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Ingy A. El-Khouly 

INVESTIGATION OF WIP MANAGEMENT FOR CONTROL OF 
SEMICONDUCTOR MANUFACTURING SEGMENTS 

ABSTRACT 

The process of wafer fabrication is arguably the most technologically complex 

stage in semiconductor manufacturing. This manufacturing environment has a 

number of unusual features. Probably re-entrancy of lots and unbalanced 

production facilities are two of the most important and unique features of 

semiconductor wafer fabrication facilities (fabs) that necessitate lot flow control 

and effective scheduling. Flow control is achieved by a lot release control strategy 

which specifies when new lots are to be released into the fab. This work starts with 

analysing the effect of controlling lot releases on a set of performance metrics. 

Most popular push and pull control strategies were first used to control lot 

releases in the Intel Five Machine Six Step Minifab. Then a representative segment 

of an existing wafer fabrication facility operating with the latest technologies used 

in the semiconductor manufacturing, which captures the challenges involved in 

scheduling these complex manufacturing systems. Afterwards, based on review of 

literature and a classification of lot release control strategies, different lot release 

control strategies were selected and tested to evaluate and compare their effect on 

the performance metrics. These tests were conducted using simulation models that 

have been developed for both the Minifab and the representative segment. Results 

of the simulation study has shown that pull lot release control strategies can 

achieve  same throughput rate with lower cycle times and work-in-process (WIP) 

levels compared to traditional push systems. However, further analysis of arrivals 

variability and WIP distribution has shown that the performance metrics can be 

further improved by reducing the variability of arrivals; this is done by modifying 

the CONWIP to control the release of lots into the model and reduce the 

interarrival variability (ICONWIP). Moreover, further analysis showed that 

application of these strategies lead to unbalanced distribution of WIP across the 



xiii 

 

segment. To address this, a Looped CONWIP (LCONWIP)strategy which balances 

this load by looking the WIP in each re-entrant loop, was developed. This improves 

the performance while maintaining a balanced load across the line. The results of 

the simulation have shown that ICONWIP outperforms both LCONWIP and the 

traditional CONWIP at reducing the WIP levels and cycle times. 
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1 INTRODUCTION 

Semiconductor manufacturing is facing an increasing worldwide competition and 

is a rapidly growing industry. It has been demonstrated that the number of 

transistors on integrated circuits doubles approximately every 2 years. 

Consequently new technologies appear that lead to a rapid obsolescence of 

products, an increasing pressure on the cost of wafers due to worldwide 

competition, and high customer requirements in terms of quality [1].  

A significant feature of semiconductor wafer fabrication is the re-entrant flow of 

wafers; where, a wafer revisits the same machines several times to produce 

different layers. This is because the different wafer layers require a similar 

fabrication process and also due to the fact that in semiconductor wafer fabrication 

the machines used in the production line are extremely expensive and comprise 

70% of the total cost of the fabrication facility [2]. 

Semiconductor wafer fabrication is considered to be one of the most difficult 

manufacturing environments to control [3]. Millions of dollars are tied up in capital 

equipment, therefore equipment utilisation is of great importance [4, 5].  

Objectives like throughput rate, cycle time, WIP, and utilisation must be improved 

to push the technological development and secure the existence of semiconductor 

manufacturers in a rapid growing global market especially in the frontend of the 

semiconductor manufacturing processes, which is the wafer fabrication. 

Consequently, reducing inventories, decreasing cycle time, and improving the 

utilisation of resources are very important issues in this industry [6]. Thus, any 

reductions in cycle time can cause substantial productivity improvements and 

eventually lead to a capacity increase at no investment cost. Therefore, cycle time 

improvements become strategic targets for companies that want to maintain 

competitive advantages [7]. 

Since it is preferable that wafers are always available to be processed; in general, 

wafers are pushed into the production line rather than released dependent on the 

state of the production facility. Hence, wafers end up spending most of the time in 
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queues waiting for machines to become available, and consequently high 

equipment utilisation is maintained. Pushing wafers also results in high levels of 

work-in-process inventory (WIP) and long cycle times. 

However, the selection, implementation and management of the appropriate 

manufacturing control system can play an important role towards meeting the 

rapidly changing market needs and to pay off the prohibitively expensive 

investment [3, 8]. 

Literature focuses on two approaches: high utilisation of expensive equipment and 

reduction of cycle times. The end results of the approach that focuses on the 

utilisation is high levels of WIP, long and variable cycle times due to waiting for an 

available machine in long queues at stations, poor due date performance, and 

considerable expediting to get the right products from the fab, in spite of 

maintaining high utilisation of equipment [4]. It should be noted that this approach 

is commonly applied in most of the semiconductor wafer fabrication facilities to 

make the maximum use of the expensive equipment. 

The other approach focuses on reducing the cycle times, which is considered as a 

key performance criterion, since reducing cycle time can decrease WIP for any 

given level of throughput rate, and improve the fab’s ability to respond to market 

fluctuations [9].  

In this work, both approaches are applied to the Intel Five-Machine Six Step Mini-

Fab (Minifab) that is selected as a test bed because it captures some of the 

challenges involved in the re-entrant semiconductor wafer fabrication facilities. 

Experiments and analysis of CONWIP simulation results of the Minifab show that 

there is high variability in the arrival of lots. As a result, a new lot release control 

strategy (named ICONWIP) is proposed which regulates the arrivals to the Minifab 

and reduces its variability of arrivals. Results of simulation experiments and 

analysis of the ICONWIP strategy have shown that cycle times and WIP levels can 

be reduced while still achieving the same target throughput level. It was also 

noticed that by setting deterministic inter-arrival times of lots introduction for 

push strategy better performance is attained when compared to CONWIP, further 

analysis has shown that is due to the fact that the only stochastic inputs to the 
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Minifab are the inter-arrival times and emergency breakdowns at one station only,  

yet; ICONWIP outperforms the other strategies. 

Consequently, it is decided to test the applicability of the proposed ICONWIP 

strategy on larger models that include a greater number of machines, more 

processing steps and, exhibits complexity and variability characteristics more 

typical of real fabs. 

Therefore, a representative segment based on an existing wafer fabrication 

facility 1  operating with the latest technologies used in semiconductor 

manufacturing has been selected and defined with the assistance of the Irish 

Centre for Manufacturing Research “ICMR”, which works with a number of fabs 

and research institutes in Ireland and Europe to address the significant challenges 

involved in operating and controlling fabs. The Segment captures most of the 

challenges involved in real fabs such as high re-entrancy, complex batching and 

sampling, variable breakdowns…etc. Simulation results of the Segment have shown 

that ICONWIP outperforms CONWIP (which is in turn better than a push strategy) 

by reducing the WIP levels and cycle times. 

When applying CONWIP to the Segment, it was apparent that WIP can be totally 

held at one or more stations due to the lengthy breakdowns. This wasn’t evident in 

the Minifab; however, this occurred in the Segment due to the larger number of 

machines, the greater number of processes, high re-entrancy, and higher 

variability of time to failure and time to repair of stations. This unbalanced WIP 

distribution across the Segment is another issue that is addressed in this work. 

Different lot release control strategies that are based on a classification presented 

in this work were tested using simulation; namely: 

� Checking the effect of using another lot release control strategy existing in 

literature, this strategy is from the bottleneck station control class (DBR). 

� Testing the impact of combining a strategy from the multi-station control 

class (CONWIP) and the bottleneck station control class (DBR). 

                                                             
1Referred to as the Segment throughout the remaining text. 
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�  Assessing the performance of the Segment using a modified CONWIP lot 

release control strategy termed Looped CONWIP (LCONWIP), which is a 

strategy from the variation and hybrid strategies class.  

1.1 AIM AND OBJECTIVES OF THE WORK 

1.1.1 Aim of the Work 

The aim of this work is to improve the performance of a representative segment of 

an existing wafer fabrication facility operating with the latest technologies used in 

the semiconductor manufacturing by applying new lot release control strategies 

resulting from either combining or modifying lot release control strategies existing 

in literature.  

1.1.2 Objectives of the Work 

The objectives of this work include the following: 

� Proposing a representative segment of an existing wafer fabrication facility 

operating with the latest technologies used in the semiconductor 

manufacturing that will be used as a test bed in literature. 

� Assessing the effect of applying different push and pull strategies on the 

performance of the Minifab and the Segment. 

� Evaluating the impact of applying two modified CONWIP lot release control 

strategies; one of them is developed and applied on the Minifab and then 

tested on the Segment, and the other one is developed and tested on the 

Segment only. 

� Testing the effectiveness of developing a hybrid strategy by combining lot 

release control strategies in improving the performance of the Segment. 

1.2 THESIS OUTLINE 

The report consists of nine chapters and three appendices. 
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Chapter two covers a review of literature offering background and related work to 

this research.  

Chapter three gives an overview to the research methodology applied in this work. 

Chapter four presents a full description of the Minifab, along with the experiments, 

results and analysis that leads to proposing the ICONWIP lot release control 

strategy.  

Chapter five covers a detailed description of the more representative system under 

study; the overall objectives together with the data collection are also presented. 

Chapter six details the development of the simulation model, model verification 

and validation, moreover, a brief description of the modifications made to the 

model to represent applying different lot release control strategy. 

Chapter seven includes the detailed experiments, results, and analysis including a 

preliminary analysis of the Segment and testing the applicability of the ICONWIP 

on the Segment. Moreover, further analysis to CONWIP results that leads to testing 

combining CONWIP and DBR, also LCONWIP lot release control strategy is 

proposed. 

Chapter eight presents the discussions. 

Chapter nine covers the conclusions and recommendations for future work. 

Finally, the appendices include: 

� Articles published in peer reviewed conferences as part of this work. 

� Anonymised representative data from semiconductor manufacturing 

machines which operate in the same manner as those in the Segment to 

establish the mean time between failures for different classes of machine. 

� The average utilisation of stations reported from the models at the end of 

every week for all the strategies tested. 
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2 LITERATURE REVIEW 

This chapter starts with an introduction to semiconductor manufacturing in 

general with a focus on the complexity, inherent specifically in wafer fabrication. 

Then, manufacturing control systems are discussed and different lot release 

control strategies are presented. Afterwards a deeper review on previous research 

work relevant to one of the lot release control strategies presented is undertaken. 

Followed by an overview of modelling and simulation, which is an effective 

approach to analyse and predict the dynamic behaviour of such a complex system, 

with a detailed section describing the steps of the simulation study followed in this 

work. Finally, conclusions of the most important findings based on the review of 

literature are presented. 

2.1 SEMICONDUCTOR MANUFACTURING 

Semiconductor manufacturing is probably one of the most intensive manufacturing 

processes, not only for its complexity but for the amount of capital invested [10]. 

Semiconductors are all around us. They control the computers used to conduct 

business, the phones and mobile devices for communication, the cars and planes 

for transportation from place to place, the machines that diagnose and treat 

illnesses, the military systems for protection, and the electronic gadgets used to 

listen to music, watch movies and play games [11]. 

2.1.1 Semiconductor Industry Outlook  

Not only does semiconductor technology make these devices possible, it also 

makes them more compact, less expensive, and more powerful. For example, in 

1984, mobile phones weighed about 0.9 kg, cost around $4,000, and held a charge 

for only about 30 minutes of talk time. In 2014, smartphones are about 0.15 kg, 

cost consumers about $200, stay charged for around 8 hours of talk time, and come 

equipped with many added features such as advanced cameras and data packages 

[11].  
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Therefore, much of the electronics industry is based on semiconductor sales, which 

observed a significant progress over the past 20 years as presented in Figure  2-1, 

mainly as a result of the growing demand for the integrated circuit (IC) chips built 

using semiconductors. In fact, most other industries including the aerospace, 

communications, consumer electronics and automobile industry, rely heavily on IC 

chips, and in many ways the semiconductor is a fundamental basis of global 

technological improvement [12]. 

 

Figure  2-1: Increase in global semiconductor sales from 1994 to 2014 [13]. 

2.1.2 Stages in Semiconductor Manufacturing 

Generally, the manufacturing of IC chips involves four major processes separated 

into two main categories; front-end manufacturing and back-end manufacturing 

[2] as shown in Figure  2-2.  

� Front-end manufacturing includes the first two processes (wafer 

fabrication and wafer probe), which are dedicated to building the ICs in the 

silicon wafer as well as performing preliminary tests. 
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� Back-end manufacturing includes the second two processes (chip assembly 

and final test), that are focused on packaging of the ICs and testing 

functionality and performance. 

 

Figure  2-2: Major processes of semiconductor manufacturing, modified from [2]. 

2.1.3 Wafer Fabrication 

Wafer fabrication is the most technologically sophisticated and capital intensive 

phase in semiconductor manufacturing. It is argued to be one of the most complex 

manufacturing processes found today. The wafer fabrication process is a complex 

process requiring several steps by special machines [1]. Figure  2-3 shows a 

description of the main steps of the wafer fabrication, which are as follows [14]: 

 

Figure  2-3: Wafer fabrication process [14]. 

1. To make wafers, silicon ingots are firstly sliced into wafers. 
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2. Each wafer is then polished to remove even the tiniest scratches and 

impurities as chips are built into this surface. 

3. Deposition of a layer of silicon dioxide (SiO2) is grown on the wafer. Later 

channels will be etched or otherwise formed into the dielectric for 

conducting materials. More layers of SiO2 may also be deposited in later 

steps in the process as layers of circuits are added. 

4. Photolithography, lithography for short, is a key step in the wafer 

fabrication process and is used to create the circuit patterns on a chip. 

Exposure to light in lithography causes portions of the resist to “harden”. 

5. Etching then takes place where the “non-hardened” resist is washed away 

in a series of steps. The “hardened” resist by lithography is then stripped off 

so that the material underneath forms a three dimensional pattern on the 

wafer.  

6. Several lithography and etch steps are repeated, building subsequent layers 

of various patterned materials on the wafer to form the multiple layer of 

circuit patterns on a single chip. 

7. Doping process is used in certain areas of the wafer to control the flow of 

electricity through a chip.  

8. Finally, all the millions of individual conductive pathways must be 

connected in order for the chip to function. This includes vertical 

interconnections between the layers as well as horizontal interconnections 

across each layer of the chip.  

Although the process might seem to be similar to other manufacturing processes, 

yet it is characterized by its high technological complexity. It usually involves 

several hundreds of processing steps. Moreover, since the number of operations 

that have to be carried out exceeds the number of available machines, several of 

these operations are done at the same machines, resulting in visiting the same 

station several times. A manufacturing system having this feature is called a re-

entrant flow line (see Figure  2-4) [2]. 
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Figure  2-4: Re-entrant material flow, modified from [14]. 

Concisely, the success of a semiconductor manufacturing facility is determined by 

its ability to produce the right parts, at the right time, with the right quality in an 

extremely competitive environment. Although changes in technology such as 

larger wafer sizes and smaller chips have enhanced productivity, the highly 

complex nature of semiconductor manufacturing, if not managed properly, can 

result in high levels of WIP, long cycle times, and poor due-date performance [15]. 

Therefore, it is decided to study the manufacturing control systems in order to 

implement the most appropriate strategies that can improve the semiconductor 

wafer fabrication facility performance [3, 8].  

2.2 MANUFACTURING CONTROL SYSTEMS 

Manufacturing Control Systems can be classified into either push systems or pull 

systems. Generally, a push system is considered as an open system, which is based 

on demand forecast and has no feedback loop within its mechanism, whereas, a 

pull system is considered as a closed system that has a feedback loop within its 

mechanism [4, 16]. Although, most real world systems are actually hybrids or 

mixtures of push and pull [17], in this section pure push and pure pull systems are 

discussed to show the operating principles of both systems.  
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2.2.1 Push versus Pull 

Push and Pull systems operate in opposite sense and have their own advantages 

and disadvantages [18]. The mechanism that triggers the movement of lots in the 

system distinguishes the push and the pull systems, as displayed in Figure  2-5.  

 

Figure  2-5: Push and Pull systems. 

Basically, a push system releases a lot into the production line precisely when 

called to do so by an exogenous schedule driven by forecasts, and the release time 

is not modified according to what is happening in the process itself [17]. Briefly, 

Push systems are those where lots, when processing in a station is complete, are 

pushed to the following station for either processing or storage and hence 

throughput rate is controlled (providing that throughput rate is lower than 

bottleneck rate) and WIP is observed [18-21]. 

In contrast, a pull system only allows a lot to be released into the production line 

when a signal generated by a change in line status calls for it. Hence, the trigger for 

lot releases comes from outside a push system but from inside a pull system. [17]. 

Concisely, Pull systems are those where the entry of one lot is triggered by a signal 

from inside the production line, and the lot is pulled by the successive station 

instead of being pushed by the previous station and hence WIP is controlled and 

throughput rate is measured [18, 20, 21].  

From the control perspective of WIP (pull) versus the control of throughput rate 

(push), Hopp and Spearman found that WIP is easier to control than throughput 

rate for two reasons [22]: 
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� First, WIP is directly observed while throughput rate cannot be observed 

directly and is controlled with respect to capacity which is estimated to 

specify the input rate. 

� Second, WIP is a more robust control than throughput rate. For example, in 

a push system if the specified input rate is less than the capacity, then 

throughput rate is equal to input rate. If not, throughput is equal to capacity 

and WIP accumulates causing WIP explosion if unchecked regularly, and 

consequently cycle times can increase dangerously (as noted by Little’s law 

that is given in Equation  2-1 and originally found in [23]). Thus, if the 

estimated capacity is incorrect the input can easily exceed the true capacity. 

However, this problem is avoided in a pull system because WIP is controlled 

and there is a limit on the maximum amount of WIP. Therefore, errors in 

setting WIP levels will degrade the performance of pull systems less than 

errors in estimating capacity will hurt the performance of push systems. 

 ��� = 	
 × �	  Equation  2-1 

Where; 

WIP is the work-in-process, 

TH is the throughput rate, and 

CT is the cycle time. 

As mentioned earlier, most real-world systems have aspects of both push and pull. 

For instance, if a lot is scheduled to be released, but is held back because the 

production line is considered too congested, then the effect is a hybrid push-pull 

system. On the other hand, if a pull system generates a signal to release a lot but 

the release is delayed because of expected lack of demand for the lot (i.e. it is not 

called for in the master production schedule), then this is also a hybrid system 

[17].   
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2.2.2 Advantages and Disadvantages of Push and Pull 

Production Systems 

A push system is based on long term demand forecast and lots are pushed through 

the production line, from the production upstream to the production downstream, 

this may enable the system to reduce delivery lead time since many semi-finished 

or finished products are available [19]. Though, releasing lots to a very congested 

line, only to have them get stuck somewhere in the middle may result in a loss of 

flexibility in several ways. First, lots that have been partially completed can’t easily 

incorporate engineering (e.g. design) changes. Second, high WIP levels impede 

priority or scheduling changes, as lots may have to be moved out of the production 

line to make way for a high-priority lot. Third, if WIP levels are high, lots must be 

released to the production line well in advance of their due dates. Finally, because 

customer orders become less certain as the planning horizon is increased, the 

system may have to rely on forecasts of future demand to determine releases. 

Since, forecasts are never as accurate as one would like, this reliance serves to 

further degrade performance of the system [17].  

A pull system that establishes a WIP cap can prevent these negative effects and 

thereby enhance the overall flexibility of the system. By preventing, release of lots 

when the factory is overly congested. This will facilitate engineering and priority/ 

scheduling changes. Also, releasing lots as late as possible will ensure that releases 

are based on right customer orders to the greatest extent possible. The net effect 

will be an increased ability to provide responsive customer service [17].  

Therefore, in designing manufacturing control systems it is very critical to 

determine an effective or preferably the ‘optimal’ mechanism controlling the 

material flow within the system. In literature, these mechanisms are referred to as 

material flow control mechanisms, production and material flow control strategies, 

flow control policies, or, lot release control strategies, which is preferred in this 

work, because in semiconductor manufacturing, materials are moved on a lot 

basis. The following section describes some of these strategies. 
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2.3 LOT RELEASE CONTROL STRATEGIES 

As mentioned previously, the flow of lots to the production line is controlled in pull 

systems by using lot release control strategies. In this work these strategies are 

classified based on how lots are controlled over the system. The diagram in 

Figure  2-6 shows that classification with the strategies falling under each class and 

reviewed in this work. 

 

Figure  2-6: Classification of lot release control strategies. 

In the above mentioned classification, lots are released to the production line 

based on a single station control, multi station control (up to all stations in a 

production line), bottleneck station control, or variations and hybrid strategies of 

the previously mentioned controls. A discussion of the lot release control 

strategies in each of these classes is given in the following sections. 

2.3.1 Single Station Control 

At single station control strategy every station in the production line has a loop 

that signals to call for a change in the production status. Where, the number of 

loops that cover the production line must be equal to the number of stations. Thus, 

a lot is released to the production line if a signal is generated due to a change in 

any of the stations status. An example of single station control strategy reviewed in 

this work is Kanban.   
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Kanban 

A Kanban system is a simple system that relies on cards (Kanban in Japanese 

means card or ticket) to pull material into a production line when needed. The card 

has information about which lot to be released [24].  

Figure  2-7 illustrates the mechanism of the Kanban lot release control strategy 

showing the backward signal flow from each station to the buffer before it that 

authorizes the release of lots to that station. Hence, Kanban can set WIP to a 

maximum level at every station based on the number of cards used. 

 

Figure  2-7: Kanban lot release control strategy. 

Based on a literature review conducted in 2007 [18], different research work has 

been carried out to determine the optimum number of cards that can improve a set 

of performance measures such as WIP, cycle time, throughput rate… etc. 

Simulation, queuing models, mathematical models were among the methodologies 

and techniques reviewed.  

Unfortunately, Kanban is not applicable to many manufacturing environments, it is 

pointed out that Kanban is dedicated to repetitive manufacturing; it will not work 

in a shop controlled by orders with short production runs, or significant set-ups, or 

scrap loss, or large, unpredictable fluctuations in demand, or even custom designs 

[25-30]. For this reason, Kanban has been subjected to ad hoc modifications to 

improve its performance, and 32 of these are reviewed in [31].   

2.3.2 Multi Station Control 

In multi-station control strategy, all the stations in the production line are grouped 

to have a single loop that trigger to call for a change in the production status. An 

Example of multi-station control strategy studied in this work is CONWIP lot 

release control strategy and is described in the following section. 
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CONWIP 

CONWIP was first proposed in 1990 by Spearman et al. [26] as an alternative pull 

strategy to Kanban and argued that CONWIP offers the same advantages of Kanban 

with greater flexibility in terms of applicability to a wider variety of production 

environments. Since that time it has received a great deal of attention from 

researchers [32].  

CONWIP is the simplest way to constraint the WIP level of a production line 

(generally referred to as establishing WIP cap). It sets a limit on the WIP level and 

simply does not allow releases into the line whenever the WIP is at or above the 

limit. This results in a WIP level that is nearly constant; hence, the strategy is called 

CONWIP (constant work in process) [17]. Figure  2-8 illustrates how CONWIP 

controls the WIP level over the production line. The figure shows that 

authorisation of lot release happens as soon as another lot departs and an 

authorisation signal is sent to the beginning of the line.  

 

Figure  2-8: CONWIP lot release control strategy. 

As mentioned earlier, CONWIP shares the advantages of Kanban; in addition, 

previous studies have reported that CONWIP has the following advantages over 

Kanban [33]:  

� It is robust concerning changes in the production environment. 

� It is flexible regarding introduction of new products, changes in the product 

mix. 

� It provides higher throughput rate for same WIP level than Kanban. 

CONWIP has a number of limitations that results in developing modified CONWIP 

lot release control strategies; 15 variations of CONWIP were recently reviewed in 
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2014 that addressed different limitations of CONWIP [34]. The conclusion of the 

review is that although CONWIP system is one of the most popular pull systems, it 

still suffers from some limitations and there are still several future research 

opportunities in that regard. Some of the review’s conclusions that are relevant to 

this work include:  

� CONWIP controls the WIP level of the line at an aggregated level and that 

total WIP level doesn’t give any indication of WIP distribution across the 

stations of the system. This means that WIP levels (queue length) at stations 

can repeatedly increase dramatically at bottlenecks (defined as stations 

with low production rates or stations with repetitive failures). Overcoming 

that limitation is by controlling the WIP levels at the bottleneck stations 

(discussed in the next section). 

� CONWIP can be combined with other lot release control strategies. This 

variation addresses the need for maintaining a fixed level of inventory at 

crucial sections of a production line and guaranteeing a better distribution 

of WIP across the production (discussed in Section  2.3.4).  

� A single loop CONWIP system for controlling a production line is unsuitable 

(especially in product mix environments); hence, one of the most common 

modification that was observed in that review is splitting the single loop 

system into a number of loops controlling different number of stations 

(discussed in Section  2.3.4).  

2.3.3 Bottleneck Station Control 

In Bottleneck station control strategies there is one loop from the start of the line 

up to the bottleneck station that signals to call for a lot release. If a signal is 

generated due to a change in bottleneck station status, a lot is released to the 

production line. It should be mentioned that Prakash and Chin [34] considered this 

type of control strategies as a variation of CONWIP; as CONWIP does not take into 

account is the impact of the bottleneck station may have on the performance of a 

system [16]; however, in this work it is decided to consider them as an 

independent class.  
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Examples of bottleneck station control strategies considered in this work are: 

Drum-Buffer-Rope, Starvation Avoidance, Workload Regulating, and CONLOAD, 

which are reviewed in the following sections. 

Drum-Buffer-Rope (DBR) 

The DBR is a Theory of Constraint approach introduced by Goldratt, it has 3 main 

components. The “Drum” is the control point of this system, or main constraint. It 

is the process that has the least amount of excess capacity (bottleneck rate) and 

controls the total throughput rate of the system. To avoid the starvation of the 

bottleneck a protection time “Buffer” is maintained before the drum. Finally, the 

“Rope” signals the releasing of lots to the shop floor [35-43].  

In DBR, when a lot completes processing by the bottleneck station, another lot with 

the bottleneck’s rate is released at the start of the production line [4, 16, 26]. 

Hence, it controls the WIP up to the bottleneck station  [15, 44], as presented in 

Figure  2-9. It should be noted that DBR is more general than CONWIP in that it can 

be applied to pure job shop manufacturing systems whereas CONWIP cannot. 

However, when both applied to flow lines, they have nearly similar results [26].   

 

Figure  2-9: DBR lot release control strategy. 

DBR has produced excellent results across a wide variety of manufacturing 

environments. It has been implemented as a manual system and is quite successful 

in providing increased system throughput rate, significant reductions in cycle 

times and work-in-process inventories, and improved due date performance [4]. 

As a result DBR is became popular in many manufacturing industries, especially 

semiconductor manufacturing [44], although, its implementation is not straight 

forward in semiconductor manufacturing due to the presence of re-entrant flow 

[38, 43]. 
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Starvation Avoidance 

This is a lot release strategy, in which a new lot is released into the shop floor to 

avoid starvation of a bottleneck station. In this rule, a new lot is released when 

virtual inventory at the bottleneck station falls down to a predetermined value. 

This rule can only be directly applied to a system with single bottleneck station 

producing a single product type [4, 45, 46]. 

Workload Regulating 

Workload Regulating (WR) or sometimes called CONWORK, is applied to take into 

consideration the system loading situation and how much work a single lot will 

create for a bottleneck. Where, the total of processing times at the bottleneck that 

is currently represented by the lots being processed in the production line is 

measured. A lot is released to the production line if the current workload plus the 

total amount of bottleneck processing times of this lot is less than a given limit. As 

soon as it is released the workload is increased by the sum of bottleneck 

processing times of this lot, and each time a lot leaves the bottleneck station the 

workload is decreased by its bottleneck processing time [47]. Briefly, a new lot is 

released to the system when the sum of the remaining processing times, at any 

bottleneck station, over all lots in the fab falls below a critical value [4, 45, 46, 48]. 

This strategy was compared to others, and showed significant impact on the 

performance of the cycle time [4]. Though, this strategy provides a better picture 

of the loading situation of the system, it does not reflect how the load is distributed 

over time [47]. 

CONLOAD 

CONLOAD is a lot release control strategy developed by Rose to overcome some 

performance problems of traditional lot release control strategies like CONWIP 

and WR during product mix changes at semiconductor manufacturing. Where, it is 

stated that CONWIP and WR are not capable to avoid overload because of their 

lack in tracking the current load situation of the system accurately enough, and 

that CONLOAD takes into consideration how much load is added to a single 
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machine or a group of machines by a particular lot to decide on releasing this lot 

into the fab [47]. 

CONLOAD is a simple extension of WR, instead of considering the amount of work 

for the bottleneck station, the load for the bottleneck station is computed (the sum 

of bottleneck processing times of the lot divided by the average cycle time of lots of 

this product type). A new lot is allowed to enter the system if the current 

bottleneck load plus the load introduced by the new lot is less than a 

predetermined level. Each time a lots enters the line, the bottleneck load is 

increased by the lots load, and each time a lot leaves the line, it is decreased by the 

same amount [47].  

CONLOAD varies from CONWIP, WR, and other lot release control strategies, in 

that the predetermined level that controls the releasing of lots is a natural constant 

of the system, while, that of the others are usually determined by simulation. The 

predetermined level is the target utilisation of the bottleneck station multiplied by 

the number of bottleneck machines. For instance, if the maximum bottleneck load 

should be 95% and the bottleneck consists of 4 machines, then the predetermined 

level is 3.8. The only parameters that have to be determined in advance by 

simulation or queuing analysis are the average cycle times for each lot [47].    

In conclusion, CONLOAD out-performs CONWIP and WR with respect to keeping 

the bottleneck utilisation at a desired level and to provide a smooth evolution of 

the WIP.  Also, it reduces the variations in cycle times and smooth’s the lot 

departure process of the system [47].   

2.3.4 Variations and Hybrid Strategies 

Variations and hybrid strategies is either a modification to an existing lot release 

control strategy or a combination of more than one strategy to achieve sustainable 

improvements in performance over a single strategy. Examples of variations and 

hybrid strategies reviewed in this work are: m-CONWIP, Multi-CONWIP, Hybrid 

Kanban-CONWIP, Paired-Cell Overlapping Loops of Cards with Authorization 

(POLCA), and Generic Paired-Cell Overlapping Loops of Cards with Authorization 

(GPOLCA), which are briefly discussed in the following sections. 



21 

 

m-CONWIP 

m-CONWIP, where m stands for multiple CONWIP, is a lot release control strategy 

that regulates releasing lots to manufacturing systems having more than one route, 

where, a CONWIP loop for every routing is introduced to control the release of lots 

as displayed in Figure  2-10.  

Hence, it is considered as route specific control lot release strategy [49, 50]. It 

should be noted that m-CONWIP balances the workload among the routings by 

constraining the number of lots that are released separately to each route [50]. 

 

Figure  2-10: m-CONWIP lot release control strategy. 

Germs et al [50] analysed the cycle time performance at a make-to-order 

manufacturing system under the control of CONWIP, m-CONWIP, and POLCA 

(Paired-Cell Overlapping Loops of Cards with Authorization) taking into 

consideration workload balancing capabilities, they concluded that cycle time was 

successfully reduced and that workload balancing capability exists for m-CONWIP 

and POLCA but not for CONWIP. 

Multi-CONWIP 

Multi-CONWIP (also known as segmented CONWIP) mixes between the Kanban 

and CONWIP, in which the WIP cap is controlled by a number of loops, each loop 

has a constant WIP level independent from the other as presented in Figure  2-11. 

The number of loops must be more than one loop (CONWIP) and less than the 

number of stations (Kanban). This lot release control strategy can be found in real 

manufacturing, such as semiconductor manufacturing [51, 52].  
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Figure  2-11: Multi-CONWIP lot release control strategy. 

It should be noted that the first loop must include the first station, the last loop 

must include the last station, and all other stations must be part of loops. 

Hybrid Kanban-CONWIP 

Hybrid Kanban-CONWIP was introduced by Bonvik et al. [53] in order to overcome 

the disadvantages of loose coordination between production stages in a CONWIP 

line.  They also stated that the hybrid strategy proposed is a better way than the 

minimal blocking strategy in facilitating machine recovery from failures and 

keeping bottlenecks working even if there are failed machines downstream.  

In Hybrid Kanban-CONWIP, as in CONWIP, an overall cap is placed on the amount 

of inventory allowed in the manufacturing system. In addition, inventory is 

controlled using kanban cards in all stations except the last station as shown in 

Figure  2-12. CONWIP can be considered as special case of Hybrid Kanban-CONWIP, 

in which there is an infinite number of kanban cards distributed to each station 

[54].  

 

Figure  2-12: Hybrid Kanban-CONWIP lot release control strategy. 

As a further variation to CONWIP, Hybrid Kanban-CONWIP was combined with 

DBR and applied to an assembly production line. Simulation results showed that 

the method was indeed able to solve the bottleneck problem effectively, enhanced 

the productivity, and reduced the delay time of the line [40].  
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Paired-Cell Overlapping Loops of Cards with Authorization (POLCA) 

POLCA is a hybrid push-pull strategy that combines the best features of card based 

pull systems and push systems for quick response manufacturing (QRM) [28-30, 

42]. The QRM strategy is best applied at companies that make custom designed 

products in small batches (or even one of a kind), and companies that don’t custom 

design each product, but still have such a wide variety of options and combinations 

of specifications that they cannot afford to store inventory for all these options at 

various stages of their manufacturing system [27-30, 35, 42].  

POLCA uses signal cards, called POLCA cards to communicate and control the lot 

movement between cells (stations) in order to authorize the progress of a lot. The 

release of lots is authorized by specifying the release dates using high-level 

Materials Requirements Planning system (HL/MRP), which might be accomplished 

by calculations from the due date and planned lead times. Similar to an MRP 

system, there are times when each cell may begin work on a particular lot. 

However, unlike in a standard push system where a cell should start work at that 

time, POLCA simply authorizes the beginning of the work, but the cell cannot start 

unless the corresponding POLCA card is available [27-30, 35, 42]. 

Although this may seem similar to Kanban, however there are some important 

differences. First, the POLCA cards are only used to control movement between 

cells, not within cells (For material control between workstations within a cell, 

cells have the freedom to use various other procedures) [28-30, 35]. Second, the 

POLCA provides a route specific control of the lot flow, while Kanban provides a 

product specific control. In other words, in POLCA the cards are assigned to pairs 

of cells instead of being specific to the product type, as in Kanban. The third 

difference from Kanban is that the POLCA cards for each pair of cells stay with a lot 

during its journey through both cells in the pair before they loop back to the first 

cell in the pair [27-30], and an additional card needs to be attached to the lot 

before entering the second cell of the first pair to signal the availability of capacity 

at the first cell of the second pair within the routing [27, 49]. 
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Generic Paired-Cell Overlapping Loops of Cards with Authorization 

(GPOLCA) 

GPOLCA is an adaptation of the POLCA mechanism developed as part of the QRM 

strategy [20]. GPOLCA requires that a released lot must possess cards for all 

POLCA loops in its complete routing before processing may begin at its first cell 

[25]. 

The characteristic of GPOLCA, non-existent in POLCA is that, GPOLCA releases lots 

only after the GPOLCA cards necessary by a lot at each pair of cells in the job’s 

routing become available and are allocated to the lot. POLCA, on the other hand, 

undertakes the lot release as long as cards for the first pair of cells in the job’s 

routing are available [20]. 

2.4 CONWIP 

This section is dedicated to review of previous research work on CONWIP 

specifically. The review included journals and conference proceedings retrieved 

from electronic databases such as EI Engineering Village, IEEE Xplore, 

ScienceDirect, and Web of Science, the search term included “CONWIP”. 

Based on a literature review conducted in 2003 [32], different research work of 

CONWIP has been carried to study one or more of three topics. This classification 

is used here to group the relevant previous work under the following: 

� Applicability of CONWIP to a manufacturing environment, either by real 

implementation or by development of computer simulation models for 

existing manufacturing systems. 

� To determine the optimum WIP level as a decision variable that can 

improve a set of performance measures using different solution techniques 

such as simulation, optimisation, mathematical techniques… etc.  

� Comparing the performance of CONWIP to push or other pull systems, in 

order to evaluate the performance of CONWIP to be better or worse than 

the compared systems based on given performance measures. 
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2.4.1 Applicability of CONWIP to a Manufacturing 

Environment 

Based on literature, CONWIP has been applied to different manufacturing 

environments and also implemented successfully in different industries. CONWIP 

has been reported to work best for balanced production lines running in a steady 

state already [47]. Still, it has been applied to job shop manufacturing [55], multi-

product environment [56], and multi-product assembly system [57].  

Based on the literature review and to the best of our knowledge, unlike DBR that 

was implemented in real wafer fabrication facilities [37, 43, 58], CONWIP has not 

been applied other than application of a simplified CONWIP mechanism in terms of 

the output feedback mechanism. This simplified CONWIP has been tested in a 

wafer fabrication facility using simulation. Although results showed that the fab 

performance can be improved when applying the CONWIP; yet, authors of this 

work suggested that further research should be conducted to develop a fully 

functional CONWIP lot release control strategy in wafer fabrication facilities [4]. 

2.4.2 Determining the Optimum WIP Level as a Decision 

Variable  

Based on the description of the basic (original) CONWIP lot release policy, it is 

clear that the only variable that needs to be determined is the WIP level that 

results in optimum performance of the production line. Different research work 

has been developed to that end such as the development of a mathematical model 

and an application of an artificial bee colony (ABC) optimisation algorithm to find 

the optimum WIP level for a multi-product multi-machine serial production line in 

order to minimize cycle time [59] and the development of deterministic 

approaches to define the optimum WIP level that maximises throughput rate using 

minimum WIP level in a flow production line [60].  

Multi-CONWIP lot release control strategy problem, which was discussed earlier as 

one of the variants of CONWIP, has also attracted the attention of researchers to 

due to the computational complexity of determining the number of segments of a 
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production line and the WIP level of each segment. Evolutionary simulation 

optimisation [51] and an evaluation method combined with a genetic algorithm 

[52] has been successfully applied in semiconductor assembly and test factories. 

Although multi-CONWIP strategy outperformed CONWIP and Kanban when 

applying the evolutionary simulation optimisation [51]; yet, the computational 

complexity and the efficiency of the proposed methods in solving these problems 

were addressed as potential future research opportunities. 

It should be noted that setting the WIP level in either the CONWIP or any of its 

variations is considered as the main decision variable; yet, another important issue 

that has been addressed in literature is whether that level is set statically; meaning 

that the level is set once, or dynamically; meaning that the WIP level can change 

depending on the state of the system (for example to meet unexpected demand 

with higher throughput rates). Setting the WIP level once is referred to as “card 

setting”; while, setting the WIP level dynamically is referred to as “card 

controlling”. A card control for CONWIP procedure has been suggested and 

experiments showed that card control produces competitive results when 

compared to card setting; however, under a make to order environment [61]. 

Other work related to dynamic CONWIP level includes optimisation using 

simulation of simple production lines to optimise the parameters used to control 

the line [62]. Also, adaptive CONWIP has been modelled as a stochastic queueing 

network and applied to a hybrid production system with two discrete processes 

that undertake manufacturing and remanufacturing activities [63]. 

2.4.3 Comparing the Performance of CONWIP to Push or 

Other Pull Systems 

Performance of CONWIP has been compared to push systems or other pull systems 

using various analytical and simulation methods in literature.  

CONWIP performance of throughput rate and WIP has been compared to push 

using simulation and applied to unidirectional flow line, with no re-entrancy or 

rework. Results showed that when there is high variability in the arrivals CONWIP 
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is better than Push; however, Push can perform better than CONWIP when lots are 

released on a constant interval [64].  

The performance of CONWIP and Kanban was also compared in a make to order 

environment and simulation was used to evaluate the impact of applying both 

strategies on the mean and standard deviation of cycle times and confirmed that 

CONWIP outperforms Kanban [65]. Furthermore, CONWIP system achieved a less 

average WIP than Kanban given the same rate of throughput when applied to a 

tree-shaped multi-stage assembly system; on the other hand, when applied to a 

simple serial production line Kanban is superior to CONWIP [66]. 

Simulation was also used to compare the impact of CONWIP and DBR on the 

performance of a back-end semiconductor manufacturing flow line. Findings of 

that work is that DBR can outperform CONWIP mainly due to the ability of DBR in 

distinguishing the bottleneck(s) and placing greater control over the portion of the 

system that directly influences the bottleneck; however, DBR loses this advantage 

when bottleneck(s) starts shifting [44]. Also, application of CONWIP to unbalanced 

lines with distinct bottlenecks has been compared to DBR and showed that 

performance of the lines mainly depend on the characteristics of the line in terms 

of the position of the bottleneck [16, 67]. 

Furthermore, the impact of combining different dispatching rules with Push was 

compared to combining these dispatching rules to CONWIP lot release strategy in 

two realistic semiconductor test bed fabs. Simulation results and analysis showed 

that the cycle times reported from Push outperformed CONWIP in both fabs. Also, 

it showed that most rules failed to outpace FCFS (First Come First Serve) in 

CONWIP, thus supporting the FCFS recommendation of Hopp and Spearman [15].  

Impact of combining dispatching rules with CONWIP on the performance of wafer 

fabrication facilities on the average throughput rate and cycle time along with the 

variability in these measures has been tested on Wein’s model, which is a fictitious 

wafer fab using data gathered the Hewlett-Packard Technology Research Centre 

Silicon fab [68] and the Minifab model [69]. Both studies have been carried using 

simulation and both confirmed that the lot release policy is the dominant factor in 

improving the performance of both fabs. 
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Multi-CONWIP discussed in the previous section was compared to CONWIP by 

evaluating their impact on the performance of semiconductor assembly lines. 

Simulation results showed that multi-CONWIP outperforms CONWIP and was 

capable of achieving same throughput rate (target obtained from simulation of 

base model) at higher WIP levels (higher by 0.6%) and lower cycle times (lower by 

0.4%) [70]. 

It is noticed that since the application environment is highly complex, the only 

reasonable approach to demonstrating the effectiveness was to use modelling and 

simulation. Therefore, it is effective to use simulation to analyse and predict the 

dynamic behaviour of complex systems.  

Moreover, simulation has become a popular technique for developing production 

schedules in a manufacturing environment. Also, it offers the advantage of 

developing a feasible and accurate schedule in shorter computation times 

compared to some of the other techniques [9]. 

2.5 MODELLING AND SIMULATION 

Simulation can be defined as the process of designing a model of a real system and 

conducting experiments with this model for the purpose of either understanding 

the behaviour of the system or evaluating various strategies for the operation of 

the system. It is the ability to mimic the dynamics of the real system that gives 

simulation its structure, its function, and its unique way to analyse results [71]. 

Discrete event simulation is the modelling of systems in which the state variables 

change only at a discrete set of points in time [72]. 

Simulations are often used to analyse systems that are too complicated to tackle 

via analytic methods such as calculus, standard probability and statistics, or 

queuing theory [73]. It is a powerful tool for the evaluation and analysis of new 

system designs, modifications to existing systems and proposed changes to control 

systems and operating rules [74]. 

Discrete event simulation is particularly effective in the analysis and prediction of 

the behaviour of complex dynamic systems, meaning that it is the ideal tool to 
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develop a test bed to determine the effectiveness of the policies developed in this 

work. Moreover, simulation offers the advantage of developing a feasible and 

accurate schedule in shorter computation times compared to some other 

techniques [9]. 

The steps of a simulation study may be summarized in four phases, each consisting 

of different steps, as presented in Figure  2-13 [74], and discussed in the following 

sections. It must be noted that although the figure shows the steps to be carried 

out independently, most of the time several steps are performed concurrently (e.g. 

model conceptualization and data collection, verification and validation…).  

 

Figure  2-13: Steps in a simulation study, modified from [72]. 
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2.5.1 Project Initiation 

The first phase of a simulation study is the project initiation that starts with 

formulating the problem, setting the objectives, and performance measures to be 

evaluated. Then the details of the modelling assumptions and data requirements 

should be provided to the simulation analyst in order to set the project plan with 

time and cost estimates. Based on the project plan, it is decided either to proceed 

with the simulation study, or perhaps to expand or limit its scope  [74].  

Afterwards is the model conceptualization, which is a non-software representation 

to the system to be developed describing the objectives, inputs, outputs, 

assumptions and simplifications of the system [75]. The end results of this phase 

are the project plan and the conceptual model.  

2.5.2 Project Work 

This phase consists of data collection and model translation. The end result of this 

phase is a working model that is subjected to verification and validation in the next 

phase. 

Data Collection 

The first step in gathering data is to determine the data required for building the 

model; these can be categorized as structural data, operational data, and numerical 

data [76]. 

� Structural Data: Structural data involve all of the objectives in the system to 

be modelled. This includes such elements as entities (lots), resources 

(machines), and locations (stations). Structural information basically 

describes the layout or configuration of the system and identifies the 

entities that are processed.  

� Operational Data: Operational data explain how the system operates. 

Operational data consist of all the logical or behavioural information about 

the system such as routings, schedules, down time behaviour, and resource 
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allocation. If the process is structured and well controlled, operational 

information is easy to define. 

� Numerical Data: Numerical data provide quantitative information about the 

system. Examples of numerical data include capacities, arrival rates, activity 

times, and time between failures. Some numerical values are easily 

determined, such as resource capacities and working hours. Other values 

are more difficult to assess, such as time between failures or routing 

probabilities.  

Usually the simulation analyst constructs the model while the data collection is 

progressing. Also, the required data format must be accurately defined, to facilitate 

introducing the data to the developed model. Furthermore, the probability 

distributions for any random variables must be defined at this stage. Finally, data 

on the performance of the real system, which can be used for validation purposes, 

must be collected (if the real system exists) [14]. 

Model Translation 

In this step the model is developed by translating the conceptual model 

constructed in phase 1 into a computer-recognizable form, an operational 

computer simulation model [14]. There are a number of simulation packages that 

are available as commercial-off-the-shelf (COTS) software. Based on a recent 

review of simulation software in 2009, over 40 products are available in the 

market offered by 26 vendors [77]. Usually selection of the correct simulation 

package is based on different criteria such as; model-building features, runtime 

environment, animation and layout features, output features, and vendor support 

and product documentation [72]. 

2.5.3 Model Verification and Validation 

In this phase the simulation analyst verifies and validates the model. If problems 

are found, the model or the data, or both, are corrected. 



32 

 

Verification 

Verification concerns the operational model, which makes sure that the model is 

operating as intended by the system-analyst, and ensuring that the computer 

programming and implementation of the conceptual model are correct [78].  

It is highly advisable that verification takes place as a continuing process and not 

to wait until the entire model is completed to begin the verification process [14]. 

Validation 

Validation is the determination that the conceptual model is an accurate 

representation of the real system, and that the model can be substituted for the 

real system for the purposes of experimentations. An ideal way to validate the 

model is to compare its output to that of the real system; where, a simulation 

model of the existing system is developed and its output data are compared to 

those from the existing system itself [79]. 

Three steps (levels) of validation can be followed: face validation, validation of 

model assumptions, and input/output transformations validation [72]. 

� Face validation: The first goal of the simulation modeller is to construct a 

model that appears reasonable on its face to model users and others who 

are knowledgeable about the real system being simulated. This validation 

takes place without deep investigation and is usually carried out using the 

animation capabilities of the simulation model. 

� Validation of model assumptions: Model assumptions fall into two general 

classes: structural assumptions and data assumptions.  

� Structural assumptions involve questions of how system operates and 

usually involve simplifications and abstractions of reality. It is 

concerned with the validation of the resources (stations, 

machines…etc.).  

� Data assumptions should be based on the collection of reliable data and 

correct statistical analysis of the data. It is done by conforming the input 
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model variables that are generated randomly represents the actual 

variables. 

� Input/output transformations validation: In this phase of the model 

validation, the model accepts values of the input parameters and transforms 

these inputs into output measures of performance. This validation is done 

by comparing these output measures to that of the real system. 

2.5.4 Experimentation, Analysis and Reporting 

The purpose of this phase is to meet the objectives set in the project initiation 

either to evaluate or/and compare the performance measures of the system. It 

consists of three main steps; experimental design, experimentation and analysis, 

and documentation and reporting. These are discussed in the following sections. 

Experimental Design 

Many of the classic experimental designs can be used in simulation studies and the 

goal will influence the way the study should be conducted [80]. Carefully planned 

simulation studies can yield valuable information without an undue amount of 

computational effort. A wide variety of approaches, methods, and analysis 

techniques, known collectively as experimental design, have the principal goals of 

estimating how changes in input factors affect the results, or responses of the 

experiment. Experimental design can specifically determine [81]: 

� How sensitive are outputs to changes in inputs? 

� Which inputs are important? Which are not? 

� What is the best combination of inputs? 

It should be noted that simulations may be either terminating or nonterminating. A 

terminating simulation is one for which there is a natural event that specifies the 

simulation run time, and the performance measures for such simulation may also 

be known as transient simulations (for example a bank that closes at the end of a 

day or a call centre that operates for specific hours a day). However, a 

nonterminating simulation is one for which there is no natural event to specify the 
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simulation run time, where the long run behaviour is studied when it is operating 

normally. Assuming that these simulations will reach a steady state and that 

performance is measured at that state; hence, these simulations are said to be 

steady state simulations (for example a manufacturing facility that operates 

continuously and the aim of the simulation is to evaluate its long term performance 

measure) [82-85]. Since, this work focuses on simulating wafer fabrication 

facilities that are said to run indefinitely with no obvious terminating event; thus, 

the simulation in this research belongs to the nonterminating one. 

Three major pitfalls in output data analysis have been pointed out [83] , two of 

them are discussed in this section and the third one is related to the following 

section: 

� Analysing simulation output data from one run, which might result in a 

gross underestimation of variances and standard deviations.  

� Failure to have a warm up period for steady state analysis. 

� Failure to determine the statistical precision of simulation output statistics 

by the use of a confidence interval. 

For each scenario that is to be simulated, decisions need to be made concerning the 

simulation parameters, which include: length of the simulation run, the warm-up 

period, and the number of replications [14, 72, 79]. The following subsection 

discusses the approaches used in setting the simulation parameters in this study. 

Length of the Simulation Run  

Although there is no definitive way of picking the simulation run time at 

nonterminating simulation and needs to be determined by the model user [75]; 

however, the simulation run time should be much larger than the warmup period 

[86]. 

Warm-Up Period 

Before a simulation can be run, one must provide initial conditions for all of the 

simulation’s state variables. Such a choice of initial conditions can have an impact 
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on the simulation output. Thus, initialization problems can lead to errors, 

particularly in steady state output analysis. The technique most often suggested to 

deal with that problem is called warming up the model or initial data deletion. The 

idea is to delete some number of observations from the beginning of a run and to 

use only the remaining observations, as the observations near the beginning of the 

simulation may not be very representative of steady state behaviour due to the 

choice of initial conditions [82-84].  

In literature there are several techniques to determine the warmup period, and 

they are classified in to: Graphical methods, Heuristics approaches, statistical 

methods, Initialization bias tests, and hybrid methods [75]. In this work the Welch 

method, that is considered as the most general graphical technique for 

determining the warmup period [82, 86], is discussed here. 

In order to determine the warmup period using the Welch’s method, which is 

based on the calculation and plotting of moving averages, the following steps are 

carried out [75, 82]:  

� Make a series of 
 replications (at least 5) each of a simulation run time � 

(where � is large). Let ��� be the ��� observation from the ��� replication 

(� = 1,2, …
; � = 1,2, …�). 

� Calculate the average of the performance measure across the replications 

for each period using Equation  2-2. 

 ��� = ∑ ���  �   Equation  2-2 

 For	� = 1, 2, …�.   

� To smooth out the high frequency oscillations in ��",��#,…, the moving 

average is further calculated based on a window size $ (start with $ = 5) 

using Equation  2-3. 
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 ���($) =
%&'
&(∑ ���)*�+"*,+(�+")2� − 1 						�.	� = 1,…$																			
∑ ���)*/*,+/2$ + 1 										�.	� = $ + 1,… ,� − $  Equation  2-3 

 Where; $ is the window size and is a positive integer such that $ ≤ 2� 4⁄ 5. 
� Plot ���($) for � = 1, 2, …� −$ and choose 6 (warmup period). 

� If the plotted data is not smooth increase the size of $ and repeat the 

previous 2 steps. 

� Identify the warmup period (6)	as the point where the time-series becomes 

flat. 

