Controlled Variability Management for Business
Process Model Constraints

Neel Mani

ADAPT Centre for Digital Content Technology
Dublin City University, School of Computing
Dublin, Ireland

Abstract—Business process models are abstract descriptions that
are applicable in different situations. To allow a single process
model to be reused, configuration and customisation features can
help. Variability models, known from product line modelling and
manufacturing, can control this customisation. While activities
and objects have already been subject of similar investigations,
we focus on the constraints that govern a process execution. We
report here on the development a rule-based constraints language
for a workflow and process model. The aim is a conceptual defini-
tion of a domain-specific rule variability language, integrated with
the principles of a common business workflow or process notation.
This modelling framework will be presented as a development
approach for customised rules through a feature model. Our use
case is content processing, represented by an abstract ontology-
based domain model in the framework.

Keywords—Business Process Modelling, Process Constraints,
Variability Model, Domain-specific Rule Language.

I. INTRODUCTION

Business process models are abstract descriptions that
can be applied in different situations and environments. To
allow a single process model to be reused, configuration and
customisation features help. Variability models, known from
product line engineering, can control this customisation. While
activities and objects have already been subject of customisa-
tion research, we focus on the customisation of constraints
that govern a process execution here. Specifically, the recent
emergence of business processes as a services in the cloud
(BPaaS) highlights the need to implement a reusable process
resource together with a mechanism to adapt this to consumers.

We are primarily concerned with the utilisation of a
conceptual domain model for business process management,
specifically to define a domain-specific rule language for
process constraints management. We present a conceptual
approach in order to define a Domain Specification Rule Lan-
guage (DSRL) for process constraints [1] based on a Variability
Model (VM). To address the problem, we follow a feature-
based approach to develop a domain-specific rule language,
borrowed from product line engineering. It is beneficial to
capture domain knowledge and define a solution for possibly
too generic models through using a domain-specific language
(DSL). A systematic DSL development approach provides the
domain expert or analyst with a problem domain at a higher
level of abstraction. DSLs are a favourable solution to directly
represent, analyse, develop and implement domain concepts.

Claus Pahl

ADAPT Centre for Digital Content Technology
Dublin City University, School of Computing
Dublin, Ireland

DSLs are visual or textual languages targeted to specific prob-
lem domains, rather than general-purpose languages that aim
at general software problems. With these languages or models,
some behaviour inconsistencies of semantics properties can be
checked by formal detection methods and tools.

The key contribution is a model development approach
using of a feature model to bridge between an assumed domain
model (here in ontology form) and the domain-specific rule
extension of a business process to define and implement pro-
cess constraints. The feature model streamlines the constraints
customisation of business processes for specific applications.
It acts as a bridge between domain model and rule language.
The novelty lies in the use of software product line technology
to customise processes.

We choose content processing here as a specific domain
context to illustrate the application the proposed domain-
specific technique (but also look at the transferability to other
domains in the evaluation). We use a text-based content process
involving text extraction, translation and post-editing as a
sample business process. Note that we have also investigated
the subject in the context of e-learning processes, which we
will also address later on. We also briefly discuss a prototype
implementation. However, note that a full integration of all
model aspects is not aimed at as the focus here is on models.
The objective is to outline principles of a systematic approach
towards a domain-specific rule language for content processes.

The paper is organised as follows. We review process
modelling and constraints in Section 2. In Section 3, we
content processing from a feature-oriented DSL perspective.
Section 4 introduces rule language background and ideas for a
domain-based rule language. We then discuss formal process
models into with the rule languages can be integrated.

II. BUSINESS PROCESS MODELS AND CONSTRAINTS

At the core is a process model that defines possible
behaviour. This is made up of some frame of reference for
the system and the corresponding to the attributes used to
describe the possible behaviour of the process. The set of
behaviours constitutes a process referred to as the extension
of the process and individual behaviours in the extension are
referred as instances. Constraints can be applied at states of the
process to determine its continuing behaviour depending on the
current situation. The rules combine a condition (constraint) on
a resulting action. The target of our rule language (DSRL) is

Presentation
Layer

Post Edit

(#

Extraction

Segmentation & T-SE-MT.
NER

Machine
Translation

Estimation

&

-PE-M

Figure 1. Workflow design of content process.

a standard business process notation (as in Fig. 1). Rules shall
be applied at the processing states of the process.

