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Abstract 
Leonard E. N. Ekpeni 

BEng (Hons.), MSc, MIEI, AMIMechE 

 

Investigation and Disruption of Baker’s Yeast / Chlorella Vulgaris in High-

Pressure Homogenizer (HPH) to Improve Cost-Effective Protein Yield  

 

The presented work investigated two biomasses Baker’s yeast (Saccharomyces 

cerevisiae) and microalgae (Chlorella vulgaris), through characterisation of their 

cell disruptions in a high-pressure homogenizer (HPH).  

As energy producing biomasses, emphasis has been placed on optimizing the 

yeast/microalgae through determining the protein concentration yields and 

associated cost to determine its economic feasibility. Through a One-Variable-At-

a-Time (OVAT) approach the dataset range was established for the parameters. 

The results presented show yeast/microalgae homogenized at various pressures 

(30 - 90 MPa), temperature (15 - 25 °C) as well as (30 - 50 °C), and the number of 

cycles (passes) (1 - 5) against two responses; protein concentration yield and cost. 

The high-pressure homogenizer (HPH), GYB40-10S (with a two stage 

homogenizing valves pressure with a maximum pressure of 100 MPa) was used to 

cause cell disruption. The homogenate in categorical ratio to buffer solution 

(Solution C) of 10:90; 20:80 and 30:70 was centrifuged. Design Expert Software; 

Design of Experiment (DOE) was used in establishing the design matrix and to 

also analyse the experimental data. The relationships between the yeast/microalgae 

homogenizing parameters (pressure, number of cycles, temperature, and ratio) and 

the two responses (protein concentration and operating cost) were established. 

Also, the optimization capabilities in Design-Expert software were used to 

optimize the homogenizing process. 

The mathematical models developed were tested for adequacy through the analysis 

of variance (ANOVA) and other adequacy measures. In this investigation, the 

optimal homogenizing conditions were identified at a pressure of 90MPa, 5 cycles, 

a temperature of 20 
o
C and a buffer solution ratio of 30:70 which yielded a 

maximum protein concentration of 1.7694 mg/mL, and a minimum total operating 

cost of 0.28 Euro/hr for a 15 to 25 
o
C temperature range for Baker’s yeast 

(Saccharomyces cerevisiae) as biomass. 
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 Chapter 1 
 Introduction 

1.1. Introduction  

Energy is a vital input for social and economic development and affects all aspects 

of modern life. Its demand is continually increasing at an exponential rate due to 

the exponential growth of the world population [1, 2]. This means that the demand 

for energy has been considered proportional to the growth of the population size 

worldwide. Transportation, industrial activities, communication, health, and 

education are some of the areas where energy cannot be substituted [3]. As the 

world faces problems due to growing energy consumption and decline in the 

supply of fossil fuels at this present time, this has inevitably led to the 

development of energy from other sources. Sustainable energy has been perceived 

as the ultimate solution to the current energy crisis being faced globally. Therefore 

energy must be renewable, sustainable and economically viable to meet the needs 

of the world’s growing population. 

Currently, energy demand has been proposed to exceed the supply sources at an 

exponential rate. By 2050, it is predicted to double or even triple, as the global 

population rises and developing countries expand their economies [4]. Figure 1 - 1 

shows the world energy demand on long term energy sources and Figure 1 - 2 

shows the world’s rising population, predicted up to 2050. Based on these 

available facts and figures, fossil fuels are not sustainable, and as such will not be 

able to support the economic growth and energy security in the long term. The 

volatility in the oil producing region and instability of the oil prices, along with 

uncertainty in the supply, has resulted in some environmental factors that have 

proven to be risky in the exploitation of fossil fuel.  
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Figure 1 - 1: World Energy Demand - Long Term Sources [5] 

 

 

Figure 1 - 2: World Rising Population as Predicted to 2050 [6] 

 

On the other hand, there has been growing concern regarding waste production 

across the globe as seen within the developed and developing countries. A report 

from the World Bank [7] shows that the current global municipal solid waste 

(MSW) generation levels are approximately 1.3 billion tonnes per year, and are 

expected to increase to approximately 2.2 billion tonnes per year by 2025. This 

means an increment in waste generation from 1.2 to 1.42 kg per person per day 

within the next 15 years (see Figure 1 - 3). In Ireland, the total waste generated 

was estimated at 19.8 million tonnes during the last full survey, which is 

equivalent of 4.3 tonnes per person. In 2011 alone, household waste generated per 

person amounted to 367 kg per year (equivalently 1.01 kg/day) which is 

considerably less than the European Union (EU) average of 438 kg per year [8]. 
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Figure 1 - 3: Municipal solid waste (MSW) production, kg per person per day 

[7] 

Since the proposition of Kyoto Protocol in 1997 [9], EU member states as a nation 

and part of the world communities, have initiated plans towards tackling of these 

energy issues. As set out in the 2005 Green paper on energy efficiency, this has 

become the cornerstone of EU energy policy contributing to all three main energy 

policy objectives; competitiveness, energy security as well as environmental 

protection. This was aimed at having emission of GHG down by 20% by 2020 

compared to the 1990 record. If achieved this will save primary energy by 20% 

and therefore increase the renewable energy share to 20% of energy consumption 

across the EU. Particularly, this will include 10% share of renewable energy in the 

transport sector with legally binding national targets and action plans [10]. 

In response to the issues raised above, it is expected that alternative energy will 

increase in the future, as the world has shown interest in renewable energy and 

related conversion technologies over the last 20 - 25 years. This is aimed at 

correcting the aftermath or devastating effects that have arisen as a result of the 

use of fossil fuel. From a scholarly point of view and research to date, one possible 

solution to the current energy issue is biomass. It is considered to be one of the 

most important Renewable Energy Sources (RES) this century [11], to replace 

fossil fuels without increasing greenhouse gas emissions [12]. As biomass is a 

widely available renewable resource, its utilisation for energy production has great 

potential in reducing CO2 emissions and thereby preventing global warming [13]. 
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In addition, using waste agricultural biomass does not compromise the production 

of main food or non-food crops [14]. Biomass energy has been referred to as any 

source of heat energy produced from non-fossil biological materials; this can come 

from ocean and freshwater habitats as well as from land [15]. It is one of the 

renewable energy sources capable of making a large contribution to the future 

world’s energy supply. Although the role of bio-energy will depend on its 

competitiveness with fossil fuels and on agricultural policies worldwide, it is 

expected that the current bio-energy contribution of 40-55 10
18

J per year will 

increase considerably [16]. Different technologies are in place in the conversion of 

biomass into energy using form. These are as detailed below.  

 

1.1.1   Biochemical Conversion 

 

Biochemical conversion uses biocatalysts such as enzymes coupled with heat and 

other chemicals to convert the carbohydrate portion of biomass (hemicelluloses 

and cellulose) into an intermediate sugar stream (see Figure 1 - 4). This have 

gained more popularity than ever before in the last few years and requires a 

different technology (such as anaerobic digestion) in the pretreatment of the 

different biomasses into biogas as part of the conversion processes.  

 

Figure 1 - 4: Pre-treatment of biomass by different methods removes 

hemicelluloses and lignin from the polymer matrix [17] 
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1.1.2 Anaerobic Digestion 

 

Anaerobic digestion (AD) is the decomposition of biomass through bacterial 

action in the absence of oxygen; it is essentially a fermentation process that 

produces a mixed gas output of methane and carbon dioxide [18, 19]. Once broken 

down, it reduces to simpler chemical components other than just methane and 

carbon dioxide. The process is applicable to all biomass resources including wood 

and wood wastes, agricultural crops and their waste by-products, municipal solid 

waste (MSW), animal wastes, waste from food processing and aquatic plants and 

algae [20]. Energy produced from the majority of biomass on average are rated at 

64% for wood and wood wastes, MSW at 24%, agricultural waste at 5% and 

landfill gases at 5% [21-23]. Agricultural biogas plants are considered most 

suitable for digestion because they have lignocellulosic materials. But there are 

more abundant raw materials from hardwood, softwood, grasses and agricultural 

residues along with newsprint, office paper and municipal solid wastes [24]. These 

are thought to consist of three types of polymers; lignin, cellulose and 

hemicelluloses which are associated with each other [25], along with fractions of 

other inner materials such as proteins and extractives 

 

1.1.3 Fermentation 

 

Another well-known biochemical process is fermentation. This is used 

commercially on a large scale in various countries in the production of ethanol 

from sugar crops and starch crops. This is ground down and the starch is converted 

by enzymes to sugars with yeast converting the sugars to ethanol [26]. Mosier et 

al. [17] have highlighted the four major units of operation in the processing of 

lignocellulosics material as pretreatment, hydrolysis, fermentation, and product 

separation. Hayes et al. [27], and Balat et al. [28] have indicated the complexity of 

the substrate and the need for many different enzymes before these substrates can 

be hydrolysed completely and effectively. The structure of lignocelluloses resists 

degradation as result of cross linking between the polysaccharides (cellulose and 

hemicelluloses) along with the lignin via ester and ether linkages. While Hendriks 

and Zeeman [29], and Puri [30] viewed factors limiting hydrolysis as: degree of 

polymerization, crystallinity, accessible surface area, and lignin distribution. Pre-
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treatments are therefore considered as a prerequisite in the improvement of 

cellulosic material degradation. This pre-treatment which could be physio-

chemical, biological, chemical or mechanical [31], is to enhance the overall yield 

of methane.  

 

1.1.4   Mechanical pre-treatment  

 

This is the method employed in such pre-treatments as milling, irradiation, heat 

treatment, liquid shear lysis-centrifuge, sonication, high-pressure homogenizer 

(HPH), collision, maceration, and chipping.  Ariunbaatar et al. [32] studied 

maceration, sonication and HPH, and therefore reported these as the simplest 

mechanical pre-treatments for organic solid waste (OSW) such as waste water 

treatment plant (WWTP) sludge and lignocellulosic substrates. Size reduction of 

lignocellulosic substrates therefore resulted in a 5 – 25% increase in hydrolysis 

yield, depending on the mechanical methods used [29]. Whereas for WWTP 

sludge and manure, the effects of pre-treatments significantly differ and applying 

maceration pre-treatment enhances biogas production by 10–60% [33]. High 

pressure homogenizer (HPH) increases the pressure up to several hundred bars, 

and then homogenizes the substrates under strong depressurization [34]. These 

pre-treatments methods are not common for the organic fraction of municipal solid 

waste (OFMSW) but are to other substrates such as lignocellulosic materials, 

manures and WWTP sludge. Engelhart et al. [35] studied the effect of HPH on the 

AD of sewage sludge (SS), and achieved a 25% increased volatile solid (VS) 

reduction. Overall, these pre-treatment methods are used to reduce crystallinity but 

more importantly to give a reduction of particle size, to ease make material 

handling, alongside increasing surface/volume ratio. This improvement was 

achieved by an increase of soluble protein, lipid, and carbohydrate concentration. 

1.2. Research Approach 
 

In this research, a mechanical pre-treatment technique has been utilized, 

employing a high-pressure homogenizer device in the treatment of biomass 

substrates. This device also called a homogenizer machine, has the name “Cell 
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Disruption Machine” given to this method. Homogenizing lignocellulosic 

materials result in decreased particle size and increased surface area. This will also 

damage and change the structure of the component and then improve the high 

recovery of protein yield. The homogenizing of the treated and untreated sets of 

biomass materials with buffer solution were carried out and are presented within 

this report. 

Furthermore, so as to optimise the cell disruption process after homogenization, 

statistical optimization work was carried out using Design of Experiment (DOE) - 

Response Surface Methodology (RSM) techniques. In this part, Box Behnken 

Design (BBD) was used to develop the experimental design (design matrix). After 

this study was concluded, the optimum combinations of homogenization 

parameters can be selected and used to achieve high levels of protein yield at a 

minimal cost on energy usage. 

1.3 Statement of Investigation 

A high pressure homogenizer plays a dual role, it reduces the particle size and 

increases the surface area. This is aimed at damaging and disrupting the cell walls 

to improve the release of yeast/microalgae inner components [36-40]. The main 

objectives of this study were: 

- To introduce a mechanical pre-treatment technique through employing a 

high-pressure homogenizer device Cell Disruption Machine to treat 

cellulosic as well as lignocellulosic materials. The use of this equipment 

has been achievable by considering and investigating the biomass 

substrates through their pre-treatments in the determining of material 

structures and the treatment effect on protein concentration yields which is 

known to aid the production of biogas. This study also investigated the 

behaviour and rheological properties of the substrates and the consequent 

effect on the biomass parameters during homogenization. A cost 

effectiveness energy analysis was also conducted so as to ascertain the 

economic feasibility of the treatment technique. 

- To predict and optimise the homogenizing process after treating yeast and 

the micro algae using Response Surface Methodology (RSM) via the 
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Design Expert STATEASE Software to develop mathematical models that 

relate the process input parameters to their output responses. Based on this 

study, the three most important input parameters of the homogenization 

process considered were the number of cycle (passes), temperature and 

pressure. These were thoroughly investigated to determine their effects on 

the homogenized substrates. The investigated output features are protein 

concentration and cost for the energy consumption.  

The following points further elucidate and summarise the second objective of this 

study: 

 Applying Response Surface Methodology (RSM) to develop mathematical models 

for the materials mentioned above through using Design Expert V.8 statistical 

software to predict and optimise the following process responses;  

 Protein concentration 

 Energy cost 

 Present the developed models graphically to demonstrate the effect of each 

homogenizing parameter selected on the responses as mentioned above. 

 Analysis of variance (ANOVA) was applied to have the adequacy of the 

developed model tested, and also to have each term in the developed models 

examined using statistical significance tools.  

 Determining the optimal combinations of input homogenizing factors, using the 

developed models with numerical and graphical optimization, to achieve the 

desired criterion for the responses listed above. 

 To investigate particle size effects of the biomass substrates particularly on the 

effect of the process performance thus improving protein concentration yield.  

The present study is not limited to the aforementioned processing parameters in 

HPH. Previous work has demonstrated a correlation between homogenization of 

biomass substrates and the processing parameter for higher protein yields. To 

facilitate higher protein production yields and quality of target protein, the 

production process should be optimised [41]. The work presented in this thesis 

provides new insights into the investigation of biomasses in improvement of 

protein production through their uses in high-pressure homogenizer (HPH). 
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1.4 Thesis Outline 

The thesis has been laid out in a progressive manner that initially introduces the 

reader to the problem at hand. This provides an introduction to the work as well as 

the thesis statement of investigation and the thesis outline. Background knowledge 

relating to the subject is then presented, followed by the detailed study of the cell 

disruption machine (HPH), as well as the material and methods used in the work. 

The results from the study are then elucidated followed by discussions, and finally 

conclusions with recommendation for future work. The contents of each chapter 

are highlighted below: 

Chapter 2 – The aim of the chapter is to introduce the reader to the several 

subjects the thesis encompasses. The chapter reviews the necessary background 

and literature review on yeast (Saccharomyces Cerevisiae) and microalgae 

(Chlorella Vulgaris), pre-treatment methods, high-pressure homogenizer and the 

operating parameters. The reasons behind the choice of materials and processes 

used in this research were considered also. This chapter also reveals previous work 

carried out in this field, highlighting the short-comings that need improvements 

and further study. 

In addition, this chapter also details research on high-pressure homogenizer as the 

main mechanical treatment (cell disruption machine) for this research with details 

about how the device works, which in essence reflect the mechanism of the 

technique. 

Chapter 3 – The chapter aims at revealing the instrumentation and equipment 

used, as well as the biomass substrates and their compositions which are detailed 

in the experimental procedures in this study. This allows for experimental 

repeatability by readers. This chapter also detailed the software package applicable 

to the research; Design Expert V.8  

Chapter 4 – This chapter presents the results and discussion from the experimental 

findings. As the first step, it considered the one-variable-at-a-time approach 

(OVAT) which determines the data range of the experiments conducted. Trial 

experiments were conducted to showcase the workability of the experimentation 

plans with data range for the parameters considered based on the trial experiments. 



  10  
 

Particle size analysis was also considered in this chapter as size reduction means 

in the liberation of the inner contents of substrates. The particle size measurements 

were conducted using the Delsa Nano C equipment and Scanning Electron 

Microscope (SEM) was also used in checking the deformation of substrates after 

treatments. 

Through the software, the chapter explains how the Design of Experiments (DOE) 

and Response Surface Methodology (RSM) were implemented in this research for 

optimization of the homogenized substrates. This involved the gradation and how 

the experimental work has been sectioned in terms of result and analyses. Baker’s 

yeast was used as the substrate, homogenized at temperature ranges 15 - 25 °C and 

30 - 50 °C. While the microalgae experimental work was only considered at 

temperature ranges 15 - 25 °C. The results therefore presented and discussed are 

within the dataset of temperature indicated above. The chapter also contains the 

optimization of experimental work using Design of Experiments (DOE) with 

particular consideration of the responses, the protein concentration yield, and the 

energy cost. 

Chapter 5 – This chapter concludes by highlighting the most important findings 

and recommendations for future research work. 

1.5.  Summary 

This chapter has provided the general introductory note into the conducted 

research topic with emphasis on the current energy trends coupled with the world 

growing population, which is expected to double or even triple in the next 35 

years. The areas of greater difficulties have been highlighted as the world faces 

problems due to growing energy consumption and the decline in the supply of 

fossil fuels at this present time. This coupled with climate change and energy 

security poses a higher threat to the future energy need. However, renewable 

energy has been foreseen as part solution to the current problem, and in line with 

the current research biomass is ranked favourably for the provision of lasting 

solution to the problem. 
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Based on this study, some biomass contributions have been highlighted in the 

chapter, where energy saving opportunities is possible and as such will contribute 

to enhancing future energy needs/trends. The chapter highlighted the steps 

involved in complete disruption of biomass substrate in order to release protein 

concentration keeping in mind cost effectiveness. 
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 Chapter 2 
 Review of Literature 

2.1 Introduction 

This chapter introduces the reader to the literature review as it pertains to the 

research topic. In this chapter the substrates, Baker’s yeast and microalgae will be 

critically analysed and considered through protein yield when homogenized under 

high pressure. The high-pressure homogenizer disruption equipment will also be 

reviewed with emphasis on the mechanism, operation and its usefulness, in 

comparison to other equipment for recovery intracellular product of 

microorganisms.  

  

2.1.1   Background 

The view of energy in the 21
st
 century has taken a dramatic change in terms of 

energy demand and this has been accounted for due to population growth. This 

growth in global energy demand is projected to rise sharply over the coming years 

[42]. The continuous use of fossil fuels has been a leading cause of the current 

global paradigm resulting in the emission of greenhouse gases, effects of global 

warming as well as changes in the climate. Hall et al. [43] have related civilization 

to technology. They indicated that technology has generally led to a greater use of 

hydrocarbon fuels for most human activities. This then makes civilization 

vulnerable to decreases in supply. Because our civilization has been heavily 

dependent on the enormous flows of cheap hydrocarbons, many of our once-proud 

ancient cultures have collapsed due to their inability to maintain energy resources 

and societal complexity [44]. Accomplishing civilizations have largely advanced 

through increased efficiencies and the extensive harnessing of the various forms of 

energy as the result of human ingenuity [42]. Growing energy and environmental 

concerns have become important issues amid concerns about high energy prices 

and the occurrence of regional supply shortfalls [45-48]. An assessment of the 

current state of oil security indicates that the risks of supply disruption have not 

diminished [48]. Von Hippel et al. [49] reported the energy security concept as 



  13  
 

being based on the concept of security in general. Energy as a crucial feature of 

human life has evolved in to matching with contemporary human development 

and requirements [42]. Historical experience has suggested energy transitions to 

have been characterized by major increases in energy consumption [50], and 

looking at trends in global energy consumption have shown that each energy 

transition has led to greater energy consumption since 1800 (see Figure 2-1). 

Energy related challenges, such as greenhouse gas emission, fossil fuel depletion, 

rising oil prices and global warming are some of environmental concerns that need 

urgent attention.  

 

Figure 2 - 1: Global energy consumption and transitions, 1800-2010 [51] 

  

2.2 Biomass Energy and Its Substrates 

Field et al. (2008) [15] researched and considered biomass energy sources as 

amongst the most promising, most hyped and most heavily subsidized renewable 

energy sources. They have real potential to heighten energy security in regions 

without abundant fossil fuel reserves. This will increase the supplies of liquid 

transportation fuels along with decreasing the net emissions of carbon into the 

atmosphere per unit of energy delivered. Biomass comprises all living matter 

present on earth [52]. It is derived from growing plants that includes algae, trees, 

and crops or from animal manure [53]. Biomass as a carbon resource in its life 

cycle is the primary contributor to the greenhouse effect. It accounts for 14% of 

the world’s primary energy consumption and the fourth largest source of energy 
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after coal, petroleum, and natural gas. As an important energy resource globally, it 

is used in meeting variety of energy needs and that includes electricity generation, 

fuelling vehicles, and providing heat for industrial uses [53-55]. Özbay et al. [56] 

and Demirbas, (2001) [57] have demonstrated biomass as the only renewable 

energy source of carbon which can be converted into convenient solid, liquid and 

gaseous fuels through different conversion processes. Based on their findings, 

Sheth and Babu [58] showcased biomass as a unique renewable form of energy 

with many ecological advantages. Through thermochemical conversion, they were 

able to illustrate biomass as one of the promising routes amongst the renewable 

energy options of future energy. Biomass with such substrates as wood, were 

considered as predominant fuel in many non-OPEC (Organization of the 

Petroleum Exporting Countries), tropical, developing countries and its use will 

continue to be used for many years. Wood is used as a fuel in the domestic (for 

cooking and water heating), commercial (water heating) and industrial (for water 

heating and process heat) sector. Demirbas, (2000) [20] evaluated wood as it 

competes well with fossil fuels due to its being renewable and with soft energies 

like solar and wind, on account of its energy storage capability. Saxena et al. [52] 

in their paper therefore evaluated biomass as being able to be converted into three 

main types of products; electrical/heat energy, fuel for the transport sector, and 

feedstock for chemical products. 

Another area of great concern is the conversion technologies for utilizing biomass 

and these can be separated into four basic categories: direct combustion, 

thermochemical processes, biochemical processes, and agrochemical processes. 

Biological processes are essentially microbial digestion and biochemical processes 

convert biomass to ethanol and methane [59].  

 

2.2.1 Microbes 

Microbes are tiny single-cell organisms and are considered the oldest form of life 

on earth. They form a most vital part of human existence as without them, no 

human activities can take place. They can be divided into six main types such as; 

archaea, bacteria, fungi, protista, viruses and microbial merger and are collectively 
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useful in all parts of human life in one form or another. The current surge in food 

and fuel prices has sounded an alarm showing why providing a sustainable global 

energy supply and minimizing climate change and are arguably two of the greatest 

challenges facing 21
st
 century society. Bacteria, yeasts, fungi and archaea as 

unseen inhabitants of the microbial world have proven to be helpful in addressing 

these challenges according to Wolin et al. [60]. To harness microbial activities in 

the address of these challenges, much remains to be learned about the chemical 

space these occupy. It is estimated that 10
30

 of these microbes exist on earth, vast 

majority are still not known. Most microbes are beneficial, and their combined 

activities positively affect numerous aspects of the biosphere inhabitants. Other 

areas of great importance are the production of renewable energy which is now 

serving a purpose in meeting the needs of our population worldwide.  

 

2.2.2 Yeast as a Biomass  

Baker’s yeast, whose scientific name is known as Saccharomyces cerevisiae has 

been in use for a long time [61]. It is widely available in a number of forms, 

including cake yeast known as wet, fresh or compressed yeast (see Figure 2-2), 

active dry yeast, and instant or fast-rising yeast. It is a common name for the 

strains of yeast commonly used as a leavening agent in baking bread and bakery 

products where it converts the fermentable sugars present in the dough into carbon 

dioxide and ethanol. Yeasts are single-cell organisms found to have extensive use 

in the food and beverage industries [62-63]. Alais and Linden [64] and Reed and 

Nagodawithana [65] have found yeast to be important as a raw material for the 

food, pharmaceutical, and cosmetic industries, in addition to being an excellent 

source of nutrients, mainly protein, vitamins of the B complex and essential 

minerals. Inactivated yeast cells have also been used for animal feeding and as a 

nutritional complement for humans [66-67]. 

Mostly widely used amongst microorganisms for ethanol fermentation is 

Saccharomyces cerevisiae; this is due to its ability to hydrolyse cane sucrose into 

fermentable sugars. This yeast has the ability to grow under anaerobic conditions, 

and a certain amount of oxygen is necessary to synthesize essential fatty acids and 
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other compounds [68] contained in it to form energy. Yeast may be defined as 

microorganisms in which the unicellular form is conspicuous, but belongs to 

fungi. Most yeast cells are colourless and transparent, while some produces 

carotenoid pigments like Rhodotorula. Beudeker et al. [69] elucidated and 

considered Baker’s yeast (S. cerevisiae) as one of the most important 

biotechnological products due to its several industrial applications. As a 

commercial product, it has several formulations; hence it can be grouped into two 

main types: compressed yeast (fresh yeast) in block forms along with the other 

kinds; active dry yeast, and instant or fast-rising yeast. Apart from yeast uses in 

the industry for energy production, its uses have been prominent as experimental 

models since the very beginning of microbiology and biochemistry.  

 

 2.2.3 Classification of Yeasts 

Phaff and Macmillan [70] classified yeasts into four groups;   

1. Ascomycetous yeasts – capable of forming ascospores in asci. 

2. Basidiomycetous yeast – those having a lifecycle similar to those of order 

Ustilaginales or Basidiomycetes. 

3. Ballistosporogenous yeasts – those that forcibly discharge spores by the 

mechanism of excretion. 

4. Asporogeneous yeasts (or Deuteromycetes or false yeasts) – these are 

otherwise known as Fungi imperfecti members. They are incapable of 

producing ascospores, ballistospores, or sporidia, since sexual lifecycle 

does not occur or has not been observed so far. 

Reed and Peppler [71] in their studies, named and classified yeasts into two 

classes of fungi based on their spore-forming capabilities and industrial 

importance. The true yeast and the false yeast which are known respectively to be 

ascomycetes (or ascorporogeneous) and asexual deuteromycetes or 

(asporogeneous) and based on this research, focus will only be on the species, 

Saccharomyces cerevisiae also known as the Baker’s yeast. Species were named 

on the basis of fermentation that they have always been associated with, like 

Saccharomyces cerevisiae, Saccharomyces vinii or Saccharomyces sake. Since 
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their morphological and physiological properties show no difference, their strain 

differentiation should therefore be more valuable than just the species 

classification as separate names have shown no justification from a taxonomic 

point of view [72]. 

 

 2.2.4 Yeast Cell wall and Plasma Membrane 

Yeast cell wall structure and organization along with the nature of the cell surface 

have been investigated based on the composition of the wall, the structure of the 

components, and the immunochemistry of the cell surface. The investigation of the 

cell has been necessitated due to the great importance attached to yeast in practice. 

Little progress has been made in the understanding of yeast cytology through 

ordinary light microscope examination. The chemical composition of the yeast cell 

wall was first studied by Salkowski in 1894, who investigated the polysaccharide 

material which remained after cells had been digested with dilute sodium 

hydroxide solution [73]. In the continuation of the study by Zechmeister and Toth 

[74] in 1934, the cells were disrupted by various rigorous chemical actions. They 

therefore suggested that an enzymic method might do less damage to the cell wall. 

Glucan component of the cell wall was later isolated through the action of pepsin 

and amylase on an autolysed yeast suspension [74]. Halász and Lásztity [63] 

revealed electron micrographs of thin sections of yeast cell showing the existence 

of a membranous system along with the fine structure. This has related many 

metabolic functions of the inner structure and chemical composition of the yeast 

cell. Yeast cell wall and the schematic cross-section are shown in Figures 2-2 and 

2-3 respectively. 

Based on their findings on the chemical and enzymic investigations, it has been 

indicated that several polysaccharides may be present in the cell wall. This 

suggests that apart from glucan, mannan [75] and possibly a glycogen [76] all may 

be part of the structure but has not been proven.  

The yeast cells are covered by an envelope known as plasma membrane, and the 

cell wall. The cell wall forms 15 – 20% of the dry weight of the cell and mainly 

consists of mannanproteins along with a certain amount of chitin. The middle 
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layer consists of glucan, while the innermost layer contains more protein including 

enzymic protein [63].  Cell wall proportional weight usually decreases during the 

growth phase and increases while in the stationary phase. The native cell wall 

represents a very complex heterogeneous polymer. Fractions are obtained in the 

form of complex macromolecular and structural fragments of the cell wall when 

treated with a weak alkali, or some form of digestive enzymes. In contrast, 

glucose, mannose, glucosamine, amino acids, phosphates and lipids are obtained 

when hydrolysed with strong acid. These compounds originate from the main 

components of the cell wall; the polysaccharides glucan and mannan, chitin, 

protein, and lipids. 

 

Figure 2 - 2: Scanning electronic microscope image of yeast cell wall [77] 

 

 

Figure 2 - 3:  Schematic cross-section of yeast cell [78] 

Cm – cell membrane; Cw – cell wall; Li – Lipid; Mi – Mitochondrium; V – Vacuole; Cp – 

Cytoplasm; Po – Polyphosphate; ER – Endoplasmatic reticulum 

Other internal structures of the yeast include the nucleus, mitochondria, and 

vacuoles (Figure 2-3). The nuclei are surrounded by an envelope which is 

characterized by the presence of many pores [78].  The size, shape, number, and 

the composition of mitochondria vary widely under different conditions of growth. 

http://2.bp.blogspot.com/_207DNIaL-gc/TNrwiMk-7II/AAAAAAAAAUI/gzlgMa3etfU/s1600/YeastCellsforWine.jpg
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Under anaerobic conditions of growth, the unsaturated fatty acids within are 

replaced by saturated fatty acids and the sterol content is significantly reduced. 

These are in abundance in all fungi. Vacuoles are present in both the vegetative 

and reproductive cells and vary significantly in size. They are important 

subcellular organelles in yeasts and contain degrading intracellular substances 

with variety of hydrolytic enzymes like proteases.  

 

 2.2.5 Baker’s Yeast (Saccharomyces Cerevisiae) Cell Wall   

Baker’s yeast whose scientific name is Saccharomyces cerevisiae was previously 

been dealt with in Sections 2.2.3 and 2.24. Published data for the chemical 

composition of the cell wall of Saccharomyces cerevisiae shows a great variability 

as carbohydrates vary 60 to 91%, proteins 6 to 13% and lipids 2 to 8.5% [77]. The 

significant differences is as a result of the different isolation methods and clean up 

procedures of the different research groups, or caused by different growth 

conditions. The basic structural components of the yeast cell wall are identified as 

glucans, mannans, and proteins. The overall structures are thicker than in 

Grampositive bacteria, and based on this, many of the proteins found in yeast cell 

walls are to be considered enzymes rather than structural components. Glucan 

fibrils constitute the innermost part of the cell wall and result in the formation of 

the cell shape [40, 78, 79]. Halász and Lásztity [63] have indicated the glucan to 

be highly branched polysaccharide with β(1-3) and β(1-6) linked glucose residues. 

The main chain is built up entirely of glucose linked by β(1-6); the (1-3) linkages 

are in the side chains. The mannan is alkali soluble with a highly branched 

mannose polymer of β(1-6) main chain alongside α(1-4) and some α(1-3) linked 

side chains. Also, chitin is a polymer of β(1-4) linked N-acetyl glucosamine 

though not all of the glucosamine contents are located in the bud scar region. The 

structural protein of the cell wall is mainly bound to polysaccharides to form a 

complex structure in which glucosamine is suggested as a connecting link between 

polysaccharide and protein [78]. The cell wall lipid content varies both with 

species and growth conditions. From published data, there are indications which 

show that great variations could probably be due to incomplete removal of the 
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lipid rich plasma membrane (see Figure 2-4). While some are strongly bound to 

the cell, these may play roles in maintaining the ordered structure of the wall.  

 

Figure 2 - 4: Saccharomyces cerevisiae cell wall showing the inner structure 

[80]  

 

 2.2.6 Micro Algae as a Biomass 

The utilization of microalgae lipids has been of interest since the proposal of mass 

cultivation of diatoms required to produce urgently needed fat in the World War II 

by Harder and von Witsch in 1942. For example in the United States alone, the US 

Department of Energy (‘DOE’) has dedicated $25 million to the aquatic Special 

Program (ASP) between 1978 and 1996. This was aimed at identifying high lipid 

yielding strains and the development of technologies for producing an algal-

derived liquid fuel [81].  Oswald and Golueke [82] and Benemann et al. [83] have 

proposed algae before 1978 in particular green unicellular microalgae with 

potential as a renewable energy source. Pittman et al. [84] also contributed 

through their studies that microalgae have the potential in generating significant 

quantities of biomass and oil suitable for biodiesel conversion. Brennan and 

Owende [85] and Brune et al. [86] researched and estimated microalgae to have 

higher biomass productivity than crops in terms of land area required for 

cultivation. They predicted microalgae to have lower cost per yield along with the 

potential to reduce GHG emissions through fossil fuels replacement. This will 

certainly have the potential of reducing the GHG emissions and tackling of other 

climate and environmental issues, but the associated cost-effectiveness of the 

process is yet to be fully proven. This has still to this day been a matter of great 

concern for researchers who are at same time thinking and worried about the 
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gradually depleting fossil fuels. This and other worrying issues have led to 

alternatives in terms of energy development and generation that will continue to 

meet the growing population. Microalgae as biomass substrates have been 

developed by researchers over the years to serve one of these purposes.  

Microalgae belong to the green algae and based on a number of biochemical and 

cellular differences, two major groups of green microalgae have been identified. 

These are Chlorophyta and Conjugaphyta.  Conjugaphyta which has never been 

employed for biotechnological applications is known to be five times larger in size 

than the Chlorophyta [87]. Chlorophyta are subdivided into 4 groups. These are 

Prasinophyceae, Chlorophyceae, Ulvophyceae and Charophyceae [87]. 

Prasinophyceae are flagellated unicellular algae, covered with organic scales and 

are only about 10 – 15 µm in diameter. They inhabit marine and brackish 

environments, as other species prefer freshwater. Chlorophyceae is considered the 

largest group, with about 2,500 species in 350 genera. The majority of these are 

unicellular filamentous freshwater forms and the best among the algal in this 

group are the Chlorella, Chlamydomonas, Dunaliella and Haematococcus. While 

Ulvophyceae and Charophyceae belong to macroalgae and none of the unicellular 

or filamentous forms are of biotechnological importance.  
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Table 2 - 1: Microalgal species with high relevance for biotechnology 

applications [87] 

 

 

Table 2-1 showcases the microalgae species with high relevance for biotechnology 

applications, with Chlorella vulgaris highlighted for this research. The market for 

microalgal biomass is assumed to have a size of about 5000 tonnes per year of dry 

matter and generates a turnover of US$ 1.25 × 10
9
 per year, and this excludes the 

processed products. Algal biotechnology success is dependent on choosing the 

right algae with relevant properties for specific conditions and products. This also 

includes the rate of production worldwide of various algae (see Table 2-2). 

 

 

 

 

Species/group Product Application 

areas 

Spirulina 

platensis/Cyanobacteria 

Phycocyanin, 

Biomass 

Health food, 

cosmetics  

 

Chlorella vulgaris / 

Chlorophyta 

 

Biomass 

Health food, 

food supplement, 

feed surrogates 

Dunaliella 

salina/Chlorophyta 

Carotenoids, β-

carorene 

Health food, 

food supplement, 

feed 

Haematococcus 

pluvialis/Chlorophyta 

Carotenoids, 

astaxanthin 

Health food, 

pharmaceutical, 

feed additives 

Odontella aurita/ 

Bacillariophyta 

Fatty acids Pharmaceuticals, 

cosmetics, baby 

food 

Porphyridium cruentum 

/Rhodophyta 

Polysaccharides Pharmaceuticals, 

cosmetics, 

nutrition 

Isochrysis galbana 

/Chlorophyta 

Fatty acids Animal nutrition 

Phaeodactylum 

tricornutum 

/Bacillariophyta  

Lipids, Fatty 

acids 

Nutrition, fuel 

production 

Lyngbya majuscule/ 

Cyanobacteria 

Immune 

modulators 

Pharmaceuticals, 

nutrition 
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Table 2 - 2: Various algae production rates worldwide [87] 

 

 

 

 

 

 

 

 2.2.7 Relationship between Protein Yield and Biogas 

Biogas is known to be a combustible mixture of gases consisting mainly of 

methane (CH4) and (CO2) and is formed from the anaerobic bacteria 

decomposition of organic compounds (without oxygen). The resultant gases are 

the waste products of the respiration of these decomposer microorganisms and the 

composition of the gases is dependent on the substance being decomposed [88]. 

Based on the substrates, methane is likely to be high when the fat content is high 

and then low if the materials are mainly of carbohydrates. The complete biological 

decomposition of organic matter to methane (CH4) and carbon dioxide (CO2) 

under anaerobic conditions is complicated. The interactions between the numbers 

of different bacteria are each responsible for their part of the task and what may be 

a waste product from some bacteria could be a substrate or food for others. Balsari 

et al. [89] and Amon et al. [90] found crude protein, crude fat, crude fibre, 

cellulose, hemicellulose, starch, and sugar to markedly influence methane 

formation. The production of methane from organic substrates mainly depends on 

their content that can be degraded to CH4 and CO2.  Weiland [91] investigated and 

showed that all types of biomass can be used as substrates for biogas production as 

long as they contain carbohydrates, proteins, fats, cellulose, and hemicelluloses as 

the main components. This was further proven by showing that fats provide the 

highest biogas yield but will require a long time for retention due to their poor 

bioavailability.  