In using Welch’s method the aim should be to select the smallest $ that gives a 

reasonably smooth line. Although selecting a larger $ will give a smoother line, it 

also tends to give a longer estimate to the warmup period, which wastes the data 

collected from a simulation run and; hence, has implications for the simulation run 

time. It is also recommended that the value of $ should not be more than a quarter 

of the total observations [75]. 

Number of Replications 

A replication is a run of a simulation that uses specific streams of random numbers. 

Multiple replications are performed by changing the streams of random numbers 

that are referenced and re-running the simulation. The aim is to produce multiple 

samples in order to obtain a better estimate of mean performance. There are three 

approaches to determine the number of replications required for a simulation 

study: a rule of thumb, a graphical method and a confidence interval method [75]. 

In this work the graphical method will be used to identify the number of 

replications required in this study. This approach is to plot the cumulative mean of 

the performance measure from a series of replications. It is recommended that at 

least 10 replications are performed initially. As more replications are performed 

the graph should become a flat line. The number of replications required is defined 

by the point at which the line becomes flat. Performing more replications beyond 
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this point will only give a marginal improvement in the estimate of the mean value. 

If the line does not become flat more replications are needed [75]. 

Experimentation and Analysis 

Experimentations and analysis, are used to estimate measures of performance for 

the scenarios that are being simulated [14, 72].  

As the input processes driving a simulation are usually random variables (e.g., 

inter-arrival times, processing times, and breakdown times); the output variables 

from the simulation will also be stochastic. Thus, runs of the simulation only yield 

estimates of measures of system performance (e.g., the mean throughput rate, 

cycle time and WIP). These estimators are themselves random variables, and are 

therefore subject to sampling error. As a result, these estimates could, in a 

particular simulation run, differ greatly from the corresponding true 

characteristics for the model. The net effect is that there could be a significant 

probability of making inaccurate inferences about the system under study [83, 84]. 

Therefore, when comparing alternative scenarios one should decide which 

scenario is better. This is not simply a case of comparing the mean values of the 

performance measures to see which one is the best [75].  

When comparing two systems (alternatives) more accurate approaches should be 

applied such as: developing confidence intervals with specified precision, 

independent sampling, and common random numbers (CRN) [72]. Relying on 

confidence intervals and checking whether intervals overlap or not, is not quite an 

accurate approach to compare alternatives [87].  

Independent sampling and CRN techniques are essentially paired-t tests the 

difference between the two techniques is that the first compares the output of two 

systems using different random numbers; while, the second technique uses a 

variance reduction technique (CRN), which compares two systems using the same 

random numbers. The systems under study in this work exhibit high randomness 

in its input parameters; therefore, the CRN technique is used to control that 

randomness. 
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However, the paired t-confidence interval is used to compare two scenarios. When 

comparing many scenarios there are statistical methods for choosing the best one. 

Nelson et al. [88] proposed a method the combines screening procedure with 

Rinott’s two-stage sampling procedure for selecting the best scenario.  

This method starts with the screening procedure that generates a survivor set, 

which must include at least one of the scenarios. If the survivor set only has one 

scenario, that scenario is selected as the best and the procedure terminates. 

However, if there is more than one survivor, Rinott’s two stage sampling 

procedure is then applied to members of the survivor set in order to determine the 

best scenario[89].   

In order to select the best scenario using Nelson’s combined method, the following 

steps are carried out [88, 89]: 

� Set the overall confidence level 1−∝ , confidence level 1 −∝8  for the 

screening procedure, and 1 −∝"  for the Rinott’s procedure such that 

∝8+∝"=∝. A convenient choice is ∝8=∝"= ∝ 2⁄ .  

� Select the critical constant t for the screening procedure using Equation  2-4 

when CRN are used, and Equation  2-5 when CRN are not used. 

 : = :"+;< (=+"), <+"⁄  Equation  2-4 

 : = :("+;<)> ?@>⁄ , <@> Equation  2-5 

 Where;  

 A is the number of scenarios, 

 
Bis the number of replications, and 

: is value from student’s t-distribution with 1 − αB (A − 1)⁄  degree of 

freedom and a significant level of 	
B − 1. 

� Select the critical constant h for the Rinott’s procedure using Equation  2-6. 
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 ℎ = ℎ"+∝>, <,= Equation  2-6 

 Where; ℎ is Rinott’s constant.  

� Specify a practically significance difference (F) of the performance measure 

to be improved. 

� Compute the means (���) and variances (G�#) of the performance measures 

for each scenario. 

For � = 1,2,3…A. 
� Calculate the screening thresholds (���) using Equation  2-7 when CRN are 

used, and Equation  2-8 when CRN are not used. 

 ��� = :	 JG��#
B K
"/#

 Equation  2-7 

 ��� = :	 JG�# + G�#
B K"/# Equation  2-8 

For  � ≠ �. 
� Construct the survivor set using Equation  2-9 assuming smaller 

performance measure is better and Equation  2-10 assuming greater 

performance measure is better. 

 ��� ≤ ��� +max	(0,��� − F) Equation  2-9 

 ��� ≥ ��� −max	(0,��� − F) Equation  2-10 

� If the survivor set includes one scenario that scenario is selected as the best 

and the procedure terminates. However, if there is more than one survivor, 

Rinott’s two stage sampling procedure is then applied to members of the 

survivor set in order to determine the best scenario, and the number of 
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additional replications required for each survivor is determined from 

Equation  2-11.   

 S� = max	J
B, TUℎG�F V
#WK Equation  2-11 

Where; X. Y implies roundup. 

Documentation and Reporting 

Documentation is necessary for numerous reasons. If the simulation model is going 

to be used again by the same or different analysts, it may be necessary to 

understand how the simulation model operates. This will provide confidence in the 

simulation model so that the model users and policy makers can make decisions 

based on the analysis.  

In addition, if the model is to be modified, this can be greatly facilitated by 

adequate documentation. The result of all the analysis should be reported clearly 

and concisely. This will enable the model user to review the final formulation, the 

alternatives that were addressed, the criterion by which the alternative systems 

were compared, the results of the experiments, and the analyst recommendations, 

if any [72]. 

2.6 CONCLUSIONS OF LITERATURE 

Semiconductor wafer fabrication manufacturing uses push systems to make 

maximum use of expensive tools; it is considered better having lots waiting for 

processing, rather than to have a machine waiting for a lot. However, controlling 

the release of lots optimally to the shop floor can have a significant effect on the 

performance of the fab.  

Focusing on CONWIP showed that CONWIP has a number of drawbacks and 

limitations that resulted in developing either a variation of CONWIP or a combined 

strategy with CONWIP which is more likely to achieve sustainable improvements 

in the performance. The recent review of CONWIP in 2014 confirmed that CONWIP 

system is one of the most popular pull systems. Still, several papers confirmed that 
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CONWIP doesn’t control WIP distribution across the stations of the system, 

CONWIP can be combined with other lot release control strategies to achieve 

better performance, and that a single loop CONWIP system for controlling a 

production line might be unsuitable in some manufacturing environments. This 

lead to review different control strategies reported in literature that addresses 

these limitations. The review has shown the diverse nature of the application of 

different control strategies, with different outcomes in manufacturing.   

Further review of CONWIP has been conducted and concentrates on the 

applicability of CONWIP in different manufacturing environments, determining the 

optimum WIP level, and comparison of CONWIP to other manufacturing control 

systems. The most important findings of that review are listed as follows: 

� CONWIP has been reported to work best for balanced production lines 

running in a steady state already. 

� Limited application to real wafer fabrication facilities; only application of a 

simplified CONWIP mechanism in terms of the output feedback mechanism. 

� Optimisation of WIP levels to either minimize cycle time or to maximise 

throughput rate using minimum WIP level as the commonly used 

performance measures of production lines. 

� Other work showed that the performance measure was minimisation of 

WIP levels to achieve the same rate of throughput. 

� Optimisation using simulation of dynamic CONWIP and adaptive CONWIP 

strategies; yet, application was to simple production lines due to the 

computational complexity associated with the problem. 

� When high variability in arrivals exists, CONWIP is better than Push; 

however, Push can perform better than CONWIP when lots are released on 

a constant interval. 

� CONWIP compared to other release strategies showed that: 

� CONWIP can outperform Kanban. 
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� CONWIP is better than Push given that arrivals are of high 

variability. 

� Push can be better than CONWIP if lots are released 

deterministically. 

� DBR can outperform CONWIP; however this depends on the location 

of the bottleneck and whether the bottleneck is shifting or not. 

� Combining dispatching rules with CONWIP showed that dispatching rules 

has a minimal effect on the performance of a production line. 

� Simulation has been used in most of the literature reviewed as an effective 

tool to analyse and compare the dynamic behaviour of complex production 

systems operating under different manufacturing control systems.  

In this work two limitations of CONWIP are addressed, the first is related to the 

variability of Lot Arrivals to a system applying CONWIP. Since, the arrival of lots to 

a system depends on the departure of lots from the system; thus, highly variable 

inter-departure times will result in highly variable inter-arrival times as well. 

Consequently, highly variable inter-arrival times will induce variability throughout 

the production line, which degrades the performance of the line in terms of cycle 

times and WIP levels of the production line (as will be discussed in details in 

Section  4.7). To overcome this drawback ICONWIP lot release control strategy is 

proposed that regulates the arrival of lots to the system and reduces the variability 

associated with it. 

The second drawback is relevant to the distribution of WIP across the stations of a 

system. Queues in front of stations can repeatedly build-up at stations with low 

production rates (bottlenecks) or stations with repetitive failures. As a result, DBR 

lot release control strategy is applied to control the WIP forming at bottlenecks; 

moreover, a hybrid CONWIP/DBR lot release control strategy is tested also to 

combine the advantages of both CONWIP and DBR.  Finally, to control the 

distribution of WIP over stations where queues are likely to accumulate (referred 

to as critical stations in this work), LCONWIP lot release control strategy is 

proposed to reduce individual WIP levels at critical stations and improve the 

performance of the system.  
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3 RESEARCH METHODOLOGY 

3.1 RESEARCH TOOL 

As mentioned earlier, simulation has been used in most of the literature reviewed 

to analyse complex production systems that are too complicated to tackle via 

analytic methods. It is particularly effective in the analysis and prediction of the 

behaviour of complex dynamic systems. Therefore it is the ideal tool to develop a 

test bed to determine the effectiveness of the strategies developed in this research.  

In this work ExtendSimTM is selected as the simulation environment to be used for 

developing all simulation models described in details in the upcoming chapters. 

That’s partly because ExtendSimTM was available as a grant for research purposes 

and also because of the following features [90]: 

� Ability to divide the model into hierarchical sections. 

� Ability to effectively manage model data through built-in databases. 

� Different mathematical and logical equations can be easily defined in a 

variety of equation-based blocks. 

� Automatic and informative visual feedback by animation of blocks and 

entity flows. 

3.2 RESEARCH SCOPE 

Although several lot release control strategies are found in literature, yet CONWIP 

is still regarded as one of the most popular pull strategies. In this work two 

limitations of CONWIP are addressed, the first is related to the variability of Lot 

Arrivals to a system applying CONWIP. Since, the arrival of lots to a system 

depends on the departure of lots from the system; thus, highly variable inter-

departure times will result in highly variable inter-arrival times as well. 

Consequently, highly variable inter-arrival times will induce variability throughout 

the production line, which degrades the performance of the line in terms of cycle 
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times and WIP levels of the production line (as will be discussed in details in 

Section  4.7). To overcome this drawback ICONWIP lot release control strategy is 

proposed that regulates the arrival of lots to the system and reduces the variability 

associated with it. 

The second drawback is relevant to the distribution of WIP across the stations of a 

system. Queues in front of stations can repeatedly build-up at stations with low 

production rates (bottlenecks) or stations with repetitive failures. As a result, DBR 

lot release control strategy is applied to control the WIP forming at bottlenecks; 

moreover, a hybrid CONWIP/DBR lot release control strategy is tested also to 

combine the advantages of both CONWIP and DBR.  Finally, to control the 

distribution of WIP over stations where queues are likely to accumulate (referred 

to as critical stations in this work), LCONWIP lot release control strategy is 

proposed to reduce individual WIP levels at critical stations and improve the 

performance of the system. 

3.3 CASE STUDIES  

This work started with one of the most popular models used by researchers, which 

is the Minifab model. Although the Minifab captures some of the challenges 

involved in a re-entrant fab; however, it has a limited number of stations, machines 

and steps. Thus, it was unable to address the second limitation of CONWIP, which 

is the unbalanced WIP distribution across the stations. 

Furthermore, the Minifab was developed during the 1990s; therefore, a 

representative segment of an existing wafer fabrication facility operating with the 

latest technologies used in the semiconductor manufacturing was developed in 

collaboration with the ICMR.  

Compared to the Minifab, this Segment includes greater number of stations and 

machines with greater number of steps. Also, the Segment addresses the 

significant challenges involved in operating current highly re-entrant wafer fabs 

such as high re-entrancy, complex batching processes, sampling, and stochastic 

variable breakdowns derived from actual data of similar machines.  
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3.4 RESEARCH EXPERIMENTS 

Experimental work in this research addresses two drawbacks of CONWIP; the first 

is related to the arrivals variability (applied to both the Minifab and Segment), and 

the second addresses the unbalanced distribution of WIP across the stations 

(applied to the Segment only). Briefly, the Minifab scenarios address the arrivals 

variability, and the Segment scenarios are divided in to two groups: Group I 

scenarios that address the arrival variability, and Group II scenarios that address 

the distribution of WIP across the stations as summarised in Figure  3-1.  

 

Figure  3-1:  Summary of experimental work. 

As previously mentioned in literature, Push can perform better than CONWIP 

when lots are released on a constant interval [64]. So, experiments in this work 

start with testing the effect of applying different Push strategies on the behaviour 

of Minifab. Comparison of Push using exponential inter-arrival times and 

deterministic ones helps to show whether or not the performance of the Minifab 

will improve using the deterministic inter-arrival times. Also, analysis of behaviour 

of Minifab under deterministic input will help in understanding the reason for that 

improvement. 
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These two Push strategies are then compared to CONWIP control applied to the 

Minifab. Simulation results show that deterministic Push strategy can actually 

outperform CONWIP confirming what was presented in [64]. Further analysis of 

simulation results, specifically inter-arrival variability, has shown that there is 

much higher variability in the arrival of lots under CONWIP when compared to 

Push deterministic and this variability adversely affects the lot cycle time. As a 

result, in an attempt to reduce this arrival variability, the ICONWIP lot release 

control strategy is proposed which regulates the arrivals to the Minifab and 

reduces the variability of arrivals.  

Due to the limited number of stations, machines and steps of the Minifab, it is not 

possible to demonstrate the impact of the unbalanced WIP distribution across the 

stations. A representative Segment of a semiconductor fabrication process has 

been developed with the ICMR.  This Segment includes a greater number of 

machines and stations, more processing steps and exhibits the increased 

complexity (sampling for quality control) and variability (e.g. machine 

breakdowns) that are typical characteristics of real fabs than can be included in the 

Minifab.  The same comparative study of applying different Push behaviours and 

the proposed ICONWIP strategy is applied to the model of the Segment to ensure 

that it exhibits the same behaviour as the Minifab. However, based on the 

operational data supplied by the ICMR, lot introduction applied to the Segment 

under a Push policy should be based on a single event where all of the lots for the 

day are loaded immediately one after the other. While this is deterministic in the 

schedule, the extended interarrival time between the last lot on any day and the 

first lot on the next means that there is a distribution associated with this activity. 

The purely deterministic method for lot introduction for Push is to introduce the 

individual lots at regular time intervals throughout the day. In both cases, the 

number of lots introduced should be 19 lots per day on average to meet the 

required throughput of 3325 wafer starts per week. 

When applying CONWIP to the Segment an unbalanced WIP profile can arise as 

much of the WIP can be held at one or two stations due to the lengthy breakdowns.  

Therefore, modifications to CONWIP by combining it with other lot release control 

strategies are required to overcome this unbalanced WIP distribution issue. DBR 
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was reported in literature to result in better performance of fabs when compared 

to CONWIP and actually balance the WIP distribution along the line [44]. Although 

it was also reported that DBR is not effective in balancing WIP in all lines and that 

this depends on the characteristics of the line and the position of the bottleneck 

[16, 67]; however, DBR was first simulated to test its effectiveness in improving 

the distribution of WIP and reducing the unbalancing effect induced by CONWIP. 

Simulation results showed that DBR did not manage to balance the distribution of 

WIP across the stations of the Segment due to the nature of the Segment; where, 

the last step performed on the bottleneck station is Step 41 out of a total of 46 

steps. Hence, most of the line was controlled by a single WIP cap loop as in 

CONWIP; confirming what was mentioned in [16, 67].  Next, in an attempt to 

improve the results of both CONWIP and DBR a hybrid strategy of both is tested 

(as suggested by the work in [34]), which is the CONWIP/DBR lot release strategy. 

Finally, controlling WIP levels at bottleneck or critical stations by adding WIP caps 

to these stations using the developed LCONWIP strategy; in order to balance the 

distribution of WIP across the stations of the Segment. 

To conclude, the following summarizes the experimental work in the sequence 

they are carried out in this research: 

A. MINIFAB SCENARIOS 

1. Push scenarios (Section  4.6.3). 
2. CONWIP scenarios (Section  4.6.4). 
3. ICONWIP scenarios (Section  4.8). 

B. SEGMENT SCENARIOS 

I. Group I scenarios:  

1. Push scenarios (Section  7.5). 
2. CONWIP scenarios (Section  4.6.4). 
3. ICONWIP scenarios (Sections  4.8 7.7 &.7.7) 

II. Group II scenarios: 

1. DBR scenarios (Section  7.10). 
2. Hybrid CONWIP/DBR scenarios (Section  7.11). 
3. LCONWIP scenarios (Section  7.12). 
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4 INTEL FIVE MACHINE SIX STEP MINI-FAB 

As mentioned previously, simulation models for semiconductor wafer fabrication 

are considered important tools for supporting the decision making process in 

manufacturing operations. However, due to the complexity of these systems, 

usually simpler models of semiconductor wafer fabrication facilities are used as a 

test bed for evaluating different manufacturing control strategies.   

Of the most popular models used by researchers is the Minifab model [6, 10, 25, 

69, 91-104]. In spite of the fact that this model is of a relatively small size; yet, it 

captures some of the challenges involved in scheduling re-entrant wafer 

fabrication facilities. 

Simulation models were developed for the Minifab to evaluate the impact of 

dispatching rules on a set of predetermined performance measures [105-107]; 

also, other simulation models evaluated the impact of changing lot release policies 

on the Minifab performance [108, 109]. 

4.1 MINI-FAB DESCRIPTION 

4.1.1 An Overview of the Mini-Fab 

The Minifab is a result of collaborative efforts between Arizona State University 

and Intel researchers and features six processing steps and five machines 

distributed in three stations, as shown in Figure  4-1.  

 

Figure  4-1: The Intel five machine six step Minifab [92].  
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The following sections will present a brief description2 of the most important 

features of the Minifab that will be addressed in this work.  

4.1.2 Products and Test Wafer Volumes 

The term “Wafer Starts Per Week” (WSPW) represents the number of wafers 

introduced to the fab each week, where a single lot equals 24 wafers. On average 

84 lots are introduced to the fab each week (2016 WSPW); where, the fab operates 

two 12-hours shift a day, 7 days a week.  

The 84 lots introduced to the fab per week are of three types; standard product 

(Pa) starts 51 lots per week, standard product (Pb) starts 30 lots per week, and 

testing product (TW) starts 3 lots per week. 

Two production operators are available for 540 minutes each per shift. Each 

operator gets two 60 minutes breaks and one 60 minutes meeting/training session 

per shift, and the two operators do not have to synchronize their off time in any 

way.  

One maintenance technician is available for 600 minutes per shift. This technician 

gets two 45 minutes breaks and one 30 minutes meeting/training session per shift 

that do not have to synchronise with the off time of the operators. Note that no 

pre-emption can occur with personnel. Once they begin a task, that task must 

complete before any other task can begin.  

4.1.3 Stations and Equipment Set Description  

Station 1 of the Mini-Fab Model 

Station 1 has 2 machines; machine A and machine B, which serve steps S1 and S5. 

Each machine run includes a load time which requires an operator at the beginning 

of a run and includes an unload time which requires an operator at the end of a 

run. Loading takes 20 minutes and unloading takes 40 minutes for each step. 

Within a given run of machine A or machine B, the same operator has to perform 

                                                             
2Full description can be found at http://aar.faculty.asu.edu/research/intel/papers/fabspec.html. 
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both the loading and the unloading tasks. There is a 75 minutes preventive 

maintenance every 24 hours (2 shifts) a day for each machine. 

Machines in Station 1 batch 3 lots at a time. When batching at S1 and S5 certain 

rules restrict batching different lot types together; importantly, it is never 

acceptable to mix lots waiting for S1 and lots waiting for S5 into the same batch.  

Batching rules at station 1 are as follows: 

� When batching step 1, one can mix products and one test lots. For example, 

Pa/Pa/Pa, Pa/Pa/Pb, Pa/Pa/TW, Pa/Pb/TW, Pb/Pb/TW, Pb/Pb/Pa, 

Pb/Pb/Pb are acceptable.  

� However, when batching step 5, one cannot mix products, but one can mix 

one test lot. For example, Pa/Pa/Pa, Pa/Pa/TW, Pb/Pb/TW, Pb/Pb/Pb is 

acceptable, but Pa/Pa/Pb, Pa/Pb/TW, Pb/Pb/Pa is not acceptable.  

� It is never acceptable to mix lots waiting for S1 and lots waiting for S5 into 

the same batch.  

Station 2 of the Mini-Fab Model 

Station 2 has 2 machines; machine C and machine D, which serve steps S2 and S4. 

Loading takes 15 minutes and unloading takes 15 minutes for each step. Within a 

given run of machine C or machine D, the same operator does not have to perform 

both loading and unloading operations.  

There is a 120 minute preventive maintenance event every 12 hours shift for each 

machine. In addition, emergency maintenance happens randomly every 24 to 76 

hours on average; but, the repair, once started, takes on average 6 to 8 hours for 

each machine. 

Station 3 of the Mini-Fab Model 

Station 3 has only one machine, machine E, which serves steps S3 and S6. Loading 

and unloading tasks take 10 minutes for each step. Within a given run of machine 

E, the same operator has to perform both the loading and unloading.  
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There is a 30 minutes preventive maintenance every 12 hours shift. Machine E 

serves both Step S3 and Step S6, which can be Product Pa, Product Pb or a test 

wafer. Consequently, three types of lot changes can occur each requiring a setup 

time as follows: 

� In one possibility, the lot type stays the same and the step changes (S3 to S6 

or S6 to S3), this takes 10 minutes.  

� In another possibility, the step stays the same and the lot type changes 

(among Pa, Pb, and TW), this takes 5 minutes.  

� In the third possibility, both the step and the lot type change (for example, 

going from Pa on S6 to Pb on S3), this takes 12 minutes.  

Note that all setup times are symmetric (for example, going from Pa/S3 to TW/S3 

or going from TW/S3 to Pa/S3 both take 5 minutes). Table  4-1 summarizes the 

parameters of the three stations with their machines, steps, processing rates, 

loading, unloading and production operators. 

Table  4-1: Summary description of Minifab parameters. 

Station Machine Step 
Processing 

time 
(minutes) 

Loading 
(minutes) 

Unloading 
(minutes) 

Operator(s) 

1 A /B 
1 225 

20 40 PO1 
5 255 

2 C/D 
2 30 

15 15 PO1/PO2 
4 50 

3 E 
3 55 

10 10 PO2 
6 10 

4.1.4 Basic Capacity Analysis  

Table  4-2 presents the utilisation of each station based on the production of six 

lots. This is achieved by dividing the available time (minutes per shift) of each 

station by the time required to produce the six lots (minutes per shift). It is clear 

from the table that station 3 (machine E) has the highest utilisation; hence, this 

machine is the bottleneck machine. 
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Table  4-2: Utilisation of the three stations. 

Station Machine 
Time Available 
(minutes/shift) 

Step 
Time Required 
(minutes/shift) 

Utilization 

1 

A 682.5 S1 570 

87.9% B 682.5 S5 630 

Total 1365 Total 1200 

2 

C 540 S2 360 

77.8% D 540 S4 480 

Total 1080 Total 840 

3 E 690 

S3 450 

91.3% S6 180 

Total 630 

4.1.5 List of Assumptions 

Some revisions and assumptions have been made to the Minifab, these include: 

� Neither maintenance technicians nor operators required for loading and 

unloading are modelled. 

� No rework is needed. 

� This model does not include travel times. 

� Rules for lot batching at station 1 are simpler. 

� Tool processing times are deterministic.  

� Lots of 24 wafers is the unit being processed by tools. 

� Minutes are the time units. 

4.2 DATA COLLECTION 

The process of building the model depends on a set of data that can be categorized 

into three main groups: structural, operational, and numeric.  

4.2.1 Structural Data 

The structural data are the three stations (locations) with their five machines 

(resources), where: 

� Station 1 has two machines, machine A and machine B.  

� Station 2 has two machines, machine C and machine D. 

� Station 3 has only one machine, machine E. 
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These machines are used to process three types of lots which are the standard 

product (Pa), standard product (Pb), and testing product (TW). 

4.2.2 Operational Data 

The operational data is the data related to: 

� The routing of the six processing steps to produce a lot (S1, S2, S3, S4, S5, and 

S6). 

� The preventive and emergency maintenance. 

� The batching of the three lots at a time in station one. The rule that apply to 

batching is that mixing lots waiting for S1 and lots waiting for S5 into the 

same batch is never acceptable. 

� The setup times of machine E in station three. In one possibility, the lot type 

stays the same and the step changes (S3 to S6 or S6 to S3), in another 

possibility, the step stays the same and the lot type changes (among Pa, Pb, 

and TW), in the third possibility, both the step and the lot type change (for 

example, going from Pa on S6 to Pb on S3). 

4.2.3 Numerical Data 

The numerical data is the data concerning the input values and distributions and 

their parameters. These values can either be deterministic (constant) or stochastic 

(probabilistic); these are presented as follows: 

Deterministic Data  

The processing time of the steps with their loading and unloading times are as 

shown in Table  4-3.  

Table  4-3: Summary of loading, unloading, and processing times. 

Step Number 1 2 3 4 5 6 

Processing time (minutes) 225 30 55 50 255 10 
Loading (minutes) 20 15 10 20 15 10 

Unloading (minutes) 40 15 10 40 15 10 
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In station 1 there is 75 minutes scheduled maintenance every 24 hours (2 shifts) 

for each machine (machine A and machine B), in station 2 there is a 120 minutes 

scheduled maintenance every 12 hours shift for each machine (machine C and 

machine D), in station 3 there is a 30 minutes scheduled maintenance every 12 

hours shift as summarized in Table  4-4. 

Table  4-4: Summary of scheduled maintenance. 

Station Machine 
Up Time 

(minutes) 
Down Time 
(minutes) 

Frequency 
(minutes) 

1 A/B 1365 75 1440 

2 C/D 600 120 720 

3 E 690 30 720 

As mentioned earlier, due to the existence of only one machine at station 3, 

product changeovers results in different setup times. Table  4-5 is the setup matrix 

for machine E showing the setup times needed for all possible types of 

step/product type changeover. When the lot type stays the same and the step 

changes (S3 to S6 or S6 to S3), this takes 10 minutes, when the step stays the same 

and the lot type changes (among Pa, Pb, and TW) this takes 5 minutes, when both 

the step and the lot type change (for example, going from Pa on S6 to Pb on S3) this 

takes 12 minutes. 

Table  4-5: Setup time matrix. 

 
To 

Pa/S3 Pb/S3 TW/S3 Pa/S6 Pb/S6 TW/S6 

From 

Pa/S3 0 5 5 10 12 12 

Pb/S3 5 0 5 12 10 12 

TW/S3 5 5 0 12 12 10 

Pa/S6 10 12 12 0 5 5 

Pb/S6 12 10 12 5 0 5 

TW/S6 12 12 10 5 5 0 

Stochastic Data  

The developed model is stochastic due to the following random inputs (listed in 

Table  4-6):  

� The inter-arrival of items is exponentially distributed with a mean of 120 

minutes, which is equivalent to 84 lots per week (2016 WSPW).  
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� The three different product types produced Pa, Pb, and TW follow an 

empirical distribution with probabilities 0.61, 0.36, and 0.03; respectively. 

� The unscheduled breakdowns for machines C and D at station 2 are 

uniformly distributed with a minimum of 24 hours and a maximum of 76 

hours. The repair time is also uniformly distributed with a minimum of 6 

hours and a maximum of 8 hours.  

Table  4-6: Summary of stochastic data. 

Input Data Distribution Parameters 

Lot generation 
(Inter arrival time) 

Exponential Mean = 120 minutes/lot 

Product type; 
Pa = 1 
Pb = 2 
TW = 3 

Empirical 

Value Probability 

1 0.61 

2 0.36 

3 0.03 
Unscheduled breakdown 

(machines C and D) 
Uniform 

Min = 1,440 minutes 
Max = 4,560 minutes 

Repair time 
(machines C and D) 

Uniform 
Min = 360 minutes 
Max = 480 minutes 

4.3 MODEL VERIFICATION 

Model verification is the process of ensuring that the computer programming and 

implementation of the conceptual model are correct.  

This step was carried out using ExtendSim’s reporting and animation capabilities 

of the different building blocks of the model to ensure that the model is working as 

intended. 

The verification process was held continually during model development to ensure 

that the model was working properly after any modification to the model and 

before moving to the next modification. 

4.4 MODEL VALIDATION 

As mentioned previously, there are three types of model validation, face validation, 

validation of model assumptions, and input/output transformation validation.  
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Face validation mainly involved animation to confirm that the lots are being 

processed in the sequence mandated by the Minifab, three lots are batched before 

processing at station one, and that machines are subjected to the different 

maintenance stoppages. 

Validation of model assumptions fall into two general classes: structural 

assumptions and data assumptions.  

� The structural assumptions took place by validating the number of stations 

with their machines. In station one, there are two machines A and B. In 

station two, there are two machines C and D. In station three, there is only 

one machine, machine E.  

� The data assumptions was done by investigating the input model variables 

that are generated randomly in the model and making sure that they 

represent the actual variables, like the number of lots generated per week, 

percentage of each product type generated, and the availability of machines.  

Finally, input/output transformation validation was done by comparing the output 

of the constructed model with respect to capacities, utilisations, and availability of 

the machines to those reported at the Minifab website mentioned before. 

4.5 EARLY RESEARCH WORK 

At the early stage of this research a simulation model of the Minifab is developed 

using the ExtendSimTM v8.0. An optimisation solution is examined for the 

operation of the Minifab under two approaches, and the details of this study can be 

found in [104]. 

Briefly, this model is capable of running eight different dispatching rules at the 

bottleneck station with different CONWIP levels applied to the whole line. The 

dispatching rules that are applied to the bottleneck station are: First In First Out 

(FIFO), Last In First Out (LIFO), Shortest Remaining Processing Time (SRPT), 

Longest Remaining Processing Time (LRPT), Earliest Due Date (EDD), Critical Ratio 

(CR), Least Dynamic Slack (LDS), and Shortest Setup Time (SST). 
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Two different approaches to find the optimal CONWIP level/dispatching rule 

combination are employed. Both are based on the optimisation using simulation 

concept; where, the model is run repeatedly with different combinations of 

CONWIP level and dispatching rules. Optimisation using simulation aims to find 

the best combination of these two variables that will maximize throughput and 

minimize cycle time. 

The two approaches examined use a similar search technique that is based on 

genetic algorithms. However, they differ in the way the objective function is 

defined.  

The first considers employing an evolutionary algorithm to the multi objective 

optimisation by weighting each of the objectives in order to obtain a single 

objective function. This requires some a-priori or external knowledge of the 

relative importance of the competing objectives and results in a single solution 

that may be considerably sensitive to the weights.  

By contrast, the second uses a pareto-optimal genetic algorithm to develop a true 

multi-objective solution to the same problem. Here no a-priori or external 

knowledge is required and the decision maker is presented with a set of non-

dominated solutions to assist in selection of the most appropriate solution to 

implement. Both solutions are developed using discrete event simulation models 

built in ExtendSimTM.  

From this study, it is concluded that optimisation using simulation has advantages 

and disadvantages. One of the key advantages is that it combines the flexibility of 

simulation with the intelligence of optimisation without requiring a detailed 

derivation of a mathematical model. On the other hand, one of the observed 

disadvantages is that the optimisation strives to find the best possible solution 

within a given space of the solutions. 

The results of the first approach confirmed that combining the SRPT dispatching 

rule with the CONWIP level of 12 lots is the best solution. This is done under the 

assumption that both throughput and cycle time are of the same importance and 

thus are given the same weight. 
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However, if the decision maker is not satisfied with the results, then the weights 

assigned to each objective should be changed accordingly and the model should be 

run all over again. The weighting used will be based on the knowledge of those 

familiar with the operational performance of the system and the relative 

importance of one measure over the other. 

Whereas, the results of the second approach gives a set of solutions that the 

decision maker can choose from. In case that both objectives have the same weight, 

then, the best solution is also a combination of SRPT dispatching rule with CONWIP 

12 lots. This is the same solution obtained using the evolutionary algorithm. 

However, this technique offers the decision maker greater flexibility in 

determining the alternative that best suits his/her requirements. Therefore, one 

can select a solution without running the whole model again, hence, it is 

considered to be time saving. 

Since the two measures under study are conflicting in nature and to eliminate the 

sensitivity of giving importance to one measure over the other; either by assigning 

weights to the measures in a utility function, or by selecting a solution from a set of 

solutions; therefore, it is decided to better have one single objective that will work 

on achieving same TH with better CT and WIP, resulting in an overall 

improvement. The remaining of this work will discuss in details how to achieve 

this objective with different WIP management experiments. 

4.6 MINI-FAB EXPERIMENTS 

Based on the single objective mentioned earlier, it is recommended to investigate 

the WIP management of the Minifab and analyse its results in order to improve its 

performance. The following sections will discuss in details a set of experiments 

that will achieve this goal.   

4.6.1 Performance Measures 

The performance measures that are evaluated in the Minifab experiments include:  
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� Throughput rate, which is the number of finished lots per week. This is 

reported as the average of weekly throughput rate means reported from a 

number of replications (	
)ZZZZZZZ. 
� Cycle time, which is the time spent to produce one lot starting from entering 

the fab to begin with Step 1 (S1) and ending with leaving the fab after 

finishing Step 6 (S6). This is reported as mean of the cycle time reported for 

each lot over the run averaged based on the outcomes of a number of 

replications (�	ZZZZ). 
� Work in process, this is the number of lots that entered the fab and still 

being processed. Which is reported as the mean of the instantaneous WIP 

level reported throughout the run and averaged based on the outcomes of a 

number of replications (���ZZZZZZ). 
The objective of these experiments is to manage WIP efficiently to achieve the 

same TH with less WIP levels and; hence, shorter CT.  

4.6.2 Simulation Parameters 

The simulation parameters that must be defined for any simulation experiment are 

the simulation runtime, warmup period, and number of replications 

(Section  2.5.4). The upcoming sections will focus on determining these parameters. 

Setting the Length of the Simulation Run 

Although there is no definitive way of picking the simulation run time for 

nonterminating simulations (which is the type of models developed in this work); 

and that the simulation run time should be generally larger than the warmup 

period and needs to be determined by the model user. Thus, it is decided to set the 

simulation runtime with 2 years (1,048,320 minutes).  

Determining the Warmup Period 

In order to determine the warmup period (6)  using Welch’s method ten 

replications are carried out; each simulation run time covers a period of 2 years 
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(104 weeks) resulting in 104 observations (�) for the weekly throughput reported 

from each replication.  

Different window sizes ($) are tried (w = 5, w = 10,w = 15,w = 20) to calculate 

the moving average of the mean weekly throughput until the plot of the moving 

average becomes reasonably smooth as shown in Figure  4-2. Based on that plot 

and using a window size of 20, it is clear that the plot becomes almost flat after a 

warmup period of 22 weeks. 

 

Figure  4-2: Moving average of weekly TH at w=5, w=10, w=15, w=20. 

Selecting the Number of Replications 

To select the number of replications required for this study 40 replications are 

carried out; again, each of 2 years. The results for mean throughput per week and 

mean cycle time are reported. In addition, the warmup period that is determined in 

the previous section is used in these runs and the results obtained from the first 22 

weeks for throughput and cycle time are deleted. Figure  4-3 shows a graph of the 

cumulative mean data. Based on the plot of cumulative points, it is clear that the 

line becomes almost flat after 15 replications for both measures of performance; 
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hence, this will be the recommended number of replications for the 

experimentation work to follow. 

 

Figure  4-3: Cumulative mean of mean TH per week and mean CT. 

In conclusion, it is decided that 15 replications are needed, each replication covers 

a simulation run time of 2 years, and with a warmup period of 22 weeks. Also, CRN 

is used; where, same random seeds are applied to all scenarios. 

4.6.3 Push Scenarios 

Two Push scenarios are tested based on different lots introduction behaviour, the 

first is an exponential input (Push-exp.) and the second is a deterministic input 

(Push-det.).    

Although it is given that 84 lots per week are introduced to the Minifab, which 

means that a lot is introduced to the model every 120 minutes. However, different 

input values for inter arrival times of lots to both scenarios are tested as explained 

in the following sections.  
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Push with Exponential Input 

As modelled previously, a lot is introduced to the Minifab with a mean of an 

exponential distribution of 120 minutes. In this section a number of simulations 

are carried out with different mean time between arrivals (MTBA) distributed 

exponentially.  

Starting with a mean of 120 minutes and decreasing 1 minute for every simulation 

until reaching 107 minutes, the CT and WIP are incredibly increasing and thus no 

further simulations are tried. Table  4-7 presents the mean for the TH, CT and WIP 

averaged based on the outcomes of the 15 replications for every mean time 

between arrivals tested.  

Table  4-7: Results of Push with exponential input at different mean time between 

arrivals. 

MTBA 
(minutes) 

	
ZZZZ  
(lots) 

�	ZZZZ  
(minutes) 

���ZZZZZZ  

(lots) 

120 84.09 1,813 15.66 

119 84.84 1,876 16.32 

118 85.60 1,960 17.16 

117 86.31 2,044 18.03 

116 87.06 2,133 18.93 

115 87.80 2,266 20.25 

114 88.55 2,430 21.87 

113 89.35 2,623 23.76 

112 90.16 2,944 26.82 

111 90.95 3,433 31.49 

110 91.76 4,152 38.30 

109 92.49 5,341 49.50 

108 93.18 7,344 68.45 

107 93.52 10,847 101.73 

It is clear from the results that as the mean time between arrivals decreases TH 

and CT increase, this is because lots are introduced faster to the Minifab and more 

lots are produced, thus these lots are pushed and accumulated at the queues 

resulting in more WIP that leads to longer CT.   
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Push with Deterministic Input 

The other Push scenario mentioned earlier is presented in this section, a number 

of simulations with deterministic time between arrivals (TBA) are conducted 

beginning with 120 minutes and reducing a minute for every simulation until 

reaching 107 minutes. The results of these simulations are presented in Table  4-8.  

Table  4-8: Results of Push with deterministic input at different time between 

arrivals. 

TBA 
(minutes) 

	
ZZZZ  
(lots) 

�	ZZZZ  
(minutes) 

���ZZZZZZ  

(lots) 

120 84.00 1,161 9.61 

119 84.71 1,185 9.96 

118 85.44 1,191 10.10 

117 86.17 1,200 10.28 

116 86.91 1,213 10.48 

115 87.67 1,229 10.71 

114 88.43 1,252 10.99 

113 89.21 1,280 11.32 

112 90.01 1,312 11.70 

111 90.82 1,351 12.17 

110 91.65 1,397 12.72 

109 92.48 1,456 13.36 

108 93.33 1,558 14.42 

107 94.20 1,857 17.36 

To compare the performance of both Push scenarios an operating curve to show 

the trade-off between TH and CT is developed and presented in Figure  4-4. 

 

Figure  4-4: Operating curve of Push with exponential and deterministic inputs. 
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It is clear from the graph that the performance of the Minifab with deterministic 

input is better than Push with exponential input, same TH is consistently achieved 

with shorter CT for all arrival rates tested with simulation. This is because 

switching from exponential input to deterministic input reduced the amount of 

variability of inter arrival times of lots introduced to the Minifab, which 

consequently reduces the flow variability to stations downstream.  

4.6.4 CONWIP Scenarios 

When applying CONWIP as a lot release control strategy the WIP level to use must 

first be set. This is achieved by referring back to the results of the Push scenarios 

with deterministic input that gives a minimum WIP of 9.61 lots. This will be the 

starting WIP level to test using simulation; CONWIP level = 9. 

Fifteen experiments are carried out by incrementing the CONWIP level by 

incrementing the CONWIP level by 1 lot for every experiment until reaching 

CONWIP level 21 lots. The results of these experiments are given in Table  4-9. 

Table  4-9: CONWIP scenarios- Summary of results. 

CONWIP 
level 

	
ZZZZ  

(lots) 
�	ZZZZ  

(minutes) 
���ZZZZZZ  

(lots) 

9 76.55 1,185 8.50 

10 80.63 1,250 9.50 

11 85.71 1,294 10.50 

12 88.78 1,363 11.50 

13 89.94 1,457 12.50 

14 91.98 1,534 13.50 

15 93.10 1,624 14.50 

16 93.62 1,723 15.50 

17 93.99 1,823 16.50 

18 94.24 1,925 17.50 

19 94.29 2,031 18.50 

20 94.34 2,137 19.50 

21 94.33 2,244 20.50 

By investigating the previously shown results, it is clear that by increasing the 

CONWIP level TH increases and accordingly CT and WIP increase until the increase 

of TH is minimal when compared to the increase of CT and WIP.  
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4.6.5 Push and CONWIP 

To compare the performance of Push with deterministic input (as agreed to be 

better than the Push with exponential input in the previous section) to CONWIP, an 

operating curve showing the trade-off between TH and CT is presented in 

Figure  4-5. 

 

Figure  4-5: Operating curve of Push with deterministic input and CONWIP. 

The figure shows that Push with deterministic input is performing better than 

CONWIP.  To better comprehend the nature of the difference in performance 

between the two scenarios, a simulation experiment from each scenario is selected 

(selected simulation experiments have enlarged data points in Figure  4-5) and 

analysis is under taken.  

At Push-det., this simulation experiment is the one that introduces a lot every 108 

minutes to the Minifab, whereas at CONWIP, it is the one with CONWIP level 15. 

Revising Table  4-8 and Table  4-9, it is clear that both scenarios produce 93 lots per 

week, which will be the target TH in this study. However, at Push the CT is 

1,557.93 minutes and at CONWIP the CT is 1,624.18 minutes.  
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Figure  4-6 shows a sample of the TBA of lots at Push-det. and CONWIP.  At Push-

det. the arrival of lots is regulated every 108 minutes since it is a deterministic 

input. However, at CONWIP there is high variability of Lot Arrivals.  Also, it is 

noticed that the minimum inter-arrival time is 30 minutes which is the sum of 

loading, unloading and processing times of step 6 at station 3 (refer to Table  4-3). 

This is due the fact that a lot is introduced to the Minifab as soon as a lot is 

departed after its completion at station 3. Hence, the inter-arrival time of lots at 

CONWIP depends on the inter-departure time from the last station.  This justifies 

the better performance of Push-det. over CONWIP.  

 

Figure  4-6: Time between arrivals of lots for Push-det. and CONWIP. 

Also, it should be noted that this variability of arrivals affects the coefficient of 

variation of arrivals (ca) to the three stations of the Minifab. The results of both 

scenarios are given at Table  4-10, and it is obvious from the results that Push-det. 

has lower ca at all the stations. 

Table  4-10: Mean ca to the three stations at Push and CONWIP. 

Scenario ]^>  ]^_  ]^`  

Push-det. 0.629 0.801 0.843 

CONWIP 0.863 0.850 0.967 
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Therefore, Push under deterministic conditions performs better than CONWIP as 

one of the most popular lot release control strategies of Pull. The next section will 

propose a modification to CONWIP lot release control strategy in order to improve 

its performance by regulating its arrivals to reduce the variability.   

4.7 ICONWIP-PROPOSED LOT RELEASE CONTROL STRATEGY 

To improve the effect of CONWIP on the performance of the Minifab, a new lot 

release control strategy named ICONWIP, where the first “I” stands for Inter-

arrival time, is introduced. This strategy works on regulating the arrival of lots to 

the production line. Whenever a lot leaves the production line, a signal is given to 

authorize the release of a new lot. However, this lot is not released until a 

predetermined time interval has passed since the previous lot was released. In 

other words, two conditions are required to release a new lot:  

� First, the departure of a lot from the production line.  

� Second, a minimum predetermined time interval must pass between any 2 
arrivals.   

To understand the difference between CONWIP and ICONWIP, at CONWIP when a 

lot departs from the production line at time ti, a new lot is immediately released to 

the line as shown in Figure  4-7.  

 

Figure  4-7: CONWIP lot release control strategy. 

Whereas at ICONWIP, upon the departure of a lot from the production line at time 

ti, a new lot (x) is ready to be released (as in CONWIP); yet, the arrival time of the 

last lot (x-1) introduced to the line at time ti-1 must first be checked. If the inter 

arrival time between lot x and lot x-1 is greater than  a predetermined time interval 
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known as minimum time between arrivals and denoted by (τ), then a signal is 

given to authorize the release of the new lot. Else, the new lot is delayed until that 

time interval (τ) passes, at that instance a signal is given to authorize the release of 

the new lot as shown in Figure  4-8. 

 

Figure  4-8: ICONWIP lot release control strategy. 

4.7.1 Problem Formulation 

To formulate the problem, the decision variables, objective function and 

constraints are to be defined as follows: 

Decision Variables 

There are two decision variables:  

� N: number of lots at CONWIP level. 

� τ: minimum time between arrivals to release a new lot. 

Objective function 

Min (Z) = CT 

Constraints 

TH ≥ TH*  

:� ≥ :�+" + a 

WIP ≤ CL (N) 
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N is integer 

N and τ ≥ 0 

Where;  

TH* is the target TH, 

ti is the arrival time of lot x, 

ti-1 is the arrival time of lot x-1, 

τ is the minimum time between arrivals, and 

CL is the CONWIP level. 

4.7.2 ICONWIP and Variability of Arrivals 

The variability of arrivals to a production line affects the variability of arrivals to 

all stations. This is because the starting point for studying flows is the arrival of 

lots to a single station, and the departures of this station will in turn be arrivals to 

next stations (see Equation  4-1). Also, it should be mentioned that a low coefficient 

of variation of arrivals indicate regular or evenly spaced arrivals, while a high 

coefficient of variation of arrivals indicate uneven or burst arrivals [17].  

 ]^ 	(� + 1) = ]b(�) Equation  4-1 

Where; 

]^ is the coefficient of variation of inter arrival times, 

]b is the coefficient of variation of departure, and 

� is the station number. 

Therefore, regulating the arrival of lots to a production line will reduce the 

variability of arrivals to it and consequently will reduce the variability of arrivals 

to all stations.  

To better understand the relation between variability of arrivals and improving 

cycle time, there is a need for Equation  4-2. This equation computes the waiting 
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time in queue and it separates into three terms: a dimensionless variability term V, 

a utilisation term U, and a time term T, also it is referred to as VUT equation[17]. 

 �	c = J]^# + ]d#2 K × e f1 − fg × :d  Equation  4-2 

Where;  

�	c is the waiting time in queue, 

]^ is the coefficient of variation (CV) of inter arrival times, 

]d is the coefficient of variation (CV) of effective process time, 

f is the utilisation of station, and 

:d is the mean effective process time. 

It should be noted that this study will focus on the variability term V of the VUT 

equation. It will work on regulating the arrival of lots that will result in reducing Ca 

and consequently reduce the waiting time in queue and though improve CT. 

Referring to little’s law (Equation  2-1) at constant TH, WIP is reduced with lower 

CT. 

4.8 ICONWIP SCENARIOS 

To apply ICONWIP two decision variables are required, the first is the CONWIP 

level, which is selected at the previous section to be 15 lots that achieved the target 

TH (93 lots per week). The second decision variable is the minimum time between 

arrivals (min TBA) that should pass between any 2 arrivals. 

It should be noted that if the min TBA is 0 minutes then a lot is released to the 

Minifab as soon as a lot is departed, which is the CONWIP lot release control 

strategy discussed in the previous section. However, if a lot delays for even a 

minute waiting for a signal until it is released then it is the new proposed rule 

ICONWIP.  
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109 simulations are carried out starting from min TBA 0 minutes which describes 

CONWIP behaviour to min TBA 108 minutes which is the selected value of the 

Push deterministic input, and their results are presented in Figure  4-9. 

 

Figure  4-9: Results of ICONWIP 15 for min TBA from 0 to 108 minutes. 

It is obvious that from min TBA 0 to 30 minutes TH and CT are not changing, 

therefore CONWIP and ICONWIP have the same performance. This is because the 

minimum inter arrival time of lots at CONWIP is 30 minutes (refer to Section  4.6.5, 

and Figure  4-6). Afterwards TH is almost steady and CT is decreasing until min 

TBA 87 minutes, then both measures are decreasing.  

Consequently, it is agreed that the best performance of the Minifab when applying 

ICONWIP15 with min TBA 87 minutes results in 93.09 lots per week for TH with 

CT 1,487.81 minutes. 
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Figure  4-10: Percentage improvement of CT under ICONWIP when compared to 

CONWIP. 

Figure  4-10 presents the percentage improvement of CT at ICONWIP15 when 

compared to CT of CONWIP15. It shows that the same TH is achieved with 8.4% 

improvement in CT at ICONWIP15 and min TBA 87 minutes. 

To ensure that the best CONWIP level and min TBA are selected for the ICONWIP, 

other simulation experiments are tested with CONWIP levels 14 and 16 and the 

same min TBA (from 0 to 108 minutes) are applied for each CONWIP level. The 

results show that at ICONWIP14 the target TH is not achieved and the maximum 

TH attained is 92.29 lots with min TBA 77 minutes, whereas at ICONWIP16 the 

target TH is reached with min TBA 92 minutes but with longer CT when compared 

to ICONWIP15 as presented in Figure  4-11.  
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Figure  4-11: Results of selected experiments under ICONWIP14, 15, and 16. 

4.9 PUSH, CONWIP AND ICONWIP 

To compare Push-det., CONWIP and ICONWIP a summary of results to the 15 

replications is given in Table  4-11. It is clear that the TH is achieved by the three 

scenarios; moreover, ICONWIP results in the lowest mean of mean CT, and mean of 

mean WIP. 

Table  4-11: Summary of results to the 15 replications of Push, CONWIP and 

ICONWIP. 

Scenario 
	
ZZZZ  

(lots) 
�	ZZZZ 

(minutes) 
���ZZZZZZ  
(lots) 

Push-det. 93.33 1,558 14.42 

CONWIP 93.10 1,624 14.50 

ICONWIP 93.09 1,488 13.56 

Figure  4-12 presents a sample of time between arrivals at Push-det., CONWIP and 

ICONWIP. It is obvious that Push-det. has the lowest variability when compared to 

CONWIP and ICONWIP, and this is due to the deterministic input used in the model 

tested.   
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Figure  4-12: Time between arrivals of lots for Push-det., CONWIP and ICONWIP. 

It is clear that ICONWIP has less variability at the arrival of lots when compared to 

CONWIP. For the sample shown, the inter-arrival time ranges from 87 to 200 

minutes. This is because the ICONWIP is targeting the minimum time between 

arrivals and not the maximum, adding a floor to the inter arrival times. Lots with 

more than 87 minutes between the arrivals are released to the Minifab upon the 

departure of another lot after checking that more than 87 minutes has passed since 

the previous lots are released.  

As mentioned earlier that this variability of arrivals affects ca to the three stations 

of the Minifab, the results of the three scenarios are given in Table  4-12. It is 

observable from the results that Push-det. has the lowest ca at all the stations. 

ICONWIP has better performance than CONWIP regarding ca at the three stations. 

Table  4-12: Mean ca to the three stations for Push-det., CONWIP and ICONWIP. 

Scenario ]^>  ]^_  ]^`  

Push-det. 0.629 0.801 0.843 

CONWIP 0.863 0.850 0.967 

ICONWIP 0.668 0.810 0.861 
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4.10 SELECTION OF THE BEST MINI-FAB SCENARIO 

To confirm the results attained from the previous sections, Nelson’s combined 

method discussed in Section  2.5.4 (Subsection Experimentation and Analysis) is 

applied here to select the best Mini-fab scenario.  Table  4-13 shows the parameters 

and constants required for this application. 