Our application case study is intelligent content processing.
Intelligent content is digital content that allows to users to cre-
ate, curate and consume content in a way that satisfies dynamic
and individual requirements relating to task design, context,
language, and information discovery. The content is stored,
exchanged and processed by a Web architecture and data will
be exchanged, annotated with meta-data via web resources.
Content is delivered from creators to consumers. Content fol-
lows a particular path which contains different stages such as
extraction and segmentation, name entity recognition, machine
translation, quality estimation and post-editing. Each stage in
the process has its own challenges and complexities.

We assume the content processing workflow as in Figure
1 as a sample process for the rule-based instrumentation of
processes. Constraints govern this process. For instance, the
quality of a machine-based text translation decides whether
further post-editing is required. Generally, these constraints
are domain-specific, e.g., referring to domain objects, their
properties and respective activities on them.

III. DOMAIN AND FEATURE MODEL

Conceptual models (CM) are part of the analysis phase of
system development helping to understand and communicate
particular domains [1]. They help to capture the requirements
of the problem domain and, in ontology engineering, a CM is
the basis for a formalized ontology. We utilise a conceptual
domain model (in ontology form) to derive a domain-specific
process rule language. A domain specific language (DSL)
is a programming or specification language that supports a
particular application domain through appropriate notation,
grammar and abstractions [2]. DSL development requires both
domain knowledge and language development expertise. A
prerequisite for designing DSLs is an analysis that provides
structural knowledge of the application domain.

A. Feature Model

The most important result of a domain analysis is a feature
model. A feature model covers both the aspects of software
family members, like commonalities and variabilities, and
also reflects dependencies between variable features. A feature

diagram is a graphical representation of dependences between
a variable feature and its components. Mandatory features
are present in a concept instance if their parent is present.
Optional features may be present. Alternative features are a
set of features from which one is present. Groups of features
are a set of features from which a subset is present if their
parent is present. Mutex and Requires are relationships that
can only exist between features. Requires means that when
we select a feature, the required featured must be selected too.
Mutex means that once we choose a feature the other feature
must be excluded (mutual exclusion).

A domain-specific feature model can cover languages,
transformation, tooling, and process aspects of DSLs. For
feature model specification, we propose the FODA (Feature
Oriented Domain Analysis) [3] method. It represents all the
configurations (called instances) of a system, focusing on the
features that may differ in each of the configurations [4]. We
apply this concept to constraints customisation for processes.
The Feature Description Language (FDL) [5] is a language
to define features of a particular domain. It supports an
automated normalization of feature descriptions, expansion to
disjunctive normal form, variability computation and constraint
satisfaction. It shall be applied to the content processing use
case here. The basis here is a domain ontology called GLOBIC
(global intelligent content), which has been developed as part
of our research centre. GLOBIC elements are prefixed by gic.

Feature diagrams are a FODA graphical notation. They can
be used for structuring the features of processes in specific
domains. Figure 2 shows a feature diagram for the GLOBIC
content extraction path, i.e., extraction as an activity that
operates on content in specified formats. This is the first step in
a systematic development of a domain-specific rule language
(DSRL) for GLOBIC content processing use case. The basic
component gic:Content consists of a gic:Extraction element,
a mandatory feature. A file is a mandatory component of
gic:Extraction and it may either be used for Document or
Multimedia elements or both. The closed triangle joining the
lines for document and multimedia indicates a non-exclusive
(more-of) choice between the elements. The gic:Text has
two mandatory states Source and Target. Source contains
ExtractedText and Target can be TranslationText. Furthermore,
expanding the feature Sentence is also a mandatory component
of ExtractedText. The four features Corpora, Phrase, Word

gic:Content

.

Source

Extracted Text

./

Sentence

Grammar Phrase

Quality

gic:Extraction
l Mandatory AAIternative
Document Multimedia J) Optional Aor
N
gic:Text
Target

Translation

Translated Text

Translation Memaory

Corpora

Lexicon Dictionary

Translation Model

Language Model

Figure 2. Workflow design of content process.

and Grammar are mandatory. On the other side of gic:Text,
a TranslationText is a mandatory component of Target, also
containing a mandatory component Translation. A Translation
has three components: TranslationMemory and Model are
mandatory features, Quality is an optional feature. A Model
may be used as a TranslationModel or a LanguageModel or
both models at same time. An instance of a feature model
consists of an actual choice of atomic features matching the
requirements imposed by the model. An instance corresponds
to a text configuration of a gic:Text super class. The number
of possible gic:Text feature combinations is 512 for the given
model, structured and made accessible through the model.

