
The PACE System: A P2P Architecture for Cloud
based EHealth Systems

Neil Donnelly

Bachelor of Science in Computer Applications

A thesis submitted in fulfilment of the

requirements for the degree of

Master of Science

to the

Dublin City University

School of Computing

Supervisor: Dr. Mark Roantree

October 2014

Declaration

I hereby certify that this material, which I now submit for assessment on the pro-

gramme of study leading to the award of Masters of Science is entirely my own work,

that I have exercised reasonable care to ensure that the work is original, and does not

to the best of my knowledge breach any laws of copyright, and has not been taken

from the work of others save and to the extent that such work has been cited and

acknowledged within the text of my work.

Signed:

Student ID: 13212223

Date: 09/10/2014

i

Acknowledgements

I would first like to take this opportunity to thank my supervisor, Dr. Mark Roantree,

whose hard-earned expertise, willing advice and generous support made this thesis

possible.

I would next like to thank my colleagues, Jim, Michael and Noel, for the collaborative

and supportive environment you all contribute to.

I would also like to thanks all the people working on the dementia ELEVATOR

project in the nursing building, Kate, Kirsty, Sophie, Paulina and Aoife.

To my family who I owe so much, of which, this thanks constitutes the bare minimum.

I would like to express my extreme gratefulness and appreciation for everything you

have given me and for supporting me whole-heartedly in completing this thesis. To

Mam, Dad, Eimear, Aidan, Ronan and Roz, Lily and Aaron, and Rex, thank you so

much.

To my wonderful girlfriend, Christine: thank you so much for always being there to

help and support me, for putting up with me during the long days and for keeping

me happy every day I was with you.

ii

Contents

Declaration i

Acknowledgements ii

Contents iii

List of Figures vi

List of Tables vii

Abstract viii

1 Introduction 1

1.1 Cloud Computing . 3

1.2 Peer-to-Peer Computing . 4

1.3 Problems and Motivation . 5

1.4 Hypothesis . 6

1.5 Conclusions . 8

2 Related Research 9

2.1 Sharing Confidential Data on the Cloud 10

2.1.1 Overview for Attribute-Based Encryption for Patient Records 10

2.1.2 Limitations . 12

2.2 P2P Solutions for Sharing Data . 13

2.2.1 P2P Technologies in a Healthcare Environment 13

2.2.2 Limitations . 15

2.3 Using the Cloud as a Platform . 16

2.3.1 Hybrid and Multi-Cloud Solutions 16

2.3.2 Combining the Cloud with P2P Technologies 18

2.3.3 Limitations with Both Approaches 19

2.4 Conclusions and Final Analysis . 20

3 PACE System 23

iii

Contents iv

3.1 Overview . 24

3.2 Requirements . 25

3.3 PACE Design . 26

3.3.1 System Design . 27

3.3.2 Sharing via P2P . 31

3.3.3 Patient Records Management 34

3.3.4 Design Summary . 37

3.4 Cloud Architecture . 38

3.4.1 Client Interface (P1) . 38

3.4.2 Peer Data Access (P3) . 40

3.4.3 Patient Data Access (P4) . 41

3.4.4 Clinic Connector (P2) . 41

3.4.5 Server Architecture Summary 42

3.5 Clinic and User Clients . 43

3.5.1 Client Application (P5) . 43

3.5.2 Peer Connector (P6) . 45

3.5.3 Private Patient Data Access (P7) 45

3.5.4 Client Architecture Summary 46

3.6 Understanding the Technologies . 46

3.6.1 Cloud Provider . 47

3.6.2 Establish P2P on a Client . 51

3.6.3 Client Storage . 52

3.7 Conclusions . 53

4 PACE Queries 55

4.1 Overview . 56

4.1.1 Assumptions . 56

4.1.2 Requirements . 57

4.2 Classification of Queries . 58

4.2.1 Query Classification Description 60

4.3 Query Lifecycle . 62

4.3.1 Query Construction . 62

4.3.2 Parsing Processes . 67

4.3.3 Query Transformation . 69

4.4 Conclusions . 73

5 Evaluation 74

5.1 Overview . 75

5.2 Experimental Setup: PACE Prototype 76

5.2.1 Cloud Implementation . 76

5.2.2 Client Implementation . 80

5.2.3 Prototype Use Case . 83

5.3 Functionality Evaluation . 85

Contents v

5.3.1 Experiment . 85

5.3.2 Results and Analysis . 86

5.4 Performance Evaluation . 88

5.4.1 Experiment . 89

5.4.2 Results and Analysis . 89

5.5 Conclusions . 91

6 Conclusions 93

6.1 Thesis Summary . 93

6.2 Future Research . 97

6.2.1 Maintaining Data Consistency between Peers 98

6.2.2 Expanding the System for More Areas of Healthcare 98

List of Figures

2.1 Model-View-Presenter Design . 11

2.2 System Architecture Presented in [37] 14

2.3 Peer Network Architecture Presented in [10] 15

2.4 Cloud Infrastructure as presented in [12] 17

2.5 Cloud and P2P Infrastructure as presented in [49] 19

3.1 Model-View-Presenter Design . 27

3.2 Class Diagram of Cloud Design . 28

3.3 PACE P2P Model . 33

3.4 Data Flow Diagram . 35

3.5 PACE Components and Interaction 39

3.6 PACE Client Interface . 40

3.7 PACE Clinic Connector . 42

3.8 PACE Client Component Diagram 44

4.1 Query Lifecycle . 63

5.1 PACE Prototype P2P Topology . 79

5.2 Retrieve Over P2P Network Sequence Diagram 79

5.3 Questionnaire Page One - Includes Personal Details 80

5.4 Questionnaire Page Three . 81

5.5 Interface to Review or Delete a Patient 81

5.6 Interface for Reviewing Patient Details 82

5.7 Interface to Search Patients with name and date of birth 82

vi

List of Tables

3.1 Weighted Metric Scores for Cloud Providers 51

4.1 Query Classifications . 60

5.1 Functionality Experiment Results: Stage One 86

5.2 Functionality Experiment Results: Stage Two 87

5.3 Functionality Experiment Results: Stage Three 88

5.4 Single Patient Performance Experiment Results 90

5.5 Multiple Patient Performance Experiment Results 91

vii

The PACE System: A P2P Architecture for Cloud based EHealth Systems
Neil Donnelly

Abstract

Many healthcare facilities are currently investigating the possibility of utilising cloud

computing platforms to store and share confidential patient records. However, before

such a cloud-based system can be realised, there are still concerns over the safety

of a patient’s identity while their medical information is stored with a third party.

Thus, the challenge is to provide a highly accessible system as provided by the cloud

with security for patient data as required by legislation. In this dissertation, we

propose a novel approach to protecting a patient’s confidential information while

still exploiting the benefits of the cloud platform. By extracting the identifying

values from a patient’s records and storing them on the machines of the healthcare

professionals, the remainder of the anonymised record can be stored on the cloud.

These two subsets of data can then be recombined into the original medical record

when required by a user. This dissertation presents the PACE system architecture

which combines modern cloud and peer-to-peer technologies to manage healthcare

records on the cloud and enable the sharing of confidential information between users.

The anonymised data kept on the cloud is available to all users while the sensitive

local data which can identify the records are stored and shared across a decentralised

hybrid P2P network formed by the clinicians.

viii

Chapter 1

Introduction

As the world of technology has progressed, it has also helped in the advancement

of healthcare. Technology has been instrumental in the improvement in fields such

as diagnosis, medicine, treatment and patient monitoring[51],[14],[13]. The focus of

this thesis is the improvement of patient record management and sharing between

clinics. Securely collecting, maintaining and sharing patient records between hospital

servers can be both arduous and costly [30]. Over recent years, healthcare operations

in countries around the world have been investigating the possibility of migrating

some of their medical systems to the cloud [1]. Cloud computing is the practice of

using a network of resources to store, process and manage data on the internet rather

than a local server. Cloud computing offers the possibility of offloading some of the

burden of maintaining this data by storing records on the cloud while keeping it easily

reachable and safely protected.

One of the many areas in medical research that could benefit from the improvements

to data sharing is in dementia. Dementia is a serious loss of cognitive ability beyond

what might be expected through normal ageing. The number of people currently es-

timated to be suffering from Dementia is 44 million worldwide, and is expected to rise

to 76 million by 2030 and 135 million by 2050 [48]. These staggering numbers empha-

sise the social and economic cost of the disease and the need to dedicate resources to

reduce these swelling numbers. While dementia is a chronic progressive illness with

1

Chapter 1. Introduction 2

no cure, there is now strong evidence that the effects of dementia can be allayed by

adopting lifestyle changes in mid-life that aim to improve cardiovascular health, low

mood, and diets and increasing physical and cognitive activity[32][29]. Increasingly,

the importance of dementia prevention and the need to take preventative measures

based on existing knowledge are being highlighted at an international level. Some

patients with dementia are unable to find transport to a clinic [16] and so keeping

healthcare records available on the cloud would be extremely helpful. Clinicians can

instead meet patients in their own homes where they feel most comfortable and safe

and still remain connected to all the data available to them at the clinic. This access

to data wherever the clinician is, can help with both the diagnosis and treatment of

patients [9].

The research presented in this thesis has been conducted as part of the ELEVATOR

project [18]. The project is a collaboration between experts in the field of dementia

seeking to build a new cloud-based data management system for dementia patients.

ELEVATOR is funded by the HSE (Irish Healthcare system) and Atlantic Philan-

thropies. The aim of the project is to examine the current deficiencies in the care of

people with dementia within the community and to identify eight areas where edu-

cation and training can improve the lives of people with dementia and their carers.

These eight areas are: conversation; non-verbal-communication; environmental con-

sideration; anxiety reduction; mindfulness and empathy; understanding behaviours,

retaining a sense of self; checking and understanding [28]. ELEVATOR has devel-

oped an Educational Needs Report which maps the education and training needs

for stakeholders. As this education involves general practitioners, community nurses,

other healthcare professionals, carers and community groups, there is a requirement

for an infrastructure that facilitates cooperation across the different healthcare units.

This thesis is aimed at meeting these requirements. By combining cloud and peer-

to-peer technologies, an application could be developed that facilitates the need for

the availability and sharing of patient records between these groups of healthcare

providers.

Chapter 1. Introduction 3

The Introduction chapter is divided into the following sections: section 1.1 and sec-

tion 1.2, cloud computing and P2P are described and their place in the world of

healthcare is explored. In section 1.3 the challenges of migrating healthcare records

to the cloud are explored. Section 1.4 sets out the goals and objectives for this re-

search. Section 1.5 presents the conclusions to be drawn and describes the structure

of the thesis.

1.1 Cloud Computing

At its core, cloud computing has existed since the early days of the internet as it

is fundamentally a delivery of resources and services delivered over the internet[53].

However, it is only recently the term ’cloud computing’ has gained traction and

become one the most pervasive terms in the world of technology. As internet tech-

nologies have advanced so has the speed and efficiency of cloud computing[20]. The

appeal of having data and services available at any time has captured the interest

of both businesses and consumers. The American National Institute for Standards

and Technologies (NIST) has defined cloud computing as has having five essential

characteristics [42]. On-demand self service means any authorised user can utilise

the service without the need for human interaction from the service provider. Broad

network access asserts that the service is available over the network and is accessi-

ble through any standard internet device (PC,tablet, phone, etc.). Resource pooling

is the pooling of a services resources and the dynamic assigning and reassigning of

these resources to serve the needs of a user. Rapid Elasticity means the amount of

resources at the disposal of the service can be increased and decreased (sometimes

automatically) to meet the varying demands of users. The final characteristic is

measured service, which describes cloud systems having the capacity to measure its

resources and the demand for those resources to control and optimise the delivery of

its services.

These five characteristics combine to form a powerful and flexible tool which provides

the scope to make patient records accessible at any time, from any location with an

Chapter 1. Introduction 4

internet connection and with any WiFi enabled device. Up-to-date patient records

can also be easily shared between users from different clinics or hospitals. Smaller

healthcare facilities, such as medical practices and laboratories who may not have

the resources to hire internal IT staff, could maintain their own patient records or

even access records of other larger facilities via the cloud[30]. There are also the

inherent non administrative benefits of making use of the cloud. There are virtually

no limits to the amount of data that can be stored as storage is dynamically added

and removed to suit the needs of the customer.

Cloud computing’s place in the healthcare industry, however, is dependent on whether

the trust of the lawmakers and practitioners can be gained for the safety of the

cloud for confidential information. As often happens with emerging technologies,

the law cannot keep pace with the rate of progress which inhibits how useful these

technologies and techniques can be. Although trust in cloud computing is growing

[43], there still exists a hesitancy to adopt cloud computing for storing something as

sensitive as patient records, even though most cloud providers provide assurances of

both data redundancy and protection [41] [2] [25]. Until such a time that trust is

absolute, private patient information cannot be stored on the cloud in many countries.

This makes sharing patient records between clinicians very difficult as the identifying

features for the data cannot be accessed from the cloud, severely diminishing the

benefits of using such a solution. This key issue must be addressed in any cloud-

based solution for healthcare and is the focus of this thesis.

1.2 Peer-to-Peer Computing

A peer-to-peer (P2P) network is a decentralised, distributed network architecture

comprised of multiple nodes (peers) which both generate and distribute data. On a

completely decentralised P2P network, every peer is considered equal and so respon-

sibility for finding and sharing data is dependent on an algorithm shared by every

peer. The peers are connected in a web of peers are connected to neighbours and

know only about those neighbours not the whole network. Some P2P architectures

Chapter 1. Introduction 5

introduce the concept of a super-peer, which acts as an organiser for standard peers

while still fulfilling the responsibilities of a normal peer; such a network is known

as a hybrid decentralised architecture [4]. Peers are assigned super-peers which can

communicate with other super-peers on their behalf and improve the performance

of the search and delivery of data, data redundancy, and peer organisation [6]. P2P

networks are also quite scalable; the system grows with each user dynamically. Data

availability is also inherently improved as now there are multiple sources from which

one can find information.

In the context of the healthcare industry, such a hybrid decentralised architecture

has a number of benefits. For instance, sharing and accessing information between

users is made very simple as each user is sending the information directly rather than

over a server [5]. The patient records are also kept redundant as they are shared

amongst several peers. As this is also self-organising, there is no need for a large

server to maintain the network. The model itself is reflective of the real world model

of clinicians and clinics. Each clinician is associated with a clinic and is aware of

the clinics other clinicians, a clinic can communicate with other clinics on behalf

of the clinician and information is automatically shared between clinicians of the

same clinic. However, using a P2P network comes with some issues. As each peer

represents a clinician, the responsibility of storage for patient records is distributed

to each clinician. However, as the database of patient records grows, the size of data

kept by each clinician will steadily increase so although the network is scalable for

the number of users but there is a quite likely a varying limit on storage for each

peer.

1.3 Problems and Motivation

For many in healthcare, the idea of electronic healthcare records offers a meaningful

step forward in the treatment of patients. It offers a means for records to be made

accessible at all times whenever needed. This ensures that the clinician has the most

up to date version of the patients records wherever they are. Having an updated

Chapter 1. Introduction 6

records improves the clinicians understanding of the condition of the patient, leading

to a more informed diagnosis and treatment. These records can also be transferred

between authorised personnel quickly and easily. To provide the accessibility needed

for these records to fulfil this design, the cloud seems the obvious place to host these

records due to the low cost and availability[52]. The challenge for migrating this

data to the cloud however, comes from the issues with trusting a third party cloud

provider. In the current scenario, each clinician is entrusted with the personal details

of their patients and so they are unwilling to share or keep these details in places

vulnerable to intrusion. So, how can a healthcare provider take advantage of the

cloud to share their records with others while still managing the issue of privacy?

The focus of this research is the sharing of patient records on the cloud between users

while still respecting the confidentiality of a patients identity. Without the ability to

share a patients full record, including their identity, the true usefulness of migrating

this data to the cloud is made redundant. However, this must be done without

breaching the privacy of the patient. A means of connecting users in a network to

expedite the sharing of data on the cloud would be ideal. In order to accomplish this

aim, there should be a focus in modelling the real world infrastructure of clinicians

and clinics. By modelling a large organisation of clinics and clinicians, the place of the

user within the system and the patient records available to each, the devised system

should facilitate both the searching and retrieval of patient records from others on

the network. No such system currently exists on a scale large enough to sustain the

participation of multiple healthcare facilities and clinics and thus merit the use of

cloud technologies.

1.4 Hypothesis

For healthcare providers, the lack of trust in the cloud to keep private information

confidential is a major issue that is slowing down the technological progression in

the industry. As not all information can be stored on the cloud, sharing information

between healthcare workers presents a serious barrier to adoption. In order to move

Chapter 1. Introduction 7

forward, a means of sharing data between clinicians using a cloud-based system must

be developed. This research hypothesises a potential solution that allows the bulk

of patient information to be kept on the cloud while also allowing entire records to

be shared. Our hypothesis is to divide the patient records into two types, fields that

can be used to identify a patient and fields that are purely medical related that could

not identify a patient. The non-identifying medical data makes up the bulk of the

record and is stored on the cloud to take advantage of the storage capabilities. The

identifying information is then kept by the clinician on their machine and shared

directly with other users. The research questions that must be answered to justify

such a system and the proposed solutions can be summarised as:

• By placing the users into a P2P network in conjunction with the cloud ap-

plication, can the data be successfully sent between users without ever being

transferred over a cloud server?

• Could the real world organisation of clinics and their clinicians aid in the mod-

elling of a P2P network that facilitates the searching, sharing and redundancy

of data?

• Could a simple query language, such as a pared-down SQL-like language, be

used to search and retrieve data from various data sources and recombine the

results into a complete table of results?

• Can such a system that involves the division and combination of data present

a viable solution to sharing patient records stored on the cloud without en-

dangering a patients identity or will the performance costs of such mechanisms

prove too costly to the applications usability?

By detaching the identifying data from the records being stored on the cloud and

keeping it stored between the users of the system, we should be able to take advantage

of the storage and mobility of the cloud. By using P2P technologies to share the

identifying information between these users directly, we preserve the sharing ability

Chapter 1. Introduction 8

required for the system to operate as it should without sacrificing the performance

of the system.

1.5 Conclusions

In this chapter, the problem of patient record management across healthcare facilities

was introduced. The use of cloud computing as a possible solution to both offload

the IT related costs associated with patient record maintenance and the potential of

sharing patient records between healthcare workers via the cloud. As discussed in

this chapter however, there is a concern over the safety of sensitive patient records

being stored on third party servers. The hypothesis of this research proposed dividing

the data and keeping all data that could identify a patient on a users machine, then

sharing the sensitive patient values directly with other users. This allows for the

benefits of the cloud to be exploited while ensuring entire patient records can still be

safely shared.