Table  4-13: Parameters and Constants for Nelson’s method of Mini-Fab scenarios. 

Parameter Value Constant Value 

∝ 0.05 : 3.069 

A 4 ℎ 3.285 


B 15 F 1 

The selected practically significant difference value of F =1 indicates that, with 

95% confidence, the mean cycle time (which is approximately 1 day) of the 

selected scenario is less than 1 minute longer than the actual best system. 

Table  4-14 presents the outcomes of the Nelson’s combined method when applied 

on the Mini-Fab scenarios. It is shown that there is only one survivor ICONWIP, 

thus this is the best scenario and the procedure is terminated. 

Table  4-14: Results from Nelson’s combined method- Mini-Fab scenarios. 

Scenario � ���  G�# � ��� ��� +max	(0,��� − F) Decision 

Push-exp. 1 7,344 24,933,090 

2 4,094 5,623 

Eliminate 3 4,096 5,690 

4 4,095 5,553 

Push-det. 2 1,558 1,021 

1 4,094 11,409 

Eliminate 3 24.05 1,624 

4 26.11 1,488 

CONWIP 3 1,624 10.50 

1 4,096 11,410 

Eliminate 2 24.05 1,558 

4 2.97 1,488 

ICONWIP 4 1,488 4.07 

1 4,095 11,409 

Keep 2 26.11 1,558 

3 2.97 1,624 
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4.11 CONCLUSIONS OF MINI-FAB EXPERIMENTS 

Although it is given that 84 lots per week are introduced to the Minifab; however, 

testing different input values for inter arrival times between lots results in better 

throughput rates, and 93 lots per week is selected to be the target TH to the all 

scenarios tested in this work.  Table  4-15 presents the mean for the TH, CT and 

WIP averaged based on the outcomes of the 15 replications; (	
ZZZZ, �	ZZZZ, h
i	���ZZZZZZ) 
respectively. The results show that the target TH is attained with major differences 

in the remaining performance measures. 

Table  4-15: Results of Minifab experiments. 

Scenario 
	
ZZZZ  

(lots) 
�	ZZZZ 

(minutes) 
���ZZZZZZ 
(lots) 

Push-exp. 93.18 7,344 68.45 

Push-det. 93.33 1,558 14.42 

CONWIP 93.10 1,624 14.50 

ICONWIP 93.09 1,488 13.56 

Comparing Push-exp. and Push-det., both scenarios produced a 	
ZZZZZ of 93 lots per 

week; still the �	ZZZZ  and ���ZZZZZZ of Push-det. are better than Push-exp. as follows: 

� �	ZZZZ is reduced from 7,344 to 1,558 minutes per lot gaining 78.79% better 

performance.  

� ���ZZZZZZ  is decreased from 68.45 to 14.42 lots resulting in 78.93% 

improvement.  

Therefore, switching from exponential input to deterministic input reduced the 

variability of arrivals to the first station of the Minifab that results in lower 

variability of arrivals through all the stations downstream and consequently 

improved all the performance measures under study as well as reduced all the 

variances of the measures.  

Applying CONWIP to the Minifab tempted a source of arrival variability, that 

degrades the performance of the Minifab when compared to that achieved with 

Push-det., although both scenarios produced 93 lots per week for 	
ZZZZ and 14.5 lots 
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for  ���ZZZZZZ; yet the �	ZZZZ	increased from 1,558 to 1,624 minutes per lot degrading the 

�	ZZZZ  performance with 4.24%.  

The issue of arrival variability leads to the proposal of ICONWIP that regulates the 

release of lots to the Minifab. The results presented in Table  4-15 confirms that 

ICONWIP is the best strategy applied to the Minifab, and it improved the 

performance of the Minifab over CONWIP as follows:  

� ICONWIP reduced  �	ZZZZ  from 1,624 to 1,488 minutes per lot leading to better 

performance with 8.37%. 

� WIPZZZZZZ is decreased from 14.5to 13.56 lots resulting in 6.48% lower WIP.  

Finally, Comparing Push-det. and ICONWIP is undertaken, both scenarios 

produced 93 lots per week for 	
ZZZZZ with an increase of  m�no at ICONWIP over Push-

det. Thus, all the other measures of ICONWIP are better than Push-det. as follows: 

� �	ZZZZ  is reduced from 1,558 to 1,488 minutes per lot improving the 

performance with 4.49. 

� WIPZZZZZZ is decreased from 14.42 to 13.56 lots resulting in 5.96% better 

performance.  

After comparing all the experiments tested on the Minifab, it is concluded that 

ICONWIP is outperforming CONWIP as well as Push with deterministic input. 

Therefore, it is recommended to apply the same methodologies tested on larger 

models that include greater number of machines, more processing steps and 

exhibits more complexity and variability as well as to test the applicability of the 

proposed ICONWIP lot release control strategy. 
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5 WAFER FABRICATION FACILITY UNDER STUDY 

As mentioned in the previous chapter that the most popular models used by 

researchers is the Minifab, because it captures some of the challenges involved in a 

re-entrant fab; however, it has a limited number of stations, machines and steps.   

Also, Wein’s model is widely used [38, 91, 110, 111], it has been a benchmark for 

many semiconductor manufacturing studies. Most of the parameters of the model 

are derived from the data gathered at the Hewlett-Packard Technology Research 

Centre Silicon fabrication, which is a large R&D facility in Palo Alto, CA. Also, other 

studies used reduced models of real wafer fabrication facilities [9, 15, 101, 102, 

112]. Although Wein’s model has larger number of stations including greater 

number of machines that are exposed to random breakdowns, and greater number 

of steps are required to complete a production of a lot which results in higher re-

entrancy when compared to Minifab; however, it does not include any of the 

complex batching and sampling processes found in real fabs. 

In this work, a representative segment of an existing wafer fabrication facility 

operating with the latest technologies used in the semiconductor manufacturing is 

under study. This Segment has been defined with the assistance of the ICMR, which 

works with a number of wafer fabrication facilities and research institutes in 

Ireland and Europe to address the significant challenges involved in operating 

highly re-entrant semiconductor manufacturing lines.  

5.1 DATA COLLECTION 

The process of building the model depends on a set of data that can be categorized 

into structural, operational, and numerical data. These data are presented in 

details in the following sections. 
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5.1.1 Structural Data 

The Segment under study is composed of 12 stations. Each station performs a 

specific operation and is composed of different number of identical machines as 

shown in Table  5-1. 

Table  5-1: A summary of the structural data. 

Station 
Operation Description 

No. of 
Machines No. Type 

1 MDep Metal Deposition-Pad Deposition 2 

2 TCheck Thickness Check-Check 2 

3 LPat Lithography Patterning 4 

4 LAlign Pattern Alignment Check 2 

5 LDim Pattern Dimension Check-Etch Dimension Check 3 

6 MEtch Metal Etch-Pad Etch 3 

7 RWash Resist Removal 2 

8 IDep Insulation Deposition 3 

9 IPol Insulation Planarization-Insulation Thickness 2 

10 IEtch Insulation Etch 5 

11 VDep Via Deposition 3 

12 VPol Via Planarization 2 

The unit flowing in the Segment and requiring use of the available 

machines/stations is a lot of 25 wafers and presenting a single product type. If any 

machine is not available (processing another lot or down), lots are allowed to wait 

and form queues in front of the station of that machine. 

5.1.2 Operational Data 

Lots visit different stations following a specific routing; where, some lots are 

subjected to sampling at the measurement stations, others may follow batching 

rules, as well as the machines within the stations are exposed to breakdowns. 

Exemplifications of the operational data included in this work are provided in the 

following sections. 
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Routing of Lots 

The Segment features 46 processing steps and 33 machines distributed in 12 

stations; hence, each lot visits the same station more than once (re-entrant flow) in 

order to complete its processing as presented in Figure  5-1.  

 

Figure  5-1: The routing of the selected segment of a wafer fabrication facility. 
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Sampling at Measurement Stations 

There are three sampling stations at the Segment, these stations are: LDim, 

TCheck, and LAlign, where each station has its rule for sampling as follows: 

� At LDim : Sampling rate is 2/3 initial remains sampling, where 2 lots are 

sampled and the third lot skip the sampling process, but here a lot that is 

sampled once should be sampled each time it visits the station on the same 

machine that was used for sampling before. Also, it should be noted that 

when a lot skips sampling it is never sampled. 

� At TCheck and LAlign: Sampling rate is also based on total count as shown 

below; however, the conditions of whether to sample a lot or not, and of 

sampling the same lot on the same machine do not apply. Selecting a lot for 

sampling simply depends on arrival; a lot that is sampled once can skip 

sampling another time it revisits the station and vice versa. 

� Sampling rate for TCheck is 2/3 total count, where two lots are 

sampled and the third lot skip the sampling process. 

� Sampling rate for LAlign is 3/4 total count, where three lots are 

sampled and the fourth lot skip the sampling process. 

Batching Stations 

In the Segment there is a cascaded batch, where batches are allowed to be formed 

up to a maximum allowable batch size and then are cascaded through the machine 

[12]. The cascaded batch is found at RWash and IEtch stations; where, 2 lots of the 

same step are batched and then cascaded through the machines.  

5.1.3 Numerical Data 

The numerical data is the data concerned with values for example: loading to the 

production line, processing times, run rates, mean time to failure (MTTF), mean 

time to repair (MTTR), and transport times, these values can either be 
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deterministic (constant) or stochastic (probabilistic), these are presented as 

follows: 

Deterministic Data 

Every day 19 lots are loaded to the production line, within each of the 12 stations 

all machines have the same nominal run rate in terms of the number of lots they 

can process, with the station run rate being the sum of the machine run rates. 

Table  5-2 presents the processing times of each step for every lot in minutes.  

Table  5-2: A summary of processing times. 

Station 
Steps Served by Each Station 

Processing Time 
(minutes per lot) No. Type 

1 MDep S1, S20, S39 23.07 

2 TCheck S2, S11, S21, S30, S40 0.681 

3 LPat S3, S12, S22, S31, S41 36.6 

4 LAlign S4, S13, S23, S32, S42 1.2 

5 LDim S5, S8, S14, S17, S24, S27, S33, S36, S43, S46 0.857 

6 MEtch S6, S25, S44 42.9 

7 RWash S7, S16, S26, S35, S45 7.89 

8 IDep S9, S28 60 

9 IPol S10, S29 30 

10 IEtch S15, S34 100 

11 VDep S18, S37 60 

12 VPol S19, S38 30 

Stochastic Data 

The developed model is stochastic because there is a transport time for lots 

between all stations that is triangularly distributed with a minimum of 6 minutes, a 

maximum of 12 minutes, and a peak of 9 minutes.  

There are a number of alternatives for modelling downtimes and failures: first, it 

can be ignored, second, it may not be modelled explicitly but processing times are 

increased in appropriate proportion, third, constant values for time to failure and 

time to repair can be used, and finally, statistical distributions for time to failure 

and time to repair may be used [72]. 
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In the Segment statistical distributions for time to failure (TTF) and time to repair 

(TTR) are used. It is assumed that the each machine is individually subjected to 

random failure and random repair times based on exponential distributions which 

provides a good statistical model [72], and was used by [48, 110, 113-115]. 

To establish the MTTF and MTTR of the Segment, “Up and Down” time raw data 

provided by similar semiconductor manufacturing machines with process 

characteristics which match the different types of processing in the Segment are 

used. It be should be noted that the availability exhibited by the real machines is 

not used directly the segment under study, rather the mean time between failures 

(MTBF) from the data is used to establish the mean frequency of the “failure-

repair” cycle for the machine.  

The following steps show in details how these values are derived: 

1. An anonymised dataset of machine status from a working fab was provided. 

The event time information from the machines relating to changing status 

from “Available” to “In Repair” were transformed into a list of “up” and 

“down” interval pairs. As this data was extracted to cover a period of 

production time, only complete events were considered in this analysis. For 

each station the MTBF values were as shown in Table  5-3 (Details of 

calculating MTBF can be found in Appendix B). 

Table  5-3: Calculating MTBF for Each Station. 

Station 
Type 

Time between consecutive failure events (hours) 
Sample 

size 
MTBF 

(hours) 

MDep 39.51 93.09 46.57 … 121. 8 204.2 155.8 244 88.09 

TCheck 71.17 23.58 10.29 … 10.87 35.27 3.01 257 50.09 

LPat 61.82 97.82 15.55 … 181.5 97.98 181.3 251 84.72 

LAlign 71.17 23.58 10.29 … 10.87 35.27 3.01 257 50.09 

LDim 28.68 83.15 15.43 … 68.09 335.7 166.5 161 107.2 

MEtch 61.82 97.82 15.55 … 181.5 97.98 181.3 251 84.72 

RWash 31.91 23.66 5.67 … 32.54 3.11 10.41 1,379 12.67 

IDep 39.51 93.09 46.57 … 121.8 204.2 155.8 244 88.09 

IPol 14.62 12.30 25.34 … 28.18 24.78 34.07 1,245 18.35 

IEtch 61.82 97.82 15.55 … 181.5 97.98 181.3 251 84.72 

VDep 39.51 93.09 46.57 … 121. 8 204.2 155.8 244 88.09 

VPol 14.62 12.30 25.34 … 28.18 24.78 34.07 1,245 18.35 
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2. Availability (A) level, which is the fraction of time the machine is up and 

available for processing is given by the Equation  5-3 [17]. Figure  5-2 shows 

a timing diagram illustrating up and down events. It is clear from the figure 

that the MTBF covers one up and down event is thus the sum of the MTTF 

and MTTR resulting in Equation  5-2.  

 

Figure  5-2: Timing diagram. 

 p = q		rq		r + q		s Equation  5-1 

 p = q		rq	tr Equation  5-2 

3. MTBF is then combined with the availability provided to determine MTTF 

and MTTR, using Equation  5-3 and Equation  5-4; respectively, resulting 

values of both MTTF and MTTR are presented in Table  5-4. 

 q		r = q	tr	u	p	 Equation  5-3 

 q		s = q	tr	u	(1 − p) Equation  5-4 

Table  5-4: Generating MTTF and MTTR. 

Station 
Type  

A 
MTBF 

(hours) 
MTTF 

(hours) 
MTTR 

(hours) 

MDep 0.76 88.09 66.95 21.14 

TCheck 0.97 50.09 48.58 1.50 

LPat 0.84 84.72 71.17 13.56 

LAlign 0.97 50.09 48.58 1.50 

LDim 0.96 107.24 103.42 4.31 

MEtch 0.77 84.72 65.24 19.49 

RWash 0.96 12.67 12.17 0.51 

IDep 0.83 88.09 73.11 14.97 

IPol 0.92 18.35 16.88 1.47 

IEtch 0.75 84.72 63.55 21.18 

VDep 0.82 88.09 72.23 15.86 

VPol 0.79 18.35 14.50 3.85 
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5.1.4 Summary of Data Collection 

As mentioned earlier the numerical data can either be deterministic (constant) or 

stochastic (probabilistic), Table  5-5 gives a summary of all the input data to the 

model. 

Table  5-5: Summary of input data. 
Input Data Distribution Parameters 

Segment loading (Push Batch) Deterministic 19 lots every day 

Travel times Triangular 
Minimum=6, Maximum=12, and 

Peak=9 minutes. 

 MDep 
station 

Processing times Deterministic 23.07 minutes 

Time to failure 
Exponential 

Mean=4016.73 minutes 

Time to repair Mean=1268.44 minutes 

TCheck 
station  

Processing times Deterministic 0.681 minute 

Time to failure 
Exponential 

Mean=2914.8 minutes 

Time to repair Mean=90.15 minutes 

Sampling Rate Deterministic 1/3 total count 

LPat 
station  

Processing times Deterministic 36.6 minutes 

Time to failure 
Exponential 

Mean=4270.35 minutes 

Time to repair Mean=813.39 minutes 

LAlign 
station   

Processing times Deterministic 1.2 minutes 

Time to failure 
Exponential 

Mean=2914.8 minutes 

Time to repair Mean=90.15 minutes 
Sampling Rate Deterministic 1/4 total count 

LDim 
station   

Processing times Deterministic 0.857 minute 

Time to failure 
Exponential 

Mean=6205.33 minutes 
Time to repair Mean=258.56 minutes 

Sampling Rate Deterministic 1/3 initial remains sampling 

MEtch 
station  

Processing times Deterministic 42.9 minutes 

Time to failure 
Exponential 

Mean=3914.49 minutes 

Time to repair Mean=1169.26 minutes 

RWash 
station  

Processing times Deterministic 7.89 minutes 

Time to failure 
Exponential 

Mean=729.93 minutes 

Time to repair Mean=30.41 minutes 

IDep 
station 

Processing times Deterministic 60 minutes 

Time to failure 
Exponential 

Mean=4386.69 minutes 

Time to repair Mean=898.48 minutes 

IPol 
station  

Processing times Deterministic 30 minutes 

Time to failure 
Exponential 

Mean=1013.02 minutes 
Time to repair Mean=88.09 minutes 

IEtch 
station  

Processing times Deterministic 100 minutes 

Time to failure 
Exponential 

Mean=3812.81 minutes 

Time to repair Mean=1270.94 minutes 

VDep 
station  

Processing times Deterministic 60 minutes 

Time to failure 
Exponential 

Mean=4333.84 minutes 

Time to repair Mean=951.33 minutes 

VPol 
station  

Processing times Deterministic 30 minutes 
Time to failure 

Exponential 
Mean=869.88 minutes 

Time to repair Mean=231.23 minutes 
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The objective of this work is to improve the performance of the Segment by 

achieving the same TH while minimizing the CT and WIP, as well as monitoring the 

U of the resources. 

5.1.5 Basic Capacity Analysis 

The Segment features 46 processing steps and 33 machines distributed in 12 

stations as mentioned earlier. It operates two 12-hours shifts a day, 7 days a week.  

It should be noted that in reality lots size differs from one fab to another and may 

differ in the same fab; however, in this work, it is assumed to be fixed at 25 wafers 

per lot, and only one product type is considered. 

Basic capacity analysis is used to estimate the theoretical throughput rate per 

week, in order to know the maximum daily loading of the production line. This is 

achieved by testing different loadings per week to check whether the fab has 

enough capacity to produce the applied load given the maximum allowable 

capacity. To fulfil this, an important feature of the Segment is first presented in the 

following sections. 

Utilisation 

The utilisation of a station is denoted by	v, and it is defined as the fraction of time 

it is not idle for lack of WIP. This includes the fraction of time the station is 

working on lots or has lots waiting but is unable to work on them due to a machine 

failure, or other detractor. Thus, U can be computed as in Equation  5-5, where the 

where the effective production rate is defined as the maximum average rate at 

which the station can process lot, considering the effects of failures, and all other 

detractors that are relevant over the planning period of interest [17].  

 v� = wx�wy�  Equation  5-5 

Where;  

ẑ � is the arrival rate at the station, and 

zd� is the effective production rate of the station. 
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Assuming the Segment has enough capacity to produce the number of wafers 

introduced to the line per week, then the arrival rate at each station is the WSPW 

multiplied by the number of times a wafer visits that station [68].  

Referring to the definition of the effective capacity in the operations management, 

it is the capacity the Segment expects to achieve given current operating 

constraints [116]. Therefore, to compute the effective production rate, the run rate 

of the station is multiplied by the availability of that station, and the U of a station 

can be calculated using Equation  5-6.  

 

 

v� = {|}{	×~�w�×��   Equation  5-6 

Where; 

S�  is the number of times each wafer visits the station, 

z�  is the run rate of the station, 

p�  is the availability of the station, and 

� is the station number. 

Fab Utilisation 

In semiconductor manufacturing, the failure of equipment or processes is often not 

a hard failure in the sense that something breaks; but rather, a soft failure in which 

the equipment begins to produce out of the tolerance region. Due to the nature of 

the product and process, this may not be detected for some time.  For this reason, 

the machines are not usually overloaded even if there is available capacity for 

production. Hence, based on management decisions, a maximum utilisation (Umax) 

is usually set for each machine depending on the nature of the process it performs.  

This Umax relates to the utilisation of the expected availability of the Segment rather 

than the classic utilisation mentioned in the previous section. The fab Utilisation is 

a special measure of utilisation exclusively to the fab and it is denoted by (v∗), it 



88 

 

includes Umax in its calculation as an operating constraint, thus, v∗ is computed as 

given in Equation  5-7.  

 v∗� = {|}{	×~�w�×��×��x��  Equation  5-7 

Moreover, v∗	is used to evaluate the theoretical throughput rate, in order to know 

the daily loading to the Segment. Different numbers of wafers per week are tested 

theoretically by the aid of Equation  5-7 to determine the number of lots that can be 

introduced to the Segment every day based on the capacity.  

Based on these calculations, it is found that 3325 WSPW introduced to the Segment 

with 19 lots loading to the production line every day, is the maximum applied load 

given the maximum allowable capacity using the data presented in Table  5-6. It 

should be mentioned that an addition of an extra 25 wafers which is equal to one 

lot will need an additional machine at LPat station. 

Table  5-6 presents the v calculated using Equation  5-6 and the v∗ computed using 

Equation  5-7 of each station based on the production of 3325 wafers per week. 

Table  5-6: Utilisation (�) and Fab Utilisation (�∗) of the stations. 

Station 
No. of 

Steps 

Run Rate 

per Station 

(wafer/wk.) 

Availability Umax 
Utilisation 

(U) 

Fab 
Utilisation 

(U*) No. Type 

1 MDep 3 21,840 0.76 0.85 0.601 0.707 

2 TCheck 5 59,136 0.97 0.69 0.29 0.42 

3 LPat 5 27,552 0.84 0.72 0.718 0.998 

4 LAlign 5 33,600 0.97 0.67 0.51 0.761 

5 LDim 10 70,560 0.96 0.65 0.491 0.755 

6 MEtch 3 17,640 0.77 0.79 0.734 0.93 

7 RWash 5 63,840 0.96 0.78 0.271 0.348 

8 IDep 2 12,600 0.83 0.85 0.636 0.748 

9 IPol 2 16,800 0.92 0.73 0.43 0.589 

10 IEtch 2 12,600 0.75 0.72 0.704 0.977 

11 VDep 2 12,600 0.82 0.77 0.644 0.836 

12 VPol 2 16,800 0.79 0.82 0.501 0.611 
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Regarding  v∗ it is clear that LPat station has the highest utilisation; hence, it is the 

bottleneck station. However, with respect to v it is observable that the highest 

utilisation is MEtch station and this is due to removing the Umax from the utilisation 

calculation. Therefore, v∗ is needed to identify the bottleneck station, based on 

management decisions LPat station is the bottleneck station and the value of v for 

this station should not exceed the Umax. 

It should be noted that Umax is a soft constraint, meaning that stations may have v 

higher than Umax in some instances; however, it won’t be consistently higher.  

Finally, it should be mentioned that this highly classified data has been provided 

from a representative of the ICMR who has a great experience in the 

semiconductor manufacturing and is widely knowledgeable about such system 

behaviours.  

After preparing the different input data for the model, simulation model 

development takes place, which is described in detail in the next chapter. 
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6 SIMULATION MODEL DEVELOPMENT 

A simulation model of the Segment, presented in the previous chapter, has been 

developed in the ExtendSimTM Suite v8.0.2 simulation environment. This chapter 

presents in details the model development process.  

Due to the complexity of the semiconductor wafer fabrication facilities, usually 

simpler models are used as a test bed for evaluating different manufacturing 

control strategies, where some of the work done in literature is referenced earlier 

in chapter 3.  

In this chapter, the Segment is modelled to test different manufacturing control 

strategies. The model includes greater number of stations and machines with 

greater number of steps than most of the previously mentioned test beds. 

Moreover, it captures most of the challenges involved in a real wafer fab such as 

high re-entrancy, complex batching and sampling, variable breakdowns... etc. 

6.1 MODELLING CHALLENGES DURING RESEARCH 

A major challenge encountered during the modelling process is relative to the 

utilisation reported from the “Activity” blocks in ExtendSimTM as these blocks 

include downtime as part of the utilisation. However, in the Segment, there is 

another measure of utilisation which is the “Utilisation of Availability”, this 

measure is calculated using Equation  6-1. 

 v:�6��h:��
	�.	p�h�6h��6�:� = 	 	���	�
	v��	�:h6		��� − ��$
:��� Equation  6-1 

6.1.1 Utilisation of Availability 

Utilisation of availability denoted by UofA is one of the performance measures in 

this work, which was not reported directly from any of the ExtendSimTM building 

blocks. Accordingly, a number of blocks have been added to each station so that it 

can report the UofA. 
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To calculate the UofA accurately based on Equation  6-1; an “Integrate” block is 

used that can integrate an input value over time. An “Integrate” block is added to 

the “Activity” block connected to the F (Full) connector that returns a value of one 

whenever a lot is being processed. This value is integrated over time resulting in 

the “Time in Use” (T_InUse). Another “Integrate” block is connected to the SD 

(ShutDown) connector that returns a value of one whenever a machine is down. 

Again, this value is integrated over time resulting in the “Downtime” (T_Down). 

T_InUse and T_Down reported from the “Integrate” blocks are input to an 

“Equation” block, which calculates the UofA based on Equation  6-1. This 

arrangement of blocks is shown in the simplified model in Figure  6-1.  

 

Figure  6-1: Reporting utilisation of availability. 

6.1.2 Maximum Utilisation 

Keeping the machines’ utilisation below a pre-determined value of maximum 

utilisation (Umax) is the other challenge faced during modelling. Arrival of lots to 

stations or machines must be controlled, i.e. lots are prevented from entering the 

station or machine. Consequently, the UofA is prevented from exceeding Umax. The 

control logics for monitoring and controlling the UofA are provided in the following 

section. 

6.1.3 Different Input Values and Models 

Different input values are tested to control the flow of lots to stations or machines. 

First, introducing 18 lots per day which is the minimum loading that results in 

3150 WSPW (126 lots per week) means there is still enough capacity in all stations 

for additional loading. Second, introducing 19 lots per day which is the maximum 

loading that results in 3325 WSPW (133 lots per week) means there is not enough 
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capacity for additional loading in some stations. Finally, overloading some stations 

was tested by introducing 20 lots per day which results in 3500 WSPW (140 lots 

per day). It should be noted that these values are guided by the calculations 

mentioned in  0. 

Three different versions of the model are developed to control the UofA, not to 

exceed the Umax. Different input values are tested (introducing 18, 19, and 20 lots 

per day) for the three versions shown in Figure  6-2, which are: 

� Model A: Gated Control of the flow of lots based on station level utilization. 

� Model B: Gated Control of the flow of lots based on machine level utilization.  

� Model C: Machine shutdown based on keeping the UofA of each machine 

below Umax. 

 

Figure  6-2: Three different versions of the model. 

6.1.4 Performance Metrics 

The performance metrics used in this work are: 

� Maximum utilisation of availability (max UofA) for each station, which is 

reported from the model and should not exceed the maximum utilisation 

(Umax) of the fab for each station. 

� Average utilisation of availability (avg. UofA) to each station, which is 

reported from the model and should be equal to the Utilisation (U), 

calculated using Equation  5-5, which includes the downtime as part of the 

utilisation and is calculated by multiplying the maximum utilisation (Umax) 
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of the fab with the theoretically calculated fab utilisation (U*) using 

Equation  5-7 for the same station. 

� Average, minimum, and maximum throughput rate, this is the number of 

finished lots per week. 

6.1.5 Experimentations, Results, and Analysis 

The three different versions of the model are run when introducing different 

number of lots per day (18, 19, and 20 lots per day). Each simulation run covers 

one year (52 weeks); where, results are reported weekly. Analysis of results has 

shown the following; first, when comparing the maximum UofA to the Umax Model B 

and Model C performed better than Model A. Second, investigating the average 

UofA and how it should be compared to the standard utilisation; Model B showed 

the worst results with respect to Model A and Model C. Finally, when evaluating 

the throughput rate at different loading levels for all models; Model A and Model C 

were more capable of achieving the expected lots per week than Model B.  In 

conclusion, model C is considered the more likely modelling version to be selected, 

this work has been published at [117]. 

6.2 REMODELLING 

It is clear from the previously mentioned sections that preventing UofA from 

exceeding Umax results in extra modelling complexity. In addition, it is found that 

the model selected for controlling the UofA needs long computational time (around 

40 minutes for one year simulation run time). Finally, this modelling approach 

leads to inducing a bottleneck that is not actually present in reality due to 

controlling the arrival of lots to the machines by shutting down the machines when 

the UofA reaches the Umax. 

Therefore, several meetings with the ICMR representative were carried out 

discussing these issues. Finally, it was decided to rebuild the model without any of 

the earlier mentioned constraints, and just to monitor the utilisation reported from 

the model (v mentioned in chapter 3) not to exceed the Umax, also, ignoring the 
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UofA calculation and control to reflect what is really done at a real fab by just 

monitoring and not controlling.  

This simplification results in considerable time savings where the new constructed 

model without any controls takes around 2 minutes computational time for a 1 

year simulation run time. The following sections give a detailed description on the 

modelling processes under taken in this work. 

6.3 MODEL CONSTRUCTION 

The simulation model comprises 4 modules; a lot router, stations module with 

different hierarchal blocks to represent the stations, a shutdown module, and a 

module that collects and reports most of the results as shown in Figure  6-3.  

The lot router ensures that the lots are sent to the stations in the exact sequence 

that is presented in the fab description. On the other hand the stations ensure 

processing of lots according to the numerical and operational characteristics of the 

stations.  

The shutdown module gives signals to shutdown the machines based on the 

numerical and operational data of the machines breakdowns. Finally, the collecting 

and reporting results module gathers all of the results for further statistics and 

analysis.  
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Shutdown

Stations

Collecting and reporting results

 

Figure  6-3: The constructed model. 

6.3.1 Structure of Database 

One of the main advantages in this simulation model building is the ExtendSim 

database, which is used to represent, manage, and track the status and properties 

of entities and resources. The database consists of tables, and each table has a 

group of fields that have relationships between each other.  

Establishing a parent/child relationship is another powerful database feature, 

which limits a field’s set of data to what is present in the parent. Instead of entering 

data directly into the child field, you select the data from a popup data selector that 

shows all the possible values from the parent field. Moreover, parent/child 
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relationship helps in reducing data entry, keeping consistent data, preventing data 

duplication and reducing data entry errors as shown in Figure  6-4. 

This database plays an important role, where it extracts the input data required for 

running the model from the specific tables using “Read” blocks, and then reports 

back results to the particular tables using “Write” blocks.  

 

Figure  6-4: Constructed model database. 

It is shown that the database has two main sections: the first section is responsible 

for the data entry that is related to the number of stations, the process flow of lots 

and the processing times of each station, along with the number of machines with 

their breakdowns. It consists of five tables, two of them are parent tables (Stations 

and Machines tables), that have parent/child relationships with the other three 

tables of the input data and another table from the second section. This output data 

section has four tables that report all the information and track the movement of 

every lot at the model in order to have a post processing full analysis that will help 

in verifying the model improving the Segment performance. 
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6.3.2 Attributes Definition 

Lots flowing throughout the model are the main flow entities in the developed 

model. These entities are defined by a number of attributes, which are listed in 

Table  6-1. 

Table  6-1: List of attributes used. 

Attribute Function 

Lot ID Defines each lot generated to the model. 

Lot In Defines the arrival time of the lot to the model. 

Lot Out Defines the departure time of the lot to the model. 

Station Number Defines the station number. 

Step Number Defines the step number of a lot. 

Machine Number Defines the machine number. 

Processing Time 
Defines the processing time needed to complete a specific operation 
by a machine. 

Queue In Defines the arrival time of the lot to a station queue. 

Queue Out Defines the departure time of the lot from a station queue. 

Machine Out Defines the departure time of the lot from a machine. 

Sampled 
States whether a lot should be sampled or not. The attribute value 
can be either Yes (sample lot) or No (don’t sample lot, or skip 
operation) according to the sampling rate of the sampling stations. 

None Sampled 
States whether a lot was sampled or not at the sampling station with 
initial remains sampling condition. The attribute value can be either 
Yes (lot was not sampled) or No (lot was sampled). 

LDim Sampled 
Defines which machine at the sampling station with initial remains 
sampling condition sampled the lot. The attribute value can be 
either LDim _1 sampled, LDim _2 sampled, and LDim _3 sampled. 

6.3.3 Modelling the Re-entrant Flow of Lots 

The routing of lots based on the sequence of operations required for each job is 

modelled using the lot router shown in Figure  6-5. Part (A) of the lot router starts 

with introducing lots to the model according to the lot release control strategy. 
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Lots then flow to the “Set” block in order to set some attributes as: Lot ID, Step 

Number, Station Number (both are set as 1s), Lot In, and Sampled (No).  

 

Figure  6-5: Routing of the lots. 

As mentioned earlier, each lot requires 46 processing steps. For each step, the 

processing time of the lot needs to be defined before being sent to a station. In part 

(B) two “Read” blocks are used to retrieve the processing time from the database 

as presented in Figure  6-6.  
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Figure  6-6: Retrieving processing times from database. 

Since, the processing time for each station is fixed (as presented in Section  5.1.3); 

thus, based on the Step Number attribute, the next station that the lot will visit is 

determined using the first “Read” block. Next, based on the retrieved station 

number, the processing time at that station is retrieved using the second “Read” 

block. Finally, the processing time retrieved is stored in the entity as the 

Processing Time attribute. 

Afterwards, the lots are sent to part (C) in Figure  6-5; where, a decision is made to 

determine whether or not the lots need further processing. If the Step Number is 

46 or less, then it is sent to the station that serves this step, otherwise, it moves to 

the “Exit” block of the collecting and reporting results module (Figure  6-3). Lots 

are sent to the different stations using a “Throw” block that sends the lots to the 

stations depending on the Station Number and Step Number attributes as 

presented in Figure  6-7. 
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Figure  6-7: Sending lots to stations based on step number. 

Finally, part (D) performs the feedback of lots that re-enter the model and join the 

flow of the other newly introduced lots to the model. This is achieved by receiving 

the unfinished lots from the 12 stations using a “Catch” block and incrementing the 
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Step Number by 1, indicating completion of the previous step. A “Select Item In” 

block is used to join the re-entering lots with the other ones.  

6.3.4 Modelling Different Stations 

Each station is modelled as a hierarchical block holding a number of parallel 

machines, with a “Catch” block before it and followed by a “Throw” block as shown 

in the stations module (Figure  6-3). The “Catch” block receives lots from part (C) in 

Figure  6-5 depending on the Step Number at the station responsible for serving 

that step. The “Throw” block sends lots to part (D) of the lot router described in the 

previous section indicating completion of the step at that station.  

Stations Basic Structure 

The hierarchical block representing the station get lots from the lot router, and 

then introduce them to the station. First, arrival times of lots to the station are set 

(Queue In attribute), then lots wait for the processing. At the end of each station 

there is an “Activity” block that represents the transport time to the next station.   

It should be noted that the Processing Times attributes are retrieved from the 

database based on the Step Number and the Station Number attributes to the 

“Activity” block representing the machine. Moreover, the breakdowns of the 

machines are generated from the shutdown module through the database that 

stores the breakdown distributions of the machines.  

Additionally, there are time stamps for each lot at every movement through the 

station before the queue, after the queue and after the processing on the machines, 

these time stamps are reported to the database through the “Write” block, the flow 

of lots through a station is presented in Figure  6-8. 
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Figure  6-8: Modelling a station. 

The 12 stations are modelled with the previously described modelling techniques 

and modifications are added to the measurement and batching stations.  

Modelling Sampling at the Measurement Stations  

There are three sampling stations at the Segment, TCheck, LAlign, and LDim. Each 

station has its rule for sampling as mentioned in the previous chapter. Two out of 

three lots and three out of four lots are sampled at TCheck and LAlign stations 

respectively; this is modelled by adding an “Information” block at the beginning of 

the station that counts the number of lots entering.  

Based on the sampling rate the lots follow their route either to be sampled by 

entering the station or by skipping that processing step (None sampled lots) as 

shown in Figure  6-9.  
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Figure  6-9: Modelling sampling stations 2 and 4. 

On the other hand, LDim station which has a 2/3 sampling rate with initials remain 

sampling. This station is modelled in the same way mentioned earlier; however, an 

attribute is defined to confirm the sampling of lots and another one is set to 

identify the machine that was used for sampling the lot (Sampled lot and LDim 

Sampled attribute mentioned in Section  6.3.2). Thus, when that lot revisits the 

LDim station, it will be sampled on the same machine used before. Also, another 

attribute is set when a lot is not sampled (None Sampled attribute mentioned in 

Section  6.3.2); in order not to be sampled any other time it revisits the station as 

presented in Figure  6-10.  
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Figure  6-10: Modelling sampling station 5. 

Modelling Batching Stations 

At the Segment there are two batching stations: RWash and IEtch Stations, where, 

2 lots of the same step are batched and then cascaded through the machine. This is 

applied by adding a “Queue Matching” block that matches 2 lots of the same Step 

Number attribute, followed by a “Batch” block and afterwards an “Un Batch” block, 

this is to ensure that the 2 batched lots enters the same machine and are processed 

at the same time as shown in Figure  6-11.  
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Figure  6-11: Modelling batching stations. 

6.3.5 Reporting Results 

As mentioned previously, after a lot completes the 46 processing steps, it is sent to 

the collecting and reporting results module (Figure  6-3). At that module, the 

recommended performance metrics for the Segment are calculated and reported. 

These measures are the mean and the variance of throughput rate, cycle time, and 

WIP, in addition to monitoring the mean utilisation (U) of each station to verify 

that it is below the Umax. 

Throughput rate per day 

Lots leaving the system pass through an “Information” block that counts the lots, 

the throughput rate is calculated on a daily basis; thus every day (1440 minutes) 

the value found at the “Information” block is written to the database through the 

“Write” block and a pulse is given to the “Information” block to reset its value to 

zero and restart counting as illustrated in Figure  6-12. 
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Figure  6-12: Reporting TH per day. 

Values reported are fed into the “Mean and Variance” block to compute the mean 

of the daily throughput rate reported over the simulation run time and the 

variances of these values. 

Cycle Time 

The cycle time is reported using the fourth connector of the “Information” block 

located at the end of the model. This block uses the timing attribute “Lot In” which 

is the time when the lot entered the system that is set at part (A) of the lot router 

(mentioned earlier in Section  6.3.3, Figure  6-5).  
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Figure  6-13: Reporting CT for every lot. 

Also, upon leaving the system, the lot passes through a “Write” block that reports 

to the database its Lot ID, the time it entered the system (both are set at part (A) of 

the router), the time it left the system (the current time of passing through the 

“Set” block just before the “Write” block) and its cycle time which is the total 

elapsed time spent in the system. 

This value is fed into the “Mean and Variance” block to calculate the mean cycle 

time reported over the simulation run time and the variances of these values. 

Work In Process 

Entering lots are counted at the lot router after immediately being created. Also 

lots that completed processing are counted just before leaving the model. The WIP 

is calculated by subtracting the lots leaving the system (lots out) from the lots that 

entered the system (lots in) as given in Figure  6-14. 
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Figure  6-14: Calculating the WIP. 

The calculated WIP values are fed into the “Mean and Variance” block to compute 

the mean WIP values calculated over the simulation run time and the variances of 

these values. 

It should be noted that the WIP for every station is calculated by the same way as 

modelled for the whole Segment, but by counting the number of lots entering and 

leaving the station instead of counting the number of lots entering and leaving the 

Segment.  

Utilisation 

In order to monitor the utilisation of each station, the utilisations of all the 

machines within a station directly reported from the “Activity” blocks are 

instantaneously averaged every week to compute mean utilisation of that station. 

This value is transported every week to the utilisations table of the output data 

section at the database (see Figure  6-4) as shown in Figure  6-15. 
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Figure  6-15: Reporting station utilisation. 

Values reported for each station are fed into the “Mean and Variance” block to 

compute the mean of the station utilisation reported over the simulation run time. 

6.3.6 Introducing Lot Release Strategies 

Different lot release strategies are introduced to the model. These strategies aim at 

controlling the WIP either over the whole Segment or across different sections 

within the Segment.    

This is achieved by applying a WIP cap using 3 blocks: “Queue” block with resource 

pool queue behaviour at beginning of the Segment/section, “Resource Pool” block 

with the desired WIP level, and “Resource Pool Release” block at the end of the 

Segment/section as presented in Figure  6-16. 

 

Figure  6-16: Controlling WIP over the Segment/section. 



110 

 

Whenever a lot enters the Segment/section through the “Queue” it seizes a card 

from the “Resource Pool” decreasing the number of cards available, and upon 

leaving the Segment/section through the “Resource Pool Release” that card is 

released back to the “Resource Pool” giving a signal to the beginning of the 

Segment/section that a new lot can be released to the Segment/section. The 

following sections discuss in detail the modelling of the different lot release control 

strategies used in this work. 

CONWIP 

To model CONWIP the WIP of the whole Segment is controlled. Therefore the 

“Queue” block with resource pool queue behaviour is placed at the beginning of the 

model, and the “Resource Pool Release” block that releases back the resource to 

the “Resource Pool” block of the model is located at the end of the model as shown 

in Figure  6-17. This is to ensure that the WIP of the whole model is controlled as 

intended. 

 

Figure  6-17: Modelling CONWIP lot release control strategy. 

ICONWIP 

The new ICONWIP is a variation of the CONWIP; where, there is a WIP cap on the 

whole Segment as in CONWIP. In addition to a “Gate” block that is closed to delay 

the release of lots based on a condition, and it is open when the condition is true as 

shown Figure  6-18. 
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Figure  6-18: Modelling ICONWIP. 

DBR 

To apply DBR lot release control strategy, then the WIP of a section starting from 

the beginning of the Segment and ending with the bottleneck station of the 

Segment is controlled.  

Here, the “Queue” block with resource pool queue behaviour is placed at the 

beginning of the model, whereas the “Resource Pool Release” block is located after 

the bottleneck station of the model. It should be noted that a card which is seized 

by a lot is not released back to the “Resource Pool” block unless that lot that will 

not revisit the bottleneck station any more as presented at Figure  6-19. This is 

done to make sure that the WIP of that section within the model is controlled as 

planned. 

 

Figure  6-19: DBR lot release control strategy at the model. 

Hybrid CONWIP/DBR 

Combining the aforementioned lot release control strategies (CONWIP and DBR); 

results in a hybrid CONWIP/DBR that is also tested in this work. One “Queue” block 

with resource pool queue behaviour is placed at the beginning of the model. This 

block controls the release of lots to the whole model at CONWIP as well as it 
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controls the release of lots to the section starting from the beginning of the model 

and ending with the bottleneck station at DBR as shown in Figure  6-20. 

 

Figure  6-20: Controlling the release of lots at hybrid CONWIP/DBR. 

Moreover, two “Resource Pool Release” blocks are needed to release back the 

cards to the two “Resource Pool” blocks. The one responsible for CONWIP is 

located at the end of the model and the other one responsible for DBR is located at 

the end of the bottleneck station. This is proposed to guarantee that the WIP of the 

whole model as well as the WIP of the selected section are controlled as intended. 

LCONWIP  

The proposed LCONWIP is a modification of the CONWIP; where, there is a WIP 

cap on the whole Segment as in CONWIP, in addition to loop WIP caps on selected 

stations requiring WIP control as shown in Figure  6-21.  

 

Figure  6-21: Modelling LCONWIP.  

Accordingly, CONWIP is modelled in the same way mentioned earlier, and 

regarding the loop assigned to a station, the “Queue” block with resource pool 

queue behaviour is placed before the selected station to be controlled. Whereas the 

“Resource Pool Release” block that releases back the resource to the “Resource 



113 

 

Pool” block of that station is located after the selected station, to confirm that the 

WIP of the selected station is controlled as required.  

6.4 MODEL VERIFICATION 

This step was carried out by using animation capabilities of the model building 

software and by reporting the results of the different building blocks of the model 

to ensure that the model was working as it should be.  

Moreover, it should be noted that the database played an important role at the 

verification process. The tracking lots table of the output data section (Figure  6-4) 

reports every movement of a lot within the model, and a sample of the results to a 

tracked lot (Lot ID 3740) is shown in Table  6-2 (in the next page).  

Investigating the results in Table  6-2, it is shown that the process flow of lots 

matches the flow mentioned earlier (see Figure  5-1) and all steps are performed at 

the assigned stations as intended. Then to ensure that the processing times used in 

the model are equal to the input values.   

A simple calculation is undertaken to compute the time a lot spends for processing. 

This is done by subtracting the time stamp of the queue out from the time stamp of 

the machine out, and the computed values are equal to the input values (refer back 

to Table  5-2), thus, the processing times are verified.  

Considering the sampling stations (TCheck, LAlign, and LDim), it is obvious that 

when the lot skipped the sampling the time stamp of queue in, queue out and 

machine out are the same and there is no computed processing times, and this 

ensures that the lot is not sampled.  

However, this lot is sampled on different machines when it revisits the same 

stations (TCheck and LAlign) because the sampling depends on the arrivals (For 

example step 2 is sampled on TCheck_2, step 11 is sampled on TCheck_1, and step 

21 is not sampled). Also, it is noticed that the lot is sampled 10 times on the same 

machine of LDim station (LDim_3) and this verifies that initial remains sampling 

on same machines as planned.  
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Table  6-2: Tracking Lot ID 3740. 

Results reported from tracking lots table at the database Calculated 
Processing 

Time 
(minutes) 

Step 
Number 

Station 
Number 

Machine 
Number 

Queue In 
(minutes) 

Queue Out 
(minutes) 

Machine 
Out 

(minutes) 

1 Station 1 MDep_2 282,240.00 282,586.15 282,609.23 23.08 

2 Station 2 TCheck_2 282,618.90 282,618.90 282,627.42 8.52 

3 Station 3 LPat_4 282,635.52 282,635.52 282,672.10 36.59 

4 Station 4 LAlign_1 282,682.30 282,682.30 282,697.30 15.00 

5 Station 5 LDim_3 282,705.82 282,705.82 282,716.54 10.71 

6 Station 6 MEtch_2 282,726.09 282,726.09 282,768.95 42.86 

7 Station 7 RWash_1 282,775.55 282,775.55 282,791.34 15.79 

8 Station 5 LDim_3 282,801.41 282,804.10 282,814.81 10.71 

9 Station 8 IDep_2 282,824.05 282,848.88 282,908.88 60.00 

10 Station 9 IPol_2 282,918.12 282,990.34 283,020.34 30.00 

11 Station 2 TCheck_1 283,029.26 283,029.26 283,037.78 8.52 

12 Station 3 LPat_3 283,046.93 283,046.93 283,083.52 36.59 

13 Station 4 Skip LAlign 283,095.15 283,095.15 283,095.15 Skip 

14 Station 5 LDim_3 283,104.36 283,111.61 283,122.32 10.71 

15 Station 10 IEtch_4 283,129.58 283,221.43 283,421.43 200.00 

16 Station 7 RWash_1 283,429.66 283,429.66 283,445.44 15.79 

17 Station 5 LDim_3 283,455.49 283,455.49 283,466.20 10.71 

18 Station 11 VDep_1 283,475.78 283,501.95 283,561.95 60.00 

19 Station 12 VPol_1 283,570.62 283,808.15 283,838.15 30.00 

20 Station 1 MDep_2 283,846.71 283,956.92 283,980.00 23.08 

21 Station 2 Skip TCheck 283,990.28 283,990.28 283,990.28 Skip 

22 Station 3 LPat_4 283,998.44 284,135.31 284,171.89 36.59 

23 Station 4 LAlign_2 284,179.50 284,179.50 284,194.50 15.00 

24 Station 5 LDim_3 284,203.61 284,203.61 284,214.32 10.71 

25 Station 6 MEtch_1 284,222.32 284,324.55 284,367.41 42.86 

26 Station 7 RWash_1 284,377.01 284,377.01 284,392.80 15.79 

27 Station 5 LDim_3 284,402.14 284,402.14 284,412.86 10.71 

28 Station 8 IDep_1 284,422.67 284,564.24 284,624.24 60.00 

29 Station 9 IPol_1 284,632.87 284,632.87 284,662.87 30.00 

30 Station 2 TCheck_1 284,670.16 284,670.16 284,678.68 8.52 

31 Station 3 LPat_3 284,689.65 284,889.78 284,926.37 36.59 

32 Station 4 LAlign_2 284,935.81 284,935.81 284,950.81 15.00 

33 Station 5 LDim_3 284,961.12 284,961.12 284,971.83 10.71 

34 Station 10 IEtch_2 284,979.64 285,438.49 285,638.49 200.00 

35 Station 7 RWash_1 285,650.33 285,650.33 285,666.12 15.79 

36 Station 5 LDim_3 285,673.50 285,696.14 285,706.85 10.71 

37 Station 11 VDep_2 285,716.62 285,756.80 285,816.80 60.00 

38 Station 12 VPol_2 285,828.05 285,828.05 285,858.05 30.00 
39 Station 1 MDep_2 285,866.89 285,996.92 286,020.00 23.08 

40 Station 2 Skip TCheck 286,029.81 286,029.81 286,029.81 Skip 

41 Station 3 LPat_3 286,036.33 286,036.33 286,072.91 36.59 

42 Station 4 LAlign_1 286,081.26 286,081.26 286,096.26 15.00 

43 Station 5 LDim_3 286,104.20 286,112.53 286,123.24 10.71 

44 Station 6 MEtch_1 286,132.31 286,138.54 286,181.39 42.86 

45 Station 7 RWash_1 286,191.03 286,212.75 286,228.54 15.79 

46 Station 5 LDim_3 286,238.22 286,238.22 286,248.94 10.71 

Moreover to verify the sampling rates at TCheck and LAlign stations, a sample of 

lots visiting these stations with the queue in time stamps sorted ascendingly are 
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shown in Table  6-3. It is clear that two out of three and three out of four lots are 

sampled in TCheck and LAlign stations as required, where sampling depends on 

the arrival of lots to the stations.  

Table  6-3: Verification of sampling stations 2 and 4. 

Station 2 Station 4 

Lot ID 
Step 

Number 
Machine 
Number 

Queue In 
(minutes) 

Lot ID 
Step 

Number 
Machine 
Number 

Queue In 
(minutes) 

1234 11 TCheck_1 93,813 1124 4 LAlign_1 85,747 

1252 2 TCheck_2 93,825 1105 13 LAlign_2 85,757 

1197 30 
Skip 

TCheck 
93,830 1125 4 LAlign_1 85,762 

1253 2 TCheck_1 93,834 1126 4 
Skip 

LAlign 
85,779 

1198 30 TCheck_2 93,844 1107 13 LAlign_2 85,784 

1254 2 
Skip 

TCheck 
93,847 1128 4 LAlign_1 85,793 

1185 40 TCheck_1 93,859 1127 4 LAlign_2 85,796 

1180 40 TCheck_2 93,868 1108 13 
Skip 

LAlign 
85,816 

1200 30 
Skip 

TCheck 
93,871 1129 4 LAlign_1 85,821 

1188 40 TCheck_1 93,882 1130 4 LAlign_2 85,827 

1203 30 TCheck_2 93,888 1110 13 LAlign_1 85,834 

1182 40 
Skip 

TCheck 
93,895 1109 13 

Skip 
LAlign 

85,852 

1191 40 TCheck_1 93,900 1131 4 LAlign_2 85,858 

1199 30 TCheck_2 93,902 1132 4 LAlign_1 85,866 

1187 40 
Skip 

TCheck 
93,916 1133 4 LAlign_2 85,872 

1195 40 TCheck_1 93,926 1134 4 
Skip 

LAlign 
85,889 

1201 30 TCheck_2 93,932 1112 13 LAlign_1 85,894 

1186 40 
Skip 

TCheck 
93,939 1111 13 LAlign_2 85,900 

1204 30 TCheck_1 93,946 1135 4 LAlign_1 85,923 

1190 40 TCheck_2 93,951 1136 4 
Skip 

LAlign 
85,930 

It should be noted that the same steps were carried out in LDim station, with 

deeper investigations to ensure that when a lot was sampled once it was sampled 
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each time it visited the station on the same machine that was used for sampling the 

first time (check Table  6-2), and when a lot skipped sampling it was never 

sampled.  

Finally, the verification process was held continually during model modification 

process to ensure that the model was working properly according to the pre-set 

logic after any modification added to the model and before moving to the next 

modification. 