The feature model might include for instance duplicate ele-
ments, inconsistencies or other anomalies. We can address this
situation by applying consistency rules on feature diagrams.
Each anomaly may indicate a different type of problem. The
feature diagram algebra consists of four set of rules [4]:

e Normalization Rules - rules to simplify the feature
expression by redundant feature elimination and nor-
malize grammatical and syntactical anomalies.

e Expansion Rules - a normalized feature expression can
be converted into a disjunctive normal form.

e Satisfaction Rules - the outermost operator of a dis-
junctive normal form is one-of. Its arguments are
All expressions with atomic features as arguments,
resulting in a list of all possible configurations.

e Variability Rules - feature diagrams describe system
variability, which can be quantified (e.g. number of
possible configurations).

The feature model is the key element. Thus, checking internal
coherence and providing a normalised format is important
for its accessibility for non-technical domain experts. In our
setting, the domain model provides the semantic definition for
the feature-driven variability modelling.

B. Domain Model

Semantic models have been widely used in process man-
agement [6,7]. This ranges from normal class models to
capture structural properties of a domain to full ontologies
to represent and reason about knowledge regarding the ap-
plication domain or also the technical process domain [8,9].
Domain-specific class diagrams are the next step from a feature
model towards a DSL definition. A class is defined as a
descriptor of a set of objects with common properties in terms
of structure, behaviour, and relationships. A class diagram
is based on a feature diagram model and helps to stabilise
relationship and behaviour definitions. Note that there is an
underlying domain ontology here, but we use the class aspects
(subsumption hierarchy only).

In the content use case, class diagrams of gic:Content and
its components based on common properties are shown in Fig-
ure 3. The class diagram focuses on gic:Text. The two major
classes are Text (Document) and Movie files (Multimedia),
consisting of different type of attributes like content : string,
format : string, or frame rate : int. Figure 3 is the presentation
of an extended part of the gic:Content model. For instance,
gic:Text is classified into the two subclasses Source and Target.
One file can map multiple translated texts or none. gic:Text is
multi-language content (source and target content).

Source

-Language : string

Extracted Text

-File Type : string

|
Target

-Language : string

Translated Text

-FileType : string

Lacation : string <]
-Format : string
-Contents : string

D Location : string
-Format : string
-Contents : string

T

4‘_\.

Corpora

-Location : string
-Number Corpora : int
-Number Parallel : int

Size Parallel : int

Lexical [tem : string| [-Length : int

EE | I Quality Translation Memory
Grammar o -Size : int
Lexicon Dictionary Structure 1 string | |-wer s int Length : int

-Root Word : string -Size @ int
-Syntax : string

Figure 3. Domain model for global content.

IV. CONSTRAINTS RULE LANGUAGE

Rule languages typically borrow their semantics from logic
programming [12]. A rule is defined in the form of If-then
clauses containing logical functions and operations. A rule lan-
guage can enhance ontology languages, e.g., by allowing one
to describe relations that cannot be described using for instance
description logic (DL) underlying the definition of OWL. We
adopt Event-Condition-action (ECA) rules to express rules on
content processing activities. The rules take the constituent
elements of the GLOBIC model into account:

e Content objects (e.g., text) that are processed.
e Content processing activities (e.g., extraction or trans-
lation) that process content objects.

An example shall illustrate ECA rules for extraction as the
activity. Different case can be defined using feature models:

e We can customise rules for specific content types (text
files or multimedia content).

e We can also vary according to processing activities
(extraction or translation).

Three sample rule definitions are:

e On uploading file notification from user and if filetype
is valid, then progress to Extraction

e On a specific key event and Text is inputted by
user and if text is valid then progress Process to
Segmentation

e On a specific key event and Web URL input by user
and if URL is valid then progress to Extraction and
Segmentation

We define the rule language as follows using GLOBIC
concepts (examples here):

gicRule ::= [gic:Event] || [gic:Cond] || [gic:Action]
gic:Event::= {Upload} || {Translate} || {Extract}

While the rule syntax is simple, the important aspect is that
that the syntactic elements refer to the domain model, giving
it semantics and indicating variability points. Variability points
are, as explained, defined in the feature model. The above three
examples can be formalised using this notation. Important here
is thus the guidance in defining rules that a domain expert gets
through the domain model as a general reference framework
and the feature model definition the variability points.

