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Non-Locally Regularised Optic-Flow Approaches and
Model and Motion based Dense Cell Population

Tracking

Sha Yu

Abstract

The first half part of this thesis concerns optic-flow (OF) based
motion estimation. Recent advances in OF regularisation approaches
have emphasised the three important aspects, exploring new motion-
integration strategies, looking for improvements or replacements of ex-
isting motion spaces, and investigating more suitable motion-distribution
priors (MDPs) that can better fit or describe the statistics of a partic-
ular motion space. Motivated by that, two motion regularisation ap-
proaches, making up the first core contribution of this thesis, have been
proposed. First, an oriented geodesic distance based non-local regu-
larisation approach. At the heart of this approach is a novel pairwise-
feature-affinity measurement. The new non-local OF approach has been
demonstrated particular useful in dealing with two situations: accu-
rately recovering object boundary motion and estimating motion for
nearby similar-appearance objects. Experimental results, comparing to
leading-edge non-local regularisation schemes, have confirmed the su-
perior performance of the proposed approach. Second, a sparsity&non-
sparsity constraint based prior-adaptive regularisation approach, the
proposal of which is motivated by that globally fixed MDPs based reg-
ularities do not respect local variances of OF statistics. Due to the
particular challenge of minimising the involved OF energy functional,
a novel Iteratively Reweighted Least Squares (IRLS) and Generalised
Cross Validation (GCV) based strategy has also been developed, that
can simultaneously optimise the solutions for the flow field as well as
the hyperparameter fields involved. Moreover, an exhaustive literature
survey on OF regularisation approaches have been provided. This has
finally led to a new generalised regularisation formulation, which has
been formally clarified, for the first time, in the literature.

The second half part of this thesis focuses on the problem of tracking
dense cell populations over phase-contrast image sequences. Quantita-
tive analysis on whole populations of cells, and identification of cell divi-
sion events plays vital roles in the biomedical research domain. Driven
by that, the second major contribution in this work is a model and mo-
tion based cell tracking framework. A novel strategy that seamlessly
integrates the snake and the OF technique is designed, by enforcing a
soft coherence constraint between the model and motion based tracking

xii



techniques. And, the directional gradient vector flow technique is, for
the first time, applied to the segmentation and tracking of dense cell
populations. The outstanding advantages of the proposed approach are
reflected in the following aspects: accurately segmenting ambiguous cell
boundaries, correctly tracking partially overlapped cells, consistently
tracking elongated cells, and the efficient tracking of large displacement
cells. By testing the proposed approach on challenging real cellular
datasets, qualitative and quantitative experimental results have indi-
cated that the proposed approach can achieve superior performance, in
comparison with the state-of-the-art cell segmentation and tracking ap-
proaches. In addition, a third major contribution of this thesis is the de-
velopment of a motion-occlusion analysis based, automated cell-division
detection approach. Through experimentation on different types of cel-
lular datasets, the proposed approach can successfully detect dividing
cells with a variety of division behaviour.

xiii



Chapter 1

Introduction

The major objective of this chapter is to introduce the motivation for the

investigation of regularisation approaches in the optic-flow field, and the de-

velopment of automated cell tracking systems.

1.1 Overall Motivation

The initial motivation of this work is a cell tracking project. Centered around

this topic, there are three frequently investigated techniques, optic flow (Horn

and Schunck, 1981), active contour models (ACMs) (Kass et al., 1988), and

gradient vector flow (GVF) (Xu and Prince, 1998b). Since being introduced,

these three techniques have enjoyed great popularity in the computer vision

and image processing (CV&IP) community. For example, the significance

of optic-flow (OF) algorithms is reflected in many applications, including ob-

ject tracking/detection, signal compression, 3-D shape or scene reconstruction,

correction of camera jitter, image stitching (mosaicing), computer-assisted

surgery, special effects, etc. ACMs and their extensions are commonly used in

applications like object tracking/recognition, shape modelling, image or vol-

ume segmentation, edge detection, path planning, and so on. GVF, from its

first introduction as an assisting tool for ACMs, has been extended to other

areas, such as image denoising, image restoration, skeletonisation, and object

detection.

1



After a close study, it has been found that, the three techniques are essen-

tially excellent mathematical models that can intuitively allow the encoding

of high-level knowledge from human beings. One of the key reasons for their

great success owes to the regularisation strategy that has been integrated into

these techniques. This has resulted in a great interest in the regularisation

approaches involved. More specifically, since the field of regularisation ap-

proaches by itself contains a vast amount of literature, it is determined to first

start from the regularisation approaches in the OF field. This is due to the

consideration that, among many CV&IP algorithms (apart from the ACM and

GVF methods), optic flow is one of the fastest growing areas.

It should be clarified that, by investigating into the regularisation approach

field, the first purpose of this work is to seek advancement in both OF based

motion estimation, and ACM based contour estimation. As another goal, it is

expected to also apply the proposed motion or contour estimation approaches

to the cell tracking task.

The following section briefly describes the background research into OF esti-

mation and the associated regularisation approaches. Then, the motivation

for the research into cell tracking is provided.

• Motivation for the studying of optic flow and the associated regularisa-

tion approaches: OF estimation is one of the key problems in computer

vision. Estimating the pixel displacements between two images provides

a rich source of information that supports a wide variety of analysis tasks.

Due to image noise and the well-known aperture problem, the estima-

tion of optic flow is an ill-posed inverse problem. To make the problem

feasible, prior knowledge about the solution is required, which is com-

monly accomplished by means of the so-called regularisation approaches.

Because of this, regularisation methods are of crucial importance to accu-

rate OF estimation. Recent advances in regularisation approaches have

emphasised three important aspects, namely, exploring new motion inte-

gration strategies, looking for improvements or replacements of existing

motion spaces, and investigating more suitable motion-distribution pri-

ors (MDPs) that can better fit or describe the statistics of a particular

motion space. Motivated by this, the first and the third aspects have

2



been investigated on in this thesis.

• Motivation for developing automated cell segmentation and tracking

tools: Cell dynamics is a field of intense current research in which re-

searchers pursue improved comprehension of fundamental processes in

cellular and developmental biology. Cell behaviour such as migration

(translocation), proliferation (growth and division) and differentiation

play a central role in many fundamental biological processes. All of

these processes require the orchestrated movement of cells in particular

directions to specific locations, and changes of the cellular shape will also

often determine the fate of the cell. So, understanding the mechanisms

of cell migration and morphology is thus an important goal of biomedi-

cal research. The need for automated approaches relies on the fact that

the reliable analysis of cellular behaviour involve considerable numbers

of cells. In order to prevent influencing cells’ lifespan and behaviour, the

use of non-fluorescence microscopies, such as phase-contrast microscopy,

is usually required. The image recording process can be over a long

period of time (usually several days). This will routinely produce thou-

sands of images with low signal-to-noise ratios, which are impractical for

manual segmentation and tracking. As a consequence, the development

of computer-based techniques that are able to automatically perform

cellular segmentation and tracking are highly needed.

1.2 Thesis Outline

Chapter 2 provides the technical background for this research, including the ba-

sic theory of OF algorithms, the general formulations of the parametric active

contour model and the minimal path model, since the three types of techniques

or models are basic components that make up the proposed approaches in this

work.

The primary task of Chapter 3 is to present an in-depth survey on existing OF

regularisation approaches. The underlying relations between different (sub-

)categories of regularisation approaches are established. This leads to a newly

generalised formulation of OF regularisation approaches. Based on that, po-
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tential research gaps are detected, and new trends that are worthy of future

research are also suggested.

In Chapter 4, an oriented geodesic distance based non-local regularisation

approach is developed.

The aim of Chapter 5 is two-fold: First, providing a detailed introduction

on the research background and challenges about the topic of tracking dense

cell populations over phase-contrast image sequences; Secondly, presenting a

concentrated literature survey on the most related works in the literature.

Chapter 6 develops a motion-occlusion analysis based, fully automated cell-

division detection approach.

In Chapter 7, a novel automated cell tracking framework is proposed, that

is particularly designed for two tasks: the segmentation of cell shapes in low

contrast phase-contrast images, and the estimation of cell trajectories in highly

dense populations. The parametric ACM and the OF technique has been

seamlessly combined to realise the established goals.

Chapter 8 presents a sparsity&non-sparsity constraint based prior-adaptive

regularisation approach. The chapter also describes the development of an

Iteratively Reweighted Least Squares and Generalised Cross Validation based

strategy that can simultaneously optimise the solutions for the flow field as

well as the hyperparameter fields involved.

Chapter 9 concludes the whole thesis, summarising the contributions and pub-

lications that results from this research work, and then suggests promising

future directions.
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Chapter 2

Technical Background

The main aim of this chapter is to provide the necessary technical background

for this research. Section 1 firstly introduces the basic theory of optic-flow

(OF) algorithms, and then explains two classic OF techniques. For an over-

all understanding of the research trend in the OF domain, special emphasis

has been given to the topics, from challenges of constructing proper models,

to strategies for optimising the solutions. Section 2 describes the general for-

mulations of two types of deformable contour models, namely the parametric

active contour model and the minimal path model, since they will be important

components that consist of the contributions of this research. To facilitate a

better understanding of the deformable models involved in this research, rep-

resentative extensions and related strategies regarding the metric design are

investigated. The last part of Section 2 provides a comprehensive explanation

on the central connections between different families of deformable contour

models of interest.

2.1 Optic Flow Algorithms

The goal of OF estimation is to compute an approximate motion field for time-

varying image sequences. All OF approaches rely on the temporal conservation

of some image properties, e.g. conservation of pixel intensity or gradient values.

Commonly used elements are pixels, since they can be easily extracted and
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lead to dense measurements. In addition to data conservation, spatial motion

coherence is another essential assumption within traditional OF methods. To

provide an introduction on how standard OF algorithms are structured, the

following sections first present short overviews for the two assumptions that

underpin the OF theory.

2.1.1 Data Conservation Assumption

The most straightforward data conservation (DC) assumption is the Inten-

sity Constancy Assumption (ICA), which assumes that pixel intensities are

translated from one image frame I1 to the next I2 (Fleet and Weiss, 2005),

I2(x+ u, y + v) = I1(x, y) (2.1)

where I(x, y) is image intensity as a function of space point x = (x, y)T , and

v = (u, v)T is the 2-D velocity field of image pixels.

Although this constancy assumption works fine in many cases, algorithms that

rely on this prerequisite cannot deal with images with local or global changes

in illumination. For this reason, other DC assumptions that are invariant

to brightness changes are proposed. These assumptions have the following

formulations (Brox et al., 2004, Papenberg et al., 2006):

• Constancy of the gradient: A global change in illumination will shift

and/or scale gray values of the associated images, while not affecting the

gradient. The spatial gradients between two images can be considered

as constant during motion: ∇I2(x + v) = ∇I1(x).

• Constancy of the Hessian: Notice that the gradient-based conservation

formulation inherently assumes the constancy of first-order image deriva-

tives. It is not difficult to also consider higher-order derivatives for the

formulation of constancy assumptions. One choice for including second-

order derivatives is the Hessian matrix H2: H2I2(x+ v) = H2I1(x).

• The Laplacian, i.e. the trace of the Hessian, can also be used to formulate

a constancy assumption: ∆I2(x + v) = ∆I1(x), where ∆ = ∂xx + ∂yy

denotes the spatial Laplacian.
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Table 2.1: Overview of some representative constancy assumptions, and their

formulations.

Constancy assumption Data term formulation

Gray value min
v

∫

Ω
|I2(x+ v)− I1(x)|2

Gradient min
v

∫

Ω
|∇I2(x+ v)−∇I1(x)|2

Hessian min
v

∫

Ω
|H2I2(x+ v)−H2I1(x)|2

Laplacian min
v

∫

Ω
|∆I2(x+ v)−∆I1(x)|2

Considering that the gradient and the Hessian contain directional information,

they can be employed in estimating translocation and divergent motions. How-

ever, in the case of estimating rotation motion, the scale-value based constancy

assumptions, such as the gray value and the Laplacian, are more suitable.

A short summary of the data terms that are based on the previous constancy

assumptions is given in Table 2.1.

2.1.2 Spatial Motion Coherence Assumption

The 2-D velocity v cannot be recovered with two unknowns, u and v, from

only the identity function as defined in Equation (2.1). To deal with this

under-constrained problem, the motion smoothness constraint is traditionally

used, by assuming that neighbouring pixels share the same 2-D velocity. Two

classic regularisation schemes are described here:

• The Horn-Schunck (HS) scheme (Horn and Schunck, 1981):

ESmooth =
∑

x∈Ω

∑

x
′∈N 1

x

(v
x
− v

x
′)2 (2.2)

where N 1
x

denotes the local neighbourhood centered at an arbitrary

pixel x. According to the formulation, for each pair of directly adjacent

pixels, the pairwise motion similarity is calculated. By summing up the

local motion deviations for all pixels inside an image domain Ω, the

smoothness term measures the implicit, global motion coherence for the
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flow field v. A combined formulation with a gray-value based data term

and the regularisation term can be written as:

E(v) =
∑

x∈Ω
(I2(x+ v)− I1(x))

2 + αESmooth (2.3)

where α > 0 is usually a constant parameter that controls the balance

between the smoothness and the DC term. The minimisation of the

convex energy function (Equation (2.3)) is usually achieved by Euler-

Lagrange equations (Brox et al., 2004), leading to a dense OF field v.

• The Lucas-Kanade (LK) scheme (Lucas and Kanade, 1981):

E(v
x
) =

∑

x
′∈N 2

x

ω
x,x′(I2(x

′ + v
x
)− I1(x

′))2 (2.4)

The LK method assumes that the unknown OF vector is constant or

similar within a local or slightly larger neighborhood N 2
x
that is centered

at a pixel x. The weight value ω
x,x′ > 0 determines how much the motion

of the centered pixel x should be similar to its neighbour x′. A common

way to calculate v
x
is to minimise E(v

x
) by Least-Squares Estimation.

Considering that LK based OF approaches produce sparse flow fields, a

post-processing step for flow interpolation can be made to obtain dense

fields. Notice that the smoothness assumption and the DC assumption

for a pixel x is simultaneously encoded in the single energy term E(v
x
).

Explicit and Implicit Regularisation based Approaches

According to the definition of the smoothness term in Equation (2.2), the

HS algorithm regularity explicitly imposes motion coherence between adjacent

pixels, by calculating the deviation between the motion vectors involved. The

under-constraint problem associated with each single motion vector is solved

by jointly estimating all of the motion vectors together.

Within the LK OF scheme, a unified energy term is formulated as Equation

(4.2), and OF vectors are estimated by matching similar-appearance patches

between images. For each patch-to-patch matching, a motion vector is esti-

mated that is expected to make the value of I2(x
′+v

x
)−I1(x

′), for any involved

x′ ∈ N 2
x
, to be as small as possible. During a single process of patch-to-patch
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mapping, the LK type of formulation implicitly assumes that pixels within the

considered neighbourhood move coherently together.

The HS style of OF algorithms naturally result in dense vector fields, and the

LK type of estimation usually produces sparse vector fields. To distinguish

these two types of frameworks in this thesis, they are respectively referred to

as the global-energy type OF, and the local-energy type OF.

2.1.3 Challenges of Optic Flow Estimation

Problems Associated with Data Matching

Data matching can be difficult under circumstances of illumination changes,

textureless regions, clustering of similar-appearance objects, non-rigid objects

with appearance changes between frames, etc. By imposing the DC constraint,

a feature matching process is inherently conducted within the OF estimation.

For this reason, sophisticated feature descriptors and matching processes that

are based on SIFT (Scale-Invariant Feature Transform) (Lowe, 1999), HOG

(Histogram of Oriented Gradients) (Dalal and Triggs, 2005), or the nearest

neighbour field (NNF) (Barnes et al., 2009) techniques have been recently

considered in the literature. For example, Brox and Malik (2011) introduce an

extra data-constancy term that matches SIFT-based feature descriptors be-

tween image pairs. In (Xu et al., 2012), improved motion estimation results

have been reported by adaptively fusing SIFT-based feature matching into tra-

ditional OF frameworks. Most recently, NNFs (Barnes et al., 2009) have been

investigated in assisting OF estimation (see the work of Chen et al. (2013)),

and have achieved superior motion estimation results ( see the reported results

on the well-known Middlebury Benchmark1). In theory, advanced feature de-

scriptors include richer data information, and can thus help to improve the

motion estimation. The main issue, which is unavoidable in either traditional

or recently proposed data matching schemes, involves feature matching for re-

gions with weak textures, where reliable key features are insufficient or absent.

So, the correspondences of textureless regions remain ambiguous. The other

1http://vision.middlebury.edu/flow/data/
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important issue is the considerably increased computation cost, compared with

using relatively simple DC terms.

Problems Associated with Regularisation

In order to solve the ill-posed problem of OF estimation, prior knowledge

is required on typical motion fields to be restored. The regularisation the-

ory assumes that the underlying motion field has some spatial smoothness

(the traditional prior) or global sparsity2 (a recently suggested prior, see the

works of Shen and Wu (2010), Jia et al. (2011)). Considering that motion

fields can have varying motion statistics across different images or different

patches in a single image, a natural problem is how to select suitable regu-

larities for a targeted motion field. There is a large amount of literature on

the topic, with much on-going research, e.g., designing more advanced motion-

smoothness priors based on higher-order models (Lee et al., 2010, Yuan et al.,

2007, Onkarappa and Sappa, 2013, Kwon et al., 2010), seeking sparsity priors

that can more compactly describe the structured motion information (Shen

and Wu, 2010, Jia et al., 2011), attempting robust segmentation strategies to

facilitate the motion integration requirement (Sun, Sudderth and Black, 2010,

Sun et al., 2012, 2013), reducing the computation cost that comes with the

introduced complex prior models (Krähenbühl and Koltun, 2012), etc. Details

with regard to the topic of motion regularisation will be included in Chapter

3.

The Motion Occlusion Problem

In OF estimation, a motion occlusion can be caused by an occluding surface

moving in front of an occluded surface, or due to camera motions. An occlu-

sion point can thus be associated to the photometric value that perceptually

“appears” or “disappears” between two consecutive frames. This phenomenon

violates the DC assumption, and thus poses difficulties in motion estimation.

In some approaches, occlusions are detected separately from the process of

2In this work, a global sparsity means that a sparse gradient prior is assumed on the

whole motion field.
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OF estimation. For example, after estimating a forward OF field and a back-

ward field for two consecutive images, the mutual consistence between two OF

fields is used to determine an occlusion map (Baker et al., 2011, Xiao et al.,

2006). Other approaches try to jointly estimate disparity and occlusion, by

taking occlusions as important cues for depth and motion discontinuities (Sun,

Sudderth and Black, 2010, Unger et al., 2012). Still, other approaches can be

referred to (Ayvaci et al., 2010, Ince and Konrad, 2008, Xiao et al., 2006).

The Energy Minimisation Problem

Due to the fact that non-convex energy functionals are involved in modern OF

algorithms, special strategies or treatments are usually needed to minimise

the associated functionals. For convex energy functionals, techniques such as

gradient descent (Rudin et al., 1992a), dual formulations (Chan et al., 1999),

split Bregman (Goldstein and Osher, 2009) schemes are effective. While, when

problems are non-convex, these techniques usually fail because they get “stuck”

at local minima. In (Brox et al., 2004), since the proposed energy functional

is nonlinear, with respect to both the data and smoothness terms, nested

loops of fixed-point-iteration strategies are used. In each loop, linearisation

treatments aim to remove the nonlinearity of the associated energy functional.

After that, common numerical methods are employed to solve the previously

resulting linear system (Brox et al., 2004). Black and Anandan (1996), Sun,

Roth and Black (2010) both exploit the Graduated Non-Convexity (GNC)

method. Starting from constructing a corresponding convex approximation

for the original non-convex functional, the GNC method initially solves the

simplified problem, and progressively transforms that problem until it is equiv-

alent to the difficult, original non-convex minimisation problem. In (Xu et al.,

2012), the mean field approximation (MFA) (Geiger and Girosi, 1991) enables

solving the objective functional, which involves both discrete and continuous

variables. Considering that there is no recent, focused survey on this topic,

interested readers can be referred to still other works such as (Lempitsky et al.,

2008, Steinbrucker et al., 2009, Sun et al., 2012, Li et al., 2013), to find more

relevant treatments. In conclusion, accurate estimation of optic flow is still a

challenging task that usually requires addressing difficult energy minimisation
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problems. It is believed that more efficient as well as general techniques are

required.

Reducing the Computational Cost

Recently, due to the introduction of non-local regularisation methods (Sun,

Roth and Black, 2010, Werlberger et al., 2010), and high-order derivatives

based prior models (Roth and Black, 2007, Baker et al., 2011) into the OF field,

the minimisation of the objective functionals has become extremely costly, be-

cause computation time scales with the n-th power of the number of involved

pixels in terms of the non-local or high-order models. To reduce the com-

putation demand, some researchers resort to approximation formulations or

efficient strategies for implementation. For example, in (Sun, Roth and Black,

2010), a weighted median filtering based scheme (Li and Osher, 2009) tries

to speed up the implementation. Krähenbühl and Koltun (2012) employ the

high-dimensional Gaussian filtering operation, which can be performed in lin-

ear time, so as to make the implementation efficient. In (Kadri-Harouna et al.,

2013), the difficult problem of directly calculating high-order derivatives is

circumvented within a wavelet based OF implementation, so a low computa-

tional complexity is accomplished. Alternatively, Graphics Processing Unit

(GPU) accelerated implementations have been applied, e.g., see the works of

Werlberger et al. (2009), Ranftl et al. (2012).

2.2 Energy-Minimal Contour Models

Since the original work on active contour models by Kass et al. (1988), exten-

sive research has been performed on deformable contours. The active contour

model and its extensions are examples of general techniques that match a de-

formable model to a portion of image features, using the energy minimisation

strategy. In this research work, active contours and some extended deformable

contours are uniformly called energy-minimal contours. Specifically, two im-

portant types of energy-minimal contour models, namely the parametric active

contour model and the minimal path model, are introduced, considering that
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they play important roles in this research.

2.2.1 Parametric Active Contour Models (ACMs)

Parametric active contours, or snakes, were originally introduced by Kass et al.

(1988), for solving various computer vision problems, such as edge/contour

detection, object segmentation and tracking. A snake is an energy minimising

curve, with a predefined energy equation that is structured in a way to achieve

a desired deformation. Under the influences of different energies (as defined in

(Kass et al., 1988)), a snake is able to change shape and position within the

image; the snake is then expected to have converged onto an object of interest,

when the minimum of the total energy is reached.

General Formulation

Mathematically, a snake is defined as a parametric contour, represented by a

close or open curve C(s) = (x(s), y(s)), which is parameterised by s in the

range of [0, 1]. In practice, the curve is represented by a number of discrete

control points that are usually referred to as control points, or snaxels. The

total energy of the snake, E(C), is given by the functional

E(C) =

∫ 0

1

(α|Cs|2 + β|Css|2 + Eext(C(s)) + Econ(C(s)))ds, (2.5)

where Cs and Css denote partial derivatives of C with respect to s, and respec-

tively models the contour’s elasticity and smoothness properties. | · | denotes
total variation. The associated coefficients α and β are pre-determined weight-

ing parameters that are used to balance the effects of the first two terms in

Equation (2.5), which are jointly called the internal energy of the snake. The

third term is the snake’s external energy, with Eext formulated in different ways.