6.5 MODEL VALIDATION 

Complete validation implies that the developed simulation model is behaving just 

like the real-world system.  The Segment used in this work is designed to represent 

the reality of operations in a semiconductor and has been developed by a factory 

engineer with many years’ experience in the field, so a full validation against data 

from a real fab is not possible. However, as mentioned in the literature review, 

three types of model validation can be applied, face validation, validation of model 

assumptions, and input/output transformation validation. Partial validation of the 

model based on the first two types was only possible in this work. 

Face validation was the first goal of this simulation model, where, the constructed 

model appeared to be reasonable on its face. This was approved by consulting a 

representative of the ICMR who was knowledgeable about the system behaviour 

under study. This validation took place without deep investigation and was carried 

out using the animation capabilities of the simulation model, to confirm that the 

lots were being processed in the sequence mandated by the Segment, for example 

batching rules at RWash and IEtch stations, where, two lots were batched before 

processing, also sampling at the measurement stations (TCheck, LAlign, and LDim) 

is followed as intended, in addition to that machines were subjected to the 

different breakdowns as exposed. 

Validation of model assumptions fall into two general classes: structural 

assumptions and data assumptions.  
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� The structural assumptions took place by validating the number of stations 

with their machines.  For example, in MDep station there are 2 machines, in 

TCheck station there are 2 machines, and so on.  

� The data assumptions were done by investigating the input model variables 

that were generated randomly in the model and made sure that they 

represent the actual variables, like the availability of the stations. The total 

down times of all the machines were reported from the model, then the 

average of each station was calculated, and finally the availability was 

computed using Equation  6-2, where, the total time is the simulation run 

time. 

 p�h�6h��6�:� = (1 − ��$
	:���	�:h6	:���) × 100 Equation  6-2 

As mentioned previously the model reports the total down time of each machine at 

the “Shutdown” block of the shutdown module (see Figure  6-3). Therefore, some 

calculations were carried out in order to calculate the availability of each station 

based on the reported values as shown in Table  6-4.  

Table  6-4: Calculated availability based on down times reported. 

Station Average Station 
Down Time 
(minutes) 

Computed 
Availability 

(%) 

Target 
Availability 

(%) No. Type 

1 MDep 238,609 77.24 76 

2 TCheck 29,669 97.17 97 

3 LPat 157,575 84.97 84 

4 LAlign 28,211 97.31 97 

5 LDim 44,385 95.77 96 

6 MEtch 223,636 78.67 77 

7 RWash 44,116 95.79 96 
8 IDep 179,722 82.86 83 

9 IPol 86,399 91.76 92 
10 IEtch 268,270 74.41 75 

11 VDep 186,300 82.23 82 

12 VPol 223,300 78.70 79 

First the average down time of each station was computed as presented in the 

third column, then the availability was calculated using Equation  6-2, and the 

results were given in the fourth column to be compared to the last column which 
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was the target availability. It was clear that the results of the computed availability 

are around the same values of the target availability. 

Further data assumptions validation was achieved by comparing the provided data 

about stations utilisation “Target U” to that reported from the developed model 

“Reported U” as presented in Table  6-5.  

Table  6-5: Target and reported U. 

Station Type Target U Reported U Station Type Target U Reported U 

MDep 0.601 0.573 RWash 0.271 0.263 

TCheck 0.290 0.191 IDep 0.636 0.618 

LPat 0.718 0.708 IPol 0.430 0.411 

LAlign 0.510 0.378 IEtch 0.704 0.671 

LDim 0.491 0.325 VDep 0.644 0.626 

MEtch 0.734 0.717 VPol 0.501 0.463 

It was clear that the utilisations of all the stations reported from the model were 

around the values of the target utilisation calculated using Equation  5-6 to give the 

values presented in Table  5-6, except TCheck, LAlign, and LDim stations because 

these are sampling stations.  

Also, adding the non-sampling rate of each station to the reported utilisation to 

match the target utilisation calculated using Equation  5-6 and give the values 

presented in Table  5-6 as shown in Table  6-6. 

Table  6-6: Reported, calculated and target U of sampling stations. 

Station Type 
Non-sampling 

rate 
Reported U Calculated U Target U 

TCheck 1/3 0.191 0.255 0.636 

LAlign 1/4 0.378 0.473 0.704 

LDim 1/3 0.325 0.433 0.644 

Finally, it should be noted that although the representative of the ICMR who 

provided all the needed data to develop the Segment and who was familiar with 

the system modelled and knowledgeable about its behaviour ensured a supportive 

collaboration during the model validation; yet, the developed model can only be 

claimed to be partially valid. 
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After the conceptual model has been translated, implemented in ExtendSimTM Suite 

v8.0.2, verified and validated to the extent possible; different experiments were 

carried out. This is discussed in details in the next chapter. 
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7 SEGMENT EXPERIMENTATION, RESULTS, AND 

ANALYSIS 

So far, a full description of the Segment has been presented with all the important 

details in chapter  6. With the validation completed as far as possible, experiments 

to improve the performance of the Segment by applying different lot release 

control strategies can be undertaken. In this chapter the performance measures 

used in this work, along with the list of assumptions and the simulation 

parameters used for the simulation experiments are addressed. Then a 

preliminary analysis of the base model is presented followed by a number of 

scenarios that are classified in to two groups.  

� Group I scenarios: These use the same methodologies applied earlier for the 

Minifab (discussed in Chapter  4), which starts with testing the effect of 

applying different Push behaviours, then evaluating the effect of the 

CONWIP application, and afterwards testing the impact of applying 

ICONWIP on the performance of the Segment that targets reducing the 

variability of arrivals that is induced by CONWIP as mentioned earlier. 

� Group II scenarios: These aim to balance the distribution of WIP across the 

stations of the Segment, which is the second issue addressed in this work 

that appeared at further analysis of CONWIP results. It begins with 

evaluating the effect of applying DBR, then a combination CONWIP and DBR 

is tested that results in a hybrid CONWIP/DBR lot release control strategy , 

and finally a developed lot release control strategy named LCONWIP is 

proposed. 

7.1 PERFORMANCE MEASURES  

As mentioned earlier, the performance measures that are evaluated in this work 

include:  

� Throughput rate, which is the number of finished lots per day. This is 

reported as the mean and variance of the daily throughput rate reported 



121 

 

from the model averaged based on the outcomes of the number of 

replications (	
ZZZZ, m�no). 
� Cycle time, which is the time spent to produce one lot starting from entering 

the fab to begin with step 1 (S1) and ending with leaving the fab after 

finishing step 46 (S46). This is reported as mean and variance of the cycle 

time reported for each lot over the run averaged based on the outcomes of 

the number of replications (�	ZZZZ, m��n). 
� Work in process, this is the number of lots that entered the fab and still 

being processed. Which is reported as the mean and variance of the 

instantaneous WIP level reported throughout the run averaged based on 

the outcomes of the number of replications (���ZZZZZZ, m�{�}). 
� Utilisation of the resources (machines and stations), which is the percentage 

of time these resources are busy. This is reported as the mean of the weekly 

instantaneous monitored utilisation over the whole run averaged based on 

the outcomes of the number of replications (v�). 
The objective of this research is to achieve the target TH as well as to minimize the 

cycle time and work in process while keeping the utilisation of all stations below 

the Umax of each station. Moreover, the variances of these performance measures 

are to be minimized. 

7.2 LIST OF ASSUMPTIONS 

Some revisions and assumptions have been made to the fab, these include: 

� Processing times are deterministic. 

� Travel times are triangularly distributed. 

� Random failure and random repair times are exponentially distributed. 

� While the machines process wafer by wafer, WIP is delivered to each 

machine in lots of 25 wafers. 
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� Cascaded batching is not modelled explicitly for stations 7 and 10 (RWash 

and IEtch); however, it is factored in the processing times of those stations. 

� The time units are minutes.  

� Sampling is modelled; however, no rework is considered, as, it is too low to 

be considered. 

7.3 SIMULATION PARAMETERS OF SEGMENT EXPERIMENTS 

As mentioned earlier, the simulation parameters that must be defined for any 

simulation experiment are the simulation runtime, warmup period, and number of 

replications. 

Setting the Length of the Simulation Run 

Since the developed model in this work belongs to nonterminating simulations, 

then there is no definitive way of picking the simulation run time; however, it 

should be larger than the warmup period and needs to be determined by the 

model user. Thus, it is decided to set the simulation runtime with 2 years 

(1,048,320 minutes). 

Determining the warmup period 

Again to determine the warmup period (6) using Welch’s method ten replications 

are carried out; each simulation run time covers a period of 2 years (728 days) 

resulting in 728 observations (�) for the daily throughput reported from each 

replication.  

Different window sizes ($) are tried ($ = 5,$ = 10,$ = 15,$ = 20,$ = 30,$ =
40,$ = 50	h
i	$ = 60)  to calculate the moving average of the mean daily 

throughput until the plot of the moving average becomes reasonably smooth as 

shown in Figure  7-1. Based on that plot and using a window size of 60, it is clear 

that the plot becomes almost after a warmup period of 70 days. 
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Figure  7-1: Moving average of daily TH at w=5, w=10, w=15, w=20, w=30, w=40, 

w=50, w=60. 

Selecting the number of replications 

To select the number of replications required for this study 40 replications are 

carried out; again, each of 2 years. The results for mean throughput per day and 

mean cycle time are reported.  

In addition, the warmup period that is determined in the previous section is used 

in these runs and the results obtained from the first 70 days for throughput and 

cycle time are deleted.  

Figure  7-2 shows a graph of the cumulative mean data. Based on the plot of 

cumulative points, it is clear that the line becomes almost flat after 25 replications 

for both measures of performance; hence, this will be the recommended number of 

replications for the experimentation work to follow. 
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Figure  7-2: Cumulative mean of mean TH per day and mean CT. 

In conclusion, it is decided that 25 replications are needed, each replication covers 

a simulation run time of 2 years, and with a warmup period of 70 days. Also, CRN is 

used; where, same random seeds are applied to all scenarios. 

7.4 PRELIMINARY ANALYSIS  

This preliminary analysis is undertaken to better comprehend the nature of the 

problem and gain familiarity with the phenomenon in the situation and 

understand what is occurring. The base (current) model is run with pushing 19 

lots per day which is the original loading behaviour of the Segment. The utilisation 

of all stations (U) is monitored, and the mean of U averaged over the 25 

replications and the Umax are presented in Figure  7-3 to show that the U of all the 

stations are kept below the Umax as intended.  
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Figure  7-3: Averaged mean of U and Umax of all stations. 

It is clear from the previously presented graph that the mean U values of each 

station are far away from the Umax, except LPat station, which is the closest. 

Therefore, the utilisation of this station only will be monitored in the 

experimentations presented in this chapter. 
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same time interval to better understand the behaviour of the Segment, and the 

boundaries of the simulations are around the target TH.  

Table  7-1 presents the mean TH, CT, WIP, and ULPat averaged based on the 

outcomes of the 25 replication. The results show that whenever a number of lots 

are pushed, they are collected each day. Therefore, to confirm reaching the target 

TH at least 19 lots must be pushed daily. Moreover, not more than 19 lots can be 

pushed to avoid exceeding the Umax at LPat station. 

Table  7-1: Summary of results-Push Batch. 

Batch size 
(lots/day) 

	
ZZZZ 
(lots) 

�	ZZZZ 
(minutes) 

���ZZZZZZ 
(lots) 

v���}^�  

18 18 3,882 47.25 0.671 

19 19 4,388 56.82 0.708 

20 20 5,015 68.99 0.745 

21 21 5,959 86.64 0.782 

7.5.2 Push Lot  

The other Push scenario tested is based on introducing a lot every constant time 

interval, to find this time interval, the number of minutes per day (1440 minutes) 

is divided by the number of lots produced daily (19 lots) resulting in 75.789 

minutes. Therefore, a lot is introduced to the Segment every 75.789 (75.8) 

minutes.  

A number of simulation experiments are tested with introducing a lot at different 

time intervals. The boundaries of these simulations are around the value calculated 

previously, and the results are presented in Table  7-2.  

Table  7-2: Summary of results-Push Lot. 

TBA 
(minutes) 

	
ZZZZ 
(lots) 

�	ZZZZ 
(minutes) 

���ZZZZZZ 
(lots) 

v���}^�  

69 20.87 5,201 75.38 0.777 

72 20.00 4,426 61.47 0.745 

75 19.20 3,905 52.06 0.716 
75.789 19.00 3,792 50.03 0.708 

78 18.46 3,537 45.34 0.688 
81 17.78 3,278 40.48 0.663 
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It is noticed from the results that by increasing the TBA, TH decreases and falls 

below the target TH. As less lots are introduced to the Segment for a given time 

interval and there is an excess capacity for production. On the other side, by 

decreasing the TBA TH increases and may exceed the target TH. This is because 

more lots are pushed to the Segment for a given time interval, and there is not 

enough capacity for production causing an overloading to the bottleneck station 

(LPat station), this is justified by exceeding the Umax at LPat. Therefore, it is agreed 

that the target TH is the best TH that can be achieved with the Segment capacity by 

introducing a lot with the deterministic value calculated earlier in this section.  

7.5.3 Comparing Push Scenarios 

To better compare the performance of both scenarios, results of all experiments 

presented previously are plotted as shown in Figure  7-4. This figure presents the 

trade-off between TH and CT for both Push scenarios.  

 

Figure  7-4: Comparing Push scenarios. 

Although both models have deterministic nature in arrival of lots; by investigating 
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number of lots are split all over the day, where a single lot is introduced to the 

Segment every time interval.  

Figure  7-5 shows a sample of cycle times at Push Batch and Push Lot for the same 

lots. It is clear from the graph that the nineteenth lot at Push Batch always has the 

longest cycle time. This is because it is pushed to the Segment from the beginning 

of the day and spends too much time at the queue of the first station. Resulting in 

longer CT and also reflects on the WIP of the Segment, and this justifies the 

outperforming of Push Lot over Push Batch.  

 

Figure  7-5: Cycle times of lot IDs from 8950 to 9083. 
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(Push Lot) that gives a mean WIP of 50 lots, which will be the first simulation 

experiment in this scenario and decreasing a lot for every WIP level trial. 

Eight experiments are carried out starting with CONWIP level 50 lots and 

decrementing the CONWIP level by 1 lot for every simulation until reaching 

CONWIP level 43 lots. The results of these experiments are given in Table  7-3. 

Table  7-3: Summary of results-CONWIP scenarios. 

CONWIP 
(lots) 

	
ZZZZ 
(lots) 

�	ZZZZ 
(minutes) 

���ZZZZZZ 
(lots) 

v���}^�  

43 18.84 3,288 42.5 0.704 

44 19.02 3,333 43.5 0.710 

45 19.06 3,401 44.5 0.712 

46 19.23 3,446 45.5 0.718 

47 19.27 3,514 46.5 0.720 

48 19.43 3,559 47.5 0.726 

49 19.47 3,626 48.5 0.727 

50 19.61 3,673 49.5 0.733 

By investigating the previously shown results, it is clear that by decreasing the 

CONWIP level TH decreases until it falls below the target TH, thus, no further 

experiments are carried out, and the best CONWIP level selected is 44 lots. 

7.6.1 Push and CONWIP 

To compare Push Lot and CONWIP, a trade-off between TH and CT is very useful as 

presented in Figure  7-6. It is clear from this figure that both scenarios can produce 

the same TH; however, CONWIP is performing better than Push Lot, as same TH is 

produced with less CT at CONWIP than at Push Lot. 
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Figure  7-6: TH versus CT for Push Lot and CONWIP. 

Unlike the results of Minifab, here CONWIP is better than Push. This is related to 

the nature of the stochasticity in the Segment under study and the Minifab. 

Although both models have deterministic inter-arrival times; yet, there is high 
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stations, which was not the case in the Minifab. 

To investigate the characteristic of lot arrivals at Push Lot and CONWIP, a sample 

of time between arrivals of lots is shown in Figure  7-7.  At Push Lot the arrival of 
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CONWIP there is variability of lot arrivals, this is due the fact that a lot is 

introduced to the Segment as soon as a lot departs.  
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Figure  7-7: Time between arrivals of lots for Push Lot and CONWIP. 

Regulating the arrival of lots is not the only factor of variability, and there are other 

sources of variability inherent at the Segment. However, CONWIP reduces this 

variability and hence, reduces the amount of waiting time in queues, reduction of 

waiting time in queues result in reduction of CT. 

Therefore, CONWIP performs better than Push Lot, and it is recommended to test 
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of ICONWIP that combines the effect of CONWIP as well as regulating the arrival of 

lots. 
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The second decision variable is the min TBA that should pass between any 2 lots 

released to the Segment, and the limits of this decision variable is from 0 minute to 

75 minutes for all CONWIP levels tested.  

304 simulations are carried out starting from CONWIP level 44 to 47 lots, and for 

each CONWIP level a min TBA from 0 to 75 minutes. A sample of the results at 

CONWIP45 with min TBA 0 to 75 minutes is presented in Figure  7-8.  

 

Figure  7-8: ICONWIP 45 results. 
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Table  7-4: Summary of best ICONWIP strategy. 

ICONWIP 
Min TBA 

(minutes) 
	
ZZZZ 

(lots) 
�	ZZZZ 

(minutes) 
���ZZZZZZ 
(lots) 

v���}^�  

ICONWIP44 39 19 3,301 43.05 0.710 

ICONWIP45 56 19 3,292 42.89 0.710 

ICONWIP46 61 19 3,293 42.88 0.710 

ICONWIP47 63 19 3,312 43.10 0.711 

It is clear from the results that the target TH is attained with all ICONWIP levels; 

however, there are differences in CT and WIP. Also, it is noticed that with higher 

CONWIP levels the target TH is reached with more delay time before the release of 

lots (min TBA).  

It should be noted that as the min TBA increases, the WIP level drops below the 

CONWIP level set for a period of time, resulting in lower WIP of the Segment, and 

referring to Little’s law (Equation  2-1) at constant TH with less WIP, CT is reduced.   

7.7.1 CONWIP and ICONWIP 

To compare CONWIP and ICONWIP, the results of the CONWIP level selected 

(CONWIP level 44 lots-Table  7-3), and the results of all ICONWIP simulations 

selected (Table  7-4) are presented in Figure  7-9. 

 

Figure  7-9: CONWIP and ICONWIP results. 
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It is clear that all the scenarios achieved the target TH, and CONWIP44 has the 

longest CT (3,333 minutes) and highest WIP levels (43.5 lots), therefore ICONWIP 

is outperforming CONWIP. Moreover, to select the best ICONWIP, it is noted that 

ICONWIP45 has the lowest CT (3,292 minutes). As a result it is concluded that 

ICONWIP45 is selected to be the best scenario tested. 

This better performance is due to the rule of ICONWIP that avoids the release of 

new lots immediately after a departure happens. First, the arrival time of the last 

lot released to the Segment previously is checked, and if a predetermined time 

interval has passed, the new lot is released. Otherwise, the new lot is delayed for 

this time interval. At that time the WIP level drops below the WIP cap assigned 

causing a reduction to CT at a given TH (Equation  2-1). 

Figure  7-10 presents a sample of time between arrivals at CONWIP and ICONWIP. 

It is obvious that ICONWIP has less variability when compared to CONWIP, and 

this is due to regulation of lots arriving to the Segment. For the sample shown, the 

minimum of the inter-arrival time is 56 minutes. Hence, none of the lots can have 

an inter arrival time less than 56 minutes; however, there is no limit on the 

maximum inter arrival time, because it is related to the departure of lots from the 

Segment.  

 

Figure  7-10: A sample of time between arrivals of lots for CONWIP and ICONWIP. 
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As mentioned earlier that this variability of arrivals affects the coefficient of 

variation of arrivals (ca) to all the stations of the Segment, the mean ca to all 

stations of both scenarios are given in Figure  7-11. It is observable from the results 

that ICONWIP has lower ca at all the stations when compared to CONWIP, and this 

reduction of ca results in lower CT (Equation  4-2), that leads to savings in WIP at 

constant TH (Equation  2-1). 

 

Figure  7-11: Mean ca of all stations under CONWIP and ICONWIP. 
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Table  7-6 shows the outcomes of the Nelson’s combined method when applied on 

the Group I scenarios. It is clear that there is only one survivor, even with the 

indifference zone reduced to one minute over a cycle time of over 2 days, 

ICONWIP. Thus, this is the best scenario in Group I scenarios and the procedure is 

terminated. 

Table  7-6: Results from Nelson’s combined method- Group I scenarios. 

Scenario � ���  G�# � ��� ��� +max	(0,��� − F) Decision 

Push Batch 1 4,388 66,653 

2 9.36 3,800 

Eliminate 3 92.91 3,425 

4 92.35 3,384 

Push Lot 2 3,792 63,613 

1 9.36 4,397 

Eliminate 3 90.02 3,422 

4 89.48 3,381 

CONWIP 3 3,333 1,987 

1 92.91 4,480 

Eliminate 2 90.02 3,881 

4 2.82 3,294 

ICONWIP 4 3,292 2,273 

1 92.35 4,480 

Keep 2 89.48 3,880 

3 2.82 3,335 

  

7.9 FURTHER CONWIP ANALYSIS 

As mentioned previously, when applying CONWIP as a lot release control strategy 

to the Segment, an improvement is achieved when compared to Push. A deeper 

analysis to the Segment with CONWIP is undertaken in this chapter, and the results 

show that more lot release control strategies are applied to get better 

performance. 

CONWIP improves the performance of the fab, specifically; it reduces the 

variability inherent in the fab and hence, reduces the amount of waiting time in 

queues. Reduction of waiting time in queues results in reduction of cycle time.  

Furthermore, it should be mentioned that CONWIP doesn’t only reduce the 

variability of WIP over the Segment by dropping the mean variances of the 25 
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independent runs from 416.2 to 0.25 (lots2), but it also reduces the variability of 

the WIP at each station.  

Figure  7-12 presents the mean variances of WIP at each station of the Segment and 

confirms that CONWIP reduces the variability of WIP at each station. It is noticed 

that MDep, LPat, MEtch, IDep, IEtch, and VDep stations have higher WIP variability 

than TCheck, LAlign, LDim, RWash, IPol, and VPol stations, this is because the 

former stations have longer mean repair time than the latter ones.  

 

Figure  7-12: Mean variances of station WIP under Push and CONWIP. 

Mean repair times for these stations (MDep, LPat, MEtch, IDep, IEtch, and VDep) 

varies from a maximum value of 21.18 hours at IEtch station to a minimum value 

of 13.56 hours at LPat station, which exceeds a time period that covers a shift. 

Moreover, it should be noted that when one of the high mean time to repair 

stations has all its machines down, from 80% to 100% of the total WIP 

accumulates at that station waiting for the repair to end. Thus, in some instances 

all the WIP is stuck in one station while other stations are starved.  

This particular situation is even worse than a Push system, Push systems have 

bottlenecks, where lots accumulate in front of certain stations, but the remaining 
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stations would still have lots to operate on. However, here, the rest of the stations 

are ready for lot processing and are idle which results in an unbalanced loading of 

the Segment as presented in Figure  7-13.  

 

Figure  7-13: Average and maximum of WIP level through the stations under 

CONWIP. 

This figure shows the average WIP of each station with the maximum number of 

lots that is achieved when the station is down. It is clear that MDep and MEtch 

stations reached the WIP level (44 lots) while stations LPat, IDep, IEtch, and VDep 

stations exceeded 80% of the total amount of WIP (35 lots). 

After analysing the CONWIP results, it is evident that the CONWIP lot release 

control strategy drastically improved the Segment performance. However, the only 

drawback is the unbalancing the load of the Segment. This is because the WIP 

levels inside the CONWIP are not controlled individually by station, so if there is a 

bottleneck or a station down, high WIP levels can accumulate, just like a Push 

system. Though CONWIP significantly improved the Segment performance over 

Push, still, there is one problem found. 

0

5

10

15

20

25

30

35

40

45

50

55

60

MDep TCheck LPat LAlign LDim MEtch RWash IDep IPol IEtch VDep VPol

Lo
ts

 p
e

r 
st

a
ti

o
n

Station Type

Avg

CONWIP

Max WIP at critical stations

CONWIP level 44

80-100% 

of WIP



139 

 

7.9.1 Additional Goal 

After conducting CONWIP experiments and analysing the results, the objective of 

the work is updated to solve the problem appeared. 

As mentioned earlier, this problem is created when a station is down for a long 

time while applying CONWIP. Since there is a limited number of lots at the 

Segment, and when all machines in a station are down at the same time, all the lots 

at the Segment will accumulate during the downtime and the rest of the stations 

are idle at that time.  

Hence, the Segment is not balanced due to accumulating most of the lots and 

sometimes all of them at one station. Therefore, an additional objective to improve 

the distribution of WIP is considered. 

7.10 DRUM BUFFER ROPE SCENARIOS 

The first attempt to reduce the unbalancing effect of CONWIP is to use the Drum 

Buffer Rope (DBR) lot release control strategy. DBR controls the flow of lots to the 

bottleneck to ensure it can operate at maximum capacity; in addition, it should let 

the lots flow freely through the other section (after the bottleneck) behaving in a 

manner similar to the push system. Thus, it should combine the benefits of 

CONWIP and Push. 

When applying DBR as a lot release control strategy the WIP level from the start of 

the fab to the bottleneck station must first be set. Whenever a lot leaves LPat 

station which is the bottleneck station, and will not revisit that station again, 

meaning that the lot has processed step 41, another lot should be released to the 

Segment.  

To decide the WIP level in that section of the Segment, different experiments are 

conducted. Referring back to the results of the CONWIP model that gives a mean 

WIP of 44 lots, this provides the start value for the DBR WIP level. This value is 

reduced by 1 and the simulation repeated several times.  
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Five experiments are carried out starting with a DBR level of 44 lots, where 

v	� exceeds the Umax of LPat station which is not acceptable. Hence it is decided to 

decrement the DBR WIP level by 1 lot, until the TH falls below the target TH at a 

DBR WIP level of 40 lots. Then the DBR WIP level is selected at 41 lots, at which the 

TH reaches the target TH as shown in Table  7-7. 

Table  7-7: Summary of results-DBR scenarios. 

DBR WIP 
level 

	
ZZZZ 
(lots) 

�	ZZZZ 
(minutes) 

���ZZZZZZ 
(lots) 

v���}^�  

44 19.39 3,603 49.13 0.724 

43 19.25 3,544 47.98 0.719 

42 19.17 3,477 46.90 0.716 

41 19.02 3,419 45.75 0.711 

40 18.94 3,352 44.69 0.708 

Investigating the mean results accomplished using the DBR WIP level selected of 

41 lots, and comparing them to the CONWIP results (refer to Table  7-3). It is 

obvious that both scenarios achieve the same TH; however, CONWIP is performing 

better as the same TH is achieved with less CT and WIP when compared to DBR. 

Furthermore, when comparing the variability of the WIP at each station of the 

Segment at DBR and CONWIP, it is noticed that only MEtch station shows the 

highest variance than all the other stations that have around the same or a bit 

difference variance under DBR than CONWIP. Figure  7-14 presents the mean of 

variance of WIP at each station of the Segment for the 25 independent runs at 

CONWIP and DBR.  
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Figure  7-14: Mean variances of station WIP for CONWIP and DBR. 

The previously shown figure confirms that MDep, LPat, MEtch, IDep, IEtch, and 

VDep stations still have higher WIP variability than TCheck, LAlign, LDim, RWash, 

IPol, VPol stations due to the longer repair times.   

Figure  7-15 presents the WIP levels when applying the DBR lot release control 

strategy through all the stations of the Segment. By investigating MDep, LPat, 

MEtch, IDep, IEtch, and VDep stations that are considered as critical stations, it is 

clear that only MEtch reaches 66 lots, whereas none of the other stations exceed 

the DBR WIP level selected which is 41 lots.  
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Figure  7-15: Average and maximum WIP level through the stations under DBR. 

MDep station has reached the DBR WIP level of 41 lots and the other 4 stations 

reached WIP levels of higher than 78% of the DBR WIP level selected. Regarding 

MEtch station, it is a critical station that has a mean time to repair of 19.48 hours, 

and there is no WIP cap on the its last step (step 44), and this justifies the increase 

of variance of DBR at that station over CONWIP.  

This is because the DBR controls the WIP of the fab from step 1 performed at MDep 

station up to step 41 performed at LPat the bottleneck station; however, step 44 

performed at MEtch station flows freely in the uncontrolled section of the Segment.  

As mentioned previously CONWIP behaves slightly better than DBR this is mainly 

attributed to the structure of the Segment; because the last step performed on the 

bottleneck station is step 41 out of total 46 steps required for completing a lot. 

Hence, most the line is controlled by a single WIP cap loop as in CONWIP.  

As a result, CONWIP outperforms DBR that has potential for higher variability in 

sections without the WIP cap. Consequently, the next scenario considers a hybrid 

between CONWIP and DBR that addresses this drawback and aims to control the 

lots flowing freely after finishing step 41 at the bottleneck station. 

0

10

20

30

40

50

60

70

MDep TCheck LPat LAlign LDim MEtch RWash IDep IPol IEtch VDep VPol

Lo
ts

 p
e

r 
st

a
ti

o
n

Station Type

Avg

DBR

78-100% of 

DBR WIP level

Exceeded DBR WIP level

DBR WIP level 41



143 

 

7.11 HYBRID CONWIP/DBR SCENARIOS 

When combining CONWIP and DBR lot release control strategies, it is intended to 

combine the benefits of both. First, the WIP level over the Segment and the WIP 

level from the start of the production line to the bottleneck station must be 

determined. In hybrid CONWIP/DBR lot release control strategy, a new lot is 

released to the production line if either a lot is departed from the Segment, or a lot 

permanently leaves the bottleneck station and will not revisit that station again.  

Therefore, there are two decision variables: the first is the CONWIP level and the 

second is the DBR WIP level. The WIP level over the Segment is considered from 

the selected CONWIP level mentioned previously (Section  7.6), this CONWIP of 44 

lots cannot be decreased to sustain the improved performance achieved by 

CONWIP; however, a higher CONWIP level of 45 lots is tested.  

To decide the WIP level in the section from the start of the Segment to the 

bottleneck station, reference should be made to the selected DBR WIP level in the 

previous section of 41 lots. This value is the minimum DBR WIP level tested and 

the maximum is the CONWIP level. The results of all the simulations tested are 

given in Table  7-8. 

Table  7-8: Summary of results-Hybrid CONWIP/DBR scenarios. 

CONWIP/DBR 
WIP level 

	
ZZZZ 
(lots) 

�	ZZZZ 
(minutes) 

���ZZZZZZ 
(lots) 

v���}^�  

44/41 18.93 3,290 43.25 0.707 

44/42 18.99 3,312 43.43 0.710 

44/43 19.01 3,324 43.50 0.710 

44/44 19.02 3,333 43.50 0.710 

45/41 18.93 3,325 43.90 0.707 

45/42 19.01 3,351 44.25 0.710 

45/43 19.05 3,378 44.43 0.712 

45/44 19.06 3,391 44.50 0.712 

45/45 19.06 3,401 44.50 0.712 

It is clear from the results shown that for every CONWIP level by increasing the 

DBR WIP level all the measures increase. This is attributed to the amount of WIP 

introduced to the Segment that affects all the measures. To select the 

CONWIP/DBR levels, the target TH should be achieved with the minimum CT and 
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WIP and this attained with CONWIP44/DBR43. Comparing the results of 

CONWIP44/DBR43 to the results of CONWIP44 (Table  7-3), it is evident that 

hybrid CONWIP/DBR is performing better than CONWIP, as same TH is produced 

but with slightly better CT. 

Also, it is noticed that when both strategies have the same WIP levels (for example 

CONWIP44/DBR44) the results of this simulation is exactly the same as the results 

of CONWIP44 (see Table  7-3). This is because at this instance CONWIP is 

controlling the performance of the Segment and the DBR has the same WIP cap of 

CONWIP, so it does not have any effect on the performance of the Segment.  

Additionally, it should be mentioned that CONWIP/DBR reduces the variability of 

the WIP at all the critical stations of the Segment when compared to CONWIP; 

however, all the other stations have the same variability at both strategies as 

presented in Figure  7-16.  

 

Figure  7-16: Mean variances of station WIP for CONWIP and CONWIP/DBR. 

Figure  7-17 presents the WIP levels when applying the CONWIP/DBR lot release 

control strategy through all the stations of the Segment. It is clear that the 

maximum WIP at MEtch station now falls to the CONWIP level. Whereas, all the 
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critical stations MDep, LPat, MEtch, IDep, IEtch, and VDep still accumulates at least 

77% of the total WIP. 

 

Figure  7-17: Average and maximum WIP level across the stations for CONWIP/DBR. 

Finally, it is concluded that hybrid CONWIP/DBR performs slightly better than 

CONWIP; however, it doesn’t balance the distribution of WIP across the Segment. 

7.12 LCONWIP SCENARIOS 

The current scenario investigates the effect of applying a new lot release control 

strategy on the performance measures. The proposed LCONWIP, where L stands 

for Looped, is a modification of CONWIP with a loop applied to the critical station 

that has a long repair time. The loop acts as a WIP cap that limits the number of 

lots entering that station to avoid accumulating the lots there. This will probably 

balance the lots distribution over the Segment, as well as will minimise the 

variability of the WIP flowing through the stations. 

As mentioned earlier, at the Segment there are twelve stations, six of them have a 

mean time to repair more than a shift. These are MDep, LPat, MEtch, IDep, IEtch, 

and VDep stations and they are said to be critical stations. Table  7-9 shows the 

mean time to repair of all the stations in hours with the critical stations 
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highlighted. Hence, it is clear that the critical stations are the stations that need a 

loop with WIP cap to limit the number of lots at these stations. 

Table  7-9: Mean time to repair of all stations. 

Station 
MTTR 

(hours) 
Station 

MTTR 
(hours) 

MDep 21.14 RWash 0.51 

TCheck 1.50 IDep 14.97 

LPat 13.56 IPol 1.47 

LAlign 1.50 IEtch 21.18 

LDim 4.31 VDep 15.86 

MEtch 19.49 VPol 3.85 

LCONWIP Experiments 

In order to apply the developed LCONWIP lot release control strategy three steps 

are required: 

� Apply CONWIP lot release control strategy to the Segment, 

� Select the critical stations where the loops will be established, and  

� Set the WIP cap for the loops developed. 

Therefore, three decisions variables are necessary, first, the WIP level of the 

CONWIP, which is set at 44 lots as previously selected and also 45 lots is tested. 

Second, the critical stations which are MDep, LPat, MEtch, IDep, IEtch, and VDep 

stations as explained previously.  

Third, the WIP cap of the loops; where, it is known that in case of failures to all 

machines in a station at the same time, a queue is formed in front of that station, 

and due to re-entrancy each lot is expected to visit the same station more than 

once for performing different steps.  

Therefore, the number of machines is multiplied by the number of steps at each 

critical station to find the estimated WIP cap per station, and the maximum value is 

taken as a base line to start a set of experiments, in order to decide the WIP cap of 

the loops as given in Table  7-10. 
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Table  7-10: Calculating the expected WIP cap at the critical stations. 

Station MDep LPat MEtch IDep IEtch VDep 

Number of Machines per station 2 4 3 3 5 3 

Number of Steps per station 3 5 3 2 2 2 

Expected WIP level per station 
(lots) 

6 20 9 6 10 6 

For each CONWIP level, different WIP levels at the critical stations are tested 

starting with 20 lots per loop, and then reducing the Loop WIP level by 1 until the 

TH falls below the target TH for each CONWIP level tested. The results of all the 

simulations tested are given in Table  7-11. 

Table  7-11: Summary of results-LCONWIP scenarios. 

CONWIP/Loop 
WIP level 

	
ZZZZ 
(lots) 

�	ZZZZ 
(minutes) 

���ZZZZZZ 
(lots) 

v���}^�  

44/20 19.00 3,324 43.39 0.710 

44/19 19.00 3,322 43.37 0.710 

44/18 18.99 3,320 43.33 0.710 

45/20 19.05 3,390 44.38 0.712 

45/19 19.05 3,389 44.35 0.712 

45/18 19.04 3,386 44.32 0.712 

45/17 19.04 3,384 44.27 0.711 

45/16 19.03 3,381 44.21 0.711 

45/15 19.03 3,375 44.13 0.711 

45/14 19.02 3,371 44.04 0.711 

45/13 19.00 3,366 43.93 0.710 

45/12 18.99 3,360 43.81 0.710 

It is obvious from the previous results that the target TH is achieved with most of 

the simulations tested. However, to select the combination of CONWIP and WIP 

cap of the loop, the target TH should be reached with the minimum CT and WIP. 

This is attained with CONWIP level of 44 lots, and a WIP cap of 19 lots at the loops 

of the critical stations. 

Comparing the results of LCONWIP44/19 to the results of CONWIP44 (Table  7-3), 

it is shown that both strategies achieved the target TH; however, CT and WIP of 
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LCONWIP are lower than of CONWIP. Therefore, LCONWIP is outperforming 

CONWIP. 

Moreover, it should be mentioned that LCONWIP reduces the variability of the WIP 

at all the looped stations of the Segment when compared to CONWIP. Whereas, the 

rest of the stations either have the same or slightly higher mean of variances as 

shown in Figure  7-18, which is not an issue because the variability of the latter 

stations is very low when compared to the former ones. 

 

Figure  7-18: Mean variances of station WIP for CONWIP and LCONWIP. 

It is observable that LAlign, RWash, and IPol stations have the same mean of 

variances of WIP at each station for both LCONWIP and CONWIP. On behalf of the 

stations with slightly higher mean of variances at LCONWIP than CONWIP they are 

TCheck, LDim, and VPol stations; this is because LPat, MEtch, and MDep stations 

follow these stations. Subsequently, lots may rest at these stations waiting for a 

signal from the critical station indicating that there is a vacancy for processing 

there.  

Figure  7-19 presents the average and maximum values of the WIP level using the 

LCONWIP lot release control strategy at all stations of the Segment. By 

investigation, it is clear that none of the stations exceed the WIP cap assigned to 
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the loops except VPol station that reached a maximum of 29 lots. Also, there is 

room between the WIP cap of the loops and the CONWIP which gives a space for 

lots to flow within the fab to complete processing in case of a station down, and 

thus avoid blocking which causes the Segment unbalanced behaviour. 

 

Figure  7-19: Average and maximum WIP level through stations under LCONWIP. 

It should be noted that VPol station is not a critical station and it doesn’t have a 

loop with a WIP cap. Exceeding the 19 lots at the station is because it is followed by 

MDep station, in the process routing, which is a critical station with a WIP cap. If 

MDep reached its WIP cap, lots finishing processing at station 12 will wait until 

there is room for that lot at MDep station.  

As a result, it is concluded that the LCONWIP results in slightly better performance 

than CONWIP lot release control strategy; and also it improves the flow of WIP 

through the stations and results in better variability of WIP station at all the 

critical stations as well as balancing the load of the Segment. 
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7.13 SELECTION OF THE BEST SCENARIO IN GROUP II 

To ensure the results accomplished from the previous section Nelson’s combined 

method is applied here to select the best scenario in Group II scenarios.  Table  7-12 

shows the parameters and constants required for this application. 

Table  7-12: Parameters and Constants for Nelson’s method of Group II scenarios. 

Parameter Value Constant Value ∝ 0.05 : 2.875 A 4 ℎ 3.158 
B 25 F 1 

Table  7-13shows the outcomes of the Nelson’s combined method when applied on 

the Group II scenarios. It is clear that there is only one survivor scenario which is 

the LCONWIP, thus this is the best scenario in Group II scenarios and the 

procedure is terminated. 

Table  7-13: Results from Nelson’s combined method- Group II scenarios. 

Scenario � ���  G�# � ��� ��� +max	(0,��� − F) Decision 

CONWIP 1 3,333 1,987 

2 7.60 3,425 

Eliminate 3 1.46 3,325 
4 1.94 3,323 

DBR 2 3,419 2,555 

1 7.60 3,340 

Eliminate 3 7.08 3,330 
4 6.53 3,328 

CONWIP/ 
DBR 

3 3,324 1,968 

1 1.46 3,334 

Eliminate 2 7.08 3,425 
4 1.48 3,322 

LCONWIP 4 3,322 1,827 
1 1.94 3,334 

Keep 2 6.53 3,424 

3 1.48 3,325 

 

7.14  SELECTION OF THE BEST SEGMENT SCENARIO  

For deeper confirmation of results, Nelson’s combined method is applied and  

Table  7-14 shows the parameters and constants required for this application. 

Table  7-14: Parameters and Constants for Nelson’s method of all the Segment 

scenarios. 

Parameter Value Constant Value ∝ 0.05 : 3.166 A 7 ℎ 3.746 
B 25 F 1 
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Table  7-15 shows the outcomes of the Nelson’s combined method when applied on 

all the Segment scenarios. It is clear that there is only one survivor scenario which 

is the ICONWIP, thus this is the best scenario in all the Segment scenarios tested in 

this work and the procedure is terminated. 

Table  7-15: Results from Nelson’s combined method- All Segment scenarios. 

Scenario � ���  G�# � ���  ��� +max	(0,��� − F) Decision 

Push Batch 1 4,388 66,653 

2 9.30 3,801 

Eliminate 

3 101.32 3,434 

4 100.71 3,393 

5 101.21 3,520 

6 102.01 3,426 

7 102.35 3,424 

Push Lot 2 3,792 63,613 

1 9.30 4,398 

Eliminate 

3 98.14 3,431 

4 97.55 3,390 

5 98.11 3,517 

6 98.78 3,423 
7 99.20 3,421 

CONWIP 3 3,333 1,987 

1 101.32 4,490 

Eliminate 

2 98.14 3,890 
4 2.11 3,295 

5 7.37 3,426 

6 0.61 3,325 
7 1.14 3,323 

ICONWIP 4 3,292 2,273 

1 100.71 4,489 

Keep 

2 97.55 3,890 

3 2.11 3,335 

5 7.28 3,426 
6 2.35 3,326 

7 2.46 3,324 

DBR 5 3,418 2,555 

1 101.21 4,490 

Eliminate 

2 98.11 3,890 

3 7.37 3,340 

4 7.28 3,300 
6 6.80 3,331 

7 6.19 3,328 

CONWIP/ 
DBR 

6 3,324 1,968 

1 102.01 4,490 

Eliminate 

2 98.78 3,891 

3 0.61 3,334 

4 2.35 3,295 

5 6.80 3,425 

7 0.63 3,323 

LCONWIP 7 3,322 1,827 

1 102.35 4,491 

Eliminate 

2 99.20 3,891 

3 1.14 3,334 

4 2.46 3,295 

5 6.19 3,425 
6 0.63 3,325 
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7.15 CONCLUSIONS OF SEGMENT EXPERIMENTS 

In this chapter a number of scenarios are applied to achieve a target TH of 19 lots 

per day with better CT and WIP, as well as minimizing the variances of these 

measures. Two groups of scenarios are conducted, Group I tests the effect of 

applying the same methodologies tested earlier on the Minifab. Group II evaluates 

the impact of applying other strategies that balances the distribution of WIP across 

the stations of the Segment. This section summarizes the results of all the 

scenarios conducted. 

7.15.1 Conclusions of Group I Scenarios 

Table  7-16 presents the mean and variance for the TH, CT and WIP averaged based 

on the outcomes of the 25 replications; (	
ZZZZ, m�no, �	ZZZZ, m��n ,���ZZZZZZ	h
i	m�{�}) 
respectively of Group I scenarios. The results show that the target TH is achieved 

with all the models; however, there are major differences in the remaining 

performance measures.  

Table  7-16: Results of Group I Scenarios. 

Scenario 
	
ZZZZ  

(lots) 

m�no  
(lots2) 

�	ZZZZ 
(minutes) 

m��n 
(minutes2) 

���ZZZZZZ 
(lots) 

m�{�} 
(lot2) 

Push Batch 19 80.94 4,388 2,615,000 56.8 489.4 

Push Lot 19 46.55 3,792 2,426,000 50.0 416.2 

CONWIP 19.02 42.09 3,333 490,281 43.50 0.25 

ICONWIP 19.01 36.41 3,292 522,292 42.89 4.65 

Comparing Push Batch and Push Lot, although both scenarios attained a 	
ZZZZZ of 19 

lots per day; for all the other measures of Push Lot are better than Push Batch as 

follows: 

� m�no  is reduced from 80.94 to 46.55 lots2, which is almost a 42% 

improvement. This reduction results in more consistency of production, 

which makes better confidence that demand is met, that leads to more 

customer satisfaction. 
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� �	ZZZZ is decreased from 4,388 to 3,792 minutes per lot, gaining 14% better 

performance, and  m��nreduced from 2,615,000 to 2,426,000 minutes2, giving 

7% improvement.  

� ���ZZZZZZ decreased from 56.8 to 50 lots and m�{�}dropped from 489.4 to 416.2 

lots2, resulting in 12% and 15% better performance.  

Then, applying CONWIP improved the performance of the Segment when 

compared to Push Lot, although both scenarios achieved the target TH; however, 

all the other measures at CONWIP are better than at Push Lot as follows: 

� m�no  is reduced from 46.55 to 42.09 lots2, which is almost a 10 % 

improvement.  

�  �	ZZZZ is decreased from 3,792 to 3,333 minutes per lot, gaining 12% better 

performance, and  m��nreduced from 2,615,000 to 490,281 minutes2, and 

80% improvement is achieved. 

�  ���ZZZZZZ decreased from 50 to 43.50 lots and m�{�}dropped from 416.2 to 0.25 

lots2, resulting in 13% and 99.99% better performance.  

Finally, comparing ICONWIP and CONWIP, it is shown in Table  7-16 that 	
ZZZZ is the 

same at both scenarios, with less m�no at ICONWIP. This decrease in m�no  gives a 

great confidence in consistent TH that affects positively meeting demand and 

results in more customer satisfaction as mentioned earlier. Moreover, ICONWIP 

results in lower �	ZZZZ and ���ZZZZZZ, resulting in 1.22% and 1.40% improvements in �	ZZZZ 

and ���ZZZZZZ respectively, with minimal increase of m��n and m�{�}. This is due to the 

rule of ICONWIP that delays the release of new lots to the Segment after a 

departure happens. During this delay the WIP level drops below the WIP cap 

assigned, causing variability in the overall WIP of the Segment that impacts on the 

variability of CT as well; however, this variability is ensured to be lower than the 

WIP cap assigned. This results in lower WIP levels at some instances, thus, 

reduction of CT is achieved at constant TH (Equation  2-1), therefore, ICONWIP is 

selected to be the best scenario in Group I. 
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7.15.2 Conclusions of Group II Scenarios 

It should be noted that although the purpose of these scenarios is to balance the 

WIP distribution across the stations; however, the improvement accomplished by 

CONWIP should at least be sustained or more improvement is achieved, therefore 

the results of these scenarios are presented in Table  7-17. 

Table  7-17: Results of Group II Scenarios. 

Scenario 
	
ZZZZ 

(lots) 

m�no 
(lots2) 

�	ZZZZ 
(minutes) 

m��n  
(minutes2) 

���ZZZZZZ 
(lots) 

m�{�} 
(lot2) 

CONWIP 19.02 42.09 3,333 490,281 43.50 0.25 

DBR 19.02 43.20 3,419 543,428 45.75 11.39 

CONWIP/DBR 19.01 41.44 3,324 483,866 43.50 0.25 

LCONWIP 19.00 43.64 3,322 473,648 43.37 1.01 

From the previously mentioned results, it is shown that all the scenarios attained 

the target TH; however, there are some variations at the rest of all the measures. 

Comparing CONWIP and DBR, it is shown that DBR has greater m�no, �	ZZZZ, 	m��n, ���ZZZZZZ, 

and m�{�}; therefore, it is ensured that CONWIP is better than DBR.  

However combining CONWIP and DBR, results in less m�no , �	ZZZZ	h
i	m��n with the 

same ���ZZZZZZ	h
i	m�{�} when compared to CONWIP, as a results hybrid CONWIP/DBR 

is performing better than CONWIP, although it doesn’t balance the WIP across all 

the stations of the Segment as intended (see Figure  7-17). 

Investigating LCONWIP and CONWIP results, it is shown that LCONWIP has more 

m�noh
i	m�{�} and less �	ZZZZ, m��nh
i	���ZZZZZZ when compared to CONWIP. Resulting in a 

better performance than CONWIP, as well as balancing the distribution of WIP 

across all the stations of the Segment (see Figure  7-19). 

Considering hybrid CONWIP/DBR and LCONWIP results, it is given that LCONWIP 

has more m�noh
i	m�{�}  and less �	ZZZZ, m��nh
i	���ZZZZZZ  when compared to hybrid 

CONWIP/DBR. Therefore, LCONWIP is outperforming hybrid CONWIP/DBR, as 

well as balancing the distribution of WIP across all the stations of the Segment (see 

Figure  7-19), as a result LCONWIP is considered to be the best scenario in Group II.  
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Finally, comparing all the scenarios; ICONWIP is selected to be the best scenario in 

all tested scenarios, if the Segment does not exhibit unbalanced distribution of WIP 

across the stations and the target is maximum CT and WIP reductions. 
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8 DISCUSSION 

8.1 OVERVIEW 

This work studied the effect of applying new lot release control strategies resulting 

from either combining or modifying lot release control strategies existing in 

literature. These strategies promises reduced cycle times, which is considered as a 

key performance criterion in semiconductor wafer fabs, since reduction of cycle 

time results in lower WIP levels for a given throughput rate [9]. This has motivated 

further investigations into methods of controlling and management of WIP in 

production lines in general and in wafer fabs specifically, which started by 

reviewing literature related to controlling manufacturing control systems. Most 

popular push and pull control strategies were firstly introduced to show the 

control mechanisms of each strategy. Stressing the fact that pull systems control 

WIP levels and push systems control throughput rates [22]; hence, pull strategies 

are more of interest to this work in terms of WIP management and control. This 

work was applied to the Minifab model and a representative segment of an existing 

wafer fabrication facility operating with the latest technologies used in the 

semiconductor manufacturing. 

8.1.1 Findings of Literature 

Several lot release control strategies were found in literature and a classification 

scheme was developed to identify the principal control mechanism applied for 

each class; namely, single station control, multi-station control, bottleneck station 

control, and variations and hybrid strategies were the four main classes used. 

Single station control is basically Kanban, which was one of the first pull strategies 

applied in production lines; however, Kanban was found to be not applicable to 

many manufacturing environments and was subject to several ad hoc 

modifications to improve its performance [25-31]. To that end CONWIP (multi-

station control) was proposed as an alternative pull strategy to Kanban [26] and 

since that time, CONWIP is still regarded as one of the most popular pull strategies 

[34]. Again, this has led to more focus on reviewing the research work that studied 
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CONWIP specifically that concentrated on the applicability of CONWIP in different 

manufacturing environments, determining the optimum WIP level, and 

comparison of CONWIP to other manufacturing control systems. 

CONWIP system for controlling a production line might be unsuitable in some 

manufacturing environments. That’s essentially because CONWIP controls a 

production line using a single loop and doesn’t control WIP distribution across the 

stations of the system, which leads to WIP build-up at bottleneck or critical 

stations. Therefore, modifications to CONWIP by combining it with other lot 

release strategies were recommended to overcome the unbalanced WIP 

distribution issue. Also, DBR as bottleneck station control strategy was suggested 

to solve that uneven distribution of WIP that can outperform CONWIP [34]; 

however this depends on the location of the bottleneck and whether the bottleneck 

is shifting or not [67]. In addition, CONWIP was compared to Push and applied to a 

simple production line under different variability of arrivals. Results showed that 

when high variability in arrivals exists, CONWIP is better than Push; however, 

Push can perform better than CONWIP when lots are released on a constant 

interval. In other words, CONWIP is better than Push given that arrivals are of high 

variability; Push can be better than CONWIP if lots are released deterministically 

[64]. 

Unbalanced WIP distribution was evident when applying CONWIP to the Segment. 

For that, DBR was first tested to improve the distribution of WIP and reduce the 

unbalancing effect induced by CONWIP. Then, a combination of CONWIP and DBR 

was tested to combine the advantages of both strategies. Finally, the developed 

LCOMWIP strategy was applied to balance the distribution of WIP across the 

stations of the Segment by adding WIP caps to control WIP levels at bottleneck or 

critical stations. 