V. IMPLEMENTATION

While this paper focuses on the conceptual aspects, a
prototype has been implemented. Our implementation (cf.
Fig. 4) provides a platform that enables building configurable
processes for content management problems and constraints
running in the Activiti workflow engine. In this architecture,
a cloud service layer perform data processing and avail of
different resources using the Content Service Bus (based on
the Alfresco content management system) to perform activities.

Every activity has its own constraints. The flow of entire
activities is performed in a sequential manner so that each
activitys output becomes input to the next. The input data is
processed through the content service bus (Alfresco) and the
rule policy is applied to deal with constraints. The processed
data is validated by the validation & verification service layer.
After validation, processing progresses to the next stage of the
Activiti process - e.g., if Segmentation & Extraction data is
validated, then it will automatically move to the Name Entity
Recognition stage, otherwise sent for reprocessing.

Reasons to architecturally separate a Service Layer include:
e To provide the capability of grouping, interlinking and
coupling services within components.

SECURITY LAYER

Service Layer

Business Rules Services
Workflow Management Services
Validation & Verification Services

Provenance Services

MER Provanace

E&S Provenance

Extraction &
Segmentation

Name Entity
Recognition

Machine translation

Figure 4. Prototype implementation architecture.

e To share data across multiple component of an appli-
cation at any time.

e To execute long running operations without over-
loading the engine, as each component may have
individual specific services.

e To use the common content management bus and
provisioning infrastructure provided by the Service
layer.

e To provide a common policy engine service for the
entire platform to reduce the code complexity and
improve maintainability.

e To monitor workflow, process executions and record
task names, execution durations and parameters use
through a provenance service.

The architecture of the system is based on services and
standard browser thin clients. We follow the Toolkit script
of JavaScript functions that can be used to deploy entire
application on a Tomcat web server. The application can
be hosted on a Tomcat web server and all services could
potentially and be hosted on cloud-based server.

A. Discussion

Explicit variability representation has benefits for the mod-
elling stage. The feature and domain models control the
variability, i.e., add dependability to the process design stage.
It also allows formal reasoning about families of processes.

Furthermore, the general utility can be demonstrated. The
domain and feature models here specifically support domain
experts. We have worked with experts in the digital media
and language technology space as part of our research centre.

Their qualitative feedback, based on expert interviews as the
mechanism, confirms the need to provide a mechanism to
customise business processes in a domain-specific way. Using
the feature model, rule templates can be filled using the
different feature aspects guided by the domain model without
in-depth modelling expertise. The majority of experts (more
than 2/3) in the evaluation have confirmed simplification or
significant simplification in process modelling.

In addition, we looked at another process domain to assess
the transferability of the solution. In the learning domain,
we examined learner interaction with content in a learning
technology system [30,31,32]. Again, the need to provide
domain expert support to define constraints and rules for
these processes became evident. Here, educators act as process
modellers and managers, specifically managing the educational
content processing as an interactive process between learners,
educators and content. Having been involved in the develop-
ment of learning technology systems for years, tailoring these
to specific courses and classes is required.

VI. RELATED WORK

Current open research concerns for process management
includes customisation of governance and quality policies and
the non-intrusive adaptation of processes to policies. Today,
one-size-fits-all service process modelling and deployment
techniques exist. However, their inherent structural inflexibility
makes constraints difficult to manage, resulting in significant
efforts and costs to adapt to individual domains needs.

We discuss related work in the field of constraints and pol-
icy definition and adaptive BPEL processes. While a notation
such as BPMN is aimed at, there is more work on WS-BPEL
in our context. Work can be distinguished into two categories.

e BPEL process extensions designed to realize platform-
independence: Work in [23] and [25] allows BPEL
specifications to be extended with fault policies, i.e.,
rules that deal with erroneous situations. SRRF [13]
generates BPEL processes based on defined handling
policies. We do not bind domain-specific policies into
business processes directly, as this would not allow to
support user/domain-specific adaptation adequately.

e Platform-dependent BPEL engines: Dynamo [3] is
limited in that BPEL event handlers must be statically
embedded into the process prior to deployment (recov-
ery logic is fixed and can only be customised through
the event handler). It does not support customisation
and adaptation. PAWS [1] extends the ActiveBPEL
engine to enact a flexible process that can change
behaviour dynamically, according to constraints.

