packet sent by 𝑋 contains the 

number of probing packets received by 𝑋 from each of its neighbours during the last 

window time 𝑤. Using this embedded information, each node in the network can also 

calculate its forward delivery ratio, 𝑑𝑓, with a neighbour.  

 

7.4 Simulation-Based Testing 
 

The performance of the proposed WLO is evaluated using Network Simulator 3 

[88]. The simulated topology consists of 𝑁 = 64 MRs arranged in an 8x8 grid, as 

illustrated in Figure 7.2. The distance between two adjacent MRs is set to 100m. In the 

simulations, all the wireless settings for MRs are the same as in Table 5.2 in chapter 5, 

and the OLSR-ETX routing protocol is used to perform underlay routing and enable data 

transfer. Each simulation is repeated 10 times and the results are averaged.  

First, some simple scenarios are investigated to illustrate the effectiveness of 

MSM over the traditional summation-based metric. Then, more thorough simulation 

results are presented to show WLO’s benefits in general scenarios. Throughout the 

simulations, video retrieval quality is evaluated using the same MPEG-4 video clip 

Akiyo [83] and the calculations of the Peak Signal-to-Noise Ratio (PSNR) and packet 

loss are the same as described in chapter 6. The video quality retrieval performance of 

WLO is compared to that of WILCO+, WILCO, QUVoD [81] and a server-only solution 

(Server). 
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7.4.1 Illustration of MSM Effectiveness in Simple Scenarios 

 

First, the effectiveness of MSM over the traditional summation metric (ETX) for 

overlay peer selection is illustrated in four simple scenarios. In these simple scenarios, 

MR A is the requesting peer; MRs D and E and F in Figure 7.2 are the three serving 

peers storing the requested video segment. Background traffic load, if it exists, is from B 

to C. The video retrieval from F to A is on a load free path and is used as a baseline for 

comparison. The four scenarios include video streaming at different path lengths and 

background loads along with the traditional summation metric and MSM obtained from 

MR A’s routing table. The PSNR results and packet loss of the four simulation scenarios 

are summarized in Table 7.1. The video performance is evaluated by simulating 

streaming of one real video segment using the same trace file that was used in Chapter 6. 

The video used for streaming is the same as in chapter 6 with a bit rate of 341Kpbs, is 10 

seconds long and is about 0.44MB in size. 

A B C D E
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S
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Scenario 2 & 3

Scenario 4

Background Load

Video traffic

Background Load

 

Figure 7.2: Simulation topology 
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In Table 7.1, scenario 1 is used as a baseline for comparison with the other 

scenarios. Scenario 2 and 3 present PSNR and packet loss performance of the same 

network path length as with the baseline scenario, from A to E, but under different 

background loads. It is observed that in comparison to scenario 1, both the PSNR and 

packet loss become worse in scenario 2 and 3 due to the increase of background load 

levels. However, it is important to remark that the ETX metrics vary very little in the 

second and the third scenario in comparison with the baseline scenario. The ETX’s and 

packet loss figures in Table 7.1 illustrate that while the packet loss is very high in 

scenario 3, when the background load in the intermediate nodes is high, the ETX metric 

in this scenario is less than 10% higher than that of scenario 1 with a load-free path. If 

there were some small variations in metric measurement on scenario 1, this insignificant 

difference in the ETX summation-based metric could be easily buried and a peer 

selection using an underlay summation-based could be a bad choice. As a result, an 

overlay peer selection using a summation metric directly from the routing table could 

select the peer with the bad link quality for content retrieval due to the bottleneck and the 

hop-count behaviour which were described earlier in this chapter. On the other hand, it 

can be seen from Table 7.1 that the MSM metric reflects very well the path quality in 

each of the first three scenarios, having a significant higher MSM in scenario 3 in 

comparison with scenarios 1 and 2.  

Table 7.1: Illustration of MSM effectiveness in four simple scenarios. 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Requesting Peer A A A A 

Serving Peer F E E D 

Background Load No Load 50 Kbps 1 Mbps 1 Mbps 

PSNR 29.49 dB 28.46 dB 5.68 dB 6.70 dB 

Packet loss 4.77% 5.87% 49.59% 30.80% 

ETX 11.00 11.20 11.81 10.23 

MSM 29.26 30.38 46.41 42.36 

 

Furthermore, in scenario 4, both the traditional summation ETX metric and MSM 

are investigated when the serving peer is on a path with one hop less than the other 

scenarios, but with a very high background traffic load on the intermediate nodes along 
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the path. It is important to see from Table 7.1 that while the PSNR and packet loss 

performance is very bad in this scenario due to the high load of background traffic on the 

intermediate nodes, the ETX is lower than that of all the other three scenarios. This is 

due to the hop count behaviour mentioned earlier that the traditional summation metric 

imitates the hop count metric and increases after each hop along the path. As a result, a 

longer but much better path is not preferred over a shorter, but heavily loaded one. On 

the other hand, in this scenario, the MSM metric continues to reflect the path quality very 

well, having a significantly higher value than in both scenarios 1 and 2.  