The remainder of this thesis is structured as follows: Chapter 2 describes the current

state of research into migrating health records to the cloud and the place P2P can play

in healthcare. The chapter identifies some of the strengths and weaknesses of such

projects in relation to the objectives of the research set out in this thesis. Chapter

3 introduces the PACE architecture and the components that make up the model,

the part each component plays and how they interact with each other. Chapter 4

details the query language developed for use with the PACE architecture including

what functionality it must accomplish, how the query is parsed and transformed. In

Chapter 5, the experiments used to evaluate the PACE design and architecture are

detailed, including what functionality was implemented and how it performed in a

real world context. Chapter 6 presents the conclusions that can be drawn from the

research and proposed areas for further research.

Chapter 2

Related Research

In the previous chapter, we motivated the need for a cloud-based EHealth system that

allows registered users to upload and share patient records while keeping confidential

patient values safe. Our hypothesis focused on using a hybrid P2P architecture in

conjunction with the cloud to keep personal information local and still allow users to

share data. The hypothesis is in response to reluctance among the healthcare industry

to adopt cloud technologies due to a fear of patient data being vulnerable on the cloud.

Over recent years, there has been an emergence of solutions seeking to solve this same

problem. There have been solutions aimed at providing greater levels of security to

data stored on the cloud, others have attempted to use other technologies outside the

cloud to achieve the same functionality and some have attempted to build upon the

standard cloud architecture.

In this chapter, we will examine some of these state-of-the-art solutions and how

they influenced our own research. When analysing these projects, we will focus on

their scale and their ability to allow users to share and find data on the system. The

chapter is structured as follows: section 2.1 focuses on projects relating to cloud-

based solutions to safely sharing patient data, section 2.2 examines a P2P centred

approaches to the problem and section 2.3 describes some projects that seek to solve

the problem using expanded cloud solutions. In section 2.4, we will present our

conclusions.

9

Chapter 2. Related Research 10

2.1 Sharing Confidential Data on the Cloud

In regards to confidential data on the cloud, in current research, the goal for protecting

this information has been mainly focused on encryption and introducing domains to

segment the data [39]. All the data is encrypted before being uploaded and decrypted

by authorised users on download. However, this solution offers a new set of challenges:

how can data be shared effectively between multiple types of users? Could all users

be given the same decryption key? However, this makes all the values of a patient’s

records available to all users which may not be a desirable outcome for the patient.

Companies such as Microsoft and Google have both attempted to allow patients to

have a measure of autonomy over their own health records and control over who is

capable of seeing these records [55]. However, the main issue is providing a system

which allows healthcare workers to share patient records without exposing sensitive

information to other users of the system.

2.1.1 Overview for Attribute-Based Encryption for Patient

Records

One suggested solution that allows patients to share information between different

healthcare entities is the use of multiple decryption keys and attribute-based encryp-

tion [26] to protect different domains of patient data. Such a solution was presented

in [35] and then detailed further by the authors in [36]. The proposed solution sought

to allow users to decide what other users could see from their personal health records.

The paper takes a patient-centric approach to personal health records (PHR), mean-

ing the patient creates their own record and decides who can see it. The patient

also creates and distributes the decryption keys to other authorised users such as

nurses, friends or pharmacists. The health data is then classified according to cer-

tain attributes, for instance, whether the information is relative to an illness or an

injury and what healthcare facilities were visited to treat the issue. These attributes

are then used to generate keys that encrypt the data from users that do not have

Chapter 2. Related Research 11

decryption keys matching those of the attributes. A similar approach is presented in

[11], which introduces a framework based on Cloud-based Privacy-aware Role Based

Access Control (CPRBAC). The CPRBAC solution encrypts patient data, and relies

on roles to decide the decrypting capability of users.

Figure 2.1 demonstrates a sample security policy put in place by a patient. Briefly,

this is interpreted as a user must be from either Hospital A or Hospital B and either

a Physician with an M.D. working for Internal Medicine department or a Nurse in

the Gerontology Nursing department.

Figure 2.1: Model-View-Presenter Design

To allow other users access to the data without the need for outright permission form

the patient, the authors also divide the system users into two security domains: the

Public Domain (PUD) and the Personal Domain (PSD). Each user of the system

has control over their own PSD and should be comprised of users that they have

had personal contact with. The PUD contains professional users from various sectors

of society relevant to healthcare, such as a research group from a university or an

insurance company. Each professional user is given a set of attributes with which

they can access certain information on multiple users PHRs. To ensure that users

that are part of the PUD are able to see only what is relevant to their sector, several

attribute authorities are used to govern a set of attributes for the PHRs from which

the users can acquire the requisite keys for a user, without needing to gain direct

permission.

Chapter 2. Related Research 12

The same authors, in another paper [34], present a means of querying the data stored

as part of the attribute-based encryption using hierarchical predictive encryption

[46]. Their scheme, APKS (Authorised Private Keyword Searches), allows for multi-

dimensional range queries while maintaining query privacy simultaneously. This is

done through the use of local trusted authorities (LTAs), which are charged with

determining a users search privileges. The LTA accomplishes this by isolating the

underlying attributes necessary for the query and then checking to ensure the user

has the privileges to search for those attributes. The LTA should also be able to

associate restrictions on a query based on the users attributes. For instance, if a

doctor from Hospital A searches for all patients with diabetes, the LTA should first

check that the doctor has the privileges associated with diabetes and then restricts

the query to only check patients in Hospital A. As all the data is encrypted and stored

on the cloud, HPE is necessary to predict keywords in data without leaving the data

vulnerable to attack. The query is converted into a compatible form, encrypted with

a security key corresponding to the data and then used to retrieve encrypted data.

The results of the query can then be decrypted and returned to the user.

2.1.2 Limitations

Although attribute-based encryption is a solid fine-grained approach to storing pa-

tient data on the cloud, and can be manipulated to allow the data to be queried, we

believe the approach developed through our research provides a more agile and in-

herently safe system. There are always performance costs associated with encryption

and decryption, and judging by the work presented in [36], these costs are incurred

with almost every operation on the data. As the data is encrypted, querying the

stored data is made quite difficult and although a solution is presented, it requires

effort in order to structure and store the data in a format capable of being searched

and still requires cryptographic operations to function. Although the use of LTAs

for each group of users to enforce privileges on data access is a better approach than

through a central server, they also appear to be a large draw on resources, as each

group requires a machine for each group of users.

Chapter 2. Related Research 13

2.2 P2P Solutions for Sharing Data

Sharing patient data between healthcare facilities quickly and securely is a key goal

for the modern healthcare industry. Ensuring that healthcare workers always have

the most up to date information on a patient is vital in the diagnosis and treatment

of patients. P2P technologies appear to be a logical solution to the issue [17]. In-

formation can be directly shared between users without the need for information to

be wholly stored at a central repository. In this section, various solutions to sharing

patient information between users in a healthcare environment will be provided.

2.2.1 P2P Technologies in a Healthcare Environment

In [38], the authors present a P2P based strategy for sharing patient information

between users in a healthcare facility. Patient data generated by body area networks

(BANs) are shared between clinicians using JXTA [21], a java based open source

protocol for P2P communications. The system described in the paper is designed

as a hospital spanning solution to make patient data generated by body sensors

available to all healthcare workers employed by the hospital, regardless of location.

The hospital workers acts as peers on the system and are organised into peer groups,

with each group representing a different medical department. Patient information can

then be shared between all users of the same peer group, under a P2P environment.

A JXTA Relay is used as a means of communicating between peer groups and sharing

data from one group to another. Figure 2.2 demonstrates the architecture proposed

by the authors in [37]. By using P2P technologies, the patient information can be

shared between users dynamically with a degree of fault tolerance. Dividing the peers

into groups also ensures that patient data is not shared with users that do not require

the information.

The previous solution presents a means of sharing data within a hospital however, it

would be more beneficial if multiple healthcare facilities could communicate on the

Chapter 2. Related Research 14

Figure 2.2: System Architecture Presented in [37]

same network. Such a network is presented in [10], with a solution for sharing meta-

EPRs (electronic patient records) between operators working in different hospitals

using a hybrid P2P architecture. In the described architecture, super-peers act as

a central server for peers and connect to other super-peers, forming the network.

The super-peer also manages an XML database of meta-EPRs, extracted from the

hospitals stored data and records inserted by the users of the system. This is a similar

solution as to the one presented in [27], which represents healthcare centres as peers.

However, in [27], each healthcare facility is represented by a super-peer, and each user

by a peer. This super-peer solution is a better representation of modern healthcare

operations, allows workers to maintain the healthcare centres data and allows peers

to make individual data requests. The architecture is demonstrated in figure 2.3.

The peers of the system contribute to the super-peer’s database of meta-EHRs and

in turn can search and retrieve data from across the network via the super-peers.

The steps involved in retrieving data from the peer network are as follows:

1. The user specifies parameters for search through the application.

2. The peer submits a request to its super-peer.

3. The super-peer searches its local database using the specified parameters.

4. The query is then forwarded to the other super-peers who perform a similar

search.

Chapter 2. Related Research 15

Figure 2.3: Peer Network Architecture Presented in [10]

5. The other super-peers return their results to the requesting super-peer.

6. The super-peer sends the results to the peer, to be presented to the user.

The use of super-peers and following the steps outlined above, the process of locating

patient data spans the entire network with a relatively small amount of required

connections.

2.2.2 Limitations

The research presented in [38] suggests using a P2P architecture to share a patient’s

health information collected from a BAN is very useful for sharing a large amount of

information between various users and the use of peer groups allows subsets of users

to share relevant information between each other. However, the bulk of the data still

requires being stored on hospital grounds which can become expensive compared to

using the cloud and restricts the solution from expanding to include other facilities.

Chapter 2. Related Research 16

[10] presents a P2P architecture designed for inter-clinic sharing. The system of super-

peers allows for each healthcare worker to effectively query the network of peers and

each clinic to manage their own users. This solution does produce a burden upon the

super-peer, as it is responsible for storing and distributing all the patient data for

the represented clinic. The super-peer must also communicate with the network for

every query and retrieve and send data on the peers behalf. As the role of super-peer

is performed by a server and not a standard peer with elevated capabilities, if the

server fails an entire clinic disappears from the network until it is repaired. Thus,

this architecture reduces the fault tolerance benefits of P2P networks.

2.3 Using the Cloud as a Platform

In section 2.1, we presented multiple cloud-based solutions for managing patient data

and the limitations of those solutions. In this section, we will present research that

aimed to expand upon the cloud platform using various technologies and techniques.

The two additions made to the standard cloud architecture are the use of hybrid

clouds and the introduction of P2P networks. Both of these solutions aim to provide

a safe and more efficient means of retrieving and sharing patient information between

users by attempting to have local resources perform some of the functionality usually

left to the cloud. This cloud functionality could be storing certain portions of the

data closer to the user to increase performance or providing security operations such

as encryption and decryption.

2.3.1 Hybrid and Multi-Cloud Solutions

A hybrid cloud architecture is a combination of two or more cloud infrastructures,

such as private and public clouds, that can communicate with each other and provide

data interoperability [42]. In [12], the authors present a hybrid cloud solution for EHR

management. The authors propose combining a public cloud with various hospital-

specific private clouds to enable users across several institutes to share patient data.

Chapter 2. Related Research 17

All patient data is encrypted and stored on a hospitals private cloud and with the

public healthcare provider. Access to the data is also protected by several layers

of security, including a requirement for specialised key-cards. This ensures that all

healthcare facilities have access to data and data relevant to a hospital could be

retrieved quickly from the local cloud. Any clinics that do not have the ability to

install a private cloud would be given access to the public cloud, which also acts as

a safety measure in case of a failure on the private cloud. The infrastructure can

be seen in figure 2.4. The infrastructure is similar to that presented in [40], which

presents a domain structure for public and private clouds but is designed to provide

an IaaS (Infrastructure as a Service) [7] platform for commercial use.

Figure 2.4: Cloud Infrastructure as presented in [12]

In order to retrieve data from the private cloud, the patients smart card must be

used to acquire the decryption license from the public cloud. This license can then

be used to find and decrypt the data stored on the private cloud. In [54], the roles for

the public cloud and private cloud are reversed. The private cloud authorises users

access to the data and provides the decryption keys in order to retrieve data kept on

the cloud. Using the private cloud as an authorisation wall to the data kept on the

public cloud means that the data does not have to be stored twice and can instead

be kept solely on the public cloud.

The authors of [19] present a method of sharing healthcare information between users

using multiple clouds. A patients data is divided and distributed across multiple

providers to reduce the adverse effects of curious cloud providers. A curious cloud

Chapter 2. Related Research 18

provider is described as a provider that honestly protects and operates on data but

also attempts to learn what it is storing. A multi-cloud proxy is used to encrypt,

distribute and recombine patient data from multiple sources. Patient data is split

using a secret sharing scheme and identifiers are generated for each cloud provider

that can be recalculated by other authorised users. In order to retrieve the data, the

proxy must collect the shares of data from each provider and combine the shares into

a full record which can be presented to the user.

2.3.2 Combining the Cloud with P2P Technologies

By combining P2P technologies with the cloud platform, information can be shared

directly between different users which can be preferable in certain circumstances. The

authors in [49] present an integration of a JXTA P2P network with cloud computing

to enable healthcare workers to gain quicker access to patient information in an

emergency scenario. Patients and healthcare workers are peers on the system and

provide information to be stored on community clouds. These community clouds

are managed by a central cloud application, known as the cloud controller. For

each peer, their information is stored on the cloud and connections are made to

neighbours and relatives. Healthcare workers are represented as proxied peers. These

peers can only join a network through certain peer relays and form a community of

healthcare professionals who may be contacted with alerts for incoming patients. This

infrastructure is demonstrated in figure 2.5. In the case of an emergency, ambulance

crew are sent patient information from the cloud which can be augmented by medical

histories from relatives or can be used to contact neighbours. From the ambulance,

the crew can also alert hospital staff to the incoming patient and depending on

the emergency can alert specific specialists via P2P communications. Thus, this

infrastructure requires the need for multiple tiers of users and role definitions.

Chapter 2. Related Research 19

Figure 2.5: Cloud and P2P Infrastructure as presented in [49]

2.3.3 Limitations with Both Approaches

Although the hybrid cloud solution provided in [12] uses private clouds for hospitals

as a means of allowing quick access to the patient data, its implementation in this

instance appears redundant. All the data stored on the private cloud is stored on the

public cloud so there are multiple copies and the benefits of using private clouds are

diminished when the public cloud is used for authorisation so the user must interact

with the cloud anyway. Using the private cloud to authorise access and the public

cloud to store data, as presented in [54], is an improvement. However, if the private

cloud is used solely for authorisation, then there is little benefit in implementing a

private cloud as scalability becomes less of a requirement as no data needs to be

stored.

By distributing data over multiple clouds, as presented in [19], a patient identity

becomes much more difficult to discern by curious clouds or access violations. How-

ever, the use of multiple cloud providers to store data does not seem a cost effective

approach for providing this level of protection. The level of heterogeneity between

the different cloud providers could also become a serious problem to overcome. This

distribution of data and heterogeneity would also make querying the patient data

extremely difficult.

Chapter 2. Related Research 20

By using P2P networks, the authors of [49] have ensured that the various networks of

users can scale with the cloud and facilitates direct communication of urgent patient

data. However, the use of several clouds managed by a single managing cloud seems

a waste of resources compared to having a single cloud which can expand to cater

for the same number of users without a reduction in performance. The paper also

suggests that all peers be self-organising into their own groups and must also facilitate

queries. By introducing a super-peer structure to the network, peers could be more

easily managed into groups and queries could be resolved much quicker, as presented

in [57] and mention in section 2.2 with [10].

2.4 Conclusions and Final Analysis

In this chapter, we have examined multiple projects attempting to provide a method

of safely storing and sharing patient data between healthcare clinicians. The projects

examined were separated into three categories: solutions based solely on the cloud,

architectures that supported sharing confidential information via P2P communica-

tions and finally solutions that expanded upon the cloud platform to provide efficient

mechanisms for sharing and storing data for multiple clinics. The main benefits

and limitations of each project were identified and used to inform the design and

architecture of our own system, which uses a novel combination of cloud and P2P

technologies. The main points learned from our analysis of each category are as

follows:

Sharing Confidential Data on the Cloud

1. Limits of Encryption. Many solutions for managing confidential data on the

cloud focus on encryption as the means of protecting the information. How-

ever, all encryption and decryption come with performance costs, so a solution

that refocuses safety away from encryption could improve the performance. En-

crypting data also makes querying very difficult and although a solution was

Chapter 2. Related Research 21

provided in [34], the queries are limited and require data to be manipulated

into a format suitable for queries.

Sharing Patient Data over a P2P Network

1. Organising Peers into Groups. Although a P2P system is scalable and

dynamic, considerations must be made towards how much data each peer should

have and how easy data can be found on the network. Peer groups improves

retrieval performance as in order to find a peer, one simply has to find the right

group which is significantly quicker than finding a single peer on the network.

Peer groups also allow data to be distributed across groups to reduce the amount

of data needed to be stored by a single peer.

2. Super-peers. Super-peers appear to be a very good way of improving the flow

of communication between the central server on the network and other peers

[31]. As described in [10], super-peers form an interface between the network

and a peer and can help distribute data to the peer and queries across the

network. However, it is also important to allow peers to communicate directly

with one another when sharing data to reduce the load on the super-peer.

Expanding on Standard Cloud Infrastructure

1. Data Distribution. By dividing the data and storing most of it on the cloud

and distributing the identifying features across a network of users, we can help

improve data redundancy for the identifying values and also help protect the

integrity of patient identities from curious cloud providers or an attack on the

provider.

At this point, the current state of managing patient data using cloud technologies

has been explored with the current trends and failures discussed. The above projects

propose strategies for safely sharing confidential data between authorised users and

most involve leveraging the cloud as the central data server for this information.

Chapter 2. Related Research 22

However, each project has some limitations which make it unsuitable for solving the

overall problem of making the most of the cloud while allowing users to safely send

data between each other. Therefore, our solution focuses on sharing data between

users while still taking advantage of the considerable storage and computational ca-

pacity of the cloud. In the following chapter, we outline the design and architecture

of our proposed solution.

Chapter 3

PACE System

In Chapter 1, the hypothesis of this thesis was introduced which proposed that by

separating any data that could be used to identify a patient and by storing the rest

of the data on the cloud, one could take advantage of the benefits of the cloud and

still share patient records safely between users. The identifying information would

instead be stored on the user’s machine and shared between the other users. One of

the research questions this research is aiming to answer is whether P2P technologies

could be leveraged to facilitate this sharing between users? Based on the analysis of

current research presented in chapter 2, we identified the flaws in current solutions and

developed a novel combination of P2P and cloud technologies to solve the problem.

In this chapter, the PACE (P2P Architecture and Cloud-based EHealth) system is

introduced [15]. The PACE system combines cloud and P2P technologies for the

purpose of storing patient records and sharing them across a network of clinicians

from multiple clinics.