Alga Production (t/year) 

Spirulina 3000 

Chlorella 2000 

Dunaliella 1200 

Nostoc 600 

Aphanizomenon 500 
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Figure 2 - 5: Biogas production process showing the different stages [54] 

 

Carbohydrates and proteins show much faster conversion rates but with lower gas 

yields. Protein yield influences biogas production, as researched by [91-95], Oslaj 

et al. [95] concluded that biogas production depended on the content of crude 

protein. Sialve et al. [94] highlighted that the high proportion in proteins for 

several species of microalgal composition was characterized by a low C/N 

(carbon-Nitrogen ratio), especially if compared with terrestrial plants. Amon et al. 

[92] researched on “Biogas production from maize and dairy cattle manure - 

Influence of biomass composition on the methane yield”, and in their findings, 

realized that the nutrients crude protein (XP), crude fat (XL), cellulose (Cel) and 

hemi-cellulose (Hem), all proved to have significant influence on methane 

production. They showed the contribution of each nutrient to the net total methane 

yield. This therefore supported the previous work carried out by Amon et al. [96] 

in their 2004 paper wherein crude fat (27.73) and crude protein (19.05) contributed 

most to the net total methane energy value of maize silage. The biogas production 
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process is depicted in (Figure 2-5) showing the contribution of protein and other 

constituents.  

 

 2.2.8 Choices of Yeast and Micro algae substrates 

The use of Baker’s yeast (Saccharomyces Cerevisiae) and microalgae (Chlorella 

Vulgaris) are fundamental to this research.  Biomass has shown to have largest 

potential which can only be considered as the best option in the meeting the 

demand and insurance of future energy/fuel supply in a sustainable manner. 

Chandra et al. [97] have clarified and suggested that the modernization of biomass 

technologies have led to more efficient biomass production. They have further 

stressed conversion as one possible direction for biomass resource efficient 

utilization. The direct combustion of residues and wastes for electricity generation, 

ethanol, biogas, and biodiesel as liquid fuels, and combined heat and power (CHP) 

production from energy crops have all been considered  as the main biomass 

processes that will be expected to be utilized in the future. Biomass resources from 

agriculture are considered and classified as either the food based portion, or the 

non-food based portion. Chandra et al. [97] viewed oil and simple carbohydrates 

of crops such as corn, sugarcane, beets as food based portion and complex 

carbohydrates of crops such as the leaves, stalks, and cobs of corn stover, orchard 

trimmings, rice husk, straw, along with perennial grasses, and animal waste as 

non-food based.  

Algae and yeast, amongst others, are microorganisms which utilize inexpensive 

feedstocks and wastes as sources of carbon and energy for growth in the 

production of biomass, protein concentrate, or amino acids. Due to protein 

accounting for the quantitatively important part of the microbial cells, they are 

therefore known as single cell protein (SCP) as natural protein concentrate [98]. 

Based on this nature of theirs, microbial biomass has been considered as an 

alternative to conventional sources of food or feed. Saccharomyces Cerevisiae and 

Chlorella Vulgaris choices as biomass substrates cannot be overemphasized.  

On the other hand, microalgae species choices of Chlorella vulgaris is considered 

commercially important because of its green nature and own its potential to serve 
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as a food and energy source as a result of their high photosynthetic efficiency. 

This in theory can reach 8% and can be grown with autotropic and heterotrophic 

modes [99]. Algal proteins are of high quality and comparable to conventional 

vegetable proteins and Rasoul-Amini et al. [100] therefore concluded that due to 

their high production costs and technical difficulties, its cultivation as protein is 

still under evaluation. Kim et al. [101] were particularly concerned with yeast 

small particle size, high protein content as SCP and their relatively low production 

costs, resulting in their cells being substituted. For ease of cell wall disruption, 

several methods such as; mechanical disruption, autolysis and enzymatic treatment 

have been used in the improvement of the digestibility of SCP products [102].   

 

 2.2.9 Biogas properties/Composition and Uses 

Biogas is composed of methane (CH4), carbon dioxide (CO2) and water (H2O) as 

the main constituents. It is also constituted by a minority of other gases in which 

some are considered toxic and thus be monitored due to their toxic nature. Such 

gases are ammonia (NH3) and hydrogen sulphide (H2S). Biogas is a flammable gas 

and the proportions of the biogas components depend directly on the substrates 

being decomposed (see Table 2-3). It can be exploited in variety of ways and the 

direct approach in the production of energy from biogas is through burning it in 

chambers or boilers to produce both heat and electricity.  Energy produced from 

such means does not require any upgrade of biogas as long as emission limitations 

are observed [103]. The composition of biogas varies and is dependent upon the 

origin of the anaerobic digestion or conversion processes that are involved. 

Landfill gas typically has methane concentrations around 50%. Advanced waste 

treatment technologies can produce biogas with 55-75% CH4 [104]. 
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Table 2 - 3: Biogas composition (Actual (%) depends on substrate being 

decomposed) [88] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The characteristic properties of biogas, just as in any pure gas are, pressure and 

temperature dependent. Moisture content has a very great effect on these and 

therefore shows up a factor. The factors are; (1) change in volume as a function of 

temperature and pressure, (2) change in calorific value as a function of 

temperature, pressure and water vapour content, and (3) change in water vapour 

content as a function of temperature and pressure. The calorific value of biogas is 

around 6 kWh/m
3 

and therefore corresponds to about half a litre of diesel oil. The 

net calorific value depends on the efficiency of the burners/appliances and 

methane is therefore the valuable component under the aspect of using biogas as a 

fuel. In other words, the biogas produced from other sources is different from one 

another in terms of their volume contents in percentage of their components value. 

 

Gas Percentage (%) 

Methane (CH4) 55 – 70 

Carbon dioxide 

(CO2) 
30 – 45 

Water Vapour 

(H2O) 
6 (40 °C) 

Hydrogen sulphide 

(H2S) 
 

Hydrogen (H2) 1 – 2 

Ammonia (NH3)  

Carbon monoxide 

(CO) 
Trace 

Nitrogen (N2) Trace 

Oxygen (O2) Trace 
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2.2.10 Baker’s Yeast/ Microalgae Compositions and Constituents 

Baker’s yeast (Saccharomyces cerevisiae) and microalgae (Chlorella vulgaris) 

will be of greater emphasis in this discussion. The reason for this is due to their 

being biomass substrates in this work. The choice of Saccharomyces cerevisiae 

and of Chlorella vulgaris as biomass substrates have already been discussed in 

section 2.2.9. Baker’s yeast study as analyzed by Schaffner and Matile [105] 

showed that lipid globules isolated from Baker’s yeast cells contain mainly sterol 

esters, triacyalglycerols, and phospholipids as well as sterols, free fatty acids, and 

diacylglycerides as minor components. Table 2-4 shows the components of lipid 

particles of yeast Saccharomyces cerevisiae with steryl esters and triacylglycerols 

constituting the major constituents of yeast lipid particles [106]. 

Sialve et al. [94] analysed that determining the composition of microalgae is a 

way to apprehend their digestion potential. They reiterated that microalgae mineral 

composition meets the nutritional requirements of the anaerobic microflora.  

Table 2 - 4: Components of lipid particles of yeast Saccharomyces cerevisiae 

[107] 

Components Percent (w/w) 

Protein  2.6 

Steryl esters  44.4 

Triacylglycerols  51.2 

Sterols <0.3 

Squalene   0.5 

Phospholipids   1.3 

 

Brown et al. [108] numerated these organisms to have a proportion of protein of 6-

52%, lipids 7-23%, and carbohydrates 5-23%, and the proportions are strongly 

species dependent. It is therefore evident that a high proportion in protein 

characterizes several species by a low carbon-nitrogen (C/N) ratio, especially 

when compared with terrestrial plants. They found freshwater microalgae to have 

an average ratio of 10.2 as against that of terrestrial plants which is considered as 

36.  
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Table 2-5 depicts the general composition of different human food sources and 

algae as percentage of dry matter [109].  To completely characterize protein and 

determine the amino acid content of microalgae, information on the nutritive value 

of the protein and the degree of availability of amino acids should be given [110]. 

Hence the high protein content of various microalgal species is one of the main 

reasons to consider them as an unconventional source of protein [111]. Becker 

[109] explained that carbohydrates in microlagae can be found in the form of 

starch, glucose, sugars and other polysaccharides. Their overall digestibility is 

high, which is why there is no limitation to using dried whole microalgae in foods 

or feeds.  

Table 2 - 5: General composition of different human food sources and of 

algae (%) of dry matter [109] 

Commodity Protein Carbohydrate Lipids 

Synechococcus sp. 63 15 11 

Meat 43 1 34 

Milk 26 38 28 

Baker’s yeast 

(Saccharomyces cerevisiae) 39 38 1 

Soybean 37 30 20 

Anabaena cylindrical 43-56 25-30 4-7 

Chlamydomonas 

rheinhardii 
48 17 21 

Microalgae  

(Chlorella vulgaris) 
51-58 12-17 14-22 

Dunaliella salina 57 32 6 

Porphyridium cruetum 28-39 40-57 9-14 

 

 2.2.11 Release of Protein from Biological Host 
 

Biological hosts such as microalgae and yeast produce protein in different 

quantities. Gaining access to the product from a biological source is the primary 

consideration during downstream processing of proteins. Hatti-Kaul and 
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Mattiasson [112] and Porro et al. [113] elucidated that microorganisms clearly 

constitute the most common production systems for industrial enzymes and other 

proteins. Production of protein at a higher level from engineered organisms 

provides an alternative to protein extraction from natural sources. This has led to 

yeast as microbial eukaryotic host systems combine the advantages of unicellular 

organisms with the capability of a protein processing typical for eukaryotic 

organisms for higher yield. Based on this fact, Saccharomyces cerevisae use by 

the US Food and Drug Administration (FDA) as an organism is generally regarded 

as safe (GRAS) [113]. This however is not an optimal host for large-scale 

production of foreign protein due to the technical fermentation needs that require 

highly sophisticated equipment. The similarities between yeast and microalgae 

considered in this study make them a better biological host for protein production. 

The choice of yeast is of paramount importance for the success of the whole 

process [113].  

Several protein products are still produced economically from animal and plant 

materials despite the advantages of microorganisms being considered as a protein 

source. This is because of the fact that high sufficient amounts are produced from 

these sources.  

 

2.2.12 Why Pre-Treat Biomass 

Figure 1-4 in Chapter 1 depicted the pre-treatment of biomass by different 

methods in the removal of hemicelluloses and lignin from the polymer matrix. 

High-pressure homogenization is used extensively in improving the degradability 

and the rate of cell wall breakage within the biomass material to improve and 

increase the protein concentration yield. Biomass materials like lignocellulosic 

plant residues contains up to 70% carbohydrates as cellulose and hemicelluloses. 

These are prominent substrates for cheap ethanol production, and due to the 

closeness of lignin in the plant cell wall, pre-treatment is necessary to make the 

carbohydrates available for enzymatic hydrolysis and fermentation [114]. As in 

the case of substrates considered for this research, the inner contents of protein are 

coated with hard cell wall. These need to be completely homogenized over some 

passes to liberate the protein inside. Most researchers in their conclusion show that 
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the barrier to the production and recovery of lignocellulosic material is the 

lignocelluloses structure [31, 59].  Laureano-Perez et al. [115] pointed out that 

several structural and compositional factors affect the enzymatic digestibility of 

lignocellulosic materials and Hendriks and Zeeman [29] concluded that cellulose 

crystallinity is just one of the factors that make hydrolysis of lignocelluloses 

limited. As different feedstocks contain different amounts of lignin, Agbor et al. 

[116] stressed the need for them to be removed via pre-treatment so as to enhance 

biomass digestibility in both cases; homogenization and anaerobic digestion.  

Based on the consistency that has been reported by several researchers, the main 

factors for consideration in the pre-treatment of biomass are therefore highlighted 

below [17];  

 To improve the rate of enzymatic hydrolysis, 

 To degrade so as to improve digestibility enhancement, 

 To aid in the intended product yields 

 To also alter the structural and compositional impediments to the 

hydrolysis and homogenization processes 

2.3 Buffer Solution and Contents 

Buffer solution is an aqueous solution consisting of a mixture of weak acid and its 

conjugate base or a weak base and its conjugate acid. Weak acids and bases do not 

completely dissociate in water, and instead exist in solution as equilibrium of 

dissociated and un-dissociated species. It has the property that the pH of the 

solution changes very little when a small amount of strong acid or base is added to 

it. All buffers have an optimal pH range over which they are able to moderate 

changes in hydrogen ion concentration. This range is a factor of the dissociation 

constant of the acid of the buffer (Ka). This is generally defined as the pKa (-logKa) 

value plus or minus one pH unit [117].  
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Buffer solutions are used as a means of keeping pH at nearly constant value in a 

wide variety of chemical applications. Buffer solutions in this study has become 

necessitated as the pH values of biomass substrates will constantly need to be 

monitored and maintained for higher protein yield during and after 

homogenization of the substrates.  

 

2.3.1 Properties of a Buffer 

Buffer solutions are known to be solutions that resist changes to pH. It is 

considered as one of the more important properties of an aqueous solution, which 

is its concentration of hydronium ion. This ion has great effect on the solubility of 

many inorganic and organic species, as well as on the nature of complex metallic 

cations in the solutions and on the rates of many chemical reactions. Determining 

pH value of a solution can be done in two ways; this is determined through the use 

of a chemical called indicator. This is sensitive to pH. These substances have 

colours that change over a relatively short pH range and can, when properly 

chosen through its use determine the pH of a solution to an estimated value.  

The other method for finding pH is a device called the pH meter. This device have 

two electrodes, one of which is sensitive to [H3O
+
], are immersed in a solution. 

The potential between the two electrodes is related to the pH. This is designed so 

that the scale will directly furnish the pH of the solution and gives much more 

precise measurement of pH than does a typical indicator [117]. Its use is required 

when accuracy of pH value is needed and will be discussed further in chapter 3 

under experimental and analytical procedures. 

2.4 Mechanical Pre-treatment Methods 

Other than mechanical pre-treatment which is also known as physical pre-

treatment, other known pre-treatment methods for the conversion of 

lignocellulosic and biomass materials into biogas are the chemical and biological 

pre-treatments. But for the purpose of this study, emphasis will be placed only on 

the mechanical pre-treatment methods. This method is aimed at reducing the 

particle size and crystallinity of the substrates, which in effect increases the 

digestibility of the cellulose and hemicellulose in the biomass material. This 
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therefore also increases the performance of the digestion along with the protein 

yield. Though Kumar et al. [118] have emphasized the digestibility of the 

cellulose present in lignocellulosic biomass being hindered by many 

physicochemical, structural, and compositional factors. The biomass needs to be 

treated so that the cellulose in the plant fibres is exposed in the conversion of 

lignocellulosic biomass to other useful products.  

 

  2.4.1 Milling 

Palmowski and Miller [119] categorized coarse size reduction, chipping, 

shredding, grinding and milling as amongst the different mechanical size reduction 

methods that have been used in the enhancement of digestibility of lignocellulosic 

biomass. Milling is aimed at improving the susceptibility of enzymatic hydrolysis 

through the reduction of particle size and lignocellulosic crystallinity in the 

material. Apart from the reduction of particle size and lignocellulosic crystallinity; 

these treatments increase the available specific surface area and reduce the degree 

of polymerization (DP) [120]. Agbor et al. [116] investigated that harvesting and 

preconditioning reduces lignocellulosic biomass from logs to coarse sizes of about 

10-50 mm and chipping reduces the size of the biomass to 10-30 mm. Grinding 

and milling show better action and result as they are more effective at reducing the 

particle size and cellulose crystallinity than chipping; this is probably as a result of 

the shear forces generated during milling [116]. Figure 2-6 shows a typical ball 

milling in operation. 

 

Figure 2 - 6: Cross sectional view of the ball milling [121] 
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  2.4.2 Extrusion 

Another mechanical technique involved in the reduction of biomass materials 

particle size is extrusion. Its processing can provide a unique continuous reactor 

environment for a combination of thermo-mechanical and chemical pre-treatment 

of lignocellulosic biomass at higher throughput and solid levels. Alvira et al. [122] 

have indicated that the extrusion process is a novel and promising physical pre-

treatment method for biomass conversion. Particularly, recent studies have shown 

the extrusion process being considered as a promising technology in the 

production of ethanol. This is based on the fact that with extrusion, the materials 

are subjected to heating, mixing and shearing, thereby resulting in physical and 

chemical modifications during the passage through the extruder. Extrusion as a 

pre-treatment method used in waste treatment and other biomasses for energy 

extraction has the name “pressure extrusion” and has recently been employed for a 

plant in the waste treatment in Italy and other European countries [123]. Novarino 

and Zanetti [123] in their paper used organic fraction of municipal solid waste 

(OFMSW) as the biomass resource. The system of pressure extrusion employed in 

their work has guaranteed the satisfaction of producing a clean organic fraction 

which has been characterised by a reduced and uniform particle size distribution. 

Figure 2-7 shows the extruded material using the two different sizes of hole grates. 

The extruded organic material appearance shows a kind of jam which can be 

simply used in co-digestion or alone, diluted or not, in an anaerobic digestion 

plants. 

 

Figure 2 - 7: Extruded material obtained with: (a) 16 mm holes grate; (b) 8 

mm holes grate [123] 

 

(a) (b) 
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  2.4.3 Ultrasonic 

Tyagi and Lo [124] highlighted on ultrasonic pre-treatment method being 

investigated by researchers, among other physical and chemical pre-treatment 

methods in the acceleration of the hydrolysis step, as well as to increase the 

digestion rate. The application of this pre-treatment method to waste activated 

sludge (WAS) improved sludge reduction and increases methane production. 

Ultrasonic as a mechanical pre-treatment means relies on the cavitation process of 

disintegrated cell walls. Wang et al. [125] and Benabdallah El-Hadj et al. [126] 

demonstrated the pre-treatment of WAS by ultrasonic disintegration significantly 

improved microbial cell lysis and increased volatile solids degradation as well as 

biogas production. Based on this, researchers found that the disintegration of 

particulate being enhanced by high energy intensity. This has been evident through 

the reduction in particle size along with soluble matter fraction increment [127], 

and ultrasound which is a sound wave at a frequency range from 20 KHz to 10 

MHz, has a wide range of environmental applications. Likewise, low frequency 

ultrasonic pre-treatment prior to anaerobic sludge digestion has been considered as 

one of the most promising recent technologies that have been extensively 

investigated for wastewater sludge management [127, 128]. The majority of the 

effects of ultrasonic treatment are in the disruption of the physical, chemical and 

biological properties of sludge, the reduction of the floc size, along with 

biodegradability improvement. Pre-treatment of sludge could increase its 

biodegradability through the hydrolysis stages enhancement, and as a result leads 

to enhanced anaerobic digestion. Tiehm et al. [127] showcased that the most 

efficient solubilisation was achieved by the lowest frequency. This works by 

ultrasound waves propagating in the sludge medium. The compression cycle 

makes positive pressure on the liquid by pushing the molecules together and the 

rarefaction cycle makes a negative pressure by pulling the molecules from one 

another (see Figure 2-8). 
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Figure 2 - 8: Sound waves interaction with a liquid medium and the bubble 

growth due to the expansion-compression cycles resulting in the localized 

“hot spots” formation [129] 

 

 2.4.4 Lysis-Centrifuge 
  

This is operational by directly working on the thickened sludge stream in a 

dewatering centrifuge and it is then suspended again with the liquid stream 

thereon.  

 

 

Figure 2 - 9: Lysate-thickening centrifuge. Adapted from [130] 

 



  37  
 

Figure 2-9 shows the schematic view of lysate-thickening centrifuge and contained 

within the bacterial cells are enzymes, part of enzymes and cofactors, through 

these cellular degradation can result after the initial lyses. Improvement of the 

performance of anaerobic digestion will require the use of altered centrifuges in 

the enhancement of cell lyses to produce lysate rich in cellular degradation. The 

goal with using lysate-thickening centrifuge is in the partial disintegration of cells 

during thickening through kinetic energy generated by the centrifuge without 

additional energy. The addition of aerobic cell lysate with waste activated sludge 

(WAS) thickened to 6% has proven to increase anaerobic digestion performance, 

as indicated by increased biogas production by as much as 86% [131]. Dohanyos 

et al. [131] reiterated also that the higher disintegration effect was achieved with a 

lower WAS age, shorter retention time in digesters, along with a higher anaerobic 

microorganism activity in the digesting sludge. Based on these, Zabranska et al. 

[132] had a similar view through their findings on the long-term monitoring 

results from three full-scale installations of lysate-thickening centrifuges. They 

showed that anaerobic digestion could be improved by this process as organic 

matter in the digested sludge significantly decreased to 48-49% while there was a 

substantial increment in the biogas production by 15-26%. The good use that has 

resulted from this equipment has enabled it to be patented worldwide with its 

major licensee based in Germany. 

 

 2.4.5 Collision Plate 

Figure 2-10 shows the schematic view of collision plate pre-mechanical treatment 

system and is mainly used in wastewater treatment. This collision plate 

mechanical treatment as conducted by Nah et al. [133], the municipal aerobic was 

mechanically disrupted by jetting the sludge to collide with a collision plate at 30 

bar pressure and rising up to 50 bar. The Waste Activated Sludge (WAS) jet 

pressure was controlled through regulating the by-pass WAS flux in the high-

pressure pump and the mechanical pre-treatment and digestion experiment 

procedures carried out resulted in WAS consistency between 1.4% and 1.8%. This 

therefore showed that the treated sludge characteristics were six-fold more in 

terms of soluble matter in Chemical Oxygen Demand (COD) and Total Organic 
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Carbon (TOC). These on the whole resulted in soluble proteins increment by two 

and half times with 20% more alkalinity, ammonia, and phosphorus produced 

along with a decrease in AD from 13 to 6 days [134]. These are as a result of 

losses in suspended solids.   

 

 

Figure 2 - 10: Schematic view of Collision Plate mechanical pre-treatment of 

WAS [133] 

In the experimental work carried out by Nah et al.  [133] after the disruption 

resulting from the mechanical treatment of WAS at 30 bar, it showed that there 

were some changes in the microstructure. It is thought that part of the intracellular 

substance has been released from the inner part of the aerobic microorganisms to 

the outside. This therefore indicates that most of the microorganisms were 

hydrolytically converted to low-molecular-weight components [133-134] (see 

Figure 2-11). 

       

Figure 2 - 11: Microphotograph of WAS before (a) and after (b) pre-

treatment at 30 bar (x400) using the collision plate. Adapted from [133] 
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 2.4.6 Hollander Beater 

Hollander beater as shown in the figure (Figure 2-12) was first introduced and 

developed by the Dutch in the 17
th

 century. Its purpose was to produce paper pulp 

from cellulose containing plant fibres. Hollander beater machines are used for 

beating and the process can increase the strength of the product through flattening 

of the cellulosic fibres which will increase the area for fibre bonding. This has 

since changed as it is also now being used in the bioenergy sector in the beating of 

biomass substrates as well as other lignocellulosic materials. This works by 

allowing the substrate to go through the gap with water and then result in the 

decrease of the particle size and the increase of the surface area. As the 

lignocellulosic material pass under the blades on their path of circulation, they rub 

between the blades of the beater roll and another stationary set of blades on the 

base of the tub known as bedplate where the refining is known to take place. The 

bedplate is adjustable to control the amount of shearing in the gap between the 

blades [135]. This process therefore damage and change the structural components 

of the substrate, thereby reducing the cellulose crystallinity. The principles 

employed in the Hollander beater is similar to that in milling wherein the objective 

of a mechanical treatment is to reduce the particle size and crystallinity of the 

substrate. Hendriks and Zeeman [29] have found milling as a mechanical pre-

treatment of the lignocellulosic biomass; a process that requires cutting the 

lignocellulosic biomass into smaller pieces as a pretreatment method. 

 

Figure 2 - 12: Schematic view of Hollander Beater [135] 
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2.5 Other Mechanical Pre-treatment Method  

The previous section has discussed the most up to date mechanical pre-treatment 

methods used in the treatment of substrates to enhance biomass-biogas conversion 

including cell wall disruption of substrates. Based on these ideas of cell disruption 

in biomass, a mechanical treatment employing a high-pressure homogenizer is 

therefore introduced for the work in this research. This homogenizes and ruptures 

the cell wall to liberate the intracellular products, including proteins which in turn 

are designed to improve protein production after centrifugation where the 

supernatant is separated from the solid. Homogenizing biomass materials result in 

the decrease in particle size and increment in the surface area; these then results in 

the damage and change in the component microstructure and which, as a result, 

improves the yield in proteins.  

  

2.5.1 High-Pressure Homogenizer (HPH) 

Cell rupture is required in the recovering of biological products that are located 

inside cells. This is required to be done either mechanically or non-mechanically 

[136]. There are other methods, as well as those which are non-mechanical, which 

could either be the physical way or the enzymatic way. In general, De Boer et al. 

[137] emphasized mechanical methods being non-specific, but their efficiency is 

considered higher with broader application in comparison to any of the other 

methods.  Ahmad-Raus et al. [138] have rated this as highly dependent on the 

nature of the product of interest, the cell or tissue itself, like the extent of the cell’s 

fragility. Cell disruption is otherwise considered as the isolation and preparation of 

intercellular products which is important for use in research and in the industries 

for manufacturing end products for consumers. In the industries, HPH application 

is linked to the production of stable emulsions; hence it is widely used in such 

areas [40, 137, 139, 140], and apart from it being able to emulsify it disrupts 

particles into a disperse phase of suspension. It has also extensively proven to be 

suitable for the inactivation of the microbial flora occurring in fruit juices and 

milk-based beverages [141] especially contributing to the preservation of the 

freshness and texture attributes, coupled with antioxidant capacity and the 

polyphenols, vitamins, and flavonoids contents of the product [142]. HPH is 
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therefore used in the disruption of cell walls of biological matter including 

biomass substrates, organic matters and industrial products through pumping the 

sludge under high pressure (though most homogenizer today are known to exceed 

150 MPa [139]). This product passes through homogenizing valves at high 

velocity against an impact ring with a decrease in pressure. The homogenized 

product then liberates the intracellular matter by reducing the particle size and 

increasing the surface area of the homogenized product. A typical example of a 

high-pressure homogenizer is given in Figure 2-13 which shows the three main 

functionalities of valve seat, impact ring, and the valve head during the operation 

of the high pressure homogenizer.    

 

 

Figure 2 - 13: Typical example of high-pressure homogenizer [143] 

 

2.5.2 Different Types of High-Pressure Homogenizer 

High-pressure homogenizer come in different designs, sizes, forms, geometries, 

and shapes, but technically these works the same way in principles. The particle 

size trends for the different high pressure homogenizers [144] show the sizes of 

the homogenized particles ranging from nano size to over 100 micron (Figure 2-

14). This wide range of sizes is particularly suitable for a broad range of 

applications such as; cell disruption, particle size reduction, nano/micro emulsions 

and dispersion. The minimum size of the droplets that can be produced using each 

approach is dependent on many different factors. Qian and McClements [145] 

explained previous studies that the minimum particle size achievable using the 

high-energy approach depends on homogenizer type, its operating conditions (for 
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example; energy intensity, time and temperature) and sample composition (for 

example; oil type, emulsifier type, and relative concentrations). The 

physicochemical properties of the component phases (for example; interfacial 

tension and viscosity) were also considered. 

The geometries of the homogenizing valves make a difference also in determining 

the type of HPH in operation. The processed liquid in any type of homogenizer 

valve passes under high pressure through a convergent section called the 

“homogenizing gap” and then expands.  

 

                              

Figure 2 - 14: Particle size trends for the different high pressure 

homogenizers [144]  

 

 

For example, Floury et al. [146] have compared the APV-Gaulin valve against the 

Stansted valve in their work, and have confirmed that the Stansted homogenizing 

valve technology using ceramic material will withstand ultra-high pressure levels. 

This shows that that the geometry has been modified as compared to that of APV-

Gaulin. Of ultimate consideration here is the flow direction which is reversed. In 
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the classical valve design, the fluid is fed axially into the valve seat and then 

accelerates radially into a region between the valve head and valve seat. Kleinig 

and Middelberg [147] found that the fluid becomes a radial jet that stagnates on 

collision with the impact ring before leaving the homogenizer at atmospheric 

pressure after leaving the gap (see Figure 2-15 [A]). The Stansted valve shows a 

different form; the fluid is fed in axially first through the mobile part of the valve 

and then accelerates radially through the narrow gap between valve head and valve 

seat. Floury et al. [148] revealed from the numerical simulation that the radial jets 

leave the valve seat without impinging on the valve point, but re-circulates 

downstream the slit of the valve before flowing out of the valve seat (Figure 2-15 

[B]). Another applicable difference between both (HPH) is in their pressures. 

Stansted is able to reach much higher pressure (350 MPa) than the APV-Gaulin 

type which rated between (70 – 100 MPa). When in operation, it can be controlled 

by adjusting the gap (h) between the valve head and the valve seat; the valve gaps 

involved in the ultra-high pressure valve are considered lower (h = 2 – 5 µm) as 

against APV-Gaulin type (10 – 30 µm) [146]. 

 

Figure 2 - 15: Homogenizing valve geometries (A) APV-Gaulin valve and (B) 

Stansted valve as adapted from [146] 
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 2.5.3 GYB40-10S /GYB60-6S 2-Stage Homogenizing Valve HPH 

The GYB40-10S high pressure homogenizer has been employed in this research 

for the mechanical treatment of biomass substrates. The GYB series high pressure 

homogenizer is general-purpose equipment for the preparation of superfine liquid-

liquid emulsion or liquid-solid dispersion. It is widely used in the production and 

research areas including food, beverage, pharmacy, chemical industries, 

biotechnologies, and others not mentioned here. All parts with direct contact with 

fluid media are made from materials of super abrasion durability and excellent 

corrosion resistance, to avoid any adverse impact on the fluid to be handled.  

The machine is made of a reciprocating plunger pump and a homogenizing valve, 

with its homogenizing portion made up of a double stage homogenizing system 

which includes a 1st stage homogenizing valve and a 2nd stage homogenizing 

valve. The two stage homogenizing valve pressures are adjustable under the scope 

of nominal pressure, and at the same time can also be used separately due to the 

high-low of homogenizing pressure which directly relates to the speed of materials 

through the homogenizing valve. The material particle size is considered to be less 

than 2 µm. The GYB series HPH therefore makes the incompatibility in liquid-

liquid or liquid-solid materials to be compatible, superfine, and homogenous. The 

stability in the liquid-liquid or solid-liquid under the multiple actions of 

cavitations effect can result in high speed impact and shearing through the 

adjustment of pressure homogenizing valve of the HPH [149]. Figure 2-16 with 

the operating units depict the 2-stage homogenizing valve HPH with the serial 

name as GYB40-10S /GYB60-6S, and this has been employed in this study based 

on the technical specification as indicated in the Table 2-6. The high-pressure 

homogenizer (HPH) has the same features as others, but its unique feature is in its 

operation during homogenization in 2- stages with the different hand wheels for 

raising pressure and stabilizing it at that point. This enables the homogenization 

pressure to be read at any point during cell disruption.    
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Figure 2 - 16: GYB40-10S 2-Stage Homogenizing Valves HPH [149] 
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Table 2 - 6: GYB40-10S / GYB 60-6S High Pressure Homogenizer technical 

specification [149] 

Technical Data 
(Item) 

Specification 

GYB40-10S GYB 60-6S 

Pressure (MPa)  
 
 
Maximum Pressure (MPa) 
Working Pressure   (MPa) 

One grade   
 0 ~ 100 
Two grade   
0 ~  20 
 
100 
90 

One grade  
0 ~ 60 
Two grade  
0 ~ 20 
 
100 
90 

Flow Rate (L/h) 40 60 

Volume efficiency (%) ≥ 85 ≥ 85 

Motor Power (Kw) 3 (380V, 50 HZ, 3 
Phase) 

3 (380V, 50 HZ, 3 
Phase) 

Material Temperature (°C) 0 ~ 120 0 ~ 120 

Noise (Db) ≤80 ≤80 

Corrosive-proof (PH) 2 ~ 10 2 ~ 10 

Dimension (mm) 920 x 445 x 1220 920 x 445 x 1220 

Weight (kg) 265 265 

 

 

2.5.4 Mechanism of the HPH Technique and Homogenization 

Process       

High-pressure homogenization is the most commonly employed method for large 

scale disruption of microbial cells in the industry. In other words, it is considered 

as an essential step in commercial processing of diary, pharmaceutical, 

biotechnological, food, and chemical products as well as microorganism cell wall 

disruption through the provision of improved functional properties [150]. Briñez et 

al. [151] and Kheadr et al. [152] have found high pressure homogenization to be 

one of the most promising new food processing technologies due to the recent 

improvements in high-pressure homogenizers along with the acceptance by 

consumers of pressure processed foods. For example, milk homogenized at 10 – 

20 MPa under temperatures of 55 – 65 °C is done to prevent fat separation or gel 

formation during storage [153]. Several papers have reported the effectiveness of 

HPH in deactivating pathogenic and spoilage microorganisms in model systems 
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and real foods and thus stimulating investigations on the application of HPH so as 

to improve food safety and shelf-life [151, 154-156]. This method has been found 

to be generally suitable for a variety of bacteria, yeast, and mycelia including 

algae. The homogenization technique works by forcing cell suspensions through a 

very narrow channel or orifice under pressure. Depending on the type of HPH, the 

suspension may or may not impinge at high velocity on a hard-impact ring or 

against another high velocity stream of cells coming from the opposite direction. 

As the process requires the disruption of biomass substrates before 

homogenization can take place, the cell wall of the microbial products are broken 

down to release the proteins which are a great source and at the same time aid 

biogas production.  

 

            2.5.4.1 Effects of Valve Head, Valve Seat and Impact Ring on Substrates 

Homogenization considerations have shown high pressure homogenizers 

consisting of a positive displacement pump and a homogenizing valve. And as 

previously indicated, the pump is used to force the fluid into the homogenizing 

valve where the work is done [157]. The three main components with useful value 

and functionalities in the HPH are the valve head, valve seat, and impact ring. 

These are within the internal structure of the designed HPH and are often regarded 

as the powerhouse of the machine. In the homogenizing valve, the fluid is forced 

under pressure through a small orifice between the valve head and valve seat (as 

depicted in the Figures 2-15 [A] and [B]. The fluid leaves the gap in the form of a 

radial jet that stagnates on an impact ring [157]. It therefore exits the homogenizer 

finally at low velocity and atmospheric pressure. During operation, higher pressure 

on the hand wheel compresses the valve seat against the valve head through the 

impact ring. This, as a result reduces the gap size wherein the homogenized 

suspension/emulsion flows through at a very low velocity. The disruption of the 

cell wall leads to a large drop in pressure, and results in highly focussed turbulent 

eddies along with strong shearing forces to occur. Effluent from the homogenizer 

is normally chilled to minimise thermal damage to the product caused as a result 

of the frictional heat which is generated due to the high fluid velocity that elevates 
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the product temperature, considered to be between 2 - 2.5 J per units 10 MPa [158-

159].  

 

            2.5.4.2 The Effects of Homogenizing Valves Parts on GYB40-10S HPH 

 

The homogenization using the GYB40-10S HPH is in two parts. This is as a result 

of the double hand wheel (Figure 2-16). The inner components are shown 

separately in Figure 2-17; these work together in one piece for complete 

homogenization of the biomass substrate. The first hand wheel is used to increase 

the pressure build up with the second one set to normalise and balance the set 

working pressure required before the homogenized substrate exits through the exit 

pipe. This is represented in Figures 2-18 and 2-19 wherein the flow part is 

indicated before and after cell disruption during the homogenization process. The 

silt size along with the resulting stream velocity and pressure of the liquid ahead 

of the valve depends on the force acting on the valve piston, and can be adjusted to 

regulate the homogenizing intensity. During this process of homogenization of the 

biomass substrates, the pressure drop in the valve is otherwise known as the 

homogenizing pressure and termed the working pressure of the fluid. 

 

 

Figure 2 - 17: Homogenization valve parts 
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Figure 2 - 18: Schematic view of the flow channel during biomass 

homogenization 

 

 

 

Figure 2 - 19: Schematic diagram showing input and output view of 

substrates before and after disruption 

 

            2.5.4.3 Valve Design and Homogenization Efficiency 

 

Goulden and Phipps [160] have concluded that homogenization efficiency 

depends on the valve design since a valve with flat faces is considered inferior to 

one with corrugated faces; for example the liquid-whirl type valve. The different 

valves as seen in Figure 2-20 employed in the homogenization process, result in 

variation in the drop of pressure.   
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Figure 2 - 20: Pressure homogenization valves [162] 

 
   

As shown in (Figure 2-20 (a)), the pressure homogenization valves consist of a 

plunger and the valve seat. Between the plunger and the valve seat, a ring gap is 

formed. As the compressed material enters the plug valve, it flows radially via the 

narrow ring gap and impacts on the surrounding wall ring. Slope seat valves 

(Figure 2-20 (b)) requires higher pressures, when compared to the flat-seated 

valves and the efficiency of the valve is increased if the flat-seated valve, has 

grooves on the surface (Figure 2-20 (c)) [161]. As a result of this, the droplets are 

compressed and expanded as they flow along the peaks of each groove.  