For example, Eext can be defined as E1
ext = −Gσ ∗ I, or E2

ext = −|∇(Gσ ∗ I)|2,
where I is the given grey image. The operation of Gσ ∗ I smoothes the original

image by convolution using a Gaussian filter. The symbol ∇ in the equa-

tion E2
ext represents the gradient operation. Econ gives rise to some additional

constraints, such as repulsion or attraction constraints (see demonstrations in
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(Kass et al., 1988)). In practice, the fourth term Econ is optional with respect

to specific applications.

The minimisation of the internal energy imposes a certain tension and rigidity

on the curve, helping the snake to overcome image noise and have some pre-

ferred shape. In the case of Equation (2.5), a round shape is preferred, since

the snake always tends to be short and smooth. The minimisation of the third

term drives the curve towards salient image features such as light/dark regions,

edges, etc. For example, when the function E1
ext is chosen, the snake will have

a lower energy when locating on brighter regions. The effect of the function

E2
ext makes the snake move towards high gradient regions, i.e., normally object

edges.

A snake that minimises E(C) (with Econ not included) must satisfy the Euler

equation :

αCss + βCssss +∇Eext = 0. (2.6)

where Css and Cssss respectively denote the second and fourth partial deriva-

tives of C with respect to s. α and β are the same coefficients as defined

in Equation 2.5. The three terms can be viewed in order as the elastic force

Felastic, the rigid force Frigid, and the external force Fext of the snake. The

snake will change shape and position because of the competition of the three

forces, and will reach equilibrium when the forces are balanced by each other.

Representative Extensions

Two major problems with the snake model are its sensitivity to noise and the

short capture region. For example, if the snake is initialised not close enough to

the features of interest, the snake can become stuck in a local minima. In order

to deal with the limitations, both the internal and external energies of snakes

have been adjusted or modified in the literature, leading to enhanced overall

performance. Particularly, efforts have been made to improve the modelling

of the appearance (edge, shape, colour, etc) properties of targeted objects,

to accommodate particular segmentation or tracking tasks. In this regard,

some representative extensions of the original snake model are introduced as

following.
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Ray et al. (2002) proposed to impose shape and size constraints, in forms of new

internal energies, into the ACM, for tracking rolling leukocytes. Charmi et al.

(2008) integrated the geometric shape-prior information into parametric active

contours. The shape-prior constraint is formulated as an extra internal-energy

term, encouraging the snake to have similar Fourier-shape-descriptor coeffi-

cients with the corresponding coefficients of a template shape. The method

enhances the model’s robustness to noise and occlusion, because the evolving

snake is always guided to a shape similar to the given template/prototype. In

(Srikrishnan and Chaudhuri, 2011), a so-called distraction-free ACM is pro-

posed. The main contribution is a new internal force that dynamically varies

along the snake curve during its evolution, to encourage the snake to locate

on a continual edge. This is achieved by penalising snake segments lying on

nearby distracting edges from local clutters. The physical intuition behind the

method is that, an object edge could consist of weak and strong segments but

should be generally continuous.

The gradient vector flow (GVF), proposed by Xu and Prince (1998b), repre-

sents a new external force field that is created by spreading edge information

of an image farther away, via diffusing image gradient vectors. The advan-

tage of the GVF technique is reflected in the increased capture region for

snakes. In (Ray and Acton, 2004), a motion gradient vector flow (MGVF)

is proposed, by extending the GVF technique to take into account the prior

directional information of the target movement. The constructed new external

energy encourages an active contour to evolve towards the prior direction. By

this means, the MGVF based active contour is able to track a relatively fast-

moving object. Cheng and Foo (2006) propose a new type of external force

for snakes, named dynamic directional gradient vector flow. The main idea

of the approach exploits the image gradients in both x and y directions, and

deals with external force fields with respect to the two directions separately. In

snake deformation, the DDGVF field is utilised dynamically, according to the

orientation of the snake in each iteration. By this means, the DDGVF snake

provides reliable segmentation in situations of clustered objects (which pose

confusion for segmentation). Wang et al. (2009) proposed a parametric ACM

using a new concept, called fluid vector flow (FVF), that simulates the fluid

flowing along object boundary, and generates external force fields dynamically
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to drive the contour evolution. FVF snakes have shown large capture ranges,

and are able to extract acute concave shapes, due to its non-static external

force fields. The optic flow active contour, proposed by Hamou and El-Sakka

(2010), is a technique that combines the pre-calculated OF magnitude and the

image-edge map together for calculating a GVF as an external force field for

snakes. The OF field thus provides additional information to the ACM, and

helps to improve the performance of snakes in object tracking. Other external

forces for snakes include: the “balloon force” (Cohen, 1991), the curvature

vector flow (Gil and Radeva, 2003), the vector field convolution (Li and Ac-

ton, 2007) technique, the generalised GVF (Xu and Prince, 1998a), and the

edge-preserving GVF (Li et al., 2005) based forces.

2.2.2 Minimal Path Model (MPM), Geodesics

Definition of Geodesic Path, Geodesic Distance

In the minimal path technique that is originally proposed by Cohen and Kim-

mel (1997), an energy E of the form

E(γ) =

∫

γ

W (γ(s))|γ′(s)|ds (2.7)

is computed along the curve γ within the image domain Ω. γ′(s) denotes the

derivative of γ, so
∫

γ
|γ′(s)|ds measures the Euclidean length of the curve. A

potential W : Ω → R
+ is usually built from a given image I : Ω → R

+, where

W > 0, that takes lower values near the desired features of the image I. Given

a metric function W (·), the goal is to extract a curve that minimises the energy

functional E : Γx1,x2 → R
+ between two user-defined points x1, x2:,

E(γ) = min
γ∈Γx1,x2

∫

γ

W (γ(s))|γ′(s)|ds (2.8)

where Γx1,x2 is the set of all paths connecting x1 to x2, and s is the arc length

parameter. The curve connecting x1 to x2 that globally minimises the energy

E(γ) is called the minimal path or the geodesic path between x1 and x2. The

geodesic path is represented by Cgd. Additionally, the minimal energy associ-

ated with the geodesic path is referred to as the geodesic distance, denoted as

Dgd(x1, x2), between the two pre-defined endpoints.
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A note on implementation: The solution of this minimisation problem

is obtained through the computation of the geodesic distance map (GDM)

U : Ω → R
+ associated with x1. The GDM for the source point x1 is defined

as the minimal energy that is integrated along a path between x1 and any

point x of the domain Ω:

∀x ∈ Ω, Ux1(x) = Dgd(x1, x) = min
γ∈Γx1,x

∫

γ

W (γ(s))|γ′(s)|ds. (2.9)

Here, the values of Ux1 can be considered as the arrival times of a front prop-

agating from the source x1 with velocity 1
W

and Ux1(0) = 0. Ux1 satisfies the

Eikonal equation (Cohen and Kimmel, 1997, Peyré et al., 2010, Benmansour

and Cohen, 2011):

|∇U(x)| = W (x). (2.10)

This equation can be solved, for example by the Fast Marching algorithm3,

numerically in O(Nlog(N)) operations on a discrete, isotropic grid ofN points.

Metric Design for MPMs

In practice, the most important task associated with the MPM is to design a

metric W , in order to have meaningful geodesics. The choice of potential W

depends on the application. Here are some examples of possible choices, for

the processing of an input image I:

Pixel-value based metric:

W (x) = |I(x1)− I(x)| (2.11)

where x1 denotes the source pixel. This metric W (x) is defined to be low at

pixels whose value is close to the intensity of the source pixel x1.

Intensity based metrics:

W (x) = I(x) (2.12)

For the definition, W has a low value where the pixel intensity is small. So,

for two given endpoints x1, x2, the associated geodesic path will try to include

3The Fast Marching algorithm, introduced by (Sethian, 1995), is a numerical algorithm

that is able to catch the viscosity solution of the Eikonal equation of the form ‖∇U‖ = W .
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dark pixels as components, rather than bright ones. Since in most medical

images, vessels can be made darker than the background, by choosing this

type of metric, geodesic paths can be used to extract dark contours of the

image (Peyré et al., 2010, Benmansour and Cohen, 2011), i.e. vessels. In other

applications, such as road tracking in vehicles, this potential function can be

also applied.

Edge based metric (Peyré et al., 2010):

W (x) =
1

ǫ+Gσ ∗ |∇I(x)| (2.13)

where Gσ is a Gaussian kernel of variance σ2, and the symbol ∗ denotes con-

volution. In several applications, the curve of interest is located near areas of

large variation of intensity (i.e. high gradient) in the image. Taking advantage

of the edge based metric, the geodesic path is possible to extract the object

boundary, since it always tries to follow high gradient pixels.

MPMs based on the previous metrics are isotropic cases, i.e. the metrics only

exploit scalar values computed on the image. In order to better follow salient

structures of an image, one can replace the isotropic metric by an anisotropic

metric that takes into account local orientations of image structures. A gen-

eralised formulation of anisotropic MPMs, can be defined as

E(γ) =

∫

γ

Φ(γ′(s), T (γ(s)))|γ′(s)|ds (2.14)

where γ′(s) denotes the local orientation vector of the curve, and T (·) encodes
the local anisotropy of the image. The function Φ is configured to encourage

the tangent vector of γ to be collinear to the direction of local image structures.

In practice, different anisotropic metrics of Φ have been defined depending on

the applications, see examples in (Pichon et al., 2005, Peyré et al., 2010, Seong

et al., 2008, Benmansour and Cohen, 2011). Generally speaking, the gradient

of the image is taken into account, to measure the local directionality of the

edge or texture.

2.2.3 Relation between ACM, MPM and Others

ACMs or snake models evolve an initially drawn curve in an image, to min-

imise an energy functional that usually consists of two terms: an internal
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energy controlling the smoothness of the curve, and an external energy at-

tracting the curve towards salient image features (e.g., edges). In models that

directly stem from the original ACM, the energy functional takes into account

both the length of the curve and its bending property, using first- and second-

order derivatives with respect to s (see the definition in Equation (2.5)). This

type of energy is however not intrinsic to the curve geometry, since it also

depends on the parametrisation of the curve. Due to the parametrisation, a

parametric active contour lacks the topology flexibility, and thus has the prob-

lem of simultaneous detecting/segmenting several objects. In (Caselles et al.,

1997) and (Kichenassamy et al., 1995), the geodesic active contour (GAC), as

a geometric version of the parametric ACM, was introduced that combines the

internal and external energies of the snake model into a single term, which no

longer depends upon the parameterisation of the evolving curve. Similar to

snake models, GACs can have open and closed curves. Given that the min-

imisation of GAC based energies usually rely on the gradient descent strategy

or an implicit level set based curve evolution, the evolving curve might be

trapped in poor local minima of the energy, thus leading to a bad segmenta-

tion. For the case of a closed curve, to relieve the local minimisation problem,

the extra pressure force (Cohen, 1991), GVF based forces and other related

extensions have been introduced into the field. In the case of an open curve,

Cohen and Kimmel (1997) introduced the minimal path approach that uses

the Fast Marching propagation to find the global minimum of the associated

energy. Their approach allows the user to specify two endpoints of a desired

curve, and the same contour dependent energy as (Caselles et al., 1997) and

(Kichenassamy et al., 1995) is constructed for the curve. Boundary constraints

forbid the segmentation of a closed object with a single curve, but allow to

track features such as roads in satellite imaging or vessels in medical imaging

(Peyré et al., 2010). It is interesting that a strategy for detecting a closed

curve has also been proposed in (Cohen and Kimmel, 1997). The approach

allows to give only a starting point on the boundary of an object, and finds

the complete closed contour as the union of two geodesic paths. Thus, the

minimal path model is closely related to ACM and GAC models.
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2.3 Conclusions

This chapter is concerned with the background algorithms and techniques that

are related to the work presented in this thesis. An introduction to OF algo-

rithms is provided, with details on how typical data terms and regularisation

terms are constructed. Special attention is paid to the main research trends

that are associated with the OF estimation, since improving OF based mo-

tion estimation is one of the major interests in this research. Specifically, in

Chapter 3, a detailed literature review on OF regularisation approaches will

be provided. Chapters 4 and 8 will propose two novel OF regularisation ap-

proaches respectively. In Chapters 6 and 7, the application of OF algorithms

to cell tracking related tasks will be presented. After that, the standard for-

mulations for the active contour model (ACM) and the minimal path model

(MPM) have been described in this chapter. A short review on representa-

tive extensions of the ACM is provided, and, a comprehensive explanation

is presented about how to design meaningful potential functions for MPMs,

according to different application requirements. Additionally, the affinities be-

tween different types of energy-minimal contour models have been explained.

The introduction of geodesic-distance based MPMs serves as preparation for

Chapter 4. The ACM will be exploited as one of the main techniques in the

proposed cell tracking framework in Chapter 7.
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Chapter 3

Literature Survey and a

Generalised Regularisation

Formulation

Regularisation is a key tool to deal with the ill-posed problem1. Computation-

ally, optic-flow (OF) estimation tries to find correspondences between pairs of

pixels in either of two images. This requires matching pixels of similar inten-

sity. Since merely imposing the matching of similar intensities will typically

not give rise to a unique solution, OF estimation is thus a classical ill-posed

problem (Horn and Schunck, 1981, Nagel and Enkelmann, 1986, Brox et al.,

2004, Black and Anandan, 1996). To find an appropriate solution to this ill-

posed problem, researchers have resorted to regularisation, which essentially

introduces prior information about the underlying problem, hence making the

search for feasible solutions.

The primary task of this chapter is to present an in-depth survey on existing

OF regularisation approaches. With regard to this, regularisation approaches

in the OF field are divided into two categories: the smoothness-prior and the

sparsity-prior based approaches. Investigations range from classic approaches

to recently developed approaches that represent the state of the art. Partic-

1A problem is said to be ill-posed in the Hadamard sense if it does not satisfy one of the

following three conditions: existence, uniqueness and continuity (Hadamard, 1923)
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ularly, much attention has been paid to non-local regularisation approaches,

and higher-order derivatives based approaches (within the first category), and

the sparsity-prior based regularisation strategy (corresponding to the second

category), since they are closely related to the central contribution of this re-

search. The relations between the two regularisation categories have also been

established, for the first time, from a statistical point of view. After that,

a thorough analysis and discussion is made about the common properties of

the categorised approaches. This leads to a new, generalised formulation of

OF regularisation schemes. Based on a further abstracting process, the poten-

tial research gaps are identified and several promising directions are suggested

accordingly.

3.1 Standard Variational Optic-Flow Formu-

lation

As stated in the last chapter, OF techniques that are formulated as variational,

energy minimisation problems are referred to as global-energy type methods,

where there is often an implicitly imposed, global-range smoothness constraint.

OF methods that produce sparse flow fields (for some sampled feature points

on an image) are usually referred to as local-energy type methods. In these

methods, the motion vector of an individual feature is estimated independently

of each other. The research of the current work mainly concentrates on reg-

ularisation approaches within the variational OF frameworks, which produce

dense motion fields.

In order to compute a dense motion field v : Ω → R
2, it is common to define

a variational energy functional that includes a data term and a regularisation

term such as below:

E(v) =

∫

Ω

ΨData(I(x+ v)− I(x))dxdy + α

∫

Ω

ΨPrior(∇v)dxdy. (3.1)

where ΨData(·) and ΨPrior(·) denote pre-selected penalisation functions. The

most straightforward penalisation function is (·)2. ∇ stands for the gradient

operation, thus ∇v = (vx,vy). The data term aims to match pixels that obey

pre-selected data-constancy assumptions, and the regularisation/prior term
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(weighted by α > 0) enforces prior knowledge about the underlying velocity

field v = (u, v)T , such as motion coherence between a pair of nearby pixels in

an image.

The state-of-the-art regularisation approaches in the OF field can be divided

into two categories, namely the smoothness-regularisation based category, and

the sparsity-prior based. The major difference between these two groups is

that, the smoothness-assumption based group focuses on modelling motion

coherence, and the other group aims to simultaneously model motion smooth-

ness and discontinuities. The following sections present detailed investigations

on the two categories of regularisation approaches.

3.2 Smoothness Regularisation

Smoothness regularisation plays an essential role in traditional OF frameworks,

by enforcing spatial coherence properties on the pixel displacement field of an

image. In detail, the spatial coherence constraint assumes that neighbouring

pixels in an image have similar motion, i.e. are moving together and coher-

ently. The assumption is based on a high-level understanding that neighbour-

ing points in an image are likely to locate on the same object surface, where

the motion of neighbouring points changes gradually.

The simplest smoothness regularity for estimating optic flows is defined inside

the seminal work of Horn and Schunck (1981). The whole energy functional is

defined as:

E(v) =

∫

Ω

(∇ITv+ It)
2dxdy +

∫

Ω

λ(|∇u|2 + |∇v|2)dxdy. (3.2)

where ∇I = (Ix, Iy) and It denote spatial and temporal partial derivatives of

the image I, and T is used for the computation of matrix transpose. The sym-

bol | · | denotes the total variation operator, and the positive parameter λ is

to balance the first and the second terms in the energy equation. The spatial

coherence constraint is formulated in terms of a least-squares estimation. This

formulation assumes that the estimated flow corresponds to a single (continu-

ously varying) motion field. Constrained by this quadratic-penalisation based

formulation, the local flow vector of an image pixel is forced to be close to
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the average of its neighbours. However, this assumption is incorrect at motion

boundaries. Consider what happens if the flow field is discontinuous. There

are multiple image motions in the neighbourhood. When a motion disconti-

nuity is present, the quadratic regularisation term based coherence constraint

will result in smoothing across the boundary, which reduces the accuracy of the

flow field and obscures important structural information about the presence of

an object boundary (Black and Anandan, 1996). This smoothness everywhere

assumption is thus restrictive in some situations.

3.2.1 Robust Regularisation

To reduce the smoothing effect on motion boundaries, researchers have sought

help from the statistical domain, in the sense that the spatial discontinuities

in motion flows are treated as outliers in a statistical context. The tradi-

tional quadratic regularisation term has thus been recast in a robust estima-

tion framework, which allows violations of the spatial coherence assumption

that usually happen on motion boundaries. Here are some robust regularities

with their corresponding penalisation functions:

• Truncated Quadratic (Black and Anandan, 1996):

ρ(x, α, γ) =

{

γx2 if |x| <
√
c√
γ
,

c otherwise.
(3.3)

where γ > 0 controls the shape width of the x2 function, and c > 0

determines the upper limit of the function.

• Geman&McClure (Black and Anandan, 1996):

ρ(x, σ) =
|∇x|2

σ + |∇x|2 (3.4)

where σ is the scale parameter.

• Lorentzian (Black and Anandan, 1996):

ρ(x, σ) = log(1 +
1

2
(
x

σ
)2) (3.5)

where σ is the scale parameter.
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• Charbonnier (Bruhn et al., 2005):

ρ(x, ǫ) =
√
x2 + ǫ2 (3.6)

where ǫ is a small positive value.

Combining robust-function based smoothness penalisation into OF estimation

leads to the following objective functional:

E(v) = EData + α

∫

Ω

ρS(∇v)dxdy (3.7)

with the same data fidelity term as in Equation (3.2)

EData =

∫

Ω

(∇ITv + It)
2dxdy (3.8)

and a robust smoothness term ρS(∇v):

ρS(∇v) =
|∇u|2

σ + |∇u|2 +
|∇v|2

σ + |∇v|2 (3.9)

The Geman&McClure function is taken for example here, while different for-

mulations, as suggested by Black and Anandan (1996) and Sun, Roth and

Black (2010), can also be chosen.

The problem with the least-squares solution is that outlying measurements are

assigned a high “weight” by the quadratic smoothness term. While, the robust

regularisers are designed to be more forgiving about outlying measurements.

The most simple robust regularity is the truncated quadratic. As illustrated

in Figure 3.1, up to a fixed threshold, local motion un-smoothness is penalised

quadratically, but beyond that, a constant value of penalisation is assigned.

Among the listed robust regularities, the Charbonnier based function (with

a small parameter ǫ > 0) is a special one, since it approximates the total-

variation (also called L1-norm) based penalisation (Rudin et al., 1992b): TV (u) =
∫

Ω
|∇u|dx, which is very popular for regularising inverse problems (Zach et al.,

2007). Although the total-variation (TV) based penalisation function appears

to be relatively simple, it offers some computational difficulties. This is mainly

due to the fact that it is not continuously differentiable. In practice, some

researchers choose a slightly compromised way of dealing with that fact by

approximating it with the Charbonnier function (Brox et al., 2004). Others
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Fig. 3.1: Different robust functions for spatial smoothness terms: Truncated

Quadratic (c = 4, γ = 1), German & McClure (σ = 1), Lorentzian (σ = 1),

and Charbonnier (ǫ = 0.001).

employ an alternative strategy, such as that proposed by Chambolle (2004),

to solve the Rudin-Osher-Fatemi energy (Rudin et al., 1992b) for TV involved

energy minimisation.

Although different robust-function based regularities exist in the literature,

their common property is the ability of reducing the effect of outliers.

3.2.2 Anisotropic Regularisation

In order to facilitate the distinguishing of isotropic and anisotropic regularities,

the Horn-Schunck OF functional (Equation (3.2)) has been re-written as below

26



with a discrete smoothness term:

E(u, v) = EData +
∑

x∈Ω

∑

x̃∈Nx

α(|u
x
− u

x̃
|2 + |v

x
− v

x̃
|2) (3.10)

where EData denotes a standard data conservation term (as presented in Equa-

tion (3.8)). N
x
represents the set of the four or eight directional neighbours

of pixel x. Notice the α > 0 is a constant parameter weighting the spatial

coherence between pixel x and its neighbour x̃ (with x̃ ∈ N
x
). The constantly

weighted regularity allows the pixel x to get motion support evenly from its

local neighbours in all orientations, and is thus referred to as isotropic regular-

ity. This type of regularisation is reasonable when the neighbours within the

set N
x
all locate on the same motion surface with x. It is not suitable when

N
x
contains pixels from two or more separate motion regions, where motion

boundaries exist.

In order to respect motion boundaries, the so-called anisotropic regularities

have been proposed for taking image discontinuities into account. Alvarez

(1999) proposed a model with a scalar-valued weight function that reduces

the regularisation at image edges. An anisotropic counterpart that exploits

the directional information of image discontinuities was introduced by Nagel

and Enkelmann (1986). Their method regularises the flow along image edges

but not across them, which basically assigns more motion constraint between

pixels with similar image gradients. This type of motion coherent constraint

is also called “oriented smoothness”. Xiao et al. (2006) proposed n adaptive

smoothness weight that is calculated by the Bilateral filter scheme, where the

motion coherence degree between pixels x and x̃ is decided by not only the

spatial proximity but also their brightness or colour similarity. One interesting

point within (Xiao et al., 2006) is that, an image pixel is permitted to connect

with not only its directly adjacent neighbours, but also some of its non-adjacent

pixels within an slightly enlarged neighbourhood. By doing so, mutual motion

supports between non-adjacent pixels are established. The work of Xiao et al.

(2006) thus plays a meaningful role in fostering the development of the non-

local scale of OF regularisation approaches. Zimmer et al. (2011) perform

an anisotropic weighting scheme that is similar to the “oriented smoothness”,

but the directions are defined by the data constraint rather than the image

gradient.
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Since the smoothness weights in the aforementioned isotropic regularities are

adaptively determined, according to the measurements of pixel colour or gra-

dient similarities, these regularities are also called image-driven regularisation

strategies. Generally speaking, these image-driven regularities assume that

discontinuities of the motion field tend to coincide with object boundaries and

discontinuities of the brightness function.