These four simple but typical scenarios confirm our claim on the effectiveness of 

MSM in choosing the best overlay peer to retrieve the content from. As a result, a 

multiplication metric is a better indication of the goodness of multiple overlay peers on 

different paths and was preferred when proposing MSM. 

 

7.4.2 Video Retrieval Performance of WLO in Different Levels of 

Background Load 

           

Figure 7.3: PSNR comparisons with different background loads 

 

In this section, the performance of the proposed overlay peer selection (WLO) is 

evaluated with different background traffic loads. The video retrieval performance of 

WLO is compared against that of WILCO, WILCO+ QUVoD and Server. The 

0 10 20 30 40 50
5

10

15

20

25

30

35

CBR background Load (Kbps)

P
S

N
R

 (
d

B
)

 

 

WLO

WILCO+

WILCO

QUVoD

Server



 

 Chapter 7: WLO - Wireless Link-aware Overlay for Video Delivery over WMN 

 

142 

 

simulation topology and wireless settings are the same as in 7.5.1. To simulate 

background load, 𝑁/4 constant bit rate (CBR) UDP streams are generated between 𝑁/2 

randomly selected source and destination peers. The load of each of the background 

traffic streams is varied from 0 (no load) to 50Kbps. 

 

Figure 7.4: Packet loss comparisons with different background loads 

 

In these simulations, real video trace files are used to simulate the retrieval of 

three video segments (𝑆 = {𝑆1, 𝑆2, 𝑆3}) on each of the overlay peers. The video 

descriptions are the same as in chapter 6 and in section 7.4.1. The number of replicas for 

each video segment is three. The video server is denoted by 𝑆 in Figure 7.2 and contains 

all the three video segments. The other segment replicas are randomly distributed across 

the network. 

Figure 7.3 illustrates the video retrieval PSNR performance of the five schemes. 

This figure shows that for all the background load levels, the PSNR values achieved by 

WLO, WILCO+ and WILCO are very high (around 30dB) when the background load is 

low and are about 10dB higher than those of the other two schemes. It is important to 

note that the difference in PSNR of QUVoD and Server is negligible across all the 

observed background loads. This fact clearly shows that on a wireless multi-hop network 

scenario, deploying P2P services without considering the physical topology conditions is 

not better than using a single server in terms of the quality of content retrieval. Figure 7.4 

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

CBR background load (Kbps)

P
a

c
k
e

t 
lo

s
s
 (

%
)

 

 

WLO

WILCO+

WILCO

QUVoD

Server



 

 Chapter 7: WLO - Wireless Link-aware Overlay for Video Delivery over WMN 

 

143 

 

confirm this result, showing that WLO and WILCO can significantly reduce the packet 

loss by at least 50% in comparison to QUVoD and Server schemes. 

In comparison with the location-aware schemes, i.e., WILCO and WILCO+, with 

no background load, the PSNR values of WLO, WILCO+ and WILCO are similar. The 

slightly lower PSNR of WLO at 0 background load could be due to the fact that even at 

zero load, channel variations could affect the ETX measurement. However, when the 

background load increases, the PSNR of the location-aware schemes decrease quickly, 

while WLO retains a very high PSNR with a slower rate of decrease. It is observed that 

throughout all the background loads, WLO outperforms WILCO by a good 4dB and 

outperforms WILCO+ by about 2dB in terms of PSNR. This result illustrates the ability 

of WLO to intelligently select the best peer with the lightest load or in general, the better 

link condition path even if the selected peer is on a longer path. On the other hand, the 

location-awareness of WILCO and WILCO+ schemes concentrate only on the physically 

nearest peer and do not care about the link-level conditions of the path such as the link 

contention due to the traffic load along the path. Figure 7.4 further confirms this result. 

While the packet loss of WILCO and WILCO+ generally increases with the background 

load, WLO packet loss remains under 5% up to 20Kbps. At higher background loads, by 

using MSM, the link quality aware overlay peer selection mechanism of WLO enables it 

to select the peer with a better path and hence, be able to keep the packet loss lower than 

the location-awareness of WILCO and WILCO+ which only rely on the shortest path in 

terms of hop count for overlay peer selection. 

 

7.4.3 Video Retrieval Performance in Incomplete Topologies 

 

In real-life deployments, it is ideal to have a complete grid topology as in Figure 

7.2. However, this complete topology may be hard to achieve due to factors such as cost, 

obstacles or difficulties in installation. In this section, video retrieval performance of 

WLO, WILCO+, WILCO, QUVoD and Server are compared in incomplete topologies 

by turning off some of the MRs. The MRs which are turned off are uniformly randomly 

distributed across the physical topology. The degree of incompleteness is 5%, 10% and 

20% which correspond to three, six and thirteen MRs in a 64 MR topology as illustrated 

in Figure 7.2 accordingly. It is observed in the simulation that anything larger than 20% 
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would partition the original topology into disconnected parts. In each case, ten different 

topologies are generated and tested against and the results are averaged. The background 

traffic load is 10Kbps and all the other simulation assumptions are kept the same as 

described in Section 7.4.1. 