The mechanism of homogenization which classifies it at been a low or high valve 

pressure homogenizer, is associated to specially designed experimental valves 

with an extended-orifice construction. The alteration of an experimental valve 

allows the possibility of studying factors related to homogenization. These factors 

include: (a) the time required for a particle to pass through the valve clearance; (b) 

the velocity through the valve clearance; (c) the entrance and exit conditions of the 

valve; and (d) the effect of two or more valves in series.  

Variation in valve orifice length from 2.5 to 4.1 mm has no effect on either 

pressure drop or homogenization efficiency at a given velocity. However as the 

velocity through the valve of a fixed length increases, the pressure drop also 

increases which results in the improvement in homogenization efficiency. 

Therefore the use of a valve with a bevelled entrance results in decrease in both 

pressure drop and homogenization efficiency, as compared to a valve with a sharp 

entrance. The same valve with the bevel at the exit has no effect on pressure drop. 
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2.6 Parameters Affecting High Pressure Homogenization 

Clarke et al. [139], Doulah et al. [38], Brookman et al. [39], Engler [79, 158], 

Fluory et al. [146, 148, 162], Diels et al. [156, 163], Harrison et al. [164], Siddiqi 

et al. [165] and Shirgaonkar [166] are some of the authors and researchers who 

have one way or the other contributed to cell wall disruption in HPH analyses. 

Their analyses have been based on critically analysing the parameters that affect 

high pressure homogenization during the disruption of the cell wall within the 

biomass substrates.  Many of the suggestions about these mechanisms causing cell 

wall rupture are being made and are discussed herein. Substrates are also 

considered to be of different form and microstructure due to their contents and 

compositions. As a result of these factors, during homogenization, they work 

differently in the HPH in the release of their intracellular contents. The concern 

here is that HPH has a major role to play in the release of the contents, and as such 

the parameters that work against this process will be considered as some of the 

factors are thought to be environmental. 

 

 2.6.1 Temperature   

Temperature effect on substrates during high-pressure homogenization cannot be 

underrated. Paquin [167] has classified the suspension temperature amongst 

others; the operating pressure, the number of passes through the valve along with 

the design of homogenizer valve as the major parameters determining the process 

efficiency. For example, from the work carried out by Feijoo et al. [168] on 

Bacillus licheniformis spores in ice cream mix using microfluidizer technology, it 

was evident that 68% of Bacillus licheniformis spores inoculated in milk was 

deactivated at 200 MPa only when the initial temperature of milk was 50 °C; this 

spore inactivation was attributed to the combined effects of HPH and the 

temperature reached during the process. During the HPH treatments, it was 

showcased that temperature increases even though the inoculation fluid before 

each HPH was 20 °C. The outlet sample temperature was 45 °C, and then cooled 

rapidly in ice afterwards. Diels et al. [169] therefore suggested that the heat 
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produced in HPH treatments contributes to cellular inactivation, in addition to the 

mechanical effects which are considered predominant at lower temperatures.  

In their analysis, Roach and Harte [170] showed the effect of temperature on HPH 

and from the results presented temperature at the homogenizing increases as 

pressure increases due to frictional and shear forces during the homogenization 

process. This showed that homogenization temperature increased 17 °C per 100 

MPa in a linear manner (where r
2
 = 0.9669) (see Figure 2-21). This is in 

conformity with similar studies of an increase in temperature of approximately 12-

18 °C/ 100 MPa as previously reported [170-173] and Thiebaud et al. [171] 

indicating that a second stage valve often used in the controlling of pressure drop 

in the first stage valve for the avoidance of low-pressure. This is thought to also 

have an effect on the operating temperature during homogenization. 

 

 

Figure 2 - 21: Temperature increases during high-pressure homogenization 

with data representing individual experiments showing linear regression for 

all points in plot [170] 

 

 2.6.2 High Pressure Gradient 

Brookman and James [39] and Brookman [174] sought to explain the mechanism 

of cell rupture through their hypothesis in terms of the rapid release of pressure as 

cells pass through the HPH. Clarke et al.  [139] studied and estimated the static 

pressure for a given streamline of flow through the use of computational fluid 

dynamics (CFD) showing pressure drop for the model used. Results from the 

model were obtained by estimating the static pressure at fixed points along the 

streamline of a single cell passing through the homogenizer. Based on this fact, it 
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is worthy of note to know that the zero pressure at the end of the streamline was 

artificially created by the pressure outlet boundary conditions in the CFD model. 

Figure 2-22 shows the pressure gradient of a liquid passing through the 

homogenizer valve. 

 

Figure 2 - 22: Pressure gradient of liquid passing through the homogenizer 

valve [139] 

 

Previous work by Diels and Michiels [175] confirmed that the level of microbial 

inactivation caused by the application of high-pressure homogenization, to 

increase with the pressure level especially at high hydrostatic pressure (HHP). As 

pressure is applied, inactivation increases with the increasing pressure level and in 

some cases, results in the complete inactivation of the initial cell load. Figure 2-23 

reveals, the micrograph structure showing the extent of the damage caused after 

Saccharomyces cerevisiae (S. Cerevisiae) has been subjected to 150 MPa under 

HPH at 2°C. Temperature, pressure, the number of passes, and the type of 

equipment are known to influence the effectiveness of microbial inactivation, and 

as such should be chosen well for the maximum degree of inactivation attainment. 

The elevation of process pressure results in an increase of microbial inactivation, 

and Brookman and James [39] measured the effect of pressure on the 

disintegration of Saccharomyces cerevisiae by the soluble protein. They found an 

exponentially increasing release of soluble protein with increasing pressure. 
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Figure 2 - 23: Micrograph of Saccharomyces cerevisiae (10 x magnifications) 

before and after HPH treatment at 150MPa with inlet temperature of 2°C. 

[176] 

 

 2.6.3 Number of Cycles (Passes) 

The number of cycles (passes) is considered as a full cycle for complete 

homogenization of biomass substrate from the time of inlet and exiting at the 

outlet from the HPH. Under this condition, it is assumed to have covered a cycle 

(or pass) as other authors or researchers will call it. This parameter is thought to 

also contribute to the effect of using biomass substrates in HPH. As the cycle 

continues, more of the cell walls within the substrates are disrupted for the release 

of the intracellular contents. As the homogenizing cycle increases, this also 

reduces the particle size of the homogenized product. 

In the study conducted by Sandra and Dalgleish [172], Reconstituted Skim Milk 

Powder (RSMP) was homogenized using UHPH at different pressures (41 – 186 

MPa) with up to 6 passes as the number of cycles employed. The higher the 

pressure and the more the passes employed, the smaller was the average diameter 

of the casin micelles in the RSMP. Sandra and Dalgleish [172] confirmed higher 

pressure, increasing to 114 and 186 MPa to have caused a significant size 

reduction when compared with the control. Multiple passes did not seem to have 

further effect at 114 MPa, but further decrease of average micelle size at 186 MPa 

was observed with increasing numbers of passes.  Furthermore, increasing 

pressure resulted in decreased average micelle size, and the extent of size 

reduction with the number of passes was more significant at higher pressure [172]. 

Previous results from the work of Hayes and Kelly [173] showed similarity and 

conformity with the work of Sandra and Dalgleish [172]. There was no reduction 

Untreated Treated @ 150 MPa 
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in micelle size up to a pressure of 150 MPa but there were some decreases at 200 

MPa. 

 

 2.6.4 Gap sizes 

Juliane Floury and co-researchers have contributed greatly to the field through 

their various works and publications on gap sizes and its effect on HPH. They 

have emphatically worked in this field to present a clearer view on the operation as 

regards gap size effect on HPH. In the work of Floury et al. [148], measurements 

of the thickness of about 20 microscopic views of wax threads give us a mean 

value for the size of the narrow gap between valve and valve seat equal to 9.1 ± 

0.71 µm at a homogenizing pressure of 10 MPa.  As estimated by the equations of 

Nakayama and Phipps, the results obtained were equal to 7.6 and 7.75 µm, 

respectively, at the same operating pressure with water. Floury et al. [148] 

suggested that the difference in value above may be a result of the increase of the 

total pressure drop in the homogenizing valve when some wax grits that cross the 

narrow gap size. Innings and Trägårdh [177] studied flow in HPH and considered 

it very extreme with gaps of 10 – 100 µm and velocities of hundreds of m/s. This 

practically makes it impossible to measure the velocity fields. Contrarily, HPH has 

been found to be the most efficient means in the creation of sub-micron emulsions 

in low-viscous fluids, and for the realization of this particle size emulsion the HPH 

must be from a high-pressure piston pump with a narrow gap. Gap sizes are 

assumed to be a great determinant in the formation of different particle sizes in 

homogenized substrates. Innings and Trägårdh [177] explained that the pump 

creates a pressure of 10-500 MPa with the emulsion accelerated to velocities of up 

to hundreds of m/s in the gap. For the flow pattern and particle size distribution of 

substrate, an established relationship has been developed between the valve gap 

size and homogenizing pressure. The design of the gap size of the valve has been 

considered as another important aspect as part of the evaluation for the 

effectiveness on cell disruption in HPH [177].  Calligaris et al. [141] have 

hypothesized that both the valve design and the flow conditions in the 

homogenization valve gap allow different mechanical stresses to be suffered by 

the product. In conclusion, the operative pressure during homogenization is not the 
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sole critical factor that controls the overall effect of the process as the equipment 

engineering is inclusive to the efficient homogenization process. 

 

 2.6.5 pH 

The pH value of the substrate in solution plays a role in the complete disruption of 

cell walls during the homogenization process of Baker’s yeast and microalgae. 

Prepared buffer liquid was set to 5.3 pH value before mixing the biomass 

substrates in solution. Homogenized substrates were observed to have completely 

changed in terms of the pH value, and this indicates that HPH has changed the 

microstructure and content within the solution. Joscelyne and Trägårdh [178] 

examined pH as another parameter that is product dependent. They observed that 

membrane surface properties are pH dependent since membrane surfaces exhibit 

an iso-electric point at a given pH where the surface has no net charge.  Iordache 

and Jelen [179] analysed heat treatment being the most measurable effect on whey 

protein functionality while others consider moderate heat treatment (60-70°C) to 

structurally unfold proteins, whereas at higher temperatures protein aggregation in 

various degrees may occur. This is dependent on important factor as pH.  

Floury et al. [162] studied the effect of homogenizing pressure from (20 to 300 

MPa) on model emulsions stabilized by whey proteins and part of the findings was 

that proteins are soluble on all ranges of  pH and are also known as good 

emulsifiers at pH < 7.  It was also found that the micro-particles sizes obtained 

from whey protein concentrate or isolate could be controlled by different 

conditions of pH, heat treatment, microfluidizer pressure, and the number of 

recirculations [167]. This therefore demonstrated that these micro-particles could 

be incorporated into food products (0.5% w/w protein) and when 

electronmicroscopy analysis was conducted [167]. 

 

 2.6.6 Turbulence 

In determining the true cause of cell wall breakage in a high pressure 

homogenizer, Kelly and Muske [180] considered this to take place at low 
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operating pressure in liquids of low viscosity. They argued that the mechanism of 

turbulence, pressure gradients and shear stresses could not be the cause of cell 

breakage as their analyses predicted that no breakage should occur under these 

conditions. According to Paquin [167], it is very difficult to rank cavitation, shear 

and turbulence in order of importance due to their force-induced phenomena in 

dynamic high pressure systems taking place simultaneously. Making some 

assumptions about the violence of the turbulence Siddiqi et al. [165] calculated 

that a tensile force of 540 μN could be generated along the cell wall of a 5 μm cell 

in a liquid with density and viscosity similar to water, and it has been proposed 

that to be sufficient to cause rupture in the cell wall breakage. On a similar note, 

Doulah et al. [38] have hypothesized turbulence has the greatest influence on cell 

wall disruption in HPH and in their prediction of the protein released, based on a 

mathematical model, was successful. The results obtained showed similarity with 

that from experimentation, and the turbulence produced as a result consists of 

random effects in total with no dominating frequency of oscillation. Further to 

this, Doulah et al. [38] stressed that where the energy of turbulence is high 

enough, this can exceed the minimum energy needed to break the cell wall, and 

through this disruption can occur. At that time Doulah et al. [38] have stated both 

the turbulence characteristics in the HPH along with the physical properties of the 

system, such as the cell wall breaking stress, to be unknown.  

 

 2.6.7 Cavitation  

The cavitation effect on HPH has been analyzed and it is still under study. Gogate 

et al. [181] elucidated that the underlying mechanism for this spectacular effect of 

cavitation as the violent collapse of bubbles or cavities resulting in the generation 

of extremely high temperatures and pressures locally. This has been classified into 

four types; acoustic, hydrodynamic, optic and particle cavitation, depending on the 

mode of generation. Emphasis here will be on the hydrodynamic cavitation 

resulting from the disruption of Baker’s yeast and microalgae biomass substrates 

in HPH.  The collapse of cavities violently results in the formation of reactive 

hydrogen atoms and hydroxyl radicals, which combine invariably to form of 

hydrogen peroxide and to some extent, are considered responsible in the 
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promotion of oxidation reactions. Hydrodynamic cavitation can simply be 

generated by the passage of liquid through a constriction such as an orifice plate 

and when the liquid passes through the orifice, the kinetic energy or velocity of the 

liquid increases at the expense of the pressure [181]. As a result of this boundary 

layer separation occurs and substantial amount of energy will be lost in the form 

of a permanent pressure drop. Engineers have generally looked with caution at 

cavitation in hydraulic devices due to the problems of mechanical erosion. 

Balasundaram and Harrison [182] classified this bubble collapsing phenomenon as 

the conditions that are generated which would allow cell wall breakage to occur, 

and therefore, it could be termed a mechanism for cell wall rupture. This collapse 

can be studied more easily under the assumption that the bubble has become 

detached from the surface irregularity and that it is now flowing freely in the 

liquid before the external pressure is increased.  

 

 2.6.8 Wall Impact and Impingement 

Wall impact and impingement are the two main causes of cell disruption in HPH 

according to Keshavarz-Moore et al. [183]. Based on the understanding of these 

words “impact” and “impingement”, they have been explained in the following 

way, impact is the collision of two objects (for instance, a cell and the impact 

ring), whereas impingement is a special case of impact in which one object (for 

instance, the impact ring) is eroded gradually by large numbers of small impacts 

caused by numerous discrete solid objects (cells or solid impurities) flowing in the 

liquid at high velocity [183]. Engler and Robinson [184] suggested that shear, 

turbulence, or stress caused by impingement of a high velocity jet on a stationary 

surface may be responsible for disrupting cells when the flow pattern in a 

homogenizing valve is being considered. They eventually came to the conclusion 

that impingement of a high velocity jet of suspended cells on a stationary surface 

is necessary for effective disruption of cell walls by HPH, having realized that 

turbulence near the point of impact can enhance disruption. There have been 

several mutually interacting mechanisms proposed in the recent past regarding the 

cause of disruption, and these are still a matter of some debate, with different 

authors having different views on the actual causes of cell wall rupture.  
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Middelberg et al. [185] have indicated that high-pressure homogenization remains 

a poorly understood unit operation in spite of its apparent simplicity and 

widespread use for large scale disruption of microorganism and other particles. 

Based on these facts, Save et al. [186] have proposed that cavitation and the shock 

waves/pressure impulses produced as a result of cavity collapse are known to be 

responsible for cell disruption. Experiments on jet impingement from a circular 

orifice [183] showed that this pressure Ps is a function of the exit jet velocity from 

the orifice, the fluid density, orifice distance from the impingement wall, and the 

orifice diameter, but independent of fluid viscosity as shown in equation (2-1):                  

                                                                     (2-1) 

Where impingement pressure Ps at the point of impact is a function of exit jet 

velocity from the orifice ν, the distance from the orifice to the impingement wall 

X, and the orifice diameter d. Keshavarez-Moore et al. [183] viewed and 

considered the dependence of yeast disruption on valve design and impact 

distance, and therefore identified impingement on the impact ring as a major cause 

of disruption for yeast. Engler and Robinson [184] constructed a special 

impingement device in the examination of the importance of impact as a 

mechanism of disruption. Based on the creation of the device, the associated stress 

within the fluid is considered as equivalent to the dynamic pressure of the fluid 

against the plate. This can be expressed as the maximum value of the dynamic 

pressure, and is in turn related to the impingement pressure (Ps) which is 

represented in equation (2-2) 

                                                                      (2-2)       

Where ρ is the cell suspension density and ν is the jet velocity.                                          

 

 2.6.9 Shear Stress 

Many authors have considered and written about shear stress as a factor that 

affects high-pressure homogenization of biomass substrates during 
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homogenization. Most authors have assumed this to have arisen on the surfaces of 

cells in the operation of the homogenizer. Clarke et al. [139] highlighted that if 

these stresses were large enough, they could cause the rupture of the cell wall. 

There have been some controversies with this claim. These have denied the report 

that shear stress results in the cause of microbial breakage in low density 

suspension as that encountered with cells in water. Miller et al. [187] and Kelly 

and Muske [180] have concluded that at low viscosity, channel shear stress is 

unlikely to cause cell disruption. This was based on the gap size being in the range 

of 1-11 μm, the viscosity between 1-5 mPa s and the pressure within (0.138-0.965 

MPa).  On the contrary, channel shear stress will be considered the main cause of 

cell breakage only when viscosity is at higher value different from the data above. 

Clarke et al. [139] also concluded that breakage of the cellular component in the 

vicinity of the walls of the valve parts, either through shear or direct collision, as 

well as tearing by vortex shedding on weak points, could also be characterized 

under breakage by shear. Fluid shear stress has therefore been considered as the 

most influential cause of cell breakage, and can be accepted that there will be a lag 

of velocity in the gap region for the cells in comparison to the fluid. The 

phenomenon surrounding shear stress is dependent on the relative velocity 

between the solid as well as the surrounding liquid, and the same set of features is 

said to occur irrespective of whether the liquid is accelerating or decelerating. 

 

 2.6.10 Separation 

Phipps demonstrated that separation and cavitation were likely to occur in the 

valve region at low pressures and were more susceptible to occur with square 

edged seats than rounded seats [188]. Kleinig and Middelberg [189] have related 

the pressure drop to separation. They have explained that pressure distributions 

could be predicted with good accuracy downstream of entry conditions, but flow 

near the inlet is considered to be dominated by separation and subsequent 

reattachment, making analytical solutions for the total pressure drop impractical. 

Some separation is predicted to occur in the square valve, but only at higher valve 

gaps (see Figure 2-24). Kleinig and Middelberg [189] used computational fluid 

dynamics in predicting valve region velocity and pressure fields, and based on the 
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simulation, predicted that no flow separation can occur in the cell-disruption seat 

over the range of valve gaps examined. This accordingly was show to be 24-7.6 

µm, corresponding to pressure drops of 5-65 MPa). From the work on separation 

and cavitation conducted by Kleinig and Middelberg [189], this has been shown to 

be in agreement with the previous work of Phipps that flow in homogenizer valves 

will only separate and cavitate at low operating pressures, and that it is more likely 

to occur for a square-edged seat than for a seat with a rounded inlet. Further 

analysis showed that separation and cavitation do not influence flow in the valve 

region under normal homogenizer operating conditions where pressure is greater 

than 50 MPa. 

 

Figure 2 - 24: Results of numerical simulation for streamlines and pressure 

contours in the valve region of a square-edged inlet valve seat (30 µm valve 

gaps, 7 MPa total pressure drop) [189] 

 

Physical disruption methods with process-scale application, are considered gentle, 

and result in large cell debris with advantage for separation of soluble proteins, 

enzymes, or other bio products. Middelberg [157] termed the process not 

advantageous due to the fact that the methods are limited in their applicability, 

which in most cases results in low efficiency.          

2.7  Rheological Properties of Baker’s Yeast and Microalgae 

The considered biomass substrates; Baker’s yeast (saccharomyces cerevisiae) and           

Microalgae (Chlorella vulgaris) show similarity in their rheological properties.         

Their viscosity and viscoelasticity are known to vary depending on the applied 
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external conditions, such as stress, strain, and temperature. Most commonly 

known properties of rheology are: viscosity, solubility, density and conductivity. 

 

 2.7.1 Viscosity 

Viscosity plays a major role in the microbial inactivation of biomass substrates, as 

it is the measure of its resistance to gradual deformation by shear stress or tensile 

stress. It is the collapsible force that is involved in the disruption during 

homogenization. It is another form of bulk property with resistance to flow. Fluid 

temperature, on the other hand, is inversely related to fluid viscosity and fluid 

viscosity is known to affect bacterial inactivation by high-pressure 

homogenization. Diels et al. [169] demonstrated that the temperature effect on 

microbial inactivation could be explained by an indirect effect of fluid viscosity. 

The viscosity of fluid has an effect on some of the proposed mechanisms of cell 

disruption by high-pressure homogenization such as; turbulence [38], impact with 

solid surface [183], and extensional stress [190]. Furthermore, Harrison et al. 

[164], and Kleinig and Middelberg [189] explained the decrease in disruption with 

increased cell concentration by the increased viscosity of the homogenate. For 

example, E. coli based analysis as conducted by Diels et al. [163] demonstrated 

that the viscosity of cell suspensions containing 10
5
-10

8
 cfu/ml was not notably 

different, and neither was the efficiency of high-pressure homogenization 

inactivation on these suspensions. Low viscosity of diluted cell suspensions, as 

have been observed by Harrison et al. [164] and by Kleinig et al. [191] have used 

this guiding principles in proposing the increased levels of high-pressure 

homogenization inactivation upon E.coli cell suspension dilution. Therefore Diels 

et al. [163] then substantiated their points through demonstrating that bacterial 

inactivation by high-pressure homogenization was inversely related to the initial 

fluid viscosity. This has then led to Stevenson and Chen [192] predicting that 

viscosity influences the flow patterns in high-pressure homogenizing valves along 

with having effects on cavitation and fluid turbulence. The CFD model developed 

by Miller et al. [187] was eventually used in determining the effect of fluid 

viscosity on various fluid dynamic parameters thought to contribute to cell 

breakage in HPH.  
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2.7.2 Solubility 

In comparison with clear distilled water most biomass substrates in solution are 

said to exhibits some negative effects; for example, heat treatment during 

homogenization decreases solubility. Temperature and homogenizing pressure are 

considered as factors in this process that show, great effects on the substrates 

during homogenization. As the pressure increases, so also the solubility of 

substrates increases. For example, homogenization of heat denatured whey 

proteins by a microfluidizer prior to spray drying causes an increment in the 

solubility upon reconstitution and as proven by some authors, the treatment 

employed could disintegrate the aggregate formed during heating. When compared 

to a control, treated samples were shown to have restored gelling properties upon 

heating. This was pH dependent. Floury et al. [193] showed 11S soy protein lost 

its solubility at pressure above 150 MPa due to protein denaturation and 

aggregation. 

Similarly, Clarke et al. [139] have explained solubility on the basis of using 

Henry’s law to support their claim, “The law states that the solubility of a gas is 

proportional to the pressure in the liquid”. Solubility of the gas is said to decrease 

as the external pressure in a liquid decreases also. This apparently shows the 

release gas bubble noticeable in the liquid under reduced pressure, and the bubbles 

grow smaller when the external pressure increases. The gas gets trapped inside the 

bubble and eventually collapses as the bubble increases, but then slows down the 

collapse. This explanation also shows interaction between cavitation and solubility 

during homogenization.  

 

 2.7.3 Density  

Density as a rheological property affects high-pressure homogenization (HPH) or 

the substrate in some form or another.  This is in the form of energy density has a 

relationship with the machine parameters of pressure, rotational speed, and time, 

and it is considered the minimum droplet size achievable during homogenization. 

Energy density, or the volume specific energy input can simply be calculated from 

the power consumption, and the volume flow rate and the mean droplet diameter 
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may often be empirically related to the energy density as long as other parameters 

are kept constant. Similarly, emulsifier properties play a key role through the 

relationship between energy density and the volume fraction. The achievable mean 

droplet diameter as given depends strongly on the emulsifier. Clarke et al. [139] 

have identified density as a factor that affects the high-pressure homogenizer, and 

in their work the violent collapse of bubbles which explains the phenomenon of 

cavitation, have been shown to be very small.  The forces that cause the collapse 

build up to such high values result in the density of the energy produced to be very 

large. Further to the work of Clarke et al. [139], it was deemed appropriate in 

modifying the computational fluid dynamics (CFD) to allow for special effects 

that occur once the external pressure fell below atmospheric pressure. This was as 

a result of the existence of large quantities of dissolved gases in cell suspensions 

in most of the studies of cell rupture. In this situation, where the pressure remains 

above atmospheric, the continuity equation can be simplified in predicting no 

changes in the fluid density, and in this cased the fluid becomes incompressible. 

When this is not the case, the pressure falls below atmospheric pressure and gas 

bubbles will develop in large numbers in the fluids with quantities of microbial 

cell suspensions. This will then result in a change in the average fluid density and 

eventually the fluid becomes compressible.  

      2.7.4 Conductivity  

Cavitation is the dynamic process of gas cavity growth and the collapse in a liquid 

[175]. These cavities, in the presence of dissolved gases or vaporizable liquids, are 

formed when the pressure in a certain fluid volume is less than the saturation 

pressure of the gas or the vapour pressure of the liquid [175]. Conductivity is 

interrelated to cavitation and has been found to influence the degree of cavitation 

by affecting the heat dissipated from the collapsing bubble to the surrounding 

solution. This is found to have resulted through thermal conductivity of the 

dissolved gases. Exponential decrease in cavitation teds to increase the thermal 

conductivity of the dissolved gases. In addition to conductivity, fluid viscosity is 

considered to have also played an important role on the influence of cavitation. On 

the other hand, Shirgaonkar et al. [166] expressed cavitation through using the 

inception number. This is a dimensionless number generally used in the 
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characterization of the cavitation event, and can be represented with the equation 

2-3 below: 

                                                                                      (2-3) 

These are presented in the following way; 

P = Local static pressure 

Pν = Vapour pressure of the fluid 

ν = Local velocity  

ρ = Fluid density 

 

Knowing the predicted values of absolute pressure, as well as that of fluid velocity 

at the gap exit from numerical simulations, enables other unknown data to be 

worked out. There is the possibility of estimating the cavitation number in the 

downstream region of the homogenizing valve where cavitation is supposed to 

occur. Under ideal conditions cavitation occurs when σ ≤1.0 Shirgaonkar et al. 

[166]. In reality, experiments have shown cavitation inception at values of σ > 1.0 

[175]. 

2.8    Previous Research on Protein Yield from Homogenized         

Substrates – (Saccharomyces cerevisiae/Chlorella vulgaris) 

Saccharomyces cerevisiae and Chlorella vulgaris has become a household name 

in research for renewable energy as biomass substrates. Their prominence as 

biomasses is as a result of their continued usefulness in the energy world through 

production of protein from their inner content. High-pressure homogenization as a 

mechanical technique for cell wall disruption of these biomasses is considered 

based on some of previous works done using the machine.  In the work conducted 

by Spiden et al. [194], it was highlighted that Saccharomyces cerevisiae was 

chosen for their experimentation based on its representation as a model 

microorganisms with a well understood structure and similar dimensions to 

alternative industrial promising microorganisms such as oleaginous algae. High-
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pressure homogenizer was selected as a technique for the disruption through 

considering the process parameters, such as pressure and number of passes. These 

were made to investigate cell counting, protein release, UV absorbance, turbidity, 

mass loss analysis, viscosity and particle sizing. 

In a similar development, Shynkaryk et al. [195] investigated Saccharomyces 

cerevisiae in a combined electrically-assisted HPH technique for cell wall 

disruption in aqueous suspensions.  Efficiency of HPH technique was thought to 

depend mainly on the homogenizing pressure and the number of passes but with 

breakage critically dependent upon the pressure above the threshold for protein 

yield. Yap et al. [196] evaluated microalgae cell for energy analysis through high-

pressure homogenization. Such microalgae species as Nannochloropsis was 

considered and the analysis indicates that the energy load for HPH for algae 

considered could be minimized. This is when operated at higher pressure and 

fewer homogenization numbers of passes. Spiden et al. [197] compared 

Saccharomyces cerevisiae against microalga such as; Chlorella sp., T. suecica and 

Nannochloropsis sp. to evaluate their protein yield, cell count, UV absorbance and 

turbidity through HPH. Their findings indicated that these biomass substrates were 

all susceptible to rupture using the HPH with T. suecica considered has the most 

susceptible to rupture by HPH followed by Saccharomyces cerevisiae and 

Chlorella sp. while Nannochloropsis sp. showed more difficulty in terms of 

disruption using HPH. 

In general, authors and researchers above, all have similar view on cell wall 

breakage of the biomasses considered in the release of protein concentration using 

the high-pressure homogenizer of one form or the other. 

2.9 Summary  
 

The review of literature has been conducted extensively covering all parts of the 

research work. Biomass as an energy source has been entirely covered with clear 

indications of the reasons for Baker’s yeast and Chlorella vulgaris as choices of 

substrates in this study. Investigations by different researchers and authors have 

shown that protein content released are considered to be highly rated. Their 
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structures and inner contents are compatible when applicable buffer solutions are 

applied to their treatment before and after homogenization. 

The mechanical disruption process through the use of a high-pressure 

homogenizer can result in higher protein yield as the disruption is rated to reduce 

the substrate particle size as low as 2 microns. HPH was therefore considered as 

the optimal choice for the disruption technique, and its use in the research 

conducted is in conformity with previous views [139, 156, 164, 166]. Different 

parameters are known to affect substrate during the homogenization process; these 

have all been researched with an emphasis on pressure, temperature, and number 

of cycles. Subsequent chapters will study these parameters to assess their effect on 

the substrates used in this research. 
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 Chapter 3 
 Experimental and Analytical 

Procedures 

3.1 Introduction 

This chapter describes the materials, equipment and the methodologies used in this 

research. The results of each of the experiments are presented in the chapters to 

come with emphasis on the substrates and the dilution ratios of buffer against the 

substrates highlighted. These are also based on the methodologies and applicable 

equipment applied at the various steps taken in the course of the work. The 

following sub-sections are separated and elucidated accordingly for clarity to the 

reader. 

Also, the software package selected for implementation of analysis in this 

research; Design-Expert v.8 is discussed and generally overviewed in this Chapter. 

This was to create clarity and readability for a better understanding of the work 

presented with the applicable software. The software determined the ranges of 

each process parameter, along with the experimental layout presented for each 

biomass substrate.  The section also will discuss the cost aspect in terms of energy 

and cost analysis as applied to the research. 

3.2 Materials 

Two different biomass materials were used as the main substrate in this work; 

yeast (Saccharomyces cerevisiae) and microalgae (Chlorella vulgaris). The 

reasons for their selection have been fully explained in Chapter 2. Algae and yeast 

amongst others are microorganisms which utilizes inexpensive feedstock and 

waste as sources of carbon and energy for growth in the production of biomass, 

protein concentrate and amino acids. Most notably the reason for selecting these as 

biomass in this study is their superior nutritional quality, and potential to serve as 

a food and energy source due to their high photosynthetic efficiency. These were 

selected to be homogenized under the high-pressure using the High-pressure 
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homogenizer (HPH) with buffer solution as the co-digester (the buffer used for 

this research will be explained later in the chapter). These materials can also be 

considered as a sustainable source for bioenergy for reasons referred to above. The 

chosen materials for this study are yeast (Saccharomyces cerevisiae) and 

microalgae (Chlorella vulgaris). Other materials used in this research apart from 

the biomass substrates will also be considered and discussed herein. 

 

3.2.1 Baker’s Yeast (Saccharomyces cerevisiae) Substrate 

Sections 2.2.2, 2.2.4, 2.2.5, 2.2.8 and 2.2.10 have covered and explained more 

about yeast as a substrate for energy production and as a biological host. Various 

microorganisms such as yeast, algae, viruses and bacteria, as well as other 

biological products are disrupted to release the intracellular substances such as 

proteins, enzymes and vitamins which are found in high concentrations.  The most 

ideal way, for efficient and effective cell rupture operations is the homogenization 

of these substrates using the high-pressure homogenizer. This can often maximize 

the yield from valuable sources of this material and at the same time keep the 

product quality at a very high level. Yeast as an effective biomass for the 

production of energy has been proven by many authors, including Weiland [91], 

who have highlighted that all types of biomass can be used as substrates for biogas 

production as long as they contain carbohydrates, proteins, fats, cellulose and 

hemicelluloses as the main components. Biogas composition and methane yield is 

dependent on the type of feedstock, the digestion system as well as the retention 

time according to [198]. In the work carried out by Hammerschmidt et al. [199], 

Baker’s yeast (Saccharomyces cerevisiae) was used as feed for the production of 

liquid biofuels in a continuous one-step process under hydrothermal conditions in 

the presence of excess hydrogen and K2CO3. Furthermore from the same work 

done by Hammerschmidt et al. [199], wherein yeast conversion experiments were 

performed in an up-flow reactor under near-critical water conditions, and with 

temperature 330 - 450 °C and pressure 20-32 MPa. This revealed the 

approximated chemical composition of yeast and the analysis of the dry matter of 

feed as shown in Tables 3-1 and 3-2. Yeast was used as a feed for the study 

because of its almost constant chemical composition. This has already been used 
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for the production of proteins and amino acids in a closed batch reactor at 

temperatures from 100 - 250 °C and pressures of 101.35 kPa - 3.97 MPa [200]. 

The choice of yeast choice in this research is not limited to just its homogenization 

for the release of intracellular matter for energy conversion or for food products 

manufacture, but also to the fact that its particle size can be reduced to as small as 

0.02 μm for use in research.  

 

3.2.1.1 Protein Extraction from Homogenized Baker’s Yeast  

 

Fernandez et al. [201] have experimented through evaluating the rheological 

behaviour and stability of oil-in-water emulsions prepared with aqueous 

dispersions obtained from homogenized Baker’s yeast (Saccharomyces 

cerevisiae), refined sunflower oil, and hydrocolloids that are widely used in low-

in-fat mayonnaises formulation. Preparation of yeast aqueous dispersions by high-

pressure homogenization was conducted by the rupturing of yeast whole cells in 

an alkaline medium through HPH. The reduction of nucleic acid content (RNA) 

was performed first by heat treating the sample at alkaline pH before the cell 

rupture. Particle size distribution of the aqueous dispersion was determined by 

laser diffraction using a Malvern Mastersizer 2000E analyser. From the results, it 

was seen that higher yield in the formulation of yeast dressing with yeast aqueous 

dispersion were obtained as compared to others such as water, refined sunflower 

oil and hydrocolloids. This study also indicated, that the high pressure 

homogenization (1500 bar, 3 passes) in alkaline medium ensured a good degree of 

protein dispersibility (>50%) in aqueous dispersions. Yeasts possess advantages 

over other microorganisms because of their larger size which makes it easier to 

harvest. Other distinguishing factors that are advantageous to yeasts are; the lower 

nucleic add content, high lysine content and ability to grow under acidic pH.  

 

3.2.1.2 Baker’s Yeast form and Storage 

 

Baker’s yeast (Saccharomyces cerevisiae) fresh and in block form during the 

experimental research was provided by Dublin Food Sales, Ireland. This product 

was refrigerated between 0 – 6 °C for freshness on the day of its collection so as to 
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keep it clean and remain fresh before use, as well as to keep it from contaminants 

from other sources. For handling, it was recommended that yeast be kept cool as it 

deteriorates rapidly when the yeast goes up to 8 °C [202], and the storage air 

temperature should be maintained between 0 and 6 °C, otherwise the yeast would 

generate heat and start gassing in a confined space. For this reason there should be 

air gaps within the storage compartment [202]. As Baker’s yeast is composed of 

living cells of aerobically grown Saccharomyces cerevisiae and majority of the 

proteins in the cells are known to be glycolytic enzymes. Thus the high protein 

content correlates with high gassing power [203]. Baker’s yeast qualities include 

its rate of gas production, along with the long term stability during storage before 

being used. Figures 3-1(A) and (B) show a typical example of yeast 

(Saccharomyces cerevisiae) substrates in block and homogenized forms where 

Table 3-1 describes its chemical composition and Table 3-2 identifies its dry 

matter elemental composition .  

 

     

Figure 3 - 1: Sample of Baker’s yeast; (A) in Block form and (B) in 

homogenized state 

 

 

 

 

 

 

 

 

 

(A) (B) 
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Table 3 - 1: Approximate chemical composition of yeast [200] 

 

 

Parameter 

 

 

Unit 

Chemical composition of 

1Kg yeast (s.cerevisiae) 

Protein (g/kg) 167 

Fatty acids (g/kg) 12 

Carbohydrates (g/kg) 11 

Dietary fibre (g/kg) 69 

Minerals (g/kg) 21 

Moisture (g/kg) 720 

Heating value kJ/kg 3470 

 

                

Table 3 - 2: Analysis of the dry matter of Baker’s yeast feed [107] 

Parameter         Unit 
Analysis of yeast 

dry matter 

Carbon (%) 45.0 

Hydrogen (%) 6.70 

Nitrogen (%) 7.02 

Oxygen  (%) 33.4 

Ash (%) 7.92 

Sulphur (g/kg) 3.27 

Phosphorus  (g/kg) 9.36 

Sodium  (g/kg) 0.55 

Potassium  (g/kg) 1.4-45.7 

Magnesium  (g/kg) 1.10 

Calcium  (g/kg) 0.63 

Iron  (g/kg) 0.06 
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3.2.2 Microalgae (Chlorella vulgaris) Substrate 

Chlorella vulgaris has been discussed extensively in Section 2.2.6 and its 

suitability as a biomass substrate is beyond question due to the fact that proteins 

and lipids content within their cell is high enough to yield biogas as compared to 

other biomass materials [85]. Their use has gone lately from human consumption 

to the production of energy [85]. They can grow autotrophically and 

heterotrophically with a wide range of tolerance to different temperatures, salinity, 

pH and nutrient availabilities. Chlorella vulgaris along with Chlorella 

Protothecoides are two widely available microalgae strains in the commercial 

applications for food and nutritional purposes. Heredia-Arroyo et al. [204] have 

indicated that they can show great potential as future industrial bioenergy 

producers due to their robustness, high growth rate, and high oil content. They can 

be cultured under the same conditions; autotrophic and heterotrophic. 

