

Electro-Guided Self-Propelled Ionic Liquid Droplets as Vessels for Chemical Reactions

Wayne Francis, Larisa Florea and Dermot Diamond

Advanced Materials World Congress

(Viking Line, Stockholm, Sweeden)

Chemotaxis

- Movement of an organism in response to a chemical stimulus
- Certain single and multicellular organisms have this ability
- Bacteria, Viruses and even some somatic cells i.e white blood cells
- Chemoattractant: food source
- Chemorepellent: toxin

Synthetic Systems

- Development of synthetic biomimetic "vehicles"
- These "vehicles" move in response to external stimuli
- Developing smart droplets
- Designed to move across the liquid/air interface
- Applications include micro-vehicles for chemical reactions, cargo transport to desired destinations, dynamic sensing, leak detection and drug delivery

Introduction

- "Vehicle" movement has been achieved through the use of surfactant molecules
- Classical example is propelling a paper boat by applying a small amount of liquid soap to the end

Surfactants

- Long chained molecules
- Charged hydrophilic "head"
- Hydrophobic "tails"
- Surface active
- Alter surface tension

Surface Tension

- Contractile layer
- Surface molecules experience greater attraction to neighbours compared to bulk molecules
- Liquid flows from low to high surface tension
- Marangoni effect

Ionic liquids

- Negligible vapour pressure
- High thermal stability
- High ionic conductivity
- Excellent solvents
- "Designer" solvents

Droplet Composition

Droplet Movement

Chemotactic Droplet Example

Speed x 4

Chemotactic Droplets

- Droplets follow a Cl⁻ gradient to desired destinations
- Many methods for generation of gradients
- Droplet solely composed of IL
- Multiple droplets can be moved to destination
- Merging of droplets possible
- Chemical gradients will quickly come to equilibrium
- Droplet can only be moved to a single destination

Francis, W.; Fay, C.; Florea, L. and Diamond, D. Chem. Commun, 2015, 51, 2342.

- On demand generation of gradients at the electrodes
- Salt solutions used as electrolyte
- Control over length of gradients
- Reversible droplet movement
- Allows for droplet to be moved to several destinations

Droplet Movement

Reversible Movement

10⁻³ M NaCl used as electrolyte, 9 V applied across the solution.

Chip Design

- Chips 3D printed
- Electrodes Realizer SLM-503D printer
- Channels Objet350 Connex
- Electrodes embedded within the channels

15

Example of Electrotactic Ionic liquids

NaCl 10⁻³ M, 9 V, Speed x 5

Electro-Generated Gradients

- Fluorescent dye : lucigenin
- Strongly quenched by Cl⁻
- 369 nm LED source

- 10⁻³ M NaCl
- 10⁻⁴ M lucigenin
- Can be reversed

Adding Functionality

- Have droplets perform more sophisticated tasks
- Micro-vessels for chemical reactions

- Cargo transport to desired destinations
- Dynamic sensing units
- Leak detection

18

Chemical Reactions: Metal ion sensing

- Reactions take place inside droplet Analytes: Co²⁺ and Cu²⁺
- Predetermined locations

Metal ion sensing dye: PADAP

Future Work

Develop and optimise reactions within the droplets

Novel tasks for droplets

Developing new types of droplets (different lonic liquids)

Using other types of micro vehicles

Conclusion

- Chemo and electro tactic droplets
- Chemotactic: energy free autonomous movement
- Electrotactic: long lived chemical gradients, reversible movement to multiple destinations
- Vessels for chemical reactions
- Transport cargo to desired destinations

Thanks for Listening

Acknowledgments:

Prof. Dermot Diamond

Dr. Larisa Florea

Dr. Cormac Fay

Alexandru Tudor

Prof. Gordon Wallace

Prof. David Officer

Dr. Klaudia Wagner

Dr. Stephen Beirne

Fletcher Thompson

Ali Jeiranikhameneh

Funding Bodies:

Science Foundation Ireland under the Insight initiative, grant SFI/12/RC/2289, European Union Marie Curie People Programme Mask: PIRSES-GA-2010-269302