 

 

Figure 7.5: PSNR comparisons in incomplete topologies 

 

Figure 7.5 shows the PSNR comparisons of the five schemes in incomplete 

topologies with the 𝑥 axis representing the degree of topology incompleteness at 0% 

(complete topology as in Section 7.4.1 and section 7.4.2), 5%, 10% and 20%, 

respectively. It is illustrated that the retrieved video quality degrades with the 

incompleteness of the topology due to suboptimal paths. However, while WLO retains a 

very high PSNR even when 20% of the MRs are off, PSNR values for the other four 

schemes decrease sharply. In comparison to the PSNR in a complete topology, WLO 

performance in a 20% incompleteness topology decreases by only roughly 5% with 

about 2dB, while that of the other four schemes degrade by roughly 20% in similar 

situations, even with the location-awareness of WILCO and WILCO+. 

From Figure 7.5, it is interesting to see that the PSNR performance of WILCO+ 

and WILCO are the most sensitive to the topology incompleteness. This can be explained 
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by the fact that the WILCO and WILCO+ location-aware segment seeking algorithms 

assume a complete topology. As a result, the peer selection could be worse even in terms 

of hop count in incomplete topology scenarios. 

 

7.4.4 Video Retrieval Performance with Mobility 

 

 

Figure 7.6: PSNR comparison with mobility 

 

In real-life scenarios, users are moving around even as they are accessing data 

content or watching videos. In this section, the video retrieval performance of WLO, 

WILCO+, WILCO, QUVoD and Server are compared in the case of user mobility. The 

users can move from one WILCO lowest level area to one of the four adjacent areas with 

equal probability. In this test, the data handover is not considered so the users are 

assumed to watch an entire video segment, moving to an adjacent area and then proceed 

with the next video segment. The video segment seeking is done for every requested 

segment. The background traffic load varies from 10Kbps to 50Kbps and all the other 

simulation assumptions are kept the same as described in section 7.4.1 

Figure 7.6 presents the PSNR comparison among the five schemes with user 

mobility; the 𝑥 axis shows the background load level in the scenario. It is shown that the 
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received video PSNR with mobility reduces in comparison with that resulted in section 

7.4.2. However, there is a significant gap of about 8dB between the WILCO, WILCO+ 

and WLO in comparison with the QUVoD and Server schemes throughout the graph. It 

is illustrated in this figure that WLO upper bounds WILCO+ and WILCO with 

approximately 3dB (more than 10%) difference, except for the low traffic load. It is also 

shown in Figure 7.6 that the reduction rate of WLO is much slower than that of WILCO 

and WILCO+, which is the result of WLO’s ability of selecting the peer with the best 

link quality to retrieve the video segment from. 

 

7.5 Emulation Tests based on Streaming of Real Videos 
 

So far, in this chapter, simulation-based tests were used to quantify the video 

retrieval performance in various scenarios using video quality metrics such as PSNR. In 

this section, quality evaluations based on actual measurements and perceptual 

evaluations are performed to confirm the simulation results and to show the effectiveness 

of the proposed mechanisms. Using a real-life emulation-based test-bed, real videos are 

streamed between real hosts (desktops) through an emulated WMN and the video quality 

is evaluated through both objective and subjective-based evaluations. 

 

7.5.1 Emulation Concept and Architecture 

 

Network emulation enables the creation of network scenarios on a physical 

machine and allows the other physical machines with real applications and real traffic to 

interact with each other through the emulated network by connecting to the network-

emulated machine. The network emulation is usually accomplished in software using 

simulation programs such as NS-3 [88], NS-2 [94], etc. With the flexibility in changing 

the emulated network at will, the main advantage of using an emulation-based test-bed is 

that it reduces the time and the cost of testing solutions when real applications are 

required without the need of purchasing and deploying of real networks. 
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In this section, the network emulation scenarios are conducted using the NS-3 Tap 

Bridge mechanism [95]. The NS-3 Tap Bridge emulation architecture is shown in Figure 

7.7. In NS-3 emulation, the networking environment and network nodes are built and 

simulated normally in a separated machine (Simulation Host as illustrated in Figure 7.7) 

using NS-3 except for nodes that are to be replaced by the real hosts. For nodes in NS-3 

simulation that are to be replaced by the real hosts (the NS-3 Client Nodes in Figure 7.7), 

only the node container and the net device are created, the NS-3 IP stack and upper layer 

applications are replaced by the external host. The communication between the NS-3 

simulation environment and the simulation host is done through sockets. The simulation 

host binds these sockets to its real network devices which are then connected to the real 

hosts (Video Server Host and Client Host as illustrated in Figure 7.7) for communication 

purpose. These communication links between the real host and the communication hosts 

enable real traffic to flow between real hosts while being transferred through a complex 

NS-3 simulated topology in real time. 