The chapter is structured as follows: in section 3.1, the set of problems the PACE

system was designed to tackle and a brief description of the principles behind its

design are provided. The requirements of the system are expounded upon in section

3.2 and the design of the system is described in section 3.3. Section 3.4 outlines

the architecture of the cloud portion of the PACE system while the components and

processes of the client portion are explored in 3.5. Section 3.6 then describes the

23

Chapter 3. PACE System 24

technologies that are leveraged by the PACE system before the chapter is concluded

in Section 3.7.

3.1 Overview

The PACE system’s primary functionality is the ability to store and review patient

records on the cloud. However the real challenge for the system is focused on sharing

these records between clinicians. The goal for the PACE system therefore, is to

allow clinicians to create patient records that can be shared between their colleagues

without the need for private patient details to be stored on the cloud. In order for

users to share confidential information effectively, patient records must be divided

with a subset of the data kept off cloud, on the users machine. P2P technologies can

then be investigated as the method to most efficiently transfer these private details

between users.

To facilitate the sharing records between users, the real world model of communi-

cation between clinics and their clinicians was adopted as the topology for sharing

private data. Clinicians of the same clinic share their information automatically and

compile a shared store of records. If a clinician requires records for a patient that is

not a part of their clinic, they can send requests for this data to find a clinic that does

have the patients records which can then be sent to the clinician. This same system

of communications was modelled and mimicked in the design for the PACE system.

Each user represents a clinician on the system that is associated with a clinic which

has multiple other clinicians. These clinicians form and share their own distributed

table of records. Any requests for other records are routed to other clinics on the

system and transferred to the requesting clinician.

The design for the PACE system is a variation on the MVC (Model-View-Controller)

design pattern known as the MVP (Model-View-Presenter) pattern [8]. The view of

the PACE design is the front-end point of interaction for the user on the client appli-

cation. This client application includes the Graphical User Interface which displays

Chapter 3. PACE System 25

patient records and is used to create new records. The presenters of the system exist

on both client and cloud ends of the PACE system. The cloud presenters translate

the user instructions and send function calls to the models of the clinics, clinicians

and the anonymised patient information. The confidential information is modelled

and controlled on the client-side. However, there also exists another cloud-based

presenter which controls the forwarding and receipt of requests to these client-side

presenters for private patient details and enables the P2P communication between

peers. The P2P network is an overlay of the modelled clinic-clinician configuration.

Each peer on the network as a corresponding clinician modelled on the cloud, and

each clinic is represented by a super-peer which can relay requests and responses

across the network. Thus, all the patients assessment details can be kept on the

cloud, giving the system the traits of accessibility, portability and availability. To

enable the same set of features for the private patient details, a P2P network is used

to allow users to share details directly with one another from machine to machine.

The design and architecture of the PACE system will be described further in later

sections of this chapter.

3.2 Requirements

The list of requirements, as detailed below, include all the obligations of the system.

The system must have the ability to manage basic interactions with patient records

as well as the more complex issue of sharing private data between peers.

• Store Patient Records on the Cloud. The most basic requirement for the

system is the ability to store patient records on the cloud. All users should be

able to store records to the same central database on the cloud.

• Authenticate Users. Once records are on the cloud, before they can be

retrieved, the system must ensure that users are identified and authenticated.

This is to ensure that only registered healthcare workers have the ability to see

and find patient records kept on the cloud.

Chapter 3. PACE System 26

• Review Records. Users must be able to then view patient records on the

cloud that both they and others have entered onto the system.

• Protect Patient’s Identity. Due to concerns relating to the safety of a

patient’s identity on the cloud, the system must have some means of negating

the risk of private patient details being kept on the cloud.

• Share Data Between Users. Records on the cloud should be viewable to all

users that have gained appropriate permissions. This includes all confidential

patient information.

• Search for Patients. Users should be able to search the system for a record

they do not have using some means of identifying the patient.

• Query Patient Database. The system should also extend beyond searching

for singular patients and allow the database to be queried. This allows multiple

records matching a set of criteria to be delivered to the user.

In order for the PACE system to become a viable solution to the problem tackled in

this research, each requirement must be fulfilled. The requirements for adding and

retrieving patient details from the cloud and authenticating the user are relatively

basic requirements and so do not require much explaining. The most challenging

problems presented by these requirements are sharing patient data between other

users, searching for patients across the system and querying the database of patient

records. As the database of patients are divided and distributed according to our

hypothesis, implementing these features becomes incredibly challenging which our

design must address.

3.3 PACE Design

This section looks in greater detail at the design of the PACE system including the

use of the MVP pattern as the basis for the design, how the data in the system is

Chapter 3. PACE System 27

handled, and how the P2P communications are used to enable the sharing of patient

records.

3.3.1 System Design

As mentioned in section 3.1, the PACE system was designed based on a variant of the

MVC pattern, the MVP pattern. The MVC pattern is useful to architect interactive

software systems where it is necessary to create a separation between the user’s view

of the system and the underlying data [33]. MVP is an evolution of this MVC pattern

which better reflects the modern web application by completely separating the view

and model and having the presenter translate interactions on the view to a model ’s

functions and updating the view with the changes to the model. The PACE System

was designed using this MVP pattern as the basis for the cloud-based application

to fulfil the basic functionality of storing and retrieving patient records. The system

can thus be broken into three distinct categories: the Models, the Views and the

Presenters.

Figure 3.1: Model-View-Presenter Design

3.3.1.1 Models

The three most important classes in the PACE system are the Clinic, Clinician

and Patient. As can be seen from figure 3.2, these classes are placed in a hierarchy

Chapter 3. PACE System 28

of control, similar to how a healthcare office would run in reality. In order to oper-

ate with these models, the system uses Data Access Object (DAO) instances which

control all interactions with the underlying data. There are two DAOs used by the

PACE system, both which implement a DAO interface with the basic CRUD (Create,

Retrieve, Update and Delete) functionality. The ClinicDAO implements this inter-

face and manages the administrative objects on the system. This DAO can also be

used to retrieve, add and remove clinicians from clinics. The PatientDAO performs

operations on the patient data and also allows for new records to be associated with

patient and can run SQL-like queries on the patient data.

Figure 3.2: Class Diagram of Cloud Design

Clinic Each Clinic on the system must have an ID and a name in order to be found

and identified on the system. A Clinic object also contains a hashed password

Chapter 3. PACE System 29

variable which can be used to verify a clinician belongs to a Clinic. A password

can be checked using the verifyPassword function. Each Clinic also manages

a number of Clinician’s that belong to it. These Clinician’s can be found

and queried with functions getClinician and findClinicianWithPatient .

Clinician A Clinician represents all registered users of the system and must belong

to a Clinic. Each Clinician must also have a unique id and a name. A Date

object is also used to log the last activity of the Clinician. There are also

functions that are used to manage the list of Patient’s the clinician currently

has associated with it, according to the PACE system.

Patient and Records Each Patient on the system has an identifier that can be

used to anonymously identify the Patient throughout the PACE system. It also

contains a reference to the Clinician that first entered the Patient onto the

system. Each Patient also contains one or more Record objects. These Record

objects contain the Patientsmedical information entered by the clinician. As a

Patients state can change over time, there exists a need to maintain a history of

the Patients records, so multiple records can be associated with each Patient

object and differentiated through their date of entry. Each Record contains

an identifier, a timestamp, and the medical information relevant at the time of

entry.

3.3.1.2 View and Presenter

The view and presenter manage the user input and how it affects the state of the

Models on the cloud. The view is the GUI of the application on the clients machine;

the interface through which the user can view and alter the models. In typical MVC

designs, once the model is updated via the controller, the view is changed directly

to reflect the interaction. However, in modern web applications, the view has the

potential to change what the user can see independent of other actors on the sys-

tem. The MVP pattern supports this capability by entrusting the presenter with the

responsibility to both translate user interactions to function calls on the model and

Chapter 3. PACE System 30

to also send any state changes to the view, so the view may decide what should be

presented to the user.

The view in the case of the PACE allows the user to input patient details through

various forms that constructs the Patient and Record objects on the system and

the ability to see both the cloud and peer-stored patient details. The presenters in a

web application usually take the form of the interface between back-end operations

and the front-end interface, for example Java Servlets or a .NET HTTP handler.

The main operation of the presenter in the design is to translate requests sent from

the view into corresponding function calls on the back-end. Using DAO instances as

the interfaces to the stored data, the presenter can perform tasks on both patient

data and administrative data such as creating a new Clinic or finding a Clinician

associated with a particular Clinic.

3.3.1.3 MVP for Basic Functionality

By utilising the MVP pattern, the cloud portion of the PACE system was designed to

allow users to create and review patient records from a web application. User input

affects the view which sends the corresponding instructions to the presenter. The

presenter can then make the requisite changes to the stored data via the DAO’s and

then return the result of the functions to the view. When a clinician is attempting

to add a patient, they can do so using a series of forms presented to them by the

view. Once the forms are completed, the view then forwards the patient information

to the presenter which translates the contents of the user input into the parameters

necessary to create a Patient object. Using the ClinicDAO class, the presenter

can instruct back-end services to add this patient to the database and update the

Clinician’s list of stored Patient’s. Once done, the presenter informs the view of

the successful addition of the patient.

Chapter 3. PACE System 31

3.3.2 Sharing via P2P

Although the MVP design pattern allows users to add and view their own patients

on the system, the design must also incorporate a means to allow other clinicians

to see the newly added data. In order to fulfil the given requirements, a means of

sharing private patient information between users must be implemented as the client

applications must also be able to review patients that have been entered by others.

To do this, a network is overlaid across the system of users and allow P2P connections

to be created for the purpose of sharing patient records without confidential data ever

reaching the cloud.

To accomplish the sharing of patient data between users on over a P2P network, the

model of clinics and clinicians is mirrored on a P2P overlay. Each clinician signed

onto the system acts as a peer and can both send and receive data from other peers.

To control the flow of data and to facilitate the ability to find patient data on the

system, the peers are divided into groups dependent on their respective clinics. Each

clinic is represented by a peer, which becomes the super-peer. The super-peer is an

expansion of a peer with the responsibility of communicating with the network on

behalf of other peers. This super-peer denotes a clinic and can forward requests to

other super-peers in order to locate and retrieve the patient data from another clinic.

Super-peers are used to help organise the peer network and allow for a measured

approach to forwarding requests across the network. Instead of searching a web of

peers for a single patient, the search criteria can be sent to each super-peer and

dispersed to their peers.

3.3.2.1 P2P Model Constructs

With peers randomly connecting to the system and individually creating data, all

peers (end-users) are organised into peer groups (the clinics). These peer groups

are organised by super-peers and share private patient data between themselves on

creation or update. As patient data generated by peers may be required by other

Chapter 3. PACE System 32

peers, it is important that the system has some level of data redundancy to ensure

availability.

We begin with a set of assumptions:

• Identifying data is stored off-cloud.

• Each super-peer represents a clinic and maintains a group of peers that repre-

sent the clinic’s healthcare workers. These peers and super-peers correspond to

the models of the clinicians and clinics on the cloud respectively.

• Each peer is aware of the super-peer it belongs to but has no knowledge of the

other peers that are connected to the super-peer. The only time a peer is aware

of other peers is when the super-peer introduces one peer to another for the

purpose of sharing patient data over a P2P connection. This communication is

hidden from the user.

• All P2P connections are transient. Once the patient data has been shared,

the connection is destroyed. This helps maintain the performance of the client

application and reduces the risk of data being sent over dead channels.

• Users sign into PACE with a username and password and are then connected

to the network via the super-peer.

Now we progress to describing the constructs of the PACE system in terms of their

attributes and functionality, of which a subset is shown in figure 3.3.

• Peer. The attributes of the peer are its ID, Peer Context, and the super-peer

group to which it belongs. The peer context is a representation of the peer’s

presence on the cloud, in this case it is the Clinician object, as mentioned in

figure 3.2. The functions include: makeRequest(patientId) which sends a re-

quest to the super-peer for a particular patient’s data; Connect(PeerAddress)

creates a P2P connection with another peer; sendPatient(Peer, Patient)

which sends requested patient data across the established P2P connection; and

Chapter 3. PACE System 33

Figure 3.3: PACE P2P Model

the function Synchronise(Peer), which compares the list of patients to an-

other peer and updates its database.

• Peer Context. The Peer Context construct models the user of the system, a

healthcare worker. This is the Clinician object from the cloud and includes

the name of the user and the list of patients it has created.

• Super-peer. The attributes for the Super-peer are its Super-peer Context,

a boolean variable identifying whether it is the controlling super-peer of the

system, and a list of peers corresponding to the healthcare workers of a clinic.

The functions of the super-peer are: introduce(Peer, Peer), which begins the

protocol needed to introduce two peers in order to set up a P2P connection;

synchronisePeer(Peer, Peer) which uses the introduce function to connect

peers it believes are not fully up to date with other peers; enquirePeer(peer,

patientId) connects to a peer to check whether the peer holds a particular

patient record; and forwardRequest() creates a connection to another super

peer to find private patient data stored by that clinic. SignPeerIn(Peer) and

SignPeerOut(Peer) add and remove peers to the network respectively.

• Super-peer Context. The Super Peer Context represents the healthcare

clinic. The attributes relevant to the super-peer are the name of the clinic

and the list of clinicians that are a part of it.

Chapter 3. PACE System 34

These constructs form the basis for the P2P network that enables clinicians to share

patient data between themselves. In order to incorporate such a network into the

PACE design, the system requires some means of controlling and enabling the in-

troduction of peers from different clinics across the network. To achieve this, a

component should be used that helps keep track of peer actions. This component

can be contacted by the super-peer to help locate patient data on the network and so

must also be informed of newly elected super-peers if the previous super-peer leaves

the network.

This P2P network not only allows private patient data to be shared between peers,

it also allows requests for this anonymised data to be forwarded across the network.

This fulfils the requirement for the ability to search for patients on the system, as

mentioned in section 3.2. A request can be created by a peer on the system, sent to

the super-peer which can forward this request onto other super-peers. Each super-

peer can then ask its peers to search for the requested patient. If the patient is found,

the peers can be introduced and the data shared, thus fulfilling the search.

3.3.3 Patient Records Management

Now that the overall design of the cloud application and the P2P overlay have been de-

scribed, this section will detail how the records of the patients are managed through-

out the system, from creation to removal. This will include descriptions of how the

data should be separated and then how the data will be recombined once a request

is received.

3.3.3.1 Storing and Retrieving Patient Data

Figure 3.4 shows a Data Flow Diagram which illustrates the states and operations of

the patient records.

Step 1. The first step in the flow of data is the creation of the patient record by the

user. Once the user has created a patient record on their client application, the

Chapter 3. PACE System 35

Figure 3.4: Data Flow Diagram

identifying attributes must be extracted. These are identified with the help of a

clinician during the implementation stage of the design and include values such

as name, PPSN (social security number) and any contact details. A unique key

can then be generated using values from this set of identifying features. The key

should be generated using an asymmetric cryptographic technique that would

make it difficult to use the key to reverse engineer the identifying data.

Step 2. Once the identifying attributes have been extracted, the anonymised details

are sent to the cloud with the generated key which will be used as the primary

key on the system. As mentioned in the design of the cloud application, each

patient on the cloud can have multiple records attributed to them.

Step 3. The extracted private data is then stored by the client on the user’s machine.

There should only ever be one set of values for a patient’s personal information,

if there are any changes to this data, the changes must be pushed to all other

peers on the network that store that patient.

Chapter 3. PACE System 36

Step 4. When a user successfully stores the patient details on their database, they

then share this information with other peers in their peer group over a P2P

connection. The sharing process is also performed when a user (User B) requests

the data from another user (User A). This can either be done by supplying the

information necessary to regenerate the primary key for the patient (name and

date of birth, for example) which is then used to locate a peer with the patient

and initiate the sharing. Alternatively, other information can be used to form

a search query which is distributed across the peer network. Any patient that

matches the search query can be sent by a peer to the user.

Step 5 (Optional). If a user (User B) seeks to retrieve the patient records, they

need only provide the primary key that was generated on creation. Using this

key, the cloud can retrieve the patient object and send the records to the user.

The two sets of data - confidential and anonymous - can then be joined on the

shared primary key. However, if a different user makes a request for the data,

the information must be retrieved from both the cloud and the user.

Step 6 (Optional). If a user needs to review the private details of a patient to

be combined with the records received with Step 5, confidential data can be

retrieved from the local database and displayed on the client application.

3.3.3.2 Propagation of Local Updates

As confidential data is distributed among multiple peers, when one peer updates the

confidential data (changes the patients contact information for instance), propagating

this change can be problematic. To enforce data concurrency across the peers, a basic

version control mechanism should be introduced. When a user updates confidential

data, the patient object is given a timestamp at the time of alteration. The peer

then informs the super-peer that the patient has been changed and the super-peer

instructs all of its peers to request the update from the originating peer. Whenever

a peer (Peer A) logs in, they are introduced to the peer with the longest currently

running session (Peer B) and their data is compared. As the data is being compared,

Chapter 3. PACE System 37

if the elder Peer B has a patient object with a more recent timestamp than Peer A,

it sends that patient object to Peer A. The odds of an update conflict are minimal as

the system is for managing patient data, so it is assumed that if a clinician is changing

confidential patient data then the patient must be providing this new information

and so should not be able to provide contradicting information to another clinician at

the same time. If however, such an unlikely circumstance occurs, the PACE system

adopts the practice of enforcing the most recent timestamp.

3.3.3.3 System-wide Data Removal

A user can remove a patient from their machine and the system. If a user deletes a

patient from the system, the patient is first deleted from the cloud then the user’s

machine. When a patient is removed from the cloud, the values are nullified and a

Deletion object is left in its place. This Deletion object contains two variables. The

first variable is equal to the number of clinicians that are a member of the deleted

patient’s clinic. Each time one of these clinicians logs in, they are told to remove

the patient and the variable is decremented. Once the counter is down to zero, it

is assumed all necessary clinicians have deleted the patient and the patient object is

completely removed from the database. The second variable is a contingency plan

in case a clinician does not log in regularly. The second variable is an expiration

date; once this date is reached the patient is completely removed regardless of the

first variable. If a clinician attempts to request data using an expired primary key,

they are informed the patient does not exist and instructed to delete any patient

potentially stored by that user.

3.3.4 Design Summary

This section has described the design of the PACE system and how it should operate

to accomplish the requirements set out in section 3.2. The cloud application achieves

most of the functionality of the requirements, such as adding and reviewing patient

information. It also enforces the authentication of users with the clinic passwords to

Chapter 3. PACE System 38

ensure the patient has the authority to be a part of the clinic, although a means of

identifying the user on the system will also be needed. By separating the data and

storing anonymised data on the cloud and identifying data on the users machine,

the design protects the patients identity. The P2P network of users satisfies the

requirements to share patient data and the search for patients on the system. The

last requirement of the PACE system is the ability to query this divided database of

anonymised and identifying records. The details of how the PACE system accom-

plishes this is described in Chapter 4. First, have the following two sections describe

the architecture used to implement this design.