Of course, not every image edge will coincide with a flow edge. Thus, the

image-driven strategies, are prone to resulting in over-segmentation artefacts

in textured image regions. To avoid this, flow-driven regularisers have been

proposed that respect discontinuities of the evolving flow field, and are there-

fore not misled by image textures (Zimmer et al., 2011). The drawback of

flow-driven regularisers lies in less well-localised flow edges, compared to image-

driven approaches. Concerning the individual problems of image- and flow-

driven strategies, ideas arise to combine the advantages of both types of ap-

proaches (Zimmer et al., 2011).

The equation below presents a general anisotropic-regularity based smoothness

term,

ESmooth(u, v) =
∑

x∈Ω

∑

x̃∈Nx

α
x,x̃(|ux

− u
x̃
|2 + |v

x
− v

x̃
|2), (3.11)

where the weighting value α might be determined according to some pairwise

affinity measurement, for example:

α
x,x̃ = exp{−|x− x̃|2

2σ1
− |I(x)− I(x̃)|2

2σ2
− |v(x)− v(x̃)|2

2σ3
} (3.12)

where σ1, σ2 and σ3 are respectively the distance variance, colour variance, and

flow variance of adjacent pixels around x. By this means, the regularisation

weights are adaptively changed, according to some prior knowledge, depending

on which neighbouring pixels are more likely located on the same surface with

the pixel x, and which pixels thus deserve higher weights. Existing examples

of prior knowledge for choosing suitable motion supporters/integrators2 for a

pixel include pairwise similarities of spatial location, colour, gradient, motion,

etc.
2In this work, a pixel’s motion supporters/integrators are a group of local/non-local

neighbouring pixels, whose OF vectors the motion of the considered pixel is constrained to

be similar to.
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3.2.3 Non-Local Motion Regularisation

Considering OF estimation requires the pooling of constraints over some spa-

tial neighbourhood, mutual motion constraints are imposed within a relatively

local image region in traditional regularisation approaches. Recent works,

however, have advocated the necessity of introducing larger/non-local range

of motion regularisation. This is due to the experimental observation that

traditional local region regularisation is usually not sufficient to constrain the

solution (Krähenbühl and Koltun, 2012, Sun, Roth and Black, 2010, Werl-

berger et al., 2010). Figure 3.2 illustrates local and non-local ranges of motion

coherence relationships for the same pixel.

Fig. 3.2: Neighbours for the pairwise model (left) and the non-local model

(right). The pairwise model connects a pixel with its nearest neighbours,

while the non-local term connects a pixel with many pixels in a large spatial

neighbourhood (Sun, Roth and Black, 2010).

As mentioned in the last section, within (Xiao et al., 2006), a slightly enlarged

range of motion integration region is enabled. The strategy is mainly designed

for pixels locating in motion occlusion regions, so the occlusion-region pixels

can expect to borrow motion information from non-occluded regions on the

same surface. Their work has a focus on recovering an occlusion region’s mo-

tion, but actually has not introduced a non-local motion constraint for every

pixel inside the image. Therefore, The work of Xiao et al. (2006) can be con-

sidered as a transition between local and non-local ranges of OF regularisation

approaches.
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The non-local smoothing strategy was earlier proposed by Yaroslavsky and

Yaroslavskij (1985) and has recently been introduced to the OF community by

Sun, Roth and Black (2010) and Werlberger et al. (2010). In these approaches,

the motion information can be shared between pixel pairs within a large spa-

tial neighbourhood. Theoretically, a fully-connected graph that establishes

mutual motion supporters for any pixel pairs within the image is allowable

(Krähenbühl and Koltun, 2012). Therefore, the motion estimation accuracy

can be largely improved within particularly difficult situations, including large

textureless regions where no information is available, and occlusion regions

where the data conservation assumption is violated.

The equation below demonstrates how a non-local smoothness term is usually

formulated:

ESmooth(u, v) =
∑

x∈Ω

∑

x̃∈NNL
x

α
x,x̃(|ux

− u
x̃
|2 + |v

x
− v

x̃
|2), (3.13)

where, NNL
x

denotes the non-local, motion supporter region for pixel x. This

equation is very similar to the local smoothness term as defined in Equation

(3.11), with only a different scale of motion supporter range. In principle, since

the non-local range can be a pre-selected large region, or even the whole image

domain, adaptive weighting is necessary to guide how much motion correlation

should be established between any involved pair of pixels. Similarly to how

an adaptive smoothness weight is determined within image- or flow-driven

regularisation schemes, the value of α
x,x̃ can be defined as in Equation (3.12).

In existing non-local based OF approaches, the Bilateral filter based strategy is

a popular choice. Another techniques, such as the Intervening Contour based

pairwise affinity measurer (Ren, 2008), have also been suggested. More details

for comparing these strategies will be delivered in Chapter 4. Essentially, how

to select a suitable set of non-local motion supporters for a pixel involves a

non-local, low-level image segmentation process. In that sense, pixels with

similar colour, that are more likely to locate on the same surface, should be

grouped together to mutually support each other.

One challenging problem of non-local regularisation based approaches is that,

the computational complexity grows quadratically with the maximal distance

of the non-local connection that is allowed for each pixel. In order to deal with

30



this issue, Krähenbühl and Koltun (2012) proposed an efficient framework that

approximates the non-local regularities with high-dimensional Gaussian filters,

to optimise the energy minimisation process.

In spite of the improvements that non-local regularisation based approaches

have brought into the OF field, one intrinsic problem exists. That is, the larger

the region of motion integration is allowed, the more likely it is to contain non-

constant motion, such as multiple motions from different objects, and non-rigid

motion that violates the constant or the affine motion constraints.

3.2.4 Higher-Order Derivatives based Regularisation

One common property of the aforementioned local and non-local smoothness

terms is that they are all based on the penalisation of first-order motion

derivatives or, more generally speaking, pairwise motion deviations. How-

ever, pairwise-similarity based motion coherence constraints restrict the mo-

tion model to translocation motion. Other types of motion patterns, such

as rotation or scaling, will be penalised(Kwon et al., 2010), not to mention

non-rigid motion based transformation.

To deal with this problem, incorporating higher-order priors into OF frame-

works has recently come into the spotlight. For example, replacing the first-

order smoothness priors with the ones that encourage the second-order deriva-

tives (such as (∂
2u

∂x2 ,
∂2u
∂y2

, ∂2u
∂x∂y

)), or even higher-order derivatives to be small

(Baker et al., 2011). By doing so, physically sound properties of the flow can

be exploited as prior smoothness constraints, which encourage the estimated

motion to follow the pre-assumed flow pattern.

Lee et al. (2010) proposed a regularisation term that penalises the deviation

between original flow and a modified Bilateral filtered flow. By doing so, the

traditional, pair-wise constrained motion coherence is replaced by a group-

wise constrained one. Their approach thus implicitly involves a higher-order

smoothness prior.

To reduce the motion estimation bias towards piecewise constant motions,

Trobin et al. (2008) proposed a second-order derivative based regularisation ap-
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proach, replacing the original first-order based one. The approach has demon-

strated improved performance in recovering motions for weakly textured areas.

Kwon et al. (2010) proposed Markov Random Field based energies with second-

and third-order smoothness priors. They have proved that higher-order smooth-

ness based priors can lead to better results than first-order based approaches

in various applications, including stereo matching and non-rigid image regis-

tration (both problems are strongly related to OF estimation).

Yuan et al. (2007) designed a method that simultaneously estimates and de-

composes OF fields for non-rigid motions. They suggest that higher-order

regularisation is able to incorporate physical properties, with respect to the

characteristics of a particular type of motion. So, this type of OF methods

can accurately recover meaningful flow structures.

In the work of Onkarappa and Sappa (2013), a Laplacian derivative (involv-

ing second-order motion derivatives) based regularisation is proposed, that

replaces traditional, motion gradient (first-order derivative) based smoothness

terms in OF estimation. The proposed work has achieved improved perfor-

mance in recovering motion fields for driving scenarios that have large varia-

tions in speed and rotations (Onkarappa and Sappa, 2013).

Li et al. (2013) proposed a Laplacian Mesh Deformation (LMD) based smooth-

ness prior for OF estimation. The introduced constraint is imposed on the

Laplacian coordinates, and can encourage local regularity of the involved mesh

whilst allowing global non-rigidity. If the motion field is considered as a 3D

surface profile, the LMD based constraint penalises the mean curvature of the

motion“surface”. Thus, this constraint is intrinsically a second-order deriva-

tives based regularity.

Ranftl et al. (2012) proposed a signal regulariser based on the second-order case

of Total Generalised Variation (TGV-2) (Bredies et al., 2010), for the purpose

of stereo matching. The TGV-2 based smoothness term brings the disconti-

nuity preserving quality of the total-variation based regularity to second-order

derivatives. So, instead of favoring a motion field with piecewise constant

solutions, TGV-2 regularities fit well with piecewise affine solutions.
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Kadri-Harouna et al. (2013) designed a higher-order regularisation scheme that

transforms high-order derivative calculations as the process of penalising the

amplitude of small-scale wavelet coefficients. The rationale behind their ap-

proach is that, for a given motion signal, the behaviour of its small-scale co-

efficients that result from an n vanishing-moment wavelet decomposition can

be related to the nth derivative of the signal; so, the penalisation of small-scale

coefficients’ amplitude enables the control of the derivatives of the estimated

motion (Kadri-Harouna et al., 2013). By this means, the difficult problem

of directly calculating high-order derivatives is circumvented, and a relatively

efficient high-order regulariser that is associated to a low computational com-

plexity is accomplished. Moreover, the authors also introduced a divergence-

free constraint, as a smoothness prior into their wavelet based approach, which

has demonstrated its advantage in estimating turbulent fluid motions.

In addition, researchers suggest the use of more sophisticated regularisation

techniques that are based on statistical learning, which adopt learned, high-

order motion priors to guide OF estimation. Roth and Black (2007) learned

the spatial statistics of optic flow, which was shown to be heavy-tailed. Then,

they used the learned prior model to regularise flow estimation. In their work,

spatial iterations are considered within a 3× 3 pixels’ scale. Sun et al. (2008)

learned statistical models of image structure-adaptive flow derivatives, and

exploited the models in motion regularisation.

3.2.5 Layer, Segmentation based Regularisation

Different from previous regularities that exploit non-parametric motion mod-

els, layer or segmentation based approaches usually assume a parametric mo-

tion model, e.g. translocation or affine model, for each segment. Taking the

affine-model based regularisation for example, an affine motion model can be

defined and parameterised by as = (as0, as1, as2, as3, as4, as5)
T , which repre-

sents the vector of all affine parameters for a segment s (Xu et al., 2008). The

motion field w(as,x)
T in segment s is thus given by

u(as,x) = as0x+ as1y + as2, (3.14)

v(as,x) = as3x+ as4y + as5. (3.15)
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A typical way of recovering the affine parameters is a regression based ap-

proach, which minimises the following objective function:

E(as) =
∑

x∈s
((∇I)Tw(as,x) + It)

2. (3.16)

According to the recovered affine vector, the motion flow within the segment

s will be determined.

In fact, parametric and non-parametric models based regularisation approaches

are linked to each other (Myronenko, 2010). Although discriminative formula-

tions are exploited, and the number of parameters to be estimated are different,

the two types of approaches both intrinsically impose motion-coherence con-

straints.

Common segmentation based approaches exploit super-pixels (Xu et al., 2008,

Zitnick et al., 2004), that are usually obtained from image over-segmentation,

as image segments. Originally, in order to avoid including multiple motions

or non-rigid motions that violate the affine motion assumption, the size of the

involved patches or super-pixels has been chosen to be small (Xu et al., 2008).

However, the utilisation of a small area of motion integration may result in

poor estimation of the motion parameters, because of the local aperture prob-

lem. In order to deal with the issue, Xu et al. (2008) add an inter-segment

smoothness constraint that can spread motion information between adjacent

super-pixels. By doing so, the local affine motion constraint is enforced, and

simultaneously a globally relaxed deformable field is also enabled. An alterna-

tive direction to relieve the local aperture problem is expanding the segments’

area, which is in spirit very similar to the non-local range regularisation. In

relation to this, layer based regularisation has been proposed, where the lay-

ered model is like a cardboard cutout representation of an image. Layered

models have many advantages: explicitly modelling different object surfaces,

that may overlap and occlude each other, so making the detection of occlusion

boundaries possible; and offers an elegant approach to motion segmentation.

Whereas, by allowing considerably large area of segments, a single parametric

motion model for each layer will be too restrictive to capture the motion of

natural scenes. In order to relax the constraint, Black and Jepson (1996) add

local deformation to the parametric model. Mémin and Pérez (2002) combine
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the piece-wise parametric motion with local disturbance in a hierarchical set-

ting, to mix the local flow field with different parameterisations. Weiss (1997)

addresses this by allowing smooth motions in the layer. Sun, Sudderth and

Black (2010), Sun et al. (2012) impose a semi-parametric model as a motion

coherence constraint. Their model encourages the flow field of each layer to be

close to a pre-estimated affine flow, whilst allowing deviations from the affine

motion, by using a robust function (as introduced in Section 3.2.1), to penalise

the difference between the estimated flow and the predicted affine flow.

3.2.6 Other Smoothness Regularisation Approaches

Not all regularisation approaches applied in OF algorithms can be described

in terms of the previously listed categories and representations. Here some

additional approaches and representations are briefly mentioned, considering

that they will be later used in this research work.

Contour based Regularisation: Liu et al. (2006) proposed a contour based,

motion estimation approach, in which only object boundary features are taken

into account for data matching, and the motion coherence constraint is en-

forced along contours. The advantage of this regularisation scheme is mani-

fested in estimating motions for objects with no visible texture. In this situa-

tion, it is often difficult to determine the reliability of motion estimation from

local measurements. Properly grouping boundary fragments into contours and

enforcing motion smoothness along contours has proved the advantage of dis-

ambiguating the uncertainties of local estimates.

Global Regularisation Imposed on Sparsely Sampled Features

Most variational OF algorithms are applied on densely gridded pixels inside

an image, such as those introduced in the previous sections. There are also a

few of the variational OF frameworks that take into account only the sparsely

sampled features (usually texture and/or edge features). Similarly to how a

global smoothness constraint is implicitly imposed in the former type of OF al-

gorithms, the motion-vector estimation for each sparsely sampled feature is di-

rectly/indirectly constrained by other sampled features within the image. The
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regularisation embedded within the latter type of OF algorithms is referred to

as sparsely-sampled features based global regularisation. Correspondingly, the

regularisation strategies associated with the former type of OF algorithms can

be referred to as densely-gridded pixels based global regularisation approaches.

Although these two types of regularisation both stem from the regularisa-

tion scheme of Horn and Schunck (1981), the sparsely-sampled features based

strategy in fact enables a non-local range of explicit motion regularisation.

The concept is in spirit similar to the non-local scale of OF regularisation as

introduced in Section 3.2.3. The advantage of the sparsely-sampled features

based regularisation is that, it is more flexible in selecting motion supporters

for a pixel/feature along meaningful image structures. For example, Liu et al.

(2006) proposed a contour based regularisation approach, in which the mo-

tion supporters for a boundary feature is selected along the boundary contour.

Another example is proposed by Birchfield and Pundlik (2008), where only

texture and edge features are taken into account, and the group-wise motion

coherence is imposed on the sparsely sampled features.

Temporal Regularisation

The OF approaches as discussed so far are designed to estimate two-frame

motion flows. The associated smoothness terms model spatially smooth flow

fields. When considering an image sequence or a video that in general en-

compasses more than two frames, it makes sense to also assume a temporal

smoothness of the flow sequence. This leads to temporal regularisation strate-

gies (Zimmer et al., 2011), which usually assume (∂u
∂t
) and (∂v

∂t
) are small, with

t denoting the temporal-axis associated variable. More examples for temporal

regularisation approaches can be found in (Murray and Buxton, 1987, Nagel,

1990, Weickert and Schnörr, 2001, Zimmer et al., 2011, Brox et al., 2006).

3.3 Sparsity Priors based Regularisation

An alternative approach to incorporate prior knowledge about motion signals

is via sparse representation. Sparsity based motion estimation assumes that

the OF field is sparse in some domain. The domain is spanned by a set of bases
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or a dictionary of atoms (Jia et al., 2011). So, the motion signal v can be well

approximated by a small set of selected atoms from the dictionary. This as-

sumption is reasonable because, although the flow patterns may be complex

and varying across the whole field, they are much simpler compared with the

signal patterns of natural images3 (Shen and Wu, 2010). From the perspec-

tive of compressive sensing4, sparsity priors based OF estimation amounts to

recover a dense flow field from much fewer measurements, thus solving the

aperture problem (Jia et al., 2011). Unlike the traditional smoothness con-

straint, the proposed sparsity constraint handles motion homogeneities and

motion discontinuities at the same time.

3.3.1 Different Basis based Sparsity Priors

Recently, researchers are starting to exploit sparse representations of the mo-

tion field for regularising OF estimation, and have already achieved encour-

aging results in the works of Shen and Wu (2010), Nawaz et al. (2011), Han

et al. (2011), Jia et al. (2011), Chen et al. (2012), Ottaviano and Kohli (2013).

The introduced sparsity priors assume that the flow field can be sparsely rep-

resented in certain spaces/domains, such as gradient field domains, wavelet

and DCT domains.

Shen and Wu (2010) assume that the flow field is sparse in both the Haar

wavelet domain and the gradient domain, i.e. a large number of the Haar

wavelet coefficients as well as the gradients of the flow field are very small.

Nawaz et al. (2011) and Han et al. (2011) also take advantages of the spar-

sity of motion gradient fields. In the work of Ottaviano and Kohli (2013),

a logarithmic-penalty based regularity is applied on the wavelet transformed

coefficients of the motion field, to encourage the motion field to be sparse and

thus compressible. Chen et al. (2012) exploit the gradient-domain based spar-

sity prior. An interesting point is that the authors decompose the motion field

3Here, a natural image means a digital photograph of a real-world scene.
4Compressed sensing (also known as compressive sensing) is a signal processing technique

for efficiently acquiring and reconstructing a signal, by finding solutions to under-determined

linear systems. This takes advantages of the signal’s sparseness or compressibility in some

domain, allowing the entire signal to be determined from relatively few measurements.
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into sparse and non-sparse components. In more detail, they impose sparseness

on the motion-discontinuity component of the flow, and a density prior on the

residual component. In addition, learning-based sparsity priors have also been

considered for regularising motion estimation. For example, Jia et al. (2011)

train an over-complete OF dictionary that adapts to the ground flow fields,

and assumes that each flow patch can be encoded via a sparse representation

over the trained flow dictionary.

3.3.2 Sparsity Prior, L1-Norm, and Laplacian Distribu-

tion

As previously mentioned, sparsity is a property which can be described either

directly on the original motion field or in a transformed space, for example on

the derivative of the motion field, or more generally, on the coefficients of the

projection of the motion signal on any basis or any set of functions.

It is common to use the L0-norm L0(f) = ‖f‖0, or the L1-norm L1(f) = ‖f‖1,
to enforce the sparsity of the solution (Donoho, 2006, Candès et al., 2008).

The generalisation of Lp norms is written as,

Lp(f) =
(

∑

j

|fj|p
)

1
p

, p ≥ 0 (3.17)

Since the L0-norm can be difficult to optimise, due to its discrete and com-

binatorial nature (He and Schaefer, 2013), there is a large volume of works

that choose to relax the L0-norm with an L1-norm in their implementations,

due to the consideration that the L1-norm gives the closest convex optimi-

sation to the L0-norm, and can be solved by representative L1-minimisation

strategies, such as listed in the work of Yang et al. (2013). For this reason,

the L1-norm has become the established mechanism with which to promote

sparsity in many applications. In the past two decades, there has been signif-

icant interest in the L1-norm based regularisation methods, including sparse

wavelet representations and the total-variation regularisation. This is because

of the appealing idea of creating accurate predictive models that also have

interpretable or parsimonious representations (Mohamed et al., 2012).

The L1 norm and the Laplacian distribution (in the statistical domain) are
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closely related. Consider a L1-norm based regularisation term, defined as

EL1(f) = λ
∑

j

|fj|, f = argmin
f

EL1(f) (3.18)

where λ is an associated weighting parameter for the L1-norm based regular-

ity. Notice that |fj| is proportional to the minus log-density of the double-

exponential distribution, i.e. Laplacian distribution. As a result, |fj| can be

interpreted as the following Bayesian posterior model (Tibshirani, 1996),

P (fj) =
1

2τ
exp

(

− |fj |
τ

)

(3.19)

with τ = 1
λ
. So, the L1-norm can be derived using the posterior mode analysis,

when the parameters fjs have independent and identical Laplacian priors,

EL1(f) ∝ −log

(

1

2τ
exp

(

−
∑

j |fj|
τ

)

)

(3.20)

Therefore, if the latent distribution of f is Laplacian, the maximum a posteriori

solution for f is equivalent to the L1-norm regularisation in this model.

3.4 Summaries
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Table 3.1: The categorisation of representative OF regularisation approaches

Regularisation approaches References MSR MD SoPMI

Robust-func based (Black and Anandan, 1996, Zach et al., 2007, Brox et al., 2004, Sun,

Roth and Black, 2010, Werlberger et al., 2010)

X

Anisotropic smoothness (Nagel and Enkelmann, 1986, Alvarez, 1999, Xiao et al., 2006, Sun,

Roth and Black, 2010, Werlberger et al., 2010, Zimmer et al., 2011,

Liu et al., 2006)

X

Non-local (Sun, Roth and Black, 2010, Werlberger et al., 2010, Krähenbühl

and Koltun, 2012)

X X

Segmentation based (Black and Jepson, 1996, Weiss, 1997, Mémin and Pérez, 2002,

Zitnick et al., 2004, Xu et al., 2008, Sun, Sudderth and Black, 2010,

Sun et al., 2012, 2013, Liu et al., 2006)

X X

f.o.d smoothness (Black and Anandan, 1996, Nagel and Enkelmann, 1986, Alvarez,

1999, Xiao et al., 2006, Liu et al., 2006, Ren, 2008, Zach et al.,

2007, Brox et al., 2004, Sun, Roth and Black, 2010, Werlberger

et al., 2010)

X X

Higher-order smoothness (Kwon et al., 2010, Lee et al., 2010, Yuan et al., 2007, Onkarappa

and Sappa, 2013, Li et al., 2013, Ranftl et al., 2012, Kadri-Harouna

et al., 2013, Roth and Black, 2007, Sun et al., 2008, Jia et al., 2011,

Trobin et al., 2008, Xu et al., 2008)

X X X

Gradient field sparsity (Shen and Wu, 2010, Nawaz et al., 2011, Han et al., 2011, Chen

et al., 2012)

X X

Wavelet domain sparsity (Shen and Wu, 2010, Ottaviano and Kohli, 2013, Jia et al., 2011) X X
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Table 3.1 presents a summary of most of the previously introduced regular-

isation approaches. The table also categorises the associated references into

different groups, according to the considered criteria, namely, whether the fac-

tors of motion supporter regions, motion spaces, and motion-distribution priors

are considered. On one hand, the groups of the methods have distinctive char-

acteristics, in terms of the criteria. On the other hand, it is easy to understand

that some groups of regularisation approaches contain overlapping properties.

The essential similarities between the regularisation groups have motivated a

further analysis. The three issues, namely selecting a motion supporter region

(MSR)5, choosing motion domains or spaces, and choosing motion-distribution

priors, that are of crucial importance to specifically determine a regularisation

scheme, have been revealed as follows:

1. Selecting a motion supporter region (MSR). Many regularisation

strategies need to solve the problem of selecting suitable motion supporters

for each pixel/feature in motion estimation. Table 3.1 marks the regularisa-

tion groups where selecting suitable MSRs is heavily involved (with the symbol

X), including: the anisotropic group, the non-local group, the segmentation

based, and the higher-order smoothness based regularisation groups. A com-

mon property is that they focus on the modelling of motion smoothness, and

exclude situations of motion discontinuities.