To determine the optimum WIP level in CONWIP, researchers selected different 

performance measures to either minimize cycle time or to maximise throughput 

rate. However, both measures are conflicting in nature; meaning, if cycle time is 

sought to be minimized, WIP levels will drop leading to loses in throughput rate; 

on the other hand, if the goal is to maximise the throughput rate, WIP level will 
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increase leading to longer cycle times. Again, since this work is focusing on 

controlling and managing WIP levels in wafer fabs; accordingly, the single 

objective that was selected in this work was minimisation of WIP levels to achieve 

the same rate of throughput and preventing utilisation of bottleneck station to 

exceed a given threshold. At the same time, when achieving same throughput with 

lower WIP levels leads to reduction in cycle time, which matches previous research 

work that reduces cycle time by controlling  WIP levels at same throughput rate 

[70]. 

8.1.2 Work Motivation 

In this work two limitations of CONWIP were addressed, the first was related to 

the variability of Lot Arrivals to a system applying CONWIP. Since, the arrival of 

lots to a system depends on the departure of lots from the system; thus, highly 

variable inter-departure times will result in highly variable inter-arrival times as 

well. Consequently, highly variable inter-arrival times will induce variability 

throughout the production line, which degrades the performance of the line in 

terms of cycle times and WIP levels of the production line (as was discussed in 

details in Section  4.7). To overcome this drawback ICONWIP lot release control 

strategy was proposed that regulates the arrival of lots to the system and reduces 

the variability associated with it. 

The second drawback was relevant to the distribution of WIP across the stations of 

a system. Queues in front of stations can repeatedly build-up at stations with low 

production rates (bottlenecks) or stations with repetitive failures. As a result, DBR 

lot release control strategy was applied to control the WIP forming at bottlenecks; 

moreover, a hybrid CONWIP/DBR lot release control strategy was tested also to 

combine the advantages of both CONWIP and DBR.  Finally, to control the 

distribution of WIP over stations where queues were likely to accumulate 

(referred to as critical stations in this work), LCONWIP lot release control strategy 

was developed to reduce individual WIP levels at critical stations and improve the 

performance of the system. 
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8.1.3 Analysis Approach 

It is noticed that since the application environment is highly complex, the only 

reasonable approach to demonstrating the effectiveness was to use modelling and 

simulation. 

Simulation has been used in most of the literature reviewed to analyse complex 

production systems that are too complicated to tackle via analytic methods. 

However, conducting a successful simulation study is not quite a simple task. 

Simulation relies on huge amount of data that to be defined, formatted, and 

modelled in the right way. Data provided for the Segment was initially a 

spreadsheet showing the process flow needed to produce a single lot. This 

spreadsheet was further developed to include all the data presented in 

(Section  5.1); in addition, selecting the correct distribution for stochastic data can 

greatly affect the output of simulation; specifically, setting the statistical 

distribution for time to failure and time to repair was one of the challenges faced in 

this work. Exponential distributions for MTTF and MTTR were used to represent 

random failures and repair times affecting all stations in the Segment as it was 

repeatedly used in literature [48, 110, 113-115]. Then, to set the parameter values 

for the exponential distribution “Up and Down” times raw data provided by similar 

machines of semiconductor manufacturing were used (refer to Section  5.1.3 and 

Appendix B). 

There were also several challenges faced when modelling the Segment using 

ExtendSimTM and although it is a powerful simulation environment; yet, its built-in 

blocks failed at some instances to accurately model the complexity of the Segment. 

The most important challenges faced in this work were presented in Section  6.1. 

Finally, due to the stochastic nature of most of the input parameters used in the 

Segment, the simulation output reported exhibited high variability; the thing that 

necessitated several procedures to be undertaken to control that variability, such 

as: 

� Using a warmup period of 70 days that was determined using the Welch’s 

method.  



160 

 

� Long simulation runtime of 2 years (728 days), which was larger than the 

warmup period and was determined by the model user.  

� The number of replications required for this study was set at 25 

replications based on a graphical method that guarantees stability of both 

the mean throughput per day and mean cycle time.  

These parameters, although resulted in higher confidence in values reported for 

the performance measures; yet, it required almost 100 minutes to execute a single 

scenario (an average of 4 minutes per replication). 

In addition to simulation parameters, selecting the best scenario based on CRN 

were sought to be the most suitable method for analysing the Segment results and 

to make sure that there is a significant statistical difference between each pair of 

scenarios compared.  

Finally, several researchers applied optimization using simulation to optimally set 

the WIP levels in all lot release control strategies [51, 62, 118]; however, due to the 

computational complexity associated with this approach, simple production lines 

were used to test their approach. In this work, optimisation using simulation to 

optimise the parameters of the proposed strategies like CONWIP/DBR, LCONWIP, 

and ICONWIP was tested. However, due to the excessive variability in the reported 

measures, long runtimes, and inability to use CRN in ExtendSimTM; optimisation 

using simulation was deemed infeasible. 

8.2 DISCUSSION OF CASE STUDIES  

This work was applied to simpler models of wafer fabs that were used as a test bed 

for evaluating existing pull strategies and the developed ones. One of the most 

popular models used by researchers was the Minifab model, which was used in the 

early stage of this work, and led to the development of the ICONWIP.  

Although the Minifab captures some of the challenges involved in a re-entrant fab; 

however, it has a limited number of stations, machines and steps. Thus, it was 
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unable to address the limitation of the unbalanced WIP distribution across the 

stations and consequently, group II scenarios were not tested for the Minifab. 

Also, Wein’s model was found to be another popular model used by researchers 

that has larger number of stations including greater number of machines that are 

exposed to random breakdowns, and greater number of steps that are required to 

complete a production of a lot, resulting in higher re-entrancy when compared to 

Minifab; however, it does not include any of the complex batching and sampling 

processes found in real fabs. 

Furthermore, both Minifab and Wein’s models were developed during the 1980s 

and 1990s; therefore, a representative segment of an existing wafer fabrication 

facility operating with the latest technologies used in the semiconductor 

manufacturing was developed in collaboration with the ICMR.  

Compared to the Minifab, this Segment included greater number of stations and 

machines with greater number of steps. Also, compared to Wein’s model, the 

Segment addressed the significant challenges involved in operating current highly 

re-entrant wafer fabs such as high re-entrancy, complex batching processes 

(RWash and IEtch stations), sampling (TCheck, LAlign, and LDim stations), and 

stochastic variable breakdowns derived from actual data of similar machines (all 

the stations).  

Table  8-1 compares the main differences between the Minifab and the Segment. It 

should be noted that due to the highly variable stochastic nature of the Segment 

when compared to that of the Minifab, the variances of TH, CT and WIP were added 

to the performance measures under study.  

Table  8-1: Comparison of Minifab and Segment. 

Point of Comparison Mini-Fab Segment 

Year of development 1994 2011 

Number of Products 2+Test Wafer Single 

Number of stations 3 12 

Number of machines 5 33 

Number of steps 6 46 

Setup At machine E (station 3) None 
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Table  8-1: Comparison of Minifab and Segment. 

Point of Comparison Mini-Fab Segment 

Batching Operations Batch 3 lots at station 1. 
Batch 2 lots of the same 

step at stations 7 and 10. 

Sampling Processes None 

Total count sampling at 
stations 2 and 4. 

Total count sampling with 
initials remain sampling 

and station 5. 

Breakdowns 

Preventive maintenance at 
all machines 

(deterministic). 
Unscheduled breakdowns 
at station 2 (MTTF/MTTR 

uniformly distributed). 

Unscheduled breakdowns 
at all stations 
(MTTF/MTTR 

exponentially distributed). 

Soft constraints None U should not exceed Umax. 

Re-entrancy 2 layers per each station 
Varies from 2 layers up to 

10 layers for a station 

8.3 DISCUSSION OF MINI-FAB EXPERIMENTS 

The Minifab under study has two variability sources, the first is the inter-arrival 

times and the second is the unscheduled break downs of machines C and D at 

station 2 (refer to Section  4.2.3, Table  4-6). When the first source of variability was 

removed by switching from exponential input to deterministic input at the push 

model, the overall variability of the model was reduced, resulting in better 

performance; hence, the same TH was produced with shorter CT and lower WIP 

level (see Equation  2-1 and Equation  4-2). 

Since the variability of the Minifab was minimal in the push-det. model, applying 

CONWIP induced extra variability component represented in the arrival of lots, 

which propagates to the other stations downstream (see Equation  4-1). Hence, 

same TH produced by Push with deterministic input was achieved with longer CT 

by CONWIP. This is related to the stochastic nature of the model as well as the 

deterministic input of the Push used in this study. Although, this deterministic 

nature doesn’t exist in real life; yet, it was important to see the effect of removing it 

on the performance of the Minifab and to prove that reduction of the arrivals 

variability can actually result in better performance of CT. Therefore, ICONWIP lot 

release control strategy was developed in accordance to that conclusion and aimed 

at reducing the variability in arrivals by avoiding the release of new lots 
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immediately after a departure happens as in CONWIP, which in turn reduces the 

propagation of variability downstream. ICONWIP reduces the variability of arrivals 

by setting a minimum value for TBA of lots that acts as a floor limiting the 

minimum TBA from varying greatly as in CONWIP. It starts by checking the arrival 

time of the last lot released to the line, and if a predetermined time interval has 

passed, a new lot is released; else, the lot is delayed until the minimum TBA passes. 

In addition to regulating the arrivals and reducing its variability; whenever a lot is 

delayed till the minimum TBA passes, WIP level drops below the WIP cap assigned; 

hence, the line is capable of achieving same TH in shorter CT. 

8.4 DISCUSSION OF SEGMENT EXPERIMENTS 

The same methodologies applied to the Minifab was tested on the Segment that 

included greater number of machines, more processing steps and exhibited more 

complexity and variability. Figure  8-1 summarizes all experiments conducted on 

the segment under study to evaluate its performance under Push Lot, Push Batch, 

CONWIP, ICONWIP, DBR, CONWIP/DBR, and LCONWIP. The dashed blocks 

signifies experiments to compare two strategies; where, the grey shaded block 

signifies an outperforming strategy. The figure also shows the sequence in which 

all experimentations on the Segment were carried out. 

 

Figure  8-1: Summary of all scenarios tested. 
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Group I scenarios are the ones applied to the Minifab and were applied to the 

Segment to confirm the results achieved and to test the applicability of ICONWIP 

on larger models. Group I scenarios started with testing the effect of applying two 

Push behaviours, and then evaluating the impact of applying CONWIP application 

on the Segment was studied. Although CONWIP improved the performance of the 

Segment as intended; however, two issues were evident when analysing the 

results.  

The first issue was the variability of arrivals to the first station that propagates to 

all the stations downstream and that was solved by applying the ICONWIP lot 

release control strategy resulting in a reduced ca of all the stations (Equation  4-1).  

Reduced ca resulted in shorter time in queues (Equation  4-2) and; hence, shorter 

CT. in addition, delayed introduction of lots resulted in lower WIP levels across the 

whole segment. This led to an overall improvement of performance; where target 

TH is attained with shorter CT and lower WIP (Equation  2-1). 

The second issue was the unbalancing of WIP across the Segment due to the 

accumulation of WIP at the critical stations that have long repair times. 

Unbalanced WIP distribution was evident in the Segment due to its structure being 

longer and having more machines that exhibits long variable breakdowns. This 

issue was addressed by Group II scenarios; where, a number of scenarios 

recommended by literature were initially applied, starting with applying DBR lot 

release control strategy, then combining DBR and CONWIP in a hybrid lot release 

control strategy. In addition, applying the developed LCONWIP lot release control 

strategy sets a loop for every critical station. This loop prevents the release of lots 

to critical stations by placing an individual WIP caps for those stations that is lower 

than that of the CONWIP level; hence, the distribution of WIP across the Segment is 

achieved.  

8.4.1 Group I Scenarios 

The Segment under study is originally loaded with 19 lots per day; however; 

splitting these 19 lots across the day, resulted in introducing a single lot every 75.8 

minutes that led to a better performance. Although, both models have 
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deterministic inputs of lots; it was shown that Push Lot is performing better than 

Push Batch as presented in Table  7-16. This is because; with Push Batch, lots are 

loaded to the Segment at the beginning of the day as a batch that spends too much 

time waiting at the beginning of the line that varied from no waiting time for the 

first lot in the batch to maximum waiting time for the last lot in the batch. The 

accumulated lots at the beginning of the line resulted in more WIP and longer CT; 

on the other hand, Push Lot every fixed interval of time led to shorter queues at the 

beginning of the line and this justified why Push Lot outperformed Push Batch. 

After that, the impact of applying CONWIP to the Segment was compared to that of 

applying Push Lot. The results confirmed that CONWIP outperformed Push Lot, as 

same TH was achieved with lower WIP and CT (see Table  7-16). Investigating the 

behaviour of lot arrivals under Push Lot and CONWIP showed that Push Lot 

regulated the arrival of lots to one every 75.8 minutes, which matches the 

deterministic input. However, at CONWIP there is variability of Lot Arrivals, this is 

due the fact that a lot is introduced to the Segment as soon as a lot is departed. It 

should be noted that unlike the results of Minifab, applying CONWIP to the 

Segment proved to be better than Push. This is due to the variability sources in the 

Segment that is greater compared to Minifab. Although both models have 

deterministic input; yet, there was still high variability observed at the Segment 

due to the variable breakdowns at all stations, sampling at TCheck, LAlign, and 

LDim stations, and complex batching operations at RWash and IEtch stations.  

Next, the impact of applying ICONWIP was compared to CONWIP and results 

showed that the target TH was achieved for both scenarios; however, with lower 

variances noted with ICONWIP. This reduction in variance means a more 

consistent TH levels that affect positively meeting demand and result in more 

customer satisfaction (refer to Table  7-16). Moreover, ICONWIP resulted in lower 

averages of CT and WIP, with minimal increase in variances of CT and WIP. This is 

due to the mechanics of ICONWIP that delays the release of new lots to the 

Segment after a departure happens. During this delay the WIP level drops below 

the WIP cap assigned, and lots are produced in a shorter CT when compared to lots 

produced from the Segment when WIP level reaches the WIP cap. This caused 

greater variability in WIP and CT of the Segment; however, lowering the WIP and 
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shortening CT often resulted in lower average CT and WIP and at the same time 

maintained a constant TH level. Finally, Nelson’s combined method showed that 

ICONWIP was the best scenario in Group I scenarios. 

8.4.2 Group II Scenarios 

Group II scenarios were conducted specifically to address the second issue of WIP 

distribution across the Segment. First DBR was applied to the Segment and 

compared to CONWIP; however, it appeared that CONWIP behaved slightly better 

than DBR. DBR did not manage to balance the distribution of WIP across the 

stations of the Segment due to the nature of the Segment; where, the last step 

performed on the bottleneck station is Step 41 out of a total of 46 steps. Hence, 

most of the line was controlled by a single WIP cap loop as in CONWIP; confirming 

the outcome of the literature review that DBR performance relies mainly on the 

position of the bottleneck station.  

Then, CONWIP was compared to hybrid CONWIP/DBR, which was again developed 

in this work as a variant to CONWIP by combining CONWIP and DBR. Results 

showed that hybrid CONWIP/DBR performed slightly better than CONWIP; 

however, it didn’t balance the distribution of WIP across the Segment. 

Investigation of results showed that this was due to CONWIP was the dominating 

control factor of WIP and consequently of the Segment performance.  

CONWIP was also compared to LCONWIP again to balance the distribution of WIP 

across the stations of the Segment. Critical stations were firstly defined and then 

the WIP levels for each loop controlling these stations were set. The performance 

of the Segment under LCONWIP was slightly better than CONWIP; also, it improved 

the distribution of WIP through the stations and resulted in better CT variances. It 

should be noted that the behaviour of LCONWIP resembles the behaviour of a 

queuing model with finite queue that limits buffer size in front of stations. This 

generally results in lower WIP levels, shorter CT; but also reduced TH levels [17]. 

Thus, improvements in WIP and CT meant sacrificing TH.  

Furthermore, the performance of the segment running with LCONWIP was 

compared to CONWIP/DBR, it was shown that LCONWIP was slightly better than 
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CONWIP/DBR, and it balanced the distribution of WIP across the stations of the 

Segment and; hence, was the best scenario in Group II scenarios. 

Finally, the best scenario selected from Group I (ICONWIP) was compared to that 

selected from Group II (LCONWIP) scenarios. Although both scenarios achieved 

the target TH; however, ICONWIP resulted in lower variances in TH than 

LCONWIP. This reduction in variances means more consistent TH levels, which 

increases confidence in meeting demand and leads to higher customer satisfaction 

(refer to Table  7-17). Also, averages of CT and WIP of ICONWIP are lower than 

those of LCONWIP; yet, variances of CT and WIP of ICONWIP is more than those of 

LCONWIP. This is due to the mechanism of ICONWIP as stated in Group I scenario 

discussion. Compared to LCONWIP, ICONWIP reduced CT by 0.9% and WIP by 

1.11%; also, compared to CONWIP, ICONWIP reduced CT by 1.23% and WIP by 

1.40%. It should be noted that the slightest improvement percentage in the 

semiconductor industry means savings of millions of dollars. Also, any 

improvements in this area of research is desirable as was evident from literature; 

where, application of Multi-CONWIP in semiconductor assembly lines showed that 

multi-CONWIP outperformed CONWIP and lowered CT by only 0.4% [70].  

To conclude, ICONWIP was selected to be the best scenario in all tested scenarios,  

this was backed up by the results from Nelson’s combined method. Given that the 

target is reducing the CT and WIP and not balancing the distribution of WIP across 

the stations of the Segment.  

8.5 INDUSTRIAL IMPLICATIONS 

LCONWIP should be easier to implement to wafer fabs as they are characterized in 

reality by the great number of stations and machines and hundreds of processing 

steps. Thus, monitoring smaller loops within the larger CONWIP loop can be more 

suitable especially in product mix environments. This was also confirmed by 

development of different CONWIP variations that addressed the same problem of 

controlling a large production lines with a single CONWIP loop [34]. 

On the other hand, ICONWIP implementation relies heavily on the lot arrivals and 

not on the structure of the production line in terms of location of bottleneck and 
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critical stations as it is essentially a CONWIP strategy that controls the whole line 

using a single loop; yet, with a modified lot introduction mechanism. For that, 

ICONWIP can be applied to different manufacturing systems and can still improve 

the performance of these systems as confirmed by the improvement results 

obtained from both the Minifab and the Segment. Furthermore, ICONWIP is easier 

to implement as it does not require instantaneous introduction of lots when a lot 

leaves the line as in CONWIP and delayed introduction of lots (due to the minimum 

TBA) can be more suitable to real life wafer fabrication facilities. 
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9 CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORK 

This work was undertaken to investigate the management of WIP and evaluate the 

effect of developing new lot release control strategies resulting from either 

combining or modifying lot release control strategies existing in literature. These 

strategies reduced cycle times, which results in lower WIP levels for a given 

throughput rate, improving the overall performance of wafer fabs. 

This chapter reports the most important findings and conclusions of this work 

accompanied by recommendations and directions for future work. 

9.1 CONCLUSIONS 

The main conclusions drawn from this work are summarised as follows: 

� ICONWIP lot release control strategy was developed; it reduces the variability 

of arrivals to the first station resulting in a reduced ca for all the stations. This 

reduced ca results in shorter time in queues and; hence, shorter CT for the lots. 

In addition, it delays the release of a new lot to the Segment after a departure 

happens, thus dropping the WIP below the WIP cap assigned for a short period 

of time causing lower average WIP levels. Thus, an overall improvement of 

performance is achieved; where the target throughput is attained with shorter 

cycle time and lower WIP level. This strategy had been developed first using 

the Minifab model and its effectiveness was confirmed on the Segment model. 

� Also, the LCONWIP lot release control strategy was developed and applied to 

the Segment model only. It sets a loop for every critical station which prevents 

the release of lots to critical stations by placing individual WIP caps for those 

stations that is lower than that of the overall CONWIP level. LCONWIP 

improved the distribution of WIP across the Segment, while attaining slightly 

better CT and WIP to the ones achieved by CONWIP and hybrid CONWIP/DBR. 

However, ICONWIP was still found to be the best strategy among the different 

strategies tested in this work, if the Segment does not exhibit unbalanced 
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distribution of WIP across the stations and the target is minimisation of CT and 

WIP. 

� A combination of CONWIP and DBR lot release control strategies was tested 

resulting in the development of a hybrid CONWIP/DBR strategy that was 

applied to the Segment model. It performed slightly better than CONWIP; 

however, it didn’t balance the distribution of WIP across the Segment. This 

was due to the location of the bottleneck station, after which the DBR could be 

applied, near the end of the Segment. CONWIP was the dominating control 

factor for WIP at the majority of operations and consequently DBR wasn’t 

effective. 

� Development of a new test bed that includes more of the challenges of real fabs 

that aren’t found in the Minifab such as cascaded batching, sampling (with all 

the realistic constraints that apply to it), stochastic breakdowns and loading of 

machines up to specific utilisation levels (v�^�). This enabled confirmation 

that the results of implementing some strategies that were developed based on 

the Minifab could be applied to larger systems and also allowed proving the 

effectiveness of the newly developed strategies. Detailed description of the 

Segment structural, numerical, and operational data is readily available to 

other researchers (Section  5.1). 

� Preliminary tests applied to the Minifab showed that although it had several 

features of a real wafer fab it still didn’t reflect the variability associated with 

the operations of a fab and was also limited in terms of number of machines 

and steps required to produce a lot. This meant that some of the strategies that 

were under study in this work were not applicable to the Minifab. 

� Assessing the effect of applying different push strategies on the performance 

of the Minifab and the Segment. In the Minifab, switching from exponential 

input to deterministic input for Push models reduced the lot arrival variability, 

which consequently reduced the variability of arrivals to the other stations 

downstream.  Furthermore, in the Segment, splitting a batch of lots and 

introducing a single lot every constant time interval resulted in reduced 
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amount of variability in arrivals, which again led to a better performance of the 

Segment confirming the importance of reducing the arrivals’ variability. 
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9.2 RECOMMENDATIONS FOR FUTURE WORK 

It is recommended that further research be undertaken in the following areas: 

� Selecting other industries that exhibit the re-entrant nature of semiconductor 

manufacturing such as dying process in textile industry and plating process in 

mirror manufacturing; and testing the impact of applying the developed lot 

release control strategies on them. 

� Further modifying the ICONWIP to include a maximum, in addition to the 

minimum, time between arrivals. This might be able to further control the 

arrival variability. 

� Applying effective optimisation techniques that would be able to determine 

the parameter values of the developed strategies that would further improve 

the WIP levels. 
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A p p e n d i x  B  

B GENERATED BREAKDOWNS 

This Appendix provides the “Up and Down” times raw data provided by similar 

machines of semiconductor manufacturing to establish the MTTF and MTTR of the 

Segment under study.   

As mentioned in the thesis earlier, that the availability exhibited by the real 

machines is not used at the Segment, rather than Mean Time Between Failures 

(MTBF) is used to establish the mean frequency of the “failure-repair” cycle for the 

machine. The following steps show in details how the MTBF for every station is 

calculated. 

B.1 MDEP, IDEP, AND VDEP STATIONS 

This section presents raw data of time to failure and time to repair (TTF and TTR) 

in hours to machines similar to those found in MDep, IDep, and VDep stations. To 

calculate the MTBF of these data, the time between failures (TBF) are computed by 

adding TTF and TTR for every breakdown as shown in Table  B-1. Then the 

computed values are averaged to get the MTBF used in the calculations presented 

in the thesis previously.  

Table  B-1: Calculating MTBF for MDep, IDep, and VDep stations. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

1 24.79 14.72 39.52 

2 92.14 0.96 93.10 

3 42.91 3.68 46.58 

4 74.23 0.85 75.09 

5 70.73 0.24 70.97 

6 35.40 14.66 50.06 

7 68.82 10.88 79.69 

8 48.09 6.42 54.50 

9 30.70 15.36 46.06 

10 22.43 3.38 25.80 

11 68.25 4.28 72.53 

12 87.74 3.34 91.08 

13 21.85 31.54 53.39 
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Table  B-1: Calculating MTBF for MDep, IDep, and VDep stations. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

14 149.48 1.16 150.63 

15 78.53 1.61 80.14 

16 72.91 0.14 73.05 

17 40.58 7.77 48.35 

18 24.87 7.90 32.77 

19 81.16 0.03 81.19 

20 191.82 0.63 192.44 

21 25.27 0.02 25.29 

22 132.46 17.45 149.91 

23 1.39 0.04 1.43 

24 4.13 0.03 4.17 

25 0.25 0.08 0.33 

26 3.46 1.21 4.67 

27 1.55 0.13 1.68 

28 2.50 0.13 2.62 

29 50.24 9.81 60.05 

30 71.98 0.04 72.02 

31 75.66 4.49 80.15 

32 66.00 8.52 74.52 

33 74.15 5.93 80.09 

34 73.01 7.71 80.72 

35 56.05 10.35 66.40 

36 63.15 9.18 72.33 

37 6.24 0.24 6.48 

38 18.37 0.00 18.38 

39 3.71 0.05 3.76 

40 36.93 0.09 37.02 

41 3.19 0.14 3.33 

42 2.03 1.06 3.09 

43 24.95 17.69 42.64 

44 51.66 0.22 51.88 

45 3.47 0.07 3.55 

46 68.27 10.92 79.20 

47 138.26 2.70 140.97 

48 75.69 3.29 78.98 

49 34.17 4.18 38.35 

50 30.04 13.20 43.24 

51 151.56 3.36 154.92 

52 65.98 0.01 65.99 

53 144.38 2.20 146.58 

54 159.06 2.88 161.94 

55 135.69 1.37 137.06 

56 101.65 3.52 105.16 

57 41.03 2.34 43.38 

58 43.72 9.78 53.50 
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Table  B-1: Calculating MTBF for MDep, IDep, and VDep stations. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

59 96.92 0.02 96.94 

60 0.15 0.02 0.16 

61 26.41 1.86 28.27 

62 48.95 0.31 49.26 

63 61.25 0.19 61.44 

64 77.60 0.03 77.63 

65 113.84 4.59 118.43 

66 6.14 33.84 39.98 

67 87.07 2.03 89.09 

68 81.23 1.24 82.47 

69 10.99 5.87 16.86 

70 16.69 1.32 18.01 

71 100.48 0.01 100.49 

72 116.47 2.39 118.86 

73 54.67 10.00 64.66 

74 20.88 1.55 22.43 

75 243.87 5.61 249.48 

76 14.83 44.25 59.07 

77 150.76 5.44 156.20 

78 185.10 12.92 198.02 

79 171.51 1.27 172.78 

80 162.56 38.66 201.22 

81 309.08 0.91 309.99 

82 108.29 7.55 115.84 

83 339.08 25.45 364.52 

84 46.02 0.40 46.42 

85 50.08 0.00 50.08 

86 52.63 4.07 56.70 

87 118.68 1.11 119.79 

88 5.83 0.04 5.87 

89 67.74 8.85 76.60 

90 167.52 1.27 168.78 

91 50.81 4.18 54.99 

92 30.14 98.45 128.58 

93 61.22 48.91 110.13 

94 72.68 0.91 73.59 

95 91.34 7.44 98.78 

96 89.91 2.74 92.66 

97 19.72 0.58 20.29 

98 18.55 9.90 28.45 

99 62.10 4.13 66.23 

100 103.87 16.57 120.44 

101 31.44 4.75 36.19 

102 100.56 0.93 101.50 

103 51.00 1.42 52.42 
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Table  B-1: Calculating MTBF for MDep, IDep, and VDep stations. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

104 21.33 0.16 21.49 

105 4.79 8.43 13.22 

106 46.62 0.81 47.42 

107 199.27 11.01 210.29 

108 49.51 8.51 58.02 

109 42.92 0.12 43.04 

110 191.85 0.38 192.23 

111 90.85 6.74 97.59 

112 10.03 4.52 14.55 

113 12.36 0.04 12.40 

114 46.58 30.56 77.14 

115 52.61 1.01 53.61 

116 46.79 0.34 47.13 

117 126.86 2.37 129.23 

118 7.47 6.87 14.34 

119 19.00 2.82 21.82 

120 359.49 8.98 368.47 

121 203.59 32.20 235.79 

122 16.48 1.30 17.78 

123 358.18 13.49 371.66 

124 97.71 0.16 97.86 

125 95.32 0.12 95.44 

126 207.13 48.21 255.34 

127 4.69 1.30 5.99 

128 398.91 0.08 398.99 

129 10.82 6.59 17.41 

130 52.19 0.00 52.19 

131 128.80 0.19 128.98 

132 87.25 0.89 88.14 

133 41.37 30.44 71.80 

134 9.62 0.43 10.05 

135 3.79 0.01 3.81 

136 175.77 4.18 179.94 

137 159.03 0.01 159.05 

138 116.68 11.65 128.33 

139 95.47 18.42 113.90 

140 285.15 3.02 288.17 

141 43.75 0.26 44.00 

142 0.79 0.02 0.80 

143 8.58 17.14 25.72 

144 116.03 4.00 120.03 

145 193.77 27.90 221.67 

146 1.52 0.04 1.57 

147 4.10 0.01 4.11 

148 276.59 10.17 286.76 
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Table  B-1: Calculating MTBF for MDep, IDep, and VDep stations. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

149 134.19 0.32 134.51 

150 2.16 0.31 2.46 

151 109.87 4.07 113.94 

152 46.90 0.97 47.87 

153 47.53 0.33 47.87 

154 29.29 0.09 29.38 

155 19.17 8.93 28.10 

156 23.56 6.13 29.69 

157 28.62 0.66 29.29 

158 44.36 28.36 72.72 

159 103.14 10.91 114.04 

160 178.88 0.02 178.90 

161 50.08 8.65 58.72 

162 288.71 0.16 288.87 

163 14.29 18.96 33.25 

164 13.13 0.00 13.14 

165 9.14 0.01 9.15 

166 12.36 3.47 15.83 

167 99.35 1.47 100.81 

168 29.43 0.15 29.58 

169 19.87 1.01 20.88 

170 53.24 42.73 95.97 

171 315.68 3.34 319.02 

172 153.02 14.07 167.10 

173 53.69 4.03 57.73 

174 98.22 1.28 99.50 

175 49.52 1.32 50.84 

176 23.68 11.33 35.01 

177 37.39 0.00 37.39 

178 0.33 0.02 0.35 

179 147.06 0.41 147.47 

180 21.11 33.54 54.65 

181 205.08 2.81 207.90 

182 52.11 1.44 53.54 

183 14.64 4.18 18.82 

184 41.71 26.59 68.30 

185 11.34 0.01 11.35 

186 39.81 0.98 40.79 

187 17.54 0.70 18.24 

188 143.65 0.96 144.61 

189 161.13 23.18 184.31 

190 271.25 0.22 271.47 

191 96.06 1.38 97.44 

192 22.50 1.43 23.94 

193 13.78 0.05 13.83 
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Table  B-1: Calculating MTBF for MDep, IDep, and VDep stations. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

194 13.68 13.99 27.67 

195 117.40 0.35 117.75 

196 7.77 0.03 7.80 

197 2.54 3.47 6.01 

198 57.23 12.25 69.47 

199 22.87 0.12 22.99 

200 157.28 16.52 173.80 

201 27.24 2.90 30.15 

202 165.40 0.56 165.96 

203 44.08 6.48 50.55 

204 127.16 7.29 134.45 

205 213.98 13.83 227.81 

206 120.14 4.02 124.17 

207 143.19 25.05 168.24 

208 108.44 5.33 113.77 

209 95.97 9.85 105.83 

210 330.52 11.34 341.86 

211 33.95 3.09 37.04 

212 211.13 2.16 213.29 

213 63.20 5.73 68.92 

214 129.29 0.98 130.27 

215 49.35 39.20 88.55 

216 120.47 7.34 127.82 

217 85.63 2.44 88.06 

218 211.73 2.71 214.44 

219 7.80 5.61 13.40 

220 61.61 0.03 61.64 

221 197.04 0.50 197.53 

222 66.75 9.84 76.59 

223 39.68 2.15 41.82 

224 46.48 34.93 81.41 

225 11.26 2.42 13.68 

226 1.76 0.27 2.03 

227 33.27 0.55 33.82 

228 31.63 4.18 35.81 

229 32.20 0.42 32.62 

230 81.85 6.38 88.23 

231 187.20 6.47 193.68 

232 222.99 1.08 224.06 

233 34.04 0.01 34.05 

234 6.61 1.13 7.75 

235 63.75 18.89 82.63 

236 195.99 0.55 196.54 

237 47.42 12.18 59.59 

238 27.62 1.53 29.15 
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Table  B-1: Calculating MTBF for MDep, IDep, and VDep stations. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

239 148.57 0.66 149.23 

240 24.94 8.99 33.93 

241 24.88 1.36 26.24 

242 121.67 0.11 121.78 

243 180.62 23.54 204.16 

244 154.50 1.30 155.79 

MTBF (hours) 88.09  

B.2 TCHECK AND LALIGN STATIONS 

This section presents raw data of time to failure and time to repair (TTF and TTR) 

in hours to machines similar to those found in TCheck and LAlign stations. To 

calculate the MTBF of these data, the time between failures (TBF) are computed by 

adding TTF and TTR for every breakdown as shown in Table  B-2. Then the 

computed values are averaged to get the MTBF used in the calculations presented 

in the thesis previously.  

Table  B-2: Calculating MTBF for TCheck and LAlign stations. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

1 67.40 3.77 71.17 

2 21.86 1.72 23.58 

3 10.27 0.02 10.29 

4 4.14 39.46 43.60 

5 0.44 4.90 5.34 

6 167.20 0.27 167.47 

7 39.64 1.48 41.12 

8 6.45 2.94 9.39 

9 33.07 2.64 35.70 

10 9.36 5.57 14.93 

11 6.43 11.03 17.46 

12 0.98 0.34 1.31 

13 23.66 3.20 26.86 

14 8.80 2.56 11.36 

15 9.49 1.75 11.23 

16 0.97 16.40 17.37 

17 5.18 0.85 6.03 

18 22.81 1.78 24.59 

19 10.22 4.06 14.27 

20 7.94 0.35 8.29 

21 10.54 6.27 16.81 

22 18.84 29.67 48.52 
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Table  B-2: Calculating MTBF for TCheck and LAlign stations. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

23 6.32 2.36 8.68 

24 9.64 11.35 20.99 

25 96.65 4.22 100.88 

26 13.26 1.26 14.52 

27 8.09 28.49 36.57 

28 0.92 8.91 9.83 

29 102.86 1.65 104.50 

30 10.35 36.69 47.04 

31 17.95 12.66 30.61 

32 4.70 86.49 91.19 

33 9.51 3.85 13.35 

34 8.16 14.24 22.39 

35 9.76 0.09 9.85 

36 11.91 25.30 37.21 

37 10.70 51.37 62.07 

38 32.63 0.48 33.11 

39 57.24 0.18 57.43 

40 98.09 7.71 105.80 

41 4.29 10.28 14.57 

42 13.72 7.97 21.69 

43 124.03 13.87 137.89 

44 10.13 71.09 81.22 

45 12.91 8.61 21.52 

46 51.39 15.17 66.56 

47 8.83 10.73 19.56 

48 13.27 24.47 37.73 

49 23.54 1.18 24.72 

50 75.79 0.01 75.80 

51 12.00 52.25 64.25 

52 110.77 11.01 121.78 

53 12.99 2.43 15.42 

54 21.58 0.63 22.21 

55 11.36 9.20 20.56 

56 86.80 4.87 91.68 

57 7.12 13.15 20.27 

58 10.85 16.11 26.96 

59 31.89 0.37 32.26 

60 11.63 6.88 18.51 

61 5.11 2.27 7.39 

62 9.73 2.80 12.52 

63 9.20 5.22 14.42 

64 6.78 2.68 9.46 

65 33.32 19.28 52.60 

66 4.72 0.54 5.26 

67 11.47 6.52 17.99 
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Table  B-2: Calculating MTBF for TCheck and LAlign stations. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

68 5.48 0.59 6.07 

69 35.41 5.40 40.81 

70 90.60 4.07 94.67 

71 7.93 16.85 24.78 

72 13.09 0.02 13.11 

73 18.04 3.00 21.04 

74 9.00 0.38 9.38 

75 95.62 0.39 96.01 

76 11.61 9.51 21.12 

77 2.49 16.72 19.21 

78 19.28 2.03 21.31 

79 129.97 5.77 135.74 

80 6.23 3.90 10.13 

81 1.03 14.08 15.11 

82 4.99 0.20 5.19 

83 11.80 2.36 14.16 

84 9.64 4.13 13.77 

85 31.87 0.88 32.74 

86 11.13 4.01 15.13 

87 85.46 1.87 87.33 

88 4.66 0.52 5.18 

89 83.39 2.36 85.75 

90 9.73 4.32 14.04 

91 7.69 1.19 8.88 

92 10.81 2.62 13.42 

93 9.39 11.90 21.29 

94 7.37 11.79 19.17 

95 34.04 0.08 34.12 

96 6.81 2.98 9.80 

97 33.02 0.45 33.47 

98 11.55 4.22 15.77 

99 43.62 2.36 45.99 

100 93.79 0.68 94.48 

101 23.31 2.37 25.69 

102 9.63 0.79 10.42 

103 23.21 2.02 25.23 

104 3.41 1.46 4.87 

105 6.73 0.02 6.75 

106 10.35 0.32 10.68 

107 11.68 10.46 22.14 

108 1.54 13.93 15.47 

109 10.08 2.15 12.23 

110 153.85 1.98 155.82 

111 10.03 0.05 10.07 

112 59.95 4.94 64.89 



 B-10 

Table  B-2: Calculating MTBF for TCheck and LAlign stations. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

113 45.22 0.02 45.24 

114 117.81 0.71 118.52 

115 86.19 6.17 92.36 

116 1.46 3.78 5.24 

117 81.70 4.38 86.07 

118 43.62 4.31 47.94 

119 7.68 7.22 14.90 

120 4.78 2.50 7.28 

121 25.29 1.05 26.33 

122 27.47 5.59 33.06 

123 30.39 0.51 30.90 

124 11.49 8.46 19.94 

125 111.54 2.82 114.36 

126 9.18 6.23 15.41 

127 126.87 0.45 127.32 

128 10.47 0.42 10.89 

129 11.56 0.38 11.94 

130 307.16 3.10 310.26 

131 37.37 32.62 69.98 

132 15.38 0.36 15.73 

133 11.65 3.09 14.74 

134 20.91 2.62 23.53 

135 69.38 1.88 71.26 

136 46.13 5.28 51.41 

137 18.71 7.01 25.72 

138 16.99 5.30 22.29 

139 18.70 19.75 38.45 

140 16.27 8.80 25.07 

141 3.20 1.90 5.10 

142 10.08 7.24 17.32 

143 4.76 2.44 7.20 

144 282.67 2.96 285.64 

145 23.93 14.16 38.08 

146 9.84 0.90 10.75 

147 11.10 10.90 22.00 

148 1.11 43.07 44.18 

149 4.95 16.06 21.01 

150 199.93 0.53 200.46 

151 11.45 2.69 14.13 

152 5.02 1.24 6.26 

153 15.07 1.72 16.78 

154 94.28 1.75 96.03 

155 118.26 0.08 118.34 

156 11.92 1.59 13.51 

157 10.39 37.32 47.71 
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Table  B-2: Calculating MTBF for TCheck and LAlign stations. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

158 18.23 1.06 19.29 

159 0.51 7.03 7.54 

160 55.87 0.06 55.93 

161 191.94 12.20 204.14 

162 11.80 0.44 12.24 

163 35.58 4.16 39.74 

164 60.07 0.02 60.08 

165 19.72 9.25 28.98 

166 14.75 8.80 23.55 

167 15.20 23.07 38.27 

168 12.95 4.05 17.00 

169 79.93 1.87 81.80 

170 10.13 4.04 14.17 

171 7.96 1.78 9.74 

172 10.23 17.66 27.89 

173 66.34 36.03 102.37 

174 47.96 12.96 60.92 

175 11.04 11.49 22.53 

176 183.83 0.03 183.86 

177 38.45 0.05 38.50 

178 6.16 2.25 8.41 

179 9.77 3.98 13.75 

180 8.00 0.60 8.60 

181 23.41 1.61 25.02 

182 38.24 14.09 52.32 

183 20.74 15.93 36.67 

184 29.38 24.17 53.56 

185 11.83 36.14 47.97 

186 19.28 42.76 62.04 

187 0.22 40.72 40.94 

188 4.88 19.56 24.45 

189 4.44 12.55 16.99 

190 11.45 7.67 19.11 

191 28.34 26.03 54.37 

192 9.96 12.53 22.49 

193 59.47 39.92 99.39 

194 8.08 2.40 10.48 

195 9.59 32.18 41.77 

196 3.83 32.27 36.10 

197 39.73 2.71 42.44 

198 9.29 2.39 11.68 

199 117.61 112.68 230.29 

200 75.33 0.29 75.62 

201 15.70 0.30 16.01 

202 11.73 0.78 12.51 
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Table  B-2: Calculating MTBF for TCheck and LAlign stations. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

203 23.19 63.79 86.97 

204 15.18 94.68 109.85 

205 55.42 0.85 56.28 

206 6.15 2.52 8.67 

207 33.72 0.01 33.73 

208 1.56 0.32 1.88 

209 67.57 0.14 67.71 

210 262.57 0.93 263.50 

211 4.48 0.70 5.18 

212 11.28 1.44 12.73 

213 79.93 0.01 79.94 

214 287.61 0.18 287.79 

215 110.84 0.77 111.61 

216 228.16 0.06 228.22 

217 1.19 0.05 1.24 

218 105.76 0.76 106.52 

219 11.24 2.28 13.52 

220 9.73 7.83 17.56 

221 4.16 0.09 4.25 

222 168.49 0.13 168.62 

223 11.28 1.54 12.82 

224 10.47 0.20 10.67 

225 263.79 0.07 263.86 

226 72.77 0.30 73.07 

227 106.86 0.92 107.78 

228 11.07 1.38 12.44 

229 10.64 1.50 12.13 

230 203.12 0.24 203.36 

231 11.14 0.38 11.52 

232 11.61 0.28 11.89 

233 283.49 1.00 284.49 

234 19.19 0.01 19.20 

235 176.05 4.93 180.98 

236 19.05 0.07 19.12 

237 97.21 0.01 97.22 

238 10.71 0.51 11.22 

239 31.08 0.62 31.70 

240 111.80 0.34 112.13 

241 11.66 0.33 11.99 

242 11.68 1.11 12.79 

243 22.88 1.30 24.19 

244 118.71 0.78 119.48 

245 323.21 2.15 325.36 

246 63.05 0.01 63.07 

247 51.43 2.67 54.11 



 B-13 

Table  B-2: Calculating MTBF for TCheck and LAlign stations. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

248 24.68 0.14 24.82 

249 23.86 0.96 24.83 

250 186.82 0.65 187.47 

251 39.56 7.31 46.88 

252 16.69 1.65 18.34 

253 10.35 0.51 10.86 

254 251.49 2.86 254.35 

255 9.16 1.71 10.86 

256 34.28 0.99 35.26 

257 2.99 0.02 3.01 

MTBF (hours) 50.08 

B.3 LPAT, METCH, AND IETCH STATIONS 

This section presents raw data of time to failure and time to repair (TTF and TTR) 

in hours to machines similar to those found in LPat, MEtch, and IEtch stations. To 

calculate the MTBF of these data, the time between failures (TBF) are computed by 

adding TTF and TTR for every breakdown as shown in Table  B-3. Then the 

computed values are averaged to get the MTBF used in the calculations presented 

in the thesis previously.  

Table  B-3: Calculating MTBF for LPat, MEtch, and IEtch stations. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

1 48.95 12.87 61.82 

2 97.79 0.03 97.82 

3 0.03 15.52 15.55 

4 177.11 29.42 206.53 

5 183.30 21.87 205.17 

6 101.58 1.00 102.57 

7 14.80 12.82 27.62 

8 60.03 14.01 74.04 

9 86.74 0.01 86.75 

10 192.00 1.85 193.85 

11 120.26 14.55 134.82 

12 73.31 8.55 81.86 

13 70.62 28.50 99.13 

14 1.95 1.30 3.26 

15 1.44 8.56 10.00 

16 28.74 20.69 49.42 

17 310.70 23.22 333.93 

18 105.38 0.01 105.39 
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19 71.71 1.22 72.93 

20 90.76 25.47 116.23 

21 78.70 1.57 80.27 

22 2.73 2.59 5.32 

23 4.03 37.22 41.25 

24 10.47 0.43 10.90 

25 8.03 0.03 8.06 

26 54.36 15.27 69.64 

27 53.78 84.32 138.10 

28 16.56 21.60 38.16 

29 159.85 1.96 161.81 

30 80.09 0.00 80.09 

31 3.97 0.03 3.99 

32 21.93 4.31 26.23 

33 7.34 43.50 50.84 

34 17.12 2.38 19.51 

35 80.33 0.01 80.34 

36 13.37 2.85 16.22 

37 11.33 0.92 12.25 

38 0.65 3.15 3.80 

39 32.11 24.96 57.07 

40 21.04 2.60 23.64 

41 31.87 4.29 36.15 

42 34.21 0.09 34.30 

43 99.07 15.58 114.64 

44 38.82 1.39 40.21 

45 34.86 0.64 35.50 

46 27.30 0.01 27.31 

47 37.93 0.03 37.96 

48 0.03 9.05 9.08 

49 146.65 49.35 196.00 

50 95.15 9.43 104.58 

51 195.03 11.70 206.73 

52 231.33 17.81 249.14 

53 211.36 0.19 211.55 

54 3.15 33.45 36.60 

55 19.04 2.53 21.56 

56 104.36 17.68 122.05 

57 138.59 16.89 155.48 

58 15.56 13.24 28.80 

59 96.97 1.32 98.29 

60 262.98 0.05 263.03 

61 11.41 5.16 16.57 

62 147.31 8.83 156.14 

63 16.95 6.28 23.23 

64 11.76 34.64 46.40 

65 1.68 0.86 2.54 

66 143.94 0.01 143.94 

67 2.67 0.01 2.67 
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68 99.60 25.61 125.21 

69 151.18 9.17 160.35 

70 25.75 4.37 30.12 

71 101.33 2.17 103.50 

72 6.26 23.46 29.72 

73 110.57 1.62 112.20 

74 16.94 0.00 16.95 

75 1.79 0.01 1.79 

76 203.33 14.54 217.86 

77 143.74 1.28 145.02 

78 133.37 0.57 133.94 

79 6.01 17.17 23.18 

80 256.78 8.51 265.29 

81 14.30 1.71 16.01 

82 3.12 0.00 3.13 

83 12.89 3.52 16.41 

84 95.40 0.54 95.94 

85 160.86 4.32 165.18 

86 49.93 14.95 64.88 

87 101.09 0.88 101.97 

88 31.73 0.40 32.13 

89 6.72 0.11 6.83 

90 26.46 2.29 28.75 

91 10.77 1.44 12.21 

92 141.24 0.94 142.18 

93 122.29 0.20 122.49 

94 6.07 15.13 21.20 

95 77.02 12.94 89.96 

96 285.88 7.91 293.78 

97 185.72 13.10 198.82 

98 310.35 1.23 311.57 

99 8.28 11.16 19.44 

100 58.67 10.56 69.23 

101 201.20 0.29 201.50 

102 66.14 0.19 66.33 

103 38.78 5.73 44.51 

104 7.71 14.65 22.36 

105 157.40 14.79 172.19 

106 84.10 0.57 84.68 

107 24.97 0.97 25.94 

108 170.35 0.25 170.60 

109 26.64 0.93 27.57 

110 13.11 0.05 13.16 

111 2.18 0.07 2.25 

112 10.96 4.93 15.90 

113 92.91 0.02 92.93 

114 20.32 0.88 21.20 

115 14.04 0.36 14.40 

116 7.30 5.32 12.62 
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117 161.46 0.71 162.17 

118 18.35 1.80 20.16 

119 233.17 28.53 261.71 

120 62.10 0.25 62.35 

121 27.78 0.10 27.88 

122 29.22 1.47 30.69 

123 4.61 0.02 4.63 

124 179.05 11.56 190.61 

125 131.89 1.09 132.98 

126 119.71 36.31 156.02 

127 152.92 0.69 153.61 

128 45.91 0.01 45.92 

129 91.02 3.61 94.64 

130 133.18 23.87 157.05 

131 83.10 0.53 83.62 

132 76.67 4.58 81.25 

133 129.84 2.50 132.34 

134 87.79 1.25 89.05 

135 21.34 37.03 58.37 

136 129.62 0.33 129.94 

137 13.65 6.20 19.86 

138 69.99 7.22 77.21 

139 15.87 2.58 18.46 

140 69.28 1.50 70.78 

141 65.73 25.85 91.58 

142 143.26 32.73 176.00 

143 147.03 5.91 152.94 

144 12.70 0.01 12.71 

145 1.57 0.03 1.60 

146 14.73 44.62 59.36 

147 111.70 0.16 111.85 

148 1.35 11.39 12.74 

149 166.24 2.26 168.49 

150 48.50 2.88 51.38 

151 37.72 0.85 38.57 

152 8.92 0.57 9.49 

153 58.23 25.64 83.87 

154 138.31 1.88 140.18 

155 101.84 10.23 112.07 

156 46.73 11.30 58.03 

157 84.68 4.22 88.90 

158 179.17 10.01 189.18 

159 37.66 25.38 63.04 

160 90.88 0.94 91.82 

161 62.44 15.32 77.76 

162 35.74 16.01 51.75 

163 118.98 0.36 119.34 

164 78.99 9.70 88.69 

165 179.22 0.85 180.07 
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166 88.22 8.04 96.26 

167 77.75 0.47 78.22 

168 43.19 15.23 58.43 

169 204.41 20.27 224.68 

170 88.90 1.90 90.80 

171 130.58 0.06 130.64 

172 8.55 2.61 11.16 

173 128.85 0.02 128.88 

174 32.67 16.20 48.86 

175 85.79 12.37 98.16 

176 166.85 14.12 180.96 

177 169.94 1.32 171.27 

178 24.90 4.35 29.25 

179 3.81 16.96 20.77 

180 11.32 4.36 15.67 

181 69.84 0.61 70.46 

182 8.58 3.65 12.23 

183 84.05 2.83 86.87 

184 12.62 0.69 13.31 

185 2.69 8.17 10.86 

186 9.10 12.81 21.91 

187 19.27 0.29 19.56 

188 7.12 0.35 7.47 

189 4.26 0.73 5.00 

190 33.08 8.84 41.92 

191 10.91 6.57 17.48 

192 0.01 47.98 47.99 

193 33.77 0.04 33.81 

194 110.66 7.24 117.90 

195 10.71 3.78 14.50 

196 24.78 41.05 65.83 

197 92.14 0.53 92.66 

198 39.07 1.29 40.36 

199 70.05 14.59 84.64 

200 66.32 0.00 66.33 

201 2.31 0.01 2.32 

202 105.03 14.14 119.18 

203 181.57 10.74 192.31 

204 42.18 10.08 52.25 

205 8.36 37.63 45.99 

206 158.30 22.74 181.03 

207 109.01 15.73 124.74 

208 286.87 1.08 287.95 

209 65.31 59.33 124.64 

210 240.27 8.72 248.99 

211 96.64 0.01 96.64 

212 24.78 0.02 24.80 

213 4.10 0.01 4.11 

214 65.25 16.43 81.68 
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215 306.23 10.22 316.45 

216 272.89 0.01 272.90 

217 44.46 21.63 66.09 

218 179.38 0.87 180.25 

219 103.53 2.96 106.48 

220 9.34 0.18 9.53 

221 14.35 1.40 15.75 

222 226.95 0.06 227.02 

223 4.92 8.15 13.06 

224 67.54 15.34 82.87 

225 153.16 17.22 170.37 

226 150.47 2.65 153.12 

227 18.38 5.97 24.35 

228 12.67 16.92 29.59 

229 25.14 21.59 46.72 

230 29.64 4.34 33.99 

231 142.99 0.13 143.12 

232 4.49 6.90 11.39 

233 13.12 0.89 14.01 

234 118.99 5.30 124.29 

235 18.88 11.94 30.83 

236 63.93 1.35 65.29 

237 14.36 0.94 15.30 

238 73.29 17.09 90.37 

239 4.90 7.25 12.14 

240 191.64 11.36 203.00 

241 127.25 0.02 127.27 

242 4.45 0.01 4.46 

243 20.34 0.18 20.52 

244 1.43 14.17 15.60 

245 53.24 12.21 65.46 

246 2.54 1.29 3.83 

247 91.73 1.10 92.83 

248 80.10 11.48 91.58 

249 162.37 19.11 181.49 

250 89.48 8.50 97.99 

251 167.99 13.30 181.29 

MTBF (hours) 84.73 

B.4 LDIM STATION 

This section presents raw data of time to failure and time to repair (TTF and TTR) 

in hours to machines similar to those found in LDim station. To calculate the MTBF 

of these data, the time between failures (TBF) are computed by adding TTF and 

TTR for every breakdown as shown in Table  B-4. Then the computed values are 
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averaged to get the MTBF used in the calculations presented in the thesis 

previously.  