Accordingly, Heredia-Arroyo et al. [204] revealed in their results that Chlorella 

vulgaris could grow on autotrophic, mixotrophic and heterotrophic modes; and the 

mixotrophic cultivation especially could produce more cell biomass than the 

autotrophic or heterotrophic cultures, individually or combined [204].  

 

3.2.2.1 Previous Work on Chlorella Vulgaris 

 

The work carried out by Abreu et al. [205] in determining the growth parameters 

and biochemical compositions of the green microalga Chlorella vulgaris 

cultivated under different mixotrophic conditions showed similar results. It was 

highlighted that using the main dairy industry by-product could be considered as a 

feasible alternative in reducing the costs of microalgal biomass production. This is 

based on the fact that the addition of expensive carbohydrates to the culture 

medium would not be necessary. From the findings, the results indicate that the 

highest specific growth rates were 0.43 and 0.47 g/day when the substrates were 

cultivated under mixotrophic conditions using cheese whey (CW) powder 

solution, along with mixtures of glucose and galactose as organic carbon sources, 

respectively. This result is in agreement with the result from Heredia-Arroyo et al. 

experimental work carried out using Chlorella vulgaris as a substrate, [204] which 
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also indicated that the values obtained were almost 3.5 times higher than those 

produced under the photoautotrophic mode of nutrition. This again also agreed 

with the findings from Kong et al. [206] which reported that mixotrophic 

Chlorella vulgaris growth in glucose yielded higher biomass contents and 

productivity than cells grown under photoautotrophic conditions. This yield, and 

the biomass accumulation of Chlorella vulgaris during the cultivation, has been 

promoted through the role played by the organic substrate. It therefore has come to 

be realized that microalgae grew faster which thus provides high productivities of 

biomass, lipids, starch, and proteins: hence, the particular reason for Chlorella 

vulgaris choice as a biomass substrate in this research. 

 

 

3.2.2.2 Chlorella Vulgaris Sample and Storage 

Table 2-5 of Section 2.2.10 in Chapter 2 shows the general composition of 

different human food sources and algae (% of dry matter). It shows Chlorella 

vulgaris to be higher in terms of the protein content. This reflects the reason for 

one of its consideration as a biomass substrate amongst others in this research.  

A sample of the substrate is shown in Figure 3-2. This was supplied by a Culture 

Collection of Algae and Protozoa (CCAP) of the Scottish Marine Institute, United 

Kingdom. This determination of the strain, was through the identification of 

CCAP 211/11B from the original author Beijerinck 1890, where freshwater in 

Delft, Holland was used [207]. 

The culture conditions as demanded by the CCAP required the temperature to be 

15 °C ± 2 °C, and for faster growth, it should be grown at 20 – 25 °C in cool white 

fluorescent tubes about 10 cm from the culture, with an intensity of 30-40 

μmol/m
2
s, and 12 hours light and 12 hours of darkness (for faster growth, use 

continuous light). Refer to Appendix A for further information on the strain data. 
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Figure 3 - 2: Chlorella vulgaris with strain number CCAP 211/11B [207]  

 

3.2.3 Deionised Water 

This was required at all times in the preparation of the pH controlled buffer 

solution before embarking on the experiments. Deionizing systems use a mixture 

of cation and anion exchange resins which are usually in a mixed bed. These 

resins exchange cations and anions in the source water for H
+
 and OH

-
, which, 

when combined, form H2O leaving only the residual H
+
 and OH

-
 produced by auto 

dissociation (see equation 3-1). 

                H
+
 + OH

-
 ↔ H2O                                                                             (3-1) 

With the pH of deionised water close to 7, the equilibrium constant of this reaction 

is considered to be 1×10
-14

 at 25°C. The resistivity and conductivity ranges are 

thought to be (10 
-18

 MΩ. cm) and (0.1 – 0.0555 μS/cm) respectively [208].  

It is water that has the ions removed and is usually deionized by ion exchange 

process. This has become necessary so as not have interference during any 

chemistry experimental work as the presence of ions could switch places and alter 

the experimental results. Above all, conductivity may occur as water with ions 

have higher conductivity than the water without ions. This should not be confused 

with distilled water which is water known to have many impurities as salts, 

colloidal particles, and are removed through one or more processes of distillation.  
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3.2.4 Buffer Solution Used in this Research 

The buffer solution for controlled pH was prepared using the chemical compounds 

supplied from Sigma-Aldrich. The solutions denoted as A, B and C will be 

explained therein. 

Solution A 

(0.1M KH2PO4 + 0.15M NaCl)                                                                         (3-2) 

This is equivalent of 1litre                                       

 

13.6g of KH2PO4 weighed into beaker and dissolved using the deionised water, 

also; 8.8g of NaCl weighed into a beaker and dissolved using the deionised water; 

both are mixed together and filled to the 1 litre mark. This was repeated thrice for 

3 litres of solution to be obtained. 

 

Solution B  

                           (0.1M K2HPO4 + 0.15M NaCl)    (3-3) 

 

4.6g of K2HPO4 was weighed into a beaker and dissolved using the deionised 

water, also; 1.8g of NaCl weighed into a beaker and dissolved using the deionised 

water. Again both were mixed together and filled to the 200 ml mark in a flat-

bottom volumetric flask.  

 

Solution C  

Put pH probe in solution A and gradually add Solution B into Solution A. 

Continue stirring while the 3000 ml beaker is sitting on the magnetic stirrer until 

the pH scale of attained 5.3 is obtained. The solution so obtained is known as 

solution C.  

 

3.2.5 Protein Reagent 

This is a reagent for detecting protein in a solution. The key objective of this work 

is to determine the protein concentration in the homogenized biomass substrates 

using the reagent. Protein reagent is a blue solution through which a Bovine 
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Serum Albumin (BSA) standard curve is produced. A high-quality, calibrated 

BSA solution (2 mg/mL) is serially diluted to create the protein assay standard 

curves. This is required in the measurement of protein concentration by means of a 

spectrophotometer. The procedure involved firstly preparing dilutions using 0.1 M 

phosphate buffer, pH 7.0, of each protein to 0.5, 5, 2, 4, and 5 mg/mL, then a 

series of dilutions were prepared starting at 100 mg/ based on the product, T1949 

Total Protein Reagent [209]. These bovine serum albumin (BSA) solutions are 

considered as protein concentration reference standards for use in bicinchoninic 

acid assay (BCA), Bradford and other protein assay protocols. It is a universally 

accepted reference protein for total protein quantitation with the albumin standard 

precisely formulated at 2 mg/mL in an ultrapure 0.9% sodium chloride solution 

[210]. 

3.3 Equipment 

The main machine used in this research was the GYB40-10S /GYB60-6S 2-Stage 

homogenizing valve HPH and has been described extensively in Chapter 2. Other 

pieces of equipment used in this research work are as listed in Table 3-3 which 

includes characterisation and electrical equipment. Others not listed can be 

referred to in Appendix E 
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Table 3 - 3: Characterisation and Electrical Equipment 

Centrifuge 

Scanning Electron Microscope (SEM) 

Spectrophotometer 

Energy Meter 

Laboratory Oven 

High-Speed Stirrer 

Weighing Scale 

Hotplate (Balance) Magnetic Stirrer 

pH Meter 

Delsa Nano C (Particle Size Analyser) 

 

3.4 Experimental Procedures  

Two-way experimental procedures have been applicable to this research. These 

are almost similar but with slight difference in the measurement and 

quantification. The reason for this has been as a result of the substrates state; 

yeasts being in solid form and microalgae in liquid form as supplied by the 

institute; CCAP (see Figure 3-2) [207]. These will be discussed herein in the sub-

sections that follow. 

3.4.1 Experimental Procedure for Baker’s Yeast (Saccharomyces 

cerevisiae) 

In addition to the two-way experimental procedures as previously explained, two 

approaches have been employed in the experimental work in this study. The RSM 

approach was used in conducting the optimization of all experimental work. The 
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experimental procedure based on the RSM technique will unfold in the next 

Chapter. 

The One-Variable-At-a-Time (OVAT) approach was also employed for the 

experiments; this was aimed at investigating the effect of the higher pressure 

homogenizer device (GYB40-10S 2-stage homogenizing valves HPH) as a cell 

disruption machine on protein yield from the biomass materials considered which 

have been homogenized using the buffer solution, and to determine range of 

dataset for the parameters considered in the study.  

 

3.4.1.1 Homogenization  

  

For the experimental work on the use of the HPH, start by cleaning machine by 

running clean water through it and while the machine is on for about half an hour, 

it clears and cleans up the debris and particle that would probably cause error in 

the process. While the cleaning up is in place, break down the solid Baker’s yeast 

and weigh out 950 g into the beaker. Measure 725 ml of Phosphate buffer 

(solution C) and then pour into the broken yeast. Mix using the electric laboratory 

mixer. For further cleaning, pass 2 litres of deionised water through the 

homogenizer and when the deionised water is almost completely empty in the 

HPH that is when the poured deionised water is almost at the inlet conical section, 

pass through the sample of yeast suspension (approx. 1625 ml) almost 

immediately down the feeder’s tank of the HPH. 

By turning the first and second hand wheel to increase pressure build up and 

balancing of pressure respectively, the desired pressure is attained (see Figure 2-16 

of Section 2.5.3 in Chapter 2). As the connected pipe for yeast collection at the 

homogenizer outlet becomes cloudy during the substrate homogenization, this 

flows through to the exit, then start collecting the suspension in a graduated 

cylinder. It is important at this point to ensure that the temperature remain 

constant. After collecting one litre of the cloudy suspension (yeast suspension 

mixed with deionised water). This was thrown away as it would have mixed with 

deionised water used for the cleaning of HPH at the start of the experiment. For 

each new homogenized sample, pressure was recorded for data purposes. For 
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cycle more than 1, the collected homogenized yeast at the HPH exit was poured in 

again into the feeder’s tank. Temperature was checked regularly with a 

thermometer to achieve the desired temperature before pre-treating in the HPH.  

The homogenized yeast collected, was considered as homogenized undiluted yeast 

while the untreated yeast is regarded as the mixed soluble yeast that never passed 

through high pressure homogenizer (HPH); i.e. unhomogenized. The homogenized 

undiluted yeast was then separated into 4 tubes measuring 10 ml, 20 ml, 30 ml and 

100 ml each. Phosphate buffer (solution C) with pH 5.3 in the ratio of 90 ml, 80 

ml and 70 ml was added to the 10, 20 and 30 ml tubes respectively, to achieve 100 

ml of sample, thus yielding ratios of 10:90, 20:80, 30:70 and 100% or 0.100. 

 

3.4.1.2 Centrifugation 

   

Each of the samples was emptied into the centrifuge tubes, and then centrifuged at 

13,000 rpm over an hour as detailed in the operation manual. In order to separate 

the supernatant from the pellets, the appropriate procedures were followed. The 

supernatant was filtered using the syringe and syringe filter. 200 µl of the filtered 

sample and 900 µl (×2) of the Buffer (solution C) was taken into a test tube, that 

is; 2000 µl in total. Also, 2000 µl of homogenized undiluted yeast was taken. This 

process was repeated 6 times.  

500 µl of each of the replicate tubes were taken into a cuvette and then diluted 

with 2000 µl of total protein reagent. The results for each of the six replicate 

cuvettes for each sample in the dataset were averaged to form a single reading for 

that sample, using the spectrophotometer and the results so achieved are read of on 

the protein curve. The spectrophotometer was set at the wavelength of 550 nm. 

This was left to stay for 30 minutes before determining the protein concentration.  

 

 

 



  81  
 

3.4.1.3. Spectrophotometer  

 

Technically, what the spectrophotometer is measuring is not how much light is 

absorbed, but how much is transmitted. The percentage transmitted can be easily 

converted to absorbance by using this formula (see equation 3-4); 

                                                          (3-4) 

There are two ways of determining protein concentration; the first way is through 

the use of the Beers-Lambert law. 

From the equation, the absorbance equals the concentration of the molecule of 

interest (c), times the length of the path the light takes through the cuvette (b; 

always 1 cm for our spectrophotometers), times the extinction coefficient (ε) as 

shown in (equation 3-5); 

 

                                 Abs=εbc                                                                          (3-5) 

 

The extinction coefficient is the part that is specific for each compound and must 

be determined experimentally. It can be determined from the standard curve 

through solving for ε, because the absorbance and concentration are known, and it 

can also measure the width of the cuvette. Once ε is known it can then be used for 

other solutions of the same molecule. 

 

The other way is by determining the concentration from the standard curve (a 

graph of absorbance against concentration for standard solutions whose 

concentrations are known). This is then compared with the absorbance of an 

unknown solution of the same molecule to that curve. Using the linear graph 

equation (equation of a straight line) equation 3-6; 

 

                                 y = mx + C                                                                   (3-6)    

Where, m = slope or gradient, and C = Intercept at Y-axis 
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Therefore, the protein concentration at the X-axis can then be solved since the 

absorbance value on the Y-axis is known from the standard (protein) curve. Based 

on the prepared standard protein curve (see Appendix F), the protein concentration 

yield was determined through UV absorbance rate of the solution reading from the 

Spectrophotometer as the light passes across the liquid (liquid diluted with the 

total protein reagent). Section 3.5 below explains in detail protein curve 

preparation and spectrophotometer.  

 

3.4.2 Experimental Procedure for Microalgae (Chlorella vulgaris) 

The experimental procedure for microalgae was basically similar to the procedure 

described above for Baker’s yeast; the difference is the measurement and 

quantification of the substrate against the phosphate buffer (solution C) pH 5.3.  

10 ml of Chlorella vulgaris is mixed into 1000 ml of buffer solution C (phosphate 

buffer) at any time before pre-treating in the homogenization stage. The 

microalgae were not cultured and were pre-treated the same way supplied (by the 

Institute; CCAP). After the pre-treatment using the HPH, the other steps taken 

were same for the Baker’s yeast. For further reference on the strain supplied, refer 

to Appendix A of this thesis. 

3.5 Protein curve preparation and spectrophotometer 

A standard protein curve preparation is needed for determination of the protein 

concentration. One absolute way for determining the concentration of any given 

protein in a solution having an unknown protein concentration is to compare the 

unknown solution with a set of protein solutions of known concentrations. This 

works by having the curve calibrated and in the process enable to determine the 

exact protein concentration measure in a solution under investigation. Therefore 

the absorbance associated with a set of protein solutions of known concentrations 

is otherwise known as the protein standard curve. Before setting up the assay, the 

protein to be used as a standard is decided upon and the range which it is likely to 

be sensitive is determined. As sensitivity varies from one reagent batch to another, 

immunoglobulin G (IgG) is frequently used as a standard in Bradford assay in the 
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same way as BSA (bovine serum albumin). With the BSA solutions, 0.1 M 

phosphate buffer, pH 7.0 of each protein to 0.5, 1, 2, 4 and 5 mg/ml were prepared 

to dilutions. Starting at 100 mg/ml and prepared serial dilutions were made using 

Total Protein Reagent and with the UV procedure a Standard Curve for BSA was 

prepared omitting 0.25 mg/ml dilution. The absorbance of the resulting solution is 

measured using the spectrophotometer (Figure 3-10) and the measured absorbance 

of the protein versus the known concentration of BSA is plotted. The resulting 

graph will then be the protein standard curve for determining the unknown protein 

concentration (see Appendix F). 

3.6 Energy Cost Analysis 
 

The cost analysis of the high-pressure homogenizer (HPH) was necessary in the 

experimental set up, to determine how much energy was consumed in the 

disruption of the biomasses, (Baker’s yeast and Chlorella vulgaris in the liberation 

of the inner contents (protein) through their cell wall breakage). In doing this, an 

energy meter by Efergy was employed, which measures electrical energy 

consumption on any appliance. The tabulated and recorded cost for both 

biomasses were then translated and entered into the design expert along with the 

homogenization parameter to efficiently analyse the cost effectiveness of the 

process. 

3.7 Design of Experiment (DOE) 

3.7.1 Introduction  

The Section discusses the general view on design of experiment (DOE) in relation 

to the considered design; Box Behnken design (BBD), analysis of the design as 

well as the desirability approach function. 

3.7.2 Design of Experiment (DOE) Overview  

This technique enables designers in determining simultaneously the individual and 

interactive effects of many factors that could affect the output results in any 

design. This was developed by Sir Ronald Fisher in the early 1920s at Rothamsted 

Agricultural Field Research Station in Harpenden London and in his experiment; 
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he used DOE that could differentiate the effect of fertilizer and the effect of other 

factors. This has been used since in wide range of disciplines. It can be used in 

finding answers in situations such as; “What is the relationship between factors 

and responses?”, “What are the best combinations of factors value so as to 

maximize or minimise multi responses?”, “What is the main contributing factor to 

a system?” and so on. 

Taguchi and 2-level factorial design methods are the commonest designs amongst 

the many design of DOE. These are characterized by the lowest number of runs 

when studying a process with multiple factors and multiple responses. However, 

based on this fact, the quadratic effect of each factor cannot be determined using a 

2-level factorial design, while also the interactions between the factors affecting 

the process cannot be determined through the use of the Taguchi method. This is 

as a result of the alias structures and this determines which factors are confounded 

with each other [211]. For these two reasons, the Taguchi and 2-level factorial 

designs are mainly used as screening designs in the identification of the main 

effects within a system. Realistically, Response Surface Methodology (RSM) on t 

one hand is able to fully determine all the factor’s effects and their interactions. 

RSM is therefore considered as the chosen experimental methodology in this 

research through specifically using the Box-Behnken Design (BBD) in the 

implementation. RSM as a statistical technique is specially designed in optimizing 

the system’s output, where the maximal and minimal goals are considered. 

Equation 3.5 shows the function identifying the response surface and consists of 

three capital-sigma summations. The operative and study regions are coincident in 

this particular design and signified each factor being investigated over its whole 

range. This is considered the competitive advantage for BBD over the central 

composite design (CCD), which is another example of the RSM approach [212]    

 

3.7.3 Response Surface Methodology (RSM) 

Box and Wilson [213] introduced the response surface methodology (RSM) 

concept in the 1950s having considered it as the best known type of DOE design. 

It has been adopted for the experiments of this research and will be elucidated in 
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the chapters to come. This also follows the Box-Behnken Design (BBD) whose 

variables are shown respectively in the appropriate chapters. RSM is a collection 

of statistical and mathematical techniques that can be used in the improvement, 

development, and in the optimizing processes, products, and systems. The goal is 

to find the model of the proposed system, by performing data fitting and 

regression analysis and the methodology is applied to the measured yields using 

the statistical software, Design-Expert v 8.0. Based on this, RSM also specifies the 

relationships among one or more of the measured responses and the essential 

controllable input factors [214]. Therefore all variables being measurable, and be 

repeated with negligible error, the response surface can be expressed by function 

y, where k is considered the number of independent variables: 

                           y = f(x1, x2, …xk)                               (3-7) 

 

RSM is a mathematical and statistical technique set useful for modelling, 

interpreting and predicting the outputs of interest to several input variables χ (from 

level i to j) with the aim of optimizing a single or multiple responses ys [211, 213]. 

To optimize the responses ys, it is necessary to find an appropriate approximation 

for the true functional relationship between the independent variables and the 

response surface. A second order polynomial (Equation 3-8) is usually used in 

RSM [211, 215], where the values of the model coefficients b0, bi, bij and bii can 

be estimated using regression analysis. 

  

    2y iiiijiijiio bbbb                      (3-8) 

 

The first summation term represents the main factor effects, the second term 

reflects the quadratic effects, and the third stands for the two-factor interaction. As 

stated above, the independent variables in this research will be described in 

chapters to come. The second order polynomial model, given by equation 3-8 was 

applied on one or two responses given as cost (Euro/hour) and protein yields 

(mg/mL). The same statistical software was used in the generation of the analysis 

of variance (ANOVA) and the response plots. 
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3.7.4 Box Behnken Design (BBD) 

BBD is one of the most popular response surface methodology design (RSM) 

alongside central composite design (CCD). BBD is based on three levels of each 

input factor and are usually coded as -1, 0, +1 representing (minimum, central and 

maximum). This design was developed by Box and Behnken in 1960 [215]. This 

is constructed by first combining two-level factorial designs with incomplete 

block designs and thereon a specified number of central points are added. A 

schematic diagram for a BBD of three factors is presented in Figure 3-3. 

 

Figure 3 - 3: Schematic diagram for BBD of three factors [216] 

 

Each dot in Figure 3-3 represents an experimental run and the full design of 

experiment in the case of BBD with 3 factors and 3 levels requires 17 runs 

indicating 12 border runs (the dots in blue colour at the midpoints of the cube’s 

vertices) and 5 replications of the central point (in red), which is where the ideal 

solution is predicted to lay, based on the investigator’s experience. Particularly, 

BBD has the following related characteristics that distinguish and place it in a 

better competitive advantage as when compared to CCD. The main features are: 

 BBD design has 3 levels for each factor. 

 The design should be sufficient to fit a quadratic model; meaning it is 

created for quadratic model estimation. 

 Each factor is placed at one of the three equally spaced values, usually 

coded as -1, 0, +1. 

 It provides strong coefficient estimates near the centre of the design space, 

but weaker at the corners of the cube as a result of non-existence design 

points at these locations. 

 Sensitive design to missing data points and failed runs. It requires at least a 

double replication of runs to achieve an accurate model. 
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 Has user-defined specific and equidistant positioning of design points. The 

estimation variance should more or less depend only on the distance from 

the centre (this achievable exactly for the designs with 4 and 7 factors), and 

should not vary too much inside the smallest cube containing the 

experimental points.  

 

3.7.5 Advantages of (BBD) over Central Composite Design (CCD) 

BBD have some advantages over the Central Composite Design (CCD). These 

will be elucidated below: 

 BBD requires that factors be varied over 3 levels as this makes 

experimentation less costly if actual prototypes are being constructed in the 

experimentation.  

 They are all spherical designs that can rotate with some provision of 

orthogonal blocking. 

 Separation of runs into blocks for the Box-Behnken design allows blocks 

to be used in such a way that the estimation of the regression parameters 

for the factor effects is not affected by the blocks. 

 Another advantage of these designs is that there are no runs where all 

factors are either at the +1 or -1 levels. 

 The main advantage of BBD is in addressing the issue of where the 

experimental boundaries should be, and in particular avoidance of 

treatment combinations that are extreme. 

 BBD offers the advantage of requiring fewer numbers of runs, but this 

disappears when a factor of 4 or more is used. 

 

3.7.6 Design Analysis 

Determining the squares of the model requires the use of some mathematical 

equations. These mathematical equations (3-9 – 3-16) are detailed completely in 

Appendix G1. 
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3.7.7 Response Surface Methodology (RSM) Required Steps  

The Response Surface Methodology approach is considered as a set of sequential 

steps, studied with the purpose of optimizing the final protein yield and cost 

effectiveness, which are regarded as the outcomes of the system under 

investigation. The following steps were performed so as to develop a mathematical 

model for the proposed protein production system: 

1. Determining the essential process input factors. 

2. Determining the limits for each factor considered. 

3. The development of a design matrix. 

4. Performing the experiment. 

5. Measuring the responses. 

6. Development of the mathematical model 

7. Estimation of the coefficient in the model. 

8. Testing the adequacy of the developed models. 

9. Model reduction. 

10. Development of the final reduced model. 

11. Post analysis. 

 

3.7.7.1 Determining the essential process input factors  

 

The essential input factors that affect the output of the system can be identified 

through conducted research and a literature review as applicable to this study or by 

conducting a preliminary study. From the study, it emerged that particle size 

reduction was an important variable on responses such as protein concentration 

yield, and possibly production cost in euro/hour. The number of cycles (passes) 

and temperature were considered as factors. 

 

3.7.7.2 Finding the limits of each factor 

 

In other to determine the limit of each factor, trial homogenization of biomass 

substrate materials were performed, for ranges of pressure, temperature, and 

number of cycles.  
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As different HPH’s have different working pressures, it was critical not to operate 

above the working pressure specified by the manufacturer. For the current HPH; 

GYB40-10S high pressure homogenizer, it had a maximum working pressure not 

exceeding 90 MPa and as a result the range 30-90 MPa was considered after 

several trials and from a literature study. The number of cycles, were set at 1-5, 

and temperature ranges were set as 15 – 25 °C for the first set of experiments, and 

30 – 50 °C for the second set of experiments. Design-Expert v.8 software was used 

to code the data, develop the design matrix, and analyse the case; the limits for 

each were coded via the following relationship;  

 

                           X1 =  
2(2𝑋−(𝑋𝑚𝑎𝑥+𝑋𝑚𝑖𝑛)

(𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛)
                                                (3-17) 

 

Where;  

X1 is the required coded value,   

X is any value of the factor which wanted to be coded, and  

Xmax, Xmin are the upper and lower limits of the factor being coded respectively 

[208]. 

 

3.7.7.3 The development of the design matrix 

 

The design matrix reported shows the response’s mean values for both biomasses; 

Saccharomyces cerevisiae and Chlorella vulgaris, along with the different ratios 

(10:90, 20:80 and 30:70) considered. For yeast (Saccharomyces cerevisiae) two 

temperature ranges were applied (15-25°C) and (30-50°C) and for Microalgae 

(Chlorella vulgaris) only one temperature range of (30-50°C) was applied. 

Substrate to buffer ratios of (10:90, 20:80 and 30:70) were applicable to all 

conducted experimental work and for the three factors, the total number of runs is 

17. These experimental runs are enough to estimate the coefficients in Equation 3-

8. 
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3.7.7.4 Performing the experiment 

 

The cell disruption and homogenization experiments were accomplished 

accordingly in relation to the design matrix and in a random order so as to avoid 

any systematic error occurrence in the experimental work. 

 

3.7.7.5 Measuring the responses 

 

All responses, mentioned previously in chapter one, were measured and recorded 

for responses in all experiments and then used in the development of the model. 

 

3.7.7.6 Development of the mathematical model 

  

The functional relationship, as an example for three factors representing any 

response of interest can be expressed as y = f (A, B, C) and Equation 3-8 can be 

transformed into: 

 

Y = b0 + b1A +b2B + b3C + B11A
2 
+ b22B

2
 + b33C

2
 + b12AB  

         +b13AC + b23BC +b33C
2
 + b12AB + b13AC + b23BC                              (3-18) 

 

3.7.7.7 Estimation of the coefficient in the model 

 

Regression analysis was applied in order to estimate the values of the coefficients 

in Equation 3-18. 

 

3.7.7.8 Testing the adequacy of the developed models 

 

The analysis of variance (ANOVA) was used to test the adequacy of the models 

developed.  The statistical significance of the models developed and of each term 

was examined using the sequential F-test, lack-of-fit test, and other adequacy 

measures (i.e. R
2
, Adj- R

2
, Pred. R

2
 and Adequate Precision) using the same 

software to obtain the best fit. The Prob >F (is sometimes called the p-value) of 

the model and of each term in the model can be computed by means of ANOVA. 

If the Prob >F of the model and of each term in the model does not exceed the 
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level of significance (i.e. α = 0.05), then the model may be considered adequate 

within the confidence interval of (1- α); thus in this example 95% will be reliable. 

For the lack-of-fit test, the lack of fit could be considered insignificant if the Prob 

>F of the lack of fit exceeds the level of significance. Table 3-4 below is a 

summary of the ANOVA table [211, 214]. The term SSi represents the sum of 

squares of the terms in the model, while MSR and (Fcal – value) represent, 

respectively, the mean square of the residuals and a comparison of the term 

variance with residual (error) variance. The follow up equations representing each 

and every one of these; R
2
, Adj- R

2
, Pred. R

2
 and Adequate Precision can be seen 

at Appendix G2   

 

Table 3 - 4: ANOVA Table for full model [211] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where; 

  

 P: Number of coefficients in the model. 

 N: Total number of runs. 

 n0: Number of centre points. 

 df: Degree of freedom. 

 MS:  Mean square. 

 MSR: Mean square of the residuals 

 

 

 

Source SS df MS 
Fcal.- 

Value 

p-value 

or Prob > F 

Model SSM p 

Each SS 

divided by 

its df 

Each 

MS 

divided 

by MSR 

From table or 

software 

library 

 

A SSa 1 

B SSb 1 

C SSc 1 

AB SSab 1 

AC SSac 1 

BC SSbc 1 

A^2 SSaa 1 

B^2 SSbb 1 

C^2 SScc 1 

Residual SSR N-p-1 - 

Lack of 

Fit 
SSlof N – p – n0 From table 

Pure Error SSE n0 - 1 - 

Cor Total SST N - 1       -      - - 
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3.7.7.9 Model reduction 

  

The complete mathematical model as shown in Equation 3-18 would normally 

contain some terms that are not significant  and as such, are eliminated , i.e. terms 

with p-value being greater than α. This elimination can be done manually or 

automatically by choosing one of the selection procedure provided by the 

software. 

  

3.7.7.10 Development of the final reduced model 

 

The final reduced model is determined by applying the above steps, and can be 

built upon at this stage, by the software. The significant terms are only contained 

in the final reduced model at this stage, but a further reduced quadratic ANOVA 

Table can be produced if the need be. 

 

3.7.7.11 Post analysis 

 

Once the final model has been obtained, the factors and factors-interaction effects 

will be interpreted via contours and perturbation plots provided by the software. 

These plots can also be presented in the form of 3D graphs where they represent 

the factors that contribute in the response. 

Finally, by using the developed model, it is easy to optimise cell disruption and 

homogenization conditions in the biomass substrates to improve the process and 

lead to the desired protein concentration yield, as well as economic feasibility 

(cost) of the conducted research.  

 

 3.7.8 Optimization 

3.7.8.1 Optimization through Desirability Approach Function  

 

The desirability approach is a method that allows for the optimization of a model 

through constraining the allowed variability of certain factors. This is 

recommended due to its advantages such as simplicity, availability in Design 

Expert, and thus provides flexibility in weighting and giving user-defined 

importance for input variables and responses. Solving such multiple response 
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optimization problems using this technique consists of using an approach that 

combines multiple responses into a dimensionless measure performance known as 

the overall desirability function (D). The desirability approach consists of 

transforming each estimated response, Yi, into a unit-less bounded by 0 < di < 1, 

where a higher di value indicates that Yi is more desirable. If di = 0, Yi is totally 

undesirable, or vice versa when di = 1 [217].  

In this study, the individual desirability for each response di is calculated using 

equations 3-24 – 3-27 (see Appendix G3). The shape of the desirability function 

can be changed by the weighted field wti. Weights are used to give emphases 

which are added to the upper/lower bounds or to emphasize the target value. 

Weights could be ranged between 0.1 and 10; weights greater than one gives more 

emphasis to the goal (D), while weights less than one give less emphasis. In the 

desirability objective function (D), each response can be assigned an important (r), 

relative to the other responses. Importance varies from the least important of 1(+), 

to the most important, a value of 5 (+++++). If the varying degrees of importance 

are assigned to the different responses, the overall objective function is shown 

below in equation 3-28 (see Appendix G3), where n denotes the number of 

responses in the system and Ti is the target value of the i
th

 response [212]. 

 

3.7.8.2 Numerical and Graphical Optimization 

Optimizing using the Design-Expert software identifies a combination of factor 

levels that is simultaneously satisfying certain requirements which are usually 

referred to as the “optimization criteria” at every one of the responses and input 

variables, i.e. multiple-response optimization. Carrying optimization using the 

graphical and numerical methods is by choosing the desired targets for each factor 

and response. The numerical optimization features in the software so as to 

maximize the objective function and provides the associated solution points in the 

variable domain. This process that involves optimization combines the goals and 

maximizes the overall desirability function (D) 

The software defines regions where requirements simultaneously meet the 

proposed criteria in the graphical optimization. This is done through 
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superimposing or overlaying critical response contours on a contour plot. The best 

compromise can then be performed through visual search and when it involves 

cases of many responses, it is best recommended to perform the numerical test 

first; otherwise it will not be possible to cover the feasible region. The graphical 

optimization displays the area of feasible response values in the factor space. 

Regions that do not fit the optimization criteria are shaded [212]. Chapter 4 

provides examples of numerical optimization with the desirability function (D) 

selected. 

3.8 Summary 

The chapter have covered the materials and experimental procedures as applicable 

to the research. Most importantly, the equipment characterisations have also been 

highlighted. These were used in the different processes of the experimental work. 

A protein curve was prepared to determine the protein content in the substrate 

after homogenization through the use of a spectrophotometer. As the substrates 

considered in the research were two, two different experimental procedures have 

been presented with measurement and quantification showcased for both 

substrates. Design of Experiment software has been highly studied and was 

required to predict and optimise the homogenizing process after treating the yeast 

and the micro algae via Response Surface Methodology (RSM) so as to develop 

mathematical models that relate the process input parameters to their output 

responses. The next chapter will study the three most important input parameters 

of homogenization process; the number of cycle (passes), temperature, and 

pressure. These will be thoroughly investigated to determine their effects on the 

homogenized substrates along with the output features; protein concentration 

yield, and cost for the energy consumption.  
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 Chapter 4 
 Results and Discussion 

4.1 Introduction 

This Results and Discussion chapter has been divided into three categories. This 

starts off by determining the set range by one-variable-at-a-time (OVAT) approach 

for the operational parameter; (15 - 25°C) for temperature, (30 - 90 MPa) for 

pressure and number of cycles as (1 - 5). These were determined through 

experimentation with the substrates used in this study, Baker’s yeast 

(Saccharomyces cerevisiae) and Microalgae (Chlorella vulgaris), to determine the 

effect of temperature on yeast. Another range of temperature (30 – 50°C) was also 

considered for Baker’s yeast (Saccharomyces cerevisiae) to compare these results. 

As the results showed no appreciable difference between the two sets of 

experiments conducted, the temperature range of 30 – 50 °C was not applied to 

Microalgae (Chlorella vulgaris).  

Particle size analysis was performed on the substrates using Delsa Nano C; a 

software package for determining the distribution of particle sizes on substrates in 

suspension, with sample size ranging between 0.6 nm to 7 μm. Scanning Electron 

Microscope (SEM) analysis was also conducted on yeast biomass. 

Characterisation analyses were conducted using the both processes to determine 

the effect of HPH on the biomass substrates after homogenization. 

For clarity and readability, the presented work in this section has been divided into 

two parts: Baker’s yeast (Saccharomyces cerevisiae) and Microalgae (Chlorella 

vulgaris), with the former further split into Baker’s yeast homogenized at 

temperature range (15-25 °C) and Baker’s yeast homogenized at temperature 

range of 30 to 50 °C, while the latter (Microalgae) is split into Microalgae 

homogenized at a temperature range of 15 to 25 °C. The results obtained were 

achieved through the application of Response Surface Methodology (RSM) in 

developing mathematical models for the substrates above via the Design Expert 

V.8. These were required in predicting the process. In further analysis the 

substrates were also investigated considering the analysis of variance (ANOVA), 
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analysis for each response; their validation along with the effects of process 

parameter of the substrates on each response. These are all discussed and 

showcased in the Section. 

Finally, numerical and graphical optimization was applied to the responses to 

determine the energy cost and feasibility of the process. 

 

4.2 Baker’s Yeast Analysis 

In determining the protein concentration yields from treated and untreated Baker’s 

yeast and to also determine the set range of the parameters for further 

experimental work, different level experiments were conducted.  

 

4.2.1 Baker’s Yeast Control Sample 

 Control samples were prepared, to compare them with the treated samples. This 

was required in determining the set range of the parameters; pressure, temperature 

and number of cycles (passes), applicable to this research before the 

commencement of the experiments using the HPH. The control samples are those 

samples that never passed through the homogenizer, i.e. are unhomogenized, but 

have been treated with solution C (Refer to Chapter 3). The control samples did 

not undergo any pressure and number of cycles, since they never passed through 

HPH. It was however possible to determine the temperature, which was close to 

that of the room temperature and could be quantified into ratios since it was 

treated with solution C. The UV absorbance rate as shown in Table 4-1 is the 

amount of protein content that has been absorbed under UV light in the 

Spectrophotometer after being treated with the total protein reagent. For further 

details, see Appendix F for the conversion process to protein concentration 

(mg/mL). 

Again as seen in the results presented in Table 4-1, it is seen that the untreated 

Baker’s yeast can be considered as the control sample. The samples were 

separated into ratios in solution with solution C at the rate of 10:90, 20:80 and 
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30:70. The results obtained indicate that protein concentration increased with the 

increased ratio of dilution of Baker’s yeast against the solution (Solution C). 

Untreated Baker’s yeast, at 10% to solution C at 90%, yielded 0.002 mg/mL, 

While 20% to 80% of solution C and 30% to 70% of solution C resulted in 0.005 

mg/mL and 0.008 mg/mL respectively.  