2. Choosing motion domains (MDs) or spaces to pose regularisation

constraints on. Within existing OF regularisation approaches, the following

groups of motion domains exist:

• Motion derivatives based domains: 1) The domains obtained from deriva-

tive operators that are conducted on locally connected maps (LCMs)6 of

the flow field. These include the gradient field of the flow (i.e., the most

5In this work, a motion supporter region (MSR), or alternatively called motion integration

region (MIR), is a local/non-local neighbouring region surrounding a considered pixel; during

the optic-flow estimation, the motion vector of the considered pixel is constrained to be

similar to those of the pixels in this neighbouring region, which is referred to as the pixel’s

motion supporter region.
6In this research work, the locally connected map (LCM) represents the graph that

consists of the vertices of the gridded pixels of a field, and edges that are determined by

connecting immediately adjacent vertices.
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common motion space), second-order derivatives (e.g., the Hessian and

the Laplacian) and high-order derivatives induced fields of the flow; 2)

Domains of motion derivatives that are calculated on the non-locally or

densely connected map (DCM)7, e.g., within non-local regularisation ap-

proaches (see (Krähenbühl and Koltun, 2012, Sun, Roth and Black, 2010,

Werlberger et al., 2010)), the constraint of this type of motion coherence

is enforced on non-local, first-order derivatives of the flow field.

• Motion domains or spaces that are resulting from wavelet transforma-

tions, such as the domains that are induced by the Haar function, or

other B-spline functions based wavelet transformations.

• Parametrisation-models (PMs) induced spaces: PMs such as affine, rigid,

translocation, and constant motion models have been exploited for OF

estimation, see examples in (Xu et al., 2008, Nir et al., 2008). By con-

sidering PMs induced motion domains, instead of directly penalising

changes in the optic flow or the wavelet coefficients of the flow field, PMs

based regularisation approaches accumulate a cost of deviating from the

assumed, parameterised motion model. Notice that regularisation ap-

proaches based on PMs are closely related to derivatives based regular-

isation methods, so, the focus of this research is mainly on derivatives

and WTs based motion domains. Graph 3.1 gives a summary of the

aforementioned motion domains and their relationships.

Motion Domains

Derivatives based

LCMs

f.o.d s.o.d Higher-order

DCM

f.o.d

WTs based

Haar Other

PMs Induced

Affine Other

Graph 3.1: Categorisation of Motion Spaces.

7In this thesis, the densely connected map (DCM) represents the graph that consists of

the vertices of the gridded pixels of a field, and edges that are established by connecting any

of two vertices in the graph.
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3. Making assumptions about the statistics of the projected motion in-

formation (SoPMI). From the first variational OF algorithm that exploits

the Tikhonov based regularisation, to the well-known, robust-function based

smoothness penalisers, and the very popular TV (or L1-norm) based regulari-

sation approaches, statistical distribution assumptions are explicitly or implic-

itly made about the projected motion information (that is obtained after some

space transformations from the original motion field). For example, when

used together with the first-order derivative (f.o.d) induced motion spaces,

the Tikhonov and the TV based penalisation functions will encourage the

motion-gradient field to respectively obey the Gaussian distribution, and the

Laplacian distribution. These two distributions both belong to the exponen-

tial distribution family, and so, they can be uniformly categorised into the

generalised Gaussian distribution. For other penalisation functions, the corre-

sponding statistical distributions have been mentioned in the review paper of

Mohammad-Djafari (2012).

It can be understood from the existing literature that all regularisation ap-

proaches in the variational OF frameworks explicitly or implicitly deal with

the aforementioned three aspects. The second and the third aspects are usually

jointly considered as a unified problem in the design of motion prior models.

Compared with the integral understanding of a motion regularisation scheme,

a decomposed interpretation that considers a motion regularity to consist of

three sub-components, namely MSRs, motion spaces, and motion statistics

of the motion space, has an important merit. This is believed to further re-

veal the underlying logic of the regularisation theory, and hence promote more

improvements in the regularisation field.
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3.5 Understanding the Connections between

Different Regularities

3.5.1 Relationships between Motion Spaces

Derivative operators and wavelet transformations (WTs) based functions/basis

are commonly used to induce desired motion spaces, in non-parametric reg-

ularisation approaches, for OF estimation. Due to the fact that derivatives

based regularisation techniques put an emphasis in modelling motion smooth-

ness (treating discontinuities as outliers), and sparsity priors based regularities

are claimed to simultaneously model homogeneous and discontinuous motion

flows, one may consider that derivatives based and WTs based motion spaces

are different. The close relationship between the two groups of signal (image

and motion) spaces has been studied by Steidl and Weickert (2002) and Cai

et al. (2012), and can be also reflected in the works of Kadri-Harouna et al.

(2013), Shen and Wu (2010), Nawaz et al. (2011) and Han et al. (2011).

Steidl and Weickert (2002) studied the mathematical equivalence between the

total variation (TV) and the WT under some special condition. Cai et al.

(2012) remarked that the WT (by choosing appropriate basis) can be used to

approximate different orders of (local) differential operators. In the work of

Kadri-Harouna et al. (2013), for a given motion signal, the coefficients that

result from an n vanishing-moment, wavelet decomposition is related to the

nth (local) derivative of the signal. Nawaz et al. (2011) and Han et al. (2011)

have applied the f.o.d based motion space (a standard space in smoothness-

assumption based regularisation approaches) into the sparsity prior based reg-

ularisation schemes. A special point of Nawaz et al. (2011), Han et al. (2011) is

directly imposing sparsity priors on the motion-gradient field, rather than us-

ing the more sophisticated but standard WTs based motion spaces. From the

sparsity based regularisation view, these works transform the original motion

field using a f.o.d basis function. From the smoothness based regularisation

angle, the works can be considered as combining the f.o.d based motion space

with the TV (or L1-norm) based penalisation function. This interpretation

gives an interesting clue that, when collaborating with the TV based penali-
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sation function, a derivative based motion space may lead to a sparsity prior

based regularisation scheme.

Because of the aforementioned works, the close connection between the deriva-

tive based and the WT based motion spaces has been revealed: the derivative

based motion spaces can be usually approximated by WT induced spaces, and

WTs can potentially produce a broader range of signal spaces than differential

operations.

To sum up, it can be understood that choosing motion bases in OF regularities

corresponds to exploring different types and ranges of repetitive information, or

more essentially, exploiting the signal compressibly within the considered mo-

tion space. Specifically, the smoothness assumption based regularities utilise

the motion-information redundance in the original OF field or motion spaces

that are induced by low-/high-order differential operations. And, the spar-

sity assumption based approaches also utilise the motion redundance in the

considered WT induced motion spaces.

3.5.2 Relationships between Motion-Distribution Pri-

ors

OF regularisation approaches usually require a pre-determined motion space,

on which further constraints can be applied. Among existing motion space

examples, the motion-gradient space, usually written as ∇u, is most popular.

So, the motion gradient space is used for the convenience of delivering the

following analysis.

The interest of studying the potential, underlying connection between different

penalisation functions (in regularisation schemes) are originated from the re-

marks of Black and Anandan (1996), who stated that: in terms of constructing

the spatial coherence term within the least-squares formulation (corresponding

to using the Tikhonov penalisation), the variation in the motion gradient field

is assumed to be Gaussian. Later, along with the popularity of the L1-norm

based regularisation strategies, the close connection between the L1-norm pe-

naliser and the Laplacian distribution has been revealed. See Section 3.3.2,
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and (Tibshirani, 1996), where detailed mathematic interpretations are pro-

vided between the L1-norm based regularisation and the Laplacian distribu-

tion. Furthermore, very recently, Krähenbühl and Koltun (2012) successfully

demonstrated how to approximate well-known penalisation functions (in regu-

larisation terms), including the L1-norm, the Lorentzian, and the generalised

Charbonnier penalisation functions, with a limited number of exponential dis-

tribution kernels. This largely promotes the overall understanding about the

close relationships between different penalisers based motion regularisation

terms.

So, it can be understood that different motion-distribution priors (MDPs),

in spite of corresponding to distinct formulations of penalisation functions,

can be unified into generalised, probability distribution models. For example,

the L1-norm, the Lorentzian, and the generalised Charbonnier penalisation

functions can be all associated into the Gaussian Scale Mixture (GSM) model

(Krähenbühl and Koltun, 2012); and, the classic Tikhonov and the popular

L1-norm based penalisers both belong to the generalised Gaussian distribution

family.

3.6 A New Generalised Motion Regularisation

Formulation

The standard formulation for smoothness based regularisation terms is usually

written as:

Ereg(v) =

∫

Ω

ωΨ(Dv)dxdy, (3.21)

where Dv denotes performing a particular order of differential operation on the

field v. It is common to see ω as a flexible parameter within the formulation.

This will lead to spatially adaptive motion integration regions. For the choice

of the derivative operator D, the f.o.d based operator has enjoyed popularity

in OF estimation for a long time. Recently, many second-order based regular-

isation terms have begun to take the place. These methods assume that the

underlying motion obeying piecewise affine transformations, divergence-free
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motion patterns, etc., which can be depicted by second-order signal correla-

tions. Specifically, different mixtures of second-order motion derivatives have

been used (see examples of (Trobin et al., 2008) and (Kadri-Harouna et al.,

2013)). In practice, the function Ψ can be the quadratic penalisation function

Φ(z) = z2 (corresponding to the well-known Tikhonov penaliser) or one of

the robust functions as listed in Section 3.2.1. Notice, D and Ψ are usually

pre-selected and fixed for an individual motion estimation task.

For sparsity priors based approaches, the regularisation term is usually defined

as:

Ereg(v) = |Wv|, (3.22)

where W represents the wavelet (or similar) transformation that is applied to

the field v. So, Wv will be the transformed coefficients. The total variation or

the L1-norm operator |·| is used to penalise large magnitudes of the coefficients.

It is commonplace to choose the L1 norm, since it is known to induce sparse

solutions (Shen and Wu, 2010, Nawaz et al., 2011, Han et al., 2011). In these

types of regularisation schemes, the only task is to define W , which usually

has a constant form, i.e. the basis for the corresponding transformation is

pre-defined.

The way of formulating the aforementioned regularisation terms satisfy the

common understanding about how to construct a particular regularisation

scheme. However, these formulations of standard regularities, except for obvi-

ously allowing spatially adaptive, motion integration regions, seems to indulge

the “may-be-improper” custom that relies on uniform motion spaces as well

as globally fixed MDPs in OF estimation.

Considering the problem of selecting MDPs, local distribution statistics in a

target motion space can be different from the global distribution. This will

make it inappropriate to set a constant MDP over the whole motion field. In

addition, existing regularisation approaches usually, empirically choose non-

adaptive motion spaces, as well as MDPs. Looking through the literature, there

are few regularisation strategies that enable the spatially adaptive selection

of a motion space or a MDP, or are concerned with automatically deciding

optimal choices for both of the two elements. To the best of our knowledge,
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Myronenko and Song (2009) present the only work (for image registration)

that simultaneously estimates motion flows as well as an optimal motion space

(corresponding to treating the operator D in Equation (3.21) as an unknown).

Regarding the MDP, it is only recent that two works appear in the literature,

one treating the penalisation function Ψ (in Equation (3.21)) as an unknown

parameter, and the other work (Chantas et al., 2014) suggesting a way to

spatially adjust the variance parameter for the employed Gaussian-distribution

prior based regularity.

According to the previous analysis, it can be understood that the existing,

standard ways of formulating regularisation terms are not appropriate. To be

more concrete, the symbols D and Ψ (both defined in Equation (3.21)), as well

as W (in Equation (3.22)) should all be allowed to vary spatially, rather than

being fixed over the whole motion field.

Motivated by the previous understanding, the three elements, namely the

motion-supporter range, the motion space/domain, and the associated motion-

distribution model, have been integrated together. This has lead to the fol-

lowing, newly generalised motion regularisation term,

E0
reg(v, L, Ψ̃) =

∫

Ω

ωΨ̃(Lv)dxdy, (3.23)

The immediate aim of designing such a formulation is to clearly assign roles

to all of the three key tasks, that are most important in the construction of a

particular regularisation scheme. Explicitly, ω decides the motion integration

region that can be adaptively set for each pixel involved; Lv represents the

operation that transforms the field v into a desired domain or space, such as

the motion-gradient domain (∇v), second-order derivatives (s.o.ds) based do-

mains (e.g., ∇2v or the Laplacian of v), a wavelet-transform induced domain,

etc. Since L can be any derivative operator or wave-form basis function, the

smoothness based and the sparsity based regularisation schemes are both in-

cluded in the new regularisation formulation. Ψ̃(·) is designed in a way that

enables spatially flexible choices of penalisation functions, so as to respect local

statistical distributions in the considered motion space (determined by L).

Compared with existing regularisation terms, the novelty of the newly gener-

alised regularity is reflected at the following aspects:
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• L and Ψ̃, respectively associated with the motion-space transformer and

the smoothness penalisation function, can be both treated as unknowns.

• The three parameters/operations ω, L and Ψ̃ are all allowed to be adapted

spatially.

Furthermore, since the spatially adjustable function Ψ̃(·) is just a qualitative

definition, it is not clear what kinds of penalisation functions can be chosen

from, and how they can be varied spatially. The following introduces two

candidate functions that quantitatively formulate Ψ̃(·), so as to facilitate the

algorithm realisation for practical requirements.

1. Generalised Gaussian distribution (GGD) based Ψ̃ (Mohammad-Djafari,

2012, Cho et al., 2010):

Ψ̃(Lv, η, σ) =
|Lv|η
σ

, (3.24)

The hyperparameters η ∈ (0, 2] and σ ∈ (0,∞) are the shape parameters of

the local latent distributions in the considered motion space. Specifically, η

determines the peakiness of the distribution, and σ the width of the distribu-

tion. The larger the value of η, the flatter the distribution shape; the smaller

η, the more peaked the shape. Due to the design, both convex and non-convex

penalisers are taken into account in the regularisation term; and, the L1-norm

and the Tikhonov penalisers are particular cases for the penalisation function

Ψ, with η = 1 and 2 respectively.

The relationship between the above function of Ψ̃ and a GGD based pdf is

given by,

pdf(Lv, η, σ) = e−
|Lv|η

σ

−log(pdf(Lv, η, σ)) = Ψ̃(Lv, η, σ)
(3.25)

That is why Ψ̃, as defined in Equation (3.24), determines a GGD based MDP

for the regularisation term in Equation (3.23).

Note that the space of the considered penalisation function in Equation (3.24)

spans a spectrum of feasible density functions, varying from sharper non-

convex functions to smoother convex functions, so, the associated regularisa-

tion term can spatially, adaptively enforce different degrees of sparsities based

MDPs.
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2. Gaussian Scale Mixture (GSM) (Wainwright and Simoncelli, 2000) based

Ψ̃:

Ψ̃(Lv; Ω̃) =
K
∑

k=1

ω̃k(−log(Gk(Lv, 0, σ̃k))),

G(x, 0, σ) = e−
x2

2σ2

(3.26)

in which Ω̃ = ω̃1, ω̃2, ..., ω̃K are the weights of the GSM model, and σ̃k are

the variance parameter for the corresponding Gaussian kernel Gk. GSMs can

also model a wide range of distributions ranging from Gaussians to heavy-

tailed ones. Taking Ψ̃(Lv; Ω̃) into the generalised regularisation term leads to

a GSM based prior adaptive regularisation term.

In practice, still other generalised, probabilistic distribution models can be

considered to construct the function of Ψ̃, only with different numbers and

types of hyperparameters to be involved. It is out of the scope of this thesis

to find out all potential models.

Thanks to the generalised penalisation function Ψ̃, a very straightforward way

has been enabled for the construction of new regularisation terms. More im-

portantly, the generalised regularisation term is by itself a novel regularity.

This is due to the fact that the model parameters, associated with the MDPs

and/or motion spaces, are treated as unknowns in the generalised formulation.

Therefore, the new regularisation scheme essentially allows the local adapta-

tion of MDPs or motion spaces, or the optimal estimation of a global MDP

or motion space. This is quite different from traditional regularisation ap-

proaches, which only estimate the flow field v, and treat the motion-model

parameters as pre-known.

3.7 Research Gaps and Promising Directions

According to the literature investigation and the generalised regularisation

formation, some research gaps and promising directions have been detected as

below:
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3.7.1 In Relation to Motion Integration Regions

Within non-local regularisation approaches, a popular way of choosing motion

supporters (see the definition of motion supporters in Section 3.2.2), or de-

ciding a motion integration region, is the Bilateral filter based strategy (Sun,

Roth and Black, 2010, Werlberger et al., 2010, Krähenbühl and Koltun, 2012).

These approaches basically measure pairwise pixel/feature affinities according

to pixel proximity, colour similarity etc. By expanding the motion integration

range into larger and non-local scales, it becomes more difficult to accurately

estimate mutual affinities between pixels. For some challenging situations, such

as recovering motions for nearby objects with similar colour or appearance, the

Bilateral-filter based strategies can easily lead to erroneous measurements.

3.7.2 In Relation to Regularisation Models

In non-local regularisation or layer based regularisation approaches, the se-

lection of motion-prior models is never a trivial problem, due to the fact

that a large region possibly contains multiple motions, or non-rigid motions,

etc. Both learning and learning-free processes based regularisation approaches

have been designed in the literature, that embed high-level knowledge about

the underlying motion coherence or sparsity characteristics. Compared with

learning-free regularisation approaches, learning based methods can theoreti-

cally enable the modelling of more complex motion priors. Namely, learning

processes based approaches have more flexibilities in choosing motion domains,

and capturing more complex statistics about the motion-domain distributions.

However, training based strategies have not been able to outperform the more

simple learning-free regularities, which can be seen from the evaluation results

as presented in the Middlebury Benchmark8. One reason is that the challenge

of learning “typical” flow patterns may not be feasible. This is true, given

that different image structures and unknown object deformations may give

rise to a multitude of motion patterns with little resemblance between motion

fields from different datasets (Wedel et al., 2009). In addition, for the case

of learning sparsity-prior models, dictionary learning methods usually aim to

8http://vision.middlebury.edu/flow/data/
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train a universal and over-complete dictionary , in order to represent various

motion-signal structures. However, sparse decomposition over a highly redun-

dant dictionary is potentially unstable and tends to generate visual artifacts

(Dong et al., 2011). By considering these factors, this research work will focus

on learning-free regularisation approaches.

There are several aspects to consider regarding the possibility of designing new

motion prior models.

1. Adaptive MDPs for the considered motion domain.

• For the case of motion coherence based regularisation, usually a fixed

model of SoPMI is applied. For example, given a s.o.d based motion

domain: if the L1-norm based penalisation is applied, such as in the

works of Sun, Roth and Black (2010) and Werlberger et al. (2010), the

s.o.ds of the flow field will be enforced to be piece-wise constant. This

regularisation scheme is able to recover piece-wise affine motions in an

image. However, if non-rigid motions exist in the same image, the esti-

mated motion flow will be over-smoothed. In the case of exploiting the

Tikhonov (quadratic) based function, the second-order motion deriva-

tives will be encouraged to obey the Gaussian distribution, which has

been proved suitable for recovering non-rigid motions. The quadratic

penalisation combined with the s.o.d based motion domain is commonly

seen in the image registration field , which is so called the curvature

based regularisation approach (Fischer and Modersitzki, 2003). The ra-

tionale behind this is, by enforcing the s.o.ds to be sparse, high curvature

motion is penalised, the quadratic penalisation however allows relatively

denser distribution of motion curvatures. So, within a complex motion

field that includes both rigid and non-rigid motions, more flexible, and

possibly spatially adaptive MDPs are needed.

• Existing sparsity priors based regularisation approaches (Shen and Wu,

2010, Chen et al., 2012, Nawaz et al., 2011, Han et al., 2011), all as-

sume a pre-defined sparsity-inducing function (usually L1-norm based).

This, however, ignores the fact that the degree of the structure spar-

sity may vary spatially within a single motion field, and hence leads to
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over-sparsified solutions.

To summarise, the assumption of a fixed MDP model does not respect the

variant motion statistics within different datasets, or even within the same

image. Therefore, an adaptive scheme needs to be designed.

2. Seeking new motion spaces or domains for non-local regularisation ap-

proaches. Most of the existing regularisation approaches only utilise local

range signal correlations or deviations within the flow field, which is a fact in

not only the derivative based, but also the wavelet based regularisation groups.

In another word, the motion coherence or the sparsity prior based regulari-

ties only take into account motion correlation/deviation relationships between

or among adjacent pixels in a local neighbourhood. Recently, the works of

Sun, Roth and Black (2010) and Werlberger et al. (2010) open a door for the

non-local range of motion signal correlations. However, these regularisation

approaches are confined to non-local pairwise affinities in the original motion

field (i.e., zeroth-order motion derivative space), but have not stretched out

to explore non-local correlations in other motion spaces, such as the projected

spaces after gradient, curvature or wavelet transformations. Through obser-

vations, the phenomenon of information repetition has been found not only

in the original motion field, but also in the f.o.d based motion space. This

thus suggests a direction for researchers to investigate new motion domains

for non-local regularisation.

3.8 Conclusions

In this chapter, a comprehensive literature survey has been provided on motion-

regularisation approaches in OF algorithms. Then, essential issues that are of

crucial importance to the construction of modern regularisation strategies, in-

cluding the motion-supporter selection, choosing motion spaces, and making

assumptions about the statistics in the selected motion space, have been iden-

tified and discussed in detail. After that, the underlying connections between

existing motion regularisation strategies are extracted. This finally leads to a

new generalised formulation for state-of-the-art regularisation schemes. Due
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to the indepth literature investigation, research gaps have been revealed and

promising research directions are suggested. Based on this, the following chap-

ter delves into the topic of non-local regularisation approaches, and Chapter 8

is to investigate adaptive MDP based regularisation strategies.
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Chapter 4

A Non-Local Regularisation

Approach based on Oriented

Geodesic Distance

Optic-flow (OF) estimation needs spatial coherence regularisation, due to local

image noise and the well-known aperture problem. More recently, OF local-

region regularisation has been extended to larger or non-local regions of regu-

larisation, to further deal with the aperture problem. After a careful literature

review, it has been determined that the criteria used for deciding the degree of

non-local pairwise motion coherence can be further improved. For this reason,

an oriented geodesic distance (OGD) based motion regularisation scheme is

proposed. The approach is particularly useful in difficult motion estimation

situations, such as recovering motions for nearby objects with similar appear-

ance, and reducing errors in object boundary regions. Experimental results,

comparing to leading-edge non-local regularisation schemes, have confirmed

the superior performance of the proposed approach.

The chapter is organised as follows. In Section 1, the motivations and the

contributions are stated. Section 2 introduces traditional OF techniques, and

also reviews the most relevant and related OF regularisation schemes in the

literature. Section 3 defines the proposed OGD scheme, and provides the

explanation for the designed non-local OF approach. Section 4 first details the
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implementation of the proposed approach, then delivers the testing results and

makes comparisons of the proposed approach with the state-of-the-art related

non-local OF approaches. In Section 5, future work based on the proposed

method is briefly discussed, and finally the conclusions of this chapter are

presented.