3.4 Cloud Architecture

In the previous section, the design for the PACE system was described. In this

section, an architecture is introduced which aims to implement the cloud design.

As mentioned previously, the PACE system uses a novel combination of cloud tech-

nologies and a decentralised hybrid P2P topology, as described in [4], to enable the

sharing of confidential patient information between healthcare professionals working

in hospitals and clinics. The cloud portion of the system manages user operations

via HTTP requests from the client and the systems data is kept on cloud using an

SQL database. Figure 3.5 demonstrates the design of the cloud portion of the PACE

system, which has four main components (P1 - P4) which will now be described.

3.4.1 Client Interface (P1)

The Client Interface component is the primary interface between the PACE system

and the user. There is a basic set of functionality at this level, and in most cases,

the work is performed by similar functions in the back-end processes.

• Authenticate. This function authorises users attempting to sign in and also

informs the super-peer that a peer has logged on and is now available to send

Chapter 3. PACE System 39

Figure 3.5: PACE Components and Interaction

data. An email account is used to authenticate each user before interaction

with internal components takes place.

• Search. The function uses the Clinic Connector (P2) to find the location of a

patient’s private data and initiate a P2P connection with the hosting peer. The

search function is the first step in the peer to peer sharing protocol described

in Section 3.3.2. A patient identifier is required to search for a patient on the

peer network. A clinic identifier can also be used to reduce the patient search

to a single clinic.

• Retrieve. This function interacts with the Patient Data Access (P3) compo-

nent to find and retrieve patient data stored on the cloud. Similar to the Search

Chapter 3. PACE System 40

function it requires a patient identifier and optionally, a clinic identifier.

• Update. The Update function interacts with the Patient Data Access (P4) to

either update or add a patient’s record on the cloud. As a patient is being added

to the system, the client interface receives a unique identifier for this patient

data from P4. This identifier is used when retrieving both the patient data

stored on the cloud and by a peer group. If a new patient is added the Client

Interface interacts with the Peer Data Access and Client Connector components

to initiate the synchronisation of data between the peers.

Figure 3.6: PACE Client Interface

3.4.2 Peer Data Access (P3)

This component controls all access to the administrative data stored concerning the

clinics and clinicians on the system and their connections to the P2P network beyond

the cloud. The Peer Data Access component fulfils the responsibilities mentioned

in the design in section 3.3 for the ClinicDAO. As mentioned in that section, the

ClinicDAO is responsible for managing the data and relationships between the clinics

and their clinicians. The Peer Data Access component achieves this by acting as an

interface between the Client Interface and the database containing the clinician and

clinic information.

Chapter 3. PACE System 41

3.4.3 Patient Data Access (P4)

Just as the Peer Data Access component implements the responsibilities of the

ClinicDAO, this component achieves the same for the PatientDAO. The goal for the

Patient Data Access component is to manage the anonymised patient data stored on

the cloud using the Java Object-Relation Mapping library Hibernate to interact with

the database. All functions are called by related functions from the Client Interface

component.

• Patient Search. This function locates specific patients based on a unique

identifier and optionally a clinic identifier to reduce the dataset to search.

• Query Search. This function is much broader than the standard search function

as it provides the ability to use queries on the cloud based data. Multiple records

are returned based on the criteria specified in the provided query. Queries for

the data are translated into HQL, a SQL-like query language for Hibernate

databases.

• Update. This function updates a patient in the database, or if the patient does

not currently exist, it inserts the new patient’s records.

3.4.4 Clinic Connector (P2)

The Clinic Connector service locates and connects users across the network. In other

words, it acts as the handshake mechanism to introduce two clients in order to initiate

a transient P2P connection. This has two scenarios: when a peer has been found

to be missing newly added patient information; and when a user makes a request

for patient information from another clinic. If a peer is missing information from

the clinic, the Clinic Connector introduces the peer to another peer connected to the

same super-peer. The super-peer chooses the oldest peer on the network to update

the new peer, as it is assumed to have received the most updates compared to the

other peers. The peers can then swap stored patients and update each other’s records

Chapter 3. PACE System 42

Figure 3.7: PACE Clinic Connector

of patients. If the clinician makes a request for a patient from another clinic, the

Clinic Connector instead communicates with multiple super-peers to find a suitable

peer that contains the information. To find a suitable peer, the Clinic Connector

utilises the Peer Data Access (P3) service.

In order to introduce two peers, the Clinic Connector is required to communicate

with each client. A direct communication is formed between the Clinic Connector

and the client application that allows the cloud to send updates and requests without

the need for routine polling. The method used to accomplish this is discussed in 3.6.

3.4.5 Server Architecture Summary

This section described the architecture for the PACE system which implements the

design described in section 3.3. There were four main components to the architecture:

the Client Interface, the Clinic Connector and the Peer and Patient Data Access

components. These four components operate together to allow clients to send, retrieve

and search for patient information via HTTP requests and can also update client

Chapter 3. PACE System 43

applications with update instructions. The cloud also serves the use of acting as a

central server to allow peers to discover their network address and aid super-peers in

introducing peers to form P2P connections. In the next section, the architecture for

the client application portion of the PACE system is described.

3.5 Clinic and User Clients

In this section, we provide a description of the different client components and briefly

explain how these components facilitate interaction with the PACE system. Recall

that there are two forms of data: identifying data which is always stored locally

and anonymised data which can be stored locally or on-cloud. The system must

accommodate for two different states of the client in regards to this anonymised

data. The first state is the default state, in which all the user’s anonymised data

is stored on the cloud and only the identifying fields are stored locally. The second

state occurs when a user inputs data relating to a patient but must also cache the

anonymised data locally, perhaps due to the user having no internet access to store

the information. This cached data is kept by the user until they next log in to the

system when it is automatically uploaded to the cloud and the user returns to the

default state.

Figure 3.8 demonstrates the design of the PACE client which communicates with the

PACE system on the cloud. The three main components (P5 - P7) to the client will

now be described.

3.5.1 Client Application (P5)

The Client Application is the point of entry for the users and is the View portion of

the MVP design pattern mentioned in section 3.3. The Client Application processes

all the user input and forwards the necessary requests to the server and the other local

components in order to create, remove, update and search patient files both locally

Chapter 3. PACE System 44

Figure 3.8: PACE Client Component Diagram

and on the cloud. In order to accomplish these tasks, the user’s input is translated

and formed into SQLite-like queries that are parsed and translated to functions on

the server. SQLite is a restricted form of SQL. Details of how these queries are

formed and parsed are given in chapter 4. The following are the functions of the Web

Application:

• Create Patient. Uses form data filled in by users to create the patient data

stored by the system. Any data that could potentially identify a patient is

stored locally through the Private Patient Data Access component (P7), and

the rest of the data is sent to the PACE system on the cloud to be stored.

• Find Patient. This function finds patient data stored locally by the client.

Using the Private Patient Data Access component, it searches the local database

using a patient identifier to find an individual patient.

Chapter 3. PACE System 45

• Query Cloud Data. This function sends a query request for a subset of cloud

stored patient data. The identifiers of the patients are not needed as it simply

returns a subset of the anonymised data corresponding to the criteria of the

query.

• Request Patient. This function sends a request to the PACE system for a

specific patients using the patient identifier (and clinic if available). If the

patient is located, the client receives a response containing the network address

to a peer willing to send the data. The user need not be concerned with patient

data location (locally, local to clinic, or remote) as this is resolved internally.

• Retrieve Patient. This function retrieves the anonymised patient data stored

on the cloud for a particular patient. This patient’s identifier is sent in the

request to the PACE system. The data retrieved should correspond to a patient

stored by the client.

3.5.2 Peer Connector (P6)

The Peer Connector component of the client is responsible for establishing connec-

tions with other peers and sending/receiving patient data on a peer level. The PACE

system clients create transient P2P connections in order to share private patient data.

The Peer Connector has two main functions: Send Patient, which sends private pa-

tient data over the P2P connection, and Receive Patient which stores patient data

sent from another peer. The methodology used to form these connections is described

in section 3.6.

3.5.3 Private Patient Data Access (P7)

The Private Patient Data Access (P7) component has much of the same functionality

as the Patient Data Access component on the cloud. However, here the component

works with confidential patient data. This data is stored locally in key-value pairs.

Chapter 3. PACE System 46

The component can store, remove and retrieve patients. The data store also supports

the use of queries to return multiple patients matching a set of criteria. The key used

to store patients locally, matches the primary key on the database on the cloud

to allow the two sets of data to be easily recombined. Section 3.6 details what

mechanisms are available to implement this client-side storage.

3.5.4 Client Architecture Summary

This section described the components and their respective processes within the client

application. The Web Application is the main point of entry for the user and provides

most of the basic functionality of the client. The Peer Connector component connects

with other peers on the network to send and receive confidential patient information.

The Private Patient Data Access controls access to the private patient data stored

on the user’s machine. Both halves of the architecture have now been described

and the next section describes the technologies that can be used to implement the

architecture and which were preferred.

3.6 Understanding the Technologies

In this section, the methods used to enable the PACE system to tackle the main

challenges presented in the design are all described. The biggest challenges in the

implementation of the PACE system are: implementing a P2P network using only web

browser technologies; storing large numbers of private patient records on a browser;

and supporting such a system with a cloud application as the server. In order to

implement such a cloud application, a great deal of effort was given to choosing the

correct 3rd party cloud provider for the task. The process of choosing the provider

is now described in section 3.6.1.

Chapter 3. PACE System 47

3.6.1 Cloud Provider

The decision on which cloud provider for the development of the prototype was made

on the basis of 7 metrics: data storage, user authentication, security, server location,

client communication, development environments and the cost or running the appli-

cation. The choice was made between, three of the most popular cloud providers for

PaaS (Platform as a Service) platforms: Amazon[59], Google[23] and Microsoft[58].

Below are the descriptions of each metric which contributed towards the decision

making process and the respective comparisons between the three providers.

Data Storage. As there would be large amount of patient data that needed to be

queried, it was important that the chosen cloud provider had a versatile and

reliable data storage service that could accommodate large searches and SQL-

like queries. Microsofts data storage options include various standard storage

options such as temporary local storage for the virtual machine running the

application and the more permanent cloud storage. It also includes access to

Microsofts SQL database which can be accessed via Microsofts SQL server soft-

ware. Amazons storage options include their RDS solution, allowing instances

of Microsoft SQL servers to be deployed via Amazon Web Services. Amazon

also provide their own S3 storage solution, for large amount of schema-less data.

Similar to both Microsoft and Amazon, Google includes solutions for storing

both schema and schema-less data with the services Google Cloud SQL and

Google App Engine Datastore respectively. All three parties provide similar

solutions for data storage, with no party excelling above the others.

User Authentication. The requirements for the application necessitated a means

of identifying and authenticating users attempting to sign into the system, to

ensure the patient data stored on the cloud is safe from unauthorised access.

Microsoft allows for the creation of an Active Directory on the Azure appli-

cation, allowing users to be added and different access control levels to be

attributed to each user. However, new users must be entered via a web portal

to the service, which is not suitable for systems requiring minimal interaction

Chapter 3. PACE System 48

with the backend operations of the system. Amazon offers a solution similar to

Azures Active Directory called AWS Identity and Access Management, allowing

users to be created and assigned access privileges manually. AWS also allows

a federated sign in process, so users can sign in using an Amazon, Facebook or

Google account to identify themselves without needing to be entered manually.

Google doesnt offer an access control service such as the Active Directory, but

one can be implemented using the Spring security library [56]. Identity can also

be verified using a federated login service allowing users to login with Google,

Yahoo, Microsoft, LinkedIn and others. Although important for later imple-

mentations of the application, the user authentication for this research does not

carry much weight in the choice of provider, but under this metric Microsoft

and Amazon are preferable.

Security. Beyond ensuring that the system users are authorised, there is also a need

to ensure that the chosen 3rd party cloud provider is keeping all the data stored

in the cloud safe from unlawful intrusions. All three major cloud providers giver

assurances of security; promising 24 hour monitoring, DDoS protection, data

encryption using the AES-256 protocol and data redundancy strategies. As all

provided the same level and method of security, they are equally suitable for

the implementation.

Server Locations. As there will be patient records stored on the cloud (anonymised

or not) there is a need to know where these records are physically stored.

Microsoft, Amazon and Google all provide an option to choose where data

should be stored, including data centres in Ireland. However, Google has this

European option available only to those paying for a customer support package

subscription. For those not paying the $150 dollar per month fee, the data

and application is stored on servers in the United States. Both Amazon and

Microsoft however, allow the Irish data centre to be chosen without an extra

fee. Google is enrolled in the Safe Harbour program, though, which ensures

that any data transported from Europe to America is treated with the same

Chapter 3. PACE System 49

protection laws as if it was being kept in Europe. Both Amazon and Microsoft

are preferable to Google for the location of the patient data servers.

Client Communication. One of the requirements for the design is the ability for

the server of the application to make unsolicited contact with a client in order

to make P2P-related data requests on behalf of other peers. Microsoft offers a

means of accomplishing this using their Message Bus system which allows for

loose-coupling communication between server and client on a message system.

Such a requirement can also be accomplished through the the use of Googles

Channel API which allows for the creation of a persistent connection enabling

an application to update a client immediately. Amazon does not provide a

method of accomplishing this though an API or service, but it does allow scope

through the use of web sockets. Using the Channel API to accomplish client

communication is easier to implement than using web sockets and also does not

require permission settings be applied via a portal, as is the case with Microsofts

Message Bus. For this reason, Google would be favoured over both Amazon

and Microsoft when communicating with a client.

Development Environments. All three cloud providers allow for the use of mul-

tiple programming languages when developing a cloud application. Microsoft

allows the use of Java, Python, Ruby, PHP and their own .NET framework to

create applications for Azure however, the application must be built using Mi-

crosoft’s own IDE, Visual Studio and the use of many of their APIs and libraries

requires special permissions being given to the application via various portals.

Google supports the use of Python, Java, PHP and their own programming lan-

guage Go to develop for the App Engine. No IDE is strictly necessary for the

App Engine but the Eclipse IDE is advised by Google. Amazon supports Java,

PHP and Python as well, but also Ruby and .NET. Amazon also provides sup-

port for developing and deploying AWS applications using Visual Studio and

Eclipse. As the programming language of choice for this project is Java, all

providers are viable options. However, in order to use Azure effectively, the

.NET framework is needed for large portions of the server implementation and

Chapter 3. PACE System 50

the IDE for the purpose of building an Azure application is more convoluted

than Eclipse. With this in mind, Googles App Engine environment appeared

the best option for quickly implementing the prototype.

Another concern for the developer environment, is whether there is a way to

test the app before full deployment and a payment is required. Both Google and

Amazon allow applications to be tested locally for deployment and also offer

a free quota for certain services and resources so a small scale version of the

application can be tested online. Microsoft however, requires payment details

before applications can be run online or locally for development purposes. As

Google and Amazon allow for an application to be tested for free both locally

and online, they provide the environment of choice for prototyping.

Cost The price for utilising the services of these providers was one of the most

important factors in making a decision. Each provider calculates the cost dif-

ferently, so to demonstrate the difference, the price of running a set scenario

between the three will be compared. The cost of running a server with 4GB of

RAM and processing power of 1.6GHz and a database with 50GB of space is

compared as a sample of overall price. According to the price calculator of Mi-

crosofts Azure [44], the price of running a Linux Virtual Machine on the Azure

servers with 3.5GB RAM to run the application is e 0.09 per hour or e 66.49

per month. No option is provided to run a machine with 4GB of RAM with

only one core, so two cores each with 1.6GHz will be running the application.

To run a SQL database for a web application with 50GB is e 93.74 per month.

These two costs come to an annual charge of e 1922.36 for using these services

on the Azure platform. Amazon charges $50.67 per month for a Linux virtual

machine on a single-core machine with 3.7GB RAM and $58.20 per month for

50GB of space on a SQL database [3]. The annual cost for running such a set up

on Amazon is e 966.24 annually. Google charges $16.98 per month for a single-

core machine with 3.75GB RAM and $75.74 for a 50GB Cloud SQL database

[24]. This comes to roughly e 814.44 per annum. The cost of Microsofts Azure

platform is more than twice the cost of running a similar application on either

Chapter 3. PACE System 51

Amazon or Google, making these the most cost effective solution for running

such an application.

Provider Storage Auth. Security Location Comm. Env. Cost Total

Amazon 3 1 2 1 0 2 3 10

Google 3 0 2 0 2 2 3 12

Microsoft 3 1 2 1 0 0 0 6

Table 3.1: Weighted Metric Scores for Cloud Providers

In making the decision, each provider was compared using the above metrics. Each

metric was then weighted based on the importance to the prototype being developed.

For instance, both storage and cost were weighted 3 times as important as User

Authentication, as for the prototype it was essential the cost of the application did

not surpass a given budget and that the data on the cloud could be accessed easily

and queried effectively by the user. Where the provider was the preferred choice,

it was given a score equal to the weighted value of the metric. Table 3.1 gives an

overview of the scores for each provider and demonstrates that for the purpose of

this research, Google was the clear winner with Amazon an acceptable second choice.

When comparing between the three, Google proved to be the most cost effective

and best suited for client communication and so was chosen to implement the PACE

system.

3.6.2 Establish P2P on a Client

In order for the clients on the system to share the private patient data with other

users, a P2P connection must be constructed. As the PACE clients use web browsers,

the means of accomplishing P2P communications between users is limited. WebRTC

(Web Real Time Communications) is an online javascript library that can be lever-

aged for this very purpose [63]. It allows for the direct communication of video and

audio data between browsers, as well as P2P file sharing without the need for a

central server or plugins [60]. The API for WebRTC was defined by W3C (World

Chapter 3. PACE System 52

Wide Web Consortium) with the help of Google and has been implemented for the

most part by both Google and Mozilla. As WebRTC is quite a new introduction into

network programming, it has not yet had the support of all the major browsers but

much of its functionality is supported by Google Chrome, Mozilla Firefox and the

Opera web browser.

The PACE system uses WebRTC to transfer JSON packages containing the patient

data between peers. Prior to data being transmitted from one peer to another, the

peers need to know the network location of each other, in other words the IP address

of the browser. This is achieved by sending a request to a dedicated ICE (Interactive

Connectivity Establishment) server. ICE is a protocol to help applications, such as

P2P ones, identify themselves on a network. Once the ICE server identifies a client

and returns the IP address, a central server is required to share the addresses with

the two peers. Once they have each others network address, they can send data to

one another without the need for a central server.