NS-3 Client Node

Simulation Host

NS-3 Net 
Device

NS-3 IP Stack

Real Network 
Device

Video Server Host

Real IP Stack
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Application

Real Network 
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Figure 7.7: NS-3 emulation architecture. 
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7.5.2 Emulation Test-bed Hardware and Software Configuration 

 

Figure 7.8 shows the actual test-bed deployment with three PCs playing the roles 

of the media server, media client and the NS-3 simulation host. The hardware equipment 

involved in the tests is listed below: 

 Media server host: a desktop with Ubuntu 12.04, Intel Core i7-3770 at 

3.48GHz and NetXtreme BCM5722 Gigabit Ethernet PC Card. 

 Media client host: a desktop with Ubuntu 12.04, Intel Core i7-3770 at 

3.48GHz and NetXtreme BCM5722 Gigabit Ethernet PC Card. 

 NS-3 simulation host: a desktop with Ubuntu 12.04, Intel Core i7-3770 at 

3.48GHz and two Ethernet cards: 

o NetXtreme BCM5722 Gigabit Ethernet PC. 

o 82579LM Gigabit Network Connection. 

 Two KRONE PremisNET CATEGORY 5e Ethernet cables are used for the 

connection between the media server and the simulation host, and between 

the media client and the simulation host. 

 

Figure 7.8: Test-bed Deployment. 

 

The software used in the tests is listed below: 

 Video LAN Client (VLC)
15

: an open-source video player supporting multiple 

operating systems and most of the existing codecs. VLC also supports video 

                                                           
15

 Video LAN Client - http://www.videolan.org/vlc  

http://www.videolan.org/vlc
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streaming with both the role of video streaming server and client. VLC is 

deployed at both the media server host and the client host for streaming and 

receiving of videos. 

 Moscow State University (MSU) Video Quality Measurement Tool [96]: an 

objective video quality assessment software which supports comparing the 

original video and the impaired video to evaluate the quality of the impaired 

video. MSU supports many objective quality assessment metrics such as 

PSNR, MSE, etc. 

 MSU Perceptual Video Quality Tool [97]: a subjective video quality 

assessment software which automates the perceptual video tests. MSU 

Perceptual Video Quality Tool support many types of subjective tests, 

including Double Stimulus Impairment Scale (DSIS) [42], SCACJ (Stimulus 

Comparison Adjectival Categorical Judgement) [98], etc. 

7.5.3 Video Sequences 

Three video sequences were used for emulation tests. The properties of the video 

sequences are shown as in Table 7.2. The first sequence is the Akiyo sequence [89] that 

was used for simulations throughout the thesis and is used in the emulation to confirm 

the simulation results. The second and the third sequences are taken from the Big Buck 

Bunny animation movie [99] and are used for the extended emulation scenarios with 

different video complexities. The second sequence presents a high spatial and temporal 

complexity sequence with fast changing scenes and complex backgrounds. The third 

sequence presents a low spatial and temporal complexity sequence with a bird slowly 

glides across the screen on an empty sky. Figure 7.9 illustrates the frames belonging to 

the three sequences respectively. 

Table 7.2: Properties of video sequences used for the emulation tests 

Video 

Sequence 

Number 

Duration 

(seconds) 

Encoding 

Codec 

Overall 

Bit Rate 

(Kbps) 

Resolution 

(pixels×pixels) 

Frame 

rate (fps) 

Color 

Space 

1 10 MPEG-4 341 352×288 30 YUV 

2 20 MPEG-4 988 512×288 25 YUV 

3 15 MPEG-4 984 512×288 25 YUV 
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Video Sequence 1 

 

Video Sequence 2                                             Video Sequence 3 

    

Figure 7.9: Video sequences used for emulation tests 

 

7.6.4 Experimental Scenarios 

 

The video delivery performance of the three sequences in Table 7.2 is evaluated 

in real-life emulation-based tests. In the simulation-based tests earlier in this chapter, 

since each of the data points in the previous simulation tests was averaged over more 

than 1800 simulation runs, it is impossible to manually emulate each and every 

simulation run. As a result, only the four simple scenarios described in section 7.4.1 are 

replicated in the emulation-based tests to confirm the simulation results. Furthermore, the 

effectiveness of WILCO location-aware segment seeking algorithm and WLO are 

demonstrated in various test cases on emulation test-bed along with user perceptual tests. 

The experimental scenarios are detailed as follows: 

 Simulation results confirmation. In this test, the four simple simulation 

scenarios in section 7.4.1 are replicated in emulation tests in order to confirm 

the simulation results. In these emulation-based tests, video sequence 1, 
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which was also used in the simulations, is used for evaluating the video 

retrieval performance. In these tests, the source and the destination peers are 

replaced by the real desktops which run VLC applications for streaming of 

the video sequence. The corresponding NS-3 WMN and background load are 

deployed and emulated on the NS-3 emulation host. The received videos are 

evaluated in terms of PSNR using MSU and compared with the simulation 

results. 