4.1 Motivations and Contributions

Existing motion coherence schemes for non-local OF estimation can be charac-

terized into image-driven and motion-driven approaches: The image-driven

category compares low-level image feature statistics, such as pixel position

similarity, colour similarity, etc, to decide on motion-coherence degrees for

the associated pixels. The motion-driven category enforces spatial mo-

tion smoothness according to motion similarities. Therefore, motion-driven

schemes need accurate initialisation of motion estimation, which has to be

made in advance through image-driven based OF approaches. For the image-

driven category, the most advanced regularisation schemes borrow ideas from

the image segmentation and image denoising fields. More clearly, pairwise fea-

ture (pixel) similarity measurements are exploited. For example, Sun, Roth

and Black (2010) and Werlberger et al. (2010) take advantage of Bilateral Fil-

ter (BF) based schemes to guide motion-coherence decisions, and Ren (2008)

exploits the Intervening Contour (IC), which is first introduced in the field

of image segmentation, to measure feature similarities and decide pairwise

motion-coherence degrees.

Although improvements have been achieved in OF motion estimation, by ex-

panding the motion supporter region (MSR) into larger and non-local scales,

more efforts are still needed to improve the accuracy of measuring pairwise

or groupwise pixel affinities. The task becomes more challenging for non-local

range pixels, considering that enlarging MSR can proportionally increase the

chance of connecting/grouping pixels from different motion surfaces. In ex-

isting non-local regularisation schemes such as (Sun, Roth and Black, 2010,

Werlberger et al., 2010), the employed pairwise affinity measurers only take

into account the information carried by the associated pixels, and ignore the
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transition information between the pixels. While, the ignored information be-

tween the transition path of two pixels can be vital for correctly measuring

the affinity between the pixels. This has thus inspired the utilisation of GD

based non-local OF regularisation approaches, since GD provides a natural

way to include the transition information that can help to accurately decide

pairwise pixel affinities. In this regard, an OGD based non-local OF approach

is proposed.

The novelty of the proposed approach has two aspects: 1) to the best of this

author’s knowledge, this is the first time that GD based measurements have

been proposed into non-local OF regularisation schemes. In this regard, an

isotropic geodesic distance (IGD) based OF regularisation scheme is suggested.

2) A new orientated GD path strategy is designed and integrated into the

previous IGD based scheme, in order to help the IGD based OF estimation to

combat the “motion leaking” problem (see definition in Figure 4.1), which is

a commonly detected problem near object boundary regions.

4.2 Literature Background

4.2.1 A Short Review on Classic OF Algorithms

Existing OF approaches all rely on the temporal conservation of some image el-

ements, e.g. conservation of pixel intensity or gradient values, etc. Commonly

used elements are pixels, since they can be easily extracted and lead to dense

measurements. See Equation 2.1, as introduced in Section 2.1.1, describing

the most straightforward data-conservation constraint.

This chapter aims to propose a novel regularisation approach. Before that, the

two classic regularisation schemes are briefly reviewed as below:
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(a) (b) (c)

(d) (e) (f)

Fig. 4.1: (a) and (b) show two adjacent Venus images. (c) shows the ground-

truth OF vector field between the two images. (d) presents the standard colour

map that encodes flow vectors. Compared with the colour-coded ground-truth

OF map in (e), (f) illustrates the “motion leaking” problem that takes place

where the foreground object (in the Venus images) and the background share

similar colours on some boundary regions (marked by red circles).

• The Horn-Schunck (HS) based scheme (Horn and Schunck, 1981):

ES(u, v) = ES(u) + ES(v),

ES(u) =
∑

(x,y)∈Ω
{(α(x,y)

rht |ux,y − ux+1,y|2 + α
(x,y)
bott |ux,y − ux,y+1|2+

α
(x,y)
left |ux,y − ux−1,y|2 + α

(x,y)
top |ux,y − ux,y−1|2)}

ES(v) =
∑

(x,y)∈Ω
{(α(x,y)

rht |vx,y − vx+1,y|2 + α
(x,y)
bott |vx,y − vx,y+1|2+

α
(x,y)
left |vx,y − vx−1,y|2 + α

(x,y)
top |vx,y − vx,y−1|2)}

(4.1)

where (x, y) denotes a space point in the 2-D image domain, and (u, v)

is the velocity field of the considered image. (ux,y − ux+1,y) is the dis-

crete, forward first-order derivative (f.o.d) of u with respect to x, and

the rest are defined in a similar manner. Noticing that the parameter
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α(x,y)
. is not contained in the original HS OF algorithm. It is included

here to recall the theories of both isotropic and anisotropic smoothness

regularities that will be discussed in the next section. By exploiting

constant values of α(x,y)
. everywhere in the OF field, such as in (Horn

and Schunck, 1981), it will lead to local isotropic regularisation schemes;

In the case of spatially adjusting the value of α(x,y)
. , varying strengths

of smoothness constraints will be enabled between the associated flow

vectors, resulting in anisotropic regularities (as introduced in Section

3.2.2). The regulariser (defined in Equation (4.1)) assumes that, within

the whole flow field Ω, directly adjacent pixels share similar motions,

which is achieved by minimising ES(u, v).

• Lucas-Kanade (LK) based scheme (Lucas and Kanade, 1981):

E(v
x
) =

∑

x
′∈N

ω
x,x′(I2(x

′ + v)− I1(x
′))2 (4.2)

where I1 and I2 denote the intensity functions of two consecutive image

frames. The vector symbols v = (u, v)T , and x = (x, y)T are used for

the simplicity of the formulation. The LK method assumes that the

unknown OF vectors are constant or similar within a local neighborhood

N centered at a pixel x. The weight value ω
x,x′ determines how much

the motion of the centered pixel x should be similar to its neighbour x′.

4.2.2 Most Related Works

Depending on how the weight value αx

. or ω
x,x′ (both introduced in the last

section) are defined, isotropic and anisotropic motion regularities have been

proposed in the OF literature. For example, the Gaussian filter based ap-

proach assumes that the influence of neighbouring pixels is isotropically and

proportional to pairwise pixel proximities. The Bilateral Filter (BL) based ap-

proach assumes the regularisation weight is determined by the proximity and

colour affinity of pairwise pixels, as defined below (Sun, Roth and Black, 2010,

Werlberger et al., 2010):

ω
x,x′ = exp{−|x− x′|2

2σ1

− |I(x)− I(x′)|2
2σ2

} (4.3)
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where σ1 and σ2 are the distance variance and the colour variance of adja-

cent pixels around x. By this means, motion influences of neighboring pixels

that are likely to belong to a different surface can be suppressed. Another

anisotropic example is the structure-adaptive based work, proposed by Nagel

and Enkelmann (1986), where larger weights are biasedly assigned to neigh-

bouring pixels that locate along the same local contour, and reduced coherence

is assigned between edge pixels and their non-edge neighbours. This is useful

when little evidence can suggest which of the non-edge neighbours are located

on the same surface with the edge pixel.

Considering that local regularisation based OF approaches take only a small

neighbourhood into account, motion estimation can be troublesome in poorly

textured regions and with edge features, i.e, those image regions find no match-

ing and ambiguous motion vectors respectively. Hence, regularisation schemes

applied within expanded regions have been proposed in modern OF approaches

(Sun, Roth and Black, 2010, Werlberger et al., 2010), allowing motion cohesion

to be established between pixel pairs within non-local image ranges.

Currently, the non-local OF regularisation schemes with top performances rely

on the non-local BL (Sun, Roth and Black, 2010, Werlberger et al., 2010), and

the Intervening Contour (IC) techniques. The IC based scheme uses a straight

line connecting the studied pair of features (pixels), and assigns lower affinity

to a pixel pair if the associated IC path passes more high gradient pixels. The

potential weaknesses of these methods can be summarised: 1) BL considers no

transition information between pixels, so the BL based scheme may enforce an

improper motion coherence between two pixels that locate on different objects

or motion regions. As shown in Figure 4.2, pixels A and B have different

motion ground truth, however, BL based regularisation schemes will assign A

and B large affinity considering their large proximity and intensity similarities.

2) IC does not allow a curved path, and can thus assign an inaccurate affinity

for a pixel pair such as C and D, although they share the same motion region

on the chair (also see Figure 4.2).
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Fig. 4.2: An image of a rotating chair, with human marked ground truth

motion vectors for selected pixels.

4.3 Oriented Geodesic Distance based Optic-

Flow

4.3.1 Geodesic Distance based Regularisation

Given two pixels inside an image frame, the geodesic distance in-between is

the shortest weighted length (according to a given metric), over all paths that

connect the pair of pixels (Cohen and Kimmel, 1997, Benmansour and Co-

hen, 2011). The definition of GD algorithms is repeated here for convenience.

Specifically, a GD path between pixels x1 and xn can be written as:

D1(x1,xn) = min
P (x1,xn)

n
∑

i=1

|∇I(xi)|2 (4.4)

or

D2(x1,xn) = min
P (x1,xn)

n−1
∑

i=1

|I(xi+1)− I(xi)| (4.5)

where P (x1,xn) is an arbitrary, parameterised discrete path, with n pixels

given by (x1,x2, ...,xn). x1 denotes the start pixel and xn the end pixel. The

quantity |∇I(xi)| (inside D1) is a finite difference approximation of the image

gradient at location xi. The quadratic term of the image gradient penalises

a GD path going across image edges. For the second GD path example D2,

|I(xi+1)−I(xi)| calculates the oriented first-order derivative of image intensity

between the pixels (xi,xi+1) (Gulshan et al., 2010).
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Considering the same pixel samples as shown in Figure 4.2, a low pairwise

affinity will be determined for pixels A and B by GD based measurements,

because of the large gradient region between A and B. However, other affinity

measurers such as BL or the Gaussian filter based ones will provide improper

measurements, due to the ignorance of image transition information. In addi-

tion, a GD based affinity measurement is more suitable for points C and D,

considering that GD allows curved paths that can circumvent obstacles be-

tween C and D. This is an important advantage of GD over its competitors

such as IC based methods.

Based on these observations, a GD based pairwise affinity measurement is

suggested as a new motion regularisation weight,

ω
x1,xn

= Dgd(x1,xn) (4.6)

Dgd(x1,xn) = min
P (x1,xn)

n−1
∑

i=1

|I(xi)− I(x1)| (4.7)

This newly defined regularisation weight ω
x1,xn

is to replace the weight value

α as defined in Equation (2.3) and ω
x,x′ in Equation (4.2). By doing so, a new

MSR based regularisation term can be enabled in the OF estimation process.

It is worth noting that although the D1 type of GD path has been successfully

exploited in image segmentation tasks, such as in the work of Gulshan et al.

(2010), it intrinsically forbids to contain pixels with large gradient magnitudes.

So, for edge and texture types of seed pixels, a considerable rate of valuable

motion supporters are excluded. A GD path defined as D2 might follow a path

with gradually different colour from the start pixel. Therefore, the selected GD

scheme is defined as |I(xi)− I(x1)|, which is the colour difference between any

pixel on the path and the start pixel. By setting x = x1 and x′ = xn, the new,

isotropic geodesic distance (IGD) based motion regularisation weight is thus:

ω
x,x′ = Dgd(x,x

′) (4.8)

4.3.2 Oriented Geodesic Distance based Regularisation

In addition to the newly introduced, GD based motion regularisation scheme,

an improved version that is based on an oriented GD measurement is further
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proposed:

ω
ogd
x,x′ = Dogd(x,x

′) (4.9)

where Dogd(x,x
′) represents the oriented geodesic distance between the two

pixels. Detailed definition for Dogd(x,x
′) will be later provided in this same

section.

The introduction of the OGD based scheme is, on one hand, aimed to conquer

the intrinsic problem that is associated with the IGD based scheme, i.e. the

“motion leaking” problem. Figure 4.1 illustrates the “motion leaking” problem

taking place on object boundaries, where there are ambiguous colour/intensity

distributions between the foreground and background regions. For example,

the right boundary of the book and the left boundary region of the sports news-

paper (both marked with red circles). On the other hand, the OGD scheme

can also relieve a difficult problem in OF estimation: recovering motions for

boundaries within textureless objects. Rather than exploiting the methods,

such as that proposed by Ren, using flow-drive schemes to select a relatively

higher affinity region from the two side regions (separated by the boundary).

A much safer way is to enforce smoothness along the contour itself. This logic

can be further supported by the structure-adaptive anisotropic scheme, and

the contour based motion regularisation method (Liu et al., 2006).

Dogd(x1,xn) = min
P (x1,xn)

n−1
∑

i=1

(
√

|I(xi)− I(x1)|2 + η̃(x1)(T (xi) · (xi+1 − xi))

(4.10)

The proposed formulation of the OGD is defined as in Equation (4.10). The

first quantity in the equation is the same as that introduced in Equation

(4.7). The second quantity is a structure-tensor based, direction-similarity

term, which is measured by the dot product of the tensor directions of two

subsequent pixels. The structure tensor is a field of symmetric positive matri-

ces that encode the local anisotropy of an image. It was initially introduced

for corner detection (Forstner, 1986). The second term in Equation (4.10) thus

enables GD paths to travel along local and non-local structures. Importantly,

a new weight η(x) is introduced that decides where it is necessary to strongly

enforce the structure-oriented GD searching, i.e. encouraging edge features to
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have motion coherence along the same contour. This is achieved by taking η(x)

as the large eigen-value associated with the start point, which is a measurement

of how confidently the start point is locating on object boundaries. The eigen-

value field is normalised into the range of [0, 1], written as η̃(x). Also, the two

quantity terms have been normalised. So, for high confidence edge features,

their η̃(x) values will be approximately 1, and the two terms in the equation

will be evenly enforced. For homogeneous regions, the colour-similarity based

IGD searching is used. Figure 4.3 provides an intuitive illustration for the mo-

tion supporter regions (MSRs) (for two pre-selected pixels), that are selected

by the proposed OGD scheme and the intensity similarity based GD strategy.

Notice, for the same boundary pixel on the edge of the book, the MSRs that

are respectively decided by OGD and GD based schemes have quite different

shapes. While, for the pixel in the textureless region of the book, the selected

MSRs are similar.

Two sampled pixels MSRs selected by GD MSRs selected by OGD

Fig. 4.3: Examples of the MSRs that are respectively selected by the intensity-

similarity based IGD and the OGD schemes for the same two pixels (as denoted

in the first picture).

4.4 Unified Optic-Flow Formulation

The proposed non-local OF approach consists of several components: a data

term, a smoothness term and, the introduced adaptive weight that enables

spatially variant MSR priors. The unified objective function is defined as:

ENL(x,v) =
∑

x∈Ω
R(I2(x+v)−I1(x))+

∑

x∈Ω

∑

x
′∈Nogd

{ωogd
x,x′S(v(x)−v(x′))} (4.11)
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R(z) and S(z) are robust penalisation functions as introduced by Black and

Anandan (1996), Sun, Roth and Black (2010), which penalise 1st-order data

deviations. Different penalisers can be chosen, such as the quadratic penalty

z2, the Lorentzian penalty log(1 + z2

2σ2 ), and the total-variation (TV) penalty

|z|. The latter two are penalisers less sensitive to data or smoothness term

violations, such as that caused by large illumination changes and occlusions.

In this work, both the data and the smoothness terms choose the TV penalty

due to its robustness to outliers. A much very detailed reference to robust

penalisation functions is the work of Black and Anandan (1996).

Note that at the heart of the proposed regularisation approach essentially is

the OGD based non-local MSR strategy, which is encoded in the weighting

parameter ωogd
x,x′ that is associated with the smoothness term.

The formulation of Equation (4.11) is straightforward to understand. However,

because of the TV terms, the energy functional is now non-convex, and needs

special treatments to achieve minimisation. Methods such as Graduated Non-

Convexity (GNC) can be adopted (Black and Anandan, 1996). Details are

included in the next section.

4.4.1 Implementation Associated Problems

One major problem with the OF differential formation is the estimation of

large displacements. Existing strategies for dealing with large motion estima-

tion include, the decoupled minimisation without warping (Steinbrucker et al.,

2009), the graph-cut method (Freedman and Turek, 2005), the multi-resolution

based method, etc. The decoupled minimisation has implementation simplicity

but lacks sub-pixel accuracy. The graph-cut based implementation is relatively

computational expensive. The proposed method is embedded within the multi-

resolution approach. This is a common way to overcome the difficulty of large

motion estimation by creating an image pyramid (constructed from original

images). Within such a framework, the main components of displacements v

are first estimated at a coarse resolution. Then, the estimation is progressively

refined while going down the pyramid level.
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In order to deal with the non-convex energy functional minimisation, a GNC

scheme is exploited and embedded within the multi-resolution framework. The

general idea is to take the non-convex object function and construct a corre-

sponding convex approximation (Black and Anandan, 1996). The minimisa-

tion is then processed in a continuation method, that starts from minimising

the constructed convex functions to minimising the targeted non-convex func-

tion. Successively better approximations of the true objective function can

thus be steadily achieved. For a given non-convex objective function, the dif-

ficult part is how to construct the sequence of approximate convex functions.

Further detail on this topic is available in (Black and Anandan, 1996, Blake

and Zisserman, 1987).

In addition, the proposed OGD path-searching scheme is efficiently computed

using the Fast Marching Method (Peyré et al., 2010). The computation com-

plexity is O(nlog(m)), with n being the number of total pixels in the image

field, and m the number of local and non-local neighbours that are checked for

each pixel involved.

4.5 Performance Evaluation

The following datasets, with ground truth OF, are chosen for expriments:

the Aloe, Venus, RubberWhale, Wood, and Dimetrodon image sequences (see

Figure 4.4), all of which are extracted from the well-known Middlebury Bench-

mark 1. Since the proposed algorithm is designed to estimate two-frame motion

flows, only one image pair is randomly selected, from each image dataset in

the experiments.

For performance comparison, the results from the top-performing non-local

OF work of Sun, Roth and Black (2010). The two-frame versions of the cor-

responding datasets are taken as input. The standard Intensity Constancy

Assumption (ICA) is adopted in the selected data term. Both the GD and BL

based regularisation schemes use the same RGB colour space for the purpose

of selecting motion supporter regions. In addition, for all the image pairs,

1http://vision.middlebury.edu/flow/data/

66



Image GT Sun-NLOF OGD

Fig. 4.4: Experimental results for the selected images. Actual flows are visu-

alised using the standard colour coding. The ground truth flows (the second

column), the results from Sun, Roth and Black (2010), denoted as Sun-NLOF

(the third column), and our OGD results (the last column) are displayed.

the same structures of GNC and multi-resolution schemes are used. To be

specific, the GNC stages take the first two stages for minimising the approxi-

mated energy functions, and the third stage is for the true objective function.

Within the first two stages, the number of pyramid levels is two, and the last

stage contains a five-level pyramid. Also for the purpose of fair comparison, a

uniform number of non-local neighbours are used in the proposed approach as

well as the approaches compared, specifically, 15× 15 neighbours in the finest

image layer, and gradually reduced numbers of neighbours in the remaining

layers.
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For an intuitive demonstration, Figure 4.4 displays the visualised colour maps

for the estimated OF fields, the flow results of (Sun, Roth and Black, 2010)

and the corresponding ground truth flow fields. Quantitative results are also

presented, as listed in Table 4.1. In all cases, standard measurements of average

angular errors (AAE) and average end point errors (EPE) (as used in (Barron

et al., 1994)) are reported, except that some testing results are not available

for the work of Ren (2008).

Table 4.1: Quantitative results

OGD Sun-NLOF Ren-OF

AAE EPE AAE EPE AAE EPE

Venus 3.093 0.231 3.500 0.251 3.930 0.260

RubberWhale 2.480 0.076 2.469 0.077 5.320 0.170

Dimetrodon 2.579 0.131 2.656 0.136 3.340 0.170

Aloe 0.686 2.187 1.932 2.705 NA NA

Wood 0.384 3.554 0.388 3.584 NA NA

For the five datasets being tested, the proposed OGD based approach has

achieved better accuracies in four cases and one comparable result. The mo-

tion estimation for Aloe, RubberWhale and Wood images, with nearby similar-

colour objects/regions, are challenging tasks. The Venus and RubberWhale

images have ambiguous boundary regions between nearby objects. So, they

are suitable to be included for testing whether the OGD based regularisa-

tion can achieve the expected outcome, i.e., solving or relieving the “motion

leaking” problem. The Wood and the Dimetrodon images contain not only

clustered similar-colour objects/regions, but also large amounts of textureless

regions. So, these two datasets are to validate the robustness of the OGD

based scheme for reliably grouping non-local ranges of motion supporters. In

addition, images have rigid-motion flows, namely the Dimentrodon dataset,

are also tested through experiments.

Particularly, the proposed method reports lower motion estimation errors in

the Aloe and Wood images, where similar-colour objects are clustered together.
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The “motion leaking” problem, which can be seen existing in the testing results

of Sun, Roth and Black (2010) and Ren (2008), has been efficiently suppressed

by the proposed OGD based regularisation approach. For the demonstration

purpose, a close-up comparison for the three approaches is displayed in Figure

4.5. Notice that more crispy motion boundaries have been achieved by the

proposed method. Some very ambiguous boundary regions are highlighted, as

shown in Figure 4.5, by red circles that are superimposed on the colour-coded

flow maps.

Ren-OF Sun-NLOF OGD

Fig. 4.5: Illustrating the relieved “motion leaking” problem. See the red cir-

cles that mark the corresponding regions where there are much crispy motion

boundaries. The testing results according to the work of Ren (2008) are de-

noted as Ren-OF.

The quantitative results in Table 4.2 show the motion estimation accuracies

of the OGD based approach and the method of Sun, Roth and Black (2010),

for different regions in the RubberWhale image (see the manually segmented

regions in Figure 4.6). By further analysing the statistics in Table 4.1 and Table

4.2, it is revealed that the OGD based method has enabled superior motion

estimation accuracies in object boundary regions, textureless objects, and non-

rigid motion situations. The improved accuracies in object boundary regions
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confirm the effects of the proposed OGD strategy. It is noticed that OGD has a

problem in estimating motions of occlusion regions. To analyse the reason, see

the occlusion region, as illustrated in Figure 4.7. This type of occlusion regions

are usually not corresponding to object boundaries. However, the structure

tensor based strategy, inside the OGD scheme, cannot distinguish the “false

boundaries” with real ones. Those “false boundaries” possess no meaningful

motion information, so, the motion regularisation enforced along the “false

boundary” contours will result in erroneous motion vectors. Considering that

the occlusion region detection and the associated motion estimation is by itself

very challenging, future research on the topic will be conducted.

Fig. 4.6: Illustrating some of the manually segmented regions inside the Rub-

berWhale image.
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Table 4.2: AAE and EPE for regions in RubberWhale

OGD Sun-NLOF

AAE EPE AAE EPE

Rotation (R8,10) 2.405 0.114 2.459 0.120

Aperture (R2) 8.613 0.204 9.099 0.215

Repetitive texture (R6,10) 0.896 0.031 0.828 0.029

Average texture (R3,11) 1.640 0.044 1.433 0.039

Sparse texture (R4,8) 2.201 0.066 1.951 0.061

Textureless (R1,7,9,12) 1.504 0.052 1.656 0.057

Non-rigid (R5) 2.094 0.064 2.224 0.067

Occlusion (R13) 9.099 0.230 8.637 0.220

Boundary (R14) 3.566 0.118 3.968 0.130

(a) Venus image (b) Enlarged ground truth OF

Fig. 4.7: (a) illustrates the occlusion region (marked with red colour) in the

Venus image. The ground truth flow for a cropped occlusion region is enlarged

and displayed in (b).
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4.6 Conclusions

In this chapter, geodesic distance based non-local regularisation schemes have

been investigated for the first time. Particularly, an oriented geodesic distance

(OGD) based, non-local range pixel grouping, or image segmentation algorithm

has been designed. This OGD algorithm has been exploited in the development

of a new, non-local regularisation approach for OF estimation. Through ex-

periments on five real datasets, the proposed non-local OF approach has been

demonstrated particular useful in dealing with two challenging situations: ac-

curately recovering motion flows near object boundary regions and estimating

motions for nearby similar-appearance objects, where the existing competing

approaches have inferior performance.
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Chapter 5

Cell Population Tracking:

Background and Literature

Suvey

The purpose of this chapter is two-fold. First, the chapter introduces the

background of computer-vision based cell tracking approaches. In this re-

gard, the motivations and challenges about tracking dense cell populations

over phase-contrast image sequences are described. Then, three main cate-

gories of existing cell tracking approaches are explained, including the detec-

tion/segmentation and association based, model based, and motion based cell

tracking approaches. Secondly, the chapter presents a literature survey on key

approaches and systems, that have been recently proposed and successfully

applied to tracking dense and relatively dense cell populations. After that,

quantitative comparisons are made for the related systems and frameworks.