3.6.3 Client Storage

Typically, data storage on browsers has been limited to the use of cookies. Recently,

however, solutions aimed at providing storage for much larger data have arrived. Web

SQL is a SQL-like database for web browsers and is supported by Google Chrome,

Opera and Apples Safari. However, work on Web SQL was ceased by W3C due to a

lack of independent work on the project [61]. HTML5 also provides a means to store

data on the browser for either a single session or using the more permanent local

storage [62]. This HTML5 functionality is supported by most up to date browsers,

however, the single key-value method of storing data does not suit the needs of a

storing a dataset of patient records as it would require a very large JSON object to

be stored and retrieved for every read/write operation.

IndexedDB is an API for browser based storage of large sets of structured data and

is capable of high performance searches on these datasets through the use of in-

dexes [45]. IndexedDB is in the drafting stage of the W3Cs specification. Currently,

Chapter 3. PACE System 53

IndexedDB has support from most of the main browsers such as Chrome, Firefox,

Internet Explorer and, from Fall 2014, Apples Safari. IndexedDB allows large sets

of data to be grouped, searched, iterated and filtered which suits the needed func-

tionality for this researchs patient records. A large set of records can be stored on

a users browser and remain easily searched and packaged for transfer between users.

IndexedDB also operates on a same-origin principle, preventing sites from different

domains accessing the data. Information is stored in key-value pairs by IndexedDB,

allowing us to use the primary key for both local and cloud stored data, no need for

key tables for each patient and the same key can be used on every client, increasing

interoperability. IndexedDB was chosen to implement the client-side patient storage

as it allows for large data sets to not only be stored but also searched and queried,

making it the most suitable option for storing large amount of patient records.

3.7 Conclusions

This chapter began with an overview of the PACE system and the problem it aims to

solve, the sharing of confidential information that is not stored on the cloud between

users. The PACE system keeps much of the data on the cloud while keeping the

confidential data stored on the users own machine. This locally stored data is shared

with others over a P2P network. The requirements for the PACE system were detailed

and then followed by the design that aims to fulfil those requirements. The design

section included the use of the MVP pattern for the cloud application and the details

on the use of a P2P network to enable the sharing between users. The architecture

of the PACE systems server was then detailed, with descriptions for the role and

functions of each component. This was followed with a similar break down of the

client application. The chapter also described the decision behind using Google as the

cloud provider for the system and the use of WebRTC and IndexedDB to accomplish

the P2P connections and local browser storage respectively.

One of the requirements mentioned in this chapter is the ability to query the database

of patients. However, this is quite challenging as the PACE system divides the data

Chapter 3. PACE System 54

into confidential and anonymised values and stores them separate from each other.

The anonymised data is then distributed amongst the peers, making querying the

collective database difficult. To tackle this, SQLite-like queries are generated to fetch

and combine data from the two divided sources. These queries are described in much

greater detail in the following chapter.

Chapter 4

PACE Queries

In the previous chapter, the design and architecture of the PACE system was de-

scribed in detail. As mentioned in the design of the system, the patient data is split

into two databases. The anonymised Patient data is stored on the cloud while the

confidential data is distributed across the peer network. This chapter introduces the

method used by the PACE system to allow the data from both sources to be queried

and combined. By forming SQL-like queries from user input and sending them over

the network to the various databases, we can search for and join results from several

sources into a single set of values matching the desired information for the user.

The structure of this chapter is as follows: section 4.1 introduces the queries used

by the PACE system and the requirements of the generated queries. In section 4.2,

the classification the queries are introduced, using their scope and operation as the

determining factors. The lifecycle of the queries is described in section 4.3, which

includes how the queries are formed, parsed and transformed. Section 4.4 then draws

the chapter to a conclusion.

55

Chapter 4. Queries 56

4.1 Overview

As has been discussed previously, the PACE system achieves patient anonymity on

the cloud by keeping all identifying values on the local machines of users. Although

the design presented in Chapter 3 provides a means of sharing this private informa-

tion between users through web-based P2P communications, the problem of searching

the entire database of patient information is challenging. Not only does the system

require some means of querying multiple databases and combining the retrieved val-

ues, one of these databases is also distributed across a network of users that can

be constantly changing. To address this problem, the PACE system uses a series of

SQL-like queries to pass instructions and requests over the cloud and P2P network.

The PACE system manages a database of patient profiles, and in order to perform

operations on these profiles, queries are used. A query can add or delete a patient

from the database or it can also build upon a patient profile, remove parts from

that profile or alter the profile. A patient profile is comprised of private identifying

attributes (confidential) and a series of medical records (anonymous). A query affects

the patient profile by moving through the system to the relevant databases and

executing a series of tasks though function calls. Queries are executed on the cloud

for all the anonymised information of a patient’s profile while the peer and super-

peer execute the same query in order to retrieve confidential patient information.

The two sets of results are then combined on the client machine and presented to the

user. This gives the impression that all the patient data is stored as one, and not

dispersed across multiple sources. Before the method behind this is clarified, some

assumptions for the system and queries need to be made and then the requirements

of these queries and how they are to be treated can be laid down.

4.1.1 Assumptions

There are certain assumptions that must be made clear before the query mechanism

is fully described. These assumptions are listed below:

Chapter 4. Queries 57

• Each entry to the patient database has an unique primary key known as the

Patient Identifier (PID). This primary key is the same for cloud and locally

stored patients.

• The PID is generated by the client using the patient’s personal information,

cannot be changed and is unique for every patient. The identifier is generated

using a trapdoor cryptographic mechanism that ensures the patient’s identity

cannot be discovered.

• For the purpose of our experiments and evaluation, it will be assumed the

identifier can be generated using the patient’s name and date of birth, as this

information should never change.

• Every user on the system has the privileges necessary to access confidential

patient data kept on other clinics. In practice, this may not be the case, but

for the purpose of defining these queries, it is useful to assume so.

• Each patient can have multiple records attributed to them on the system.

• Unless stated, any alterations or requests for a patient’s record will default to

the most recent record saved.

• If the patient is stored locally by the user, it is assumed they have access to the

PID without the need to query the data specifically for it.

4.1.2 Requirements

In order for SQL-like queries to operate successfully with the PACE system, there

are a set of requirements that the query system must fulfil. These requirements are:

• The PACE queries must support all CRUD (Create, Retrieve, Update and

Delete) operations.

• Both anonymised and confidential data should be accessible via the queries.

Chapter 4. Queries 58

• The accessible confidential data should not be limited to that stored on the

user’s machine. The entire database distributed amongst the network should

be accessible.

• In presenting the results of a PACE query, if both data sources were accessed,

then they should be combined into one set of results.

• The PACE system should support the ability to return multiple patients that

match the given criteria of results from queries.

• Any attribute of a patient, confidential or anonymised should be usable when

specifying search criteria.

4.2 Classification of Queries

The PACE system classifies each generated query. This classification process is to

quickly define the purpose of the query and the data that it aims to affect. Each

query is classified using three categories.

Level of Confidentiality. As the queries used by the PACE system are targeted

at distributed patient data, the first category of classification refers to the level

of confidentiality of the data. Confidential data is any information that can be

used to identify a patient and the anonymised patient data is the rest of the

patient’s records that cannot be used to ascertain an identity.

Query Scope. The second category of classification for a query is the scope of the

query. The scope of the queries refers to the what areas of the system are

affected and is defined with three levels: the peer level (individual clinician),

the super-peer level (clinic or hospital), and the cloud level (overall system).

For any query that targets the anonymous data, this query is classified as being

part of the cloud scope. If the query requires confidential information using a

patient identifier that already exists on the local machine, the query is at the

Chapter 4. Queries 59

scope of the peer. If the user does not have that patient’s information stored

locally, the scope must be expanded to super-peer level. It is known as the

super-peer level as it is now the responsibility of the super-peer to forward the

query and return the results to the peer. The scope of the query is determined

solely on the immediate effect on the data; any changes to the data made after

the query has been run are considered to be as a result of the state change

caused by the query and not the query itself. Therefore, if a peer is instructed

to delete a patient’s details because another peer removed it from the system,

the scope is not expanded to the super-level as it is done after the query’s

lifespan. A query can potentially occupy multiple levels. If a single query

requires both confidential and anonymised data it can occupy the cloud level

as well as the peer or super-peer level.

Query Type. The final classification for these queries is the operation. A query

can be one of four operations which are the standard for database interaction:

create, retrieve, update and delete. A patient can be added to the system once

enough information is provided to generate a patient identifier. A SELECT state-

ment can be used to search and retrieve entries on the patient database. The

database can be updated by changing a patient’s confidential or anonymised

values and a patient can be removed completely from the system. Only oper-

ations on anonymised data are permitted within the scope of the cloud, while

on the peer scope both anonymised and confidential operations are permitted.

This is to reflect the caching ability of the system. If a user is not connected

to the internet, certain operations on the cloud database can be cached and

executed once the user is reconnected to the system.

Table 4.1 demonstrates what level of confidentiality is applicable for what opera-

tion and at what scope. For instance, when updating a patient on the cloud, only

anonymised data is affected. The following section describes each entry in the table

in much greater detail.

Chapter 4. Queries 60

Operation
Create Retrieve Update Delete

Scope

Peer Confidential &
Anonymised

Confidential
Confidential &
Anonymised

Confidential

Super-peer X Confidential X X

Cloud Anonymised Anonymised Anonymised
Anonymised &
Confidential

Table 4.1: Query Classifications

4.2.1 Query Classification Description

Create - Peer. This operation is used to add patients to the PACE system and

are generated by the peer. This operation generates both confidential and

anonymised data. The confidential data is stored locally by the user and the

anonymised data is stored on the cloud. The create operation on the peer-level

produces both confidential and anonymised data. The anonymised data can be

generated and cached if the user is not in a state to send the instruction to the

cloud while the confidential data is immediately stored locally.

Create - Super-peer. No entry is necessary for the create operation at the super-

peer level as patients are not added to the network with a query. Any additions

to the system using queries exist only on the peer and cloud. Once they are

added, then the super-peer of the originator instructs the other peers to request

updates for the new patient, however this exists beyond the span of a query.

Create - Cloud. The create query for the cloud scope is quite simple, it inserts

anonymised patient data generated by a peer onto the system. This can be a

new patient or to add a new medical record to a patient’s profile.

Retrieve - Peer. The retrieval operation at the peer level is required to retrieve

only data stored locally by the user. This local store includes the patient data

stored on the local database and the data retrieved over the course of the session.

To differentiate between the scopes of peer and super-peer, the query needs to

Chapter 4. Queries 61

specify whether the request should be kept local to the peer or be extended.

For an example of a peer level retrieval: if a user requires the contact info and

names of all their clinic’s patients, then as no information is required from the

cloud or from other peers, the query only requires the confidential data from

the local database.

Retrieve - Super-peer. The super-peer level retrieval operation extends beyond

the peer scope by searching for patients across the entire network with the

criteria specified in the query. Once the query specifies that the confidential

search should check records that are not present on the clinics store, the query

can be forwarded from super-peer to super-peer to find all patients that exist

on the system.

Retrieve - Cloud. This cloud level query accesses the anonymised data stored on

the cloud. No identifying values are requested or provided. A patient identifier

can be included in the query to retrieve a single patient’s records but is not

necessary. The entire database of patients, regardless of the clinic they belong

to, can be queried and results returned.

Update - Peer. The Update operation at this level involves changes being made

to the confidential patient data stored by the peer. This change must also be

transmitted to the other peers that hold the patient, which is done by informing

the super-peer that the calling peer has a new version of the data. The details

of how this is done have already been described in Chapter 3.

Update - Super-peer. There is no entry for the Update operation at this scope

as there are no update queries that directly act upon the network of peers.

Much like the Create operation, the Update operation on the peer triggers an

instruction from the super-peer to other peers to request the update.

Update - Cloud. This entry is similar to the Update operation of the peer, but

alters the values of the patient’s anonymised medical records rather than per-

sonal information. For instance if a user is amending a mistake on a record,

the Update operation allows for a value to be corrected.

Chapter 4. Queries 62

Delete - Peer. This operation removes a patient from the peer’s local records. The

deletion operation at this scope only affects the database of the peer and does

not extend to other peers or the cloud.

Delete - Super-peer. No delete query exists at the super-peer level as all deletions

are made on a peer-by-peer basis as they are instructed. If allowed, it would

be equivalent to deleting all records from a clinic or hospital department.

Delete - Cloud. The Delete operation at the cloud level removes all records of the

patient on the system. This is a permanent removal of the patient’s records.

Once deleted, any requests for the data will return an instruction to the re-

questor to remove any record of the patient.

Once a query has been classified with an operation and scope, the system can progress

onto the forming and parsing processes of the query. These are explained in the next

section.

4.3 Query Lifecycle

In this section, the lifecycle of the query will be discussed. The stages of the query

begin with the creation of the query, and depending on the type of query, it goes

through several stages of parsing, the query is then transformed into a series of

function calls and from this the result of the query is compiled and returned to the

user. Figure 4.1 illustrates the steps involved in executing a query on the PACE

system. Each stage of this diagram will be explained over the course of this section.

4.3.1 Query Construction

Queries begin their lifecycle being generated on the client application based on the

input from the user. Each of these queries is based on SQL but reduced to a limited

form of expressions in the context of the PACE system. For instance, the FROM

Chapter 4. Queries 63

Figure 4.1: Query Lifecycle

clause is not needed to declare a table that the query targets, as only the patient

database will be affected. Instead, this clause is used only when a particular record

is needed by specifying the date of assessment or when the scope of the query must

be explicitly declared by specifying a local search through the peer’s database or a

network search which involves searching the entire peer network. Both of these use

case are demonstrated in Example 4.2. As mentioned in the previous section, there

are four main query classes and each can operate at a different scope depending on

the needs of the query. Each variant is detailed below including a template for the

query and an example of a generated request.

4.3.1.1 Create Query

The creation query for the PACE system is a simplified SQL INSERT query, as demon-

strated in Def 4.1. The create query can be used to create a new patient on the system

Chapter 4. Queries 64

or add a new record to the patient’s table.

INSERT

VALUES <Patient Values >

[WHERE PID=<Patient Identifier >]

Def 4.1: Insert Query Template

If a patient identifier is not stated using the WHERE clause, then a new patient will

be inserted into the patient database. When a patient identifier is included, a new

patient is not created, instead a new record for the patient specified by the identifier

is inserted. All the values needed to create this query are acquired from information

input by the user through the web interface. When a new record is added, the patient

identifier is found by the system without input by the user. Example 4.1 illustrates

an example of creating a new patient for the system.

INSERT

VALUES "Patient Name", "1/1/11", ...

Example 4.1: Insert Sample Query

4.3.1.2 Retrieve Query

The retrieval query is constructed using a SELECT query but with a few alterations

to reflect the complexity of querying a central database joined with a distributed

database. The template for retrieval is shown in Def 4.2.

SELECT [ID] <Result Columns >

[FROM <Local || Network > AND <Record Date >]

WHERE <Selection Criteria >

Def 4.2: Select Query Template

As can be seen in Def 4.2, the first line takes the shape of standard SELECT clause with

the names of required columns. The only addition to this is the possibility of the use of

the keyword ID preceding the columns. This ID keyword is added automatically when

an identifying attribute is included in the SELECT or WHERE clauses. The keyword is

used to inform the system that confidential data must be retrieved or used to filter

Chapter 4. Queries 65

the results. If the ID keyword is not present, it is assumed the query is relevant only

for patient data on the cloud.

The FROM clause is optional but can control two quite important details for the data

retrieval. The first use is to specify whether the desired confidential data is sourced

exclusively from the local database on the users machine (Local) or if the request

is forwarded across the peer network (Network). The default option is to use the

network for a larger dataset to query. A specific patient record can also be selected

with this optional line. As each patient can have multiple records on the system,

if a user wishes to obtain information regarding a specific record, the date of the

record can be stated here and only information from the record with this date will

be searched. If the FROM line is left out from the query, the default record is the most

recent record added.

The WHERE clause is used to filter the result based on a set of criteria. The criteria

set out can be applied to both the anonymised and confidential data. Example 4.2

demonstrates a sample retrieve query. It is used to retrieve the name, address and

medical details of a patient with the name John Doe and date of birth January 1st,

1970. As can be seen in the query, the FROM clause is used to define the patient

record that must be selected by specifying the date of assessment as the 15th of

March, 2012. The example also demonstrates the use of the ID keyword to state that

personal information is needed.

SELECT ID Name , Address , MMSE , Sleep_hours , Medication

FROM ’15/3/12 ’

WHERE Name = ’John Doe’, DateOfBirth = ’1/1/70 ’

Example 4.2: Select Sample Query

4.3.1.3 Update Query

The update query is used to fix small errors in the data or make additions to the

data for a record. It is near identical to a normal SQL UPDATE query, the only

differences being the table name is omitted from the statement and the presence of

Chapter 4. Queries 66

the ID keyword, to again signify that confidential data is included in the query. Def

4.3 demonstrates the template used to construct an UPDATE query.

UPDATE [ID] SET <Value Changes >

WHERE <Selection criteria >

Def 4.3: Update Query Template

Example 4.3 illustrates the use of the UPDATE query. For the patient with the spe-

cific identifier defined, the hours of sleep the patient gets is changed to one hour

and the contact number is changed to ’0755523’. The patient identifier is included

automatically by the system based on the user input.

UPDATE SET sleep_hours = 1, contactNumber = ’07555523 ’

WHERE PID = ’a572e47vf91ac ’

Example 4.3: Update Sample Query for Changing Values

4.3.1.4 Delete Query

The DELETE query is defined by Def 4.4. There is only one difference between the

query generated by the PACE system and the SQL DELETE query and that is the

omission of the FROM clause. All the PACE system requires for the DELETE query is

the instruction to delete and the WHERE clause that filters the table for the entries to

be deleted.

DELETE

WHERE <Selection Criteria >

Def 4.4: Delete Query Template

Query 4.4 shows a simple example of a query used to delete a patient of the system

with a patient identifier.

DELETE

WHERE PID = ’a572e47vf91ac ’

Example 4.4: Delete Sample Query

Chapter 4. Queries 67

4.3.2 Parsing Processes

Once a query has been constructed, the PACE system proceeds to parsing the query

before translating it into function calls. The process begins on the client’s machine,

where the query was first formed but continues onto the cloud and the super-peer

depending on the query. There are three steps to parsing a query: classification,

attribute isolation and propagation. These steps are described below.

1. Classify the Query. The first step when parsing a PACE query is the clas-

sification, which has been defined previously in section 4.2, as the operation,

confidentiality level and scope of the query. Every query is classified in the

following order:

1.1. Operation. The first category of classification that must be identified is

the operation of the query. As described earlier, there are four possible

operations which are the four most basic functions in persistent storage:

create, retrieve, update and delete. The operation of the query decides

the action that must be taken on the data selected.

1.2. Confidentiality Level. Once the scope of the query has been identified,

the values specified in the query can be investigated to determine the

confidentiality of the query. There are two forms of data that the query

is concerned with: confidential patient data and anonymised patient data.