Table  B-4: Calculating MTBF for LDim station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

1 26.91 1.77 28.68 

2 82.67 0.48 83.15 

3 9.93 5.50 15.43 

4 15.31 1.71 17.02 

5 47.54 0.54 48.08 

6 99.61 0.48 100.10 

7 14.53 0.62 15.15 

8 52.61 0.45 53.06 

9 120.42 0.34 120.76 

10 46.40 0.43 46.83 

11 169.90 0.81 170.71 

12 174.14 0.58 174.72 

13 165.80 0.86 166.67 

14 167.12 1.23 168.35 

15 58.79 2.08 60.87 

16 0.20 4.07 4.26 

17 94.27 0.73 95.00 

18 42.64 0.08 42.72 

19 11.92 0.43 12.35 

20 11.57 0.09 11.67 

21 7.34 1.52 8.86 

22 99.07 1.17 100.23 

23 4.78 0.41 5.19 

24 110.21 0.78 110.99 

25 0.57 0.78 1.35 

26 46.05 0.49 46.53 

27 165.58 0.29 165.87 

28 53.08 19.09 72.17 

29 73.02 0.39 73.41 

30 19.23 1.72 20.95 

31 4.35 0.34 4.69 

32 14.64 4.51 19.15 

33 21.40 31.65 53.05 

34 23.33 0.36 23.69 

35 50.39 0.09 50.48 

36 115.65 1.23 116.88 

37 45.50 0.44 45.95 

38 192.53 0.55 193.09 

39 90.54 2.49 93.02 

40 8.61 2.67 11.28 

41 61.16 0.44 61.60 

42 168.41 0.46 168.87 
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Table  B-4: Calculating MTBF for LDim station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

43 311.14 0.48 311.61 

44 53.83 1.51 55.34 

45 138.33 0.71 139.04 

46 18.64 0.01 18.65 

47 125.13 0.36 125.49 

48 193.75 0.22 193.97 

49 164.57 0.39 164.96 

50 332.46 0.43 332.90 

51 0.96 1.14 2.10 

52 144.58 0.41 144.99 

53 55.72 0.58 56.30 

54 251.12 0.75 251.87 

55 79.05 0.49 79.53 

56 164.12 0.51 164.62 

57 171.62 0.54 172.16 

58 170.80 1.46 172.27 

59 3.43 0.91 4.34 

60 42.20 1.45 43.65 

61 10.55 1.58 12.14 

62 10.41 0.37 10.77 

63 67.00 1.31 68.31 

64 26.85 0.03 26.88 

65 161.61 0.60 162.21 

66 42.26 6.35 48.61 

67 121.80 0.01 121.81 

68 333.42 0.36 333.77 

69 168.88 0.44 169.31 

70 172.75 0.32 173.08 

71 163.01 0.43 163.44 

72 165.29 0.51 165.80 

73 167.36 0.01 167.37 

74 56.86 1.82 58.68 

75 93.33 0.52 93.85 

76 186.04 0.89 186.94 

77 92.44 3.10 95.54 

78 47.57 0.45 48.02 

79 167.55 0.46 168.01 

80 28.85 1.52 30.36 

81 161.28 0.63 161.91 

82 143.74 0.39 144.13 

83 20.12 3.20 23.31 

84 164.91 0.29 165.20 

85 4.15 0.46 4.61 

86 166.71 0.43 167.14 

87 308.72 0.40 309.12 
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Table  B-4: Calculating MTBF for LDim station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

88 123.50 0.40 123.90 

89 166.11 0.60 166.70 

90 164.90 0.43 165.33 

91 170.97 0.54 171.51 

92 3.50 1.36 4.86 

93 95.59 0.58 96.17 

94 42.74 0.28 43.03 

95 100.11 18.58 118.68 

96 45.99 0.37 46.37 

97 170.98 0.69 171.68 

98 158.77 0.53 159.30 

99 2.80 3.13 5.92 

100 193.17 0.48 193.65 

101 167.76 0.45 168.21 

102 167.21 0.42 167.63 

103 335.15 1.39 336.54 

104 3.15 0.02 3.18 

105 168.29 1.34 169.64 

106 166.67 0.90 167.57 

107 161.70 2.99 164.70 

108 2.40 1.27 3.67 

109 1.60 0.04 1.64 

110 112.79 0.26 113.05 

111 26.05 1.00 27.05 

112 21.30 0.48 21.78 

113 166.36 0.29 166.66 

114 171.79 0.43 172.22 

115 151.43 2.35 153.78 

116 7.42 0.83 8.25 

117 3.35 0.37 3.72 

118 163.57 0.71 164.27 

119 174.30 1.38 175.68 

120 76.97 6.44 83.41 

121 0.42 7.43 7.85 

122 75.37 1.26 76.62 

123 60.03 6.32 66.35 

124 51.56 2.15 53.70 

125 81.10 8.56 89.66 

126 41.03 0.35 41.38 

127 11.65 0.42 12.07 

128 11.58 0.27 11.85 

129 11.72 0.66 12.38 

130 59.34 4.49 63.83 

131 51.30 1.36 52.66 

132 86.34 5.42 91.76 
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Table  B-4: Calculating MTBF for LDim station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

133 0.69 2.71 3.40 

134 3.69 0.06 3.76 

135 1.05 0.48 1.54 

136 16.24 1.92 18.16 

137 120.07 0.56 120.63 

138 168.63 0.49 169.12 

139 165.27 0.46 165.73 

140 168.88 2.10 170.98 

141 168.30 0.45 168.74 

142 167.31 0.20 167.51 

143 160.23 101.74 261.96 

144 73.72 0.47 74.19 

145 36.34 4.20 40.54 

146 119.04 0.18 119.22 

147 179.53 11.65 191.18 

148 4.73 0.49 5.23 

149 108.10 0.44 108.54 

150 18.46 120.89 139.35 

151 164.41 0.13 164.54 

152 71.04 3.83 74.87 

153 329.29 0.92 330.21 

154 167.41 0.62 168.03 

155 40.95 630.03 670.99 

156 167.95 0.68 168.63 

157 173.96 0.91 174.87 

158 89.64 7.08 96.72 

159 67.73 0.36 68.08 

160 335.23 0.44 335.67 

161 166.17 0.35 166.52 

MTBF (hours) 84.73 

B.5 RWASH STATION  

This section presents raw data of time to failure and time to repair (TTF and TTR) 

in hours to machines similar to those found in RWash station. To calculate the 

MTBF of these data, the time between failures (TBF) are computed by adding TTF 

and TTR for every breakdown as shown in Table  B-5. Then the computed values are 

averaged to get the MTBF used in the calculations presented in the thesis 

previously.  
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

1 31.90 0.01 31.91 

2 23.56 0.10 23.66 

3 4.68 0.99 5.67 

4 12.58 0.01 12.60 

5 2.99 1.03 4.02 

6 23.88 0.02 23.90 

7 45.31 0.01 45.32 

8 14.57 0.09 14.66 

9 9.72 0.39 10.11 

10 23.88 0.01 23.89 

11 24.85 0.02 24.87 

12 26.87 0.23 27.10 

13 8.23 0.07 8.30 

14 8.54 0.02 8.55 

15 2.28 0.75 3.03 

16 12.02 0.03 12.06 

17 3.38 0.98 4.36 

18 7.20 0.01 7.21 

19 20.82 0.01 20.84 

20 15.73 0.07 15.80 

21 11.74 0.01 11.76 

22 27.87 0.15 28.02 

23 11.31 0.06 11.36 

24 11.00 0.01 11.02 

25 25.29 0.02 25.31 

26 5.04 0.02 5.07 

27 15.73 0.01 15.75 

28 21.64 0.02 21.65 

29 14.21 0.43 14.64 

30 8.55 0.74 9.29 

31 10.30 0.63 10.93 

32 5.91 0.34 6.25 

33 24.93 0.03 24.96 

34 23.62 0.58 24.20 

35 6.90 0.02 6.92 

36 13.44 0.02 13.46 

37 7.35 13.72 21.07 

38 1.56 0.22 1.79 

39 1.39 0.42 1.81 

40 21.88 1.70 23.58 

41 2.65 0.13 2.78 

42 4.09 0.63 4.72 

43 18.99 0.31 19.30 

44 4.17 64.37 68.55 

45 1.29 0.02 1.31 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

46 2.13 0.13 2.26 

47 1.11 0.01 1.12 

48 22.75 0.15 22.89 

49 21.18 0.33 21.51 

50 9.58 0.18 9.76 

51 17.22 0.65 17.87 

52 9.72 0.08 9.81 

53 10.44 0.03 10.47 

54 10.37 0.02 10.39 

55 12.48 0.19 12.67 

56 13.68 0.02 13.71 

57 7.27 0.01 7.28 

58 17.15 0.02 17.17 

59 5.88 0.38 6.27 

60 18.27 0.01 18.28 

61 9.38 0.01 9.40 

62 10.41 0.01 10.43 

63 21.85 0.35 22.20 

64 3.79 0.01 3.81 

65 8.92 0.01 8.94 

66 13.44 0.04 13.48 

67 5.85 0.69 6.54 

68 7.26 0.16 7.42 

69 10.40 0.05 10.46 

70 26.44 0.06 26.50 

71 22.28 0.02 22.30 

72 15.85 0.01 15.86 

73 10.28 0.01 10.29 

74 10.58 1.27 11.85 

75 9.14 0.01 9.15 

76 24.25 0.17 24.42 

77 13.15 0.01 13.16 

78 10.16 0.03 10.19 

79 12.80 0.10 12.90 

80 11.02 0.04 11.07 

81 13.20 0.05 13.25 

82 11.20 0.04 11.25 

83 9.79 0.01 9.80 

84 2.63 1.98 4.61 

85 10.16 0.01 10.18 

86 23.33 0.01 23.34 

87 3.84 0.01 3.86 

88 23.15 0.18 23.34 

89 0.70 0.26 0.96 

90 10.21 0.01 10.22 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

91 9.63 0.12 9.76 

92 13.28 1.03 14.31 

93 13.25 0.32 13.57 

94 9.91 0.02 9.93 

95 13.80 0.02 13.82 

96 4.59 0.53 5.12 

97 15.15 0.07 15.21 

98 10.60 0.01 10.61 

99 13.67 0.03 13.70 

100 27.49 0.47 27.96 

101 8.96 0.20 9.16 

102 38.36 0.32 38.69 

103 9.93 0.04 9.97 

104 13.71 0.15 13.85 

105 11.88 0.19 12.07 

106 0.42 0.53 0.95 

107 4.65 0.01 4.66 

108 16.09 0.02 16.11 

109 13.21 0.02 13.23 

110 8.73 0.15 8.89 

111 11.89 0.01 11.91 

112 14.01 0.01 14.02 

113 14.02 0.45 14.47 

114 8.52 0.04 8.56 

115 10.80 0.01 10.81 

116 12.97 0.12 13.09 

117 11.38 0.01 11.39 

118 27.22 0.01 27.23 

119 0.67 0.01 0.68 

120 7.08 0.87 7.96 

121 8.72 0.01 8.73 

122 26.92 0.30 27.21 

123 25.00 0.01 25.01 

124 13.86 0.04 13.90 

125 8.71 0.01 8.72 

126 10.51 0.06 10.57 

127 14.20 0.01 14.21 

128 21.66 0.02 21.69 

129 3.66 0.51 4.17 

130 1.55 0.02 1.57 

131 21.48 0.10 21.58 

132 9.09 0.22 9.31 

133 15.74 0.02 15.76 

134 9.52 0.01 9.54 

135 15.85 0.33 16.18 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

136 23.66 0.71 24.37 

137 22.48 0.01 22.49 

138 12.96 0.02 12.98 

139 5.56 0.07 5.64 

140 16.40 0.02 16.42 

141 13.77 0.06 13.83 

142 22.56 0.06 22.62 

143 23.25 0.02 23.28 

144 22.73 0.03 22.76 

145 24.51 0.02 24.53 

146 6.53 0.69 7.22 

147 15.74 0.10 15.84 

148 24.44 0.07 24.51 

149 26.25 0.02 26.27 

150 11.99 0.01 12.00 

151 12.17 0.01 12.18 

152 8.25 0.02 8.27 

153 12.65 0.03 12.68 

154 13.78 0.02 13.80 

155 11.88 0.02 11.90 

156 14.54 0.68 15.22 

157 7.52 0.05 7.57 

158 12.35 0.02 12.37 

159 10.97 0.03 11.00 

160 27.93 0.36 28.29 

161 9.94 0.03 9.97 

162 1.58 1.10 2.68 

163 10.14 0.04 10.17 

164 13.40 0.01 13.41 

165 10.38 0.01 10.39 

166 24.86 0.02 24.88 

167 12.13 0.59 12.72 

168 20.83 0.01 20.84 

169 0.12 0.46 0.59 

170 13.02 0.06 13.08 

171 20.88 0.04 20.92 

172 8.97 0.02 8.99 

173 15.87 0.08 15.95 

174 8.09 0.02 8.12 

175 3.80 0.40 4.20 

176 12.14 0.06 12.19 

177 4.33 2.31 6.64 

178 0.35 11.24 11.59 

179 0.02 10.18 10.20 

180 5.16 0.03 5.19 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

181 27.83 0.58 28.41 

182 20.50 0.01 20.51 

183 11.59 0.04 11.63 

184 14.19 0.01 14.20 

185 12.89 0.01 12.90 

186 21.04 0.08 21.12 

187 24.90 0.28 25.18 

188 2.82 0.01 2.83 

189 0.28 0.02 0.30 

190 6.56 0.01 6.57 

191 17.26 0.09 17.35 

192 8.35 0.01 8.36 

193 7.20 0.56 7.76 

194 7.11 0.01 7.12 

195 10.69 0.01 10.71 

196 6.01 5.00 11.02 

197 6.72 13.22 19.94 

198 3.07 0.01 3.09 

199 0.07 0.11 0.18 

200 3.68 0.99 4.67 

201 1.12 6.73 7.85 

202 12.05 0.02 12.07 

203 8.87 4.27 13.14 

204 14.01 0.07 14.08 

205 0.97 0.44 1.41 

206 7.90 0.02 7.92 

207 14.60 0.98 15.58 

208 23.02 0.65 23.67 

209 6.20 0.01 6.21 

210 17.50 0.02 17.52 

211 7.12 0.01 7.14 

212 27.41 0.07 27.47 

213 10.04 0.02 10.06 

214 11.80 0.69 12.48 

215 24.53 0.06 24.58 

216 13.89 0.34 14.23 

217 8.99 0.01 9.00 

218 2.65 0.22 2.87 

219 9.11 0.03 9.15 

220 23.84 0.02 23.86 

221 17.76 0.68 18.44 

222 2.68 0.02 2.70 

223 17.03 0.02 17.06 

224 5.53 0.01 5.54 

225 14.56 0.02 14.58 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

226 14.91 0.03 14.94 

227 22.78 0.02 22.80 

228 25.22 0.01 25.23 

229 5.64 0.91 6.55 

230 30.95 0.17 31.11 

231 8.45 0.02 8.47 

232 27.30 0.03 27.33 

233 13.11 0.01 13.12 

234 2.94 0.67 3.61 

235 4.11 0.04 4.15 

236 39.15 0.60 39.75 

237 3.88 0.53 4.41 

238 3.07 0.02 3.10 

239 12.99 0.03 13.02 

240 20.44 0.01 20.45 

241 6.43 0.87 7.30 

242 8.99 0.01 9.00 

243 15.27 0.04 15.31 

244 7.74 0.01 7.75 

245 12.34 0.01 12.35 

246 21.60 0.01 21.61 

247 5.11 0.21 5.32 

248 5.16 0.01 5.17 

249 11.64 0.48 12.12 

250 16.79 0.02 16.81 

251 13.32 0.01 13.33 

252 8.56 0.02 8.58 

253 26.75 0.02 26.77 

254 22.26 0.01 22.27 

255 2.61 0.02 2.63 

256 6.41 0.01 6.42 

257 17.69 0.20 17.89 

258 3.66 10.00 13.66 

259 10.14 0.31 10.45 

260 9.58 0.01 9.59 

261 9.41 0.03 9.45 

262 25.36 0.08 25.44 

263 4.82 0.07 4.89 

264 3.31 4.03 7.35 

265 11.34 0.07 11.41 

266 15.35 0.03 15.38 

267 4.30 0.66 4.96 

268 3.02 0.09 3.11 

269 8.93 1.25 10.18 

270 29.94 0.67 30.61 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

271 11.10 0.01 11.11 

272 5.06 0.01 5.07 

273 30.91 0.02 30.93 

274 23.99 0.01 24.00 

275 11.36 0.07 11.43 

276 11.69 0.01 11.70 

277 3.17 0.41 3.58 

278 5.80 0.06 5.85 

279 11.86 0.01 11.87 

280 14.90 0.02 14.91 

281 10.31 0.02 10.33 

282 20.10 0.04 20.13 

283 27.81 0.04 27.85 

284 14.57 0.45 15.02 

285 6.01 0.01 6.02 

286 9.97 0.73 10.70 

287 5.64 0.01 5.65 

288 10.89 0.01 10.90 

289 13.30 0.04 13.34 

290 6.75 0.02 6.77 

291 18.17 0.39 18.56 

292 7.28 0.01 7.29 

293 40.32 0.36 40.68 

294 8.59 0.01 8.60 

295 10.70 0.39 11.08 

296 0.01 0.03 0.04 

297 3.63 0.01 3.64 

298 22.38 0.01 22.39 

299 8.74 0.01 8.76 

300 14.31 0.02 14.32 

301 11.88 0.02 11.90 

302 7.99 0.02 8.00 

303 9.96 13.46 23.42 

304 1.02 3.70 4.72 

305 11.61 0.06 11.67 

306 16.78 0.03 16.81 

307 6.48 0.08 6.56 

308 13.98 0.01 14.00 

309 17.68 1.57 19.25 

310 5.48 0.01 5.49 

311 8.85 0.34 9.19 

312 5.53 0.01 5.54 

313 22.24 0.81 23.05 

314 8.85 0.01 8.86 

315 12.58 0.02 12.60 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

316 13.73 0.26 13.99 

317 8.32 0.11 8.43 

318 23.65 0.03 23.68 

319 12.29 0.06 12.35 

320 23.18 0.01 23.20 

321 8.98 0.38 9.36 

322 3.52 0.02 3.54 

323 9.82 0.01 9.83 

324 17.37 0.01 17.38 

325 5.08 0.01 5.09 

326 0.70 3.51 4.22 

327 26.88 0.01 26.89 

328 6.80 0.02 6.83 

329 21.80 2.19 23.98 

330 0.31 0.44 0.75 

331 2.15 0.30 2.45 

332 0.31 0.54 0.85 

333 1.28 1.67 2.95 

334 4.03 0.44 4.47 

335 10.35 13.31 23.66 

336 0.75 3.80 4.55 

337 0.30 12.31 12.60 

338 3.62 2.00 5.62 

339 20.87 1.36 22.22 

340 5.58 0.02 5.59 

341 32.10 0.31 32.42 

342 2.48 0.36 2.84 

343 2.05 3.89 5.94 

344 4.27 0.02 4.29 

345 8.91 7.66 16.57 

346 8.08 0.04 8.12 

347 23.76 0.01 23.77 

348 3.58 1.01 4.60 

349 16.28 0.01 16.29 

350 4.10 0.01 4.12 

351 26.84 0.23 27.07 

352 10.72 0.13 10.85 

353 21.68 0.43 22.12 

354 10.96 0.01 10.97 

355 20.32 0.02 20.34 

356 3.64 0.44 4.08 

357 12.09 0.16 12.25 

358 39.17 0.16 39.33 

359 22.37 0.01 22.38 

360 25.33 0.02 25.35 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

361 4.91 0.03 4.94 

362 15.56 0.01 15.57 

363 13.02 0.74 13.76 

364 8.10 0.02 8.12 

365 14.51 0.07 14.57 

366 23.26 0.83 24.09 

367 27.07 0.10 27.17 

368 23.89 0.52 24.40 

369 7.06 0.02 7.07 

370 8.72 0.72 9.44 

371 5.53 0.36 5.89 

372 48.77 0.14 48.91 

373 24.17 0.10 24.27 

374 23.91 0.09 24.00 

375 4.97 1.25 6.22 

376 14.42 0.02 14.45 

377 11.64 0.40 12.04 

378 10.75 1.41 12.16 

379 3.04 0.16 3.20 

380 23.83 0.14 23.98 

381 28.20 1.11 29.31 

382 3.67 0.13 3.80 

383 15.13 0.02 15.15 

384 6.44 0.61 7.05 

385 4.13 0.01 4.15 

386 9.94 0.03 9.97 

387 6.85 0.26 7.11 

388 3.20 0.02 3.21 

389 0.34 0.09 0.43 

390 12.26 0.02 12.27 

391 14.14 2.03 16.17 

392 4.82 0.04 4.85 

393 13.20 0.08 13.28 

394 9.13 0.64 9.76 

395 0.69 0.01 0.70 

396 13.90 0.38 14.28 

397 13.12 0.01 13.13 

398 11.21 0.17 11.38 

399 9.23 0.18 9.41 

400 24.32 0.01 24.34 

401 13.81 0.10 13.90 

402 12.87 0.50 13.37 

403 10.72 0.04 10.75 

404 26.67 0.02 26.69 

405 9.83 0.01 9.85 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

406 18.54 0.01 18.55 

407 9.56 0.01 9.57 

408 12.27 0.36 12.62 

409 10.80 0.10 10.90 

410 1.21 1.21 2.42 

411 5.48 0.23 5.71 

412 15.67 5.03 20.71 

413 3.54 0.10 3.64 

414 15.44 0.06 15.49 

415 8.50 0.05 8.55 

416 15.23 0.03 15.26 

417 7.87 0.06 7.93 

418 13.12 0.03 13.15 

419 11.81 0.02 11.83 

420 2.53 0.49 3.02 

421 3.98 6.82 10.80 

422 8.89 0.48 9.37 

423 12.84 0.34 13.18 

424 6.87 0.60 7.47 

425 0.11 0.62 0.73 

426 6.32 0.01 6.33 

427 20.46 0.01 20.48 

428 3.00 0.03 3.03 

429 9.34 1.87 11.21 

430 12.57 0.11 12.68 

431 9.40 0.01 9.42 

432 15.69 0.10 15.78 

433 9.78 0.02 9.80 

434 2.91 0.66 3.57 

435 1.96 5.80 7.76 

436 2.74 0.01 2.76 

437 5.01 0.02 5.03 

438 15.26 0.11 15.37 

439 12.30 0.02 12.32 

440 21.84 10.48 32.32 

441 12.48 0.37 12.86 

442 3.09 0.01 3.11 

443 23.18 0.86 24.04 

444 2.76 0.82 3.58 

445 20.76 0.58 21.34 

446 1.84 0.35 2.19 

447 23.64 0.23 23.87 

448 0.27 0.01 0.29 

449 5.32 0.01 5.33 

450 18.17 0.64 18.82 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

451 10.35 0.03 10.37 

452 9.48 0.21 9.69 

453 11.26 0.02 11.28 

454 13.11 0.60 13.70 

455 23.08 0.05 23.14 

456 10.97 0.01 10.98 

457 13.56 0.07 13.63 

458 26.54 1.09 27.63 

459 10.92 0.10 11.02 

460 12.53 0.02 12.55 

461 4.20 0.02 4.21 

462 11.09 0.37 11.46 

463 3.02 0.75 3.77 

464 1.33 0.02 1.35 

465 10.35 0.01 10.36 

466 15.38 17.70 33.08 

467 4.69 0.03 4.73 

468 1.43 0.17 1.59 

469 8.55 0.01 8.56 

470 14.12 0.14 14.26 

471 10.49 0.01 10.50 

472 15.63 0.03 15.67 

473 5.90 0.01 5.90 

474 1.20 0.21 1.40 

475 4.07 0.17 4.25 

476 2.19 1.12 3.32 

477 6.05 0.01 6.06 

478 12.31 0.01 12.32 

479 13.00 0.01 13.01 

480 12.17 0.01 12.18 

481 2.19 0.99 3.18 

482 6.21 0.29 6.49 

483 8.81 0.55 9.36 

484 17.49 0.03 17.53 

485 6.07 2.45 8.52 

486 13.18 0.05 13.23 

487 14.35 0.01 14.36 

488 12.70 0.20 12.90 

489 22.18 0.02 22.21 

490 13.02 0.03 13.05 

491 23.08 0.13 23.21 

492 10.34 0.01 10.35 

493 7.67 0.66 8.33 

494 4.41 0.02 4.43 

495 13.93 0.02 13.95 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

496 8.95 0.02 8.97 

497 10.87 0.01 10.88 

498 13.84 0.02 13.86 

499 9.79 5.38 15.18 

500 1.18 0.65 1.84 

501 19.15 1.05 20.20 

502 9.70 0.07 9.77 

503 27.59 1.24 28.83 

504 9.82 0.01 9.83 

505 7.70 0.02 7.72 

506 10.45 0.36 10.81 

507 13.50 0.01 13.51 

508 7.56 3.89 11.44 

509 3.48 0.04 3.51 

510 12.09 0.03 12.12 

511 17.37 8.90 26.28 

512 9.74 0.05 9.80 

513 19.54 1.01 20.55 

514 0.48 1.86 2.35 

515 1.52 0.02 1.53 

516 23.62 0.06 23.68 

517 8.07 0.42 8.49 

518 17.14 0.50 17.63 

519 0.08 0.01 0.10 

520 31.91 0.02 31.93 

521 3.49 0.12 3.61 

522 30.41 0.75 31.16 

523 2.17 0.02 2.19 

524 13.58 0.02 13.60 

525 18.17 0.27 18.44 

526 2.51 0.80 3.32 

527 8.17 0.02 8.19 

528 6.01 0.43 6.44 

529 7.62 1.15 8.77 

530 15.76 0.09 15.85 

531 7.39 0.03 7.41 

532 12.34 0.03 12.37 

533 23.20 0.01 23.21 

534 12.79 0.01 12.80 

535 8.87 0.59 9.46 

536 18.91 0.80 19.71 

537 7.30 0.01 7.31 

538 10.91 0.02 10.93 

539 14.59 0.01 14.60 

540 12.84 0.01 12.86 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

541 4.32 2.10 6.42 

542 4.89 0.11 5.00 

543 2.37 0.21 2.58 

544 7.21 0.06 7.27 

545 13.82 0.02 13.83 

546 8.42 2.74 11.16 

547 3.21 0.01 3.23 

548 6.55 0.01 6.56 

549 18.59 0.57 19.15 

550 7.35 0.03 7.39 

551 24.70 0.02 24.72 

552 15.56 0.04 15.60 

553 10.70 0.09 10.79 

554 20.79 0.03 20.82 

555 7.48 0.05 7.53 

556 0.47 0.13 0.60 

557 3.58 0.01 3.59 

558 8.72 4.32 13.04 

559 1.97 0.10 2.07 

560 22.10 0.02 22.12 

561 25.78 0.19 25.97 

562 0.12 0.02 0.14 

563 12.67 0.02 12.69 

564 10.98 0.07 11.05 

565 12.32 0.01 12.33 

566 11.14 1.99 13.13 

567 2.36 0.64 3.00 

568 7.48 0.30 7.78 

569 10.58 0.03 10.61 

570 10.11 0.01 10.12 

571 12.51 0.05 12.56 

572 24.29 0.07 24.35 

573 23.54 0.49 24.03 

574 2.02 0.20 2.22 

575 0.39 4.55 4.94 

576 4.56 0.01 4.57 

577 14.29 0.35 14.64 

578 8.81 0.01 8.83 

579 13.83 0.01 13.85 

580 7.35 0.01 7.36 

581 9.63 12.91 22.54 

582 14.23 0.03 14.25 

583 15.39 0.01 15.40 

584 13.20 0.03 13.23 

585 9.46 0.01 9.47 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

586 14.72 0.23 14.96 

587 10.27 0.01 10.28 

588 6.35 0.10 6.45 

589 21.37 0.24 21.61 

590 8.73 0.01 8.74 

591 10.09 0.03 10.11 

592 15.09 0.01 15.11 

593 12.51 0.01 12.52 

594 11.74 2.70 14.44 

595 5.36 0.09 5.45 

596 10.94 0.02 10.96 

597 28.11 0.59 28.70 

598 4.41 0.64 5.05 

599 2.46 0.01 2.47 

600 13.01 0.13 13.14 

601 23.46 0.02 23.47 

602 3.29 0.54 3.82 

603 9.37 0.01 9.38 

604 23.01 0.02 23.03 

605 22.20 0.03 22.23 

606 16.82 0.45 17.28 

607 4.64 0.35 4.99 

608 29.07 0.02 29.09 

609 11.91 0.01 11.92 

610 9.91 0.02 9.94 

611 13.56 0.02 13.58 

612 13.10 0.01 13.11 

613 12.92 0.09 13.02 

614 9.16 0.01 9.17 

615 8.84 0.03 8.87 

616 6.95 0.69 7.64 

617 17.09 0.28 17.38 

618 12.60 0.02 12.62 

619 14.14 0.01 14.15 

620 2.32 0.02 2.34 

621 10.06 0.06 10.12 

622 13.35 0.01 13.36 

623 32.92 0.05 32.96 

624 14.80 0.46 15.26 

625 8.08 0.05 8.14 

626 39.91 0.68 40.59 

627 16.19 0.02 16.21 

628 38.95 0.02 38.97 

629 4.64 0.67 5.31 

630 10.61 0.01 10.62 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

631 5.31 0.04 5.35 

632 17.82 0.01 17.83 

633 12.63 0.06 12.69 

634 8.63 0.01 8.64 

635 14.96 0.01 14.97 

636 4.90 0.84 5.74 

637 4.43 0.01 4.44 

638 10.33 0.03 10.36 

639 9.82 0.02 9.84 

640 3.85 0.79 4.64 

641 2.18 1.16 3.34 

642 5.12 0.01 5.13 

643 15.58 0.01 15.59 

644 9.32 0.03 9.35 

645 10.77 0.01 10.77 

646 27.21 0.02 27.23 

647 13.58 0.10 13.68 

648 6.46 0.03 6.49 

649 18.62 0.71 19.33 

650 5.60 0.34 5.95 

651 1.00 0.01 1.01 

652 26.16 0.02 26.17 

653 14.38 0.01 14.40 

654 8.23 0.01 8.24 

655 11.08 0.01 11.09 

656 15.95 1.47 17.41 

657 8.44 0.01 8.46 

658 8.94 0.01 8.95 

659 13.41 0.01 13.42 

660 12.91 0.04 12.95 

661 2.69 0.66 3.35 

662 23.42 0.22 23.64 

663 8.70 0.01 8.71 

664 12.13 0.04 12.16 

665 23.62 0.08 23.70 

666 13.42 0.01 13.43 

667 24.78 0.03 24.80 

668 17.42 0.02 17.44 

669 8.61 0.61 9.22 

670 11.10 0.01 11.10 

671 22.75 0.02 22.76 

672 0.44 0.91 1.35 

673 22.33 0.08 22.42 

674 9.31 0.01 9.33 

675 14.10 0.12 14.22 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

676 36.79 0.22 37.01 

677 18.75 0.01 18.76 

678 17.35 0.71 18.06 

679 15.30 0.87 16.17 

680 5.36 10.26 15.62 

681 10.66 0.03 10.69 

682 13.78 0.56 14.35 

683 6.53 0.03 6.56 

684 0.42 0.01 0.43 

685 23.55 0.14 23.70 

686 15.95 1.83 17.78 

687 28.29 0.02 28.31 

688 47.35 0.02 47.36 

689 12.67 0.08 12.75 

690 1.92 0.84 2.77 

691 7.52 0.04 7.56 

692 23.46 0.01 23.47 

693 25.03 0.02 25.05 

694 26.81 0.30 27.11 

695 11.18 0.07 11.25 

696 5.44 0.05 5.49 

697 15.92 0.05 15.97 

698 10.89 0.01 10.90 

699 20.58 0.01 20.59 

700 15.94 0.04 15.99 

701 32.81 3.37 36.18 

702 3.34 0.19 3.53 

703 22.35 0.01 22.36 

704 25.35 0.01 25.36 

705 4.98 0.02 5.00 

706 15.62 0.01 15.63 

707 26.96 0.57 27.53 

708 8.94 0.24 9.18 

709 26.46 0.06 26.52 

710 23.49 0.70 24.19 

711 12.56 2.97 15.53 

712 2.47 9.19 11.66 

713 1.01 0.02 1.03 

714 3.41 0.01 3.42 

715 13.29 0.02 13.30 

716 23.84 0.17 24.02 

717 26.48 0.12 26.60 

718 6.38 0.24 6.62 

719 17.84 0.31 18.15 

720 14.79 0.19 14.98 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

721 4.87 0.75 5.62 

722 5.19 0.38 5.57 

723 18.32 0.04 18.36 

724 24.28 0.82 25.10 

725 26.06 0.17 26.23 

726 23.83 1.11 24.94 

727 7.76 0.11 7.87 

728 15.44 0.01 15.46 

729 11.18 0.01 11.20 

730 9.95 0.04 9.99 

731 7.60 0.73 8.33 

732 2.39 0.01 2.41 

733 12.26 0.02 12.28 

734 3.17 1.09 4.26 

735 1.94 1.28 3.22 

736 11.71 1.54 13.25 

737 0.23 0.01 0.24 

738 13.31 0.18 13.50 

739 1.64 1.94 3.57 

740 6.69 0.01 6.70 

741 13.91 0.80 14.71 

742 0.23 0.29 0.52 

743 15.24 0.01 15.26 

744 8.42 0.05 8.47 

745 3.09 0.48 3.57 

746 2.57 0.26 2.84 

747 1.38 0.02 1.39 

748 7.86 0.53 8.38 

749 2.34 0.38 2.72 

750 14.75 0.01 14.76 

751 13.83 0.13 13.96 

752 11.32 1.20 12.53 

753 0.73 0.05 0.77 

754 10.79 0.06 10.85 

755 26.41 0.02 26.44 

756 9.94 0.01 9.95 

757 4.69 0.11 4.80 

758 9.54 0.80 10.35 

759 3.40 0.01 3.41 

760 9.45 0.01 9.46 

761 12.26 0.06 12.32 

762 11.17 0.14 11.30 

763 32.28 0.25 32.53 

764 12.84 0.01 12.85 

765 11.20 0.21 11.41 



 B-40 

Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

766 2.74 1.04 3.78 

767 2.70 0.13 2.83 

768 16.29 0.33 16.62 

769 0.37 0.01 0.38 

770 4.85 4.34 9.20 

771 3.23 0.03 3.26 

772 11.81 0.01 11.82 

773 9.17 0.01 9.18 

774 29.98 0.12 30.10 

775 11.60 0.24 11.84 

776 10.77 0.53 11.30 

777 0.75 0.20 0.95 

778 11.09 0.41 11.50 

779 10.70 0.01 10.72 

780 10.10 0.22 10.33 

781 12.81 0.01 12.82 

782 14.54 0.08 14.62 

783 9.43 0.03 9.45 

784 14.57 0.03 14.60 

785 5.03 0.02 5.05 

786 15.83 0.15 15.98 

787 11.40 0.79 12.20 

788 10.97 0.09 11.07 

789 15.46 0.26 15.72 

790 20.97 0.02 20.99 

791 2.75 1.69 4.44 

792 22.31 0.86 23.17 

793 21.28 0.02 21.29 

794 7.53 1.47 9.00 

795 16.85 0.26 17.10 

796 0.24 0.01 0.25 

797 0.62 0.27 0.89 

798 4.42 0.01 4.43 

799 18.19 0.60 18.79 

800 10.85 0.03 10.88 

801 8.85 0.05 8.90 

802 11.65 0.03 11.67 

803 13.92 0.03 13.95 

804 11.50 0.01 11.51 

805 12.69 0.01 12.70 

806 9.63 0.01 9.64 

807 13.67 6.49 20.16 

808 1.32 10.73 12.04 

809 0.46 9.90 10.36 

810 1.18 0.10 1.28 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

811 8.53 0.01 8.54 

812 9.25 0.15 9.40 

813 7.23 0.01 7.25 

814 16.57 0.01 16.59 

815 10.35 0.01 10.36 

816 39.40 0.21 39.61 

817 0.58 1.78 2.36 

818 6.00 0.02 6.02 

819 13.69 1.11 14.80 

820 9.92 0.01 9.94 

821 4.37 0.07 4.43 

822 11.22 0.53 11.76 

823 0.54 0.01 0.55 

824 4.83 0.02 4.84 

825 15.02 0.01 15.03 

826 12.31 0.01 12.32 

827 12.97 0.03 13.00 

828 1.52 0.21 1.73 

829 10.37 0.01 10.38 

830 13.04 0.01 13.05 

831 6.33 0.03 6.35 

832 9.89 1.59 11.47 

833 5.86 0.04 5.90 

834 21.60 0.04 21.63 

835 14.20 0.01 14.21 

836 12.79 0.22 13.02 

837 22.02 0.02 22.04 

838 13.17 0.04 13.21 

839 4.39 0.01 4.40 

840 7.28 2.44 9.72 

841 9.03 0.08 9.10 

842 10.31 0.03 10.34 

843 10.76 1.92 12.69 

844 0.11 0.01 0.12 

845 13.87 0.01 13.88 

846 8.99 0.01 9.00 

847 11.65 0.01 11.66 

848 12.89 0.02 12.91 

849 17.39 0.52 17.91 

850 5.41 0.07 5.49 

851 15.32 3.59 18.91 

852 4.82 0.03 4.85 

853 10.14 1.01 11.15 

854 6.28 0.01 6.29 

855 21.19 0.01 21.20 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

856 7.30 0.20 7.50 

857 12.95 0.03 12.97 

858 11.52 0.02 11.53 

859 15.00 0.03 15.02 

860 4.20 0.96 5.16 

861 6.81 0.05 6.86 

862 25.24 0.26 25.50 

863 10.30 0.02 10.33 

864 0.31 0.01 0.32 

865 23.14 0.02 23.16 

866 24.90 0.04 24.94 

867 1.51 0.46 1.97 

868 2.61 0.58 3.19 

869 20.45 0.04 20.50 

870 0.57 0.01 0.58 

871 65.93 1.27 67.20 

872 0.57 0.59 1.15 

873 0.43 0.02 0.45 

874 9.98 0.80 10.79 

875 2.89 0.31 3.20 

876 20.67 0.06 20.73 

877 8.96 0.02 8.98 

878 16.34 0.06 16.40 

879 9.13 0.01 9.14 

880 25.94 1.37 27.32 

881 21.12 0.02 21.15 

882 19.38 0.01 19.39 

883 9.49 0.12 9.61 

884 19.88 0.01 19.89 

885 11.12 0.75 11.87 

886 14.01 0.05 14.06 

887 12.84 0.01 12.85 

888 21.11 0.05 21.16 

889 7.98 9.31 17.29 

890 20.48 0.01 20.49 

891 16.23 0.02 16.25 

892 7.35 0.02 7.37 

893 17.27 0.35 17.62 

894 7.12 0.01 7.13 

895 15.95 0.12 16.07 

896 1.82 1.77 3.59 

897 2.23 0.01 2.24 

898 20.51 0.38 20.89 

899 4.86 0.03 4.89 

900 1.34 1.30 2.64 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

901 8.41 0.01 8.42 

902 8.86 4.33 13.19 

903 14.54 0.29 14.82 

904 2.20 0.29 2.49 

905 6.10 0.06 6.16 

906 12.66 0.41 13.07 

907 13.42 0.23 13.64 

908 0.06 0.01 0.07 

909 12.78 0.01 12.79 

910 22.92 0.41 23.33 

911 7.16 0.02 7.18 

912 8.10 0.50 8.60 

913 18.66 0.01 18.68 

914 10.11 0.01 10.12 

915 2.57 1.75 4.31 

916 0.67 0.58 1.25 

917 1.67 0.94 2.61 

918 0.39 0.66 1.05 

919 3.41 0.04 3.44 

920 24.32 0.04 24.36 

921 23.36 0.01 23.38 

922 2.60 0.17 2.77 

923 9.23 0.02 9.25 

924 14.58 0.35 14.93 

925 4.27 0.53 4.80 

926 17.87 0.01 17.88 

927 7.38 0.01 7.39 

928 16.57 0.03 16.60 

929 4.07 0.48 4.55 

930 1.49 0.01 1.51 

931 14.42 0.03 14.44 

932 15.08 0.01 15.10 

933 9.44 0.91 10.35 

934 2.86 0.02 2.89 

935 9.42 0.01 9.43 

936 22.17 0.01 22.19 

937 3.08 0.01 3.09 

938 11.02 0.03 11.05 

939 25.67 0.73 26.39 

940 0.18 0.01 0.19 

941 9.25 0.01 9.26 

942 7.10 0.89 7.98 

943 5.95 0.02 5.97 

944 13.65 0.02 13.67 

945 19.75 0.12 19.87 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

946 11.00 0.03 11.03 

947 28.02 0.65 28.67 

948 4.92 0.32 5.24 

949 2.22 0.01 2.23 

950 12.76 0.19 12.95 

951 19.10 0.70 19.80 

952 0.50 0.01 0.51 

953 6.62 0.48 7.10 

954 9.45 0.01 9.46 

955 23.02 0.02 23.04 

956 14.67 0.52 15.19 

957 6.91 0.99 7.89 

958 21.31 0.02 21.33 

959 28.92 0.02 28.94 

960 9.99 1.63 11.62 

961 0.76 0.01 0.77 

962 0.35 0.46 0.82 

963 0.93 0.27 1.20 

964 7.50 0.02 7.52 

965 13.72 0.01 13.73 

966 5.87 1.01 6.88 

967 19.13 0.08 19.21 

968 11.79 0.01 11.81 

969 6.14 0.01 6.15 

970 25.12 0.03 25.14 

971 12.62 0.01 12.63 

972 12.70 0.13 12.83 

973 10.82 0.05 10.87 

974 16.22 0.02 16.24 

975 32.69 0.05 32.73 

976 23.63 0.06 23.69 

977 4.17 1.34 5.51 

978 11.92 4.04 15.96 

979 19.04 0.02 19.06 

980 16.24 0.02 16.26 

981 17.38 5.32 22.70 

982 8.04 1.20 9.24 

983 6.89 0.02 6.91 

984 13.47 0.47 13.93 

985 2.06 0.01 2.07 

986 11.13 0.03 11.16 

987 11.96 0.01 11.97 

988 9.55 0.02 9.57 

989 7.87 0.21 8.07 

990 3.68 0.01 3.70 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

991 14.86 0.01 14.87 

992 9.58 0.82 10.40 

993 9.93 0.02 9.95 

994 7.68 0.40 8.08 

995 2.54 0.02 2.56 

996 12.64 0.01 12.65 

997 14.70 0.04 14.74 

998 10.18 0.03 10.21 

999 10.73 0.01 10.74 

1000 27.29 0.02 27.30 

1001 13.37 0.11 13.48 

1002 4.72 0.52 5.25 

1003 1.27 0.02 1.29 

1004 26.37 0.02 26.39 

1005 27.82 0.19 28.02 

1006 12.55 0.01 12.56 

1007 8.21 0.01 8.22 

1008 11.60 0.01 11.61 

1009 2.00 0.18 2.18 

1010 13.22 1.49 14.71 

1011 8.46 0.01 8.47 

1012 15.57 0.01 15.58 

1013 6.66 0.01 6.67 

1014 12.90 0.03 12.93 

1015 13.08 0.55 13.63 

1016 21.98 0.01 22.00 

1017 0.19 0.01 0.20 

1018 3.20 0.37 3.56 

1019 0.03 0.02 0.05 

1020 8.32 0.07 8.39 

1021 23.30 0.30 23.60 

1022 13.64 0.01 13.65 

1023 13.78 0.96 14.74 

1024 0.47 1.98 2.44 

1025 0.47 0.05 0.51 

1026 7.12 0.03 7.15 

1027 17.42 0.03 17.45 

1028 19.47 1.22 20.69 

1029 22.30 0.05 22.35 

1030 17.54 0.94 18.48 

1031 5.28 0.03 5.30 

1032 10.31 0.01 10.33 

1033 11.47 0.99 12.47 

1034 46.06 0.01 46.07 

1035 10.54 0.01 10.55 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

1036 17.22 0.74 17.97 

1037 4.76 0.01 4.77 

1038 15.15 0.58 15.73 

1039 2.75 1.76 4.51 

1040 17.40 0.03 17.43 

1041 21.10 1.01 22.11 

1042 12.26 0.76 13.02 

1043 28.13 0.08 28.22 

1044 4.77 1.36 6.12 

1045 13.11 0.01 13.12 

1046 28.66 0.26 28.92 

1047 11.73 0.19 11.92 

1048 8.74 0.59 9.33 

1049 24.08 0.02 24.10 

1050 22.71 0.02 22.73 

1051 15.62 4.56 20.18 

1052 2.89 0.66 3.54 

1053 24.37 0.75 25.12 

1054 26.80 0.37 27.17 

1055 11.17 0.12 11.29 

1056 20.55 0.03 20.59 

1057 11.86 0.01 11.88 

1058 20.29 0.01 20.30 

1059 15.93 0.05 15.98 

1060 2.59 0.91 3.51 

1061 10.28 0.02 10.30 

1062 25.79 0.14 25.93 

1063 22.39 0.01 22.40 

1064 25.47 0.12 25.60 

1065 20.25 0.01 20.26 

1066 17.63 0.95 18.58 

1067 9.02 0.05 9.07 

1068 5.72 0.73 6.44 

1069 2.05 0.06 2.11 

1070 27.16 7.47 34.63 

1071 17.20 0.04 17.24 

1072 23.52 0.47 23.99 

1073 7.14 0.01 7.16 

1074 14.96 0.03 14.99 

1075 5.53 2.47 8.00 

1076 17.29 0.15 17.44 

1077 23.48 0.12 23.61 

1078 48.36 0.13 48.50 

1079 7.69 1.15 8.84 

1080 11.85 0.01 11.87 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

1081 27.16 0.14 27.31 

1082 23.85 0.16 24.01 

1083 6.21 0.69 6.91 

1084 5.19 0.03 5.21 

1085 15.12 1.45 16.57 

1086 4.11 0.12 4.23 

1087 10.49 0.04 10.53 

1088 4.81 0.03 4.83 

1089 32.10 0.06 32.15 

1090 12.03 0.02 12.06 

1091 20.96 0.01 20.98 

1092 13.46 0.08 13.54 

1093 5.55 2.47 8.02 

1094 2.19 0.01 2.20 

1095 3.98 0.99 4.97 

1096 9.94 0.25 10.19 

1097 12.37 0.01 12.38 

1098 11.11 0.01 11.12 

1099 13.96 0.54 14.50 

1100 1.43 0.45 1.88 

1101 4.81 0.02 4.83 

1102 11.07 0.61 11.69 

1103 0.95 0.02 0.96 

1104 7.44 0.39 7.83 

1105 6.02 0.11 6.13 

1106 8.50 9.71 18.21 

1107 0.54 3.15 3.69 

1108 2.03 0.05 2.08 

1109 7.90 12.20 20.10 

1110 2.19 3.81 6.00 

1111 0.60 0.03 0.62 

1112 9.53 0.01 9.54 

1113 22.01 0.02 22.03 

1114 29.85 0.14 29.98 

1115 7.27 0.27 7.54 

1116 4.68 0.13 4.82 

1117 1.22 0.03 1.25 

1118 7.84 0.51 8.35 

1119 10.49 0.17 10.66 

1120 12.80 0.01 12.81 

1121 10.13 0.29 10.42 

1122 15.89 0.03 15.92 

1123 9.05 0.04 9.09 

1124 12.00 0.03 12.03 

1125 11.78 0.02 11.80 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

1126 2.49 0.48 2.97 

1127 6.21 0.01 6.21 

1128 13.49 1.12 14.61 

1129 5.05 0.37 5.42 

1130 9.95 0.08 10.03 

1131 11.64 0.05 11.69 

1132 12.26 0.10 12.36 

1133 10.71 0.20 10.90 

1134 0.67 0.01 0.68 

1135 10.76 0.02 10.78 

1136 12.37 0.10 12.48 

1137 10.46 0.01 10.47 

1138 14.58 0.06 14.64 

1139 10.10 0.01 10.11 

1140 13.96 0.02 13.99 

1141 5.04 0.37 5.41 

1142 14.81 0.08 14.90 

1143 15.54 0.98 16.53 

1144 23.00 0.24 23.24 

1145 21.00 0.01 21.02 

1146 26.74 0.88 27.62 

1147 21.17 0.04 21.21 

1148 5.72 0.58 6.30 

1149 19.60 0.43 20.03 

1150 23.60 0.62 24.22 

1151 10.31 0.02 10.33 

1152 9.40 0.11 9.51 

1153 11.70 0.02 11.72 

1154 13.77 0.03 13.80 

1155 11.42 0.02 11.43 

1156 11.72 0.10 11.82 

1157 10.55 0.02 10.57 

1158 12.22 1.31 13.54 

1159 26.64 1.02 27.66 

1160 11.10 0.02 11.12 

1161 9.36 0.13 9.49 

1162 7.26 0.01 7.27 

1163 16.49 0.07 16.57 

1164 10.58 0.02 10.60 

1165 25.72 4.74 30.45 

1166 7.11 0.01 7.12 

1167 10.28 0.02 10.30 

1168 13.89 0.05 13.94 

1169 10.77 0.01 10.79 

1170 14.92 0.16 15.09 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

1171 0.42 0.03 0.45 

1172 11.69 0.03 11.72 

1173 9.22 0.02 9.23 

1174 12.35 0.02 12.36 

1175 12.93 0.01 12.94 

1176 12.15 0.01 12.16 

1177 0.53 0.36 0.89 

1178 3.98 0.01 4.00 

1179 8.10 0.03 8.14 

1180 6.40 0.03 6.43 

1181 17.14 0.04 17.18 

1182 21.91 0.06 21.97 

1183 14.03 0.01 14.05 

1184 12.76 0.21 12.96 

1185 22.12 0.03 22.15 

1186 0.51 0.02 0.52 

1187 3.76 8.85 12.61 

1188 12.51 0.29 12.79 

1189 10.28 0.01 10.30 

1190 10.39 0.05 10.43 

1191 12.93 0.02 12.94 

1192 13.74 0.01 13.75 

1193 8.99 0.02 9.01 

1194 10.89 0.01 10.90 

1195 13.73 0.03 13.76 

1196 17.00 0.27 17.27 

1197 12.55 0.35 12.90 

1198 16.89 0.10 16.99 

1199 23.77 7.26 31.02 

1200 8.21 0.01 8.22 

1201 6.93 0.02 6.95 

1202 12.86 0.04 12.89 

1203 26.53 0.01 26.55 

1204 11.95 0.03 11.98 

1205 21.76 0.59 22.35 

1206 2.63 0.01 2.64 

1207 0.80 0.26 1.06 

1208 8.82 0.02 8.84 

1209 1.22 0.01 1.23 

1210 15.02 0.16 15.18 

1211 2.54 0.50 3.04 

1212 4.13 0.30 4.43 

1213 0.48 0.01 0.49 

1214 24.86 0.04 24.91 

1215 9.12 1.11 10.23 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

1216 15.45 0.07 15.52 

1217 0.57 0.02 0.59 

1218 47.33 0.39 47.72 

1219 6.57 0.73 7.30 

1220 13.84 0.02 13.86 

1221 13.53 0.04 13.58 

1222 20.94 0.05 20.99 

1223 9.00 0.01 9.01 

1224 16.37 0.12 16.49 

1225 8.98 0.01 8.99 

1226 13.21 0.02 13.24 

1227 5.39 0.60 5.99 

1228 5.86 0.03 5.89 

1229 10.28 13.12 23.40 

1230 19.40 0.05 19.44 

1231 9.43 0.11 9.54 

1232 20.10 0.02 20.12 

1233 11.02 0.03 11.05 

1234 14.50 0.02 14.52 

1235 5.30 0.35 5.65 

1236 7.32 0.02 7.34 

1237 21.22 0.45 21.66 

1238 13.22 0.02 13.24 

1239 14.91 0.02 14.93 

1240 9.11 0.01 9.12 

1241 16.15 0.02 16.17 

1242 3.13 0.98 4.11 

1243 28.01 0.02 28.03 

1244 15.58 0.04 15.63 

1245 10.31 0.78 11.09 

1246 20.53 0.03 20.55 

1247 5.46 0.88 6.35 

1248 5.29 0.02 5.30 

1249 8.71 4.34 13.04 

1250 24.12 0.02 24.14 

1251 5.41 0.88 6.28 

1252 19.54 0.32 19.86 

1253 13.04 0.03 13.06 

1254 10.62 0.07 10.69 

1255 12.36 0.01 12.37 

1256 20.18 0.36 20.54 

1257 3.03 0.30 3.33 

1258 10.51 0.05 10.55 

1259 9.75 0.01 9.76 

1260 13.03 0.04 13.07 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

1261 22.63 0.37 23.00 

1262 1.18 0.06 1.24 

1263 22.61 0.47 23.08 

1264 0.82 0.03 0.85 

1265 2.14 0.15 2.29 

1266 9.12 0.01 9.14 

1267 14.72 0.33 15.05 

1268 9.00 0.03 9.03 

1269 2.98 14.48 17.46 

1270 3.61 0.02 3.62 

1271 16.56 0.01 16.57 

1272 6.01 0.02 6.03 

1273 14.10 0.02 14.12 

1274 15.44 0.02 15.45 

1275 13.20 0.02 13.22 

1276 9.35 0.02 9.37 

1277 14.79 0.26 15.05 

1278 3.62 5.60 9.21 

1279 1.99 0.74 2.72 

1280 9.41 0.02 9.43 

1281 17.30 1.99 19.29 

1282 6.37 0.80 7.17 

1283 11.95 1.89 13.84 

1284 10.09 0.48 10.56 

1285 12.54 0.02 12.56 

1286 6.95 4.15 11.10 

1287 6.73 1.71 8.43 

1288 0.22 0.01 0.23 

1289 0.16 0.01 0.17 

1290 1.93 0.56 2.49 

1291 8.51 0.02 8.54 

1292 11.33 1.90 13.23 

1293 10.88 0.92 11.80 

1294 2.98 0.64 3.61 

1295 7.46 0.02 7.48 

1296 9.76 0.22 9.99 

1297 3.15 0.03 3.17 

1298 1.85 3.23 5.08 

1299 8.02 1.10 9.11 

1300 5.90 0.02 5.92 

1301 6.61 0.47 7.09 

1302 9.51 0.02 9.52 

1303 14.01 0.17 14.18 

1304 8.85 0.02 8.87 

1305 22.19 0.02 22.21 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

1306 7.09 0.71 7.80 

1307 8.95 0.17 9.12 

1308 5.24 0.01 5.25 

1309 29.01 0.05 29.05 

1310 11.97 0.01 11.98 

1311 9.85 0.04 9.89 

1312 13.63 0.01 13.63 

1313 11.61 1.23 12.84 

1314 4.40 0.02 4.42 

1315 8.77 0.06 8.82 

1316 9.12 0.09 9.21 

1317 9.24 0.03 9.27 

1318 24.63 0.02 24.65 

1319 12.56 0.02 12.58 

1320 14.19 0.03 14.21 

1321 12.10 0.06 12.16 

1322 13.58 0.01 13.59 

1323 9.12 0.04 9.16 

1324 6.33 1.57 7.90 

1325 15.67 0.14 15.81 

1326 15.13 0.02 15.16 

1327 8.13 0.11 8.24 

1328 40.69 0.02 40.71 

1329 16.64 0.38 17.02 

1330 19.29 2.77 22.06 

1331 3.86 1.05 4.91 

1332 11.13 0.02 11.15 

1333 4.13 0.05 4.18 

1334 11.95 0.07 12.02 

1335 5.07 0.11 5.18 

1336 17.68 0.01 17.69 

1337 12.72 0.07 12.79 

1338 8.39 0.01 8.40 

1339 6.81 0.53 7.35 

1340 7.72 0.02 7.74 

1341 10.21 0.01 10.22 

1342 10.20 0.04 10.23 

1343 14.76 0.04 14.80 

1344 8.27 0.02 8.30 

1345 17.24 1.29 18.53 

1346 6.44 0.03 6.47 

1347 10.74 0.01 10.75 

1348 22.82 0.99 23.81 

1349 17.05 0.07 17.13 

1350 6.39 0.02 6.41 
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Table  B-5: Calculating MTBF for RWash station. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