Table 4 - 1: Control Samples – Untreated Baker’s Yeast at Different Ratios 

Ratios UV Absorbance Rate Protein Conc. (mg/mL) 

10:90 

 

0.0901 0.002 

20:80 

 

0.0903 0.005 

30:70 

 

0.0905 0.008 

 

4.2.2 Comparison Analysis Based on Pressure, Number of Cycle 

and Ratios with Treated Baker’s Yeast  
 

Tables 4-2 to 4-4 along with the graphs presented in Figures 4-1 to 4-3 represent 

the comparison analyses based pressure, number of cycles, and ratio with the 

control experiment sample at the different ratios depicted in Table 4-1. This 

showcases the effect of the parameters on the yielded protein concentration.  From 

the conducted experiment, Table 4-2 shows the result obtained when the analysis 

is based on pressure. Protein yields increased as the pressure applied during the 

homogenization increased. With the dilution ratio, the number of cycles and 

temperature constant, the protein yield rises with the pressure applied. This 

supported the view of Brookman and James [39] that exponentially increasing 

release of soluble protein being found with increasing pressure.  

Figure 4-1 has also shows this graphically in the variation of the proteins yields in 

the treated samples compared with the untreated Baker’s yeast. The treated 

samples homogenized at 30, 60 and 90 MPa, against the untreated sample show 

results of protein yields as; 0.020, 0.190 and 0.860 mg/mL respectively.  

Protein yield was found to be minimal in the untreated sample as low as 0.002 

mg/mL and only 0.020 mg/mL for the sample homogenized at 30 MPa pressure. 

This therefore shows an increase of 11 times the original.  
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Table 4 - 2: Comparison analysis based on pressure for Baker’s yeast 

Pressure 

(MPa) 

No of 

Cycle 

Temp. 

(°C) Ratio 

UV 

Abs. 

Protein Conc. 

(mg/mL) 

30 1 20 10:90 0.0912 0.020 

60 1 20 10:90 0.1017 0.190 

90 1 20 10:90 0.1433 0.860 

Untreated - 20 10:90 0.0901 0.002 

  

 

Figure 4 - 1: Protein yields comparison from treated and untreated samples 

of Baker’s yeast via pressure analysis 

 

Table 4-3 compares the protein yield based on the number of cycles. The yield 

increases as the number of cycle (passes) increases. This shows protein yields of 

0.020, 0.050 and 0.1290 mg/mL for the 1, 3, and 5 cycles respectively, wherein 

the pressure and the dilution ratio remain constant. This supports the view of 

Baldwin and Robinson [218], that inactivation increased with an increasing 

number of passes. Their conclusion has yet to be proven that the increase in the 
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fraction disruption was rather small when the number of passes exceeded three, 

these they obtained when Candida albicans was used as the microorganism. Their 

results were compared to those obtained in Table 4-3. There were variations found 

in the comparisons which was an indication that high-pressure homogenizer did 

affect the biomass substrates, when the untreated sample was compared with the 

treated at the pressures considered (see Table 4-1). 

Contrarily, Geciova et al. [54] have attributed the higher number of cycles (say, 3 

to 5 at a moderate pressure level (<150 MPa)) being preferred to a single pass at a 

higher pressure. This is to avoid excessive temperature that will result in damage 

to the biological constituents of the substrate. 

Table 4 - 3: Comparison of each analysis based on the number of cycles 

Pressure 

(MPa) 

No of 

Cycle 

Temp. 

(°C) Ratio UV Abs. 

Protein Conc. 

(mg/mL) 

30 1 20 10:90 0.0912 0.020 

30 3 20 10:90 0.093 0.050 

30 5 20 10:90 0.098 0.129 

Untreated - 20 10:90 0.0901 0.002 

 

 

Figure 4 - 2: Protein yields from treated and untreated samples of Baker’s 

yeast with number of cycles as basis for consideration 
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Table 4-4 depicts the protein yield results, based on ratio, from treated and 

untreated Baker’s yeast. This shows that protein yield increases with the ratio of 

substrate dilution with the solution C. At the various dilution ratios, the protein 

yield increases steadily, with the highest protein concentration (0.084 mL) 

obtained at the 30:70 dilution ratios. While the lowest yield was obtained from 

10:90 ratios with the value 0.020 mL increasing by 66.5% from 10:90 ratio to 

20:80 and increased further by 159.8% from 20:80 to 30:70 ratio. These results on 

protein concentration yield are supported by the research of Thiebaud et al. [171]. 

The result has also proven that the protein yields from untreated Baker’s yeast 

occur at a very minimal level and that these require treatment to enable more cell 

wall break down for the liberation of protein contents within the inner layer of 

Baker’s yeast.  

Table 4 - 4: Comparison analysis based on ratios 10:90, 20:80, and 30:70 with 

the untreated Baker’s yeast 

Pressure 

(MPa) 

No of 

Cycle 

Temp. 

(°C) Ratio 

UV 

Abs. 

Protein Conc. 

(mg/mL) 

30 1 20 10:90 0.0912 0.02 

30 1 20 20:80 0.092 0.032 

30 1 20 30:70 0.0952 0.084 

Untreated - 20 30:70 0.0839 0.008 

 

In the same way that protein increased with the number of cycles, this is also true 

for increases in ratios from 10:90 to 30:70 of treated yeast to dilution with solution 

C.  

The OVAT approach has indicated that treated samples yield more protein 

concentration compared to the untreated samples within the parameters of the 

experimental work.  

In general, in term of the considered parameters of pressure, temperature and 

number of cycles, it is observed that during homogenization through HPH for 

Baker’s yeast resulted in higher protein yield when there were increases in the 

value of these parameters. Thiebaud et al. [171] highlighted in their paper that the 
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pressure build-up in the intensifier and in the pipe section located before the HPH 

valve result in the increasing temperature due to the substrate compression. They 

further stressed that with increasing passes, repeat homogenization of the same 

fluid two or more times is assumed both the mean diameters and the width of size 

distribution of the fat globules [171].   

 

Figure 4 - 3: protein yields from treated and untreated samples with ratios 

10:90, 20:80, and 30:70 for Baker’s yeast as centre for basis 

 

4.3 Microalgae Analysis  

As conducted with Baker’s yeast, trial experiments were also conducted using 

Microalgae (Chlorella vulgaris). This was needed to determine the protein 

concentration yields from treated and untreated sample of Microalgae. Doing this 

also enabled the set range of the parameters for further experimental work to be 

established through the One-Variable-At-a-Time approach (OVAT).  
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4.3.1 Microalgae Control Sample 

The results presented in Table 4-5 show untreated Microalgae being considered as 

the control samples. The samples were separated into ratios in solution with 

solution C at the rate of 10:90, 20:80 and 30:70 respectively. The results so 

obtained indicate that protein concentration increased with an increase ratio of 

dilution of Microalgae against the solution (solution C). The UV absorbance rate 

with the corresponding protein concentration yields are as shown in Table 4-5. 

 

Table 4 - 5: Control samples – Untreated Microalgae at different ratios 

 

 

 

 

4.3.2 Comparison Analysis Based on Pressure, Number of Cycle 

and Ratios with Treated Microalgae (Chlorella vulgaris) 

Tables 4-6 to 4-8, along with the graphs in Figures 4-4 to 4-6, represent a 

comparative analysis based on pressure, the number of cycles, and the ratios, with 

the control experiment sample (Table 4-5). This demonstrates the effect of the 

parameters on the yielded protein concentration.  Table 4-6 shows the result 

obtained when the analysis is based on pressure. Protein concentration increased 

with the pressure applied during the homogenization, whereas the dilution ratio 

and number of cycles remained constant. This is supported by the findings of 

Brookman and James [39] which found that an exponentially increasing release of 

soluble protein can be achieved with increasing pressure. Protein yield was found 

to be minimal in the untreated sample, as low as 0.02 mg/mL and with 0.10 

mg/mL when homogenized at 30 MPa pressure. This therefore shows an increase 

of 501.2% in the protein yielded.   

Figure 4-4 shows graphically the variation of the proteins yield in the treated 

samples against the untreated Microalgae. Based on the results obtained, it is 

Ratios 

UV Absorbance 

Rate 

Protein Conc. 

(mg/mL) 

10:90 0.091 0.02 

20:80 0.092 0.032 

30:70 0.093 0.05 
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evident that Baker’s yeast yielded higher protein concentration at 60 and 90 MPa 

of 0.190 and 0.860 mg/mL respectively (Table 4-2). The protein yield at 30 MPa 

for Microalgae shows higher yield as compared to that of Baker’s yeast with result 

as 0.020 mg/mL (Table 4-2). 

 

Table 4 - 6: Comparison analysis based on pressure for Microalgae 

Pressure 

(MPa) 

No of 

Cycle 

Temp. 

(°C) Ratio 

UV 

Abs. 

Protein Conc. 

(mg/mL) 

30 1 20 10:90 0.096 0.10 

60 1 20 10:90 0.099 0.15 

90 1 20 10:90 0.106 0.26 

Untreated - 20 10:90 0.091 0.02 

 

 

Figure 4 - 4: Comparison of protein yields from treated and untreated 

samples of Microalgae at various pressures 30, 60 and 90 MPa 

 

 

Also Table 4-7 compares the protein yield based on the number of cycles. The 

protein yield increased as the number of cycle (passes) increased [169, 171, 174-
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was increased from 5 to 6 in the trial experiment for Microalgae, to confirm any 
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appreciable difference in the protein concentration yield. This supported the view 

of Baldwin and Robinson [218], who found that inactivation, occurred with 

increasing number of passes. Their conclusion suggested that the fraction 

disrupted was rather small when the number of passes exceeded three, a result they 

obtained when Candida albicans was used as the microorganism substrate. Their 

result was not supported in this research which shows a factor of 1.5 increases 

from 3 cycles to 5, compared to a factor of 1.33 from 1 cycle to 3 cycles. This was 

an indication that the high-pressure homogenizer did positively affect the biomass 

substrates and comparing the untreated sample with the treated at different 

pressure showed considerable difference. The untreated sample of Microalgae 

showed minimal protein yield, since it was not homogenized and as such, the cell 

walls were not ruptured. When compared to the protein obtained for cycle 1, it 

indicated that there was an improvement of protein yield by 199.7%. The 

untreated sample considered here was the 10:90 dilution ratios (see Table 4-5). 

The protein yield showed some improvement even after 5 cycles where 5 and 6 

cycles yielded 0.190 and 0.230 mg/mL respectively. This however does not 

complement the work of Vachon et al. [219] which proved that after five passes at 

200 MPa, an 8.3-log reduction was obtained for E. coli O157:H7, while a 

reduction of about 5.8 log CFU/ml was obtained for L. monocytogenes exposed to 

300 MPa after five passes. This probably was based on the substrate considered or 

on the homogenization pressure. Contrary to this, Geciova et al. [40] have 

attributed higher number of cycles (3 to 5), at a moderate pressure level (<150 

MPa) being preferred to a single pass at a higher pressure, to avoid excessive 

temperatures and the resulting damage to biological constituents of the substrate. 

Table 4 - 7: Comparison analysis of UV absorption and protein concentration 

at various numbers of cycles and constant pressure and temperature 

 

Pressure 

(MPa) 

No of 

Cycle 

Temp. 

(°C) Ratio 

UV 

Abs. 

Protein Conc. 

(mg/mL) 

30 1 20 10:90 0.096 0.100 

30 3 20         10:90 0.098 0.130 

30 5 20 10:90 0.102 0.194 

30 6 20 10:90 0.104 0.226 

Untreated - 20 10:90 0.091 0.002 



  105  
 

 

Figure 4 - 5: Comparison of protein yields from treated and untreated 

samples of Microalgae with the number of cycles as the basis for 

consideration 

 

Tables 4-8 gives the analyses of the protein concentration yield from treated and 

untreated Microalgae at various ratios of 10:90, 20:80 and 30:70. This shows that 

the protein concentration yield increased with ratio of substrate dilution with the 

solution C. At the various dilution ratios, the protein yielded increases steadily 

with the highest protein concentration rate obtained at the 30:70 dilution ratios to 

the value of 0.10 mL. While lowest yield was obtained from 10:90 ratio increasing 

by 16.63% from 10:90 ratio to 20:80 and increased again by 14.26% from 20:80 to 

30:70 ratio. The results presented in terms of protein concentration yield supports 

the findings of Thiebaud et al. [171], where protein concentration yield increased 

with the increase of dilution ratio. The result has also proven that there are protein 

yields, although minimal from untreated Microalgae. This shows that required 

treatment enables more cell wall breakdown for the liberation of protein contents 

within the inner layer of the substrates.  
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Table 4 - 8: Comparison analysis based on ratios 10:90, 20:80, and 30:70 with 

the untreated Chlorella vulgaris 

Pressure 

(MPa) 

No of 

Cycle 

Temp. 

(°C) Ratio 

UV 

Abs. 

Protein Conc. 

(mg/mL) 

30 1 20 10:90 0.096 0.100 

30 1 20 20:80 0.097 0.113 

30 1 20 30:70 0.098 0.130 

Untreated - 20 30:70 0.093 0.050 

 

When Microalgae sample was compared with Baker’s yeast (Figure 4-1), 

untreated Microalgae show higher yield of protein concentration with increasing 

dilution ratio. Both had the highest yield at a ratio 30:70 dilution rate. Microalgae 

resulted in a 34.96 % increment in the protein concentration yield at 30:70 dilution 

ratios with solution C when compared to Baker’s yeast at the same ratio of 

dilution.  

The OVAT approach to the substrate has indicated that treated samples yielded 

more protein concentration when compared to the untreated samples within 

parameters of the experimental work.  

 

 

Figure 4 - 6: Protein yields from treated and untreated samples of Microalgae 

at varying ratios of 10:90, 20:80 and 30:70 

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

 10:90
 20:80

30:70
Untreated

0.100 

0.113 

0.130 

0.050 

P
ro

te
in

 C
o
n

ce
n

tr
a
ti

o
n

 [
m

g
/m

L
] 



  107  
 

4.4 Structural Deformation of Baker’s Yeast and Analyses 

through Scanning Electron Microscope (SEM) 

This Section analyses and discusses structural deformation as effected by HPH 

during yeast homogenization. This analysis was carried out using the Scanning 

Electron Microscope (SEM). The SEM has been discussed previously in Chapter 

3, and its use, enabled particle size analysis to be conducted on biomass substrates 

such as Baker’s yeast. Studies carried out showed that SEM is not suitable for 

liquid biomass substrates, and for this purpose it was unable to be used in 

analysing Microalgae (Chlorella vulgaris) since it was delivered in liquid form. 

Further attempt to dry it in the oven for possible analysis, left no traces of it to be 

examined. Delsa Nano C was therefore considered as an alternative as use in 

determining the particle size distribution of Microalgae (Chlorella vulgaris). 

Analyses based on SEM have been sectioned into 2 parts; the 15 – 25 °C 

temperature range, and the 30 – 50 °C temperature range. Untreated Baker’s yeast 

with the treated (Homogenized) Baker’s yeast at different ratios; 10:90, 20:80, and 

30:70 images were compared through accessing their deformation under SEM. 

The operating parameters pressure, temperature, and the number of cycles for 

homogenizing each samples were also considered. All SEM images provided 

herein are at the same magnification of 100 microns 

 

4.4.1 SEM for Baker’s yeast homogenized between 15 – 25 °C 

temperature ranges 

Untreated Baker’s yeast and the dilutions at the different ratios: 

Figure 4-7 depicts SEM images that have not been treated through the HPH, and 

in particular image (a) in the Figure is not in any ratio which means that it has not 

been diluted with solution C in any form. Images b, c and d show the Baker’s 

yeast structure untreated with the three ratios of dilution with solution C, 10:90, 

20:80, and 30:70. From the image shown in Figure 4-7 (a), no deformations in the 

images observed under the SEM, similarly ratios 10:90, 20:80, and 30:70 also 

showed no structural damage because the samples had not passed through the 

HPH. Figure 4-7 (a-d) compares them with other images in this research which 

were treated and passed through the HPH. The magnification applied to the 
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images was the same throughout the study and because these are untreated, 

pressure, temperature and the number of cycles has not been considered.  

 

Treated (homogenized) Baker’s yeast at 30 MPa and at 25°C, along with the 

dilutions at the different ratios: 

Figure 4-8 depict images (e, f and g) corresponding to Baker’s yeast homogenized 

at dilution ratios with solution C of 10:90, 20:80 and 30:70, respectively. These 

have been homogenized at the first considered level of the cycle (1 Cycle) at a 

temperature of 25 °C and at 30 MPa pressure. With the homogenized pressure at 

30 MPa and cycle number at 1, the structural deformation on the images showed 

some damage visible to the eye. The shaft-like state in image (e), spore-like state 

in (f), and coated-like state in (g) are all due to the dilution and quantification rate 

before dryness at 105°C. The original slurry state of the homogenized yeast at 1 

cycle, 30 MPa and at 25 °C show some difference between before and after 

homogenization. This is clearly seen when compared to the untreated samples in 

Figure 4-7 (a, b, c, and d). 

 

Treated (homogenized) Baker’s yeast at 30 MPa and at 20°C, along with the 

dilutions at the different ratios: 

Figure 4-9 depict images (h, i, and j) and these indicate the next level of cycle (3 

Cycles), with the 3 different rates of dilution also shown to determine the extent of 

structural deformation of the substrates after treatment. The Baker’s yeast has been 

homogenized at a temperature of 20 °C and 30 MPa pressure. Homogenizing at 3 

cycles is seen to create some distortion and deformation on the SEM images being 

considered. Liu et al. [220] revealed that efficient breakage of the cell wall is as a 

result of a strength-providing component which is necessary in the effective 

removal of intracellular compounds. SEM use in the research has been 

necessitated so as to observe any alteration undergone by the yeast cells after the 

disruption process in every cycle. Disruption at every cycle during 

homogenization is said to break open and releases the inner contents within the 

cell walls. Another method of observing the alteration within the yeast cells after 
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disruption is the Transmission electron microscopy (TEM), but this has not been 

considered in this research due to non-availability.   

 

Treated (homogenized) Baker’s yeast at 30 MPa and 25°C, along with the 

dilutions at the different ratios: 

Figures 4-10 depict images (k, l, and m) and it is the third level of the cycle where 

the substrates have been homogenized over 5 cycles in the treatment under the 

high-pressure homogenizer. The pressure and temperature considered are same as 

above; 30 MPa and 25 °C respectively. Running the homogenizer over 5 cycles on 

the substrates elongates and stretches out the inner components that have not been 

broken in the previous cycles. This as a result make the end product to be greatly 

slurried, and the generated heat through cavitation then allows the homogenized 

soluble Baker’s yeast to be very viscous due to the high pressure that have been 

applied during the homogenization. 

From a comparison of the images in Figures 4-8 to 4-10, with those in Figure 4-7, 

it is clear and evident that there are changes in the microstructure and inner 

content of Baker’s yeast after the homogenization processes. Physical changes 

were observed during the homogenization process in the form of size of cell 

debris, viscosity and the surface area of the homogenized yeast. These physical 

changes are as a result of homogenizing at the considered parameters such as, 

higher pressure, temperature, and the number of cycles. Baker’s yeast cell wall 

disruption by mechanical means liberates the inner contents which are known to 

contain protein. Accordingly, during the disruption process, the loss of cell wall 

mannoproteins in the yeast will alter the wall porosity, and this is said to facilitate 

the release of intracellular macromolecules with no effect on the wall integrity. 

The release of these intracellular molecules is determined by the functionality of 

the plasma membrane and the porosity of the yeast cell wall. 

 As a result of this, Shirgaonkar et al. [166] have highlighted alot of controversy 

existing in the literature as regards the exact cause of the cell disruption in the 

high-pressure homogenization (HPH). As discussed previously in Chapters 2, 

many authors have therefore postulated their different views on this issue; Save et 

al. [186] have proposed that cavitation and the shockwaves/pressure impulses 
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produced as a result of cavity collapse are responsible for cell disruption, while 

Keshavaraj Moore et al. [183] proposed the impingement and impact as the main 

causes for the cell disruption. Middelberg [157] has also reviewed the proposed 

physical processes responsible for the disruption of fat globules and 

microorganisms during homogenization.  

    

    

(a) Untreated yeast with no ratio; (b) Untreated yeast at 10:90 ratio of solution C; (c) Untreated yeast at 20:80 ratio 

of solution C; (d) Untreated yeast at 30:70 ratio of solution C 

Figure 4 - 7: Untreated Baker’s yeast at no ratio and ratios at 10:90, 20:80 

and 30:70 of solution 

 

The overall aim of disruption of biomass substrates is to reduce the particle size 

which leads to an increase in the surface area. As the cell walls of the substrates 

are broken down, this will in the process releases the inner most contents of the 

cell wall; the released protein then increases the fermentation rate of the 

substrates. The presented images are for the 15 – 25 °C temperature range. 

(a) (b) 

(c) (d) 
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(e) At 1 cycle with ratio 10:90 of solution C; (f) At 1 cycle with ratio 20:80 of solution C and (g) At 1 cycle with ratio 

30:70 of solution C 

Figure 4 - 8: Homogenized Baker’s yeast at 1 Cycle with dilution ratio of 

10:90, 20:80 and 30:70 of solution C 

 

 

 

(e) 

(f) 

(g) 
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(h) At 3 cycles with dilution ratio 10:90 of solution C; (i) At 3 cycles with dilution ratio 20:80 of solution C; (j) At 3 

cycles with dilution ratio 30:70 of solution C 

Figure 4 - 9: Homogenized Baker’s yeast at 3 Cycles with dilution ratio of 

10:90, 20:80 and 30:70 of solution C 

 

 

(h) 

(i) 

(j) 
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(k) At 5 cycles with dilution ratio 10:90 of solution C; (l) At 5 cycles with dilution ratio 20:80 of solution C; (m) At 5 

cycles with dilution ratio 30:70 of solution C 

Figure 4 - 10: Homogenized Baker’s yeast at 5 Cycles with dilution ratio of 

10:90, 20:80 and 30:70 of solution C 

 

 

(k) 

(l) 

(m) 
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 4.4.2 SEM for Baker’s yeast homogenized between 30 – 50 °C 

temperature ranges 

This Section analyses and discusses SEM images obtained from the 

homogenization of Baker’s yeast between 30 - 50°C. Section 4.4.1 had previously 

discussed that between 15 - 25°C. Figure 4-7 depicted SEM images that had not 

been treated through the HPH and particularly, image (a when there is not in any 

ratio. Images b, c, and d show the Baker’s yeast structure untreated with the three 

ratios of dilution; 10:90, 20:80 and 30:70 with solution C. 

Basically, Sections 4.4.1 and 4.4.2 are no different except for the fact that 

pressures and temperatures in both sections are different. The control samples 

which are otherwise considered as the images (a, b, c and d) depicted in Figure 4-7 

will serve as the basis for the comparison in terms of structural deformation of the 

homogenized samples.  From the images shown, there are no deformations in the 

images viewed under the SEM other than the increment in the dilution rate of 

Baker’s yeast which has increased by 10% at every level of the dilution. The 

magnification applied to the images is same throughout the study and because 

these are untreated; pressure, temperature and number of cycles have not been 

considered as the soluble yeast had not passed through the HPH. The main reason 

for this control sample is to determine the extent of damage that had been caused 

in the treated samples of homogenized Baker’s yeast.  

 

Treated (homogenized) Baker’s yeast at 60 MPa and 50°C, along with the 

dilutions at the different ratios: 

Images in (n, p, and q) of Figure 4-11 correspond to Baker’s yeast homogenized at 

dilution of 10:90, 20:80 and 30:70, respectively. These had been homogenized at 

the first considered level of cycle (1 Cycle) at a temperature of 50 °C and 60 MPa 

pressure. With the homogenized pressure at 60 MPa and the cycle number at 1, the 

structural deformation on the images showed some damage which is visible 

clearly to the naked eye, even without the SEM equipment. When the Baker’s 

yeast was fully homogenized at 1 cycle with a high pressure of 60 MPa, and at 

50°C, the resultant effects of damages caused at ratios of 10:90, 20:80 and 30:70 

of solution C dilution, reflect fracture, cracks and caving in on the dried samples 
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of homogenized yeast. These effects are due to a combination of parameters taking 

place within the soluble yeast such as temperature, shear stress, surface area 

reactant of the mixture. As seen in the 20:80 dilution ratio of solution C Baker’s 

yeast, the visible stretches and cracks are as a result of the tensional forces not 

being able to hold yeast together again after being stretched out during 

homogenization at 50 °C.     

 

Treated (homogenized) Baker’s yeast with 3 cycles at 60 MPa and 40°C, 

along with the dilutions at the different ratios: 

From the image illustration as shown in (r, s, and t) of Figure 4-12, the number of 

cycles have increased to 3 and sample was homogenized at 60 MPa and 40°C. The 

resultant effect of deformation is very pronounced on the (s and t) images of the 

Figure where there are larger cracks and gulley resulting from the effect of 3 

cycles on the homogenized yeast. The number of cycle and pressure has shown 

greater effects on the deformation of these images because homogenizing at this 

pressure with 3 cycles means that the yeast has been stretched beyond the 

extensional limit during homogenization, and then becomes visible when 

examined using the SEM equipment. 

 

Treated (homogenized) Baker’s yeast with 5 cycles at 60 MPa and 50°C, 

along with the dilutions at the different ratios: 

Homogenization at 5 cycles in this research was considered the highest level of the 

cycle. This was achievable through conducting experimental work at 60 MPa and 

50°C. it is assumed that disruption cannot be achieved with a single homogenizer 

pass and as such, multiple passes are often considered. Based on the fact that the 

mechanism of disruption is still not clear, its performance is optimised through 

maintaining small valve gaps; hence, high-velocity jets with short impact-ring 

diameters are considered [157]. Homogenizing at 5 cycles, as seen from the 

(image w) in Figure 4-13 wherein there are thread-like structures on top of the 

image. These are some of the microstructures that have been totally deformed 

within the sample. 
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(n) At 1 cycle with dilution ratio 10:90 of solution C; (p) At 1 cycle with dilution ratio 20:80 of solution C;(q) At 1 

cycle with dilution ratio 30 - 70 of solution C 

Figure 4 - 11: Homogenized Baker’s yeast at 1 Cycle with dilution ratios of 

10:90, 20:80 and 30:70 of solution C 

 

(n) 

(p) 

(q) 
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(r) At 3 cycles with dilution ratio 10:90 of solution C; (s) At 3 cycles with dilution ratio 20:80 of solution C; (t) At 3 

cycles with dilution ratio 30:70 of solution C 

Figure 4 - 12: Homogenized Baker’s yeast at 3 Cycles with dilution ratios of 

10:90, 20:80 and 30:70 of solution C 

 

(r) 

(s) 

(t) 
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(u) At 5 cycles with dilution ratio 10:90 of solution C; (v) At 5 cycles with dilution ratio 20:80 of solution C; (w) At 5 

cycles with dilution ratio 30:70 of solution C 

Figure 4 - 13: Homogenized Baker’s yeast at 5 Cycles with dilution ratios of 

10:90, 20:80 and 30:70 of solution C 

 

 

(u) 

(v) 

(w) 
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On a general note, the different forms of deformation in the homogenized Baker’s 

yeast have revealed some facts. It is evident that homogenization did in fact affect 

changes in the microstructure of the Baker’s yeast substrates based on the SEM 

analyses. The images shown in this study have invariably caused reductions of 

particle sizes and resulted in the increment of the surface area (Figure 4-8 to 4-13) 

when compared with image that have not undergone any treatment and at no ratio 

of dilution as seen at Figure 4-7(a). The deformations, as shown, have great 

disparity in the samples for temperature ranges (30 - 50°C) to those of (15 - 25°C). 

There are several factors to consider in relation to these effects. Increased pressure 

from 30 MPa to 60 MPa applied during the homogenization is one to consider. 

This means that at this pressure, the gap size within the HPH would have reduced 

as compared to the size during 30 MPa pressure. This will result in the 

homogenized yeast being forced through the small opening gap size of about 1 – 

11 μm according to Kelly and Muske [180]. 

Another factor to consider is the temperature effect which was increased from 20 

and 25 °C to 40 and 50 °C, respectively. High temperature changed the viscosity 

of the substrate but it was not proven to be the exact cause of changes in the inner 

structure of the substrates. Based on this study, it is very apparent that high 

temperature has effected changes in the deformation of the microstructure (see 

Figures 4-11 to 4-13).   

The biomass slurry state enabled its passage through HPH exit; this results in the 

breaking down of yeast cell wall contents due to the effect of increasing the cycle 

from 1 to 5. The deformation results further due to the increased cycle with the 

gap size also constricted for the homogenized yeast to flow out at the exit. Based 

on the need of this equipment (SEM) in this study, its usefulness cannot be 

underestimated due to its requirement in analysing the microstructural features of 

solid bodies’ surfaces as in the yeast cells.  
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4.5 Particle Size Analyses  

4.5.1 Particle size analysis of Baker’s yeast using the Delsa Nano C 

– Dynamic Light Scattering (DLS) Instrument 

The particle size measurements were analysed, using the Delsa Nano C for 

Baker’s yeast of untreated and treated samples, at different pressures and number 

of cycles. Table 4-9 shows values of the treated against the untreated samples to 

determine the extent of deformation carried out during the homogenization 

process. 

Table 4 - 9: Samples of Baker’s yeast during the particle size analysis showing 

number distribution 

 

Samples 

 

Baker’s Yeast 

Number Distribution 

(Concentration) 

1 Untreated            14744.1 ± 92.7 

2    30 MPa, 1 Cycle 11203.9 ± 75.8 

3 30 MPa, 3 Cycles 8817.3 ± 59.7 

4 30 MPa, 5 Cycles 7487.8 ± 50.2 

5 60 MPa, 1 Cycles 6379.6 ± 42.7 

6 60 MPa, 3 Cycles 4521.6 ± 39.9 

                 7              60 MPa, 5 Cycles 4084.2 ± 35.9 

8 90 MPa, 1 Cycles 3402.0 ± 30.3 

                9              90 MPa, 3 Cycles            3125.7 ± 17.1 

               10              90 MPa, 5 Cycles 2771.2 ± 10.9 

 

The Table shows that the number distribution decrease as the Baker’s yeast 

samples parameters intensify. This indicates that as the applied pressure and 

number of cycles increase during homogenization, more cell walls within the 

substrates are broken down. It implies eventually that the software is effective in 

determining the particle sizes of the substrate. The number distribution is the 

concentration of particles dispersed in a fluid and it is measured as percentage. 

DLS is a known technique for determining the size distribution of small particle in 

suspension. Studies have shown that larger particles in suspension affect size 

measurement compared to smaller particles, therefore larger particle can be over 



  121  
 

represented in terms of their measurement of size. The obtained results can be 

presented as intensities, number and volume concentrations of the particles [221].  

As shown in Figure 4-14, the combined effect of the first seven samples are 

plotted in terms of the number distribution (in percentage) and the size of the 

particle in (nm) after disruption in the HPH. The diameter of the samples can be 

determined from the horizontal axis. The labels represent: 1 as the untreated, while 

7 represents 60 MPa, 5 Cycles. (Table 4-9).  

 

                  

Figure 4 - 14: Combined graph showing Baker’s yeast number distribution 

as % of concentration of particle dispersed versus diameter measured  

 

The measurement conditions, as required by the machine set up, are refractive 

index, intensity, viscosity, and the cumulants are the diameter (measured in 

nanometers), as well as the poly dispersity index (PDI). This is an indication of 

variance in the sample; a low PDI (usually less than 0.2) indicates that the sample 

is monodispersed. The Delsa Nano C also provides much other information 

regarding the size of the particles in suspension: the cumulant result, the intensity, 
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volume, and number distributions along with a record of the autocorrelation 

function. 

 

  

Figure 4 - 15: The combined intensity frequencies versus diameter of Baker’s 

yeast in suspension  

 

The intensity graph shows also the effect of particle size on the substrate wherein 

1 is the untreated sample, and 7the homogenized sample at 60 MPa and 5 cycles. 

The measure of the intensity frequency reduces gradually by shifting to the left on 

the graph, which is an indication that homogenization in the HPH did have an 

effect on the particle size distribution, as shown in Figure 4-15. The idea of using 

the Delsa Nano C is to obtain a reduction in the size of the particles in the 

homogenized substrates. As the pressure and number of cycles increase during cell 

disruption in the HPH, the particles size of the substrates is reduce. In principles as 

the gap size of the HPH closes, the homogenized Baker’s yeast as a result is 

compressed through the small opening (2-5 μm) [139]. As a result, the 

homogenized substrate becomes slurry with totally reduced particle sizes [146, 

148, 193, 222]. As seen in the Figures (4-14 and 4-15), the difference between 

them is that Figures 4-14 is the concentration of the particle dispersed in a fluid 
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and it is measured in numbers as percentage and which in essence, is showing the 

number distribution of the dispersed particle in that fluid. Whereas Figure 4-15 

shows the intensity frequencies of the particle and is considered as the scattering 

strength of the particle dispersed in the fluid. Both graphs are plotted against the 

diameter as size of the particle dispersed measured in (nm) [223].  

 

4.5.2 Particle size analysis of Microalgae using Delsa Nano C 

The supplied culture of Microalgae was unable to be viewed under the Scanning 

Electron Microscope (SEM) due to the nature of the substrate since, after drying in 

the oven to remove moisture and the water contents, there was no visible specimen 

remaining in the crucible for further examination. For this purpose Delsa nano C 

was a better choice.  

 

Table 4 - 10: Samples of Microalgae taken during the particle size analysis 

showing frequency of number distribution (Concentration) 

Samples Microalgae 
Number Distribution 

(Concentration) 

1 Untreated 16278.6 ± 93.6 

2 30 MPa, 1 Cycle 15420.2 ± 90.5 

3 30 MPa, 3 Cycles 14422.8 ± 82.2 

4 30 MPa, 5 Cycles 13021.6 ± 75.8 

5 30 MPa, 6 Cycles 11129.7 ± 70.5 

6 60 MPa, 1 Cycle 10429.3 ± 62.5 

7 60 MPa, 3 Cycles 9956.1 ± 58.1 

8 60 MPa, 5 Cycles 9357.2  ± 56.8 

9 60 MPa, 6 Cycles 8834.8 ± 56.0 

10 90 MPa, 1 Cycle 6959.7 ± 54.5 

11 90 MPa, 3 Cycles 5980.9 ± 52.6 

12 90 MPa, 5 Cycles 4507.0 ± 46.2 

13 90 MPa, 6 Cycles 3063.1 ± 41. 7 

 



  124  
 

The Delsa nano C was used in the particle size analysis of Baker’s yeast and as 

such, it was applied to Microalgae for same purpose. As in the case of Baker’s 

yeast, Microalgae in solution as a substrate required particle sizing through 

dynamic light scattering (DLS). Determining the particle sizing was performed 

after high-pressure homogenization of the substrates at different pressures, number 

of cycles, and temperature being the main parameters in this study. 

Table 4-10 shows values of the treated against the untreated to determine the 

extent of deformation during the homogenization process, to determine particle 

sizing. 

The substrates were homogenized at varying pressure and number of cycles. Each 

sample was taken using the glass cuvette to analyse it in the particle size analyser 

(Delsa Nano C). The aim of this work was to determine and to compare the treated 

samples with the untreated (sample 1), which is considered as the control sample 

in the conducted work. There were standard deviation error bars for each result 

recorded; these are indications that the sample contained some level of impurities 

which invariably will lead to some errors in value in the samples (from untreated 

sample to sample 13). Results obtained for tests from untreated to sample 13 are 

indication, and the presence of different particle sizes within the conducted 

experiments. Unlike Baker’s yeast, there was more consistency in the generated 

result as compared to the results for the Microalgae.  

4.6 Design of Experiment and Analyses of Results  

These onward sections will analyse experimental results based on three categories 

of set of experiments and data acquisition. These are; Baker’s yeast homogenized 

at temperature 15 - 25°C, Baker’s yeast homogenized at temperature 30 - 50°C, as 

well as Microalgae homogenized at 15 - 25°C, with the dilution of substrate with 

solution C considered as most important analytically in this study. 
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4.7 Baker’s yeast homogenized at a temperature of 15 – 25 °C  

The experiment was designed based on a three level Box Behnken design (BBD) 

which includes one full replication for this substrate. Trial samples of Baker’s 

yeast were performed by varying one of the process variables in determining the 

working range of each variable. With the maximum pressure of the high-pressure 

homogenizer considered as 100 MPa from the manufacturer, it was recommended 

never to go beyond 90 MPa as the operating working pressure. Also with a 

pressure lower than 30 MPa considered as infinitesimal, and with whose 

application in the HPH, never showed appreciable effect. Hence the working 

pressure was set between 30 and 90 MPa. These were the criteria for choosing the 

working ranges. Temperature ranges were chosen as the homogenization process 

needed to be within ± 5 °C of room temperature since room temperature is around 

20 °C [224]. The number of cycles used was chosen for an improved 

homogenization process. Table 4-11 shows homogenizer input variables along 

with the design levels used for this substrate and, the experiment was carried out 

according to the design matrix shown in Table 4-12 in a random order to avoid 

any systematic error using the HPH alongside with the two measured responses. 

Ratios as a variable factor were used categorically and as identified by the design 

expert software. This was required to determine the effect of the dilution 

concentration of yeast and the solution C on other parameters. For this substrate, 

two responses were identified; protein concentration and cost. The energy monitor 

connected to the HPH was required to calculate and work out this cost. Other costs 

were negligible as the same trends will be applicable to the overall cost at the end. 