In order for the query to be parsed, it is important to isolate the values

that are related to confidential data. When parsing a SELECT or UPDATE

query, the presence of the ID keyword is a clear indicator of the presence

of confidential data. If the scope of the query is at the peer and cloud

level, the values must be divided between the two variants.

1.3. Scope. Once the operation and confidentiality level are identified, the

parsing proceeds to defining the scope of the query. The scope can be at

the peer, super-peer or cloud level and can occupy multiple scopes at once.

The scope of the query decides where the query must be sent in order to

Chapter 4. Queries 68

retrieve the intended results. If the query is at the peer scope, the query

can be run solely on the clients machine. However, if the cloud is also

required, the query must be partially parsed on the client to form a new

sub-query which is sent to the cloud. A similar sub-query must also be

formed if the scope extends to the super-peer as well.

2. Attribute Isolation. Once a query has been classified, the next step is iso-

lating and extracting any confidential information. The private patient details

are extracted and used to generate a second query with the same operation

but exist only on the peer and super-peer scope. The rest of the query should

then be suitable for the cloud scope. In the case of a create operation, the

confidential values of the patient are used to create the patient identifier that

is sent to the cloud as part of the query. This identifier is used as the primary

key for the patient.

3. Query Propagation. The next step in the parsing process is sending the

queries where they need to be. As shown in figure 4.1, there is an order to

distributing the queries. Parsing a query on the cloud takes precedence as it

contains a full database that can be used to filter results much more effectively

than the peer or super-peer.

3.1. Cloud. Any query related to anonymous data is immediately sent to the

cloud as the first step in parsing queries. On arrival, the cloud can classify

the query itself to identify the necessary operation. If the operation is

a DELETE, UPDATE or SELECT query, a filter is applied to the database

of patients in order to match the criteria in the WHERE clause. If the

query has an INSERT instruction, a new patient or record is created on the

database. Once the tokens have been analysed, the query is transformed

into a series of function calls. The transformation of queries into functions

for the cloud, peer and super-peer is explained in section 4.3.3. The results

of the query are then collected and sent back to the peer. If the query

required changes only to the anonymous data, the results of the cloud can

be presented directly to the user once they are received.

Chapter 4. Queries 69

3.2. Peer. On occasions where the query does not require changes to the

anonymous data, a query can be parsed and transformed by the peer

immediately, otherwise, the peer waits for the results from the cloud. As

the query has already been classified, the peer can begin transforming the

query into function calls immediately. In the case of a SELECT query with

a FROM clause instructing the query to be extended across the network,

then the query is propagated across the network via the super-peer.

3.3. Super-peer. When a super-peer receives a query that must be parsed,

the query is sent out to all other super-peers where it can be processed by

other peers across the network. Any peers that find results for the SELECT

query are introduced to the original peer and the results sent over a P2P

connection. These results are combined with the current result set and

duplicates are removed. The super-peer is the last possible step in the

parsing process before the results are presented to the user.

As the cloud, peers and super-peers each parse a query, it is transformed into a series

of function calls that achieve the intended effect of the query. It is these functions

that create the table of results that will be merged and presented to the user.

4.3.3 Query Transformation

Transforming a query involves using the query’s classification and keywords to call a

set of functions in a particular order to fulfil the query’s purpose. The following is a

suite of functions for each entity that when combined, form the engine of the PACE

systems query system.

4.3.3.1 Cloud

These are the suite of functions used in the execution of queries on the anonymous

database of patients on the cloud:

Chapter 4. Queries 70

• createPatient(id:String, clinician:Clinician) : Patient

• createRecord(date:Date, <Medical Values>) : Record

• storePatient(patient:Patient) : boolean

• addRecord(patient:Patient, record:Record) : boolean

• getPatient(id:String) : Patient

• updatePatient(id:String, patient:Patient) : boolean

• removePatient(id:String) : boolean

• runQueryOnPatients(criteria:String) : List ⟨Patient⟩

• isolateSelectedValues(patients:List⟨Patient⟩, select:String)

: List ⟨String[]⟩

The first seven functions in this list are all basic functions providing the CRUD

functionality. The final two provide the means for querying the database for the

purpose of searching for specific patients and retrieving selected subsets of data. The

function runQueryOnPatients(criteria:String) applies a filter to the database of

patients and returns a list of patient objects that match the criteria. The criteria is

represented by a String which is formed from the query sent by a peer.

The last function on the list isolateSelectedValues(patients:List⟨Patient⟩,

select:String) is used to obtain a set of values from a single column of a set of

patients. This can be run several times so multiple lists of column values can be

joined into one result table that can be returned to the user. This function is used

to retrieve columns of information specified in SELECT queries.

4.3.3.2 Peer

The functions used by the Peer are necessary for transforming queries at both the

peer and super-peer level. The functions used at the peer level are concerned mainly

Chapter 4. Queries 71

with interacting with the database of confidential patient information. The functions

at the scope of the super-peer are primarily focused on sharing data between peers.

Peer Scope

• addPatient(name:String, dateOfBirth:String,...) : boolean

• getPatient(id:String) : Patient

• getAllPatients() : List ⟨Patient⟩

• updatePatient(id:String, patient:Patient) : boolean

• removePatient(id:String) : boolean

• searchThroughPatients(patients:List⟨Patient⟩, string: criteria)

: List ⟨Patient⟩

Similar to the functions on the cloud level concerning the anonymised patient infor-

mation, most of the functions at this level perform the basic CRUD operations on the

confidential patient database stored by the peer. The peer equivalent of the cloud

function function runQueryOnPatients(criteria:String) to perform queries on

the data is searchThroughPatients(patients:List⟨Patient⟩, string:criteria),

except it explicitly requires the list of patients from the database in order to oper-

ate. Unlike the cloud variant however, there is no need for a function to reduce the

number of selected columns. Due to the small number of columns on the confidential

database, this functionality can be done at the time of presenting the results.

Super-peer Scope

• makeRequest(sp:Super-peer, query:String) : void

• sendPatients(peer:Peer, List ⟨Patient⟩) : void

• compareWithPeer(List ⟨Patient⟩) : void

Chapter 4. Queries 72

The makeRequest(sp:Super-peer,query:String) function forwards a query onto

the peer’s super-peer to be dispatched across the network. No result is returned as the

request is asynchronous. The sendPatients(peer:Peer,List⟨Patient⟩) function

sends a list of patients over a P2P connection to a peer. This is usually done once

a request is received and the peers have been fully introduced. The last function

is used to compare another peer’s list of patients to their own in order to send any

patients they are missing or not up to date.

4.3.3.3 Super-peer

All the functions used by the super-peer are concerned with discovering the location

of data and connecting peers.

• forwardRequest(query:String) : void

• enquirePeer(peer:Peer, query:String) : boolean

• synchronisePeer(peerA:Peer, peerB:Peer) : void

The forwardRequest(query:String) function is used to pass on requests for patient

data to other super-peers. This request is made to the clinic connector component on

the cloud which communicates with the other super-peers on the behalf of the calling

super-peer. When a super-peer receives a request for data, it forwards the query to its

peers using the function enquirePeer(peer:Peer, query:String), and the peers

can respond with a boolean to indicate if they have the required information or not.

The synchronisePeer(peerA:Peer, peerB:Peer) is used to update peers with the

latest updates or additions made by a peer to their shared confidential database.

Once the query is transformed, the results of the series of functions are sent to the

originating machine. All the results are combined then into a table of values. These

results are then presented to the user via the user interface.

Chapter 4. Queries 73

4.4 Conclusions

Over the course of this chapter, the queries used by the PACE system were introduced

and an explanation was given as to how they were used to perform operations on a

distributed cloud system. The classification of queries was introduced as a means

for the system to quickly identify how the operation should be managed and where

it should be sent on the system. The lifecycle of the query was then defined as the

formation, parsing and transformation of a query over the various entities of the

system which included the cloud, peer and super-peer.

The PACE system was created as an answer to the research questions posed in

chapter 1. All the methods the system employs to solve these problems have now

been introduced and detailed, so all that is left is to investigate the success of the

PACE system. We now proceed with a description of the evaluation process in the

next chapter.

Chapter 5

Evaluation

In the previous two chapters, the PACE system was introduced as a means of allowing

private patient details to be shared between clinicians while keeping the bulk of

patient data on the cloud. The query language used by the PACE system to query all

relevant data sources was also detailed. We can now progress to evaluating the success

of the PACE system as a potential solution to allowing clinics to use the cloud to store

patient records while still enabling them to share confidential patient information. A

prototype was developed to evaluate the PACE system and the experiments included

functionality testing from nurses with real patient records shared between the users.

Section 5.1 gives an overview of the goals for the experiment and what questions

the prototype should answer. In section 5.2, the prototype used to evaluate the

PACE system is described. Section 5.3 describes the experiment used to test the

functionality of the system and what results were collected. In section 5.4, we detail

the experiment created to evaluate the performance of the system and what was

learned from the results.

74

Chapter 5. Evaluation 75

5.1 Overview

In order to evaluate the PACE system and answer the research questions posed in

Chapter 1, there are two metrics that must be used when forming the experiments.

The first metric is the functionality of the system: can the PACE system reliably

store and retrieve patient data on the cloud and share private data between users.

The second metric is the performance of the system: does the system perform well

enough to allow clinicians to find and receive patient forms from other users at a

speed that does not impede their treatment of patients. In measuring these metrics,

we aim to answer our research questions.

In terms of the metric of functionality, we must look at what requirements the pro-

totype fulfils. There are three main areas to concentrate on when evaluating this.

1. Using the prototype, can a user successfully interact with the cloud and store

and retrieve patient medical records? The integrity of this data is vastly im-

portant, as missing data in these records can seriously affect the treatment of

patients and destroy the trust in the application.

2. Can private patient details be effectively shared between users of the system?

If peers are successfully sending data between each other, the next step in

evaluating the P2P sharing is to ensure that the data being sent over is what

was requested and uncorrupted.

3. Can the prototype build and propagate queries across the cloud and network

that match patient instructions?

Once the prototype is demonstrated to achieve these targets, the real test for the

functionality was deploying the prototype and allowing clinicians to test this func-

tionality in a real-world setting with their own patient data.

Once the functionality of the PACE system prototype was tested and passed, the

performance was then tested to ensure practicality. If finding and receiving patients

Chapter 5. Evaluation 76

over a P2P network was too slow, the usability of the system would come under

serious doubts, especially as a portable tool for clinicians interacting with patients

and needing to reliably find their required information. In order to evaluate the

performance of such a novel system, timings would be measured for operations.

5.2 Experimental Setup: PACE Prototype

In order to evaluate the PACE system, a prototype was built that was targeted at the

requirements and research questions specified in Chapter 3. The prototype was built

as part of the Elevator project [18] and aimed to provide the means for clinicians to

upload patient details concerning their lifestyle and medical history relating to their

mental health. Patient information is entered via a series of questionnaires through a

web interface. The prototype was built with Googles App Engine cloud platform [23]

and Java as the primary programming language. Using the design and architecture

described in Chapter 3, the prototype uses a novel combination of both cloud and

P2P technologies to facilitate managing patient records on the cloud and sharing

their identifying values between registered users. Feedback and updates were given

by the nurses involved with the Elevator project throughout the implementation of

the prototype.

5.2.1 Cloud Implementation

The server side of the prototype was created using Google’s App Engine and modelled

on the architecture and design provided in Chapter 3. Below are descriptions of the

key functionality implemented for the prototype.

User Authentication As mentioned in the requirements in Chapter 3, one of the

requirements of the system is to ensure that only authorised clinicians are given

access to the site. To accomplish this, Google’s login service is utilised that

requires every user to sign in with an email account before seeing the site. Once

Chapter 5. Evaluation 77

the user signed in, they are asked to provide the password for their chosen clinic.

This password is salted and hashed and compared to the password associated

with the chosen clinic. If it matches, the user is given access to the site.

Servlets The PACE prototype used the MVP pattern, as described in the design, in

order to manage the interaction between the user and the data. As the appli-

cation was programmed with the Java programming language for the backend

operations, the view is represented by Servlets. These collect input sent to it

by the client application and can then be transformed into function calls to the

backend services. A servlet was created for each page of the questionnaire to

parse the input and two general servlets for operations such as signing in and

out users, managing the peer network and adding new clinics and clinicians.

Data Management The medical records on the cloud are stored using Googles

cloud oriented version of SQL, Cloud SQL. All data is stored using Hibernate,

an Object-Relational Mapping (ORM) library for Java which maps object-

oriented entities to relational databases [50]. Hibernate has the ability to

take POJOs (Plain Old Java Objects) and translate it directly to a relational

database. Thus, each patient, its medical details and the relationships between

them were modelled as a series of POJOs, enabling us to use Hibernate to add

and update patients with very simple commands. The only requirement for the

objects to follow the necessary criteria was to ensure all the required variables

were given get and set methods and annotated with keywords which help

to define the generated tables and their relationships. To follow design best

practices, a DAO (Data Access Object) was used to form an abstract interface

between the operating classes of the system and Hibernate and the database.

By keeping the patient data on Cloud SQL, the data can be viewed and tested

using a standard RDBMS remote from the database.

When receiving the patient medical details over a HTTP connection, the data

must be translated into a Java object in order to be stored by Hibernate. To do

this, the Commons Bean Utils library from Apache was used which allows a Java

Bean to be populated from a HTTP Request. This made the translation process

Chapter 5. Evaluation 78

much simpler and cleaner as most pages of the questionnaire feature as many as

200 attributes. The Common Bean Utils library automated much of the task of

generating the necessary object corresponding to the page of the form. Once the

object was generated, it could be added to the corresponding Patient object

and updated on the database. A similar problem was faced when operating

the inverse procedure. When sending patient objects to the client, the Java

object must be transformed into a web compatible format, namely a JSON

(JavaScript Object Notation) object. To achieve this transformation, Googles

GSON library [22] was used to transform the Java object into a Javascript

compatible object that could be sent as a HTTP response.

Facilitating P2P Communication As part of the design of the PACE system,

the cloud plays the part of the organising server to the hybrid decentralised

topology used by the P2P network. In fulfilling the responsibilities of acting

as the server, the cloud keeps a record of all signed in users as peers and

also passes requests and instructions to the super-peers of the network. One

of the biggest changes to the original design for the PACE system from this

prototype is how super-peers are implemented on the system. As the user base

for testing the prototype is rather small, the responsibility of the super-peer

for each peer group is fulfilled by the cloud instead of an elected peer. As can

be seen in figure 5.1, the topology is kept intact by the cloud. However, the

functions of propagating requests and introducing peers are absorbed by the

cloud application.

When a peer makes a request for a particular patient, the request is propagated

across multiple peers. As several peers can potentially send the patient to the

peer, a job system was implemented to prevent unnecessary P2P connections.

When a peer makes a request for an individual patient, the P2P service on

the cloud creates a Job object and sends the search criteria and Job identifier

to the peers. If a peer has a patient matching the criteria, it makes a bid on

the Job that matches the identifier it received. The first peer that makes a

bid is sent the Job and introduced to the peer that requested the patient. If

Chapter 5. Evaluation 79

Figure 5.1: PACE Prototype P2P Topology

a peer replies to a Job that is already taken, they are informed that the Job

no longer exists. Figure 5.2 demonstrates the sequence of steps necessary for

finding and sending patient data over a P2P connection with the prototype.

This job system ensures several peers are not sending the same data to a single

peer, reducing the number of redundant P2P connections.

Figure 5.2: Retrieve Over P2P Network Sequence Diagram

Chapter 5. Evaluation 80

5.2.2 Client Implementation

The client side of the prototype is a browser based application that targets Google’s

Chrome browser as it supports both the IndexedDB and WebRTC libraries. The

following are descriptions for the functionality implemented for the client application.

User Interaction The interface for the PACE system prototypes client was created

using standard web development tools: HTML5, CSS and JQuery. From the

interface, the user can interact with the patient information on both the cloud

and the private details shared among other users. The primary function for the

interface, though, is to help the administration of a questionnaire to patients

potentially suffering from degenerative cognitive illnesses such as dementia.

This questionnaire consists of multiple pages relating to several areas of mental

health (figures 5.4 and 5.3). As each page is completed, the page is submitted

and added to the patients current record.

Figure 5.3: Questionnaire Page One - Includes Personal Details

Each patient added by the user can be reviewed and edited (figure 5.5).

The user can also use a name and date of birth to search for a patient on the

system, which will lead to both confidential and anonymised data to be found

Chapter 5. Evaluation 81

Figure 5.4: Questionnaire Page Three

Figure 5.5: Interface to Review or Delete a Patient

and combined before being presented to the user (figure 5.7). A patients entire

medical history on the system can be reviewed through the interface (figure 5.6).

From this review section, values can also be edited and then be used to update

the information on the system.

Data Management The confidential data on the client machine is stored using In-

dexedDB; a browser-based database library that has been discussed previously

in Chapter 3. The values stored locally are the name, date of birth, address,

contact numbers, email, age, GPs (General Practitioner) name and GPs ad-

dress. These are stored using a primary key generated using a one-way hash

function. The generated primary key is then sent with the anonymised data to

be made the primary key on the cloud as well. A DAO was also used for the

Chapter 5. Evaluation 82

Figure 5.6: Interface for Reviewing Patient Details

Figure 5.7: Interface to Search Patients with name and date of birth

client database to create an abstraction between the Javascript files and the

confidential data.

P2P Communication The P2P functionality on the client is achieved using the

WebRTC library. However, as the WebRTC project is an on-going project with

frequent updates and changes, developing with the API alone can be difficult.

To simplify the process of implementing WebRTC for the prototype, PeerJS[47]

was used. PeerJS is a project aimed at making WebRTC communication eas-

ier and quicker to implement by providing a simplified API and library. As

WebRTC has not currently been adopted by every browser, a backup strategy

for enabling P2P communication was developed using Googles Channel API. If

a peer requested patient data but was not using a supported browser, the pa-

tient data could be sent via the cloud. The data would first be packaged by the

hosting peer into a JSON object, then sent directly to the cloud with a Job iden-

tifier (discussed previously in the chapter). When the cloud received the HTTP

Chapter 5. Evaluation 83

message, it would transfer directly to the requesting peer via a Google Channel

data channel. Although the private patient data is transferred across the cloud

application, the time spent on cloud is minimal and never recorded and the

strategy was required for users testing the prototype on various browsers.

5.2.3 Prototype Use Case

In order to demonstrate how the PACE system prototype operates, a use case will

now be introduced and traced through the relevant processes until completion. In

this scenario, the user requires to find the records of a patient for which they have

no details stored locally on their machine except the name and date of birth of the

required patient.

1. The clinician first enters the name and date of birth of the patient they require

the information for, using the search interface shown in figure 5.7.