Based on the investigations, promising research directions are suggested.

5.1 Introduction

Cell dynamics is a field of intense current research in which researchers pursue

improved comprehension of fundamental processes in cellular and develop-

mental biology. Cell behaviour such as migration (translocation), proliferation
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(growth and division) and differentiation, and apoptosis1 play a central role in

many fundamental biological processes.

As the process of increasing cell numbers by reproducing cells themselves (see

the illustration in Figure 5.1), cell proliferation is most evident during embry-

onic development, where many phases of growth and division generate the cell

mass of the developing organism. After the adult organism is formed, many

cells, such as in the case of neurons and muscles, permanently possess the

ability of growth. And for other cells, they retain the option of growing again

temporarily to replace cells that are lost either through the normal processes of

wear and tear, or through damage (Berridge, 2012). The process of cell differ-

entiation performs specialised functions, expressing cell-type-specific genes, to

generate different types of cells, such as bone cells, muscle cells, neurons, etc.,

that shape different organ developments. Failures in the cell differentiation

process can cause defects, such as brain malformations. Apoptosis, i.e. a pro-

cess that controls cell death as illustrated in Figure 5.2, is also an important

event in development, when unwanted cells are pruned during organogenesis2.

For instance, the apoptosis of cells located in-between the fingers and toes

allow for their separation. In an adult human body, apoptosis continues to

play a vital role during the normal turnover of cells. For example, the hu-

man body spawns several million new cells every second, and correspondingly

several million cells must die for the body to remain cell number constant.

Problems with the regulation of apoptosis have been implicated in a number

of diseases, such as cancer, a disease which is often characterised by too little

apoptosis (Berridge, 2012).

All of these processes require the orchestrated movement of cells in particular

directions to specific locations, and changes of the cellular shape will also

often determine the fate of the cell. So, understanding the mechanisms of cell

migration and morphology is thus one of the important goals of biomedical

research.

1Apoptosis, also called programmed cell death, is a process in which cells play an active

role in their own death, distinct from another form of cell death that is uncontrolled by cells

themselves.
2Organogenesis: (in embryology) the formation and differentiation of organs and organ

systems during embryonic development. In humans, the period extends from approximately

the end of the second week through the eighth week of gestation.
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Fig. 5.1: The four images illustrate a cell division process (from left to right),

where the mother cell exhibits colour and appearance changes and it is grad-

ually divided into two child cells. The images are taken from the paper of Li

et al. (2010).

Fig. 5.2: Illustration of a cell apoptosis process, where the cell gradually

changes appearance and loses dynamic. The images are taken from the website
3 of the Cell Migration lab at the University of Reading.

5.1.1 The Need for Automated Approaches

The need for automated approaches is motivated by the fact that cellular be-

haviour of migration, proliferation and apoptosis involve considerable numbers

of cells. Reliable analysis of cell dynamics requires the use of non-fluorescence

microscopy4, such as phase-contrast microscopy5 for a long period of time (usu-

ally several days). This will routinely produce thousands of images with low

signal-to-noise ratios. Considering the high processing requirement of manu-

ally tracking cells, i.e. marking the location and/or the shape of each individual

cells in every image frame, it will be tedious and time-consuming. Moreover,

4A fluorescence microscope is an optical microscope, used to study specimens that contain

materials, which can be made to fluoresce. In this technique, high intensity light illuminates

the sample and excites fluorescence species in the sample, which then emit light of a longer

wavelength.
5Phase-contrast microscopy is an optical microscopy illumination technique in which

small phase shifts in the light passing through a transparent specimen are converted into

amplitude or contrast changes in the image.
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the results often lack reproducibility, even if the tracking work is performed

by experts, which is largely due to unavoidable user bias and subjectivity.

Fig. 5.3: An intuitive system that flows from the cellular image recording

process to the procedure that outputs cell tracking results. The cellular images

and the cells’ trajectory map are taken from the paper of Li et al. (2010)

To illustrate the main procedures involved in cell tracking, Figure 5.3 presents

a flow diagram, depicting the following procedures:

• Culturing in vitro cells in planes.

• Recording cellular images using microscopy devices.

• Visually tracking cells by automated systems that take cellular images

as inputs.

• Outputting cell tracking results, such as cell trajectories and cell defor-

mation information, over the time-lapse image sequence.

5.1.2 Challenges of Vision-based Cell Tracking

The current survey is very interested in the problem of tracking cells in highly

concentrated datasets, especially those taken from a phase-contrast time-lapse

76



microscopy. Figure 5.4 displays two samples of phase-contrast cellular images.

Due to the halo regions surrounding cell membranes, phase-contrast cellular

images are usually challenging to segment. Within dense cell populations, cells

can be clustered, and have frequent interactions, thus correct segmentation is

non-trivial. Since a large variety of cell shapes appear, this poses great diffi-

culties in cell shape modelling as well as segmentation. In addition, spatially

variant cell densities also lead to spatially varying motion patterns, so, motion

fields of dense cell populations are extremely challenging to estimate.

Fig. 5.4: Illustrating ill-defined cell boundaries, diversity of cell shapes, cell

interactions or cell partially overlapping, and cell occlusion situations.

A more complete summary of challenging problems that are associated with

dense population tracking (over phase-contrast image sequences) are listed as

below:

• Ill-defined cell boundaries - the low contrast between cells and the back-

ground, due to the lack of optic focus, depending on cell positions with

respect to the focal plane. The first image in Figure 5.5 illustrates ill-

defined, blurred cell boundaries.

• Similar intensity distributions between the foreground and background

image regions. See the middle image in Figure 5.5.

• Different cell sizes, and diversity of cell shapes (see Figure 5.4).

• Considering that image sequences can be taken under different time
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Fig. 5.5: The first image illustrates ill-defined cell boundaries that are man-

ually marked by red contours. In the middle image, ellipse and rectangular

regions are respectively intercellular regions and image background regions,

which demonstrate that similar intensities can exist between image foreground

and background regions. The third image displays two partially overlapped

cells with their interface regions merged.

frequencies, large cell-shape deformations and/or cell displacements be-

tween successive frames are possible.

• Nearby cells interact with each other, where the cell boundaries in-

between can become invisible. The third image in Figure 5.5 displays

two partially overlapped cells.

• Figure 5.6 illustrates some marked elongated cells, which can easily lead

to image over-segmentation.

• Spatially variant motion patterns in cellular images of dense populations.

• Cell division, newly incoming cells, and cells exiting from the image, and

cell debris. These events pose difficulties to correct cell-to-cell associa-

tion. See Figure 5.1 for cell division and Figure 5.2 with a cell death

event.

• Cells partially or fully occluded in the environment. This also poses the

cell association problem.
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Fig. 5.6: Elongated cells, marked with the green colour.

5.2 Categories of Cell Tracking Methodologies

The goal of this section is to present a comprehensive literature survey on

the topic of cell tracking. Firstly, existing approaches are divided into three

categories: detection/segmentation and association based (also referred to as

segmentation-association based), model-evolution based, and motion based cell

tracking approaches. In this regard, the basic ideas of the three categories of

approaches are briefly explained, in order to facilitate the upcoming detailed

analysis about the relevant and related cell tracking approaches and frame-

works in Section 5.3. Specially, reviews on recently proposed works that con-

cern the tracking of relatively dense cell populations are focused upon. After

that, a qualitative comparison is presented for the most related cell tracking

approaches or systems.

5.2.1 Segmentation-Association based Tracking

In a typical detection/segmentation and association based approach, the track-

ing task includes two major steps: the detection/segmentation step and the

association step. First, the feature detection or image segmentation process

tries to identify individual cells in each frame within a given image sequence.

According to specific microscopy techniques that are exploited for recording

cellular images, and different types of cells to be tracked, distinguishable cel-

lular features, such as colour and boundary properties can be exploited in the

process of cell detection/segmentation, that aims to separate foreground cells
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from image background regions, and also segment cells from each other in the

same image field. Some methods satisfying these purposes include global/local

thresholding approaches, peak detection methods, watershed segmentation al-

gorithms (Vincent and Soille, 1991), etc. After separate cell regions are de-

tected/segmented in each frame, the second task is to associate cells across

image frames, i.e. matching cells between successive frames. To achieve this

purpose, the pre-chosen cell properties, usually based on cell appearance and

position information, can be employed.

• For measuring cell appearance properties, cell boundary and interior-

region characteristics can be considered: 1) a straightforward way for

describing cell boundary characteristics may take into account perime-

ter and/or curvature statistics of the boundaries. More accurately, the

Fourier shape descriptor, firstly proposed by Cosgriff (1960), can also

be employed in the representation of a closed cell boundary curve. 2)

Regional attributes, extracted from relatively simple information such as

cell area size and region compactness, or more complex measurements

of the colour distribution in pre-segmented cell regions and cell texture

statistics, can all be quantified for cells’ similarity comparisons.

• In cell-association strategies that concern cell position similarities, the

most simple method associates a cell in one frame with the spatially

nearest cell in the subsequent frame. To avoid cell-matching ambiguities

in the case of multiple cells close to each other, some advanced strategies

take into account the neighbourhood relationship of a cell with its sur-

rounding nearby cells, for the purpose of cell association. For example,

in the work of Li et al. (2010), the variabilities of the spatial distribu-

tion of neighbouring nuclei are measured and compared, including the

nearby nuclei identities surrounding the target nuclei, and the distances

between the target nuclei and each of its neighbours. Except for exploit-

ing spatial position similarities, the temporal context coherence of cell

trajectories can also be considered in the cell association and tracking

process. For example, Li et al. (2008) suggest to re-connect broken cell

trajectory segments by overseeing the entire tracking history.
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5.2.2 Model Evolution based Tracking

In model evolution based cell approaches, mathematical tools have been used to

model cell appearances and/or cell motion characteristics, based on high level

assumptions. Different from detection/segmentation based approaches that

separately perform cell detection/segmentation and cell association processes,

model based approaches aim to track cells by jointly updating cell location

and region information frame by frame. In this category of approaches, the

cell detection/segmentation is only required in the first frame, and the tracking

results in one frame are used to initialise the tracking process in the subsequent

frame.

Some representative algorithms have been successfully applied to model cell

appearances, and cell movement features. For example, the mean-shift algo-

rithm (Cheng, 1995) is adopted in the work of Debeir et al. (2005), where cells

are modelled as bright/dark intensity dots. Parametric active contours (first

proposed by Kass et al. (1988)), modelling cell membranes (such as demon-

strated by Zimmer et al. (2002) and Ray et al. (2002)), due to the deformable

property of snake models. The level-set framework based active contours, also

called non-parametric active contours, are employed in the works of Padfield

et al. (2009) and Li et al. (2008) for modelling cell shapes. As for motion

models based cell tracking approaches, well-known examples include Kalman

filtering (Ray et al., 2002) and particle filtering (Kitagawa, 1987) techniques,

both of which can model cell dynamic features, such as velocity, acceleration

and rotation properties, that can be learned from cell behaviour over image

sequences.

5.2.3 Motion Estimation based Tracking

In addition to the aforementioned two categories of cell tracking approaches,

researchers recently proposed direct methods that track cells according to pre-

estimated motion fields. This has led to the third category of cell tracking

approaches, which are referred to as motion based approaches in this research

work. Basically, the idea of motion based cell tracking includes the following

steps:
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• An image segmentation process is performed in the first frame for initially

segmenting cell regions.

• Exploiting a selected motion estimation technique to establish pixel-to-

pixel or object-object mapping between successive frames of an image

sequence.

• Starting from the initial segmentation results, cell regions are associated

and tracked from frame to frame, according to the pre-estimated pixel-

or object-level translocation information in every frame.

At the heart of the motion based cell tracking approaches is image-based mo-

tion estimation. For example, in the work of A.J. Hand and MacNeil (2009),

the OF algorithm is exploited to match image pixels between two consecutive

frames, according to pixel intensity similarities and gradient similarities. The

average velocity of a pre-marked cell region is estimated at the initial stage,

and then the motion information of the cell region is used for frame-to-frame

tracking. Another motion based work is proposed by Yang et al. (2008), where

a variant of the Demons algorithm (Thirion, 1998) (commonly used in medical

image registration), is adopted to align cell-nuclei regions between consecutive

frames. According to the works (A.J. Hand and MacNeil, 2009, Yang et al.,

2008), a major advantage of optic-flow or image-registration based tracking

systems is that the actual image acquisition process will not significantly af-

fect the tracking performance.

This category of approaches requires separate image segmentation processes

(either only in the first frame, or in a selected number of frames), and cell as-

sociation processes. So, by analogy, the motion estimation based approach

can be considered as a special type of segmentation-association based ap-

proach. Specifically, the cell association process is performed “on the fly”,

using pre-segmented cell regions in one frame as initialisation for cell detec-

tion/segmentation in the next frame. Essentially, this process matches one cell

to its spatially closest cell in the subsequent frame.
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5.3 Related Cell Tracking Systems and Com-

parisons

5.3.1 Cell Population Tracking Systems

The system of Jurrus et al. (2009) tracks axon populations within image se-

quences that are acquired by serial block-face scanning electron microscopy

(SBFSEM). Radial active contours are applied to jointly segmenting and track-

ing axons, slice by slice. An OF technique provides velocity estimation for each

pixel in the image. The Kalman filtering technique is used for predicting and

correcting axon positions from noisy measurements that are estimated by ac-

tive contours and the optic flow algorithm. The system has been proved useful

for tracking axons with regularly round shapes, and relatively simple motion

dynamics.

Within the approach of Padfield et al. (2009), the cell segmentation and track-

ing tasks are accomplished by the non-parametric active contour algorithm

(based on the level-set framework). Pre-defined cell shape and size constraints

are integrated into the active contour model to prevent the level-set contour

from leaking out from weak edges of cell nuclei. For detecting and tracking cell

division events, Padfield et al. (2009) design a speed function that is coupled

with the Fast Marching approach, in which the associated energy model has a

cost function that adaptively switches from favouring and emphasising bright

appearance nuclei to dark nuclei along the image sequence. By doing so, the

approach is able to track cells across the four stages of a cell cycle.

Li et al. (2008) present an automated system for visually tracking cell popu-

lation in vitro phase-contrast images. The quantification of cell migration,

mitosis and apoptosis has been enabled. Their system consists of a non-

parametric active contour based cell tracker, in conjunction with a carefully

designed, adaptive Interacting Multiple Models (IMM) of motion filtering, and

a module for spatiotemporal trajectory optimisation. The curve merging prob-

lem, associated with standard, non-parametric active contours, is handled by

integrating topology constraints that permit level-set division, but prohibit

merging.
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Rodriguez et al. (2009) introduce a multiple object tracking framework for un-

structured crowded scenes, such as exhibitions, railway stations, and biological

cells. The tracking system involves two key techniques: the OF algorithm and

a Correlated Topic Model (CTM). The computed OF field is used as low-level

features for each tested video samples. The CTM is trained to model various

crowd behaviour modalities, with the associated parameters estimated through

a collection of learning processes. One main contribution of their work is the

idea of exploiting high-level knowledge that is learned from crowd behaviour

for the task of object tracking.

The work of Li et al. (2010) track multiple cell nuclei in fluorescence microscopy

images. A seeded-watershed algorithm is used for nuclei image segmentation.

The nuclei association process takes into account properties of cell intensity

profiles and shapes, and the measurements of cells’ spatial neighbourhood

structures. Although nuclei in the tested dataset tend to have a relatively

high rate of large displacement, i.e. the cell displacement between two consec-

utive frames is larger than the cell’s diameter, many of those cells have been

successfully tracked. This is due to the help of a spatial structure-similarity

based cell-matching strategy, which cooperates with the appearance-similarity

based matching. For detecting dividing and newly divided nuclei, the morpho-

logic and appearance changes of the nuclei have been exploited. Specifically,

a support vector machine (SVM) classifier, taking into account six manually

selected features, namely, cell sizes, average and standard intensities of cell

regions, compactness of cells, the short and long axis of cells, is adopted for

distinguishing general nuclei and division cells.

Kanade et al. (2011) present a segmentation based dense cell population track-

ing system, which consists of multiple modules: 1) The microscopy image

restoration process, restoring the “authentic” microscopy images and produc-

ing images without artifacts such as halo and shading (that usually appear

in the phase-contrast microscopy images). 2) The cell segmentation process,

conducted on the resulting cleaner images; 3) The cell tracking module, us-

ing multiple hypothesise for cell association. 4) The cell-division detection

module. Similar features are first extracted for manually extracted, candidate

cell-division sequences, each consisting of a sequence of image patches cropped

around the same cell. A training procedure is then conducted on a set of
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duplicated patch sequences that contain various rotated patterns of the cells.

After that, the task of determining whether a birth event happens and when

it happens is decided firstly by a HCRF (Hidden Conditional Random Fields)

model and then a trained SVM classifier.

Dewan et al. (2011) proposed a segmentation based method for automated cell

tracking. The framework consists of three main modules: detection, tracking,

and trajectory recovery. 1) The detection module detects and localises nuclei

of cells. A morphological top-hat filter is employed for illumination correc-

tion and the h-maxima transformation (Soille, 2003) for the purpose of nuclei

segmentation. Then, an ellipse is fitted for localising the cell nucleus. 2) To

find the correspondence between cells, the following measurements are consid-

ered, motion parameters, skewness and displacement measurements and cell

topological features, including colour compatibility, degree of area overlap, and

deformation. One contribution of (Dewan et al., 2011) is the utilisation of the

features from both of cell motion and topology domains, to track cells in clus-

ters. 3) As also agreed by Dewan et al. (2011), it is hard to avoid segmentation

errors completely, in segmentation-driven methods. To deal with that, along

with cell division detection and tracking, a trajectory recovery model that is

based on template matching is added to the framework.

In the work of Chatterjee et al. (2013), human monocyte cells are tracked in

a fluorescent microscopic video, by matching and linking of bipartite graphs.

Since image segmentation is relatively easy for selected cellular images, the

main contribution of Chatterjee et al. (2013) is the modelling of cell association

as a maximum-cardinality-minimum-weight matching problem for a bipartite

graph.

Kaakinen et al. (2014) developed a segmentation-association based method

that tracks cell migration over phase-contrast image sequences. In this ap-

proach, cell detection is considered as finding the maximally stable extremal

regions (MSERs) in the image. Then, a Kalman filtering based multi-object

tracker is exploited to estimate the migration magnitude and direction of in-

dividual cells in confluent cell populations. The approach is claimed to have

the advantage of computation efficiency.
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A.J. Hand and MacNeil (2009) proposed an OF based cell tracking approach.

The system works well for tracking cells over a phase-contrast image sequence

that contains up to 10 frames, and it has achieved a tracking accuracy of 95%.

Their approach can not directly detect and track newly entering or newly born

cells. In order to evaluate the system performance at different cell densities

and over a larger number of frames, the authors made experiments on artificial

image datasets, with different levels of cell population densities. The tracking

performance degrades as the density of the targeted cells and the number of

tested frames increase.

Yang et al. (2008) also developed a motion based cell tracking approach. The

motion estimation process is accomplished by a variant of the Demons algo-

rithm (Thirion, 1998) (commonly used in image registration). Pre-segmented

cell-nuclei regions are then associated between consecutive frames, according

to the estimated motion information.

In the work of Jiang et al. (2010), a SIFT based, motion estimation and track-

ing scheme is proposed for automated cell motility analysis, in low-contrast

differential interference contrast (DIC) datasets. First, SIFT points around

live cells are detected, and then a structure locality preservation (SLP) (using

the Laplacian Eigenmap) is exploited to track the SIFT feature points along

successive frames of DIC videos. The cell segmentation task is accomplished

by the level-set method. The motion vectors that are obtained from the SIFT

feature matching are used to associate cells between consecutive frames. In a

clustered cellular environment, although the proposed work has not expressive

tracking accuracies, Jiang et al. (2010) proved that the proposed Laplacian-

SIFT can significantly reduce the error rate of SIFT feature matching, in com-

parison with principal component analysis (PCA) based SIFT tracking.

5.3.2 Qualitative Comparisons

To better analyse the performance of the related works that focus on the

tracking of cell populations, a qualitative comparison is presented in Table

5.1 and 5.2. Not all of the previously reviewed works have been included in

the table, considering that the work of Chatterjee et al. (2013) is validated
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on not sufficiently dense cell populations, (Yang et al., 2008) is designed for

cell tracking in 3-D datasets, and the approach of Jiang et al. (2010) has

not achieved high accuracies in tracking dense cell populations. Specifically,

the performance comparisons include several aspects: cell population densities,

shape deformation tracking, cell division tracking, tracking cells with relatively

large displacement (referred to as “jumping cells” in this section), tracking

existing and newly incoming cells, occlusion handling, training and device

requirements, etc. Except for the percentage values in the “Tracking accuracy”

row, other fractional values (formatted as n out of 100) denote the (roughly

estimated) occurrence frequencies of the corresponding events, which give clues

about the difficulty level of dealing with those events in the corresponding cell

tracking systems.
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Sample

Reference Jurrus et al.,

2009

Padfield et

al., 2009

Li et al., 2008 A.J.Hand

and MacNeil,

2009

Li et al., 2010

Microscopy SBFSEM Fluoresence Phase-

contrast

Phase-

contrast

Fluoresence

Deformation level small NA large NA small

Deformation tracking yes no yes yes yes

Overlapping-cell

tracking

no no yes, (3/100) yes yes, (15/100)

Jumping-cell tracking no no yes, (5/100) yes yes, (25/100)

Mitosis tracking no yes, (10/100) yes no yes, (15/100)

Occlusion-cell track-

ing

no no yes, (8/100) no no

Incoming-cell tracking no no yes no yes

Apoptosis tracking no no no no yes

Training requirement no no yes no yes

Tracking accuracy NA NA 86.9%-92.5% 50.0%-60.0% 90.0%

Table 5.1: Qualitative comparisons of the related systems (part 1).
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Sample

Reference Dewan et al.,

2009

Kaakinen et

al., 2013

Rodriguez et

al., 2009

Kanade et al.,

2011

Microscopy Phase-

contrast,

Phase-

contrast

Phase-

contrast

Phase-

contrast

fluoresence

Deformation level small medium large medium

Deformation tracking yes yes no yes

Overlapping-cell

tracking

yes, (3/100) yes, (3/100) yes, (3/100) yes, (25/100)

Jumping-cell tracking yes,(5/100) no yes, (5/100) yes, (5/100)

Mitosis tracking yes no no yes, (15/100)

Occlusion-cell track-

ing

no yes, (4/100) yes, (8/100) no

Incoming-cell tracking yes no yes yes

Apoptosis tracking no no no no

Training requirement no no yes yes

Tracking accuracy 84.0%-87.0% 35.0%-65.0% 79.1%-89.0% 82.0%

Table 5.2: Qualitative comparisons of the related systems (part 2).
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5.3.3 Discussion

According to the statistics in Table 5.1, discussions are presented in terms of

the current trends and challenges in tracking dense cell populations.