Mathematical models were developed successfully to predict the responses as 

explained above. The procedures described earlier in Chapter 3 were followed to 

determine and record these responses. Particularly, the averages of at least six 

measurements for protein concentration are presented. The full experimental 

measured data of protein concentration can be seen in Table 4-12. These were 

obtained from the measured UV absorbance results using the spectrophotometer to 

get the protein concentration from the homogenized yeast. The protein curve for 

working out the protein concentration and the applied calculation is provided in 

Appendix F.  
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Table 4 - 11: Process variables and experimental design levels used 

 

 

Table 4 - 12: Design matrix with actual values and calculated/experimentally 

measured responses for homogenized Baker’s yeast 

  

Variables 

 

Code 

 

Unit 

Limits Coded/actual 

-1 0 +1 

Pressure A MPa 30 60 90 

Number of 

Cycles 
B - 1 3 5 

Temperature C °C 15 20 25 

Ratio D - 10:90 20:80 30:70 

    
Factor  

1 

Factor  

2 

Factor  

3 

Factor  

4 

Response  

1 

Response 

2 

Exp. 

No. 

Run 

Order 

A: 

Pressure 

B: 

No. of 

cycles 

C: 

Temp 

D: 

Ratio 

Protein 

Conc. 
Cost 

    (MPa) - (°C)  - (mg/mL) (Euro/h) 

1 45 30 1 20 10:90 0.0016 0.1 

2 28 90 1 20 10:90 0.5935 0.13 

3 47 30 5 20 10:90 0.0161 0.48 

4 38 90 5 20 10:90 0.8597 0.39 

5 24 30 3 15 10:90 0.0097 0.27 

6 5 90 3 15 10:90 0.0806 0.43 

7 41 30 3 25 10:90 0.0048 0.4 

8 11 90 3 25 10:90 0.0968 0.45 

9 1 60 1 15 10:90 0.1887 0.11 

10 25 60 5 15 10:90 0.3468 0.33 

11 37 60 1 25 10:90 0.2129 0.12 

12 6 60 5 25 10:90 0.3226 0.46 

13 43 60 3 20 10:90 0.1823 0.41 

14 32 60 3 20 10:90 0.1613 0.41 

15 16 60 3 20 10:90 0.4597 0.41 

16 7 60 3 20 10:90 0.4274 0.41 

17 14 60 3 20 10:90 0.2129 0.41 

18 8 30 1 20 20:80 0.0484 0.1 

19 20 90 1 20 20:80 1.1242 0.13 

20 48 30 5 20 20:80 0.0968 0.48 

21 23 90 5 20 20:80 1.3387 0.39 

22 17 30 3 15 20:80 0.0323 0.27 

23 26 90 3 15 20:80 0.0968 0.43 
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24 50 30 3 25 20:80 0.0323 0.4 

25 21 90 3 25 20:80 0.1613 0.45 

26 35 60 1 15 20:80 0.2306 0.11 

27 22 60 5 15 20:80 0.6161 0.33 

28 34 60 1 25 20:80 0.4081 0.12 

29 33 60 5 25 20:80 0.6452 0.46 

30 49 60 3 20 20:80 0.3339 0.41 

31 9 60 3 20 20:80 0.4065 0.41 

32 3 60 3 20 20:80 0.4952 0.41 

33 51 60 3 20 20:80 0.5645 0.41 

34 29 60 3 20 20:80 0.5081 0.41 

35 30 30 1 20 30:70 0.0839 0.1 

36 36 90 1 20 30:70 1.5494 0.13 

37 2 30 5 20 30:70 0.1613 0.48 

38 19 90 5 20 30:70 1.7694 0.39 

39 40 30 3 15 30:70 0.0484 0.27 

40 13 90 3 15 30:70 1.2032 0.43 

41 4 30 3 25 30:70 0.0484 0.4 

42 42 90 3 25 30:70 0.8065 0.45 

43 10 60 1 15 30:70 0.2935 0.11 

44 15 60 5 15 30:70 0.8823 0.33 

45 39 60 1 25 30:70 0.6097 0.12 

46 31 60 5 25 30:70 0.9742 0.46 

47 46 60 3 20 30:70 0.4984 0.41 

48 44 60 3 20 30:70 0.6597 0.41 

49 12 60 3 20 30:70 0.5613 0.41 

50 18 60 3 20 30:70 0.6871 0.41 

51 27 60 3 20 30:70 0.7839 0.41 
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4.7.1 Development of mathematical model for Baker’s yeast cell 

wall disruption with temperature range of 15 - 25°C 

           

Table 4 - 13: ANOVA table for Protein Concentration reduced quadratic 

model (15 - 25°C) range 

  

Source 

Sum of 

Squares 

  

DF 

Mean 

Square 

F 

Value 

p-value   

  Prob > F 

Model 7.223 9 0.803 21.511 < 0.0001 Significant 

    A-Pressure 3.447 1 3.447 92.400 < 0.0001 
  

  

  

  

  

  

  

  

    B-No. of cycles 0.300 1 0.300 8.048 0.0070 

    C-Temperature 0.004 1 0.004 0.096 0.7579 

    D-Ratio 1.652 2 0.826 22.138 < 0.0001 

    AD 0.768 2 0.384 10.296 0.0002 

    B^2 0.582 1 0.582 15.604 0.0003 

    C^2 0.528 1 0.528 14.143 0.0005 

Residual 1.530 41 0.037     

Lack of Fit 1.365 29 0.047 3.433 0.0139 Not Significant 

Pure Error 0.165 12 0.014       

  Cor Total 8.753 50       

R
2
 = 0.825 Pred. R

2
 = 0.695 

 Adj. R
2
 = 0.787 Adeq. Precision = 21.086 

 

            

 Validation of the model: 

 

The normal plot of residuals above shows the normal probability plot indicating 

whether the residuals follow a normal distribution, in which case the points will 
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follow a straight line or as close to the diagonal. One can expect some moderate 

scatter points even with a normal distribution. This was generated by the Design 

Expert software for the model, given in Figure 4-16 (a). In other words, the 

linearity of the residuals indicates that they are normally distributed and so, 

ANOVA analysis can be performed. While the predicted versus actual plot 

(Figure 4-16 (b)) is a scattered plot, once the trend is linear i.e. close to the 

diagonal, it means it is normally distributed. 

 

                  

Figure 4 - 16: Scatter diagrams of normal plot of residuals (a) and protein 

concentration yields (b) 

 

The fit summary output indicates that, for the responses, the reduced quadratic 

models (protein Concentration) and (Cost) are statistically recommended for 

further analyses as they have the maximum predicted and adjusted R
2
 [225, 226]. 

Through selecting the step-wise regression method, the insignificant model terms 

can automatically be eliminated. The resulting ANOVA Tables (as shown in 

Tables 4-13 and 4-14 for the reduced quadratic models outline the analysis of 

variance for the responses (Protein Concentration and Cost), and illustrate the 

significant model terms. These also show the other adequacy measures R
2
, 

adjusted R
2
, and predicted R

2
 as 0.825, 0.787 and 0.695, respectively for Table 4-

13, and 0.966, 0.960 and 0.943 respectively for Table 4-14. The entire adequacy 

measures are close to 1, which are in reasonable agreement and therefore indicate 

(b) 
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adequate models because the statistical analysis as considered by the Design 

Expert, it indicates that any value equal to or greater than 0.5 is considered as 

close to 1 when determining the adequacy measures R
2
, adjusted R

2
, and predicted 

R
2
. The adequate precision being equal to 21.086 for protein concentration yield 

and 35.186 for cost indicates an adequate model, as the adequacy value was >> 4 

and an indication of good model discrimination [225, 226]. The adequate precision 

compares the range of the predicted value at the design points to the average 

prediction error. 

Figure 4-16 (a and b) and 4-19 (a and b) are the replica plots of the predicted 

against the actual response, and the residual of the normal plot of protein 

concentration response and that of predicted versus actual response, and the 

residual of the normal plot of cost response respectively. The analysis of variance 

indicates that the number of cycles, pressure as well as temperature, and their 

interactions are the most significant factors affecting the protein concentration 

yields. The predicted vs. Actual plots are shown in Figure 4-16b and Figure 4-19b. 

This figure indicates that the developed models are adequate because the residuals 

are minimal, since these tend to be close to the diagonal line. The normal plot of 

residuals in Figure 4-16a and 4-19a indicates that the assumptions of normal 

distribution of the data are respected; therefore the ANOVA can be applied to 

study the dataset. 

An adequate model means that the reduced model has successfully passed all the 

required statistical tests and can be used to predict the responses, or to optimize 

the process, and so on. The final mathematical models linked to the responses with 

regard to the coded factors and actual factors as determined by the software are 

respectively in Equations (4-1) to (4-4) and (4-5) to (4-6) with equations 4-2 to 4-4 

in the dilution ratio form; 10:90, 20:80 and 30:70, and Equation 4-6 representing 

that for cost respectively.  

Based on the ANOVA Table 4-13, the point prediction technique and an 

appropriate model was based on the fact that, Adjusted R
2
 minus Predicted R

2
 

must be < 0.2 and in this case, it was 0.092.  

As R
2 

equalled 0.825, it implied that 82.5% of the variability in the data has been 

explained by the model and a F-Value model of 21.51 implied that the model was 

significant since it is only 0.01% chance that the F-Value model was disrupted by 

scatter/ noise. 
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Based on the final equation in terms of coded factors and those in terms of the 

actual factors for ratios, 10:90, 20:80, and 30:70, protein concentration yield can 

be worked out using the associated equation for any set of the ratios to determine 

this yield. In the final equation in terms of coded factors, as given below, the 

square brackets indicated, represents the ratios of categorical factor in coded 

terms. This can be used to predict the protein concentration yield when 

homogenized under HPH. For example in the ratios considered in this research; 

10:90, 20:80, and 30:70, their representation in coded factors were [1, 0], [-1, -1] 

and [0, 1] respectively and when solved into the equation of the coded factors 

gives the result as shown in the final equation in terms of coded factors (see 

Equation 4-1). 

 

  Final Equation in Terms of Coded Factors: 

 

Protein Concentration = 0.44489468 + 0.379003898 * A + 0.111854839 * B  

                           + 0.012232258 * C - 0.204003099 * D [1] - 0.029809551 * D[2]  

                            -  0.179205511*AD[1] - 0.065092608 * AD [2] + 0.214389389  

                           * B^2 - 0.204106579 * C^2                                                    (4-1) 

 

Final Equation in Terms of Actual Factors:  

 

Ratio 10:90; 

Protein Concentration = -3.158745622 + 0.006659946 * Pressure - 0.265656664  

                              * No. of  cycles + 0.329016978 * Temperature +0.053597347    

                              * No. of  cycles^2 - 0.008164263 * Temperature^2                                

                                                                                                                                      (4-2) 

Ratio 20:80; 

           Protein Concentration = -3.21277788 + 0.01046371 * Pressure - 0.265656664  

                                          * No. of cycles + 0.329016978 * Temperature + 0.053597347   

                                          * No. of cycles^2 - 0.008164263 * Temperature^2                              

                                                                                                                                      (4-3) 
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Ratio 30:70; 

           Protein Concentration = -3.56793713 + 0.020776734 * Pressure - 0.265656664  

                                          * No. of cycles + 0.329016978* Temperature + 0.053597347  

                                          * No. of cycles^2 - 0.008164263 * Temperature^2                            

                                                                                                                                      (4-4) 

Effect of process parameters on the responses - Protein Concentration 

The perturbation plot for the protein concentration yield from the 15 – 25 °C 

temperature range is illustrated in Figure 4-17 as (a), (b), and (c). The perturbation 

plot helped in comparing the effect of all the factors at a particular point in the 

design space. The lines represent the behaviours of each factor while holding the 

others constant at the centre point. This type of display can be used to determine 

the factors that most affect the response. From the illustrations, pressure and the 

number of cycles affect the protein concentration yield. This was in agreement 

with these authors and researchers [162-164, 171, 194, 197, 227-229] wherein 

pressure showed a very significant effect in the production of protein. As 

highlighted, an increase in pressure, A; resulted in high protein concentration 

yield; while the number of cycle, B showed  minimal rise in the effect to the yield 

of protein, and the temperature factor was shown not to have an effect on the 

yield.  

Considering the categorical factor of ratio designated as D in this study, protein 

concentration yield has been seen to give the highest yield at the ratio 30:70 when 

compared to other ratios of 10:90 and 20:80. Invariably, this shows that as the 

ratio increased, the yield in protein concentration also increased at the same rate as 

the pressure rises seen at Figure 4-17(c). 

From the three scenarios (Figure 4-17), it is evident that pressure (A) and number 

of cycle (B) both have a strong effect on the protein concentration yield as both 

have an upward trend from minimum to maximum factor. This is different from 

that of the temperature (C) which showed a downward trend in its behaviour. The 

behaviour of the three parameters are pronounced in the 30:70 ratio of the 

perturbation plot where protein concentration yield was considered the highest 

yield compared to other two ratios (10:90 and 20:80). 
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Figure 4 - 17: Perturbation plots (a), (b), and (c) showing the effect of process 

parameters on protein concentration yield, with ratio as the categorical factor 

on the response 
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Effect of process parameters on the responses – Cost 

Figure 4-18 shows the interaction plot of the effect of pressure (A) and ratio (D) 

on protein yield concentration. Pressure has been shown to be the most important 

parameter in the homogenization of biomass substrate using HPH. Comparing the 

ratios (categorical factor) in Figure 4-18, it showed a wider disparity at a ratio 

30:70 in protein concentration yield compared to the 10:90 and 20:80 ratios. The 

pressure interaction was also considered, as it was a significant parameter in terms 

of protein yield concentration. During the homogenization process, high-pressure 

is intended to lower or reduce the gap size on the valves slit within the HPH, to 

enable the soluble Baker’s yeast to be constricted through the small opening. As a 

result, the cell walls of the yeast are broken down to release the intracellular 

content of protein.  

                              

Figure 4 - 18: Interaction plot showing the effect of Pressure (A) and Ratio 

(D) on protein concentration yield 
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Table 4 - 14: ANOVA Table for cost reduced – Baker’s yeast (15 - 25°C) 

Temperature Range 

 

Source 

Sum of 

Squares 

 

DF 

Mean 

Square 

F 

Value 
Prob > F 

 

 

Model 0.848 8 0.106 149.417 < 0.0001 Significant 

A-Pressure 0.008 1 0.008 11.894 0.0013 

  

  

  

  

  

  

  

  

  

  

  

  

B-No. of cycles 0.540 1 0.540 761.208 < 0.0001 

C-Temperature 0.032 1 0.032 44.457 < 0.0001 

AB 0.011 1 0.011 15.224 0.0003 

AC 0.009 1 0.009 12.793 0.0009 

BC 0.011 1 0.011 15.224 0.0003 

B^2 0.227 1 0.227 319.733 < 0.0001 

C^2 0.006 1 0.006 8.113 0.0068 

Residual 0.030 42 0.001     

Lack of Fit 0.030 30 0.001     

Pure Error 0.000 12 0.000     

Cor Total 0.878 50 

 

    

R
2
 = 0.966 Pred R

2
 = 0.943 

Adj R
2
 = 0.960 Adeq Precision = 35.186 

 

Validation of the models developed 

Table 4-14 above, shows the ANOVA table for cost reduced as a quadratic model, 

for Baker’s yeast over a 15 – 25 °C temperature range. The point prediction 

technique and the appropriateness of a model is based on the fact that; Adj R
2
 

minus Pred. R
2
 must be less than 0.2 and in this case, it was at 0.017.  

R
2 

equalled 0.966 which implied that 96.6% of the variability in the data has been 

explained by the model and F-Value model equalled 149.42 implying that the 

model was significant since there was only a 0.01% chance that the F-Value model 

occurred due to noise. The “Prob > F” was the same as the P-value, implying that 

this must be greater than the F-value model and with a value of < 0.0001, was then 

considered significant (see Section 3.6.7 of Chapter 3 for reference) 

The normal plot of residuals follow a diagonal straight line as shown in Figure 4-

19 (a), indicating a normal distribution. In order to determine the normality of the 

data Figure 4-19 (b) was used.  The linearity of the residuals indicated that they 

were normally distributed and thus the ANOVA could be performed. While the 

Predicted versus Actual plot (Figure 4-19 (b)) was a scattered diagram and the 

trend was almost linear, i.e. close to the diagonal, therefore normally distributed. 
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Figure 4 - 19: Scatter diagrams of normal plot of residuals (a) and cost (b)  

 

 

 

Final Equation in Terms of Coded Factors: 
 

          Cost = 0.409 + 0.019 * A + 0.150 * B + 0.036 * C – 0.030 * A * B – 0.028 * A * C   

                    +0.030 * B * C – 0.134 * B^2 – 0.021 * C^2                                        (4-5) 
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Final Equation in Terms of Actual Factors: 

 

Cost = – 0.770 + 0.006 * Pressure + 0.246* No. of cycles + 0.043     

            – 0.001*Pressure * No. of cycles + 0.000 * Pressure * Temperature  

           + 0.003 * No. of cycles*Temperature   – 0.033 * No. of cycles^2  

           – 0.001 * Temperature^2                                                                    (4-6) 

 

Figures 4-16 (a-b) and 4-19 (a-b) present the relationship between the measured 

and predicted values of protein concentration yield and cost. These scatter 

diagrams indicate that the above mathematical models exhibit a good agreement 

between the measured and estimated values of the above measured responses. 

These Figures indicate that the developed models are adequate owing to the 

residuals in the prediction of each response being small, as the residuals tend to be 

close to the diagonal lines. 

 

Figure 4 - 20: Perturbation plot showing the effect of process parameters on 

cost with ratios as the categorical factor on the response 
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The perturbation plot in Figure 4-20 shows the effect of process parameters on 

cost. The associated cost, in terms of protein concentration yield, has been shown 

to be effective where pressure and temperature were considered. While pressure 

and temperature were considered as factors for cost effectiveness, they both have 

shown to be of slightly positive effects on cost. The number of cycle’s effect was 

considered mostly positive in terms of cost. This rose to about €0.40/hour before a 

downward trend was observed. A categorical factor of 10:90 ratios shows better 

cost effectiveness for protein concentration yield. A sharp decrease after the 

midpoint was a clear indication that number of cycles did not result in an effective 

cost for the protein concentration yield.  

 

In Figures 4-21 and 4-22, a relationship was established between the number of 

cycles and, pressure and temperature, to weaken the cell walls, in order to increase 

protein yield. Previous studies by Siddiqi et al. [165], Diels et al. [169], and 

Ekpeni et al. [227] revealed that after two to three passes, the entire cell wall had 

completely broken down releasing the protein in the biomass substrates, due to the 

application of shear stress by the HPH, therefore the Number of cycle does 

improves the homogenization process [169, 227]. 

Figure 4-21, shows the interaction between pressure and the number of cycles in 

terms of cost; again, both have proven to be the effective parameters for cost 

determination when the categorical factor is considered at 10:90. An interaction 

took place around cycle 4, which will be considered as the cycle for better protein 

yield, whereas no notable interaction results between temperature and number of 

cycles. Homogenizing at a higher number of cycles is considered best for 

complete disruption of the biomass substrate, in order to effectively release its 

inner contents for higher protein yield. 

The perturbation plot in Figure 4-20, shows that the horizontal axis indicated a 

deviation from its reference point (Coded Units);   -1, 0, and  +1, with -0.5 and 

+0.5 in between the three level of design. At a coded units of -1, the actual value 

of the parameters was 30 MPa for pressure, 1 for number of cycles, 15 °C for 

temperature and 10:90 for ratio. For coded units 0, the actual value of the 

parameters was 60 MPa for pressure, 3 for number of cycles, 20 °C for 
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temperature and 20:80 for ratio. For coded units +1, this related to 90 MPa for 

pressure, 5 for number of cycles, 25 °C for temperature and 30:70 for ratio (see 

Table 4-11 for reference), for the coded/actual limits of the variable parameters. 

                   

Figure 4 - 21: Interaction plot showing the effect of Pressure (A) and number 

of cycles (B) on cost 

 

Figure 4 - 22: Interaction plot showing the effect of number of cycle (B) and 

temperature (C) on cost 
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Figure 4 - 23: Contour plots (a) and (b) showing the effect of number of 

cycles, temperature and pressure on the response – cost (this shows zone with 

highest software-estimated cost) 
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determines the energy cost based on the usage of HPH for homogenizing the 

Baker’s yeast to release protein. Whereas Euro per milligram of protein yield can 

only be determined after it has been homogenized. Though it is of importance, it 

was not considered necessary in this research. The idea here was to determine the 

energy cost of the machine (HPH) in breaking down the cell walls within the 

Baker’s yeast to liberate the protein content. 

The red and orange colours zones in the Figures 4-23 (a) and (b) respectively 

represent high cost.  

 

Figure 4 - 24: Response surface plot of cost in Euro/h (with actual factors 

pressure considered at 60 MPa and ratio of 10:90) 

 

Figure 4-24 is a response surface (RS) plot showing the effect of two parameters 

(temperature and number of cycles) against cost. It is seen that lower number of 

cycles over any temperature yielded lower cost. 
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4.8 Baker’s yeast homogenized at temperature 30 – 50 °C  

Table 4 - 15: Process variables and experimental design levels used 

 

 

 

 

 

This information presented in Table 4-15 was used to determine the effect 

temperature range had on the homogenized Baker’s yeast. The variables with their 

coded and actual value in the experimental design used here for the 30-50 °C 

temperature range was similar to the previous one used in the 15 – 25 °C 

temperature range, except that the temperature range increased from 15 – 25 °C to 

30 - 50 °C.  

Table 4 - 16: Design matrix with actual values and calculated/experimentally 

measured responses                                 

    

Factor 

 1 

Factor 

 2 

Factor  

3 

Factor 

4 

Response 

 1 

Response 

 2 

Exp.  

No. 

Run 

Order 

A: 

Pressure 

B: No.  

of cycles 

C: 

Temp 

D: 

Ratio 

Protein 

Conc.  Cost 

    MPa - (°C)   [mg/mL] [Euro/h] 

1 13 30 1 40 10:90 0.0161 0.11 

2 18 90 1 40 10:90 0.6290 0.15 

3 23 30 5 40 10:90 0.0968 0.47 

4 10 90 5 40 10:90 0.9145 0.4 

5 5 30 3 30 10:90 0.0484 0.29 

6 48 90 3 30 10:90 0.1290 0.43 

7 45 30 3 50 10:90 0.0645 0.41 

8 36 90 3 50 10:90 0.2258 0.47 

9 11 60 1 30 10:90 0.2661 0.12 

10 42 60 5 30 10:90 0.3581 0.35 

11 49 60 1 50 10:90 0.3177 0.13 

12 12 60 5 50 10:90 0.2903 0.47 

13 9 60 3 40 10:90 0.4597 0.42 

14 25 60 3 40 10:90 0.5194 0.42 

15 47 60 3 40 10:90 0.4726 0.42 

 

Variables 

 

Code 

 

Unit 

Limits Coded/actual 

-1 0 +1 

Pressure A MPa 30 60 90 

Number of Cycles B - 1 3 5 

Temperature C °C 30 40 50 

Ratio D - 10:90 20:80 30:70 
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16 37 60 3 40 10:90 0.6726 0.42 

17 27 60 3 40 10:90 0.6258 0.42 

18 6 30 1 40 20:80 0.0645 0.11 

19 32 90 1 40 20:80 1.1306 0.15 

20 21 30 5 40 20:80 0.1097 0.47 

21 28 90 5 40 20:80 1.1210 0.4 

22 8 30 3 30 20:80 0.0806 0.29 

23 29 90 3 30 20:80 0.1855 0.43 

24 43 30 3 50 20:80 0.1742 0.41 

25 16 90 3 50 20:80 0.2710 0.47 

26 51 60 1 30 20:80 0.2871 0.12 

27 24 60 5 30 20:80 0.6403 0.35 

28 1 60 1 50 20:80 0.4145 0.13 

29 2 60 5 50 20:80 0.7871 0.47 

30 20 60 3 40 20:80 0.5968 0.42 

31 31 60 3 40 20:80 0.5758 0.42 

32 34 60 3 40 20:80 0.5565 0.42 

33 30 60 3 40 20:80 0.8677 0.42 

34 44 60 3 40 20:80 0.7935 0.42 

35 4 30 1 40 30:70 0.0919 0.11 

36 35 90 1 40 30:70 0.9500 0.15 

37 40 30 5 40 30:70 0.1452 0.47 

38 3 90 5 40 30:70 1.3387 0.4 

39 38 30 3 30 30:70 0.1129 0.29 

40 22 90 3 30 30:70 0.2371 0.43 

41 15 30 3 50 30:70 0.1968 0.41 

42 19 90 3 50 30:70 0.3226 0.47 

43 41 60 1 30 30:70 0.3097 0.12 

44 26 60 5 30 30:70 0.9435 0.35 

45 7 60 1 50 30:70 0.5855 0.13 

46 39 60 5 50 30:70 0.9919 0.47 

47 14 60 3 40 30:70 0.6371 0.42 

48 46 60 3 40 30:70 0.6097 0.42 

49 33 60 3 40 30:70 0.7306 0.42 

50 50 60 3 40 30:70 0.9629 0.42 

51 17 60 3 40 30:70 0.9016 0.42 

 

The design matrix with actual values and calculated/experimentally measured 

responses are as shown in Table 4-16. Given that the data was generated by 

Design Expert, the experiments were carried out to measure the responses of 

protein concentration in (mg/mL) and Cost in (Euro/hour). These were conducted 

randomly for simplicity in terms of saving time, resources and to remove bias. 
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Thus the DOE indicated a run order for the experimentation and the “Exp. 

Number” was used to identify the sample.  

Table 4 - 17: ANOVA Table for Protein Concentration Reduced Quadratic 

Model (30 – 50 °C) 

  

          

4.8.1 Development of mathematical models for Baker’s yeast with 

temperature range (30 - 50°C) 

The DOE method was used in the analysis of the measured responses. The fit 

summary provided outputs for the responses in the reduced quadratic models 

(protein concentration) and (cost) which were statistically recommended for 

further analyses, due to the maximum predicted and adjusted R
2
. The test of 

significance of the regression models, the test for significance on individual 

coefficients, and the ‘Lack of Fit’ test were performed using the same statistical 

package. Through selecting the step-wise regression method, the insignificant 

model terms could automatically be eliminated. The resulting ANOVA Tables, as 

shown in Tables 4-17 and 4-18 for the reduced quadratic models outline the 

analysis of variance for the responses (protein concentration and cost) and 

illustrate the significant model terms. These also show the other adequacy 

measures R
2
, adjusted R

2
 and predicted R

2
 as 0.719, 0.666 and 0.567, respectively 

for Table 4-17, and 0.975, 0.971 and 0.959 respectively for Table 4-18. The entire 

 

Source 

Sum of 

Squares 

 

DF 

Mean 

Square 

F 

Value 

 

Prob > F 

 

 

Model 4.184 8 0.523 13.435 < 0.0001 Significant 

    A-Pressure 1.629 1 1.629 41.855 < 0.0001 
  

  

  

  

  

  

  

  

    B-No. of cycles 0.298 1 0.298 7.655 0.0084 

    C-Temperature 0.045 1 0.045 1.166 0.2865 

    D-Ratio 0.474 2 0.237 6.091 0.0048 

    A^2 0.669 1 0.669 17.174 0.0002 

    B^2 0.168 1 0.168 4.309 0.0441 

    C^2 0.885 1 0.885 22.741 < 0.0001 

Residual 1.635 42 0.039     

Lack of Fit 1.418 30 0.047 2.621 0.0400 Not Significant 

Pure Error 0.216 12 0.018       

  Cor Total 5.819 50       

R
2
 = 0.719 Pred R

2
 = 0.567 

 Adj R
2
 = 0.666 Adeq Precision = 15.552 
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adequacy measurement are close to 1, which are in reasonable agreement because 

the statistical analysis as recognised by the Design Expert, indicates that any value 

equal to or greater than 0.5 is considered as close to 1 when determining the 

adequacy measures R
2
, adjusted R

2
, and predicted R

2
. The adequate precision 

being equal to 15.552 for protein concentration yield, and 41.65 for cost, 

indicating an adequate model [225, 226], see Tables 4-17 and 4-18. The adequate 

precision compared the range of the predicted values at the design points to the 

average prediction error.  

These values are >> 4; therefore an adequate model is implied [225]. Figures 4-25 

(a and b) and 4-29 (a and b) were a replica plot of the Predicted versus the Actual 

response, the residual of the normal plot of protein concentration response, as well 

as the residual of the normal plot of cost response were found to be normally 

distributed. The analysis of variance indicated that the number of cycles, pressure 

as well as temperature and their interactions were the most significant factors 

affecting the protein concentration yield. The predicted versus the actual plots are 

shown in Figures 4-25(b) and 4-29(b) for protein yield and cost respectively, 

indicating adequate models. The normal plot of residuals in Figure 4-25(a) and 4-

29(a) indicate that the assumptions of normal data distribution were respected; 

therefore the ANOVA could be applied to the study. 

The final mathematical models linked to the responses with regards to the coded 

factors and actual factors as determined by the software, are given respectively in 

Equations (4-7) to (4-10) and (4-11) to (4-12) with Equations (4-8) to (4-10), 

including the dilution ratios; 10:90, 20:80 and 30:70 and Equation (4-12) 

representing that of cost.  
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Figure 4 - 25: Scatter diagrams of normal plot of residuals (a) and cost (b) for 

30 -50 °C 
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Validation of the models developed: 

Final Equation in Terms of Coded Factors: 

 

Protein Concentration = 0.665483871 + 0.260551075 * A + 0.111424731 * B  

                         + 0.043481183 * C - 0.127672359 * D[1] + 0.022327641 * D[2] 

                         - 0.230053763 * A^2 + 0.115241935 * B^2 - 0.264731183 * C^2       

                                                                                                                         (4-7) 

Final Equation in Terms of Actual Factors:  

 

Ratio 10:90;  

Protein Concentration = -5.22097209 + 0.0039358871 * Pressure – 0.117150538 

                             * No. of   cycles + 0.216133065 * Temperature - 0.000255615    

                             *Pressure^2 + 0.028810484* No. of cycles^2 – 0.002647312 *  

                             Temperature^2                                                                                 (4-8)                                                                                                                                     

           Ratio 20:80; 

Protein Concentration = -5.07097209 + 0.0039358871 * Pressure - 0.117150538 

                             * No. of cycles + 0.216133065 * Temperature - 0.000255615 

                             *Pressure^2 +0.028810484* No. of cycles^2 – 0.002647312 *   

                             Temperature^2                                                                                 (4-9)                                                                                                                 

Ratio 30:70; 

         Protein Concentration = -4.987955013 + 0.0039358871 * Pressure -0.117150538 

                            * No. of cycles + 0.216133065 * Temperature - 0.000255615 

                            *Pressure^2+0.028810484* No. of cycles^2 – 0.002647312 *   

                            Temperature^2                                                                                   (4-10)                                                                                                                                                      

                                                                                                                                 

The final equations in terms of coded factors and that of the actual factors for the 

ratios, 10:90, 20:80, and 30:70 as generated by the Design Expert software were 

also used to determine the protein concentration yield. 
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Effect of process parameters on the responses - Protein Concentration 

The perturbation plot for the protein concentration yield from the 30 - 50 degrees 

temperature range is illustrated in Figure 4-26 as (a), (b), and (c). The perturbation 

plot helped to compare the effect of all the factors at a particular point in the 

design space. This has previously been discussed under the 15 - 25 °C temperature 

ranges. Perturbation plots under this section have indeed shown great differences 

as compared to that under the 15 - 25 °C temperature range. Temperature is shown 

to be major contributing factor in protein concentration yield. Counter to the 

results in the previous section, due to the temperature of the biomass substrate 

before being homogenized. The pressure and temperature were effects on the yield 

of protein concentration. The plot demonstrated that increasing both parameters 

improved protein concentration yield up to the centre value and then started to 

drop as both tended to increase above the centre limit. One of the reasons for this, 

was because the substrate has been treated under heat to raise the temperature, 

passing it through the HPH over number of cycles, say 3, would have entirely 

broken down the cell wall of the yeast substrate. 

Categorical factors of ratios in this study, was to determine the highest yield of 

protein at any ratios. This has no implied order which means the settings of a 

categorical factor were discrete and had no intrinsic order [230]. Protein 

concentration yield is highest at the categorical factor of 30:70 ratios when 

compared to the other ratios of 10:90 and 20:80. Invariably, it therefore means that 

as the ratio increases, the yield in protein concentration also increases at the same 

rate as the pressure rises. However, in this case here, only the number of cycles 

has taken the incremental rate in the protein concentration yield. This can be seen 

in Figure 4-26 (c). Both pressure and temperature effects had an opposite effect to 

the number of cycles in terms of protein yield of as indicated in Figures 4-26 (a, b, 

and c). 
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Figure 4 - 26: Perturbation plots (a), (b), and (c) showing the effects of 

process parameters on protein concentration yield with ratios as the 

categorical factor on the response 

Design-Expert® Software

Protein Conc. 

Protein Conc. 

Actual Factors

A: Pressure = 60.00

B: No. of cycles = 3.00

C: Temperature = 40.00

D: Ratio = 10-90

Categoric Factors

D

Perturbation, 30-50 deg C

Deviation from Reference Point (Coded Units)

P
ro

te
in

 C
o

n
ce

n
tr

a
tio

n
 (

m
g

/m
L

)
-1.000 -0.500 0.000 0.500 1.000

0.000

0.350

0.700

1.050

1.400

A

AB

B

C

C

Design-Expert® Software

Protein Conc. 

Protein Conc. 

Actual Factors

A: Pressure = 60.00

B: No. of cycles = 3.00

C: Temperature = 40.00

D: Ratio = 20-80

Categoric Factors

D

Perturbation, 30-50 deg C

Deviation from Reference Point (Coded Units)

P
ro

te
in

 C
on

ce
nt

ra
tio

n 
(m

g/
m

L)

-1.000 -0.500 0.000 0.500 1.000

0.000

0.350

0.700

1.050

1.400

A

AB

B

C

C

Design-Expert® Software

Protein Conc. 

Protein Conc. 

Actual Factors

A: Pressure = 60.00

B: No. of cycles = 3.00

C: Temperature = 40.00

D: Ratio = 30-70

Categoric Factors

D

Perturbation, 30-50 deg C

Deviation from Reference Point (Coded Units)

P
ro

te
in

 C
on

ce
nt

ra
tio

n 
(m

g/
m

L)

-1.000 -0.500 0.000 0.500 1.000

0.000

0.350

0.700

1.050

1.400

A

AB

B

C

C

(a) 

(b) 

(c) 



  150  
 

           

         

 

Figure 4 - 27: Contours plots (a), (b), and (c) showing the effect of the number 

of cycles, temperature, and pressure on the response – protein concentration 

yield  
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Figure 4-27 shows the contour graphs for the effect of temperature, pressure and 

number of cycle on protein yield. This is presented in the categorical factors (D) as 

a, b, and c, representing 10:90, 20:80, and 30:70, respectively. This plot provide a 

2-dimensional view where all points that have the same response are connected to 

produce contour lines of constant responses, and thus, illustrate the optimum level 

of each variable on protein concentration yield. From the values provided, the blue 

areas contained 0.016129 of protein yields while the red zone contains the highest 

software-estimated protein concentration yield. With the number of cycles and 

pressure considered as parameters, more protein yield tends to be produced from 

the ratio of 30:70. The yellow area in Figure 4-27 (c) yield of protein is more 

pronounced. This is shown with the value of the contour plots as 0.935 while that 

of ratios 10:90, and 20:80 are considered as, 0.702 and 0.852 respectively. As the 

same actual factors of temperature of (40°C) given for the 3 ratios, 10:90, 20:80, 

and 30:70, protein yield was estimated highest in the ratio of 30:70 dilution. 

 

 

Figure 4 - 28: Response surface plot of protein concentration yield in 

(mg/mL) (with actual factors temperature considered at 40 °C and the ratio 

at 30:70) 

 

Design-Expert® Software

Protein Conc. 

1.33871

0.016129

X1 = A: Pressure

X2 = B: No. of cycles

Actual Factors

C: Temperature = 40.00

D: Ratio = 30-70

  30.00

  45.00

  60.00

  75.00

  90.00

1.00  

2.00  

3.00  

4.00  

5.00  

0.250  

0.458  

0.665  

0.873  

1.080  

  
P

ro
te

in
 C

o
n

c
e

n
tr

a
tio

n
 (

m
g

/m
L

) 
 

  A: Pressure, MPa    B: No. of cycles  



  152  
 

Figure 4-28 is the response surface plot of protein concentration yield in (mg/mL) 

(with actual factors temperature at 40°C, and the ratio, at 30:70). This shows the 

effect of pressure and number of cycles on the yield. In the plot, the red zone 

shows areas of higher concentration of protein yield, while the blue zones are zone 

with the lowest concentration of protein yield. It is evident from the Figure 4-28 

that as the pressure increases the protein yield also increases, while the 

relationship between the number of cycles and the operating pressure is opposite. 

 

Table 4 - 18: ANOVA Table for Cost Reduced Quadratic Model for (30 - 

50°C) Temperature Range 

 

Validation of the Model: 

Table 4-18 above, shows the ANOVA Table for cost reduced as a quadratic 

model, for Baker’s yeast over the 30 – 50 °C temperature range. The point 

prediction technique and the appropriateness of a model is based on the fact that; 

Adj R
2
 minus Pred. R

2
 must be less than 0.2 and in this case, it was at 0.012.  