 Extended emulation scenarios on the effectiveness of peer selection. In 

this test, video sequences 2 and 3 are streamed across a WMN in various hop 

count and background traffic load scenarios. The three backhaul WMN 

scenarios are as follows: a four-hop link with 200Kbps background load, a 

two-hop link with 200Kbps background load and a two-hop link with no 

background load. The received videos are evaluated using perceptual tests to 

show the effectiveness of peer selection in these scenarios. 

 

7.5.5 Experimental Scenarios 

7.5.5.1 Simulation Results Confirmation 

 

Table 7.3: Emulation test-bed versus simulation result comparison. 

  Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Setup 
Hop count (hops) 7 7 7 6 

Background 

Load No Load 50Kbps 1Mbps 1Mbps 

Test-bed PSNR (dB) 30.31 28.38 12.78 14.07 

Simulation PSNR (dB) 29.49 28.46 5.68 6.7 

 

The video retrieval qualities of the four simple scenarios described in section 

7.5.1 are replicated in the emulation test-bed. The PSNR, obtained from the emulated 

tests and computed by the MSU application, is used as the objective video quality 

assessment metric for evaluating the received videos. The PSNR results from the 

emulation test-bed are then compared with the simulation results in order to confirm that 

they share the same trends. It is argued that the other simulation results in this thesis 

would share similar tendencies when applied to real-life scenarios. 



 

 Chapter 7: WLO - Wireless Link-aware Overlay for Video Delivery over WMN 

 

152 

 

Table 7.3 shows the comparison between the emulation test-bed results and the 

simulation results for the four tested scenarios. In general, the test-bed results and the 

simulation results share the same tendency, i.e., the video quality degrades when the 

background load increases. In scenarios 1 and 2, the PSNR results of the test-bed and the 

simulation closely match each other. In scenarios 3 and 4, the PSNR results from the test-

bed are a bit higher than those from the simulations. This difference can be explained by 

the fact that the PSNR value obtained from the simulation was calculated from the PSNR 

estimation in [47] which is very sensitive to high packet loss. As a result, when the 

packet loss is high, i.e., in scenarios 3 and 4, the PSNR estimation in the simulation gives 

a lower value than the actual comparison and evaluation using the original video and the 

impaired video. Using t-test with the confidence level of 99%, it can be said that there is 

no significantly statistical difference between the simulation result and the emulation-

based test-bed. The t-test result confirms that the simulation results are statistically 

similar to the real-life emulation test-bed results. 

 

7.5.5.2 Extended Emulation Scenarios on the Effectiveness of Peer Selection 

 

In previous sections, objective video quality assessment metrics are used for 

measuring the received video quality for both the simulation tests and the real-life 

emulation tests. However, the results from the objective video quality assessment metrics 

do not always correlate perfectly with the user perceived quality from human vison, 

which behaves non-linearly. Using subjective video quality measurement, this section 

presents the investigation of the effectiveness of peer selection in three different 

emulation-based scenarios. The three emulation scenarios differ in the hop count of the 

path between the requesting peer and the destination peer, and the following background 

traffic load situations are considered: a four-hop link with 200Kbps background load, a 

two-hop link with 200Kbps background load and a two-hop link with no background 

load. These scenarios resemble the overlay selection of a non-location aware method, 

WILCO/WILCO+ and WLO respectively. Video sequences 2 and 3 described in Table 

7.2 and Figure 7.9 are used for the emulation-based tests which present a high spatial and 

temporal complexity sequence and a low spatial and temporal complexity. In each 

emulation scenario, the video sequences are streamed from the media server using VLC 
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through the emulated network to the media client and are saved into video files in the 

media client desktop for subjective video quality assessment tests. 

Table 7.4: Mean Opinion Score 

MOS Quality Impairment 

5 Excellent Imperceptible 

4 Good Perceptible but not annoying 

3 Fair Slightly annoying 

2 Poor Annoying 

1 Bad Very annoying 

7.5.5.2.1 Subjective test set-up 

 

1. Watching reference Video                             2. Watching impaired Video 

  

3. MOS rating 

 

Figure 7.10: DSIS subjective test procedure and interface using MSU Perceptual 

Video Quality Tool 

 

The subjective tests were done in a separate room without any disturbance form 

outside. 20 users (12 males and 8 females) were invited to watch the video clips received 

in the test cases. The ages of the users are distributed between 21 to 44 years old. The 

occupations of the users include students, technicians, engineers, businesspersons, etc. 
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MOS [100] is selected for the subjective video quality measurement. The quality scale 

for MOS is presented in Table 7.4 with the MOS value of 5 indicating the “excellent” 

quality and the MOS value of 1 indicating the “bad” quality.  

The subjective tests follow the Double Stimulus Impairment Scale (DSIS) method 

which is described in ITU-R BT.500-11 [42] and follow all the recommendations from 

the ITU-T P913 [101]. In DSIS method, videos are shown consequently in pairs: the first 

video is the reference video, the second video is the impaired video. After each playback, 

the test participant is asked to give his/her opinion using the MOS impairment scale as in 

Table 7.4.  