Furthermore, process-centricity is a concern. Recently,
business-processes-as-a-service (BPaaS) is discussed. While
not addressed here as a cloud technology specifically, this per-
spective needs to be further complemented by an architectural
style for its implementation [20].

We have proposed a classification of several quality and
governance constraints elsewhere [30]: authorisation, account-
ability, workflow governance and quality. This takes the BPMN
constraints extensions [22,23] into account that suggest con-
tainment, authorisation and resource assignment as categories
into account, but realises these in a less intrusive process
adaptation solution.

The DSRL is a combination of rules and BPMN. Moreover,
DSLR process based on BPMN and ECA rules is the main
focus on the operational part of the DSRL system (i.e., to check
conditions and perform actions based on an event of a BPMN
process). There is no need for a general purpose language in
a DSLR, though aspects are present in the process language.
[33,34,35] discuss business process variability, though primar-
ily from a structural customisation perspective. However, [33]
also uses an ontology-based support infrastructure.

VII. CONCLUSION

In presenting a variability and feature-oriented develop-
ment approach for a domain-specific rule language for business
process constraints, we have added adaptivity to process mod-
elling. We can provide domain experts with a set of structured
variation mechanisms for the specification, processing and
management of process rules as well as managing frequency
changes of business processes along the variability scheme
at for notations like BPMN. The novelty of our variability
approach is a focus on process constraints and their rule-based
management, advancing on structural variability.

Cloud-based business processes-as-a-service (BPaaS) as an
emerging trend signifies the need to adapt resources such as
processes to different consumer needs (called customisation of
multi-tenant resources in the cloud). Furthermore, self-service
provisioning of resources also requires non-expert to manage
this configuration.

We see the need for further research that focuses on how to
adapt the DSRL across different domains and how to convert
conceptual models into generic domain-specific rule language
which are applicable to other domains. So far, this translation is
semi-automatic, but shall be improved with a system that learns
from existing rules and domain models, driven by the feature
approach, and to result in an automated DSRL generation.

ACKNOWLEDGMENT

This material is based upon works supported by the Science
Foundation Ireland under Grant No. 07/CE/I1142 as part of the
Centre for Global Intelligent Content (www.cngl.ie) at DCU.

REFERENCES

[1] O. Tanrver and S. Bilgen, A framework for reviewing domain specific
conceptual models,” CompStand & Interf, vol. 33, pp. 448-464, 2011.

[2] M. Mernik, J. Heering, and A. M. Sloane, "When and how to develop
domain-specific languages,” ACM computing surveys, vol. 37:316-344,
2005.

[3] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis (FODA) feasibility study,” DTIC.
1990.

[4] A. Van Deursen and P. Klint, "Domain-specific language design requires
feature descriptions,” Jrnl of Comp and Inf technology, vol. 10, pp. 1-17,
2002.

[S] M. Acher, P. Collet, P. Lahire, and R. B. France, A domain-specific
language for managing feature models,” in ACM Symp on Applied
Computing, 2011, pp. 1333-1340.

[6] C. Pahl and Y. Zhu, A semantical framework for the orchestration and
choreography of web services,” Electronic Notes in Theoretical Computer
Science, vol. 151(2), pp. 3-18, 2006.

[7]1 C. Pahl, ”Semantic model-driven architecting of service-based software
systems,” Information and Software Technology, vol. 49(8), pp. 838-850,
2007.

[8] C. Pahl, ”An ontology for software component matching,” International

Journal on Software Tools for Technology Transfer, vol 9(2), pp. 169-
178, 2007.

[9] M.X. Wang, K.Y. Bandara, and C. Pahl, "Integrated constraint violation
handling for dynamic service composition,” IEEE International Confer-
ence on Services Computing, 2009, pp. 168-175.

[10] Y.-J. Hu, C.-L. Yeh, and W. Laun, ”Challenges for rule systems on the
web,” Rule Interchange and Applications, 2009, pp. 4-16.

[11] A. Paschke, H. Boley, Z. Zhao, K. Teymourian, and T. Athan, ”Reaction
RuleML 1.0” in Rules on the Web: Research and Applications, 2012, pp.
100-119.