R
2 

equalled 0.9754 which implied that 97.5% of the variability in the data has been 

explained by the model and F-Value model equalled 208.15 implying that the 

 

Source 

Sum of 

Squares 
DF 

Mean 

Square 

F 

Value 

 

Prob > F   

  

Model 0.8268 8 0.1034 208.1489 < 0.0001 Significant 

A-Pressure 0.0108 1 0.0108 21.8268 < 0.0001 

  

  

  

  

  

  

  

  

  

  

  

  

B-No. of 

cycles 0.5222 1 0.5222 1051.6139 < 0.0001 

C-

Temperature 0.0315 1 0.0315 63.5168 < 0.0001 

AB 0.0091 1 0.0091 18.2771 0.0001 

AC 0.0048 1 0.0048 9.6672 0.0034 

BC 0.0091 1 0.0091 18.2771 0.0001 

B^2 0.2313 1 0.2313 465.8403 < 0.0001 

C^2 0.0039 1 0.0039 7.9306 0.0074 

Residual 0.0209 42 0.0005 

  Lack of Fit 0.0209 30 0.0007 

  Pure Error 0.0000 12 0.0000 

  Cor Total 0.8477 50 

   R
2
 = 0.9754 Pred R

2
 = 0.9587 

 Adj R
2
 = 0.9707 Adeq Precision = 41.65 
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model was significant. The “Prob > F” was the same as the P-value, and it implied 

that this must be greater than the F-value model, in the table and as it was < 

0.0001, it therefore meant that there was 0.01% chance that the F-Value model 

occurred and was then considered significant (see Section 3.6.7 of Chapter 3 for 

reference) and have also been explained previously in this Chapter. 

 

  

   

Figure 4 - 29: Scatter diagrams of normal plot of residuals (a) and cost (b) (30 

- 50 °C) Temperature Range 
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   Final Equation in Terms of Coded Factors: 

 

                Cost = 0.4189 + 0.0213 * A + 0.1475 * B + 0.0363 * C – 0.0275 * A * B 

                         – 0.0200 * A * C + 0.0275 * B * C – 0.1351 * B^2 – 0.0176 * C^2                                   

                                                                                                                                    (4-11) 

              Final Equation in Terms of Actual Factors: 

   Cost = - 0.6535 + 0.0048 * Pressure + 0.2489* No. of cycles + 0.0176   

               *Temperature – 0.0005 *Pressure * No. of cycles - 0.0001 * Pressure *  

               Temperature + 0.0014 * No. of cycles * Temperature – 0.0338 * No. of  

               cycles^2 – 0.0002 * Temperature^2                                                 (4-12) 

 

Effect of process parameters on the responses – Cost 

The perturbation plot shown in Figure 4-30 illustrates the cost effectiveness, 

Euro/hour, resulting from the effect of the parameters on protein concentration 

yields. Pressure and temperature were shown to be very cost effective for the 

improvement of yield in protein concentration. On the other hand, the parameter 

“number of cycles”, showed different trends in the attainment of this goal. This 

means that the biomass sample was treated under heat, to increase the temperature 

before homogenization. While cycle time seems to be effective in targeting 

improved protein yield at least to the 4
th

 cycle, beyond this point it had a 

downward trend which invariably resulted in further protein yield. From the 

perturbation plot, it is evident that as the homogenizing pressure for rupturing the 

substrate increase temperature increased up to the 4
th

 cycle. Beyond that point the 

protein yield continue to drop while the other variables increased. The reason for 

this trend was assumed to be due to substrate heating before homogenization 

based on the categorical factor of 10:90 ratio. This was the reverse for the 15 - 25 

°C temperature range (Baker’s yeast) where indeed cycle had a major role to play 

in the disruption process and which in effect showed to be more cost effective in 

the process. 
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Figure 4 - 30: Perturbation plot showing the effect of process parameters on 

cost with ratios as the categorical factor in the response 

 

There are no actual levels, of interaction between temperature and pressure in 

determining the cost effectiveness when considering these parameters for the 30 -

50 degree temperature range of homogenization. There tends to be a wider 

disparity between the parameters at a pressure of 30 MPa as compared to the 90 

MPa pressure. For ratio 10:90, and as shown, it has been proven that there was no 

noticeable interaction within the considered parameters; this may be different for 

others levels of ratios.    

 

Figure 4 - 31: Interaction plot showing the effect of Pressure (A) and number 

of cycles (B) on cost 
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Figure 4-32 shows the contour graph of the effect of temperature and the number 

of cycles on cost. The ratio resulting in this yield is the 30:70 which was also, 

considered as the categorical factors. 

 

Figure 4 - 32: Contours plot showing the effect of number of cycles and 

temperature on the response – cost (this shows zone with highest software-

estimated cost) 

 

The response surface plot showing the effect of two parameters (temperature and 
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increased the temperature of the soluble Baker’s yeast increased resulting in more 

slurry soluble material which led to a higher protein yield, [169]. Secondly, the 

gap size reduced through increased pressure, due to the opening become 

constricted and during homogenization, the soluble material tended to flow 

through the small slit thereby breaking down more of the cell walls to release 

higher protein content within the substrate. These are the underlying factors to 

consider in the release of protein and are in agreement with [139, 165 227]. 

 

 

Figure 4 - 33: Response surface plot of cost in Euro/h (with actual factors 

pressure considered at 60 MPa and ratio at 20:80) 
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4.9 Microalgae homogenized at temperature 15 – 25 °C  

The same process variables and experimental design levels used in the 15 – 25 °C 

temperature for Baker’s yeast were also applied for homogenized Microalgae 

(Chlorella vulgaris) at the same temperature and other variables. Chlorella 

vulgaris species of the strain identification, CCAP 211/11B as classified by the 

institute in Scotland UK were applicable here (see Appendix A). 

The process variables and experimental design level applied was the same that 

used before in the 15 - 25 °C temperature range of Baker’s yeast (see Table 4-11). 

The design matrix with actual values and calculated/experimentally measured 

responses are shown in Table 4-19 

             

Table 4 - 19: Design matrix with actual values and calculated/experimentally 

measured responses 

    

Factor  

1 

Factor  

2 

Factor  

3 

Factor  

4 

Response  

1 

Response 

2 

Exp. 

No. 

Run 

Order 
A:Pressure 

B:No. 

of 

cycles 

C: Temp 

 
D:Ratio 

Protein 

Conc. 
Cost 

    MPa - (°C) -  [mg/mL] [Euro/h] 

1 51 30 1 20 10:90 0.0914 0.1 

2 25 90 1 20 10:90 0.2070 0.18 

3 32 30 5 20 10:90 0.1559 0.39 

4 3 90 5 20 10:90 0.2823 0.41 

5 8 30 3 15 10:90 0.1532 0.28 

6 7 90 3 15 10:90 0.2930 0.32 

7 46 30 3 25 10:90 0.2823 0.31 

8 30 90 3 25 10:90 0.2769 0.33 

9 20 60 1 15 10:90 0.2150 0.12 

10 9 60 5 15 10:90 0.2312 0.4 

11 24 60 1 25 10:90 0.3602 0.14 

12 40 60 5 25 10:90 0.3844 0.37 

13 22 60 3 20 10:90 0.2688 0.34 

14 13 60 3 20 10:90 0.2043 0.34 

15 38 60 3 20 10:90 0.2258 0.34 

16 42 60 3 20 10:90 0.2661 0.34 

17 15 60 3 20 10:90 0.1909 0.34 

18 4 30 1 20 20:80 0.1452 0.1 

19 2 90 1 20 20:80 0.2194 0.18 

20 43 30 5 20 20:80 0.2177 0.39 
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21 5 90 5 20 20:80 0.2930 0.41 

22 50 30 3 15 20:80 0.2769 0.28 

23 6 90 3 15 20:80 0.3172 0.32 

24 29 30 3 25 20:80 0.3817 0.31 

25 31 90 3 25 20:80 0.3306 0.33 

26 18 60 1 15 20:80 0.2634 0.12 

27 11 60 5 15 20:80 0.2312 0.4 

28 47 60 1 25 20:80 0.3710 0.14 

29 16 60 5 25 20:80 0.4113 0.37 

30 17 60 3 20 20:80 0.2688 0.34 

31 26 60 3 20 20:80 0.2903 0.34 

32 12 60 3 20 20:80 0.2769 0.34 

33 49 60 3 20 20:80 0.3038 0.34 

34 37 60 3 20 20:80 0.2984 0.34 

35 10 30 1 20 30:70 0.1694 0.1 

36 33 90 1 20 30:70 0.2742 0.18 

37 28 30 5 20 30:70 0.2581 0.39 

38 27 90 5 20 30:70 0.4220 0.41 

39 45 30 3 15 30:70 0.2823 0.28 

40 48 90 3 15 30:70 0.3629 0.32 

41 36 30 3 25 30:70 0.3011 0.31 

42 41 90 3 25 30:70 0.4462 0.33 

43 21 60 1 15 30:70 0.3091 0.12 

44 39 60 5 15 30:70 0.2688 0.4 

45 44 60 1 25 30:70 0.3790 0.14 

46 23 60 5 25 30:70 0.4624 0.37 

47 1 60 3 20 30:70 0.3091 0.34 

48 19 60 3 20 30:70 0.3118 0.34 

49 34 60 3 20 30:70 0.3172 0.34 

50 35 60 3 20 30:70 0.3199 0.34 

51 14 60 3 20 30:70 0.3065 0.34 
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Table 4 - 20: ANOVA for Protein Concentration reduced quadratic model 

(15-25°C) 

 

Source 

Sum of 

Squares 
DF 

Mean 

Square 

F 

Value 

 

Prob > F 

 

 

Model 0.2520 11 0.0229 18.7647 < 0.0001 Significant 

A-Pressure 0.0425 1 0.0425 34.7949 < 0.0001 

 

B-No. of cycles 0.0157 1 0.0157 12.8673 0.0009 

C-Temperature 0.0583 1 0.0583 47.7505 < 0.0001 

D-Ratio 0.0590 2 0.0295 24.1627 < 0.0001 

AD 0.0082 2 0.0041 3.3643 0.0449 

BC 0.0035 1 0.0035 2.8493 0.0994 

A^2 0.0131 1 0.0131 10.7653 0.0022 

B^2 0.0037 1 0.0037 2.9998 0.0912 

C^2 0.0513 1 0.0513 41.9980 < 0.0001 

Residual 0.0476 39 0.0012 

  Lack of Fit 0.0416 27 0.0015 3.0870 0.0220 Not Significant 

Pure Error 0.0060 12 0.0005 

    Cor Total 0.2996 50 

  

  

R
2
 = 0.8411 Pred R

2
 = 0.7008 

 Adj R
2
 = 0.7963 Adeq Precision = 20.503 

 

Validation of the Model: 

The Figures 4-34 (a) and (b) showed linearity and therefore were normally 

distributed. From the ANOVA Table 4-20, the point prediction technique and an 

appropriate model indicated that, Adj R
2
 minus Pred. R

2
 was 0.096 that is < 0.2. 

The same trends as in previous sections for the normality of plots and validation of 

data were also applicable here. This was necessary to determine good model 

discrimination based on the analysis of the ANOVA Table [215-217, 225-227]. As 

R
2 

equalled 0.8411 it implied that 84.1% of the variability in the data has been 

explained by the model. The F-Value model equalled 18.76, implying that the 

model was significant since it only led to 0.01% chance that the F-Value model 

occurred as a result of noise.  

Based on the final equation in terms of coded factors and those in terms of the 

actual factors for ratios, 10:90, 20:80, and 30:70 (Equations 4-13 – 4-16), protein 

concentration yield can be worked out using the associated equation for any of the 

ratios. 
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Figure 4 - 34: Scatter diagrams of normal plot of residuals (a) and of protein          

concentration yields (b) 

          Final Equation in Terms of Coded Factors: 

          Protein Concentration = 0.2772 + 0.0421 * A + 0.0256 * B + 0.0493 * C – 0.0435  

                                                  *D[1]+ 0.0040 * D[2] + 0.0050 * AD[1] – 0.0247* 

                                                   AD[2]+ 0.0170* BC – 0.0323 * A^2 – 0.0170 * B^2 +  

                                                   0.0637 * C^2                                                             (4-13) 
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Final Equation in Terms of Actual Factors: 

 

Ratio 10:90; 

Protein Concentration = 0.8583 + 0.0059 * Pressure + 0.0043 * No. of cycles –  

                              0.0972* Temperature + 0.0017 * No. of cycles*Temperature +  

                              0.0000*Pressure^2 – 0.0043* No. of cycle^2 + 0.0025 

                             *Temperature                                                                       (4-14)   

                   

Ratio 20:80; 

Protein Concentration = 0.9652 + 0.0049 * Pressure + 0.0043 * No. of cycles –  

                              0.0972* Temperature + 0.0017 * No. of cycles*Temperature +  

                              0.0000*Pressure^2 – 0.0043* No. of cycle^2 + 0.0025 

                              *Temperature                                                                      (4-15)       

      

Ratio 30:70; 

Protein Concentration = 0.9117 + 0.0064 * Pressure + 0.0043 * No. of cycles –  

                              0.0972* Temperature + 0.0017 * No. of cycles*Temperature +  

                              0.0000*Pressure^2 – 0.0043* No. of cycle^2 + 0.0025 

                              *Temperature                                                                      (4-16)    

 

4.9.1 Development of mathematical models for Microalgae 

(Chlorella vulgaris)               

The same software was used to analyse the measured response. The test for 

significance of the regression models, tests for significance on each model 

coefficient, and lack of fit test were carried out. The step-wise regression method; 

which eliminates the insignificant model terms automatically, was applied. Two 

ANOVA Tables for the reduced quadratics models have been obtained (see Table 

4-20 and 4-21). These Tables summarised the analysis of each response and 

showed the significant model terms, and others, such as; Adequacy measure R
2
, 

Adjusted R
2
 and Predicted R

2
. From the Tables, the adequacy models are close to 



  163  
 

1. The developed quadratic mathematical models, in terms of coded factors and 

actual values, are represented in Equations 4-13 to 4-16 for protein concentration 

yield (mg/mL) and 4-17 to 4-18 for cost in (Euro/hour). Wherein, these equations, 

(Equations 4-13 and 4-17) represent the coded form.  

 

Effect of process parameters on the responses - Protein Concentration 

The perturbation plot for the protein concentration yield from the 15 - 25 °C 

temperature range for Microalgae (Chlorella vulgaris) is illustrated in Figure 4-35 

as (a), (b), and (c). These aided in comparing the effect of all the factors at a 

particular point in the design space. Perturbation plots under this Section showed 

great difference as compared to that of the previous two; that of 15 - 25 °C and 

that of 30 – 50 °C temperature ranges for Baker’s yeast. Temperature was shown 

to be effective in protein concentration yield in the three plots. The reason for this 

change has been attributed to the temperature effect of the biomass substrate 

before homogenization. The substrate state would have changed completely and 

the internal contents affected, due to heat effect before the treatment under HPH. 

The substrate temperature was raised to within the room temperature before the 

homogenization was conducted, (15, 20, and 25°C) that is, before the substrate 

was passed through the high-pressure homogenizer. This process, affected the 

change in behaviour of the substrate. Other parameters and their effects were also 

of importance up till the midpoint, and then subsequently resulted in the behaviour 

pattern by the shifting downward of the parameters A, and B, i.e. Pressure and 

Number of cycles. Temperature influenced the higher yield of protein in 4-35 (a, 

b, and c), considered highest in the ratio of 30:70 perturbation plots, the cell walls 

would have been broken down completely to release the protein contents 

internally [163, 169]. 

As the highest protein concentration yield has resulted from the homogenization 

process, as seen in the plot (c), that was; at the ratio 30:70 with the yield of 0.3 

mg/mL of protein concentration, and when compared to the previous two; 15 - 25 

°C and 30 - 50 °C temperature ranges of Baker’s yeast, the results were 0.65 and 

0.7 mg/mL respectively (see Figures 4-17 (c) and 4-26 (c)). This meant that as the 
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ratio increased, the yield in protein concentration also increased at the same rate as 

pressure rose. 

From the analysis, ratio played a very important role in the conversion of input 

into responses (protein concentration yields and cost). A higher dilution ratio 

resulted in higher protein concentration yield. 
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Figure 4 - 35: Perturbation plots (a), (b), and (c) showing the effect of process 

parameters on protein concentration yield with ratio as the categorical factor 

on the response 
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The interaction plots showing the three categorical factors of ratio in Figure 4-36 

indicate some level of interaction within the ratios. At the pressure of 30 MPa, 

there was an interaction between 20:80 and 30:70 and at pressure 90 MPa; also 

there was interaction between 10:90 and 20:80. To maximize protein 

concentration yield, it therefore required some level of interaction within the 

categorical factors. Hence the two levels of interaction of pressure, (A), and ratio, 

(D) are considered as the most significant model terms associated with protein 

concentration yield. Though actual factors of “number of cycles” and 

“temperature” are considered at 3 °C and 20 °C respectively in the interaction plot, 

but have not being of consideration in the protein concentration yield.  

 

 

Figure 4 - 36: Interaction plot showing the effect of Pressure (A) and Ratio 

(D) on protein concentration yield 

 

In another development, Figure 4-37 showed the interaction plot of the effect of 

“temperature” and “number of cycles” on protein concentration. From the plot, 
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10:90. The yield of protein concentration as shown in the plot seems to be close at 
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temperature effect which had resulted over time during homogenization. At the 

start of cycle 1 heat generated as a result of Microalgae homogenization would be 
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infinitesimal, but as the cycle increased, the homogenized substrate tends to 

generate more heat that would create the opening at cycle 5 (see Figure 4-37). 

 

 

Figure 4 - 37: Interaction plot showing the effect of Temperature (C) and 

Number of cycle (C) on protein concentration yield with categorical factor 

considered at 10:90 

 

Figure 4-38 reveals the result of the contour plots showing the effect of number of 

cycles and temperature on the response (protein concentration yield). As analysed 

from the previous section with Figure 4-27, heat generated from homogenized 

substrate in HPH becomes noticeable, for example from the third cycle, and by the 

fifth cycle, this would have completely heated up to cause total disruption of the 

substrate. Hence at 5 cycles, and 25°C, heat would have submerged at the top right 

hand corner when homogenized at a pressure of 60 MPa resulting in the protein 

concentration yield of 0.462371 as shown in the plot with the (Red zone showing 

the heat affected zone of higher concentration yield of protein). Whereas at the 

bottom left hand corner, below 15°C, the zone was considered green and is seen as 

lower concentrations yield of protein. For Microalgae, the temperature effect has 

aided the higher yield of protein concentration over number of cycles during 

homogenization. Parameters of cycles and temperature considered in the ratio of 

30-70 homogenization of substrate played an important role in the yield of protein 
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concentration. Illustrated in the plots are the red colour zone and this as estimated 

by the software, was the zone with the highest protein concentration yield. 

 

Figure 4 - 38: Contours plots showing effect of the number of cycles and 

temperature on the response – protein concentration yield (this shows zone 

with highest software-estimated protein concentration yield) 

 

Figure 4-39 shows the response surface plot of the effect of the effect of the 

“number of cycle” and “temperature” on the response, protein concentration. The 

model was displayed in 3D with actual factors of pressure considered at 60 MPa 

and the “ratio” at 30:70 over the “number of cycles” between 1 and 5 and 

“temperature” between 15 °C and 25 °C. The protein concentration was given 

between maximum and minimum yields of 0.46 mg/mL and 0.09 mg/mL 

respectively. The combined effects of the parameters as applicable to this study, 

tended to yield the optimum result of responses. Protein generated from the 

biomasses considered have shown to give the highest yield at high temperature 

and number of cycles due to their prominent role played in the Microalgae 

biomass disruption process. It was therefore evident that as number of cycles 

increased protein concentration increased also. It invariably implied that 

temperature and protein concentration yield was in reverse and as a result had 

impact on protein concentration yield.  
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Figure 4 - 39: Response surface plot of protein concentration (with actual 

factors of pressure considered at 60 MPa and ratio at 30:70) 

 

Table 4 - 21: ANOVA table for cost reduced quadratic model – Microalgae 

(15 – 25 °C) range 

 

Source 

Sum of 

Squares 

 

DF 

Mean 

Square 

F 

Value 

 

Prob > F 

 

 

Model 0.4699 9 0.0522 1359.0996 < 0.0001 Significant 

A-Pressure 0.0096 1 0.0096 249.9048 < 0.0001 

  

  

  

  

  

  

  

  

  

  

  

B-No. of cycles 0.3978 1 0.3978 10356.4048 < 0.0001 

C-Temperature 0.0003 1 0.0003 8.7857 0.0050 

AB 0.0027 1 0.0027 70.2857 < 0.0001 

AC 0.0003 1 0.0003 7.8095 0.0079 

BC 0.0019 1 0.0019 48.8095 < 0.0001 

A^2 0.0010 1 0.0010 25.1754 < 0.0001 

B^2 0.0474 1 0.0474 1233.5965 < 0.0001 

C^2 0.0057 1 0.0057 148.4837 < 0.0001 

Residual 0.0016 41 0.0000 

  Lack of Fit 0.0016 29 0.0001 

  Pure Error 0.0000 12 0.0000 

  
  

  Cor Total 0.4715 50 

   R
2
 = 0.9967 Pred R

2
 = 0.9941 

 Adj R
2
 = 0.9959 Adeq Precision = 108.40 
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Validation for the Model:  

Table 4-21 above, shows the ANOVA Table for cost reduced as a quadratic 

model, for Microalgae over a 15 – 25 °C temperature range. The point prediction 

technique and the appropriateness of the model is based on the fact that; Adj R
2
 

minus Pred. R
2
 was 0.002.  

R
2 

equalled 0.9967 and F-Value model equalled 1359.1, the “Prob > F” was same 

as the P-value, therefore the model was considered significant.  

 

 

                   

Figure 4 - 40: Scatter diagrams of normal plot of the residuals (a) and the cost 

(b) (15 - 25 °C) Temperature Range for Microalgae      
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      Final Equation in Terms of Coded Factors: 

      

       Cost = 0.34 + 0.02 * A + 0.12875 * B + 0.00375 * C – 0.015 * A * B –    

                  0.005* A * C - 0.0125 * B *C – 0.00875 * A^2 – 0.06125 * B^2 –  

                 0.02125 * C^2                                                                            (4-17) 

        

  Final Equation in Terms of Actual Factors: 

 

          Cost = – 0.58094 + 0.00325 * Pressure + 0.19625 * No. of cycles +   

                     0.0405* Temperature – 0.00025 * Pressure * No. of cycles –3.3E-05  

                    * Pressure *Temperature – 0.00125 * No. of cycles * Temperature – 

                    9.7E-06 * Pressure^2 – 0.01531 * No. of cycles^2 - 0.00085 *    

                   Temperature^2                                                                        (4-18) 

 

The contour graph is one of the plots that can be developed by Design Expert. In 

the same way as the contour improves the yield of protein concentration, it also 

creates a higher yield for protein concentration through maximization of the yield 

at a cost that is effective. Temperature has been proven to be very cost effective in 

the 15 - 25 °C temperature range for Microalgae (Chlorella vulgaris), as compared 

to the other two scenarios for Baker’s yeast above. This has been substantiated by 

Harrison et al. [164] and Diels et al. [169]. Harrison et al. [164] have reported a 

1.6 fold increase of the protein release of Alcaligenes eutrophus when the process 

temperature increased from 12 °C to 26 °C and the research conducted by Diels et 

al. [169], it resulted in a gradual increase in the inactivation of E.coli, Y. 

Enterocolitica and S.aureus when the process temperature was increased. Also, in 

the work carried out by Thiebaud et al. [171], both high homogenization pressures 

and higher inlet temperature for the substrate subsequently increased the microbial 

inactivation. These were increased from 200 MPa and 4 °C to 300 MPa and 14 °C 

or 24 °C to an improved yield of the sample. In the other work carried out by Yap 

et al. [196], they analysed the energy load for HPH of a given Microalgae and 

therefore concluded that this must be minimized by operation at higher pressure 

for fewer passes for an appreciable yield of protein concentration. These therefore 
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support the current research being presented and invariably proven that the chosen 

parameters of pressure, temperature, number of cycle and indeed ratio as a 

categorical factor did all have an effect on the protein concentration yield and the 

associated energy cost. 

 

Figure 4 - 41: Contours plots showing the effect of number of cycles and 

temperature on the response – cost (this shows zone with highest software-

estimated cost) 

The perturbation plot (Figure 4-42) shows the operating parameters; pressure, 

temperature, and number of cycles affect the response (cost) up to the midpoint 

until the temperature starts drop. The pressure and the number of cycles continue 

the trend, with number of cycles showing steadier results. This has taken place 

based on the categorical factor of 10:90; and the scenarios may be different when 

other categorical factors are considered (see Figure 4-42). The three parameters 

did have an effect on the energy cost (in Euro/hour) of the usage of the HPH to 

homogenize the substrate of Microalgae (Chlorella vulgaris). The number of 

cycles had an effect up to the 5
th

 cycle and afterwards had a negative effect on the 

cost, as the yield was reversed. Pressure and temperature also had an effect on the 

cost, with pressure having a larger effect than temperature despite (temperature 

yielding a good result up to the midpoint of 20 °C). 
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Figure 4 - 42: The perturbation plot showing the effect of process parameters 

on cost with ratio as categorical factor 

 

The response surface plot (RS), as in Figure 4-43, shows the effect of pressure and 

the number of cycles on the cost of energy in the homogenization of Microalgae to 

yield protein concentration. Based on the substrate (Chlorella vulgaris), the actual 

factors are considered to be 20 °C and the categorical ratio 10:90. The combined 

effect of pressure and the number of cycle yielded optimum results for cost as 

effectiveness towards higher yield in protein concentration. The RS plot showed 

maximum of €0.41/hour and minimum of €0.1/hour in terms cost of energy 

towards protein concentration production. The scenarios presented are different 

from that previously discussed under the substrate; Baker’s yeast when 

homogenized at 15 – 25 °C and 30 – 50 °C. 
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Figure 4 - 43: The Response surface plot of cost in Euro/h (with actual factors 

temperature considered at 20 °C and the categorical factor ratio at 10:90) 

 

4.10 Optimization of homogenization process and parameters 

It was necessary to optimize the homogenizing process for the substrates for 

optimal yield of protein concentration and cost effectiveness of energy. The 

research through Design Expert software application centres on obtaining results 

with maximum yield at minimum expense. The desirability function is one of the 

most widely used methods in industry for the optimization of multiple response 

processes. This was based on the quality of a product or process which has 

multiple characteristics, and such a process is unacceptable if outside some of the 

desired limits. The method therefore found operating conditions that would 

provide the most desirable value for the response.  
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In this section, optimization will be considered in two ways; numerical and 

graphical and in each of the cases; the 15 - 25 °C temperature range, 30 - 50 °C 

temperature range both for Baker’s yeast homogenization and the 15 - 25 °C 

temperature range for Microalgae homogenization, the optimization conditions 

will be applied just as has been discussed in the previous chapters.     

        

4.10.1 Baker’s yeast (Homogenized at temperature range 15 - 

25°C) 

4.10.1.1 Numerical Optimization (Over the 15 – 25 °C Temperature Range) 

 

Four criteria have been implemented in the numerical optimization of this 

substrate. The criteria were based on quality and cost where quality was referred to 

as higher yield of protein concentration, and cost, as the most effective energy cost 

in attaining the highest yield of protein concentration. Two criteria were 

considered for quality (restricted and not restricted) while cost was also based on 

two criteria (restricted and not restricted). The target was to minimise cost and 

maximize protein concentration yield. The condition has been set out with one as 

restricted (with constraints), and the other, without restriction.  

Table 4-22 comparison of the quality (Protein concentration yield) in both 

restricted and not restricted scenarios. The target was to maximize protein 

concentration yield. For every factor and response, each goal was given a level of 

importance rated between 1 and 5, where 1 was considered as the lowest rating 

and 5 as the highest rating. As shown in Table 4-22, Protein concentration yield 

was the target, therefore it was rated 5 and every other condition must be fulfilled 

to achieve this goal by maximizing pressure, number of cycles, temperature, and 

minimizing ratio at the minimum cost to achieve optimal protein concentration 

yield, through numerical optimization.  
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Table 4 - 22: Quality (Restricted and Not Restricted) for Protein 

Concentration Yield 

 
Restricted Not restricted 

 

Factor or 

Response 

Goal Importance Goal Importance 

Pressure Maximize 3 In range 3 

No. of cycles Maximize 3 In range 3 

Temperature Maximize 3 In range 3 

Ratio In range 3 In range 3 

Protein Conc. Maximize 5 Maximize 5 

Cost In range 3 In range 3 

 

Table 4-23 shows the optimal solution as obtained by Design Expert showing the 

desirability to be 0.93 with the cost of €0.43, and the dilution ratio of baker yeast 

to solution C as 30:70. The temperature, number of cycles and pressure are given 

as 25 °C, 5 and 90 MPa. This was considered and analysed based on 2 categorical 

factors of ratios, between 20:80, and 30:70. The selection by the Design Expert 

was based on the cost effective of optimum quality of protein concentration yield. 

Hence the first 10 yields were considered.  Based on the ‘Not Restricted’ quality 

of protein concentration yield depicted in Table 4-22, it can be deduced in Table 

4-24 that all parameters were in the range except protein concentration which 

needed to be maximized. This showed that there was no restriction attached; 

meaning that there were no constraints and again, desirability was given by the 

Design Expert at 0.92 when the first 10 generated results by Design Expert were 

considered. The first 10 results are considered so as to determine and find the 

optimal conditions for the quality in terms of protein yield. Based on the analysis 

of Table 4-22, the desirability selected by the software were considered the best 

and optimal solutions for the highest yield of protein considering other factors of 

applied parameters (see Tables 4-23 and 4-24). It was therefore evident from the 

results analysed in both tables (Tables 4-23 and 4-24), that yield of protein 

concentration tended to be higher with no restriction based on the desirability 

selections. This was 11.7% in favour of the ‘Not Restricted’ with a 2.4% saving in 

energy cost for homogenizing in the release of protein concentration. 
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Table 4 - 23:  The Optimal Solution as Obtained by Design Expert for Quality 

– Restricted (Constrained)  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 - 24: The Optimal Solution as Obtained by Design Expert for Quality 

– (Not Restricted) 

Number Pressure 

No. of 

cycles Temp Ratio 

Protein 

Conc. Cost Desirability   

1 90.00 5.00 20.00 30-70 1.63 0.42 0.92 Selected 

2 90.00 5.00 19.00 30-70 1.62 0.41 0.92   

3 89.98 5.00 22.00 30-70 1.58 0.43 0.89   

4 87.41 5.00 20.00 30-70 1.57 0.42 0.89   

5 90.00 5.00 16.00 30-70 1.53 0.38 0.87   

6 90.00 5.00 24.00 30-70 1.51 0.43 0.86   

7 90.00 5.00 19.00 30-70 1.51 0.43 0.85   

8 90.00 1.00 20.00 30-70 1.40 0.17 0.79   

9 90.00 1.00 20.00 30-70 1.40 0.18 0.79   

10 90.00 1.00 21.00 30-70 1.40 0.17 0.79   

 

 

 

 

 

 

 

 

Number Pressure 

No. of 

cycles Temp. Ratio 

Protein 

Conc. Cost Desirability   

1 90.00 5.00 25.00 30-70 1.44 0.43 0.93 Selected 

2 90.00 5.00 24.00 30-70 1.49 0.43 0.93   

3 90.00 5.00 23.00 30-70 1.58 0.43 0.91   

4 89.40 5.00 22.00 30-70 1.60 0.43 0.88   

5 75.00 5.00 25.00 30-70 1.12 0.45 0.80   

6 90.00 4.00 25.00 30-70 1.18 0.45 0.79   

7 90.00 5.00 24.00 20-80 0.94 0.43 0.78   

8 90.00 5.00 25.00 20-80 0.88 0.43 0.78   

9 90.00 5.00 23.00 20-80 1.01 0.43 0.77   

10 86.00 5.00 23.00 20-80 0.92 0.44 0.75   
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Table 4 - 25: Cost for Protein Concentration Yield 

 
Restricted Not restricted 

 

Factor or 

Response 

Goal Importance Goal Importance 

Pressure Maximize 3 In range 3 

No. of 

cycles Maximize 3 In range 3 

Temperature Maximize 3 In range 3 

Ratio In range 3 In range 3 

Protein 

Conc. In range 5 Maximize 2 

Cost Minimise 3 In range 5 

 

Considering the analysis based on cost, some restrictions in form of constraints 

were put in place as obtained from the Design Expert. This was to minimise cost 

for optimal yield of protein concentration. When this is compared to the not 

restricted condition, it yielded lower protein concentration, based on the 

desirability selected. As €0.10 yielded 0.13 mg/mL of protein in terms of cost (see 

Table 4-27), it was also seen that €0.28 yielded 1.12 mg/mL of protein 

concentration in in terms of cost for the restricted (see Table 4-26). This invariably 

illustrated, that cost effectiveness could be achieved on a larger scale. In 

comparison, this resulted in 64.3% yield when constrained and was therefore 

favoured as opposed to the ‘Not Restricted’.  

In essence, ‘Energy cost’ for operating the high-pressure homogenizer to 

breakdown the cell wall within the substrate has resulted at a minimal cost of 

€0.28/hour yielding 1.12 mg/mL of protein concentration. In terms of protein 

yield, this has favourable the ‘Restricted’ at 88.4% when compared to the value of 

protein concentration yield at Table 4-27, wherein the yield of 0.13 mg/mL of 

protein concentration resulted from the energy cost of homogenizing the substrate 

at €0.10/hour. 
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Table 4 - 26: Optimal Solution as Obtained by Design Expert for Cost – 

Restricted (Constrained) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 - 27: Optimal Solution as Obtained by Design Expert for Cost – (Not 

Restricted) 

 

 

4.10.1.2 Graphical Optimization (over the 15 – 25 °C Temperature Range) 

 
For the graphical optimization, the optimal range of each response has to be 

considered by bringing it from the numerical optimization results in order to have 

them present graphically. The graphical optimization therefore allows visual 

selection of the optimal process conditions according to certain criteria that have 

been considered in the numerical optimization process. Graphical optimization 

Number Pressure 

No. of 

cycles Temp Ratio 

Protein 

Conc. Cost Desirability 

 1 90.00 2.00 25.00 30-70 1.12 0.28 0.57 Selected 

2 90.00 2.00 25.00 10-90 0.26 0.28 0.57 

 3 90.00 2.00 25.00 20-80 0.55 0.28 0.57 

 4 90.00 2.00 25.00 30-70 1.14 0.24 0.56 

 5 84.00 2.00 25.00 30-70 1.01 0.26 0.56 

 6 84.00 2.00 25.00 20-80 0.50 0.25 0.55 

 7 85.00 2.00 25.00 10-90 0.24 0.25 0.55 

 8 77.00 2.00 25.00 20-80 0.42 0.27 0.54 

 9 89.00 5.00 25.00 30-70 1.42 0.43 0.47 

 10 90.00 5.00 23.00 30-70 1.56 0.43 0.46 

 

Number Pressure 

No. of 

cycles Temp Ratio 

Protein 

Conc. Cost Desirability   

1 39.00 1.00 25.00 20-80 0.13 0.10 1.00 Selected 

2 44.00 1.00 19.00 20-80 0.34 0.10 1.00   

3 39.00 1.00 16.00 30-70 0.17 0.06 1.00   

4 39.00 1.00 16.00 10-90 0.03 0.06 1.00   

5 46.00 1.00 18.00 20-80 0.31 0.09 1.00   

6 30.00 1.00 20.00 20-80 0.20 0.08 1.00   

7 59.00 1.00 15.00 10-90 0.12 0.10 1.00   

8 54.00 1.00 16.00 30-70 0.54 0.10 1.00   

9 60.00 1.00 15.00 20-80 0.30 0.10 1.00   

10 30.00 1.00 20.00 10-90 0.14 0.08 1.00   
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results in plots, called an overlay plot and the green /shaded areas on the overlay 

plots are the region which are considered to have met the proposed criteria. 

 

Graphical Optimization Based on Pressure and Number of Cycle for the 15 – 

25 °C Temperature range of Baker’s Yeast Homogenization 

The result from the overlay plot shows a protein yield of 0.23 mg/mL and cost 

effectiveness required in its homogenization between €0.24 and €0.43. The protein 

concentration yield was considered to be homogenized with 2 or 3 number of 

cycles which corresponded to the costs at €0.24 and €0.43. At the categorical 

factor of 10:90 ratios, the green shaded area shows the region of higher protein 

yield along with the associated costs (see Figure 4-44). As in the case of graphical 

optimization where multiple responses are considered, the software defines 

regions where requirements simultaneously meet the proposed criteria. 

Superimposing or overlaying critical response contours on a contour plot. As the 

visual search for the best compromise becomes possible, graphical optimization 

then displays the area of feasible response values in the factor space [231]. 

Figures 4-45 and 4-46 show the overlay plots of graphical optimization based on 

pressure and number of cycle for the 15 – 25 °C temperature ranges of Baker’s 

yeast homogenization. This reflected the categorical factors of ratios, 20:80 and 

30:70. The higher protein yields are depicted by the green region within the plots. 