The subjective tests are done on the Media client host with the configuration as 

shown in Section 7.5.2 with a 27 inches Asus VG278 monitor. The MSU Perceptual 

Video Quality Tool [97] is used to automate the test procedure as shown in Figure 7.10. 

The MOS value for the quality assessment of each video sequence is computed as the 

average value rated from the 20 users. 

 

7.5.5.2.2 Result Analysis 

Error! Reference source not found. illustrates an example of the quality of an 

original and the received video frame of video sequence 2 affected by the network QoS 

parameters. The frame was taken in the 2-hop path with 200Kbps background load 

scenario. 

Figure 7.12 illustrates the average MOS values measured for the two video 

sequences in the network three scenarios. It is illustrated in Figure 7.12 that the longer 

the path, the worse the video quality is and the lighter the background traffic load, the 

better the video quality is. In comparison to the 4-hop scenario, the perceived video 

quality of the 2-hop scenarios is much better. While there are some jerky and blurred 

video frames in the 2-hop scenario which are perceivable they are still watchable; 

however, many of the video frames of the 4-hop scenarios are blocky and colour 

impaired which make the videos almost unwatchable. Furthermore, between the two 2-

hop scenarios, the perceived video quality is considerably better in the case of no 

background load. These results clearly show that both hop count and background load 

have a great impact on the user perceived video quality. As a result, if overlay peers are 
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capable of intelligently selecting closest peer or peer on a lighter background load paths 

to retrieve the video segment from, such as that proposed by WILCO, WILCO+ location-

aware segment seeking schemes and WLO scheme, the user perceived video quality is 

expected to be enhanced. 

Original video frame                                   Received video frame 

    

Figure 7.11: An example of the quality of the original and received video frames 

 

 

Figure 7.12: MOS results from subjective tests in several network scenarios. 

 

In comparison to video sequence 2 with high temporal and spatial complexity, the 

quality degradation of video sequence 3 is harder to perceive. This is because in video 

sequence 3, the temporal and spatial complexity is low and the consecutive frames are 

almost identical. This similarity between frames makes it easier for the video player to 
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conceal the errors, making it harder for the users to notice the degradation in the video 

quality. 

7.6 Conclusion 
 

This chapter proposed MSM, a novel Multiplication Selector Metric. Unlike the 

traditional summation-based metric, the proposed MSM is capable of detecting 

bottleneck links, does not have a hop count behaviour and hence is more suitable for 

selecting the best peer in terms of link quality from multiple overlay peers on different 

paths. WLO, a cross-layer overlay peer selection mechanism is also proposed which 

makes use of MSM to select the best peer for overlay video content retrieval. The 

simulation results show that WLO greatly reduces the packet loss and significantly 

improves the video quality retrieval in terms of PSNR with different background load 

levels and degrees of topology incompleteness in comparison with other solutions. 

A real-life test-bed is developed to confirm the simulation results with real-life 

emulation experiments. The emulation results suggest that there is no statistically 

significant difference between the simulation results and the real-life emulation test 

results. Subjective video quality assessment tests are also conducted to show the 

significant impact of overlay peer selection on the user perceived video quality and they 

confirm the simulation and emulation test results. 
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CHAPTER 8: Conclusions and 

Future Works 

 

 

8.1 Abstract 
 

Chapter 8 summarizes the research work reported in this thesis. First, the problem 

is briefly described and then, the three main contributions of the thesis are highlighted 

along with the testing results. The chapter concludes with the presentation of several 

potential avenues for future work. 

 

8.2 Conclusions 
 

8.2.1 Problem Overview 

 

Wireless Mesh Networks have been widely setup for last-mile network 

connectivity, especially in urban areas. The benefits of WMN include the ease of use, 

low-cost deployment, flexibility and scalability. When WMNs are used in conjunction 

with Peer-to-Peer (P2P) data transfer solutions, many innovative applications can be 

integrated into the network to enhance the user experience. These innovative applications 

range from distributed storage to resource sharing applications such as P2P Video on 

Demand. In P2P VoD applications, many users may watch the same video at the same 

time. As a result, the same video segment may be simultaneously available at several 
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places in the network. In this context, by making use of the existing user community and 

getting the video segments from an overlay peer, the server load could be significantly 

reduced. Moreover, by getting the content from overlay peers, the traffic balance could 

be greatly improved as the traffic would concentrate in a few network nodes where the 

content servers are connected to, creating bottlenecks. 

However, in contrast to wired networks, wireless channels are error-prone, time 

varying and bandwidth limited. These critical characteristics of wireless channels 

introduce two main challenges for integrating a peer-to-peer overlay network over 

WMNs. 