1. Over- and under-segmentation problems: 1.1) segmentation based

approaches have difficulties in segmenting cells within phase-contrast images.

This can be caused by similar foreground and background intensity distri-

butions, blurred cell boundaries, uneven cell intensities, cells textures (due

to intracellular structures), image noise levels, etc. Fluorescence cellular im-

ages are relatively easier to segment due to the high image contrast. How-

ever, fluorescence-microscopy techniques usually require additional prepara-

tions such as staining, which may destroy the cells. Therefore, a large number

of cellular datasets have been captured by non-fluorescent microscopies, such

as the phase-contrast microscopy. In addition, there are following challenges:

• Segmentation based methods may encounter the over-segmentation prob-

lem in terms of cells with uneven intensities or abundant textures, and

cells having a variety of shapes (especially elongated cells). These situa-

tions are commonly seen in dense cell populations.

• Since nearby cells may have overlapping regions, the boundaries in be-

tween will be ambiguous, which also poses difficulties for accurate seg-

mentation. Kanade et al. (2011) proposed a method that enables the

transformation from phase-contrast images to clearer images, i.e. images

without artifacts. However, as long as there exist non-even interior cell

regions, the overlapping of cells, and various shapes of cells, the problem

of under- or over-segmentation cannot be avoidable in low-level image

segmentation approaches.

1.2) Model based methods can potentially produce better estimates of cell

morphologies (Li et al., 2008), due to the factor that high-level priors about

cell shapes can be easily integrated in model based approaches.

2. One challenging problem, which is not well solved or often ignored in the

existing works, is the segmentation and tracking of elongated cells, such
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as those illustrated in Figure 5.6. Regions of elongated, long shape cells can

be easily over-segmented and thus cause problem in segmentation-association

based tracking methods. Long shape cells can also lead to frequent lost track-

ing in model based tracking systems. Existing model based approaches usually

employ parametric/non-parametric active contours to model cell membranes

and/or cell regions. For those active contours models that rely on the bound-

ary based feature matching, elongated cells, due to the relatively low curvature

boundaries, are difficult to track. Although some approaches also model cell

regions, inferior tracking accuracies are usually achieved. This is because cell

region models suffer the leaking problem, especially in the case of tracking

dense cell populations within low contrast images. The suboptimal segmenta-

tion and tracking results of this type of cells can be easily accumulated over a

number of frames, and lead to the tracking lost.

3. The problem of tracking large displacement cells exist in all of the three

categorised approaches. When cells have large displacements between consecu-

tive frames, segmentation-association based approaches encounter the problem

of accurately associating correspondences among multiple cells. Model based

approaches, because of the local minimisation problem, can not track a cell

that has insufficient or no overlap with its translated cell. Motion based ap-

proaches, need to be embedded into a pyramid or multi-scale implementation

framework, so as to track cells with relatively large displacements.

4. The task of cell division detection and tracking is gaining more at-

tention. Cell division events are usually accompanied by large appearance

changes. A large number of works employ training based processes, assuming

that cells display particular appearance changes during the cell division pro-

cess. For example, a most simple assumption is that cells will become more

round in shape and abruptly display bright intensities. However, different

types of cells, during cell divisions, may show large variances in appearances

and behaviour (see Figure 5.7). Even within image sequences that contain the

same type of cells, the time resolution of an image sequence has a significant

influence on the cell division pattern. Therefore, training based approaches

have a relatively weak generality in applications. In addition, considering that

pre-training is required, those methods are usually not suitable for online event

detection and tracking.
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Fig. 5.7: Illustrating three samples of dividing cells that display differing pat-

terns. Details of the sample images will be described in Section 6.3.

5. For tracking newly incoming/entering cells: in segmentation-association

based frameworks, since all image frames in the image sequence are seg-

mented, newly incoming cells can be naturally accommodated; motion based

approaches and model based cannot directly deal with this issue, so, a separate

cell segmentation or detection process is needed to examine newly appearing

cells on image border regions.

6. For tracking cells under occlusions: Cells can be partially or totally

occluded in the scene, due to the fact that they overlap heavily with the

neighbours, or cells that exist the image field. Alternatively, cells may seem

to be occluded when they have large appearance changes (usually during cell

division or death). To deal with occluded cells, Li et al. (2008) exploit Kalman

filtering based motion models that temporarily provide predicted positions

for the cells. This, however, is risky under the condition of a dense cellular

environment. Also, in the work of Li et al. (2008), a so-called track linker is

proposed that aims to complete cell trajectories, by overseeing entire histories

of cell trajectories, utilising spatiotemporal context information to re-connect

broken cell trajectories.

7. Training assistance in tracking cell translocation: some existing works

rely on training based methods to model cell behaviour. For example, Li

et al. (2008) train four motion models. At run time, a cell’s motion pattern
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is associated to one of those four models, and the best-fitting motion model

provides prediction information to help to track the associated cell, in the next

one or two frames. Rodriguez et al. (2009) propose to learn motion direction

priors of multi-modal crowd behaviour. However, training based processes are

specifically designed for particular types of cells. Depending on the density

level of the cell population, cell behaviours and cell interaction may be quite

different.

5.4 Summaries and Prospective Research Di-

rections

Segmentation-association based tracking approaches are relatively simple in

their principle. These approaches are preferred for application to clear cellu-

lar datasets. If targeted images are recorded by phase-contrast microscopes,

the cell detection/segmentation process will encounter particular difficulties.

So, carefully designed, cell detection/segmentation strategies are usually re-

quired. In addition, non-trivial post-processing is also necessary to deal with

the under- or over-segmentation problem, especially in the tracking of dense

cell populations.

Model based approaches are in general not constrained by particular types of

image datasets. They can potentially achieve relatively stable performance in

segmenting cell shapes, and tracking cell populations with various densities.

These advantages make model based approaches more suitable for tracking

highly dense cell populations within phase-contrast image sequences. One

weakness of model based approaches is the inability of dealing with newly in-

coming cells, which is due to the model initialisation problem. Since model

based approaches suffer from the local minimisation problem, they are pre-

ferred to be applied to tracking cells with relatively small displacements be-

tween consecutive frames.

For motion based approaches, the main issue is the accumulated tracking er-

ror. In terms of tracking over a large number of frames, and with a high

density of cell populations, the performance of motion based approaches is
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inferior. Therefore, a straightforward suggestion is to combine motion based

approaches with low- or high-level image segmentation tools. By this means, it

is expected to provide refined cell segmentation results, so as to deal with error

accumulation. One remarkable property of motion based approaches is that

motion information in intercellular regions and boundary regions can be eas-

ily, simultaneously taken into account. This is potentially to provide valuable,

complementary information, for model or segmentation based approaches, in

segmenting and tracking partially overlapped cells, and also elongated cells.

When all of the merits and shortcomings are considered together, a promising

direction is to construct a new cell tracking framework by drawing strengthes

from different categories of approaches.

Another direction that deserves future research is the development of new

strategies for detecting and tracking dividing cells. Based on the literature

review, all of the three categorised approaches have difficulties in tracking di-

vision cells that have large appearance changes. Existing approaches usually

rely on training based approaches. However, different types of cells can have

large variability in their appearance and behaviour during the process of cell

division. In addition, image capture frequencies can significantly affect cell di-

vision patterns. To be more concrete, cell appearance and morphology changes

during the division process can have large differences with respect to the time

resolution of the image sequence. These factors limit the application generality

of existing, training based approaches.

5.5 Conclusions

The chapter first presents a background introduction on the topic of cell track-

ing, and then declares the the potential challenges in the design of automated

cell tracking tools. After that, basic ideas of the three categorised cell tracking

approaches are briefly explained, and a detailed literature survey is provided

for the most related cell tracking approaches and systems. This has shed light

on promising research directions for future work. Regarding this, a motion-

occlusion analysis based approach will be proposed, in Chapter 6, that aims
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to automatically detect cell division events. Chapter 7 will present a novel

cell tracking framework, with the purpose of improving existing approaches

in segmenting and tracking dense cell populations over phase-contrast image

sequences.
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Chapter 6

Cell Division Detection based

on Motion Occlusion Analysis

The computer vision domain has seen increasing attention in the design of

automated tools for cellular biology researchers. In addition to quantitative

analysis on whole populations of cells, identification of cell division events is

another important topic. In this chapter, a novel fully automated, cell-division

detection approach is proposed. Differing from most of the existing approaches

that exploit training based or image based segmentation methods, the main

idea of the proposed approach is detecting cell divisions using a motion-based

occlusion analysis process. Testing has been performed on different types of

cellular datasets, including fluorescence images and phase-contrast datasets,

and this has confirmed the effectiveness of the proposed method.

6.1 Existing Approaches for Mitosis Detection

Within the work of Padfield et al. (2009), dividing cells are assumed to have

intensity changing from bright to dark. Division events are recognised and

tracked within a unified framework that combines a level-set algorithm with a

fast marching method, which has an associated cost function favoring objects

with bright-to-dark changes. Nath et al. (2006) also apply a level-set method

to the task of cell division detection and tracking. Level-set based methods,
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are considered to be well suitable for identifying and tracking cell division,

due to their flexible topology (Li et al., 2008, Nath et al., 2006). However, at

least one important pre-condition should be satisfied: the mother cell in one

image frame should have overlapping with its children cells in the subsequent

frame. This pre-condition requires that the image sequence has a sufficiently

high time resolution.

Li et al. (2008) consider that mitosis cells will turn into different appearances

and shapes in the targeted datasets. A separate edge detector is used together

with a simple mitosis pattern-recognition process for detecting cell divisions. A

division detection method, contributed by Li et al. (2010), relies on a support

vector machine (SVM) classifier, where six manually selected features (cell size,

average intensity, standard deviation of intensity, compactness, long axis, and

short axis) have been employed, for distinguishing general cells and division

cells. Kanade et al. (2011) also apply a trained classifier to recognising cell

division events. Huh and Chen (2011) present a probabilistic model, which

is obtained by a learning process, for division detection. The aforementioned

approaches have the limitation of being applied to particular datasets.

Quelhas et al. (2010) propose an OF based cell-division detection method.

Their approach is based on speed difference of cell division events. Since

Quelhas et al. (2010) assume that cell division as a much faster process, their

approach cannot guarantee correct recognitions of division events when it is

applied in a dataset with large variations of cell speeds, which is commonly

seen in many cellular datasets.

Debeir et al. (2005) introduce a backward tracking strategy, i.e. tracking from

the last frame to the first frame. In their approach, cell division events are

detected when two cells gradually move towards the same location and finally

merge together. The strategy is embedded within a mean-shift based cell

tracking approach. As with model based, forward mitosis tracking methods, a

requirement is that the cell displacement between two successive frames should

not exceed the cell diameter.

For a much detailed literature survey on cell division detection, please refer to

the work of Huh and Chen (2011).
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6.2 Proposed Mitosis Detection Approach

At the heart of the proposed division detection approach is the assumption that

where cell division happens, a group of pixels newly appearing/disappearing

in one frame cannot be found in the adjacent frame. The most similar work

that is also based on a motion estimation strategy for cell division detection is

introduced by Quelhas et al. (2010). However, it is worth noting that neither

particular changes about cell colour and shape, nor cell speed characteristics,

such as that used by Quelhas et al. (2010), need to be assumed in the currently

proposed approach.

In this section, the key techniques that make up the proposed approach are

introduced. After that, the major components of the overall system are briefly

explained.

6.2.1 Key Algorithms

Optic-Flow based Motion Estimation

OF estimation computes approximate motion fields for time-varying image

sequences. Formulations of classic OF data and regularisation terms have been

introduced in Sections 2.1 and 3.2. The basic idea is that, for each pixel (x, y)

inside a frame I1, a corresponding OF vector (ux,y, vx,y) is to be calculated,

representing the pixel displacement between two consecutive frames I1 and I2.

The data term measures how much the intensity information of the pixels is

conserved during image transformation. The regularisation term constrains

the smoothness of nearby OF vectors.

Within this work, the HS based OF algorithm has been chosen, which is fea-

tured by having both data conservation and motion smoothness terms, and

leads to a dense OF field (u, v). Other motion estimation algorithms such as

Lucas-Kanade (LK) (Lucas and Kanade, 1981) based ones rely on texture and

corner features, and thus result in sparse flow fields. Demons based image

registration methods (Thirion, 1998), which are firstly introduced for the es-

timation of non-rigid motion, lack smoothness assumptions, and so, usually
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suffer from a relatively high rate of motion estimation noise.

One problem of the HS based optic flow is the estimation of large displace-

ments. The chosen OF algorithm is thus embedded within the coarse-to-fine

framework. Within such a framework, main components of the OF vectors are

first estimated between down-sampled image pairs. Then, the higher resolution

versions of the same images refine the flow estimation progressively.

Occlusion Detection

Given two subsequent image frames, occlusions that happen in motion esti-

mation can be caused by the fact that pixels inside one of the two frames

fail to be found inside the other. For example, when an object is shielded by

other objects. Because of shade and/or illumination change, pixels that are

mismatched between two frames also lead to motion occlusions. In this work,

occlusions that are caused by newly incoming cells or cells exiting the image

field will not be considered. This can be easily achieved by ignoring occlusion

regions that are detected near image borders. Motion estimation errors due

to illumination changes can be largely reduced by using a gradient-magnitude

data conservation scheme.

The chosen occlusion detection method checks the mutual consistency between

the forward and backward OF fields (Alvarez et al., 2007, Brox et al., 2004).

Based on this scheme, an occlusion map O1 is defined in this way: for a match

between two pixels (x,x′) according to the backward OF field (the two pixels

are respectively inside I2 and I1), if x
′ is not matched back to x using the

forward flow field, the pixel x will be flagged as an occluded pixel, i.e. O1(x)

will be set as 1. Flow vectors for off-grid pixels are obtained by interpolation.

In addition, a second occlusion map O2 is also constructed, defined as

O2(x) =







0 if ∃(x′ + v′
x
′) ≈ x,

1 otherwise.
(6.1)

where v′ represents the forward OF field. The symbol ≈ denotes checking if x

has been matched by any x′ according to the forward flow.

In theory, O1 and O2 should have similar results, however, because of the
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interpolation process required for O1, there are some occlusions not detected

inside O1 but appear in O2. Therefore, the final occlusion map is a combined

binary field: O = O1 ∪ O2. In practice, a gray-value occlusion map can be

obtained, taking fractional values, ranging from 0 to 1, in both of the occlusion

maps.

6.2.2 Major Functional Blocks

This work implements an automated cell-division detection system, which con-

sists of four major components:

• Image based motion estimation. For every two consecutive frames within

the image sequence, a forward-backward OF estimation, within the coarse-

to-fine framework, is applied.

• Motion based occlusion detection. This process results in a binary or

gray-value map that indicates where the occlusions happen.

• Morphology operations. Two morphology operations are conducted in

order: a morphology erosion for removing scattered noises in the es-

timated occlusion map, and a morphology close for connecting nearby

small occlusion regions.

• Cell division map output. This process calculates region centroids within

the binary occlusion map. The regions that have the area size less then

a threshold τ will be ignored. τ is manually or automatically selected

according to the average cell size in the tested data. For a gray-value oc-

clusion map, a simple peak detection method or the mean-shift algorithm

(Cheng, 1995) can be used to detect the cell division positions.
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6.3 Performance Evaluation

6.3.1 Testing Results

To demonstrate the validity of the proposed approach, experiments on several

representative datasets have been conducted, including:

• Henrietta Lacks (Hela) - the donor of a cervical cancer cell dataset, cap-

tured under fluorescence microscopy. This dataset has been adopted in

the work of Li et al. (2010).

• A phase-contrast image sequence of C2C12 myoblastic stem cells, which

has been used by Huh and Chen (2011).

• A phase-contrast image sequence of wound healing (WH) cells (taken

from (Nath et al., 2006)).

• Madin Darby Canine Kidney Epithelial cells (MDCK).

Due to different types of cells and microscopy techniques, cell division patterns

differ from one dataset to another. Apart from that, for the three phase-

contrast datasets, since the WH image sequence has a relatively high time

resolution, the appearance and morphology changes of dividing cells in this

sequence appear very slow from frame to frame.

In regard to the related parameters: 1) The morphology operation parameters.

Both of the morphology operations take disk-shaped structuring elements with

radius of 1 pixel; 2) The parameter τ , assuming the average cell size is ac, can

be set as γ× ac with γ a positive fractional value less than 1; 3) The pyramid-

level number l for the coarse-to-fine framework. With experiments, it is noticed

that occlusions also happen in regions where cells have large displacements.

Therefore, the value l should be accordingly adjusted for different cellular

datasets.

The cell-division detection results returned by the proposed approach are com-

pared against the ground truth, i.e., the manually annotated data by an expert.

Three values are recorded for each image sequence, namely, the total number
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of dividing cells that are manually annotated, the correct number of automat-

ically detected division events (for each dividing cell, multiple detections on

the same cell are counted just once), the number of non-division cells that are

detected by the proposed method.

Figure 6.1 illustrates cell division events that are detected within the sample

images. The statistical results about detection accuracy1 and recall2 values

are listed in Table 6.1. In comparison with the works (Li et al., 2010) and

(Huh and Chen, 2011), both of which rely on learning-based techniques for

detecting cell-division events, the proposed approach has achieved comparable

accuracies.

Fig. 6.1: Illustration of cell divisions being detected in the circle-marked re-

gions. From top to bottom, left to right, there are Hela, C2C12, WH and

MDCK examples.

1The number of the correct automatically detected number divided by the total auto-

matically detected number.
2The number of the correct automatically detected number divided by the total manually

annotated number.
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Table 6.1: Quantitative results for cell division detections

HeLa C2C12 WH MDCK

No. of frames 54 200 104 150

Total division events (man-

ually annotated)

69 98 21 51

Correct division detected 58 89 19 42

Non-division detected 10 11 11 24

Recall 84.1% 90.8% 90.5% 82.4%

Accuracy 85.3% 89.0% 63.3% 63.6%

Compared with the high accuracies and recalls that have been achieved within

the HeLa and C2C12 image sequences, the proposed approach has reported

relatively lower detection accuracies for the WH and MDCK datasets. The

main reason is that a considerable number of cell death events (within WH

and MDCK) occur and there is much cell debris (in MDCK), and therefore

this affects the detection accuracies. Figure 6.2 illustrates that some cell death

events and cell debris are wrongly detected as mitosis events. However, the

mean recall value of the four tests is 87.0%, which reflects that most of the

division events have been successfully identified.
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Fig. 6.2: Illustrating that some cell death events and cell debris are wrongly

detected as mitosis events in the WH and MDCK images (from left to right).

Red “A” letters mark apoptosis events (i.e., cell death), and “D” letters mark

cell debris. The circles without red letters beside denote correctly detected

mitosis events.

With respect to the performance of the proposed approach under several chal-

lenging conditions, there are several clarifications: 1) In the case of a large

spatial location change during a cell division process. This situation is re-

ported in both of the HeLa and the C2C12 datasets, which have relatively

lower time resolutions than the other datasets. In the HeLa case, newly born

cells can have large location deviations from their mother cell’s spatial loca-

tion. The proposed motion estimation method will match the mother cell

region into one or both of the children cells (See Figure 6.3). For the C2C12

dataset, large location changes usually take place when a mother cell has not

started splitting itself. This case will be detected as a large motion, and there-

fore will not affect the robustness of the proposed approach for cell division

detection. 2) OF based motion estimation can be tolerant to a small ratio of

a cell region appearing/disappearing (due to cell growing/shrinking). So, our

approach works better in detecting occlusions that are caused by a relatively

larger ratio of a cell region being occluded. By observation, it has been found

that division cells indeed have much larger ratios of region occlusion than grow-

ing/shrinking cells. So, the motion occlusion can be effectively detected by the

proposed method. 3) Distinguishing cell overlapping and cell division events

is currently out of the scope. Furthermore, because the image sequences being

tested are taken from in-vitro cells that are cultured within considerably thin
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containers, so the rate of cells that heavily overlap with each other is small.

4) The proposed approach is robust in the presence of scattered noise, due to

motion regularisation that is embedded within the OF estimation algorithm.

Fig. 6.3: Illustrating two (Hela) mitosis events. In the top row, the mother

cell region is matched onto the centroid region of the two children cells. The

bottom row shows that the mother cell is matched onto one of the children

cells.

To summarise, the generalised approach proposed in this chapter is achieving

good performance levels, especially when it is considered that the approach is

being tested under challenging conditions, where the cell division patterns are

very different in each of the four image sequences.

6.4 Conclusions

In this chapter, a novel cell-division detection approach has been described.

The proposed approach adopts a motion-based occlusion detection strategy,

which is quite different from existing segmentation or training based methods.

The major contribution of this work is that the proposed approach can success-

fully detect dividing cells with a variety of division behaviour. This has been
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proven by our experimentation on four different types of image sequences.
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Chapter 7

A Model and Motion based

Dense Cell Population Tracking

Framework

Intense current research requires quantitative analysis of cell behaviour in

dense cell populations. The low contrast cellular image quality, diversity of

cell shapes, frequent cell interactions, and complex cell motion all pose sig-

nificant problems to the efficient and robust cell tracking in phase-contrast

cellular images. Motivated by this, the chapter proposes a novel automated

cell tracking framework, where two main tasks are targeted: the segmentation

of cell shapes in low contrast phase-contrast images, and the estimation of cell

trajectories in dense and highly dense populations. Specifically, the paramet-

ric active contour model (also called snake model) and the optic-flow (OF)

technique have been seamlessly combined to cooperate with each other, so as

to address the shortcomings of each, in the process of simultaneously tracking

cell deformations and movements. Experimental results have proven that the

proposed approach is able to achieve accurate and robust results, in dealing

with several particular challenges, including the accurate segmentation of cells

with ambiguous boundaries, tracking large displacement cells, accurately seg-

menting and tracking partially overlapping cells, and the consistent tracking

of elongated cells. Moreover, the cell tracking performance of the proposed

approach is superior to the state-of-the-art motion based approach. The pro-
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posed method has also achieved comparable results in comparison with the

leading-edge model based cell tracking approaches, which the proposed ap-

proach involves neither training processes nor heavy post-processing steps.

7.1 Introduction

7.1.1 Problem Summaries and Challenges

The fundamental purpose of this chapter is to track dense cell populations

in phase-contrast image sequences. Regarding this task, there are four sub-

problems to be addressed.

Because of the specific illumination technique that is employed in phase-

contrast microscopies, cells usually appear as relatively dark regions surrounded

by bright halos, which lead to flexible boundary candidates. Figure 7.1 shows

multiple boundary candidates (that are manually marked by different experts)

for individual cells in image samples. Also note that the gray level of the im-

age foreground (i.e. cell regions) can be very similar to that of the background

region in phase-contrast images. Due to the low contrast between cells and the

background, some cells seem to have “broken” or blurred boundaries. These

issues pose great difficulties in accurately determining or outlining a whole cell

region in phase-contrast datasets.