2. The entered information is converted into a patient identifier using the function

createID(patientName, patientDOB). This patient identifier is used to from

a query that requests all the confidential columns of a patients entry in the

PACE system database, as demonstrated in query 5.1.

SELECT ID Address , Contact_number , GP_address , GP_name , email

WHERE PID=’22719472 ’

Query 5.1: Retrieve Confidential Data

3. This query is sent to the clinicians super-peer on the cloud. The super-peer

creates a Job object that is stored on the system and the Job identifier is

distributed to each peer currently online using Googles Channel API.

4. When a peer receives a job posting, the peer immediately sends a request for

the job. The first request received by the cloud is accepted with all subsequent

requests denied. The successful peer is then sent the Job object containing the

full query and the address of the peer on the network.

Chapter 5. Evaluation 84

5. The query is classified as a Retrieve operation on confidential information. The

query is then transformed and the getPatient(identifier) function is used

to locate the patient on their machine.

6. The successful peer can now send the required confidential data matching the

patient identifier to the user using WebRTC. This is done by converting the

data into a JSON object and using the peer address to form a connection with

the PeerJS library.

7. Once the confidential data is retrieved, the information is displayed to the user

to confirm it is the required patient. In order to see the patients records, the

user simply pressed the Review button on the interface, which open the review

page of the application, seen in the screen shot in figure 5.6.

8. As soon as this page is opened, the confidential fields are completed and the

process of retrieving the first page of the form from the anonymised database

begins. A new query is created which requests the first form from the patient

with the matching identifier, as seen in query 5.2. In the query, the value

’Details’ is the name of the first page on the patient’s records.

SELECT Details

WHERE PID=’22719472 ’

Query 5.2: Retrieve Anonymised Data

9. The cloud parses the query and extracts the patient identifier to first find

the required patient using the PatientDAO function getPatient(identifier).

This returns a Patient object from which the latest record is found using the

function getLatestForm(). Using the Form object, the Details page can be

taken, converted to a JSON object using Gson and sent back to the user.

10. This JSON object is parsed by the browser and displayed on the review page

for the user. These last two steps can be repeated for each page of the form.

Chapter 5. Evaluation 85

The user has now retrieved the patient with the name and date of birth they specified

and can review both the confidential and anonymised data retrieved from a peer and

the cloud respectively. We now progress to evaluating the PACE system prototype.

5.3 Functionality Evaluation

There were two main areas to be focused on when evaluating the PACE system

prototype, the functionality of the system and the performance. It was important

firstly to know that such a novel system could operate correctly and match the

requirements necessary for healthcare professionals.

5.3.1 Experiment

The goal for the functionality experiment was to evaluate the success of the PACE

system prototype in fulfilling the requirements for a cloud-based patient data man-

agement system. The requirements include the four basic data operations Create,

Retrieve, Update and Delete as well as being able to share all the data input onto

the system between clinicians. In order to fully ensure that the system could per-

form the required operations, once the prototype was developed it was deployed on

the cloud and nurses working as part of the Dementia ELEVATOR project used the

system to retroactively input patient data to the system. Reviewing, editing and

deleting patient data was also tested as part of the experiment.

In reality, we had only a limited number of people providing data. Thus, the nurses

were placed in a single clinic to evaluate synchronising users of the same clinic which

was prioritised over super-peer communication. Once multiple users were on the

same clinic, sending and retrieving confidential data over P2P communications could

be tested. The data received by a peer was then compared with the expected output

to verify there was no corruption or missing values.

Chapter 5. Evaluation 86

The nurses testing the system were given instructions to report any flaws when op-

erating the system. These flaws could range from small bugs such as spelling that

still allow the testing to pass to flaws that would result in the test declared a failure

such as missing values or failure to operate. The experiment was run in three stages,

each focusing on different operations. The experiment was conducted with the help

of the nurses.

5.3.2 Results and Analysis

The results of the three functionality stages of the experiment are presented in ta-

bles 5.1-5.3 which show what operations were evaluated and if they failed, the rea-

son was provided. Operations were implemented progressively to ensure that each

operation performed successfully before proceeding to other operations that were de-

pendent on the results of the previous stage. For example, dropped data could be

misattributed to the UPDATE operation if the CREATE operation was not evaluated

correctly. The USER AUTHENTICATION, CREATE and RETRIEVE operations were evalu-

ated first, followed by the P2P operations, SEND and RETRIEVE. UPDATE and DELETE

were the final operations to be evaluated.

5.3.2.1 Stage One

Operation Success Notes

USER
AUTHENTICATION

3
Users properly registered and unregistered users

were given no access

CREATE 7 Data dropped during creation

RETRIEVE 7 Data dropped during retrieval

Table 5.1: Functionality Experiment Results: Stage One

The first experiment evaluated USER AUTHENTICATION, CREATE and RETRIEVE oper-

ations. These were the most important operations for the prototype as it allowed

the users to enter patient data into the system and then review data to ensure there

were no inconsistencies, all while being confident that the data could not be seen

Chapter 5. Evaluation 87

by unregistered users. The USER AUTHENTICATION operation was made a priority

before any data was created on the system but passed the testing phase allowing the

experiment to continue. During this first stage, a number of small issues arose that

resulted in the loss of data while being stored and also data not appearing on the

review screen. This was due to the integration of heterogeneous technologies used

to persist data on the cloud. The Apache library Commons BeanUtils was used to

convert a HTTP request into a POJO (Plain Old Java Object) to store the data on

the cloud using Hibernate. During this conversion process, a number of values were

dropped leading to a null object being stored on the database. The same problem

of dropped data was met while converting the POJO retrieved from the database to

a JSON object using the GSON library.

5.3.2.2 Stage Two

Operation Success Notes

USER
AUTHENTICATION

3
Users properly registered and unregistered users

were given no access

CREATE 3 All data correctly stored on the cloud

RETRIEVE 3 All data successfully retrieved from the cloud

SEND 7 Could not communicate with other peers

RECEIVE 7 Could not communicate with other peers

Table 5.2: Functionality Experiment Results: Stage Two

For experiment two, the CREATE operation passed the functionality test as no data

was corrupted or lost. There were however inconsistencies in reviewing the data

that resulted in the RETRIEVE function failing. The P2P communication was also

implemented on the client side of the system, allowing the sending and receiving of

data between peers to be tested. However, WebRTC did not seem to be able to

communicate with other peers on the system effectively so no data could be sent or

received. Thus, the SEND and RECEIVE operations for confidential data also failed.

This was discovered to be an issue with PeerJS which was capable of making an

initial connection between peers, but once the handshake protocol was completed,

Chapter 5. Evaluation 88

the patient data could was never received. To bypass this issue for the next stage,

the patient data was stored as part of the metadata in the initial connection between

peers.

5.3.2.3 Stage Three

Operation Success Notes

USER
AUTHENTICATION

3
Users properly registered and unregistered users

were given no access

CREATE 3 All data correctly stored on the cloud

RETRIEVE 3 All data successfully retrieved from the cloud

SEND 3
Peers could successfully find and send data over

P2P connection

RECEIVE 3 Requested private data received from peer in full

UPDATE 3 Patient Data successfully updated on cloud

DELETE 3 Patient Completely removed from system

Table 5.3: Functionality Experiment Results: Stage Three

All operations were implemented for the third and final iteration of the experiment.

At this stage, both the RETRIEVE and the P2P communications had been fixed and

were working correctly. The UPDATE and DELETE operations were implemented for

this experiment, allowing users to remove patients from the system and edit values

through the review page. Both operations passed the user-testing at this stage.

Thus, all operations passed on the third iteration of the experiment so we can now

say that the PACE system prototype can successfully function in accordance with

the requirements of the system users.

5.4 Performance Evaluation

Once the functionality of the prototype was evaluated, experiments were run to test

the performance. As the system involved combining such novel technologies, it was

Chapter 5. Evaluation 89

important to ensure that the system could perform quickly enough to justify the

division of data which can often cause performance issues.

5.4.1 Experiment

For the experiment to measure the performance of the system, a key operation will be

measured using a time metric. The operation that will be measured is the retrieval

of data, both on the cloud and from peers. The reason only the retrieval will be

measured is that is the only operation that involves the user waiting on the results,

so any delay in retrieving the data would be easily noticed. The other operations

are more asynchronous; the user can continue using the system while the changes are

made to the patient data. The experiment used to evaluate the performance of data

retrieval was done by measuring the time to search and retrieve data from the cloud

and the peers on the system.

This experiment was run three times over three days to individual patients and a

set of 100 patients. Each experiment involved retrieving the same data multiple

times and calculating the average of the times. The average time of retrieval for

each experiment, as well as the average of all the experiments, was recorded and

compared between cloud and P2P retrievals. Although the timings for the P2P will

not be identical to the cloud’s metrics, there is a threshold for the metric that as long

as the P2P communication stays within two seconds it is deemed acceptable for use.

This pass/fail threshold was decided upon during discussions with the users and was

considered to be the worst case scenario. The data being retrieved from the cloud is

a single page of a record for each patient and the data being retrieved from a peer is

all the confidential data corresponding to each patient.

5.4.2 Results and Analysis

Table 5.4 displays the recorded times for the three experiments measuring the perfor-

mance of retrieving data for a single patient on the prototype. As shown the average

Chapter 5. Evaluation 90

retrieval time for anonymised data from the cloud is 265 milliseconds. The time to

retrieve confidential data from a peer is 1202 milliseconds and the average difference

between the two is 937ms.

Experiment 1 Experiment 2 Experiment 3 Average

Cloud 231ms 245ms 318ms 265ms

P2P 1182ms 1102ms 1322ms 1202ms

Difference 951ms 857ms 1004ms 937ms

Table 5.4: Single Patient Performance Experiment Results

Although the difference between P2P and cloud retrieval appears quite large and

the average time for P2P retrieval is more than four times larger than the cloud

equivalent however, the difference is still below the performance threshold of 2000ms,

and so the effect should not be too adverse. There are also two main reasons why

the P2P performs worse than the cloud, which are as a result of the implementation

of the prototype rather than the design of the PACE system. The first reason is

the job system that was implemented for the prototype, as discussed in section 5.2.

As demonstrated in figure 5.2, there are 5 steps involved in acquiring data from

another peer, whereas the cloud retrieval requires only two steps of communication:

requesting the data and receiving the results. The job system was implemented only

to request data from as many peers as possible from the network and will not be

necessary on the inclusion of real super-peers.

This leads to the second reason for the performance of the P2P communications and

that is the emulation of the super-peers. As the PACE system is a web application,

nothing can be safely cached for quick access without the risk of deletion on the

server. Thus, each step of the P2P retrieval process that involved the cloud requires

multiple reads from the database, slowing down the performance. If super-peers

where included, the read times should be much faster. This justifies our use of super-

peers in our original design.

This reasoning is further evidenced when the results of retrieving multiple patients

is analysed. Table 5.5 shows the average time for retrieving anonymous data for 100

Chapter 5. Evaluation 91

patients is 488ms and the average time for confidential data retrieval is 1424ms. This

is an average difference of 936ms. The average difference between the cloud and P2P

for the two sets of experiments is approximately one millisecond.

Experiment 1 Experiment 2 Experiment 3 Average

Cloud 413ms 501ms 552ms 488ms

P2P 1348ms 1467ms 1458ms 1424ms

Difference 935ms 966ms 906ms 936ms

Table 5.5: Multiple Patient Performance Experiment Results

This would suggest that the performance metrics of the cloud and P2P communica-

tions grow at the same rate as the amount of data increases and so the difference

between the two remains a constant regardless of data size. Thus, by improving the

P2P timings by including super-peers, as hypothesised, the P2P performance should

remain comparable to the performance of the cloud for any reasonable amount of

data.

5.5 Conclusions

In this chapter, we presented our evaluation of the PACE system, including a de-

scription of the prototype, the experiments that were run and the results that these

experiments provided. The prototype that was implemented to evaluate the PACE

system was created using Googles App Engine with Java. The prototype created had

the capacity to allow clinicians to register as a user of the system, manage patient

records and share data between users across a peer network. As the number of people

using the prototype was quite small, super-peers were emulated on the cloud and a

job system was introduced to allow peers to request information from all peers on

the network.

Once the prototype was presented, we progressed to describing the series of exper-

iments used to evaluate the functionality and the performance of the system. The

Chapter 5. Evaluation 92

functionality experiment was run to ensure that the prototype matched the require-

ments of the users of the system. The experiment involved several nurses using the

prototype to input historical patient information on the system and then share, review

and edit the information. After three iterations of the experiment, all requirements

were implemented and each operated successfully. The performance experiment in-

volved measuring the time of retrieval operations in order to determine whether P2P

communications would prove detrimental to a cloud application. The time to retrieve

both one and one hundred patients was recorded several times and the averages and

differences were compared. Although the cloud was faster to retrieve the data, the

P2P communication was within the performance threshold and was also seen to

maintain the same performance differential with the cloud regardless of the amount

of data. Thus, the experiment showed that the inclusion of P2P communications

does not significantly reduce the performance of a cloud application.

In this chapter we have presented a PACE system prototype, analysed results of

both functional and performance experiments and successfully answered the research

questions set out in chapter 1. In the next chapter, the work presented in this thesis

is summarised and potential future work is outlined.

Chapter 6

Conclusions

The aim of this research was to design a system that allowed authorised users to

manage patient data on the cloud and share confidential data between appropriate

clinicians. Unlike other research projects, this work combined modern cloud and P2P

technologies in a novel architecture that allowed the bulk of data to be stored on the

cloud while the private patient details would be kept by the users of the system and

shared via P2P communications. This allowed the elasticity and accessibility of the

cloud to be leveraged while confidential data would exist on a P2P network capable

of scaling up at the same rate as the cloud. As the data was divided and distributed

over a network of users, a second objective for the research was the development of

a system that allowed queries to be generated, spread across the network and cloud

and the results of those queries to be combined in order to be presented to the user.

In this chapter, an overall summary of the thesis is presented in section 6.1 and areas

for future research are proposed in section 6.2.

6.1 Thesis Summary

In chapter 1, an overview of cloud computing and its place in the healthcare industry

was presented. Healthcare facilities have sought to expand their IT operations onto

the cloud in order to reduce the cost of managing the considerable load on site and to

93

Chapter 6. Conclusions 94

facilitate the sharing of relevant patient information between different healthcare op-

erations. The research presented in this thesis was conducted as part of the Dementia

ELEVATOR project [18] which focuses on using modern technologies to analyse and

improve the diagnosis and care for dementia patients. The problem the healthcare

industry faces in using the cloud to manage patient data is the lack of trust associ-

ated with placing the confidential information in the hands of third party providers

and current legislation governing the protection of patient information. Thus, the

motivation for this research was designing a means of allowing healthcare operators

to make use of the cloud while still allowing the sharing of confidential data between

the users. Our hypothesis proposed that this problem could be solved by merging a

cloud platform with modern P2P technologies in order to allow users to send private

patient data directly to other authorised users. Our research questions focused on

whether the real-world model of clinics and clinicians could be used to structure the

network of peers and could SQLite-like queries be used to retrieve data spread across

the cloud and peer network.

Several research projects were presented in chapter 2 aimed at protecting healthcare

information on the cloud and supporting the sharing of patient data between different

users. We focused on three different categories of research; the first was protecting

confidential data on the cloud through encryption based strategies. The current

state-of-the-art strategies for encrypting data seems to focus on attribute-based en-

cryption making it possible to perform queries on the encrypted data. However, the

performance cost and overhead associated with encryption and preparing the data

for queries made it an inefficient solution. The second category of research that

was investigated was the role of P2P technologies in sharing confidential data in the

industry of healthcare. The mentioned research projects implemented the P2P net-

works using JXTA and included solutions for sharing data within a single hospital

and across multiple facilities. The solutions presented relied heavily on peers having

the capacity to store a lot of data and extraneous hardware which could be unsuitable

for clinics that do not have the finances to implement them. The research projects

Chapter 6. Conclusions 95

presented for the final category were those that expanded on standard cloud infras-

tructures by introducing multiple cloud structures or P2P networks. Although both

solutions improved upon the singular cloud architecture, neither solution presented

took advantage effectively of combining the two technologies.

In chapter 3, our PACE (P2P Architecture for Cloud-based EHealth) system was

introduced. The PACE system is a novel combination of cloud and P2P technologies

designed to answer the research questions presented in chapter 1. The cloud portion of

the PACE system was designed using the MVP (Model View Presenter) pattern which

was described as helping to form a level of abstraction between the user interface and

the systems data. The system stored two types of data, the administrative data

such as the information on the clinicians (users) and the clinics and the patient data,

which included the anonymised medical records. The design for the P2P network

was then introduced, which mirrored the model used for clinics and clinicians. Each

clinic was represented as a super-peer which would manage the peers (clinicians)

on the network. Each peer on the network holds a store of confidential patient

information that is linked with the anonymised information on the cloud using a

shared primary key. This confidential data could then be shared with other peers

via a P2P communication. The focus for this design was the sharing of all patient

information on the system and being able to locate and recombine the anonymised

and confidential data for the user.

The architecture that underpinned the PACE system was then described. This pro-

vided details of the components necessary on the server end of the system, based

on the cloud, and the client application which would be run on an internet browser

application. The four main components for the server architecture were described

as the Client Interface, the Clinic Connector, the Peer Data Access and the Patient

Data Access. The components for the client were then introduced as the Client Appli-

cation, the Peer Connector and the Private Patient Data Access. The responsibilities

and relationships of each of these components were detailed and their place in the

architecture was justified throughout sections 3.4 and 3.5. We then progressed to de-

scribing the various technologies that were researched that would need to be utilised

Chapter 6. Conclusions 96

to implement the PACE system architecture. Google App Engine was chosen as the

preferred cloud provider due to its advanced client communication capabilities and

low cost. WebRTC was then introduced as a means for allowing web applications on

a browser to establish P2P connections in order to send private patient information.

This was followed by a summary of the various approaches to storing this patient

data on a browser and IndexedDB was outlined as the most suitable library.

One of the major challenges confronted while designing the PACE system was how it

would approach retrieving data that had been divided and distributed across multiple

sources. In chapter 4, we describe how queries would be used in the PACE system in

order to locate and retrieve patient data. As part of the design, when a user seeks to

retrieve or alter the data stored anywhere on the system, a query would be generated

that could be delivered to the various data locations and the operation performed.

The chapter began with the requirements for how the query system should perform

and included the functionality that would need to be supported and the expectations

of how the data should be treated. We then progressed to defining how a query

should be classified using three categories: the level of confidentiality of the data

the query would affect, the scope of the query, or in other words whether the query

would be parsed at the peer, super-peer or cloud level and the final category is the

operation of the query. The four operations that should be supported by the query

system are Create, Retrieve, Update and Delete. This classification step is necessary

to improve the aid the different components of the PACE system in deciding how a

query should be parsed and where it should be sent. The lifecycle of the query was

then outlined and included descriptions of how the queries are constructed, how they

are parsed and the functions that are called as the query is transformed.