First, this combination of WMN at lower layers and overlay network at higher 

layers is not straightforward. As the current overlay protocols are designed for resource-

rich wired networks, a high volume of maintenance traffic is required for ensuring the 

correctness and integrity of the overlay. This high volume maintenance traffic becomes a 

big issue in wireless multi-hop networks as bandwidth is limited and channels are error-

prone. As a result, there is a need for an overlay protocol that is capable of enabling 

efficient overlay communications on the resource constrained WMNs. 

Second, data transfer performance over a wireless multi-hop scenario depends 

greatly on several factors such as the number of intermediate nodes between the source 

and the destination node and the network load of the path between the nodes. As a result, 

an intelligent method of selecting the best peer for content retrieval among the peers that 

store the same content can significantly improve the data transfer performance. This 

observation is especially true for video contents in which a degraded bandwidth, delay or 

packet loss can reduce the video quality significantly. Hence, an overlay content delivery 

mechanism over WMN should be capable of selecting the best peer among all the 

available peers to retrieve the content from in order to achieve the best quality of service. 

 

8.2.2 Contributions 

 

In the context of the above problems, this thesis presents solutions to enable an 

efficient overlay network over WMNs at both levels of overlay communications and 

overlay data exchange. Three major contributions are proposed in this thesis: 
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 Wireless Location-aware Chord-based Overlay (WILCO) mechanism for 

WMN. WILCO makes use of the MR locations to integrate the physical 

topology on to the overlay network for efficient overlay communications, 

making the overlay network aware of the physical topology. The location-

awareness of the proposed mechanism is realized through a novel 

geographical multi-level Chord ID assignment to the MRs on grid WMNs. An 

improved finger table is proposed to make use of the WILCO multi-level ID 

assignment to minimize the underlay hop count of overlay communications 

and recursively and progressively bound the overlay message to smaller 

WILCO multi-level area instead of letting the overlay message travel across 

the entire network. 

 WILCO-based novel geographical location-aware video segment seeking 

algorithm. Tackling the issue of choosing the best overlay peer for data 

exchange, the intuition behind the WILCO-based location-aware video 

segment seeking algorithm is to choose the peer closest to the requesting peer 

in terms of hop count to download the requested video segment. The proposed 

video segment seeking algorithm makes use of the multi-level WILCO ID 

location-awareness to locate and retrieve video segments from the closest 

peer to improve video delivery quality. An enhance version of this video 

segment seeking algorithm (WILCO+) is proposed to mitigate the suboptimal 

selection of the WILCO video segment seeking algorithm by extracting 

coordinates from WILCO ID to enable location-awareness. 

 Cross-layer Wireless Link Quality-aware Overlay peer selection 

mechanism (WLO). Picking up the closest peer in terms of hop count for 

data exchange does not always guarantee the best selection since data 

retrieval quality also depends on other factors rather than hop count, for 

instance, traffic load or path quality. Motivated by this observation, the 

proposed peer selection mechanism aims at providing the requesting peer a 

measure at link quality of the path to overlay peers so that the requesting peer 

can select the best peer to get the video segment from. WLO uses a 

Multiplication Selector Metric (MSM) to overcome the two drawbacks of the 

traditional summation based metric (i.e., bottle neck link identification and 



 

 Chapter 8: Conclusions and Future Works 

 

160 

 

hop count behaviour) and a cross-layer mechanism to select the best overlay 

peer based on MSM. 

 

8.2.3 Contribution Benefits and Validations 

 

The performance analysis of the proposed solutions were performed via 

mathematical analysis, simulation using Network Simulator 3 (NS-3) and real-life 

experimental tests using objective and subjective quality assessment methods. Simulation 

models for WILCO, WILCO-based location-aware segment seeking algorithms and 

WLO peer selection mechanism were developed with the corresponding algorithms 

implemented. 

WILCO was first mathematically analysed to show its lookup efficiency. This 

study proves that in comparison with the original Chord, WILCO can reduce the 

maximum number of lookup messages by half and has symmetric lookup behaviour in 

both the forward and backward directions of the Chord ring. The analytical framework 

also shows that WILCO has a stretch factor of 𝑂(1), which implies that the constructed 

overlay closely matches the physical topology and significantly outperforms MeshChord 

another location-aware overlay scheme. 

WILCO was also analysed using simulation in terms of the lookup efficiency; i.e., 

average number of lookup messages, the number of hops a lookup travels on the physical 

network, lookup time and the stretch factor; and in terms of messaging overhead and 

overhead balance in the WMN. The simulation results show that WILCO significantly 

improves (up to 50% and 40% in comparision with Chord and MeshChord, respectively) 

the lookup efficiency with superior lookup time, number of lookup messages and stretch 

factor. In terms of messaging overhead, the simulation results show that WILCO 

noticeably reduces (up to 50% and 20% in comparison with Chord and MeshChord, 

respectively) the overlay messaging.  