1351 20.56 7.67 28.22 

1352 0.59 6.34 6.93 

1353 7.00 0.09 7.09 

1354 11.93 0.55 12.49 

1355 12.13 0.02 12.15 

1356 8.26 0.01 8.27 

1357 11.54 0.02 11.56 

1358 7.69 0.72 8.41 

1359 7.03 1.47 8.51 

1360 8.51 0.02 8.53 

1361 10.92 0.02 10.94 

1362 11.14 0.02 11.17 

1363 13.07 0.01 13.08 

1364 35.57 0.19 35.75 

1365 8.48 3.63 12.11 

1366 23.55 0.08 23.64 

1367 7.74 0.98 8.72 

1368 29.69 0.03 29.72 

1369 12.87 0.30 13.17 

1370 4.22 0.02 4.24 

1371 7.27 22.06 29.33 

1372 13.92 1.09 15.01 

1373 22.46 0.04 22.50 

1374 10.29 0.02 10.31 

1375 12.65 0.03 12.68 

1376 10.32 0.01 10.34 

1377 3.37 29.17 32.54 

1378 3.07 0.04 3.11 

1379 10.40 0.01 10.41 

MTBF (hours) 12.67 

B.6 IPOL AND VPOL STATIONS 

This section presents raw data of time to failure and time to repair (TTF and TTR) 

in hours to machines similar to those found in IPol and VPol stations. To calculate 

the MTBF of these data, the time between failures (TBF) are computed by adding 

TTF and TTR for every breakdown as shown in Table  B-6. Then the computed 

values are averaged to get the MTBF used in the calculations presented in the 

thesis previously.  
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Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

1 11.05 3.57 14.63 

2 11.58 0.72 12.30 

3 24.13 1.21 25.34 

4 19.18 1.15 20.33 

5 20.27 5.67 25.94 

6 18.42 0.34 18.76 

7 10.50 0.78 11.28 

8 9.37 1.26 10.63 

9 24.18 0.50 24.68 

10 25.24 0.53 25.77 

11 19.87 0.48 20.35 

12 21.48 1.47 22.96 

13 29.20 0.20 29.39 

14 15.82 0.53 16.34 

15 8.96 0.03 8.99 

16 25.43 1.37 26.80 

17 29.04 0.48 29.53 

18 19.16 0.18 19.34 

19 4.72 1.76 6.48 

20 21.79 12.26 34.04 

21 23.47 0.43 23.90 

22 15.46 0.25 15.72 

23 14.26 0.37 14.63 

24 31.58 0.53 32.11 

25 6.55 0.47 7.01 

26 20.75 0.25 21.00 

27 20.04 1.18 21.22 

28 31.97 0.42 32.39 

29 22.91 0.36 23.27 

30 29.20 1.62 30.82 

31 26.93 0.70 27.63 

32 25.31 0.43 25.74 

33 7.90 0.74 8.65 

34 12.18 0.01 12.19 

35 9.77 4.18 13.94 

36 15.65 2.05 17.69 

37 22.56 1.03 23.58 

38 21.31 0.68 22.00 

39 23.94 1.48 25.42 

40 23.77 0.53 24.30 

41 24.82 0.33 25.16 

42 0.21 0.31 0.52 

43 23.92 0.02 23.94 

44 20.19 0.62 20.81 

45 20.90 1.50 22.40 
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Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

46 24.96 0.21 25.17 

47 23.25 0.99 24.24 

48 2.70 0.45 3.15 

49 9.14 0.32 9.46 

50 13.47 0.46 13.93 

51 3.88 1.53 5.40 

52 7.12 0.50 7.61 

53 24.76 0.54 25.30 

54 7.22 1.85 9.07 

55 18.30 0.30 18.60 

56 9.51 0.18 9.69 

57 12.32 1.61 13.93 

58 11.96 1.27 13.24 

59 9.28 0.64 9.92 

60 17.78 0.76 18.55 

61 25.40 0.29 25.68 

62 24.24 0.31 24.55 

63 1.93 0.01 1.94 

64 5.29 2.94 8.23 

65 12.26 0.01 12.28 

66 11.14 1.05 12.19 

67 29.21 0.94 30.16 

68 3.03 0.35 3.38 

69 26.57 3.43 29.99 

70 27.60 0.23 27.83 

71 28.42 0.52 28.94 

72 19.30 5.45 24.75 

73 22.16 0.50 22.67 

74 15.94 1.23 17.16 

75 11.51 0.49 12.00 

76 30.01 0.87 30.87 

77 31.06 0.28 31.34 

78 21.35 0.59 21.94 

79 17.81 5.65 23.46 

80 18.30 1.01 19.30 

81 20.89 0.39 21.28 

82 31.57 0.88 32.45 

83 46.71 0.61 47.32 

84 28.87 0.14 29.01 

85 13.75 0.01 13.75 

86 8.31 0.31 8.61 

87 21.97 1.20 23.17 

88 28.41 2.59 31.00 

89 29.01 0.94 29.95 

90 22.59 0.49 23.08 
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Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

91 25.51 0.08 25.58 

92 26.05 0.51 26.56 

93 19.01 4.34 23.35 

94 24.09 0.50 24.59 

95 23.18 0.33 23.51 

96 4.38 1.10 5.47 

97 18.52 0.36 18.88 

98 1.44 0.30 1.73 

99 23.19 0.60 23.79 

100 13.78 6.53 20.31 

101 0.88 10.19 11.07 

102 6.16 0.01 6.17 

103 13.77 0.17 13.94 

104 20.88 0.40 21.28 

105 10.30 0.86 11.16 

106 6.29 0.02 6.31 

107 2.13 0.47 2.59 

108 19.38 0.28 19.66 

109 19.82 0.82 20.65 

110 25.28 1.81 27.09 

111 5.00 4.75 9.75 

112 3.90 1.64 5.54 

113 28.84 1.59 30.43 

114 16.92 0.86 17.77 

115 7.74 4.91 12.66 

116 25.91 3.04 28.95 

117 17.76 0.77 18.54 

118 13.72 0.55 14.26 

119 21.10 1.23 22.32 

120 14.02 0.04 14.06 

121 17.64 1.25 18.89 

122 18.84 0.56 19.41 

123 31.39 1.38 32.77 

124 22.72 0.42 23.13 

125 17.69 0.36 18.05 

126 10.10 0.54 10.64 

127 17.54 0.02 17.56 

128 11.04 1.30 12.34 

129 19.54 0.93 20.47 

130 15.43 0.07 15.50 

131 1.61 1.49 3.10 

132 20.95 1.26 22.21 

133 29.71 1.12 30.84 

134 11.74 1.13 12.87 

135 5.40 0.40 5.79 
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Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

136 18.97 0.15 19.12 

137 26.22 1.18 27.40 

138 30.09 0.39 30.48 

139 11.82 0.78 12.61 

140 11.32 1.08 12.40 

141 28.12 0.42 28.54 

142 22.40 1.65 24.04 

143 20.82 0.54 21.36 

144 6.83 0.02 6.85 

145 13.88 0.54 14.42 

146 31.13 0.98 32.10 

147 20.07 0.29 20.35 

148 22.41 4.14 26.55 

149 22.12 0.34 22.46 

150 10.18 1.53 11.71 

151 23.13 0.60 23.73 

152 18.91 0.31 19.22 

153 24.06 0.14 24.20 

154 26.04 0.55 26.59 

155 13.56 0.03 13.59 

156 7.35 0.81 8.16 

157 22.57 0.24 22.81 

158 24.11 1.99 26.10 

159 26.30 0.56 26.87 

160 29.52 0.27 29.79 

161 20.35 2.24 22.60 

162 21.46 6.36 27.81 

163 11.47 0.70 12.17 

164 46.99 1.12 48.11 

165 1.88 28.48 30.35 

166 29.49 0.25 29.75 

167 10.17 0.01 10.18 

168 15.39 0.43 15.81 

169 22.80 0.15 22.96 

170 24.94 0.71 25.65 

171 20.22 1.77 21.99 

172 18.44 0.92 19.36 

173 21.88 0.64 22.52 

174 16.82 8.80 25.61 

175 28.22 0.44 28.65 

176 15.85 0.85 16.70 

177 16.38 4.22 20.59 

178 15.14 0.28 15.42 

179 17.50 0.48 17.98 

180 17.01 0.46 17.46 
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Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

181 23.34 0.73 24.07 

182 19.20 0.01 19.22 

183 5.89 0.28 6.17 

184 16.12 0.63 16.76 

185 19.61 0.23 19.84 

186 9.78 0.65 10.43 

187 1.12 1.42 2.54 

188 6.43 1.33 7.76 

189 5.49 1.29 6.78 

190 14.32 0.43 14.75 

191 8.32 1.97 10.29 

192 0.06 0.53 0.58 

193 8.43 0.42 8.85 

194 13.96 4.84 18.80 

195 2.43 0.44 2.86 

196 8.31 0.48 8.79 

197 15.10 2.36 17.46 

198 5.87 0.87 6.74 

199 14.58 0.14 14.72 

200 14.64 0.37 15.01 

201 24.32 0.79 25.11 

202 16.49 0.37 16.85 

203 2.91 0.31 3.22 

204 11.67 0.06 11.73 

205 10.79 0.45 11.25 

206 16.39 0.48 16.87 

207 11.93 0.01 11.94 

208 3.31 0.79 4.10 

209 13.59 0.41 14.00 

210 2.38 0.31 2.69 

211 11.32 0.07 11.39 

212 9.28 0.35 9.63 

213 23.18 0.19 23.37 

214 23.81 0.76 24.57 

215 19.34 0.02 19.36 

216 21.21 9.28 30.49 

217 17.90 0.99 18.89 

218 20.40 0.49 20.89 

219 10.85 1.07 11.92 

220 13.18 0.71 13.89 

221 23.10 0.98 24.08 

222 23.20 0.40 23.60 

223 8.11 0.45 8.57 

224 13.74 0.18 13.92 

225 2.24 0.47 2.72 
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Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

226 22.94 1.91 24.85 

227 1.49 0.38 1.87 

228 22.19 0.25 22.45 

229 1.92 0.17 2.09 

230 20.37 1.17 21.55 

231 21.44 0.85 22.29 

232 10.85 3.20 14.04 

233 16.60 0.49 17.09 

234 20.18 4.14 24.32 

235 24.41 0.43 24.85 

236 20.37 0.44 20.81 

237 23.83 0.52 24.35 

238 27.23 0.92 28.15 

239 25.91 0.29 26.19 

240 4.40 0.24 4.64 

241 14.69 3.48 18.17 

242 5.00 0.01 5.01 

243 14.30 0.25 14.55 

244 30.17 0.49 30.66 

245 29.29 0.49 29.78 

246 16.36 0.94 17.30 

247 29.32 0.47 29.80 

248 5.09 21.86 26.95 

249 20.24 0.75 20.99 

250 8.55 1.08 9.63 

251 0.85 8.40 9.25 

252 18.02 0.63 18.65 

253 27.88 0.46 28.34 

254 17.90 0.26 18.15 

255 20.93 0.17 21.10 

256 28.43 1.24 29.67 

257 26.99 0.49 27.48 

258 24.09 0.66 24.75 

259 20.09 1.04 21.13 

260 18.54 0.73 19.27 

261 19.33 0.32 19.65 

262 16.77 2.13 18.90 

263 6.76 1.44 8.21 

264 18.73 0.26 18.99 

265 23.98 0.42 24.41 

266 24.41 0.44 24.85 

267 18.69 0.56 19.25 

268 15.35 1.05 16.40 

269 19.35 2.64 21.98 

270 34.44 1.17 35.61 
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Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

271 3.27 0.26 3.53 

272 28.27 0.28 28.55 

273 17.56 1.57 19.13 

274 31.06 0.22 31.28 

275 7.36 0.65 8.01 

276 2.90 0.87 3.77 

277 12.76 0.26 13.02 

278 22.40 0.42 22.83 

279 11.16 3.27 14.44 

280 5.80 0.05 5.85 

281 4.70 0.17 4.87 

282 3.17 1.46 4.63 

283 22.80 0.13 22.93 

284 9.84 5.44 15.28 

285 19.23 1.46 20.69 

286 28.95 0.03 28.98 

287 9.41 1.97 11.38 

288 12.08 0.51 12.59 

289 16.74 3.31 20.05 

290 7.06 0.62 7.68 

291 16.63 0.01 16.63 

292 6.41 0.47 6.88 

293 19.26 0.22 19.47 

294 5.06 0.27 5.33 

295 12.17 1.76 13.93 

296 29.00 2.85 31.84 

297 21.26 0.53 21.78 

298 22.79 0.33 23.13 

299 4.10 0.41 4.51 

300 22.44 0.24 22.68 

301 24.04 1.28 25.32 

302 24.07 4.16 28.23 

303 12.80 0.60 13.40 

304 24.57 1.29 25.86 

305 24.25 0.36 24.61 

306 32.93 0.24 33.17 

307 26.40 0.38 26.78 

308 23.45 0.44 23.89 

309 4.94 0.56 5.50 

310 0.10 3.52 3.61 

311 23.65 0.02 23.67 

312 23.45 0.37 23.82 

313 28.21 0.37 28.58 

314 22.42 0.54 22.97 

315 21.24 0.35 21.59 
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Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

316 22.91 0.45 23.37 

317 11.96 2.26 14.22 

318 15.60 0.89 16.49 

319 17.73 0.37 18.11 

320 22.70 1.10 23.80 

321 5.23 0.50 5.73 

322 20.81 0.61 21.42 

323 27.75 0.61 28.35 

324 7.05 0.23 7.28 

325 21.49 5.06 26.55 

326 0.31 0.98 1.29 

327 17.00 0.01 17.01 

328 22.24 0.70 22.94 

329 0.57 0.01 0.58 

330 23.71 0.15 23.85 

331 22.93 0.97 23.90 

332 20.18 0.48 20.67 

333 23.28 1.01 24.29 

334 23.37 0.55 23.92 

335 22.22 0.20 22.42 

336 21.45 0.25 21.70 

337 1.25 1.72 2.97 

338 27.47 2.72 30.19 

339 17.40 0.64 18.04 

340 11.19 12.05 23.24 

341 10.72 0.11 10.83 

342 12.24 0.94 13.17 

343 10.13 1.09 11.22 

344 14.65 0.43 15.08 

345 9.45 0.26 9.71 

346 7.73 0.21 7.94 

347 24.38 1.27 25.65 

348 19.75 2.02 21.77 

349 4.29 0.73 5.02 

350 29.03 6.57 35.60 

351 12.44 0.52 12.96 

352 0.00 2.94 2.94 

353 1.19 3.22 4.41 

354 27.86 4.11 31.97 

355 20.74 0.05 20.79 

356 17.62 0.46 18.08 

357 34.83 1.41 36.24 

358 15.09 0.26 15.34 

359 8.52 0.03 8.54 

360 25.48 0.44 25.93 
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Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

361 1.73 1.07 2.80 

362 2.58 0.34 2.93 

363 7.93 0.57 8.49 

364 14.17 10.41 24.58 

365 12.46 0.91 13.38 

366 8.00 0.50 8.50 

367 15.60 1.93 17.53 

368 11.82 0.76 12.58 

369 14.74 1.86 16.60 

370 29.20 0.63 29.83 

371 27.93 2.82 30.75 

372 21.15 0.46 21.62 

373 28.17 2.44 30.61 

374 22.01 0.55 22.56 

375 30.42 0.98 31.39 

376 32.80 0.75 33.54 

377 26.85 0.10 26.95 

378 27.87 0.73 28.60 

379 22.27 0.59 22.86 

380 21.49 0.72 22.21 

381 23.11 0.29 23.40 

382 3.51 0.01 3.52 

383 16.63 0.51 17.14 

384 5.82 0.62 6.44 

385 16.77 0.15 16.92 

386 6.53 0.55 7.08 

387 21.97 0.70 22.67 

388 21.37 0.53 21.89 

389 26.16 0.29 26.45 

390 12.17 0.81 12.98 

391 11.25 0.06 11.31 

392 5.91 0.47 6.38 

393 15.09 5.10 20.19 

394 10.07 0.01 10.08 

395 24.73 1.85 26.58 

396 26.74 0.62 27.36 

397 19.35 0.48 19.83 

398 19.88 0.23 20.11 

399 18.87 0.82 19.69 

400 9.44 0.25 9.69 

401 3.71 0.25 3.96 

402 27.69 1.55 29.24 

403 31.87 1.06 32.93 

404 22.89 0.00 22.90 

405 3.83 0.33 4.16 
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Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

406 16.85 0.52 17.37 

407 25.42 0.51 25.93 

408 19.79 0.47 20.26 

409 0.01 0.03 0.04 

410 2.67 0.01 2.68 

411 17.50 0.43 17.93 

412 18.11 0.44 18.55 

413 16.16 0.53 16.69 

414 20.88 0.70 21.58 

415 22.74 0.48 23.22 

416 15.07 0.86 15.93 

417 6.02 6.02 12.04 

418 24.39 0.43 24.82 

419 10.12 0.42 10.54 

420 10.82 0.39 11.21 

421 12.53 0.26 12.79 

422 6.62 0.15 6.77 

423 14.60 1.29 15.89 

424 18.05 0.43 18.49 

425 16.11 0.23 16.34 

426 17.41 0.43 17.84 

427 20.18 0.65 20.84 

428 15.91 3.11 19.02 

429 13.06 0.36 13.43 

430 13.10 0.42 13.52 

431 16.24 0.36 16.59 

432 15.40 0.21 15.61 

433 10.50 0.48 10.98 

434 11.73 0.01 11.74 

435 21.98 0.95 22.93 

436 17.85 0.65 18.50 

437 18.92 0.25 19.17 

438 14.12 0.24 14.35 

439 18.14 0.43 18.56 

440 12.43 0.67 13.09 

441 14.65 1.98 16.63 

442 15.06 0.65 15.71 

443 3.99 0.80 4.80 

444 24.69 5.17 29.86 

445 21.24 0.54 21.78 

446 24.94 0.78 25.72 

447 17.18 0.82 18.00 

448 2.56 0.05 2.61 

449 15.40 0.26 15.66 

450 21.40 0.42 21.82 
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Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

451 1.13 0.47 1.60 

452 13.34 0.07 13.41 

453 13.37 0.43 13.80 

454 13.56 0.36 13.93 

455 7.22 0.43 7.65 

456 22.89 2.48 25.37 

457 1.64 0.26 1.90 

458 18.20 0.37 18.58 

459 17.85 0.76 18.61 

460 8.38 0.54 8.91 

461 14.47 0.46 14.94 

462 20.56 0.50 21.06 

463 13.50 0.60 14.10 

464 16.44 0.56 17.00 

465 9.85 0.28 10.13 

466 15.95 8.42 24.38 

467 18.67 0.48 19.15 

468 19.13 0.66 19.79 

469 20.83 3.55 24.38 

470 17.48 0.37 17.85 

471 17.16 0.33 17.49 

472 3.36 0.37 3.73 

473 17.18 0.46 17.64 

474 17.78 0.59 18.37 

475 1.12 0.40 1.53 

476 19.76 1.11 20.87 

477 16.89 0.95 17.84 

478 23.84 0.38 24.22 

479 19.35 0.37 19.72 

480 6.69 0.01 6.70 

481 11.08 0.42 11.50 

482 23.82 0.72 24.54 

483 17.37 0.87 18.24 

484 23.55 2.07 25.62 

485 21.66 0.40 22.06 

486 8.36 0.47 8.83 

487 12.38 0.45 12.83 

488 14.35 0.71 15.07 

489 16.22 0.35 16.57 

490 16.38 1.15 17.53 

491 20.69 2.47 23.16 

492 12.72 0.45 13.17 

493 6.38 0.58 6.97 

494 17.17 0.48 17.65 

495 11.00 0.38 11.39 
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Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

496 1.93 0.05 1.98 

497 5.05 0.55 5.61 

498 23.42 0.46 23.88 

499 19.52 1.61 21.13 

500 20.73 4.03 24.76 

501 18.63 0.23 18.86 

502 24.14 1.12 25.26 

503 24.17 0.31 24.49 

504 15.40 0.43 15.83 

505 13.67 0.70 14.37 

506 2.21 0.01 2.23 

507 17.83 0.68 18.51 

508 20.25 0.30 20.55 

509 20.92 0.23 21.15 

510 17.82 0.38 18.20 

511 20.83 0.16 20.99 

512 9.82 0.38 10.20 

513 4.97 3.59 8.56 

514 16.07 1.96 18.02 

515 16.95 0.41 17.36 

516 3.27 0.78 4.05 

517 18.95 0.22 19.17 

518 19.54 0.79 20.33 

519 12.62 0.52 13.14 

520 22.44 0.76 23.20 

521 25.12 0.65 25.77 

522 22.39 0.75 23.14 

523 19.89 0.26 20.15 

524 23.76 0.43 24.19 

525 19.69 0.21 19.90 

526 33.98 0.33 34.31 

527 28.43 8.43 36.86 

528 28.14 0.88 29.02 

529 22.34 0.36 22.69 

530 23.05 0.49 23.54 

531 24.87 0.55 25.42 

532 21.18 0.78 21.96 

533 25.92 1.03 26.94 

534 21.25 0.81 22.06 

535 23.11 1.03 24.13 

536 4.25 0.07 4.32 

537 16.11 1.23 17.35 

538 2.47 0.01 2.48 

539 23.13 0.74 23.87 

540 2.50 0.17 2.67 



 B-66 

Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

541 26.79 0.48 27.27 

542 26.00 0.18 26.18 

543 21.34 0.47 21.81 

544 10.40 0.76 11.16 

545 23.68 0.41 24.10 

546 16.87 0.74 17.61 

547 1.36 0.16 1.52 

548 22.55 3.72 26.27 

549 18.64 0.22 18.86 

550 29.20 0.00 29.20 

551 22.84 0.50 23.34 

552 26.05 0.53 26.58 

553 22.83 0.39 23.22 

554 3.59 0.03 3.62 

555 24.25 0.55 24.80 

556 28.83 0.73 29.55 

557 21.41 1.01 22.42 

558 19.75 0.67 20.42 

559 12.86 0.38 13.24 

560 12.59 0.06 12.65 

561 12.78 0.46 13.24 

562 2.19 3.80 5.99 

563 25.33 0.42 25.75 

564 28.11 0.49 28.61 

565 19.58 0.36 19.93 

566 29.84 0.45 30.29 

567 17.04 0.58 17.62 

568 1.43 2.02 3.45 

569 22.91 0.36 23.27 

570 1.45 0.36 1.81 

571 20.02 0.01 20.03 

572 24.34 0.23 24.57 

573 2.20 1.75 3.95 

574 20.42 4.10 24.51 

575 10.49 0.24 10.73 

576 8.67 0.01 8.67 

577 21.66 0.46 22.12 

578 25.84 0.24 26.08 

579 5.30 0.43 5.73 

580 9.85 0.04 9.89 

581 3.09 20.23 23.31 

582 16.84 0.80 17.63 

583 20.85 0.41 21.25 

584 21.49 0.64 22.13 

585 20.13 0.51 20.63 
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Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

586 10.11 0.67 10.77 

587 12.67 1.14 13.81 

588 10.21 0.16 10.38 

589 11.64 3.22 14.86 

590 11.53 0.25 11.78 

591 14.62 0.32 14.93 

592 4.35 0.13 4.48 

593 16.10 1.61 17.72 

594 18.73 2.08 20.81 

595 13.30 1.64 14.94 

596 4.21 0.32 4.53 

597 16.28 0.31 16.59 

598 23.31 0.31 23.62 

599 9.16 0.34 9.49 

600 6.29 11.91 18.20 

601 17.40 0.14 17.55 

602 24.44 0.30 24.74 

603 23.52 0.46 23.98 

604 16.59 0.74 17.33 

605 28.55 0.42 28.98 

606 1.06 0.43 1.49 

607 1.45 1.41 2.86 

608 14.56 2.90 17.47 

609 23.99 1.18 25.17 

610 28.82 0.94 29.76 

611 21.34 0.74 22.08 

612 21.21 0.48 21.69 

613 5.83 0.42 6.26 

614 22.59 0.19 22.78 

615 4.66 1.99 6.65 

616 24.43 6.14 30.57 

617 10.16 0.20 10.36 

618 17.14 0.44 17.58 

619 26.33 11.51 37.84 

620 24.44 0.80 25.25 

621 4.86 5.55 10.41 

622 29.40 0.25 29.66 

623 25.01 2.53 27.54 

624 40.00 0.85 40.84 

625 32.55 0.24 32.79 

626 27.60 0.58 28.18 

627 29.61 0.31 29.92 

628 28.98 0.39 29.37 

629 20.46 0.54 21.00 

630 14.61 1.55 16.16 
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Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

631 5.20 0.01 5.21 

632 2.87 0.13 3.00 

633 20.33 10.73 31.06 

634 4.18 0.55 4.73 

635 13.05 0.68 13.73 

636 17.34 1.10 18.44 

637 20.55 0.54 21.09 

638 20.74 0.49 21.23 

639 14.47 0.70 15.17 

640 1.58 0.32 1.90 

641 21.99 0.02 22.02 

642 20.53 0.32 20.84 

643 14.01 0.48 14.49 

644 14.82 0.55 15.37 

645 10.83 1.86 12.69 

646 24.80 1.69 26.49 

647 26.14 0.57 26.71 

648 18.70 3.58 22.28 

649 16.55 0.69 17.24 

650 25.25 0.57 25.82 

651 27.80 0.60 28.40 

652 21.45 1.26 22.70 

653 24.55 1.92 26.47 

654 24.56 0.29 24.85 

655 21.18 0.45 21.62 

656 15.95 0.49 16.43 

657 21.70 0.42 22.12 

658 19.88 2.28 22.16 

659 15.73 0.75 16.48 

660 7.92 0.58 8.49 

661 12.59 1.91 14.50 

662 14.57 0.62 15.18 

663 18.81 0.20 19.01 

664 23.60 0.00 23.60 

665 18.48 0.49 18.97 

666 18.38 0.50 18.88 

667 14.92 0.49 15.40 

668 5.03 0.54 5.57 

669 15.12 3.62 18.74 

670 20.08 0.13 20.21 

671 13.89 0.41 14.31 

672 0.72 5.79 6.52 

673 1.16 5.37 6.52 

674 3.91 1.25 5.16 

675 12.39 3.30 15.69 
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Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

676 13.53 0.54 14.07 

677 13.14 0.45 13.60 

678 19.13 0.39 19.52 

679 17.00 0.41 17.41 

680 14.92 0.82 15.74 

681 4.75 0.02 4.77 

682 0.14 0.20 0.33 

683 20.74 0.01 20.75 

684 19.49 0.56 20.04 

685 16.97 0.69 17.66 

686 12.86 0.23 13.08 

687 13.56 0.46 14.02 

688 5.42 0.24 5.66 

689 16.06 8.39 24.45 

690 6.68 0.52 7.20 

691 11.90 0.62 12.52 

692 3.32 0.46 3.77 

693 14.04 4.94 18.98 

694 4.85 0.03 4.88 

695 15.46 0.76 16.22 

696 19.12 0.36 19.48 

697 22.93 0.56 23.49 

698 18.61 1.25 19.86 

699 18.86 0.26 19.13 

700 18.80 0.51 19.32 

701 13.46 0.41 13.86 

702 13.32 0.46 13.78 

703 9.70 0.37 10.08 

704 19.02 2.18 21.20 

705 25.19 0.01 25.20 

706 19.08 0.39 19.47 

707 22.07 0.17 22.24 

708 20.89 0.21 21.10 

709 11.61 1.38 12.99 

710 2.22 0.01 2.24 

711 2.77 0.56 3.33 

712 0.56 0.39 0.95 

713 10.63 0.08 10.71 

714 14.79 0.37 15.15 

715 2.12 0.44 2.55 

716 15.51 8.49 24.00 

717 2.12 0.51 2.63 

718 19.92 1.57 21.49 

719 0.57 0.68 1.24 

720 22.19 2.30 24.48 
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Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

721 13.16 0.05 13.21 

722 19.21 3.58 22.79 

723 15.50 0.57 16.07 

724 20.41 0.59 21.00 

725 22.50 0.43 22.92 

726 17.24 0.46 17.70 

727 21.56 0.19 21.75 

728 18.21 0.61 18.81 

729 19.51 0.53 20.04 

730 19.60 0.66 20.26 

731 23.90 0.33 24.23 

732 17.20 0.66 17.87 

733 24.30 0.41 24.71 

734 22.66 2.09 24.75 

735 20.91 0.39 21.31 

736 14.62 0.31 14.93 

737 14.37 1.14 15.51 

738 9.25 0.01 9.26 

739 1.20 0.75 1.95 

740 13.16 0.73 13.89 

741 23.44 0.38 23.82 

742 2.13 0.01 2.14 

743 21.41 0.37 21.78 

744 14.35 0.80 15.15 

745 17.80 0.44 18.24 

746 17.70 0.47 18.17 

747 18.07 0.37 18.44 

748 16.38 0.41 16.79 

749 19.10 3.02 22.12 

750 18.23 0.10 18.33 

751 18.81 0.50 19.31 

752 17.78 0.42 18.20 

753 1.32 0.43 1.75 

754 14.30 2.15 16.45 

755 16.07 0.38 16.45 

756 2.88 0.01 2.89 

757 21.24 0.39 21.62 

758 21.77 0.01 21.78 

759 18.21 0.50 18.71 

760 26.46 0.52 26.98 

761 22.50 0.59 23.09 

762 15.33 0.46 15.79 

763 22.42 2.69 25.11 

764 22.96 0.48 23.43 

765 18.59 0.22 18.81 
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Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

766 6.11 0.38 6.49 

767 29.23 0.87 30.09 

768 19.74 0.26 20.00 

769 17.46 0.56 18.02 

770 21.35 1.85 23.20 

771 23.64 0.33 23.97 

772 23.54 0.20 23.73 

773 31.24 0.33 31.56 

774 25.90 0.23 26.13 

775 22.01 0.62 22.63 

776 31.65 1.04 32.69 

777 2.86 0.50 3.36 

778 19.53 0.59 20.12 

779 19.89 3.59 23.48 

780 26.85 1.04 27.89 

781 28.08 0.45 28.54 

782 14.27 0.59 14.86 

783 26.07 3.05 29.12 

784 22.65 0.61 23.26 

785 16.17 3.34 19.51 

786 7.55 0.43 7.98 

787 11.36 0.01 11.37 

788 26.74 0.31 27.05 

789 21.81 0.38 22.19 

790 30.68 0.77 31.45 

791 16.15 0.82 16.97 

792 18.32 3.49 21.81 

793 26.60 2.83 29.43 

794 18.80 0.67 19.46 

795 18.05 1.08 19.13 

796 30.86 0.19 31.05 

797 22.29 0.41 22.70 

798 26.07 0.42 26.50 

799 18.61 1.21 19.82 

800 9.79 0.08 9.87 

801 15.08 0.52 15.60 

802 23.73 25.33 49.06 

803 22.54 0.45 23.00 

804 14.48 0.41 14.88 

805 9.87 0.02 9.89 

806 25.37 1.87 27.24 

807 26.63 0.48 27.11 

808 22.96 0.50 23.46 

809 20.66 0.42 21.09 

810 21.66 0.40 22.06 
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Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

811 22.26 0.35 22.60 

812 5.61 0.65 6.26 

813 21.36 0.03 21.39 

814 19.70 0.75 20.45 

815 3.53 0.37 3.91 

816 26.42 0.71 27.13 

817 28.29 0.84 29.13 

818 6.90 0.85 7.75 

819 11.75 0.01 11.76 

820 22.81 0.35 23.17 

821 23.09 3.62 26.71 

822 22.72 1.47 24.19 

823 25.05 0.83 25.87 

824 22.41 0.40 22.80 

825 26.40 0.17 26.58 

826 19.89 0.34 20.23 

827 26.59 0.07 26.66 

828 23.62 1.35 24.97 

829 22.55 0.85 23.40 

830 22.80 1.31 24.11 

831 21.46 0.99 22.46 

832 15.26 1.17 16.43 

833 8.92 0.17 9.10 

834 20.55 3.57 24.12 

835 17.38 0.68 18.06 

836 18.97 0.75 19.72 

837 9.57 0.61 10.17 

838 16.29 5.33 21.61 

839 9.13 0.55 9.68 

840 18.94 0.62 19.57 

841 24.22 0.39 24.60 

842 24.66 0.66 25.32 

843 6.69 0.02 6.71 

844 7.24 1.73 8.97 

845 24.38 4.60 28.98 

846 24.61 3.12 27.73 

847 20.70 1.27 21.97 

848 24.52 1.04 25.56 

849 13.75 0.75 14.50 

850 11.92 0.10 12.02 

851 2.47 0.87 3.34 

852 25.79 0.86 26.65 

853 23.33 0.41 23.74 

854 27.37 4.11 31.49 

855 28.84 0.39 29.23 
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Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

856 21.40 2.16 23.56 

857 31.94 0.19 32.12 

858 24.69 0.39 25.08 

859 30.43 2.85 33.28 

860 25.45 0.26 25.71 

861 13.61 1.12 14.73 

862 13.14 0.01 13.15 

863 23.35 0.30 23.65 

864 19.11 1.10 20.22 

865 28.90 0.84 29.74 

866 21.17 0.77 21.93 

867 14.31 0.94 15.25 

868 15.07 0.01 15.08 

869 17.73 0.44 18.17 

870 28.89 1.19 30.08 

871 13.88 4.65 18.53 

872 20.07 7.48 27.54 

873 20.48 1.06 21.54 

874 22.65 0.51 23.16 

875 19.62 1.27 20.89 

876 16.96 2.12 19.08 

877 17.78 0.47 18.25 

878 4.50 0.61 5.11 

879 21.69 0.38 22.07 

880 0.47 0.02 0.49 

881 18.21 0.90 19.11 

882 9.08 0.71 9.79 

883 13.57 3.29 16.86 

884 19.91 0.49 20.40 

885 28.03 0.48 28.52 

886 23.29 0.99 24.27 

887 27.81 0.17 27.98 

888 22.84 0.33 23.17 

889 24.25 6.82 31.07 

890 3.91 6.42 10.33 

891 19.88 0.01 19.89 

892 17.38 0.45 17.83 

893 19.33 0.40 19.74 

894 19.45 0.35 19.80 

895 2.08 0.12 2.20 

896 19.78 0.15 19.93 

897 1.31 0.37 1.68 

898 21.00 0.10 21.10 

899 17.20 1.10 18.30 

900 22.13 0.49 22.62 
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Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

901 0.33 0.31 0.64 

902 25.08 0.71 25.79 

903 18.99 0.28 19.28 

904 23.56 0.59 24.16 

905 15.67 0.53 16.20 

906 3.56 0.05 3.61 

907 14.26 8.52 22.78 

908 5.67 5.59 11.26 

909 11.81 1.17 12.98 

910 14.46 0.51 14.97 

911 7.34 5.34 12.69 

912 11.89 24.30 36.19 

913 16.74 2.64 19.38 

914 20.74 0.39 21.13 

915 17.44 0.34 17.79 

916 21.14 0.96 22.10 

917 15.90 0.57 16.47 

918 10.19 0.31 10.50 

919 8.38 2.48 10.86 

920 15.71 1.16 16.87 

921 13.99 0.66 14.65 

922 14.50 0.55 15.04 

923 11.58 0.36 11.94 

924 13.75 4.87 18.62 

925 18.43 0.26 18.69 

926 22.63 0.64 23.26 

927 5.96 0.72 6.68 

928 12.65 0.27 12.92 

929 18.43 1.29 19.72 

930 14.64 0.63 15.27 

931 10.19 1.89 12.08 

932 14.00 0.08 14.08 

933 14.09 0.43 14.52 

934 15.62 0.33 15.95 

935 14.14 0.47 14.60 

936 30.50 0.35 30.85 

937 21.80 0.62 22.42 

938 22.46 0.25 22.72 

939 26.66 0.98 27.64 

940 15.38 0.47 15.85 

941 12.32 0.39 12.71 

942 20.76 3.34 24.10 

943 17.82 1.02 18.84 

944 17.86 0.59 18.45 

945 19.73 0.42 20.15 
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Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

946 19.07 0.97 20.04 

947 14.35 0.79 15.14 

948 8.42 1.19 9.61 

949 7.73 0.79 8.51 

950 9.53 0.01 9.54 

951 13.28 0.43 13.71 

952 13.27 0.30 13.56 

953 5.97 0.50 6.46 

954 19.18 0.26 19.44 

955 18.67 0.30 18.97 

956 23.14 0.01 23.15 

957 22.26 0.92 23.17 

958 21.43 7.03 28.46 

959 1.64 0.94 2.58 

960 20.33 0.41 20.74 

961 16.92 0.61 17.53 

962 20.85 0.43 21.28 

963 22.56 0.80 23.36 

964 21.79 0.41 22.20 

965 20.04 3.72 23.75 

966 6.77 0.07 6.83 

967 13.57 0.01 13.58 

968 15.09 0.01 15.10 

969 25.99 0.49 26.48 

970 20.27 0.43 20.70 

971 10.98 0.49 11.47 

972 23.92 4.42 28.35 

973 19.59 0.67 20.26 

974 20.23 0.29 20.52 

975 21.64 0.46 22.09 

976 17.17 0.40 17.57 

977 20.24 0.43 20.67 

978 0.82 0.01 0.83 

979 22.51 0.39 22.90 

980 14.14 0.47 14.60 

981 18.38 0.48 18.86 

982 19.75 0.36 20.12 

983 21.93 0.19 22.13 

984 19.08 0.25 19.33 

985 24.10 5.84 29.94 

986 16.76 0.51 17.26 

987 17.39 0.46 17.85 

988 14.40 0.30 14.70 

989 8.89 0.37 9.26 

990 21.54 0.41 21.95 
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Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

991 13.71 0.43 14.14 

992 2.58 0.02 2.59 

993 21.44 0.27 21.70 

994 28.98 0.38 29.36 

995 25.34 0.52 25.86 

996 19.22 0.26 19.48 

997 20.16 0.45 20.61 

998 13.69 0.35 14.04 

999 6.48 6.64 13.12 

1000 32.27 1.26 33.53 

1001 21.06 0.38 21.43 

1002 25.91 0.40 26.31 

1003 23.04 0.35 23.39 

1004 25.73 0.38 26.11 

1005 16.99 0.82 17.81 

1006 1.31 0.01 1.33 

1007 22.10 0.41 22.50 

1008 29.38 0.57 29.95 

1009 13.66 0.34 14.00 

1010 10.81 1.88 12.69 

1011 26.09 1.01 27.09 

1012 22.77 0.46 23.23 

1013 13.31 0.38 13.69 

1014 12.38 0.01 12.38 

1015 6.83 0.31 7.14 

1016 26.20 0.59 26.79 

1017 24.84 0.44 25.28 

1018 9.70 0.04 9.74 

1019 17.09 10.75 27.83 

1020 17.53 0.82 18.35 

1021 21.68 0.51 22.19 

1022 19.47 0.02 19.49 

1023 6.29 0.95 7.24 

1024 17.51 0.94 18.45 

1025 11.56 0.28 11.84 

1026 2.51 0.53 3.04 

1027 6.32 1.46 7.78 

1028 24.16 0.36 24.52 

1029 2.86 0.03 2.89 

1030 19.17 0.84 20.02 

1031 28.47 0.45 28.92 

1032 26.95 0.56 27.51 

1033 21.74 1.49 23.23 

1034 26.12 0.88 27.00 

1035 25.27 0.24 25.51 
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Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

1036 7.33 8.74 16.07 

1037 25.98 0.60 26.58 

1038 25.22 0.45 25.67 

1039 22.61 0.51 23.12 

1040 28.65 0.54 29.19 

1041 14.80 0.77 15.57 

1042 31.62 0.47 32.09 

1043 7.48 0.85 8.33 

1044 10.03 0.54 10.57 

1045 23.97 0.55 24.52 

1046 25.24 1.12 26.36 

1047 23.35 0.52 23.87 

1048 21.82 0.15 21.97 

1049 12.05 0.01 12.05 

1050 9.42 0.87 10.28 

1051 6.22 3.23 9.45 

1052 21.95 0.68 22.62 

1053 23.35 0.58 23.93 

1054 28.10 0.95 29.05 

1055 18.68 3.48 22.16 

1056 21.81 1.52 23.33 

1057 19.91 0.55 20.46 

1058 19.09 0.28 19.37 

1059 28.56 2.84 31.40 

1060 23.11 0.75 23.86 

1061 21.59 0.39 21.98 

1062 17.97 0.70 18.67 

1063 28.00 4.36 32.36 

1064 16.59 0.21 16.80 

1065 17.88 1.16 19.03 

1066 21.54 0.19 21.73 

1067 14.55 0.49 15.04 

1068 19.49 0.41 19.90 

1069 22.28 0.01 22.29 

1070 2.81 1.04 3.84 

1071 21.22 0.78 22.00 

1072 17.61 0.43 18.03 

1073 29.97 1.14 31.11 

1074 19.32 0.33 19.65 

1075 24.53 0.21 24.74 

1076 28.86 7.78 36.64 

1077 22.36 1.15 23.51 

1078 20.49 0.08 20.56 

1079 12.43 0.54 12.97 

1080 10.96 0.94 11.90 
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Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

1081 11.51 0.62 12.13 

1082 29.14 0.76 29.90 

1083 25.60 0.63 26.23 

1084 23.10 1.40 24.50 

1085 29.14 0.00 29.15 

1086 20.74 1.12 21.86 

1087 28.18 0.47 28.65 

1088 23.72 0.34 24.06 

1089 30.99 0.33 31.32 

1090 33.86 3.94 37.80 

1091 25.27 1.11 26.38 

1092 30.17 0.81 30.99 

1093 24.12 0.00 24.12 

1094 0.37 0.02 0.39 

1095 24.10 1.67 25.77 

1096 18.76 0.01 18.77 

1097 13.49 1.02 14.51 

1098 15.36 0.36 15.72 

1099 19.15 0.46 19.61 

1100 27.26 0.21 27.48 

1101 21.14 0.35 21.49 

1102 27.42 0.39 27.81 

1103 25.31 1.13 26.44 

1104 22.71 2.83 25.54 

1105 6.40 29.80 36.19 

1106 12.34 0.38 12.73 

1107 14.20 2.42 16.63 

1108 19.99 1.03 21.02 

1109 20.81 0.56 21.37 

1110 24.51 0.41 24.93 

1111 42.43 0.63 43.06 

1112 4.17 10.24 14.41 

1113 2.49 0.94 3.44 

1114 5.92 0.01 5.93 

1115 13.76 1.47 15.22 

1116 20.12 0.27 20.39 

1117 0.78 2.95 3.73 

1118 31.77 0.49 32.25 

1119 20.71 0.51 21.22 

1120 19.08 0.69 19.76 

1121 21.54 0.93 22.47 

1122 21.81 1.05 22.86 

1123 31.52 0.71 32.23 

1124 6.47 0.59 7.06 

1125 11.29 1.26 12.55 
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Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

1126 11.22 0.52 11.74 

1127 2.53 1.56 4.09 

1128 9.90 0.52 10.43 

1129 0.18 0.02 0.20 

1130 23.99 1.00 24.99 

1131 17.87 1.58 19.45 

1132 0.75 0.53 1.28 

1133 6.53 4.59 11.12 

1134 13.02 0.53 13.55 

1135 19.28 10.24 29.52 

1136 15.36 0.28 15.64 

1137 1.50 0.61 2.12 

1138 16.76 0.14 16.90 

1139 14.23 1.00 15.23 

1140 3.89 0.53 4.42 

1141 3.19 1.88 5.07 

1142 11.70 0.74 12.44 

1143 5.04 4.99 10.03 

1144 19.91 0.68 20.59 

1145 19.32 0.48 19.79 

1146 20.50 0.46 20.96 

1147 18.95 0.41 19.36 

1148 22.31 0.56 22.87 

1149 7.25 18.07 25.32 

1150 18.65 1.34 19.99 

1151 14.64 0.77 15.41 

1152 10.86 1.74 12.61 

1153 6.71 0.45 7.16 

1154 11.46 4.88 16.34 

1155 14.35 0.02 14.38 

1156 5.04 0.85 5.89 

1157 19.17 3.04 22.22 

1158 16.94 3.60 20.54 

1159 28.21 0.45 28.65 

1160 6.68 0.15 6.83 

1161 10.81 1.08 11.89 

1162 16.88 0.64 17.53 

1163 6.46 0.63 7.10 

1164 8.84 1.06 9.90 

1165 7.60 0.37 7.97 

1166 13.96 0.58 14.54 

1167 14.65 0.52 15.17 

1168 5.01 6.30 11.31 

1169 28.70 4.59 33.29 

1170 20.57 0.49 21.05 
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Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

1171 21.43 1.86 23.29 

1172 15.42 13.44 28.86 

1173 3.93 6.95 10.87 

1174 1.12 1.70 2.82 

1175 4.41 1.97 6.38 

1176 14.27 0.58 14.85 

1177 16.66 0.58 17.25 

1178 22.68 1.51 24.19 

1179 20.64 0.44 21.07 

1180 1.02 0.32 1.33 

1181 24.14 0.02 24.16 

1182 20.39 0.09 20.48 

1183 21.86 0.36 22.22 

1184 19.71 0.38 20.09 

1185 4.94 0.60 5.54 

1186 19.06 0.69 19.76 

1187 17.18 1.46 18.64 

1188 21.91 0.58 22.49 

1189 12.56 0.26 12.82 

1190 15.08 0.50 15.58 

1191 20.72 1.14 21.86 

1192 23.22 0.43 23.66 

1193 14.86 0.44 15.29 

1194 19.02 0.36 19.38 

1195 20.83 0.70 21.53 

1196 10.23 0.12 10.35 

1197 21.16 2.44 23.61 

1198 6.40 5.23 11.63 

1199 15.05 0.01 15.06 

1200 12.95 0.07 13.03 

1201 14.95 0.47 15.43 

1202 25.59 1.94 27.53 

1203 6.18 1.02 7.21 

1204 10.75 0.58 11.33 

1205 15.26 0.51 15.77 

1206 16.92 0.77 17.68 

1207 25.86 0.33 26.18 

1208 19.61 0.37 19.98 

1209 6.96 2.76 9.72 

1210 14.71 0.39 15.10 

1211 20.27 0.10 20.37 

1212 24.56 0.42 24.99 

1213 19.71 0.57 20.28 

1214 15.67 1.38 17.04 

1215 21.21 0.40 21.60 
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Table  B-6: Calculating MTBF for stations 9 and 12. 

Breakdown TTF 

(hours) 

TTR 

(hours) 

TBF 

(hours) 

1216 20.53 3.54 24.07 

1217 25.58 0.59 26.17 

1218 13.64 1.38 15.02 

1219 23.32 0.72 24.04 

1220 18.70 0.67 19.36 

1221 20.81 0.84 21.65 

1222 27.20 1.63 28.83 

1223 0.63 1.98 2.61 

1224 3.24 0.49 3.73 

1225 2.50 17.66 20.16 

1226 11.63 1.91 13.53 

1227 15.41 0.86 16.27 

1228 29.79 0.50 30.28 

1229 6.66 0.48 7.15 

1230 14.94 1.30 16.24 

1231 5.24 0.57 5.81 

1232 10.04 0.58 10.62 

1233 10.60 1.14 11.74 

1234 23.51 0.43 23.94 

1235 31.90 3.67 35.58 

1236 21.55 1.26 22.81 

1237 28.84 0.28 29.12 

1238 8.41 5.19 13.61 

1239 26.18 0.39 26.56 

1240 23.52 0.59 24.11 

1241 24.35 0.24 24.60 

1242 18.29 1.13 19.42 

1243 27.61 0.57 28.19 

1244 24.49 0.29 24.78 

1245 33.56 0.51 34.07 

MTBF (hours) 18.35 
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A p p e n d i x  C  

C REPORTED UTILISATIONS 

This Appendix presents the average utilisation of stations monitored at the end of 

every week. The values given in Table  C-1 shows the reported results of the Push-

daily loading (representing the original loading of the segment) to a single run that 

covers two years (104 weeks) including the first 10 weeks of the warm up period. 