The evaluation of the PACE system was then detailed in chapter 5. The functionality

and performance of the system were the focus of the evaluation to ensure that the

PACE system matched the requirements set out by the nurses that would be using

the system. The chapter began with a description of the prototype used to evaluate

the system. This description included details of how the cloud and client were im-

plemented and the differences that existed between it and the original design. The

Chapter 6. Conclusions 97

functionality evaluation was then outlined and involved ensuring the system could

perform the necessary operations and were conducted over three stages, with each

stage focusing on new operations to be evaluated by the users. The results for the

functionality experiment were seen to yield positive results as all necessary operations

performed as expected. Lastly, the experiment to evaluate the performance of the

system was defined. As described in section 5.4, the evaluation was split into two sets

of three experiments. The time to retrieve a single patient from the cloud and over

the P2P network was measured three different times and an average was calculated.

These times were then compared to the time taken to retrieve 100 patients from the

cloud and the peer network. An analysis of these results was then provided and it was

discovered that the performance of the P2P was comparable with the cloud. Thus,

the PACE system presents a realistic solution to problem of sharing patient data on

the cloud using P2P.

6.2 Future Research

Over recent years, cloud computing has become almost eponymous with sharing and

storing information and media over the internet. The platform has presented itself

as capable of helping the healthcare industry take a large meaningful step forward in

managing patient’s medical records. Unfortunately, cloud computing providers have

not proved that it can deliver the level of trust necessary for healthcare professionals

to entrust such a third party with keeping a patient’s personal details safe and secure.

Although many researchers have attempted to produce a system that can provide the

necessary security, none have produced a system capable of convincing the healthcare

industry. The PACE system has addressed these security concerns by extracting

identifiable values from cloud-stored records but still provide a way for users to share

complete records with others. However, there is still more research that may be

conducted to improve upon the PACE system’s limitations. The final section of this

thesis will describe directions to be taken to further this research.

Bibliography 98

6.2.1 Maintaining Data Consistency between Peers

One limitation of the PACE system that could be improved upon is the method of

enforcing consistency of patient data between peers of the same peer group. The

current system involves peers contacting the super-peer and informing it of updated

confidential data. The super-peer will then inform each other peer that information

has been updated and to contact the peer with the change. This sequence of steps

involves the peer with original update transferring the same data multiple times and

the time to share all this data is of the magnitude of O(n). By introducing a more

efficient protocol for updating the time to update the group could be substantially

improved. For instance, a chord-based gossip protocol in which each peer shares any

update query it receives with its neighbours could potentially help to ensure that

data is consistent across the peer group.

6.2.2 Expanding the System for More Areas of Healthcare

Currently, this research has focused on managing and sharing patient records with an

emphasis on dementia related care. However, we believe there is scope for the PACE

system to be expanded to accommodate a larger subset of the patient data generated

through the healthcare industry. In particular, by introducing domains to distinguish

between different areas of the medical profession (mental health, physical injuries,

chronic diseases etc.), the system could automatically retrieve relevant information

from the patient’s medical records dependent on the speciality of the user. The set of

private values for the patient should remain mostly consistent across all departments

of healthcare, while the cloud can sustain the growth of adding new domains. The

system already supports multiple pages of values for each medical record for a patient.

Thus, a similar approach could be adopted by allowing multiple different records for

each profile and each record would correspond to a different medical domain. This

would have the benefit of allowing multiple healthcare departments and facilities to

share and collaborate in the diagnosis and treatment of the patients.

Bibliography

[1] Sanjay P Ahuja, Sindhu Mani, and Jesus Zambrano. A Survey of the State

of Cloud Computing in Healthcare. Network & Communication Technologies,

1(2):12–19, 2012.

[2] Amazon. Amazon web services: Overview of Security Processes. Technical

report, Amazon, 2014.

[3] Amazon. Amazon Web Services Price Calculator, 2014.

[4] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A Survey of Peer-to-

Peer Content Distribution Technologies. ACM Computer Surveys, 36(4):335–

371, December 2004.

[5] Zohra Bellahsene and Mark Roantree. Querying Distributed Data in a Super-

Peer Based Architecture. In Database and Expert Systems Applications, volume

3180 of Lecture Notes in Computer Science, pages 296–305. Springer, 2004.

[6] B Beverly Yang and Hector Garcia-Molina. Designing a Super-peer Network. In

Data Engineering, 2003. Proceedings. 19th International Conference on, pages

49–60. IEEE, 2003.

[7] Sushil Bhardwaj, Leena Jain, and Sandeep Jain. Cloud computing: A study

of infrastructure as a service (IAAS). International Journal of engineering and

information Technology, 2(1):60–63, 2010.

[8] Jean-Paul Boodhoo. Design patterns: Model view presenter. Techni-

cal report, Microsoft, August 2006. http://http://msdn.microsoft.com/en-

us/magazine/cc188690.aspx.ie.

99

Bibliography 100

[9] Michelle Butler, Margaret Treacy, Anne Scott, Abbey Hyde, Pádraig Mac Neela,

Kate Irving, Anne Byrne, and Jonathan Drennan. Towards a Nursing Minimum

Data Set for Ireland: Making Irish Nursing visible. Journal of Advanced Nursing,

55(3):364–375, 2006.

[10] Mario Cannataro, Domenico Talia, Giuseppe Tradigo, Paolo Trunfio, and

Pierangelo Veltri. SIGMCC: A System for Sharing Meta Patient Records in

a Peer-to-Peer Environment. Future Generation Computer Systems, 24(3):222–

234, 2008.

[11] Lingfeng Chen and Doan B Hoang. Novel Data Protection Model in Health-

care Cloud. In Proc. of IEEE International Conference on High Performance

Computing and Communications, pages 550–555, 2011.

[12] Yu-Yi Chen, Jun-Chao Lu, and Jinn-Ke Jan. A Secure EHR System Based on

Hybrid Clouds. Journal of Medical Systems, 36(5):3375–3384, 2012.

[13] B. Coats and S. Acharya. Bridging Electronic Health Record Access to the

Cloud. In Proc. of 47th Hawaii International Conference on System Science,

pages 2948–2957. IEEE, 2014.

[14] A. Dogac, G.B. Laleci, S. Kirbas, Y. Kabak, S.S. Sinir, A. Yildiz, and Y. Gurcan.

Artemis: Deploying Semantically Enriched Web Services in the Health Domain.

Information Systems, 31:321–339, 2006.

[15] Neil Donnelly, Kate Irving, and Mark Roantree. Cooperation Across Multiple

Healthcare Clinics on the Cloud. In Distributed Applications and Interoperable

Systems, Lecture Notes in Computer Science, pages 82–88. Springer, 2014.

[16] Jonathan Drennan, Margaret P Treacy, Michelle Butler, Anne Byrne, Gerard

Fealy, Kate Frazer, and Kate Irving. Support Networks of Older People Living

in the Community. International Journal of Older People Nursing, 3(4):234–242,

2008.

[17] C Eikemeier. Introducing P2P in Healthcare. Swiss Medical Informatics, 51:6–9,

2003.

Bibliography 101

[18] Dementia Elevator. Elevator: Building Dementia Skills Capacity, 2014.

http://dementiaelevator.ie.

[19] Benjamin Fabian, Tatiana Ermakova, and Philipp Junghanns. Collaborative and

Secure Sharing of Healthcare Data in Multi-Clouds. Information Systems, 2014.

[20] Borko Furht and Armando Escalante. Handbook of Cloud Computing. Computer

science. Springer, 2010.

[21] Li Gong. Jxta: A Network Programming Environment. Internet Computing,

IEEE, 5(3):88–95, 2001.

[22] Google. Gson, April 2011. https://sites.google.com/site/gson/.

[23] Google. Google App Engine, June 2014. https://appengine.google.com.

[24] Google. Google Cloud Price Calculator, 2014.

https://cloud.google.com/products/calculator/.

[25] Google. Google’s Approach to IT Security. Technical report, 2014.

https://cloud.google.com/files/Google-CommonSecurity-WhitePaper-v1.4.pdf.

[26] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-Based

Encryption for Fine-Grained Access Control of Encrypted data. In Proceedings

of the 13th ACM Conference on Computer and Communications Security, pages

89–98. ACM, 2006.

[27] Yang Guo, Yan Hu, Javed Afzal, and Guohua Bai. Using P2P Technology

to Achieve eHealth Interoperability. In 2011 8th International Conference on

Service Systems and Service Management (ICSSSM), pages 1–5. IEEE, 2011.

[28] Kate Irving, Paulina Piasek, Sophia Kilcullen, Ann-Marie Coen, and

Mary Manning. National Educational Needs Analysis Report. Tech-

nical report, Dublin City Univeristy and Heatlhcare Service Execu-

tive, 2014. http://dementiaelevator.ie/wp-content/uploads/2013/12/Elevator-

National-Educational-Needs-Analysis-Report-Print-Version.pdf.

Bibliography 102

[29] Sandra Kalmijn, Lenore J Launer, Alewijn Ott, Jacqueline Witteman, Albert

Hofman, and Monique Breteler. Dietary Fat Intake and the Risk of Incident

Dementia in the Rotterdam Study. Annals of Neurology, 42(5):776–782, 1997.

[30] Alex Mu-Hsing Kuo. Opportunities and Challenges of Cloud Computing to

Improve Health Care Services. Journal of Medical Internet Research, 13(3):3,

2011.

[31] Sai Ho Kwok, KY Chan, and YM Cheung. A server-Mediated Peer-to-Peer

System. ACM SIGecom Exchanges, 5(3):38–47, April 2005.

[32] LJ Launer, K Andersen, MEea Dewey, L Letenneur, A Ott, LA Amaducci,

C Brayne, JRM Copeland, J-F Dartigues, P Kragh-Sorensen, et al. Rates and

Risk Factors for Dementia and Alzheimer’s Disease Results from EURODEM

Pooled Analyses. Neurology, 52(1):78–84, 1999.

[33] Avraham Leff and James T Rayfield. Web-Application Development Using

the Model/View/Controller Design Pattern. In Enterprise Distributed Object

Computing Conference, 2001. EDOC’01. Proceedings. Fifth IEEE International,

pages 118–127. IEEE, 2001.

[34] Ming Li, Shucheng Yu, Ning Cao, and Wenjing Lou. Authorized Private Key-

word Search Over Encrypted Data in Cloud Computing. In Distributed Comput-

ing Systems (ICDCS), 2011 31st International Conference on, pages 383–392.

IEEE, 2011.

[35] Ming Li, Shucheng Yu, Kui Ren, and Wenjing Lou. Securing Personal Health

Records in Cloud Computing: Patient-centric and Fine-Grained Data Access

Control in Multi-Owner Settings. In Security and Privacy in Communication

Networks, pages 89–106. Springer, 2010.

[36] Ming Li, Shucheng Yu, Yao Zheng, Kui Ren, and Wenjing Lou. Scalable and

Secure Sharing of Personal Health Records in Cloud Computing Using Attribute-

Based Encryption. Parallel and Distributed Systems, IEEE Transactions on,

24(1):131–143, 2013.

Bibliography 103

[37] Byong-In Lim, Kee-Hyun Choi, and Dong-Ryeol Shin. A Secure Peer-to-Peer

Group Collaboration Scheme for Healthcare System. In Computational Science–

ICCS 2005, pages 346–349. Springer, 2005.

[38] Byongin Lim, Keehyun Choi, and Dongryeol Shin. A jxta-based Architecture for

Efficient and Adaptive Healthcare Services. In Proc. of International Conference

on Information Networking. Convergence in Broadband and Mobile Networking,

pages 776–785, 2005.

[39] Hans Löhr, Ahmad-Reza Sadeghi, and Marcel Winandy. Securing the E-Health

Cloud. In IHI’10 Proc. of the ACM International Health Informatics Symposium,

2010.

[40] Prodromos Makris, Dimitrios N Skoutas, Panagiotis Rizomiliotis, and Charal-

abos Skianis. A User-Oriented, Customizable Infrastructure Sharing Approach

for Hybrid Cloud Computing Environments. In Cloud Computing Technology

and Science (CloudCom), 2011 IEEE Third International Conference on, pages

432–439. IEEE, 2011.

[41] Michael McKeown, Hanu Kommalapati, and Jason Roth. Disaster Recovery and

High Availability for Azure Applications. Technical report, Microsoft, 2014.

[42] Peter Mell and Tim Grance. The NIST Definition of Cloud Computing. National

Institute of Standards and Technology, 53(6):50, 2009.

[43] Bret Michael. In Clouds Shall We Trust? IEEE Security & Privacy, 7(5):3,

2009.

[44] Microsoft. Microsoft Azure Price Calculator, 2014.

[45] Mozilla. IndexedDB, 2014. https://developer.mozilla.org/en-

US/docs/Web/API/IndexedDB API.

[46] Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical Predicate Encryption

for Inner-Products. In Advances in Cryptology–ASIACRYPT 2009, pages 214–

231. Springer, 2009.

Bibliography 104

[47] PeerJS. PeerJS. http://www.peerjs.com.

[48] Martin Prince, Maëlenn Guerchet, and Matthew Prina. Policy Brief for Heads

of Government: The Global Impact of Dementia 2013-2050, 2013. Last accessed

15.05.14.

[49] Rajasekaran Rajkumar and Nallani Chackravatula Sriman Narayana Iyengar.

Dynamic Integration of Mobile JXTA with Cloud Computing for Emergency

Rural Public Health Care. Osong Public Health and Research Perspectives,

4(5):255–264, 2013.

[50] Inc. Red Hat. Hibernate, April 2014. http://www.hibernate.org.

[51] Mark Roantree, Jie Shi, Paolo Cappellari, Martin F O’Connor, Michael Whe-

lan, and Niall Moyna. Data Transformation and Query Management in Per-

sonal Health Sensor Networks. Journal of Network and Computer Applications,

35(4):1191–1202, 2012.

[52] C.O. Rolim, F.L. Koch, C.B. Westphall, J. Werner, A. Fracalossi, and G.S. Sal-

vador. A Cloud Computing Solution for Patient’s Data Collection in Health

Care Institutions. In Proc. of Second International Conference on eHealth,

Telemedicine and Social Medicine, 2010.

[53] David E.Y. Sarna. Implementing and Developing Cloud Computing Applications.

An Auerback book. CRC Press, 2011.

[54] Stelios Sotiriadis, Euripides GM Petrakis, Stefan Covaci, Paolo Zampognaro,

Eleni Georga, and Christoph Thuemmler. An Architecture for Designing Fu-

ture Internet (FI) Applications in Sensitive Domains: Expressing the Software

to Data Paradigm by Utilizing Hybrid Cloud Technology. In 13th IEEE Inter-

national Conference on BioInformatics and BioEngineering. IEEE, 2013.

[55] Ton Spil and Richard Klein. Personal Health Records Success; Why Google

Health Failed and What Does that Mean for Microsoft Health Vault. In Proc.

of 47th Hawaii International Conference on System Science, pages 2818–2827,

2014.

Bibliography 105

[56] L Taylor. Spring Security in Google App Engine, August 2010.

[57] Irena Trajkovska, Joaquin Salvachua, and Alberto Mozo Velasco. A Novel P2P

and Cloud Computing Hybrid Architecture for Multimedia Streaming with QoS

Cost Functions. In MM ’10 Proc. of Internation Conference on Multimedia,

2010.

[58] Mitch Tulloch. Introducing Windows Azure for IT Professionals. Introducing.

Pearson Education, 2013.

[59] J Vairia and S. Mathew. Overview of Amazon Web Services. Amazon,

https://d36cz9buwru1tt.cloudfront.net/AWS Overview.pdf, January 2014.

[60] Christian Vogt, Max Jonas Werner, and Thomas C Schmidt. Leveraging We-

bRTC for P2P Content Distribution in Web Browsers. In 21st IEEE Intern.

Conf. on Network Protocols (ICNP 2013), Demo Session. Piscataway, NJ, USA:

IEEEPress, 2013.

[61] W3C. Web SQL Database, 2010. http://www.w3.org/TR/webdatabase/.

[62] W3C. Web Storage, 2013. http://www.w3.org/TR/webstorage/.

[63] W3C. WebRTC 1.0: Real-Time Communication Between Browsers, 2013.

http://www.w3.org/TR/webrtc/.

	Declaration
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	1.1 Cloud Computing
	1.2 Peer-to-Peer Computing
	1.3 Problems and Motivation
	1.4 Hypothesis
	1.5 Conclusions

	2 Related Research
	2.1 Sharing Confidential Data on the Cloud
	2.1.1 Overview for Attribute-Based Encryption for Patient Records
	2.1.2 Limitations

	2.2 P2P Solutions for Sharing Data
	2.2.1 P2P Technologies in a Healthcare Environment
	2.2.2 Limitations

	2.3 Using the Cloud as a Platform
	2.3.1 Hybrid and Multi-Cloud Solutions
	2.3.2 Combining the Cloud with P2P Technologies
	2.3.3 Limitations with Both Approaches

	2.4 Conclusions and Final Analysis

	3 PACE System
	3.1 Overview
	3.2 Requirements
	3.3 PACE Design
	3.3.1 System Design
	3.3.2 Sharing via P2P
	3.3.3 Patient Records Management
	3.3.4 Design Summary

	3.4 Cloud Architecture
	3.4.1 Client Interface (P1)
	3.4.2 Peer Data Access (P3)
	3.4.3 Patient Data Access (P4)
	3.4.4 Clinic Connector (P2)
	3.4.5 Server Architecture Summary

	3.5 Clinic and User Clients
	3.5.1 Client Application (P5)
	3.5.2 Peer Connector (P6)
	3.5.3 Private Patient Data Access (P7)
	3.5.4 Client Architecture Summary

	3.6 Understanding the Technologies
	3.6.1 Cloud Provider
	3.6.2 Establish P2P on a Client
	3.6.3 Client Storage

	3.7 Conclusions

	4 PACE Queries
	4.1 Overview
	4.1.1 Assumptions
	4.1.2 Requirements

	4.2 Classification of Queries
	4.2.1 Query Classification Description

	4.3 Query Lifecycle
	4.3.1 Query Construction
	4.3.2 Parsing Processes
	4.3.3 Query Transformation

	4.4 Conclusions

	5 Evaluation
	5.1 Overview
	5.2 Experimental Setup: PACE Prototype
	5.2.1 Cloud Implementation
	5.2.2 Client Implementation
	5.2.3 Prototype Use Case

	5.3 Functionality Evaluation
	5.3.1 Experiment
	5.3.2 Results and Analysis

	5.4 Performance Evaluation
	5.4.1 Experiment
	5.4.2 Results and Analysis

	5.5 Conclusions

	6 Conclusions
	6.1 Thesis Summary
	6.2 Future Research
	6.2.1 Maintaining Data Consistency between Peers
	6.2.2 Expanding the System for More Areas of Healthcare