The protein concentration yield was similar to that obtained in the 10:90 ratios, 

achieved at 2 or 3 cycles. This was produced at pressures over 50 and with wider 

disparity of pressure during the homogenization. In regards to the 30:70 ratios, it 

was achieved even at lower pressure at over 40 MPa, and with the widest disparity 

of pressure, compared with the other two categorical factors of ratios (10:90, and 

20:80). The results were achieved at 2 and 3 Number of cycles at a cost of €0.24 

and €0.43 respectively. From the three scenarios (Figures 4-44 to 4-46), it was 

evident that the number of cycles and pressure had most of the influence, and the 

other factors remain the same for the three scenarios.  
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Figure 4 - 44: Overlay plot showing the optimal region of higher protein yield 

with associated cost for 10:90 ratios - (Quality) 

 

Figure 4 - 45: The optimal region of higher protein yield with associated cost 

for 20:80 ratios - (Quality) 

    

Figure 4 - 46: The optimal region of higher protein yield with associated cost 

for 30:70 ratios - (Quality) 
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 Graphical Optimization Based on Pressure and Temperature for the 15 – 25 

°C Temperature range of Baker’s Yeast Homogenization – (Cost) 

In Figures 4-47 to 4-49, the categorical factors of ratios 10:90, 20:80, and 30:70 

were applied to determine the protein concentration yield and their associated cost 

in achieving the target. Homogenizing pressure and temperature effects were seen 

to influence the protein concentration yields, and the cost for achieving this goal of 

maximizing protein yield and minimizing cost.  

In Figure 4-47, this produced a protein concentration of 0.12 mg/mL at minimal 

cost of €0.10 when homogenized at 60 MPa pressure, and temperature between 18 

°C and 22 °C. Other actual factors were considered at 1 cycle and at categorical 

factors of 10:90 ratios. While at pressures between 40 and 60 MPa, a wider 

temperature range 17 °C to 23 °C resulted in a protein concentration yield of 0.12 

mg/mL and a cost of €0.05, which was at a lower value of the temperature at 17 

°C or at €0.10, yielding 0.34 mg/mL when homogenized at 20 °C and a pressure 

of 60 MPa in Figure 4-48.  

Whereas in Figure 4-49, the pressure ranges of 40 MPa to 50 MPa yielded protein 

concentrations of 0.34, and 0.12 mg/mL at different temperature ranges from 18 

°C to 22 °C at cost range of €0.10 to €0.34. Other actual factors, like number of 

cycles, and categorical factor of ratios, were considered at 1 and 30:70 

respectively.  It was therefore evident that the categorical factor of 30:70 ratios 

(Figure 4-49) tended to be most favourable. Protein concentration yield and energy 

cost showed to be economically feasible when compared to other two figures 

(Figures 4-47 and 4-48). 
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Figure 4 - 47: The optimal region of higher protein yield with associated Cost 

for 10:90 ratios 

 

Figure 4 - 48: The optimal region of higher protein yield with associated Cost 

for 20:80 ratios 

 

Figure 4 - 49: The optimal region of higher protein yield with associated Cost for 

30:70 ratios 
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4.10.2 Baker’s yeast (Homogenized at temperature range 30 - 

50°C) 

4.10.2.1 Numerical Optimization (Over the 30 – 50 °C Temperature Range) 

 

Table 4 - 28: Quality for Protein Concentration yield - Restricted 

  Lower Upper Lower Upper  

Name Goal Limit Limit Weight Weight Importance 

Pressure maximize 30.00 90.00 1.00 1.00 3.00 

No. of cycles maximize 1.00 5.00 1.00 1.00 3.00 

Temperature maximize 30.00 50.00 1.00 1.00 3.00 

Ratio is in range 10:90 30:70 1.00 1.00 3.00 

Protein Conc. maximize 0.02 1.34 1.00 1.00 5.00 

Cost is in range 0.11 0.47 1.00 1.00 3.00 

 

From Table 4-28 above, the numerical optimization for quality in the yield of 

protein concentration was analysed for homogenizing Baker’s yeast over a 

temperature range of 30 – 50 °C. Quality was used here to describe the economic 

effectiveness of protein concentration in terms of higher yield. The emphasis was 

to maximize protein concentration yield at minimal cost. 

 

Table 4 - 29: The Optimal solution for 3 combinations of categorical factor 

levels    – Quality (Restricted) 

No. Pressure No. of 

cycles 

Temp Ratio Protein 

Conc. 

Cost Desirability   

1 90.00 5.00 47.00 30:70 0.93 0.45 0.85 Selected 

2 86.00 5.00 47.20 30:70 0.95 0.45 0.84   

3 90.00 5.00 46.60 20:80 0.86 0.45 0.82   

4 90.00 5.00 45.50 20:80 0.88 0.45 0.81   

5 90.00 5.00 45.90 10:90 0.73 0.44 0.76   

6 81.00 5.00 45.10 10:90 0.79 0.45 0.75   

7 75.00 5.00 45.40 10:90 0.78 0.45 0.73   

8 90.00 4.00 45.80 30:70 0.77 0.47 0.71   

9 85.00 4.00 46.90 30:70 0.77 0.47 0.70   

10 87.00 4.00 42.20 30:70 0.87 0.47 0.70   
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Table 4-29 shows the optimal desired solution. A desirability of 0.85 was 

achieved, when homogenized at 90 MPa, over 5 cycles, at 47 °C temperature and a 

categorical factor of 30:70 ratio yielding 0.93 mg/mL at a cost of €0.45.  

Whereas in the real sense of it,  the second on the list at Table 4-29 showed a 

better result in terms of the protein concentration yield when homogenized at even 

lower pressure of 86 MPa and a slightly higher temperature of 47.2 °C resulted in 

0.95 mg/mL of protein concentration. This was an increment of 2.2% of the yield 

when compared to the desired one rated by the Design Expert as 85. One reason to 

consider here, for the desirability selection would probably be as a result of the 

lower operating temperature that was applicable. 

Table 4 - 30: Quality for Protein Concentration yield – Not Restricted (Over 

the 30 – 50 °C Temperature Range) 

    Lower Upper Lower Upper   

Name Goal Limit Limit Weight Weight Importance 

Pressure  is in range  30.00 90.00 1 1.00 3.00 

No. of cycles  is in range  1.00 5.00 1 1.00 3.00 

Temperature  is in range  30.00 50.00 1 1.00 3.00 

Ratio  is in range  10:90 30:70 1 1.00 3.00 

Protein Conc.   maximize  0.02 1.34 1 1.00 5.00 

Cost  is in range  0.11 0.47 1 1.00 3.00 

 

Table 4-30 shows the quality for protein concentration yield for no restrictions 

attached. A desirability of 0.80 was achieved at a 30:70 ratio as the categorical 

factor’s choice yielding 1.07 mg/mL of protein concentration and at a cost of 

€0.43, through the homogenization at 77 MPa, 5 cycles and at a temperature of 

40.8 °C. Based on the criteria above, the ‘Not Restricted’ scenario was favourable 

compared to the ‘Restricted’. It resulted in higher protein concentration yield, and 

at a lower energy cost in the desirability selections (see Tables 4-29 and 4-31). 

From the scenario above, the ‘Not Restricted’ has been favoured as against the 

‘Restricted’ resulting in 13.1% increment in protein concentration yield and a 

4.7% of energy saving in terms of the cost.  (see the desirability selections of 

Tables 4-29 and 4-31 of both ‘Restricted’ and ‘Not Restricted’ to compare results). 
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Table 4 - 31: The Optimal solution for 3 Combinations of Categorical Factor 

Level – Quality (Not Restricted) 

         

 

 

 

 

 

 

 

 

 

4.10.2.2 Graphical Optimization (Over the 30 – 50 °C Temperature Range) 

 

The green shaded areas in the overlay Quality plots, Figures 4-50 to 4-53, are the 

regions that met the best criteria. These depicted the categorical factors of 10:90, 

20:80, and 30:70 ratios as seen in Figures 4-50 to 4-52 respectively while Figure 

4-53 was another form of the Figure 4-52, over 30 to 50 °C temperature range. 

Figure 4-50 tended to produce a higher yield protein of 0.72 mg/mL, however at 

higher pressure and temperature, homogenized in 5 cycles, realistically it would 

not be cost effective. The same trend was applicable to the categorical factors of 

20:80 ratios; resulting in higher energy cost for the process (see Figure 4-51). At 

the 30:70 categorical factor ratio, a protein concentration yield of 0.95 mg/mL was 

achieved when homogenized at 5 cycles at an energy cost of €0.47 (Figure 4-52). 

Also Figure 4-53 produced an optimal result at a reduced temperature of 40.81 °C 

which was in contrast with the temperature applied in Figure 4-52 (46.96 °C). At 2 

and 4 cycles a 0.76 mg/mL yield of protein concentration was achieved for €0.16 

and €0.44 when homogenized at pressures of 58 and 9 MPa respectively. Figures 

4-52 and 4-53 compared favourably when others (Figures 4-50 and 4-51) were 

considered. 

No. Pressure 
No. of 

cycles 
Temp. Ratio 

Protein 

Conc. 
Cost Desirability 

  

1 77.00 5.00 40.80 30:70 1.07 0.43 0.80 Selected 

2 80.00 5.00 40.90 30:70 1.07 0.43 0.80   

3 77.00 5.00 42.00 30:70 1.07 0.44 0.80   

4 77.00 5.00 41.00 20:80 0.99 0.43 0.74   

5 76.00 5.00 42.00 20:80 0.99 0.44 0.73   

6 77.00 1.00 41.00 30:70 0.85 0.16 0.63   

7 77.00 5.00 41.00 10:90 0.84 0.43 0.62   

8 81.00 5.00 41.00 10:90 0.84 0.43 0.62   

9 82.00 5.00 38.00 10:90 0.82 0.42 0.60   

10 77.00 1.00 41.00 20:80 0.77 0.16 0.57   



  187  
 

                              

Figure 4 - 50: The optimal region of higher protein yield with associated 

Quality for 10:90 ratios (Number of cycles vs. Pressure plot) 

 

Figure 4 - 51: The optimal region of higher protein yield with associated 

Quality for 20:80 ratios (Number of cycles vs. Pressure plot) 

 

Figure 4 - 52: The optimal region of higher protein yield with associated 

Quality for 30:70 ratios (Number of cycles vs. Pressure plot) 
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Figure 4 - 53: The optimal region of higher protein yield with associated 

Quality for 30:70 ratios (at a temperature of 40.81°C) 

 

Graphical Optimal Solution for Cost with Restriction (Over the 30 – 50 °C 

Temperature Range) 

The costs overlay plots for optimal solutions with restrictions, for the categorical 

factors ratios of; 10:90, 20:80, and 30:70 overlay plots are shown in Figures 4-54 

to 4-56. The overlay plots showed pressure plotted against number of cycles with 

the actual factors of ratios and temperature. This varied in the determinant of an 

optimal yield of protein and their associated cost. For the 10:90 ratios, €0.27 

resulted in the yield of 0.32 mg/mL when homogenized at 2 cycles, 90 MPa and at 

36.65 °C while the same yield of protein concentration could also be achieved at 4 

cycles, 90 MPa at a cost €0.41. The same was applicable to both the 20:80 and 

30:70 categorical ratios at the same cost as well as another at the 30:70 categorical 

ratios resulting in 0.98 mg/mL of protein when homogenized at 5 cycles. 
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Figure 4 - 54: The optimal region of higher protein yield with associated Cost 

for 10:90 ratios (Number of cycle vs. Pressure plot) 

 

Figure 4 - 55: The optimal region of higher protein yield with associated Cost 

for 20:80 ratios (Number of cycle vs. Pressure plot) 

 

Figure 4 - 56: The optimal region of higher protein yield with associated Cost 

for 30:70 ratios (Number of cycle vs. Pressure plot) 
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Figures 4-57 and 4-58 analysed the two categorical factors of 10:90 and 20:80 

when Baker’s yeast substrates were homogenized over the temperature range of 30 

- 50 °C. In particular, three green shaded areas in the Figure 4-58, revealed that the 

overlay plot satisfied some criteria in terms of energy cost required for 

homogenizing the substrate, and therefore indicated that the process parameters of 

homogenizer indeed were economically feasible in terms of maximizing protein at 

minimal cost. Both Figures 4-57 and 4-58 showed a protein concentration yield of 

0.76 mg/mL was achieved at 5 cycles and 90 MPa, as and at a cost of €0.44. This 

(0.76 mg/mL of protein concentration) was also attained for a cost of €0.16 and 

€0.44 when homogenized at 75 MPa pressure using 2 and 4 cycles respectively. 

This seems realistic based on the data on the overlay plot and with the working 

parameters considered; as protein concentration yield can be more cost-effective 

over a categorical factor of 20:80 ratio. This was based on the fact that as the 

number of cycles for homogenizing the substrates increases, more cell walls will 

be broken down to further release the intracellular protein at a higher operating 

pressure. 

 

                     

Figure 4 - 57: shows the optimal region of higher protein yield with associated 

Cost for 10:90 ratios (Number of cycle vs. Pressure plot) 
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Figure 4 - 58: The optimal region of higher protein yield with associated Cost 

for 20:80 ratios (Number of cycle vs. Pressure plot) 

 

Optimal Solution for Cost (Not Restricted) – Over the 30 – 50 °C 

Temperature Range 

This section describes the cost associated with ‘No Restriction’ as an optimal 

solution for Baker’s yeast homogenized over the 30 – 50 °C temperature range. 

These are considered in the Figures 4-59 to 4-61 detailed below. ‘Cost with no 

restrictions’ meant that every parameters both as factors and responses are in range 

except the protein concentration which was been determined and as such, was 

required to be maximized. These also included cost and categorical factors of 

ratios and were varied to determine the cost effectiveness of the protein 

concentration through homogenization of the substrate. 

From the Figures 4-59 to 4-61 depict the categorical factors of 10:90, 20:80, and 

30:70 ratios respectively and all had similar trends but with some differences in 

their yields. Two cases were visible in Figure 4-59 wherein 0.06 mg/mL protein 

yield was achieved when homogenized at 38 and 52 MPa pressures, 1 cycle and at 

a temperature of 32.95 °C at a cost of €0.08 to €0.11 respectively. Similarly 

energy costs of €0.08 and €0.11 in Figure 4-60 yielded 0.52 mg/mL protein 

concentration when homogenized at 32 and 54 MPa. The same yield also resulted 

from homogenizing at 40 and 50 MPa pressure, at 1 cycle for the plot (see Figure 
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4-61), resulting in a similar cost. So despite the ratio, if one chose 1 cycle and an 

average pressure of around 40 MPa, a maximum yield would be achieved but to 

the greatest effect of using 20:80 or 30:70 ratios. That is, an increased dilution 

ratio resulting in a higher protein concentration yield and this is in agreement with 

work carried out by Diels & Michiels [175] and Save et al. [188]. 
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Figure 4 - 59: The optimal region of higher protein yield with associated Cost 

for 10:90 ratios (Number of cycle vs. Pressure plot) 

                         

Figure 4 - 60: The optimal region of higher protein yield with associated Cost 

for 20:80 ratios (Number of cycle vs. Pressure plot) 

 

                     

Figure 4 - 61: The optimal region of higher protein yield with associated Cost 

for 30:70 ratios (Number of cycle vs. Pressure plot) 
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4.10.3 Microalgae (Homogenized at 15-25 °C Temperature Range) 

4.10.3.1 Numerical Optimization (Over the 15 – 25 °C Temperature Range) 

   

Table 4-32 shows the restrictions and parameters used to determine the quality of 

protein concentration yield against over the 15 – 25 °C temperature range. In 

maximizing protein concentration yield, the lower and upper limits were set based 

on the yield that resulted, at 0.10 and 0.46 mg/mL respectively. The aim was to 

attain 0.46 mg/mL, considering the cost which was within the range. This cost 

should be as low as ever for the purpose of cost effectiveness. 

 

Table 4 - 32: Quality for Protein Concentration Yield - Restricted 
  

 

 

 

 

 

 

Table 4-33 depicts the desirability/optimized results for the categorical factors of 

10:90, 20:80, and 30:70 ratios, and within the parameters and limited availability 

of resources required for homogenization. Design Expert Software identified the 

optimal solution at a pressure, number of cycles, temperature, ratio and cost at 90 

MPa, 5, 25°C, 30:70 and €0.37 respectively, to yield the maximum 0.48 mg/mL of 

protein concentration. 

 

 

 

 

 

 

     Lower Upper Lower Upper   

Name Goal Limit Limit Weight Weight Importance 

Pressure  maximize  30 90.00 1 1.00 3.00 

No. of cycles  maximize  1 5.00 1 1.00 3.00 

Temperature  maximize  15 25.00 1 1.00 3.00 

Ratio  is in range  10-90 30-70 1 1.00 3.00 

Protein Conc.   maximize  0.10 0.46 1 1.00 5.00 

Cost  is in range  0.1 0.41 1 1.00 3.00 
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Table 4 - 33: Optimal Solutions for 3 Combinations of Categorical Factor 

Level for Quality 

 

 

 

 

 

 

 

Tables 4-34 and 4-35 examines and analyses the ‘Not-restricted’ quality for 

protein concentration yield and the optimal solutions for 3 combination of 

categorical factor of 10:90, 20:80, and 30:70 ratios.  This was similar to the 

scenarios of Table 4-33 (the difference was in the ‘Restricted’ and ‘Not-

restricted’).  

The optimal yield for the protein concentration was 0.47 mg/mL, based on the 

desirability. Tables 4-33 and 4-35 compared the ‘Restricted’ and ‘Not Restricted’ 

of protein concentration yield, and the energy cost associated for the yield. Based 

on the criteria for desirability selections, the ‘Not Restricted’ has been favoured in 

comparison to the ‘Restricted’. This was proven to have yielded an increment of 

2.1% in the protein concentration and an energy saving cost of 2.8%  

 

Table 4 - 34: Quality for Protein Concentration Yield - Not Restricted 

    Lower Upper Lower Upper   

Name Goal Limit Limit Weight Weight Importance 

Pressure  is in range  30 90 1 1 3 

No. of cycles  is in range  1 5 1 1 3 

Temperature  is in range  15 25 1 1 3 

Ratio  is in range  10:90 30:70 1 1 3 

Protein Conc.   maximize  0.1 0.46 1 1 5 

Cost  is in range  0.1 0.41 1 1 3 

 

 

No. Pressure 
No. of 

cycles 
Temp Ratio 

Protein 

Conc. 
Cost Desirability 

  

1 90.00 5 25.00 30:70 0.48 0.37 1.00 Selected 

2 90.00 5 24.00 30:70 0.46 0.38 0.98   

3 90.00 5 25.00 30:70 0.48 0.37 0.98   

4 79.00 5 25.00 30:70 0.48 0.37 0.96   

5 90.00 4 25.00 30:70 0.48 0.37 0.95   

6 90.00 5 25.00 20:80 0.40 0.37 0.94   

7 90.00 5 25.00 20:80 0.40 0.37 0.93   

8 90.00 5 25.00 10:90 0.39 0.37 0.92   

9 90.00 4 25.00 30:70 0.46 0.36 0.92   

10 86.00 5 25.00 10:90 0.39 0.37 0.91   
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Table 4 - 35: Optimal Solutions for 3 Combinations of Categorical Factor 

Levels for Quality 

 

 

 

 

 

 

 

Tables 4-36 and 4-37 again looked at the cost in realizing protein concentration 

yield and with the restricted condition attached to the parameters. The main input 

parameters (Pressure, temperature, and number of cycles) were maximized, while 

the categorical factors of ratios and protein concentration were in range. This 

would enable Design Expert to determine the cost at a minimal level for higher 

protein yield. Table 4-37 found an optimal solution of only 0.36 mg/mL but at cost 

of €0.27/hour, at a pressure of 90 MPa, 2 cycles, 25 °C and ratio of 20:80.  

 

Table 4 - 36: Cost for Protein Concentration Yield - Restricted 

    Lower Upper Lower Upper   

Name Goal Limit Limit Weight Weight Importance 

Pressure  maximize  30 90 1 1 3 

No. of cycles  maximize  1 5 1 1 3 

Temperature  maximize  15 25 1 1 3 

Ratio  is in range  10:90 30:70 1 1 3 

Protein Conc.   is in range  0.1 0.46 1 1 2 

Cost  minimize  0.1 0.41 1 1 5 

 

 

 

 

 

 

No. Pressure No. of 

cycles 

Temp Ratio Protein 

Conc.  

Cost Desirability   

1 85.00 4 25.00 30:70 0.47 0.36 1 Selected 

2 87.00 3 25.00 30:70 0.47 0.35 1   

3 72.00 5 25.00 30:70 0.47 0.38 1   

4 87.00 4 25.00 30:70 0.47 0.38 1   

5 74.00 5 25.00 30:70 0.46 0.38 1   

6 68.00 5 25.00 30:70 0.47 0.38 1  

7 77.00 4 25.00 30:70 0.46 0.38 1  

8 81.00 4 25.00 30:70 0.47 0.38 1  

9 76.00 4 25.00 30:70 0.46 0.37 1  

10 80.00 5 25.00 30:70 0.48 0.37 1  
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Table 4 - 37: Optimal Solutions for 3 Combinations of Categorical Factor 

Levels for Cost 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tables 4-38 and 4-39 show the cost for protein concentration (not restricted) along 

with optimal solutions for the three combinations of categorical factor levels. The 

‘Not Restricted’ (Table 4-38) was used to determine the cost of yielding the 

protein concentration and this showed all parameters to be in range, except protein 

was maximized, and cost, minimized.  The order of importance for protein 

concentration and cost for homogenizing the substrate were rated as 2 and 5 

respectively, as for previous temperature ranges/optimization. Table 4-39 shows 

the optimal parameters that achieved a cost of €0.11 yielding 0.30 mg/mL of 

protein concentration at a categorical factor of 30:70 ratios at 1 cycle at a pressure 

of 55 MPa and a temperature of 15 °C.  

In comparison, the ‘Not Restricted’ was considered more favourable in terms of 

cost for protein concentration yield based on optimal selection, over the  

combinations of categorical factor, with 30:70 ratio for the ‘Not Restricted’ 

showing the best result with lower pressure, temperature and number of cycles. 

 

 

 

 

 

No 
Pressure 

No. of 

cycles 
Temp Ratio 

Protein 

Conc. 
Cost Desirability 

  

1 90.00 2.00 25.00 20:80 0.36 0.27 0.57 Selected 

2 90.00 2.00 25.00 10:90 0.34 0.27 0.57   

3 90.00 2.00 25.00 30:70 0.44 0.27 0.57   

4 88.00 2.00 25.00 10:90 0.33 0.25 0.56   

5 85.00 2.00 25.00 10:90 0.34 0.26 0.56   

6 90.00 3.00 25.00 30:70 0.45 0.31 0.55   

7 80.00 2.00 25.00 30:70 0.43 0.26 0.55   

8 90.00 2.00 24.00 10:90 0.30 0.27 0.55   

9 78.00 2.00 25.00 20:80 0.38 0.28 0.55   

10 69.00 2.00 25.00 30:70 0.42 0.24 0.53   
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Table 4 - 38: Cost for Protein Concentration Yield – Not Restricted 

 

 

 

 

 

 

Table 4 - 39: Optimal Solutions for 3 Combinations of Categorical Factor 

Levels for Cost – (Not Restricted) 

 

 

 

 

 

 

 

 

 

 

4.10.3.2 Graphical Optimization (Over the 15 – 25 °C Temperature Range) 

          

Quality for Homogenization of Protein Concentration Yield - Restricted 

(Over the 15 – 25 °C Temperature Range)  

Figures 4-62 to 4-64 details the restricted constraints graphical representation of 

the categorical factor levels of 10:90, 20:80, and 30:70 ratios of the quality of 

protein concentration yield from high-pressure homogenization of Microalgae 

(Chlorella vulgaris).  

Figure 4-62 4-64, reveals protein concentration yield of 0.37 mg/mL at a cost of 

€0.36 and €0.37 homogenized at 65 MPa (Figure 4-62), 30 - 90 MPa (Figure 4-63) 

and 60 – 90 MPa (Figure 4-64) respectively and 25 °C, and at 4 - 5 cycles along 

    Lower Upper Lower Upper   

Name Goal Limit Limit Weight Weight Importance 

Pressure  is in range  30 90.00 1 1.00 3.00 

No. of cycles  is in range  1 5.00 1 1.00 3.00 

Temperature  is in range  15 25.00 1 1.00 3.00 

Ratio  is in range  10:90 30:70 1 1.00 3.00 

Protein Conc.   maximize  0.1 0.46 1 1.00 2.00 

Cost  minimise  0.1 0.41 1 1.00 5.00 

No Pressure 
No. of 

cycles 
Temp Ratio 

Protein 

Conc. 
Cost Desirability 

  

1 55.00 1 15.00 30:70 0.30 0.11 0.83 Selected 

2 63.00 1 15.00 30:70 0.31 0.12 0.83   

3 59.00 1 15.00 30:70 0.30 0.11 0.83   

4 51.00 1 25.00 30:70 0.35 0.14 0.83   

5 45.00 1 25.00 30:70 0.33 0.13 0.83   

6 60.00 1 25.00 30:70 0.37 0.15 0.82   

7 42.00 1 25.00 30:70 0.32 0.12 0.82   

8 64.00 1 25.00 30:70 0.38 0.15 0.82   

9 37.00 1 25.00 30:70 0.30 0.12 0.82   

10 32.00 1 25.00 20:80 0.29 0.11 0.82   
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with at a categorical factor of 10:90 ratios, 20:80 ratios, and 30:70 ratios 

respectively.  
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Figure 4 - 62: The optimal region of higher protein yield with associated 

Quality for 10:90 ratios – (Restricted) 

                             

Figure 4 - 63: The optimal region of higher protein yield with associated 

Quality for 20:80 ratios – (Restricted) 

                            

Figure 4 - 64: The optimal region of higher protein yield with associated 

Quality for 30:70 ratios – (Restricted) 
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Cost for protein concentration yield – Restricted 

Figures 4-65 to 4-67, shows the cost for the protein concentration yield with some 

restrictions. The main parameters were maximized; temperature, pressure and the 

number of cycles. Cost was minimized, while protein concentration and ratio were 

in range when one observes the results in Figures 4-65 to 4-67, a maximum 

protein concentration yield of 0.95 mg/mL, was achieved at a homogenized 

pressure of 65 – 85 MPa, at 3 - 4 cycles, and were achieved at costs of €0.44 and 

€0.47 respectively, for a categorical factor of 30:70 ratio (Figure 4-67).  
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Figure 4 - 65: The optimal region of higher protein yield with associated Cost 

for 10:90 ratios – (Restricted) 

                              

Figure 4 - 66: The optimal region of higher protein yield with associated Cost 

for 20:80 ratios – (Restricted) 

                          

Figure 4 - 67: The optimal region of higher protein yield with associated Cost 

for 30:70 ratios – (Restricted) 
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4.11 Summary 

Economic feasibility of the process as presented using the Design Expert software, 

showed results and optimization on protein concentration yield and energy cost 

with a consideration most feasible when the substrate to buffer solution ratio is 

increased. The entire results presented have provided some clarification of the 

behaviours of the biomass substrates. The design of experiment through the 

response surface methodology (RSM) have critically analysed the process of 

maximizing protein yield and minimizing energy cost associated with the 

homogenization. These have been presented in three scenarios of homogenizing 

the substrates in the form of Baker’s yeast at 15 – 25 °C, and 30 – 50 °C 

temperature ranges, and Microalgae at 15 – 25 °C temperature range. Further 

analyses in the optimization section showcased the different parameters and their 

effects on the yield of protein concentration and the cost to that effect. Numerical 

optimization of the process showed the ‘Restricted’ and the ‘Not Restricted’ of the 

quality of the protein concentration yield along with the energy cost in producing 

the protein concentration. The 30 – 50 °C temperature range of Baker’s yeast 

showed the best of result in all when the three scenarios were compared in 

attaining the target of highest protein concentration yield at minimal cost. This as 

compared, showed the desirability selection of 0.93 mg/mL of protein 

concentration yield attainable at a cost of €0.45 (Restricted) and 1.07 mg/mL of 

protein concentration yielded at a cost of €0.43 for the ‘Not Restricted’ (see Tables 

4-29 and 4-31) respectively. This showed a 13.1% increment of protein 

concentration yield and an energy saving cost of 4.7%. Whereas, in consideration 

of other two substrates, homogenized at both 15 – 25 °C for Baker’s yeast (Tables 

4-23 and 4-24) and microalgae (Tables 4-33 and 4-35). The results presented were 

in favour of the ‘Not Restricted’ yielding increments of 11.7% and 2.1% of protein 

concentration and energy saving costs of 2.4% and 2.8% for both Baker’s yeast 

and microalgae respectively. Pressure and Number of cycles have proven to be 

very effective in the attainment of protein concentration and energy cost for 

homogenizing the substrates. Temperature was mostly effective in the 30 - 50 °C 

temperature range of Baker’s yeast, as described in the optimization section.  

Overall, the ‘Not restricted’ compared favourably well when the ‘Restricted’ was 

considered in achieving protein concentration and the energy cost for the process. 
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 Chapter 5 
 Conclusion and Future Work 

5.1 Conclusion 

In this study, Baker’s yeast (Saccharomyces cerevisiae) and Microalgae (Chlorella 

vulgaris) have been thoroughly investigated as biomass substrates through their 

use in a high-pressure homogenizer (HPH). A mechanical (cell disruption) pre-

treatment machine was utilized to shear the biomass in the liberation of the inner 

contents, particularly protein, whose use has become prominent all over the world 

as a feedstock for biogas production. Cell rupture enhanced the recovery of the 

biological products, located inside cells; therefore, HPH is one method capable of 

rupturing the cells, assuming the ideal optimized conditions are used to extract the 

maximum protein concentrations. However the selection of ideal parameters has to 

be weighed against cost, as to propose a biomass generation system. The cost of 

production should be as low as possible to ensure an overall optimized system. 

Thus this study investigated the production of stable emulsions from these 

products, using HPH for each of these substrates, and assessed, the protein 

concentration yield and its relative cost. 

Based on the conducted research, the following conclusions were drawn from the 

results obtained in the work and as such, should only be applicable to the 

substrates considered:  

 A high-pressure homogenizer was found to enhance protein concentration 

yield of both biomass substrates through the cell rupturing of the cell walls 

to release the intracellular components of protein concentration within. 

 

 Adequate measurements showed that there was good model discrimination 

for all statistical investigations conducted hence, model significance was 

achievable.  

 

 For both One-Variable-At-a-Time and Design of Experiments (OVAT and 

DOE) analysis, within the categorical factors of 10:90, 20:80, and 30:70 
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ratios, 30:70 ratios showed highest yields of protein concentration, and 

thus, considered the best ratio for protein concentration output. 

 

 The influencing process parameters for high protein yield production (if 

cost was not a factor) were the homogenizing pressure and the Number of 

cycles. These tend to completely breakdown and disrupt the cell walls of 

the substrates to release the entire protein content. 

 

  The optimal homogenizing conditions for Baker’s yeast were identified at 

a pressure of 90MPa, 5 cycles, and a temperature of 20
o
C along with 

categorical factors of 30:70 ratios yielding a maximum protein 

concentration of 1.7694 mg/mL, and a minimum total operating cost of 

€0.39/hour for a 15 to 25 
o
C temperature range of Baker’s yeast 

(Saccharomyces cerevisiae) as biomass. This indicates that an increase in 

dilution ratio of the substrate led to an increase in protein concentration 

yield when homogenized. 

 

 Optimization analyses of the economic feasibility of the process through 

the associated energy cost in maximizing protein concentration yield were 

observed. This showed that optimizing the process, did improve the 

maximization of the protein yield at minimal energy cost, (when 

homogenized at 90 MPa, 2 cycles, 25 
o
C and at a categorical factor of 

30:70 ratios. This yielded 1.12 mg/mL of protein concentration at a cost of 

€0.28/hour). This therefore resulted in protein concentration yield 

enhancement of 58% and an energy cost saving of 39.3%. 

 

 Results obtained from Chlorella vulgaris compared consistently well with 

that from Saccharomyces cerevisiae – an indication that the applied 

equipment and software were in good agreement on. 
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5.2 Thesis Contribution 

 The technique and method developed is applicable to a whole range of 

applications. This work can act as a template that helps future researchers 

in this related field.  

 

 In the conduct of experiments through OVAT and DOE, an approach of 

specifying precise ranges proved beneficial. This technique can help future 

researchers to build on the developed analysis. 

 

 Implementing DOE techniques to optimise the results found after HPH 

treatment. 

 

 Identifying the most suitable variables as input parameters (Pressure, 

Temperature, Number of Cycle and Ratio) along with protein 

concentration (mg/mL) and cost (Euro/hr) as output (Responses) through 

experimentation.  

 

 Identifying the best parameters for optimum yields of intracellular protein 

release as an output (response). 

 

 Establish the ratios of dilution (substrate against solution C) during 

experimental work which as a result, led to the categorical factors being 

determined as; 10:90, 20:80 and 30:70 and which was required to identify 

and optimize the highest yields from the results. This could be found more 

accurately for higher protein concentration yield if the ratio was to be 

increased. 

 

 Cost determinants as a function and guide towards optimum economic 

yield of results of protein concentration.  

5.3 Recommendation for Future Work 

The following has been recommended as part of future work in addition to this 

research; 
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 Other biomass substrates like some species of microalga and energy 

producing substrates should be considered to verify the use and results of 

Saccharomyces cerevisiae/Chlorella vulgaris from HPH. 

 

 Other kinds of yeasts such as Brewer’s yeast and genetically engineered 

types could be considered also to verify the results from the Baker’s yeast 

(Saccharomyces cerevisiae).  

 

 Comparison of ultrasonic or autoclaves results to that of the current HPH 

result, to determine any difference when set under the same conditions. 

 

 Alternative temperature ranges (50 
o 

C and over) and pressure ranges (90 

MPa and over) to determine protein concentration yield and associated 

energy cost so as to compare these with the current results. 

 

 For future particle size reduction, analysis could be performed by 

increasing the range in number of cycles from 1-5 to different number of 

cycles (e.g. 1 - 9). This will indicate if there are further deformations or 

reduction in size of particles after the 5
th

 cycle of homogenization.  

 

 Particle size distribution using the “Delsa Nano C” (particle size analyser) 

may be more accurately found if other techniques such as the Mastersizer 

3000 were available. 

 

 Consideration of a different categorical factor of ratio, possibly 40:60 or 

50:50 as against the current categorical factors of ratios used in this 

research; 10:90, 20:80, and 30:70. 

 

 Other parameters such as Density, Viscosity and Cell turbidity could be 

considered as well, to further determine the yield in protein concentration. 
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 Appendices 

Appendix A: 

Microalgae (Chlorella vulgaris) supply information 

 



  229  
 

 



  230  
 

 



  231  
 

 



  232  
 

 

 

 

 



  233  
 

Appendix B: 

Centrifuge user’s guide and operation 
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Appendix C: 

Water deionization information 
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Appendix D: 

The Outline Sketch of GYB40-10S/ GYB60-6S 2-Stage Homogenizing Valves 

of HPH 
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Appendix E: 

Laboratory Glassware 
 

 

 

 

      

 

 

 

 

 

Figure E1: Syringe and filter for particle separation from the centrifugated biomass 

substrates 

 

 

Figure E2: Schematic view of WHATMAN 0.2 µm PVDF filter 
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Figure E3: Pipette in measuring biomass solution into clear white tubes and 

cuvettes 

 

 

Figure E4: showing cuvette with prepared solution in readiness to determine the 

protein concentration contained in the sample  
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Figure E5: 100 mL measuring cylinder for dilution ratio measurement and beaker 

with homogenized yeast 

 

Figure E6: Round-bottom flask for measuring quantified solution in the 

preparation of buffer solution 

 

Figure E7: pH 4.01 and 7.01 buffer solution (±0.01 pH @25 °C) 
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Appendix F:  

Developed Protein Curve for Protein Analysis   

 

Applying the linear graph equation; y = MX + C 

Wherein;    y = Value on y-axis = (UV Absorbance rate) 

                   X = Value on x-axis = (Protein Concentration in mg/mL) 

                   M = Slope/Gradient = Change in y/Change in x = 0.062 

                   C = Intercept = (0.09) 

Putting in the values implies; 

(UV Absorbance rate) = 0.062 (Protein Concentration in mg/mL) + 0.09 

(Protein Concentration in mg/mL) = [(UV Absorbance rate) – 0.09]/0.062 

𝑋 =
[y − C]
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Appendix G:  

Design of Experiment Equations 

G1: Equations for Design Analysis  
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G2: Equation for Testing the Adequacy of the Developed Models 
 

 













MR

R

SSSS

SS
R 12                    (3-19) 





































1

2 1
MR

MR

R

R

dfdf

SSSS

df

SS
AdjR      (3-20) 













MR SSSS

PRESS
edR 1Pr 2        (3-21) 



  245  
 

2

,

1

)ˆ( ii

n

i

i yyPRESS 



        (3-22) 
























n

MSp

YMinYMax
precisionAdeq

R

)ˆ()ˆ(
.      (3-23) 

 

Where: 

p = Number of model parameters (including intercept b0) 

           n = number of experiments 

 

G3: Optimization through Desirability Approach Function  

 For goal of maximum, the desirability will define by: 
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 For goal of minimum, the desirability will define by: 
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 For goal as a target, the desirability will define by: 
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 For goal within range, the desirability will define by: 
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