It is clear from the results that the U of all stations are below the Umax. 

Table  C-1: Reported utilisations of Batch. 

Week Station number 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.49 0.15 0.55 0.29 0.25 0.50 0.20 0.48 0.32 0.44 0.44 0.29 

2 0.57 0.17 0.63 0.34 0.29 0.55 0.23 0.55 0.37 0.58 0.54 0.38 

3 0.56 0.17 0.61 0.34 0.29 0.61 0.23 0.51 0.36 0.57 0.54 0.40 

4 0.58 0.19 0.66 0.37 0.32 0.69 0.25 0.56 0.40 0.63 0.59 0.44 

5 0.59 0.19 0.67 0.37 0.32 0.69 0.25 0.60 0.41 0.65 0.58 0.44 

6 0.59 0.19 0.69 0.37 0.32 0.72 0.26 0.59 0.41 0.64 0.59 0.44 

7 0.57 0.19 0.68 0.37 0.32 0.72 0.26 0.59 0.41 0.65 0.60 0.44 

8 0.56 0.19 0.68 0.37 0.32 0.71 0.26 0.59 0.41 0.66 0.61 0.44 

9 0.57 0.19 0.67 0.37 0.32 0.68 0.26 0.58 0.40 0.65 0.60 0.43 

10 0.58 0.19 0.69 0.37 0.32 0.71 0.26 0.59 0.41 0.66 0.60 0.44 

11 0.57 0.19 0.69 0.37 0.32 0.70 0.26 0.59 0.41 0.66 0.60 0.44 

12 0.57 0.19 0.68 0.37 0.32 0.69 0.26 0.59 0.40 0.65 0.60 0.44 

13 0.57 0.19 0.68 0.37 0.32 0.69 0.26 0.60 0.41 0.66 0.60 0.44 

14 0.57 0.19 0.68 0.37 0.32 0.69 0.26 0.60 0.41 0.66 0.60 0.44 

15 0.58 0.19 0.68 0.37 0.32 0.70 0.26 0.60 0.41 0.66 0.61 0.45 

16 0.57 0.19 0.68 0.37 0.32 0.70 0.26 0.60 0.41 0.66 0.61 0.45 

17 0.58 0.19 0.68 0.37 0.32 0.69 0.26 0.60 0.41 0.65 0.61 0.45 

18 0.59 0.19 0.67 0.37 0.32 0.69 0.26 0.59 0.40 0.65 0.61 0.44 

19 0.59 0.19 0.68 0.37 0.32 0.70 0.26 0.59 0.41 0.66 0.61 0.45 

20 0.58 0.19 0.68 0.38 0.32 0.70 0.26 0.60 0.41 0.67 0.62 0.45 

21 0.58 0.19 0.69 0.37 0.32 0.70 0.26 0.60 0.41 0.66 0.61 0.45 

22 0.59 0.19 0.69 0.38 0.33 0.70 0.26 0.60 0.41 0.67 0.61 0.45 

23 0.58 0.19 0.69 0.38 0.33 0.70 0.26 0.61 0.41 0.67 0.62 0.45 

24 0.58 0.19 0.69 0.37 0.32 0.70 0.26 0.60 0.41 0.67 0.61 0.45 

25 0.58 0.19 0.69 0.37 0.32 0.70 0.26 0.61 0.41 0.67 0.61 0.45 

26 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.61 0.41 0.67 0.61 0.45 

27 0.57 0.19 0.69 0.38 0.33 0.71 0.26 0.61 0.41 0.67 0.61 0.45 

28 0.58 0.19 0.69 0.38 0.33 0.71 0.26 0.61 0.41 0.67 0.61 0.46 

29 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.61 0.41 0.67 0.61 0.46 

30 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.61 0.41 0.67 0.61 0.46 

31 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.61 0.41 0.67 0.61 0.46 
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Table  C-1: Reported utilisations of Batch. 

Week Station number 

1 2 3 4 5 6 7 8 9 10 11 12 

32 0.58 0.19 0.69 0.38 0.33 0.71 0.26 0.61 0.41 0.67 0.61 0.46 

33 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.61 0.41 0.67 0.62 0.46 

34 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.67 0.62 0.46 

35 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.67 0.61 0.46 

36 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.61 0.41 0.67 0.61 0.46 

37 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.61 0.41 0.68 0.61 0.46 

38 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.61 0.41 0.68 0.61 0.46 

39 0.58 0.19 0.70 0.38 0.33 0.69 0.26 0.61 0.41 0.68 0.61 0.46 

40 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.61 0.41 0.68 0.61 0.46 

41 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.68 0.61 0.46 

42 0.58 0.19 0.70 0.38 0.33 0.69 0.26 0.62 0.41 0.68 0.61 0.46 

43 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.68 0.61 0.46 

44 0.58 0.19 0.70 0.38 0.33 0.69 0.26 0.62 0.41 0.68 0.61 0.46 

45 0.58 0.19 0.70 0.38 0.33 0.69 0.26 0.62 0.41 0.68 0.61 0.46 

46 0.58 0.19 0.70 0.38 0.33 0.69 0.26 0.62 0.41 0.68 0.61 0.46 

47 0.58 0.19 0.69 0.38 0.33 0.69 0.26 0.62 0.41 0.67 0.61 0.46 

48 0.58 0.19 0.70 0.38 0.33 0.69 0.26 0.62 0.41 0.68 0.61 0.46 

49 0.57 0.19 0.70 0.38 0.33 0.69 0.26 0.62 0.41 0.68 0.61 0.46 

50 0.57 0.19 0.70 0.38 0.33 0.69 0.26 0.62 0.41 0.68 0.61 0.46 

51 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.68 0.61 0.46 

52 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.68 0.61 0.46 

53 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.68 0.61 0.46 

54 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.68 0.61 0.46 

55 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.68 0.61 0.46 

56 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.68 0.61 0.46 

57 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.46 

58 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.68 0.62 0.46 

59 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.46 

60 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.61 0.41 0.68 0.62 0.46 

61 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.61 0.41 0.68 0.62 0.46 

62 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.61 0.41 0.68 0.62 0.46 

63 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.61 0.41 0.68 0.62 0.46 

64 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.61 0.41 0.68 0.62 0.46 

65 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.46 

66 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.61 0.41 0.68 0.62 0.46 

67 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.46 

68 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.46 

69 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.46 

70 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.61 0.41 0.68 0.62 0.46 

71 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.46 

72 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.46 

73 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.46 

74 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.46 

75 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.46 

76 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.46 
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Table  C-1: Reported utilisations of Batch. 

Week Station number 

1 2 3 4 5 6 7 8 9 10 11 12 

77 0.57 0.19 0.71 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.46 

78 0.57 0.19 0.71 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.46 

79 0.57 0.19 0.71 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.46 

80 0.57 0.19 0.71 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.46 

81 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.46 

82 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.46 

83 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

84 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.46 

85 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.46 

86 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.46 

87 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

88 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

89 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

90 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

91 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

92 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

93 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

94 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

95 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

96 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

97 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.68 0.62 0.47 

98 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.63 0.47 

99 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.68 0.63 0.47 

100 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.68 0.63 0.47 

101 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.68 0.63 0.47 

102 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.68 0.63 0.47 

103 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.68 0.63 0.47 

104 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.68 0.63 0.47 

It should be noted that the reported results of the Push-det., CONWIP, ICONWIP, 

DBR, Hybrid CONWIP/DBR, and LCONWIP presented and selected in the thesis 

earlier are shown in Table  C-2, Table  C-3, Table  C-4, Table  C-5, Table  C-6, and Table  C-7 

respectively. Every table shows the results of a single run that covers a simulation 

run time of two years (104 weeks) including the first 10 weeks of the warm up 

period. It is clear from the results shown that for all the lot release control 

strategies tested the U of all the stations are ensured to be below the Umax. 

However, only when DBR and Hybrid CONWIP/DBR are applied, the U of station 3 

rarely reached the Umax (10 out of 104 weeks at DBR and 3 out of 104 weeks at 

Hybrid CONWIP/DBR).  
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Table  C-2: Reported utilisation of Push Lot. 

Week Station number 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.48 0.14 0.51 0.28 0.24 0.47 0.18 0.45 0.31 0.42 0.41 0.27 

2 0.56 0.17 0.61 0.34 0.28 0.54 0.22 0.53 0.37 0.55 0.52 0.37 

3 0.55 0.17 0.60 0.33 0.28 0.60 0.22 0.51 0.36 0.55 0.52 0.39 

4 0.58 0.18 0.65 0.37 0.31 0.69 0.25 0.56 0.40 0.62 0.58 0.44 

5 0.59 0.18 0.66 0.37 0.31 0.69 0.25 0.60 0.40 0.64 0.57 0.44 

6 0.59 0.19 0.68 0.37 0.32 0.71 0.26 0.60 0.41 0.64 0.58 0.44 

7 0.57 0.19 0.67 0.37 0.32 0.72 0.26 0.60 0.41 0.64 0.59 0.44 

8 0.56 0.19 0.67 0.37 0.32 0.71 0.26 0.59 0.41 0.66 0.60 0.44 

9 0.58 0.19 0.67 0.37 0.32 0.68 0.25 0.59 0.40 0.65 0.59 0.43 

10 0.57 0.19 0.69 0.37 0.32 0.71 0.26 0.60 0.41 0.66 0.60 0.44 

11 0.57 0.19 0.69 0.37 0.32 0.69 0.26 0.60 0.41 0.65 0.60 0.44 

12 0.57 0.19 0.68 0.37 0.32 0.68 0.26 0.59 0.40 0.64 0.59 0.44 

13 0.57 0.19 0.68 0.37 0.32 0.69 0.26 0.60 0.41 0.66 0.60 0.44 

14 0.57 0.19 0.68 0.37 0.32 0.69 0.26 0.60 0.41 0.65 0.60 0.44 

15 0.58 0.19 0.68 0.37 0.32 0.70 0.26 0.61 0.41 0.65 0.61 0.45 

16 0.57 0.19 0.68 0.37 0.32 0.70 0.26 0.61 0.41 0.66 0.61 0.45 

17 0.58 0.19 0.67 0.37 0.32 0.69 0.26 0.60 0.41 0.65 0.60 0.45 

18 0.59 0.19 0.67 0.37 0.32 0.69 0.26 0.59 0.40 0.65 0.61 0.44 

19 0.59 0.19 0.68 0.37 0.32 0.70 0.26 0.60 0.41 0.66 0.61 0.45 

20 0.58 0.19 0.68 0.38 0.32 0.70 0.26 0.61 0.41 0.66 0.62 0.45 

21 0.58 0.19 0.69 0.37 0.32 0.70 0.26 0.60 0.41 0.66 0.61 0.45 

22 0.59 0.19 0.69 0.38 0.33 0.70 0.26 0.61 0.41 0.67 0.61 0.45 

23 0.58 0.19 0.69 0.38 0.33 0.70 0.26 0.61 0.41 0.67 0.61 0.45 

24 0.58 0.19 0.69 0.37 0.32 0.70 0.26 0.61 0.41 0.66 0.61 0.45 

25 0.58 0.19 0.69 0.37 0.32 0.70 0.26 0.61 0.41 0.67 0.61 0.45 

26 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.61 0.41 0.67 0.61 0.45 

27 0.58 0.19 0.69 0.38 0.33 0.71 0.26 0.61 0.41 0.67 0.61 0.46 

28 0.58 0.19 0.69 0.38 0.33 0.71 0.26 0.61 0.41 0.67 0.61 0.46 

29 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.61 0.41 0.67 0.61 0.46 

30 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.61 0.41 0.67 0.61 0.46 

31 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.61 0.41 0.67 0.61 0.46 

32 0.58 0.19 0.69 0.38 0.33 0.71 0.26 0.62 0.41 0.67 0.61 0.46 

33 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.67 0.62 0.46 

34 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.67 0.62 0.46 

35 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.67 0.61 0.46 

36 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.67 0.61 0.46 

37 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.67 0.61 0.46 

38 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.67 0.61 0.46 

39 0.58 0.19 0.70 0.38 0.33 0.69 0.26 0.62 0.41 0.68 0.61 0.46 

40 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.68 0.61 0.47 

41 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.68 0.61 0.47 

42 0.58 0.19 0.70 0.38 0.33 0.69 0.26 0.62 0.41 0.68 0.61 0.46 

43 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.68 0.61 0.46 
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Table  C-2: Reported utilisation of Push Lot. 

Week Station number 

1 2 3 4 5 6 7 8 9 10 11 12 

44 0.58 0.19 0.70 0.38 0.33 0.69 0.26 0.62 0.41 0.68 0.61 0.46 

45 0.58 0.19 0.70 0.38 0.33 0.69 0.26 0.62 0.41 0.68 0.61 0.46 

46 0.58 0.19 0.70 0.38 0.33 0.69 0.26 0.62 0.41 0.68 0.61 0.47 

47 0.58 0.19 0.69 0.38 0.33 0.69 0.26 0.62 0.41 0.67 0.61 0.46 

48 0.58 0.19 0.70 0.38 0.33 0.69 0.26 0.62 0.41 0.67 0.61 0.46 

49 0.58 0.19 0.70 0.38 0.33 0.69 0.26 0.62 0.41 0.68 0.61 0.46 

50 0.57 0.19 0.70 0.38 0.33 0.69 0.26 0.62 0.41 0.67 0.61 0.46 

51 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.67 0.61 0.46 

52 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.68 0.61 0.46 

53 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.67 0.61 0.46 

54 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.67 0.61 0.46 

55 0.57 0.19 0.69 0.38 0.33 0.70 0.26 0.62 0.41 0.67 0.61 0.46 

56 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.67 0.61 0.46 

57 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.67 0.62 0.46 

58 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.67 0.62 0.47 

59 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

60 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.67 0.62 0.47 

61 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.67 0.62 0.47 

62 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

63 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

64 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

65 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

66 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

67 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

68 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

69 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

70 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

71 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

72 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

73 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.67 0.62 0.47 

74 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

75 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

76 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

77 0.57 0.19 0.71 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

78 0.57 0.19 0.71 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

79 0.57 0.19 0.71 0.38 0.33 0.71 0.26 0.62 0.41 0.67 0.62 0.47 

80 0.57 0.19 0.71 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

81 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

82 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

83 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

84 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

85 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

86 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

87 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

88 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 
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Table  C-2: Reported utilisation of Push Lot. 

Week Station number 

1 2 3 4 5 6 7 8 9 10 11 12 

89 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

90 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

91 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

92 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

93 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

94 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

95 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

96 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

97 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.63 0.47 

98 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.63 0.47 

99 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.68 0.63 0.47 

100 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.68 0.63 0.47 

101 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.68 0.63 0.47 

102 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.68 0.63 0.47 

103 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.68 0.63 0.47 

104 0.57 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.68 0.63 0.47 

 

Table  C-3: Reported utilisations of CONWIP. 

Week Station number 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.59 0.18 0.66 0.35 0.30 0.58 0.24 0.57 0.40 0.58 0.55 0.36 

2 0.59 0.18 0.64 0.35 0.30 0.59 0.24 0.56 0.39 0.60 0.57 0.39 

3 0.56 0.17 0.61 0.34 0.29 0.62 0.23 0.51 0.36 0.56 0.53 0.39 

4 0.57 0.18 0.64 0.36 0.31 0.67 0.25 0.55 0.39 0.61 0.57 0.43 

5 0.57 0.18 0.65 0.36 0.31 0.67 0.25 0.58 0.39 0.63 0.56 0.43 

6 0.57 0.18 0.66 0.36 0.31 0.69 0.25 0.58 0.40 0.62 0.57 0.43 

7 0.57 0.19 0.67 0.37 0.32 0.72 0.26 0.59 0.41 0.64 0.59 0.43 

8 0.57 0.19 0.68 0.38 0.32 0.72 0.26 0.60 0.41 0.66 0.61 0.44 

9 0.57 0.18 0.67 0.36 0.31 0.68 0.25 0.58 0.40 0.64 0.59 0.43 

10 0.57 0.19 0.68 0.37 0.32 0.70 0.26 0.59 0.40 0.65 0.59 0.43 

11 0.57 0.19 0.68 0.37 0.32 0.69 0.26 0.60 0.41 0.66 0.60 0.44 

12 0.57 0.19 0.68 0.37 0.32 0.68 0.26 0.59 0.40 0.64 0.59 0.43 

13 0.57 0.19 0.68 0.37 0.32 0.68 0.26 0.59 0.40 0.66 0.60 0.44 

14 0.57 0.19 0.67 0.37 0.32 0.68 0.26 0.60 0.40 0.65 0.60 0.44 

15 0.57 0.19 0.67 0.37 0.32 0.69 0.26 0.60 0.40 0.65 0.60 0.44 

16 0.57 0.19 0.67 0.37 0.32 0.70 0.26 0.60 0.40 0.65 0.60 0.44 

17 0.57 0.19 0.67 0.37 0.32 0.68 0.26 0.59 0.40 0.65 0.60 0.44 

18 0.57 0.18 0.66 0.36 0.31 0.68 0.25 0.58 0.40 0.64 0.60 0.43 

19 0.58 0.19 0.66 0.37 0.32 0.69 0.26 0.59 0.40 0.65 0.60 0.44 

20 0.57 0.19 0.67 0.37 0.32 0.69 0.26 0.60 0.40 0.65 0.61 0.44 

21 0.57 0.19 0.68 0.37 0.32 0.68 0.26 0.59 0.40 0.65 0.60 0.44 

22 0.58 0.19 0.68 0.37 0.32 0.69 0.26 0.60 0.40 0.65 0.60 0.44 
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Table  C-3: Reported utilisations of CONWIP. 

Week Station number 

1 2 3 4 5 6 7 8 9 10 11 12 

23 0.58 0.19 0.69 0.37 0.32 0.70 0.26 0.60 0.41 0.66 0.61 0.45 

24 0.58 0.19 0.68 0.37 0.32 0.70 0.26 0.60 0.41 0.66 0.61 0.45 

25 0.58 0.19 0.68 0.37 0.32 0.70 0.26 0.60 0.40 0.66 0.60 0.45 

26 0.58 0.19 0.69 0.37 0.32 0.70 0.26 0.60 0.40 0.66 0.60 0.45 

27 0.57 0.19 0.68 0.37 0.32 0.70 0.26 0.60 0.40 0.66 0.61 0.45 

28 0.57 0.19 0.69 0.37 0.32 0.70 0.26 0.61 0.41 0.67 0.61 0.45 

29 0.58 0.19 0.69 0.38 0.33 0.70 0.26 0.61 0.41 0.67 0.61 0.46 

30 0.58 0.19 0.70 0.38 0.32 0.70 0.26 0.61 0.41 0.67 0.61 0.46 

31 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.61 0.41 0.67 0.61 0.46 

32 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.67 0.62 0.46 

33 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.67 0.62 0.46 

34 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.67 0.62 0.46 

35 0.59 0.19 0.70 0.38 0.33 0.71 0.27 0.62 0.42 0.68 0.62 0.47 

36 0.59 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.62 0.47 

37 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.62 0.47 

38 0.58 0.19 0.71 0.38 0.33 0.70 0.27 0.62 0.42 0.68 0.61 0.47 

39 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.62 0.42 0.68 0.61 0.47 

40 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.62 0.42 0.68 0.62 0.47 

41 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.62 0.42 0.68 0.62 0.47 

42 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.63 0.42 0.69 0.62 0.47 

43 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.63 0.42 0.69 0.62 0.47 

44 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.63 0.42 0.69 0.62 0.47 

45 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.63 0.42 0.69 0.62 0.47 

46 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.63 0.42 0.69 0.62 0.47 

47 0.58 0.19 0.70 0.38 0.33 0.70 0.27 0.63 0.42 0.68 0.62 0.47 

48 0.58 0.19 0.71 0.38 0.33 0.70 0.27 0.63 0.42 0.68 0.62 0.47 

49 0.58 0.19 0.71 0.38 0.33 0.70 0.27 0.63 0.42 0.68 0.62 0.47 

50 0.58 0.19 0.70 0.38 0.33 0.70 0.27 0.63 0.42 0.68 0.62 0.47 

51 0.58 0.19 0.70 0.38 0.33 0.70 0.27 0.63 0.42 0.68 0.62 0.47 

52 0.58 0.19 0.70 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.62 0.47 

53 0.58 0.19 0.70 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.62 0.47 

54 0.58 0.19 0.70 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.62 0.47 

55 0.58 0.19 0.70 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.62 0.47 

56 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

57 0.58 0.19 0.70 0.38 0.33 0.71 0.27 0.63 0.41 0.68 0.62 0.47 

58 0.58 0.19 0.70 0.38 0.33 0.71 0.27 0.62 0.42 0.68 0.62 0.47 

59 0.58 0.19 0.70 0.38 0.33 0.71 0.27 0.62 0.41 0.68 0.62 0.47 

60 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

61 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

62 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

63 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

64 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

65 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

66 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

67 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 
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Table  C-3: Reported utilisations of CONWIP. 

Week Station number 

1 2 3 4 5 6 7 8 9 10 11 12 

68 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.62 0.41 0.68 0.62 0.47 

69 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.62 0.41 0.68 0.62 0.47 

70 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.62 0.42 0.68 0.62 0.47 

71 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.62 0.42 0.68 0.62 0.47 

72 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.62 0.42 0.68 0.63 0.47 

73 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

74 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.62 0.42 0.68 0.63 0.47 

75 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.62 0.42 0.68 0.63 0.47 

76 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.62 0.42 0.68 0.63 0.47 

77 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.62 0.42 0.68 0.63 0.47 

78 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

79 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.63 0.47 

80 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

81 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

82 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.63 0.47 

83 0.57 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

84 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

85 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

86 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

87 0.57 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

88 0.57 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

89 0.57 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

90 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

91 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

92 0.57 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

93 0.57 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

94 0.57 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.69 0.63 0.47 

95 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.69 0.63 0.47 

96 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.48 

97 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.48 

98 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

99 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

100 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

101 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

102 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

103 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

104 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.69 0.64 0.48 

 

Table  C-4: Reported utilisations of ICONWIP. 

Week Station number 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.58 0.17 0.64 0.34 0.29 0.58 0.23 0.56 0.38 0.56 0.54 0.35 
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Table  C-4: Reported utilisations of ICONWIP. 

Week Station number 

1 2 3 4 5 6 7 8 9 10 11 12 

2 0.59 0.18 0.64 0.35 0.30 0.58 0.24 0.56 0.39 0.60 0.56 0.39 

3 0.55 0.17 0.60 0.33 0.28 0.62 0.23 0.51 0.36 0.56 0.53 0.39 

4 0.56 0.18 0.63 0.35 0.30 0.67 0.24 0.55 0.39 0.61 0.57 0.42 

5 0.57 0.18 0.64 0.36 0.30 0.67 0.25 0.58 0.39 0.63 0.56 0.42 

6 0.57 0.18 0.66 0.36 0.31 0.69 0.25 0.58 0.39 0.62 0.57 0.43 

7 0.57 0.19 0.67 0.37 0.32 0.71 0.26 0.59 0.40 0.64 0.59 0.43 

8 0.57 0.19 0.68 0.37 0.32 0.72 0.26 0.60 0.41 0.66 0.61 0.44 

9 0.57 0.18 0.66 0.36 0.31 0.68 0.25 0.58 0.40 0.64 0.59 0.43 

10 0.57 0.19 0.67 0.37 0.32 0.70 0.26 0.59 0.40 0.65 0.59 0.43 

11 0.57 0.19 0.68 0.37 0.32 0.69 0.26 0.60 0.41 0.65 0.60 0.44 

12 0.57 0.19 0.67 0.37 0.32 0.68 0.26 0.59 0.40 0.64 0.59 0.43 

13 0.57 0.19 0.67 0.37 0.32 0.68 0.26 0.59 0.40 0.66 0.60 0.44 

14 0.57 0.19 0.67 0.37 0.32 0.68 0.26 0.60 0.40 0.65 0.60 0.44 

15 0.57 0.19 0.67 0.37 0.32 0.69 0.26 0.60 0.40 0.65 0.60 0.44 

16 0.57 0.19 0.67 0.37 0.32 0.70 0.26 0.60 0.41 0.65 0.60 0.44 

17 0.57 0.19 0.67 0.37 0.32 0.68 0.26 0.59 0.40 0.64 0.60 0.44 

18 0.58 0.18 0.66 0.36 0.31 0.68 0.25 0.58 0.40 0.64 0.60 0.43 

19 0.58 0.19 0.66 0.37 0.32 0.69 0.25 0.59 0.40 0.65 0.60 0.44 

20 0.57 0.19 0.67 0.37 0.32 0.69 0.26 0.59 0.40 0.65 0.60 0.44 

21 0.57 0.19 0.67 0.37 0.32 0.68 0.25 0.59 0.40 0.65 0.60 0.44 

22 0.58 0.19 0.68 0.37 0.32 0.69 0.26 0.59 0.40 0.65 0.60 0.44 

23 0.58 0.19 0.68 0.37 0.32 0.70 0.26 0.60 0.41 0.66 0.61 0.45 

24 0.57 0.19 0.68 0.37 0.32 0.69 0.26 0.60 0.41 0.66 0.61 0.45 

25 0.57 0.19 0.68 0.37 0.32 0.69 0.26 0.60 0.40 0.66 0.60 0.44 

26 0.57 0.19 0.68 0.37 0.32 0.69 0.26 0.60 0.40 0.66 0.60 0.44 

27 0.57 0.19 0.68 0.37 0.32 0.70 0.26 0.60 0.40 0.66 0.60 0.45 

28 0.57 0.19 0.69 0.37 0.32 0.70 0.26 0.61 0.41 0.67 0.61 0.45 

29 0.58 0.19 0.69 0.37 0.32 0.70 0.26 0.61 0.41 0.67 0.61 0.45 

30 0.58 0.19 0.69 0.37 0.32 0.70 0.26 0.61 0.41 0.67 0.61 0.45 

31 0.58 0.19 0.70 0.38 0.32 0.70 0.26 0.61 0.41 0.67 0.61 0.46 

32 0.58 0.19 0.69 0.38 0.33 0.71 0.26 0.61 0.41 0.67 0.61 0.46 

33 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.61 0.41 0.67 0.61 0.46 

34 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.67 0.61 0.46 

35 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.42 0.68 0.62 0.47 

36 0.58 0.19 0.70 0.38 0.33 0.70 0.27 0.62 0.42 0.68 0.62 0.47 

37 0.58 0.19 0.70 0.38 0.33 0.70 0.27 0.62 0.42 0.68 0.61 0.47 

38 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.42 0.68 0.61 0.47 

39 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.42 0.68 0.61 0.47 

40 0.59 0.19 0.71 0.38 0.33 0.70 0.26 0.62 0.42 0.68 0.61 0.47 

41 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.62 0.42 0.68 0.61 0.47 

42 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.63 0.42 0.69 0.62 0.47 

43 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.62 0.42 0.69 0.62 0.47 

44 0.59 0.19 0.70 0.38 0.33 0.70 0.27 0.63 0.42 0.69 0.62 0.47 

45 0.59 0.19 0.70 0.38 0.33 0.70 0.27 0.63 0.42 0.69 0.62 0.47 

46 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.63 0.42 0.69 0.62 0.47 
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Table  C-4: Reported utilisations of ICONWIP. 

Week Station number 

1 2 3 4 5 6 7 8 9 10 11 12 

47 0.58 0.19 0.70 0.38 0.33 0.70 0.27 0.63 0.42 0.68 0.62 0.47 

48 0.58 0.19 0.71 0.38 0.33 0.70 0.27 0.63 0.42 0.68 0.62 0.47 

49 0.58 0.19 0.71 0.38 0.33 0.70 0.27 0.63 0.42 0.69 0.62 0.47 

50 0.58 0.19 0.70 0.38 0.33 0.70 0.27 0.62 0.42 0.68 0.62 0.47 

51 0.58 0.19 0.70 0.38 0.33 0.70 0.27 0.63 0.42 0.68 0.62 0.47 

52 0.58 0.19 0.70 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.62 0.47 

53 0.58 0.19 0.70 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.62 0.47 

54 0.58 0.19 0.70 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.62 0.47 

55 0.58 0.19 0.70 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.62 0.47 

56 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

57 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

58 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

59 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

60 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

61 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.46 

62 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

63 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.46 

64 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

65 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

66 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

67 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

68 0.58 0.19 0.71 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

69 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.62 0.42 0.68 0.62 0.47 

70 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.62 0.42 0.68 0.62 0.47 

71 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.62 0.42 0.68 0.62 0.47 

72 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.62 0.42 0.68 0.62 0.47 

73 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

74 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.62 0.42 0.68 0.63 0.47 

75 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.62 0.42 0.68 0.63 0.47 

76 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.62 0.42 0.68 0.63 0.47 

77 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.62 0.42 0.68 0.63 0.47 

78 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

79 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.63 0.47 

80 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

81 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

82 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.62 0.42 0.68 0.63 0.47 

83 0.57 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

84 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

85 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

86 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

87 0.57 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

88 0.57 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

89 0.57 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

90 0.57 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

91 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 
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Table  C-4: Reported utilisations of ICONWIP. 

Week Station number 

1 2 3 4 5 6 7 8 9 10 11 12 

92 0.57 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

93 0.57 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

94 0.57 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.69 0.63 0.47 

95 0.57 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.69 0.63 0.47 

96 0.57 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

97 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.48 

98 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

99 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

100 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

101 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

102 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

103 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

104 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.69 0.64 0.48 

 

Table  C-5: Reported utilisations of DBR. 

Week Station number 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.61 0.18 0.66 0.35 0.30 0.60 0.24 0.58 0.39 0.57 0.56 0.36 

2 0.61 0.18 0.66 0.36 0.31 0.59 0.24 0.56 0.39 0.60 0.57 0.39 

3 0.56 0.17 0.61 0.34 0.29 0.63 0.23 0.52 0.36 0.56 0.54 0.39 

4 0.57 0.18 0.64 0.36 0.31 0.68 0.25 0.55 0.39 0.61 0.57 0.43 

5 0.58 0.18 0.65 0.36 0.31 0.68 0.25 0.59 0.39 0.63 0.57 0.43 

6 0.57 0.18 0.67 0.36 0.31 0.70 0.25 0.59 0.40 0.62 0.57 0.43 

7 0.57 0.19 0.67 0.37 0.32 0.72 0.26 0.60 0.41 0.64 0.59 0.44 

8 0.57 0.19 0.68 0.38 0.33 0.72 0.26 0.60 0.42 0.66 0.61 0.44 

9 0.57 0.19 0.67 0.37 0.32 0.69 0.25 0.59 0.40 0.64 0.59 0.43 

10 0.57 0.19 0.68 0.37 0.32 0.70 0.26 0.59 0.41 0.65 0.60 0.44 

11 0.57 0.19 0.69 0.37 0.32 0.70 0.26 0.60 0.41 0.66 0.61 0.44 

12 0.57 0.19 0.68 0.37 0.32 0.69 0.26 0.59 0.40 0.65 0.60 0.44 

13 0.57 0.19 0.68 0.37 0.32 0.69 0.26 0.60 0.41 0.66 0.60 0.44 

14 0.57 0.19 0.68 0.37 0.32 0.69 0.26 0.60 0.41 0.66 0.60 0.44 

15 0.57 0.19 0.68 0.37 0.32 0.70 0.26 0.60 0.41 0.65 0.61 0.44 

16 0.57 0.19 0.68 0.37 0.32 0.70 0.26 0.60 0.41 0.66 0.61 0.44 

17 0.57 0.19 0.67 0.37 0.32 0.69 0.26 0.59 0.40 0.65 0.60 0.44 

18 0.58 0.19 0.66 0.37 0.32 0.69 0.26 0.59 0.40 0.64 0.60 0.44 

19 0.58 0.19 0.67 0.37 0.32 0.70 0.26 0.59 0.40 0.65 0.60 0.44 

20 0.58 0.19 0.67 0.37 0.32 0.69 0.26 0.60 0.40 0.65 0.61 0.44 

21 0.57 0.19 0.68 0.37 0.32 0.69 0.26 0.60 0.40 0.65 0.60 0.44 

22 0.58 0.19 0.68 0.37 0.32 0.69 0.26 0.60 0.41 0.66 0.61 0.45 

23 0.58 0.19 0.69 0.38 0.32 0.70 0.26 0.61 0.41 0.66 0.61 0.45 

24 0.58 0.19 0.69 0.37 0.32 0.70 0.26 0.61 0.41 0.66 0.61 0.45 

25 0.58 0.19 0.68 0.37 0.32 0.70 0.26 0.60 0.41 0.66 0.61 0.45 
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Table  C-5: Reported utilisations of DBR. 

Week Station number 

1 2 3 4 5 6 7 8 9 10 11 12 

26 0.58 0.19 0.69 0.37 0.32 0.70 0.26 0.60 0.41 0.66 0.61 0.45 

27 0.57 0.19 0.69 0.37 0.32 0.70 0.26 0.61 0.41 0.67 0.61 0.45 

28 0.58 0.19 0.69 0.38 0.33 0.71 0.26 0.61 0.41 0.67 0.61 0.45 

29 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.61 0.41 0.67 0.61 0.46 

30 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.61 0.41 0.67 0.61 0.46 

31 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.67 0.62 0.46 

32 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.67 0.62 0.46 

33 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.46 

34 0.59 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.46 

35 0.59 0.19 0.70 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.62 0.47 

36 0.59 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.62 0.47 

37 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.69 0.62 0.47 

38 0.59 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.69 0.62 0.47 

39 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.62 0.42 0.69 0.62 0.47 

40 0.59 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.62 0.47 

41 0.59 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.69 0.62 0.47 

42 0.59 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.69 0.62 0.47 

43 0.59 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.69 0.62 0.47 

44 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.63 0.42 0.69 0.62 0.47 

45 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.63 0.42 0.69 0.62 0.47 

46 0.59 0.20 0.71 0.39 0.33 0.71 0.27 0.64 0.42 0.69 0.62 0.47 

47 0.59 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.69 0.62 0.47 

48 0.58 0.19 0.71 0.38 0.33 0.70 0.27 0.63 0.42 0.69 0.62 0.47 

49 0.58 0.19 0.71 0.38 0.33 0.70 0.27 0.63 0.42 0.69 0.62 0.47 

50 0.58 0.19 0.71 0.38 0.33 0.70 0.27 0.63 0.42 0.69 0.62 0.47 

51 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.62 0.47 

52 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.69 0.62 0.47 

53 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.69 0.62 0.47 

54 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.69 0.62 0.47 

55 0.58 0.19 0.70 0.38 0.33 0.71 0.27 0.63 0.42 0.69 0.62 0.47 

56 0.58 0.19 0.70 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.62 0.47 

57 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.62 0.47 

58 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.62 0.47 

59 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.62 0.47 

60 0.58 0.19 0.70 0.38 0.33 0.71 0.27 0.62 0.42 0.68 0.62 0.47 

61 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

62 0.58 0.19 0.70 0.38 0.33 0.71 0.27 0.62 0.41 0.68 0.62 0.47 

63 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

64 0.58 0.19 0.70 0.38 0.33 0.71 0.27 0.62 0.42 0.68 0.62 0.47 

65 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.62 0.42 0.68 0.62 0.47 

66 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.62 0.42 0.68 0.62 0.47 

67 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.62 0.42 0.68 0.62 0.47 

68 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.62 0.47 

69 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

70 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 
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Table  C-5: Reported utilisations of DBR. 

Week Station number 

1 2 3 4 5 6 7 8 9 10 11 12 

71 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

72 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

73 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

74 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

75 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

76 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

77 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

78 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

79 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

80 0.58 0.19 0.72 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

81 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

82 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

83 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

84 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

85 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

86 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

87 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

88 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

89 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

90 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.48 

91 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.48 

92 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.48 

93 0.57 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.48 

94 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.48 

95 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.48 

96 0.58 0.19 0.72 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

97 0.58 0.20 0.72 0.39 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

98 0.58 0.20 0.72 0.39 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

99 0.58 0.20 0.72 0.39 0.33 0.72 0.27 0.64 0.42 0.69 0.64 0.48 

100 0.58 0.20 0.72 0.39 0.33 0.72 0.27 0.64 0.42 0.69 0.64 0.48 

101 0.58 0.20 0.72 0.39 0.33 0.72 0.27 0.64 0.42 0.69 0.64 0.48 

102 0.58 0.20 0.72 0.39 0.33 0.72 0.27 0.64 0.42 0.69 0.64 0.48 

103 0.58 0.20 0.72 0.39 0.33 0.72 0.27 0.64 0.42 0.69 0.64 0.48 

104 0.58 0.20 0.72 0.39 0.33 0.72 0.27 0.64 0.42 0.69 0.64 0.48 

 

Table  C-6: Reported utilisations of Hybrid CONWIP/DBR. 

Week Station number 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.59 0.17 0.65 0.35 0.30 0.58 0.23 0.57 0.39 0.57 0.54 0.36 

2 0.59 0.18 0.64 0.35 0.30 0.59 0.24 0.56 0.38 0.61 0.56 0.39 

3 0.56 0.17 0.60 0.34 0.29 0.62 0.23 0.51 0.36 0.57 0.53 0.39 

4 0.57 0.18 0.63 0.36 0.30 0.67 0.25 0.55 0.39 0.61 0.57 0.42 
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Table  C-6: Reported utilisations of Hybrid CONWIP/DBR. 

Week Station number 

1 2 3 4 5 6 7 8 9 10 11 12 

5 0.57 0.18 0.65 0.36 0.30 0.67 0.25 0.58 0.39 0.63 0.56 0.42 

6 0.57 0.18 0.66 0.36 0.31 0.69 0.25 0.58 0.40 0.62 0.56 0.42 

7 0.57 0.19 0.67 0.37 0.32 0.71 0.26 0.59 0.40 0.64 0.58 0.43 

8 0.57 0.19 0.68 0.38 0.32 0.72 0.26 0.60 0.41 0.67 0.61 0.44 

9 0.57 0.18 0.67 0.36 0.31 0.68 0.25 0.58 0.40 0.65 0.59 0.43 

10 0.57 0.19 0.68 0.37 0.32 0.70 0.26 0.59 0.40 0.66 0.59 0.43 

11 0.57 0.19 0.68 0.37 0.32 0.69 0.26 0.60 0.41 0.66 0.60 0.44 

12 0.57 0.19 0.68 0.37 0.32 0.68 0.26 0.59 0.40 0.65 0.59 0.43 

13 0.57 0.19 0.68 0.37 0.32 0.68 0.26 0.59 0.40 0.66 0.60 0.44 

14 0.57 0.19 0.67 0.37 0.32 0.68 0.26 0.60 0.40 0.65 0.60 0.44 

15 0.57 0.19 0.67 0.37 0.32 0.69 0.26 0.60 0.40 0.65 0.60 0.44 

16 0.57 0.19 0.67 0.37 0.32 0.70 0.26 0.60 0.41 0.66 0.60 0.44 

17 0.57 0.19 0.67 0.37 0.32 0.68 0.26 0.59 0.40 0.65 0.60 0.44 

18 0.57 0.18 0.66 0.36 0.31 0.68 0.25 0.58 0.40 0.64 0.59 0.43 

19 0.58 0.19 0.66 0.37 0.32 0.69 0.26 0.59 0.40 0.65 0.60 0.44 

20 0.57 0.19 0.67 0.37 0.32 0.69 0.26 0.59 0.40 0.65 0.60 0.44 

21 0.57 0.19 0.67 0.37 0.32 0.68 0.26 0.59 0.40 0.65 0.60 0.44 

22 0.58 0.19 0.68 0.37 0.32 0.69 0.26 0.59 0.40 0.66 0.60 0.44 

23 0.58 0.19 0.69 0.37 0.32 0.70 0.26 0.60 0.41 0.66 0.61 0.45 

24 0.57 0.19 0.68 0.37 0.32 0.70 0.26 0.60 0.41 0.66 0.61 0.45 

25 0.57 0.19 0.68 0.37 0.32 0.69 0.26 0.60 0.40 0.66 0.60 0.44 

26 0.57 0.19 0.69 0.37 0.32 0.69 0.26 0.60 0.40 0.66 0.60 0.44 

27 0.57 0.19 0.68 0.37 0.32 0.70 0.26 0.60 0.40 0.66 0.60 0.45 

28 0.57 0.19 0.69 0.37 0.32 0.70 0.26 0.61 0.41 0.67 0.61 0.45 

29 0.58 0.19 0.69 0.37 0.32 0.70 0.26 0.61 0.41 0.67 0.61 0.46 

30 0.58 0.19 0.70 0.37 0.32 0.70 0.26 0.61 0.41 0.67 0.61 0.46 

31 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.61 0.41 0.67 0.61 0.46 

32 0.58 0.19 0.69 0.38 0.33 0.71 0.26 0.62 0.41 0.67 0.61 0.46 

33 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.61 0.46 

34 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.68 0.62 0.46 

35 0.59 0.19 0.70 0.38 0.33 0.70 0.27 0.62 0.42 0.68 0.62 0.47 

36 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.62 0.47 

37 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.62 0.42 0.68 0.62 0.47 

38 0.58 0.19 0.71 0.38 0.33 0.70 0.27 0.62 0.42 0.69 0.61 0.47 

39 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.62 0.42 0.69 0.61 0.47 

40 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.62 0.42 0.68 0.61 0.47 

41 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.62 0.42 0.69 0.62 0.47 

42 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.63 0.42 0.69 0.62 0.47 

43 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.63 0.42 0.69 0.62 0.47 

44 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.63 0.42 0.69 0.62 0.47 

45 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.63 0.42 0.69 0.62 0.47 

46 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.63 0.42 0.69 0.62 0.47 

47 0.58 0.19 0.70 0.38 0.33 0.70 0.27 0.63 0.42 0.68 0.62 0.47 

48 0.58 0.19 0.71 0.38 0.33 0.70 0.27 0.63 0.42 0.68 0.62 0.47 

49 0.58 0.19 0.71 0.38 0.33 0.70 0.27 0.63 0.42 0.69 0.62 0.47 
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Table  C-6: Reported utilisations of Hybrid CONWIP/DBR. 

Week Station number 

1 2 3 4 5 6 7 8 9 10 11 12 

50 0.58 0.19 0.71 0.38 0.33 0.70 0.27 0.62 0.42 0.68 0.62 0.47 

51 0.58 0.19 0.70 0.38 0.33 0.70 0.27 0.63 0.42 0.68 0.62 0.47 

52 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.62 0.47 

53 0.58 0.19 0.70 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.62 0.47 

54 0.58 0.19 0.70 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.62 0.47 

55 0.58 0.19 0.70 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.62 0.47 

56 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

57 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.42 0.68 0.62 0.47 

58 0.58 0.19 0.70 0.38 0.33 0.71 0.27 0.62 0.42 0.68 0.62 0.47 

59 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.42 0.68 0.62 0.47 

60 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

61 0.57 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

62 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

63 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

64 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

65 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

66 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

67 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

68 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.62 0.42 0.68 0.62 0.47 

69 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.62 0.42 0.68 0.62 0.47 

70 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.62 0.42 0.68 0.62 0.47 

71 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.62 0.42 0.68 0.62 0.47 

72 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

73 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

74 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

75 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

76 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.62 0.42 0.68 0.63 0.47 

77 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.62 0.42 0.68 0.63 0.47 

78 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

79 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.63 0.47 

80 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

81 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

82 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

83 0.57 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

84 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

85 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

86 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

87 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

88 0.57 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

89 0.57 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

90 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

91 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

92 0.57 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

93 0.57 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

94 0.57 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 
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Table  C-6: Reported utilisations of Hybrid CONWIP/DBR. 

Week Station number 

1 2 3 4 5 6 7 8 9 10 11 12 

95 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.48 

96 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.48 

97 0.58 0.19 0.72 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

98 0.58 0.20 0.71 0.39 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

99 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

100 0.58 0.20 0.71 0.39 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

101 0.58 0.19 0.72 0.39 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

102 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

103 0.58 0.19 0.72 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

104 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

 

Table  C-7: Reported utilisations of LCONWIP. 

Week Station number 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.60 0.18 0.66 0.35 0.30 0.59 0.24 0.57 0.40 0.57 0.56 0.36 

2 0.59 0.17 0.64 0.35 0.30 0.58 0.24 0.56 0.38 0.60 0.56 0.38 

3 0.55 0.17 0.60 0.33 0.29 0.62 0.23 0.51 0.36 0.55 0.53 0.38 

4 0.56 0.18 0.63 0.35 0.30 0.67 0.25 0.55 0.39 0.60 0.56 0.42 

5 0.57 0.18 0.64 0.35 0.30 0.67 0.25 0.58 0.39 0.62 0.56 0.42 

6 0.57 0.18 0.66 0.36 0.31 0.69 0.25 0.58 0.39 0.61 0.56 0.42 

7 0.57 0.19 0.66 0.37 0.31 0.71 0.26 0.59 0.40 0.63 0.58 0.43 

8 0.57 0.19 0.68 0.37 0.32 0.72 0.26 0.60 0.41 0.65 0.61 0.44 

9 0.57 0.18 0.66 0.36 0.31 0.68 0.25 0.58 0.40 0.63 0.59 0.42 

10 0.57 0.19 0.67 0.37 0.32 0.70 0.26 0.59 0.40 0.64 0.59 0.43 

11 0.57 0.19 0.68 0.37 0.32 0.69 0.26 0.59 0.41 0.65 0.60 0.43 

12 0.57 0.19 0.67 0.37 0.32 0.68 0.26 0.59 0.40 0.64 0.59 0.43 

13 0.57 0.19 0.67 0.37 0.32 0.68 0.26 0.59 0.40 0.65 0.60 0.43 

14 0.57 0.19 0.67 0.37 0.32 0.68 0.26 0.59 0.40 0.65 0.60 0.44 

15 0.57 0.19 0.67 0.37 0.32 0.69 0.26 0.60 0.40 0.64 0.60 0.44 

16 0.56 0.19 0.67 0.37 0.32 0.69 0.26 0.60 0.40 0.65 0.60 0.44 

17 0.57 0.19 0.66 0.37 0.32 0.68 0.26 0.59 0.40 0.64 0.60 0.44 

18 0.57 0.18 0.66 0.36 0.31 0.68 0.25 0.58 0.40 0.63 0.59 0.43 

19 0.58 0.19 0.66 0.37 0.32 0.69 0.26 0.58 0.40 0.64 0.60 0.44 

20 0.57 0.19 0.67 0.37 0.32 0.69 0.26 0.59 0.40 0.65 0.60 0.44 

21 0.57 0.19 0.67 0.37 0.32 0.68 0.26 0.59 0.40 0.64 0.60 0.44 

22 0.58 0.19 0.68 0.37 0.32 0.69 0.26 0.60 0.40 0.65 0.60 0.44 

23 0.58 0.19 0.68 0.37 0.32 0.70 0.26 0.60 0.41 0.66 0.61 0.45 

24 0.57 0.19 0.68 0.37 0.32 0.70 0.26 0.60 0.41 0.66 0.61 0.45 

25 0.57 0.19 0.68 0.37 0.32 0.69 0.26 0.60 0.40 0.66 0.60 0.44 

26 0.57 0.19 0.69 0.37 0.32 0.69 0.26 0.60 0.40 0.66 0.60 0.44 

27 0.57 0.19 0.68 0.37 0.32 0.70 0.26 0.60 0.40 0.66 0.60 0.45 

28 0.57 0.19 0.69 0.37 0.32 0.70 0.26 0.61 0.41 0.66 0.61 0.45 
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Table  C-7: Reported utilisations of LCONWIP. 

Week Station number 

1 2 3 4 5 6 7 8 9 10 11 12 

29 0.58 0.19 0.69 0.37 0.32 0.70 0.26 0.61 0.41 0.66 0.61 0.45 

30 0.58 0.19 0.69 0.37 0.32 0.70 0.26 0.61 0.41 0.66 0.61 0.45 

31 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.61 0.41 0.67 0.61 0.46 

32 0.58 0.19 0.69 0.38 0.33 0.71 0.26 0.62 0.41 0.67 0.61 0.46 

33 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.67 0.62 0.46 

34 0.58 0.19 0.70 0.38 0.33 0.70 0.26 0.62 0.41 0.67 0.62 0.46 

35 0.58 0.19 0.70 0.38 0.33 0.70 0.27 0.62 0.42 0.68 0.62 0.47 

36 0.58 0.19 0.71 0.38 0.33 0.70 0.27 0.62 0.42 0.68 0.62 0.47 

37 0.58 0.19 0.71 0.38 0.33 0.70 0.27 0.62 0.42 0.68 0.62 0.47 

38 0.58 0.19 0.70 0.38 0.33 0.70 0.27 0.62 0.42 0.68 0.61 0.47 

39 0.59 0.19 0.70 0.38 0.33 0.70 0.27 0.62 0.42 0.68 0.61 0.47 

40 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.62 0.42 0.68 0.61 0.47 

41 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.62 0.42 0.68 0.62 0.47 

42 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.63 0.42 0.69 0.62 0.47 

43 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.62 0.42 0.69 0.62 0.47 

44 0.59 0.19 0.70 0.38 0.33 0.70 0.27 0.63 0.42 0.68 0.62 0.47 

45 0.59 0.19 0.70 0.38 0.33 0.70 0.27 0.63 0.42 0.68 0.62 0.47 

46 0.59 0.19 0.71 0.38 0.33 0.70 0.27 0.63 0.42 0.68 0.62 0.47 

47 0.58 0.19 0.70 0.38 0.33 0.70 0.27 0.63 0.42 0.68 0.62 0.47 

48 0.58 0.19 0.71 0.38 0.33 0.70 0.27 0.63 0.42 0.68 0.62 0.47 

49 0.58 0.19 0.71 0.38 0.33 0.70 0.27 0.63 0.42 0.68 0.62 0.47 

50 0.58 0.19 0.70 0.38 0.33 0.70 0.27 0.62 0.42 0.68 0.62 0.47 

51 0.58 0.19 0.70 0.38 0.33 0.70 0.27 0.62 0.42 0.68 0.62 0.47 

52 0.58 0.19 0.70 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.62 0.47 

53 0.58 0.19 0.70 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.62 0.47 

54 0.58 0.19 0.70 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.62 0.47 

55 0.58 0.19 0.70 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.62 0.47 

56 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

57 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.42 0.68 0.62 0.47 

58 0.58 0.19 0.70 0.38 0.33 0.71 0.27 0.62 0.42 0.68 0.62 0.47 

59 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

60 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.67 0.62 0.47 

61 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.67 0.62 0.46 

62 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.46 

63 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.46 

64 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

65 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

66 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

67 0.58 0.19 0.70 0.38 0.33 0.71 0.26 0.62 0.41 0.68 0.62 0.47 

68 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.62 0.41 0.68 0.62 0.47 

69 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.62 0.42 0.68 0.62 0.47 

70 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.62 0.42 0.68 0.62 0.47 

71 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.62 0.42 0.68 0.62 0.47 

72 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.62 0.42 0.68 0.63 0.47 

73 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.62 0.42 0.68 0.63 0.47 



 C-18 

Table  C-7: Reported utilisations of LCONWIP. 

Week Station number 

1 2 3 4 5 6 7 8 9 10 11 12 

74 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.62 0.42 0.68 0.63 0.47 

75 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.62 0.42 0.68 0.63 0.47 

76 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.62 0.42 0.68 0.63 0.47 

77 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.62 0.42 0.68 0.63 0.47 

78 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.62 0.42 0.68 0.63 0.47 

79 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.68 0.63 0.47 

80 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

81 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

82 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.62 0.42 0.68 0.63 0.47 

83 0.57 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

84 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

85 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.68 0.63 0.47 

86 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

87 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

88 0.57 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

89 0.57 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

90 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

91 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

92 0.57 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

93 0.57 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

94 0.57 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.69 0.63 0.47 

95 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.69 0.63 0.47 

96 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.47 

97 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.63 0.48 

98 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

99 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

100 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

101 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

102 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

103 0.58 0.19 0.71 0.38 0.33 0.72 0.27 0.63 0.42 0.69 0.64 0.48 

104 0.58 0.19 0.71 0.38 0.33 0.71 0.27 0.63 0.42 0.69 0.64 0.47 

 