WILCO video segment seeking algorithms were first analysed in terms of content 

retrieval efficiency using a mathematical framework to show the superiority of WILCO 

and WILCO+. The mathematical analysis results illustrate that WILCO and WILCO+ 

significantly reduces the hop distance between the requesting peer and the destination 
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peer in comparison with a non-location aware peer selection. The analysis also shows 

that WILCO and WILCO+ can productively make use of the number of content replicas 

in the network to improve the retrieval performance. 

Simulation was used to analyse the video delivery performance of WILCO and 

WILCO+ in terms of PSNR and packet loss in comparison to schemes that retrieve the 

video from only the server and a non-location-aware scheme. The simulation results 

show that WILCO and WILCO+ maintains a significantly higher video delivery 

performance throughout the tests. In particular, without background load, WILCO and 

WILCO+ improves the video delivery quality by 17dB (82%) in terms of PSNR and 

reduce the packet loss by 82%. In scenarios with various background loads, WILCO and 

WILCO+ still outperform the two compared schemes by a significant gap of at least 50% 

in terms of PSNR and improve the packet loss by 60%. When the number of segment 

replicas varies, the simulation results show how WILCO and WILCO+ make use of these 

replicas to further improve the video retrieval quality. 

WLO peer selection mechanism was analysed in terms of video retrieval quality 

using simulation-based tests and real-life emulation-based experiment tests. Using four 

simple scenarios, the simulations results first show the effectiveness and superiority of 

MSM metric in mitigating the bottleneck effect and the hop count behaviour. The video 

retrieval performance of WLO was then analysed in different levels of background loads. 

The simulation results show how WLO outperforms the WILCO and WILCO+ location-

aware mechanism by 10% in PSNR and significantly out performs the other non-

location-aware schemes by more than 50% in PSNR. In scenarios with different levels of 

topology incompleteness, the simulation results show that the rate of reduced PSNR 

performance of WLO is much slower than that of other schemes. A real-life emulation-

based test-bed is developed to confirm the simulation results with the real-life 

experiment results. The experimental test results show how there was no significantly 

statistical difference between the simulation results in terms of PSNR and the real-life 

video streaming using an emulation test-bed. Furthermore, experimental results and 

subjective video quality assessment tests with different video sequences in various 

emulation-based scenarios were also conducted and showed that overlay peer selection 

methods can be used to improve user perceived video quality levels. 
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8.3 Future Work 
 

The main purpose of the work presented in this thesis is to propose solutions for 

deploying overlay networks over a wireless multi-hop Wireless Mesh Network. These 

solutions include both the control plane and data plane aspects. Regarding the control 

plane aspect, the proposed solution aims at improving the overlay communication 

efficiency and reducing the messaging overhead. On the data plane, several solutions 

were proposed aiming at selecting among the available peers with the requested content 

the best peers to retrieve the content from in order to enhance the user experience, 

especially in video streaming applications. 

However, the solutions proposed in this thesis are mainly heuristic-based. 

Although the proposed solutions outperform some of the state-of-the-art solutions, the 

theoretical performance limits were not found. An interesting potential future work could 

be finding these theoretical performance boundaries, and a working framework that 

makes it possible to achieve these optimal boundaries. These theoretical optimal limits 

are very important in network planning in order to maximize the utilizing of network 

resources and user experiences. The mathematical models defining these theoretical 

optimal would be a great contribution to the literature. In addition, more extensive 

simulation scenarios such as considering irregular grids, and testing of the auto-healing 

capabilities of the overlay networks may also be interesting and could provide a more in 

depth understanding on how overlay networks react in wireless scenarios. 

As wireless devices nowadays are equipped with multiple antennas that can 

handle multiple channels and frequencies at the same time, multiple transport overlays 

could co-exist without interference. The coexistence of multiple transport overlays could 

load balance the traffic to avoid bottlenecks in an overlay from affecting the quality of 

service of the data transfer sessions, potentially greatly improve the user experience. In 

this context, a joint optimization method for antenna, frequency, channel provisioning for 

overlays is mandatory to maximize the network performance. Moreover, in order to 

achieve the best performance, the constructed overlays have to be aware of the datalink 

and physical conditions of the underlying network status. As a result, the antenna, 

frequency, channel provisioning method for overlays has to adaptively adjust to the 

network conditions, for instance, turning off antennas for energy saving when the traffic 
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load is light, performing antenna, frequency, channel provisioning under heavy traffic 

and performing peer selection along with appropriate network optimization to maximize 

the quality of service of overlay traffic. 

Another potential expansion of the thesis could be using the adaptive transcoding 

on overlay peers to enhance the video retrieval quality. By imposing the assumption of 

adaptive transcoding on the overlay peers, the stored video segments can be transcode 

into several quality layers. Depending on the network condition or the feedback from the 

receiver peer, the sending peer can adaptively send some specific video quality layers to 

the receiver. For instance, if the background traffic load were high, the video quality 

would be greatly degraded if the sending peer always sends the highest quality stream 

since the link bandwidth is insufficient to accommodate the stream. In this case, by 

sending a lower quality layer, the required transport constraints are more relaxed and 

hence, it is possible that the received video quality is better due to less packet loss. 
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