[12] H. Boley, A. Paschke, and O. Shafiq, "RuleML 1.0: the overarching
specification of web rules,” Lecture Notes in Computer Science. 6403,
162-178, 2010.

[13] T. Soininen and I. Niemel, "Developing a declarative rule language for
applications in product configuration,” in practical aspects of declarative
languages, ed: Springer, 1998, pp. 305-319.

[14] D. Curry, H. Debar, and B. Feinstein, “Intrusion detection message
exchange format data model and extensible markup language (xml)
document type definition,” IDWG, 2002.

[15] K. Williams, M. Brundage, P. Dengler, J. Gabriel, A. Hoskinson, M. R.
Kay, et al., Professional XML databases: Wrox Press, 2000.

[16] E. Wilde and D. Lowe, XPath, XLink, XPointer, and XML: A practical
guide to Web hyperlinking and transclusion, 2002.

[17] L. Wood, V. Apparao, L. Cable, M. Champion, M. Davis, J. Kesselman,
et al., "Document object model (DOM) specification,” W3C recommen-
dation, 1998.

[18] E. R. Harold, Processing XML with Java: Addison-Wesley, 2002.

[19] R. Mohan, M. A. Cohen, and J. Schiefer, ”A state machine based
approach for a process driven development of web-applications,” in
Advanced Information Systems Engineering, 2002, pp. 52-66.

[20] S. Van Langenhove, "Towards the correctness of software behavior in
uml: A model checking approach based on slicing,” Ghent Univ, 2006.

[21] P-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bontemps, ”Generic
semantics of feature diagrams,” Computer Networks, vol. 51, pp. 456-
479, 2/7/ 2007.

[22] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh, "FORM: A
feature-oriented reuse method with domain-specific reference architec-
tures,” Annals of Software Engineering, vol. 5, pp. 143-168, 1998.

[23] M. L. Griss, J. Favaro, and M. d’Alessandro, “Integrating feature
modeling with the RSEB,” in Intl Conf Software Reuse, 1998, pp. 76-85.

[24] K. Czarnecki and U. W. Eisenecker, ”Generative programming,” 2000.

[25] D. Beuche, "Modeling and building software product lines with pure
variants,” in Intl Software Product Line Conference-Volume 2, 2012, pp.
255-255.

[26] D. Benavides, S. Segura, P. Trinidad, A. R. Corts, "FAMA: Tooling a
framework for the automated analysis of feature models,” VaMoS, 2007.

[27] M. Antkiewicz and K. Czarnecki, “FeaturePlugin: feature modeling
plug-in for Eclipse,” Workshop on Eclipse Techn, 2004, pp. 67-72.

[28] A. Classen, Q. Boucher, and P. Heymans, A text-based approach to
feature modelling: Syntax and semantics of TVL,” Science of Computer
Programming, vol. 76, pp. 1130-1143, 2011.

[29] A. v. Deursen, P. Klint, and J. Visser, "Domain-specific languages: an
annotated bibliography,” SIGPLAN Not., vol. 35, pp. 26-36, 2000

[30] C. Pahl and N. Mani. Managing Quality Constraints in Technology-
managed Learning Content Processes. In: EdMedia’2014 Conference on
Educational Media and Technology. 2014

[31] S. Murray, J. Ryan, C. Pahl. A tool-mediated cognitive apprenticeship
approach for a computer engineering course. 3rd IEEE Conference on
Advanced Learning Technologies, 2003.

[32] X. Lei, C. Pahl, and D. Donnellan, ”’An evaluation technique for content
interaction in web-based teaching and learning environments.” The 3rd
IEEE International Conference on Advanced Learning Technologies
2003, IEEE, 2003.

[33] M.X. Wang, K.Y. Bandara, and C. Pahl, "Process as a service distributed
multi-tenant policy-based process runtime governance.” IEEE Interna-
tional Conference on Services Computing (SCC 2010), IEEE, 2010.

[34] Y. Huang, Z. Feng, K. He, Y. Huang: Ontology-based configuration for
service-based business process model. In: IEEE SCC, pp. 296303. 2013

[35] N. Assy, W. Gaaloul, B. Defude: Mining configurable process fragments
for business process design. DESRIST. LNCS 8463, pp. 209224. 2014