Fig. 7.1: Illustrating ambiguous boundaries of cells in phase-contrast image

samples, with the three different colours of contours being manually outlined.
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The problem of tracking cells with large displacement and/or deformation will

be investigated. In order to make cells have small displacements between

consecutive frames, the time resolution of image sequences needs to be set

sufficiently high, i.e. a high frame rate of image recording is needed. However,

a high sampling rate of images will affect cells’ lifespan and behaviour. This is

due to the fact that, by capturing images of cells, it will damage the cells. So,

the true development of the cells can not be obtained. That is why low time-

resolution image sequences are particularly considered in this work. The cells

will thus appear to have large displacement and deformation. This, however,

poses a large level of complexity in tracking.

Since the tracking targets are highly concentrated cell populations, an immedi-

ate difficulty is how to detect or segment cells that are in a close neighbourhood,

and cells that partially overlap with their neighbours. It is also non-trivial to

obtain accurate cell association results between adjacent frames.

In addition, another challenging problem is the tracking of elongated, long

shape cells (see illustrations in Figure 5.6 in Section 5.3.3). In different types

of cellular datasets, or even in the same dataset with a dense population,

cells may have a large variety of shapes. Compared with relatively round

shaped cells, elongated cells are more difficult to be accurately segmented or

consistently tracked. In existing cell tracking works, a considerable rate of

tracking lost results from elongated cells. This is because a higher rate of

over-segmentation happens on elongated cells. Even worse, the segmentation

and tracking error of this type of cells can be easily accumulated over a number

of frames, and thus leads to lost tracking.

7.1.2 Contribution Summaries

The main contribution of this chapter is a novel model and motion based

cell tracking framework. The complementary properties from two different

categories of cell tracking approaches have been taken advantage of, and the

shortcomings of each side are suppressed. Thanks to the proposed approach,

many challenging problems have been accommodated or solved, including accu-

rately segmenting and tracking partially overlapped cells, consistently tracking
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elongated cells, and the tracking of large displacement cells (within low time-

resolution image sequences). It is worth noting that these problems have not

been well solved or are usually ignored in existing works, due to the common

cell segmentation and tracking difficulties under the conditions of dense cell

populations and phase-contrast image sequences.

The second contribution is that the dynamic directional, gradient vector flow

(DDGVF) technique is, for the first time, introduced into the task of segment-

ing and tracking cell populations in phase-contrast datasets. The application of

DDGVF based snakes plays an important role in precisely outlining ambigu-

ous cell boundaries within phase-contrast images, and correctly segmenting

and tracking cells in clustered environments.

7.1.3 Organisation

The chapter is organised as follows. Section 2 declares the motivation of com-

bining model based and motion based cell tracking approaches. Then, some

most related works are briefly reviewed. Section 3 compares important, can-

didate algorithms/techniques that are considered in the construction of the

proposed approach. In Section 4, the overall structure and the main function

blocks of the proposed system are explained. After that, the mathematical

formulation is provided for the developed core algorithm that underpins the

proposed framework. Section 5 includes the experimental results that validate

the the proposed approach on real cellular datasets.

7.2 Why a Model and Motion based Hybrid

Approach

Recall that in Chapter 5, cell tracking approaches have been categorised into

three groups: segmentation-association based, model based, and motion based

approaches. In this section, the most related cell tracking works are briefly

reviewed. Particularly, further focused discussions are present around the fol-

lowing two topics.
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1. The motivation of choosing the model based cell segmentation technique.

According to the survey in Chapter 5, accurate cell detection/segmentation re-

sults are vital for the success of all of the three categorised approaches. For this

reason, it is necessary to compare the performances of cell tracking approaches

that are driven by low-level and high-level segmentation algorithms, especially

in the tracking of dense cell populations within phase-contrast datasets. Meth-

ods such as thresholding and water-shed (Vincent and Soille, 1991) rely on

low-level image information for segmenting cells, without taking into account

the basic properties of cell shapes (e.g., edge continuity and smoothness). Al-

though those methods can usually achieve good performances in segmenting

fluorescence cellular images, they suffer from a considerable rate of under-

or over-segmentation in the case of dealing with phase-contrast datasets (see

works of Kaakinen et al. (2014), Dewan et al. (2011) and Yang et al. (2006)).

By contrast, model based cell segmentation algorithms, such as parametric

or non-parametric active contours (Kass et al., 1988, Caselles et al., 1997,

Kichenassamy et al., 1995), naturally allow the encoding of shape prior con-

straints about cells (Ray and Acton, 2004, Padfield et al., 2009, Jurrus et al.,

2009). So, model based methods can potentially produce better estimates

of cell morphologies (Li et al., 2008), and are generally not constrained by

particular types of image datasets. Apart from that, extra high-level priors,

such as the repulsive constraint, can be intrinsically integrated into the cell

model, modelling the repulsive relationship between cell membranes. Those

constraints have been proven effective in preventing incorrectly merged seg-

mentation (see (Zimmer et al., 2002, Li et al., 2008) for demonstrations).

Therefore, model based approaches are relatively more suitable for tracking

dense cell populations within phase-contrast image sequences.

2. The complementarities between model and motion based cell tracking ap-

proaches.

Model based approaches, such as parametric or non-parametric active con-

tours, are preferred to be applied to tracking small displacement cells. Be-

cause of the local minimisation problem, a model based approach can not

track a cell that has insufficient or no overlap with its translocated cell, be-

tween two consecutive frames. Due to the common difficulty in tracking large
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displacement cells, in most of the existing works, the time resolutions of the

tested image sequences are set considerably high. By doing so, the problem

of tracking large displacement cells is side stepped. However, a long time or

a high frequency of image recording will affect cells’ lifespan and behaviour.

By contrast, motion based approaches (A.J. Hand and MacNeil, 2009, Yang

et al., 2008), if being embedded into a pyramid or multi-scale implementation

framework, can be easily utilised to track large displacement cells. So, motion

estimation techniques, such as OF algorithms, are good candidates to assist

model based approaches in tracking large displacement cells.

The problem of segmenting and tracking partially overlapped cells is not well

solved in the literature. In the case of two (or more) cells partially overlap-

ping with each other, parts of the boundaries will be missing. The repulsive

mechanism, when embedded in model-based cell segmentation and tracking

approaches, is useful to temporarily prevent incorrectly merged segmentation.

However, the cells’ interface can not be accurately located by only using model

based approaches, which rely on the spatial-space information for segmenta-

tion. Again, the utilisation of the motion information (i.e. the temporal-space

information), derived from cell boundary and intercellular regions, is reason-

able to improve the accuracy of cell region and centroid measurements for

partially overlapped cells.

Thirdly, elongated, long shape cells are commonly seen in different cellular

datasets, while this type of cells are relatively difficult to be tracked consis-

tently. Region based cell models (e.g. parametric and non-parametric active

contours), because of suffering from the leaking problem, might not be suitable

for the task of tracking cells that have blurred boundaries and are in dense

populations. Cell membrane models are usually based on parametric active

contours. Due to the reliance on boundary based feature matching, parametric

active contours have the issue of ambiguous feature association, especially for

tracking elongated cells that have relatively low curvature boundaries. Given

this problem, OF algorithms or image registration methods can be exploited

to provide complementary feature-matching information from intercellular re-

gions, so as to address the model based tracking process.

Conversely, from the side of motion based approaches, in order to address
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the error accumulation issue, motion based methods need frequently refined

cell segmentation and tracking results, which can be provided by model based

approaches (A.J. Hand and MacNeil, 2009).

One other problem is that, for the purpose of recovering (relatively) large

motion, the image down-sampling rate, in the multi-scale motion estimation

framework, should be sufficiently large. This process might degrade detailed

cellular motion. However, model based cell segmentation and tracking ap-

proaches are good at capturing small motion of cell boundaries.

Therefore, model based and motion based cell tracking approaches are comple-

mentary to each other in many aspects. It is thus very promising to construct a

powerful new cell tracking approach, by collecting the merits from both worlds.

7.3 Comparison of Candidate Algorithms or

Techniques

7.3.1 Parametric Vs. Non-Parametric Active Contours

Active contour models (ACMs) can be divided into non-parametric and para-

metric forms. Parametric active contours, or snakes, are represented by curves

with explicit descriptors, i.e. closed or open curves (connected by a number

of control points). It is a form of single object model, thus cannot inher-

ently deal with topological biological changes (such as splitting and merging).

Non-parametric active contours can be defined implicitly, such as the zero-th

level-set of an evolving curve, that does not require explicit parameterisations.

Thus, non-parametric active contours do not suffer from any constraints on

the topology (Zimmer et al., 2002). Comparing these two types of ACMs, the

following aspects are noticed:

• Non-parametric active contours can more accurately detect arbitrary ob-

ject shapes because of the parameter-free representation. However, in the

case of individual cell regions with non-uniform intensity, and the situa-

tion where there are a diversity of cell shapes and sizes, non-parametric
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active contours can over-segment individual cell regions as fragments.

Also, they are generally more sensitive to image noise and local minima

when the image contrast is low (Farzinfar et al., 2008). This usually

results in unstable cell shapes between subsequent frames and inaccu-

rate boundary segmentations. The reason is that the non-parametric

representation of active contours lacks the necessary shape-continuity

constraint. In comparison, shape and size constraints can be more easily

integrated into parametric active contours.

• One desirable property in the task of tracking highly dense cell popula-

tions is the modelling of inter-cellular relationships, such as the repulsion

between cells. As single-object models, snakes are relatively more easy

to be integrated with the repulsion constraint.

For the reasons as discussed above, parametric active contours are chosen as

the major tool for modelling cell shapes (or membranes) in the current work.

7.3.2 Different External Forces based Snakes

Recall the introduction in Section 2.2.1 that a standard snake model usually

contains an external energy term, which has the effect of driving snakes to-

ward desirable features, such as bright/dark image regions, or large gradient

regions (i.e. object edges). So, the external energy term essentially encodes

the appearance property of an object that is to be segmented or tracked. Thus

for designing a particular ACM model, external energy terms play important

roles. Within the literature of external forces or energies of snakes, the re-

gion based (Chesnaud et al., 1999, Xie and Mirmehdi, 2004) and the boundary

based (Kass et al., 1988, Ray et al., 2002, Xu and Prince, 1998b) are two main

groups.

In region based ACM models, the inner and the outer regions that are de-

fined by snakes are both considered (Chesnaud et al., 1999). Thus, they are

relatively more robust to image noise and can be well adapted to segment or

track cells with interior textures. However, in a dense cellular environment

with phase-contrast images, the most outstanding challenges, in the segmen-
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tation and tracking task, are due to the clustered cells, blurred cell boundaries,

as well as the similar gray-level distributions between the foreground and the

background image regions. It is thus difficult to effectively model the statis-

tics of cell regions. For this reason, region based snakes suffer from a serious

leaking problem. The shape and size constraints, as exploited in the works

of Ray et al. (2002), Padfield et al. (2009), might be considered to relieve the

leaking problem. However, the existence of a large variety of cell shapes (in

dense populations will make these constraints less effective.

Among boundary based snake forces, the gradient vector flow (GVF) based

force (Xu and Prince, 1998b) is popular, due to the fact that GVF largely

increases the capture region of snakes. Ray and Acton (2004) propose a mo-

tion gradient vector flow (MGVF) that modifies the GVF technique by taking

into account the moving direction prior of a target. MGVF based snakes can

thus be applied to tracking relatively large displacement objects. Some other

examples of external forces are proposed by Cohen (1991), Wang et al. (2009),

Gil and Radeva (2003), Li and Acton (2007), etc. Those external forces based

snakes have been successfully used in tracking individual targets, or a non-

dense population. It is interesting to note that, in (Cheng and Foo, 2006),

a so-called, dynamic directional gradient vector flow (DDGVF) is developed.

DDGVF makes use of both positive- and negative-step edges (i.e., edges of

positive/negative gradients along x or y axis) inside an image, and computes

separate force fields with respect to the four types of edge maps. DDGVF

thus takes advantage of both gradient direction as well as gradient magnitude

information of image edges. This is unlike other external forces, that only con-

sider gradient magnitudes, in the construction of external force fields. By this

means, DDGVF snakes can potentially lead to reliable segmentation results

where clustered edges exist.

Taking an overall consideration, it is determined to employ a boundary based

snake model, with a DDGVF based external force.
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7.4 Proposed Cell Tracking Framework

7.4.1 Main Function Blocks

This chapter implements an automated cell segmentation and tracking sys-

tem, which consists of the following major components: image preprocessing,

low-level image segmentation, snake initialisation, snake based cell tracker,

motion based cell tracker, DDGVF based external-force map generator, and

measurements output.

1. Image pre-processing: Currently all that is used at this stage is a me-

dian filter to slightly smooth each input image, removing impulsive noise

without blurring edges.

2. Low-level image segmentation: An extended minima transform (Soille,

2003) operation is exploited to roughly separate cells from the back-

ground. The resulting binary mask, as shown in Figure 7.2(a) contains a

number of white blobs that represent connected cell regions of pixels with

similar intensities. The chosen segmentation method is effective because

the cells that are recorded by the phase-contrast microscopy appear as

dark regions surrounded by bright halos. In order to handle the prob-

lem of pre-segmenting cells with a different appearance, other methods

can be also employed. According to practical experiments, a so-called

divergence-free GVF based approach is also a good choice to fulfill the

task of image pre-segmentation.

3. Snake initialisation: Multiple snakes are automatically initialised in the

first frame as small green circles (Figure 7.2(b)) that are located located

at the centroids of the bright blobs in the binary map. In practice, the

average radius of the cells is empirically set in this initialisation process.

4. Snake based cell tracker: Cell regions are segmented by snake based

trackers in this block. With exception of the first frame, cell bound-

ary contours according to the segmentation and tracking results in each

previous frame are used as the new initialised trackers to automatically

track target cells across subsequent frames.
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5. Motion based cell tracker: For every two adjacent frames within the

image sequence, a forward-backward OF estimation process is applied in

this block. The calculated OF fields serve two purposes:

• Motion based cell tracking: Based on the tracked cell regions in

the last frame, the forward OF field maps the regions into the cur-

rent frame, resulting in predicted new positions and regions for the

cells. The predicted information is then exploited for the cells as

reference boundary/outline positions, which are fed into the snake

based cell trackers. In essence, the reference boundary positions

work as a constituent part of the designed, model&model coherence-

constraint based, external energy term (for the snake model). More

explanations related to the new energy term will be provided in the

core algorithm section.

• OF confidence estimation: A mutual consistency checking process

(Alvarez et al., 2007, Brox et al., 2004) is conducted between the

forward and backward OF fields. This outputs an OF estimation

confidence map, the role of which is the other constituent part for

the coherence-constraint based external energy term. To be more

concrete, this confidence map provides the weighting parameter for

the coherence-constraint energy term.

6. DDGVF based force map generator: This block is responsible for calcu-

lating boundary-based external forces for snake based cell trackers.

7. Measurements output: This includes the information of the estimated

cell regions and cell centroids for in each image involved.

7.4.2 Core Algorithm

At the heart of the proposed core algorithm is a parametric active contour

model, that contains two traditional internal energy terms, and three external

energy terms. The snake is represented by a close curve C(s) = (x(s), y(s)),

which is parameterised by s in the range of [0, 1]. In practice, a number of

discrete control points (called snaxels) shape the curve. The snake works by
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Fig. 7.2: Left: the binary map from image pre-segmentation; right: automated

snake initialisation.

being nested inside the scheme of minimising the energy functional E(C) as

formulated below:

E(C) =

∫ 0

1

(α|Cs|2 + β|Css|2 + Eext
1,2,3(C(s)))ds (7.1)

where the snake internal energy, consisting of the first two terms, is defined as

the same as that in the traditional snake model of Kass et al. (1988). E
rep
1,2,3

represents the bonded set of the designed external energies. As mentioned in

Section 2.2.1, the snake that minimizes E(C) must satisfy the Euler equation:

αCss + βCssss + ∇Eext
1,2,3 = 0. These three terms are viewed in order as the

elastic force Fela, bending force Fcur, and the bonded external force Fext applied

on the snake. The snake will move because of the competition between the

forces, and will reach equilibrium when the forces are balanced by each other.

In this report, the novelty of the proposed snake relies on the design of Eext
1,2,3,

which contains three sub-components:

Fext = ω1Fddgvf + ω2Fcoh + ω3Frep (7.2)

where Fddgvf is the boundary based force, Fcoh stands for the model&motion

coherence force, and Frep denotes the repulsive force between snakes that mod-

els cell-cell repulsion. ω1, ω2, ω3 are weighting coefficients for the corresponding

external forces. To be more concrete, the three forces are described as below:

1. The boundary force Fddgvf is responsible for driving snakes towards cell

boundaries. It is derived from DDGVF (Cheng and Foo, 2006). For
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each image involved, there are four DDGVF fields generated, which are

respectively calculated in terms of two positive step edges (along the

positive directions of x and y axis) and two negative step edges (along

the negative x and y directions). DDGVF thus exploits the directional

information of image gradients as well as gradient magnitudes, for the

construction of the boundary based force fields. DDGVF can be well

applied in situations where clustered edges exist. See (Cheng and Foo,

2006) for detailed implementation steps.

2. The model&motion coherence force Fcoh, defined as Fcoh =
∫ 0

1
(C(s) −

C̃(s))ds, with C representing the current snake, C̃ standing for the pre-

dicted reference boundary for the snake. The predicted reference bound-

ary is provided by the motion based cell tracker. So, this force encourages

the tracking results of snakes and OF based motion estimators to agree

with each other. Moreover, the OF confidence map (calculated also in

the function block of the motion based tracker) determines the weighting

parameter ω2 for this force Fcoh. By this means, in regions where OF con-

fidence is high, the coherence between the snake and the motion based

trackers is strongly enforced; otherwise, a weak coherence constraint is

imposed. Fcoh and ω2 thus constitute the designed model&motion coher-

ence term. The implementation method for motion estimation and the

steps of mutual consistence checking can be referred to Section 6.2.1.

3. In dense cell populations, since cells are commonly seen clustered to-

gether, so nearby snakes may converge onto wrong targets. The repulsive

force Frep is thus introduced for each snake to deal with this situation,

by inverting the image force in the regions that are occupied by the

neighbouring snakes. The idea is inspired by the work of Zimmer et al.

(2002).
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7.5 System Evaluation

7.5.1 Cellular Datasets

To demonstrate the robustness and validity of the proposed approach, the sys-

tem is applied to Bovine Aortic Endothelial Cells (BAEC) and Madin Darby

Canine Kidney Epithelial cells (MDCK) in phase-contrast image sequences,

with their spatial resolutions respectively 800×600, and 688×512. A repre-

sentative cropped (with a resolution of 400×300) and magnified BAEC image

is shown in Figure 7.3, particularly for illustrating the relatively poor image

quality, weak cell boundaries, and highly dense cell population.

Fig. 7.3: Phase-contrast BAEC image — a cropped and magnified version.

It should be noted that, although many cell segmentation and tracking works

have been reviewed in Section 5.3, cellular datasets in those works are usually

not publicly available. This has posed a difficulty in performance comparison.

However, in this work, more challenging cellular datasets have been selected for

the system evaluation purpose. Specifically, higher densities of cell populations

are considered, so the targeted images are relatively more difficult to segment.

Apart from that, the time resolutions of the targeted image sequences are

usually 3 or 4 times lower than that of the related works. So, cells usually have

relatively large displacements and deformations between consecutive frames.

The following subsections present the segmentation and tracking results that

are returned by the proposed cell tracking system.
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7.5.2 Qualitative and Quantitative Segmentation and

Tracking Results

In dense cell populations, frequent cell-cell interactions can easily cause in-

correct segmentations, when adjacent snakes merge together. For this reason,

the repulsive mechanism is embedded into the snake model. Figure 7.4 demon-

strates how two cells (the 46th and the 47th cells), that have very close contact

over several frames (from the 3rd frame to the 10th frame), are separately seg-

mented and tracked.

Fig. 7.4: The six cropped images show that two interacting (i.e., partially

overlapping) cells (the 46th and the 47th cells) are successfully segmented and

tracked over a number of frames.

In Figure 7.5, two frames (the 2nd and the 9th frames) show the cell defor-

mation tracking for a BAEC cell population. Note that many elongated-shape

cells are tracked over from the 2nd frame to the 9th frame.

Fig. 7.5: Illustrating the segmentation and tracking process for a BAEC cell

population from the 2nd and the 9th frames.

The segmentation results of approximately 50 BAEC cells, and 30 MDCK cells
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are shown in Figure 7.6. The illustrations show that the snakes can efficiently

segment dense cell populations. Moreover, it can be seen that the designed

snakes have accurately segmented ambiguous, and halo-region-surrounded cell

boundaries. The result is thus consistent with the expectation that DDGVF

snakes are powerful in segmenting cells with flexible boundaries and in clus-

tered environment.

Fig. 7.6: The segmentation results of about 50 BAEC cells (left), and 30

MDCK cells.

Due to the currently unavailable ground-truth data with quantitatively seg-

mented cell regions, Figure 7.7 presents a segmentation result for a MDCK

image that is obtained by the h-maxima transform based algorithm, which is a

representative tool in cell segmentation-association based approaches (see (De-

wan et al., 2011, Thirusittampalam et al., 2013)). The h-maxima transform

approach has been acclaimed very efficient in detecting cells in phase-contrast

image sequences. It is worth emphasising that the segmentation result, dis-

played in the left image in Figure 7.7, needs a number of tuning to obtain

optimised values, by using the h-maxima transform method. According to

a qualitative comparison between the left and the right image in Figure 7.7,

it is concluded that the proposed DDGVF snakes can achieve superior cell

segmentation results.
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Fig. 7.7: Both are MDCK cellular images. The cells in the left image are

segmented using the h-maxima transformation. The right image is segmented

by the DDGVF active contours.

7.5.3 Overall Cell Tracking Accuracies

To numerically quantify the accuracy of the proposed cell tracking approach,

the automated tracking results are compared against the manually annotated

data that is established by an expert. The tracking accuracy, used in this

section, is given by the number of correctly tracked cells that are identified

by the proposed approach with respect to the total number of cells that have

been taken into account in the first image.

Note that, in Equations (7.1) and (7.2), there are five important coefficients.

α and β, controlling the weights of the shape-related energies of the ACM, are

intuitively assigned. In order to facilitate the coefficients tuning for the exter-

nal forces, Fddgvf , Fcoh and Frep have been normalised. In practice, very limited

tunings are usually needed for the five coefficients, and a typical set of values

for these five parameters has been shared for tracking different types of cellular

datasets. Usually, very limited tunings are needed for the five coefficients.

Table 7.1 lists the cell tracking accuracies for both of the BAEC and the MDCK

dense cellular datasets.
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Table 7.1: Quantitative results for cell tracking accuracies

No. of frames No. of cells No. of tracked cells Accuracies

BAEC 50 131 112 85.5%

MDCK 56 79 69 87.3%

Figure 7.8 shows six BAEC image frames (frame No. 11, 13, 15, 17, 19, and

21) out of the whole 50 frames, illustrating the cell tracking process over the

image sequence. Among the 19 lost cell-tracking cases, there are 3 cells failed

to be tracked due to segmentation errors, 3 cells due to occlusions, 3 cells

because of mitosis events, 5 lost cases caused by elongated cells, and 5 cells

due to large deformation and abrupt displacements. Because of the low time

resolution of this image sequence, cells usually have large displacement and/or

large deformation. There is also a large rate of elongated cells in the BAEC

image sequence. Cell segmentation and tracking in BAEC datasets is thus

very challenging, and existing works usually avoid using this type of datasets.

However, the proposed approach has achieved a high overall tracking accuracy

85.5%. Specifically, according to the experimental results, more than 60% large

deformation/displacement cells (5 out of 8), and more than 50% elongated cells

(5 out of 9), have been successfully tracked over the whole image sequence.

The MDCK dataset contains a highly dense cell population. So, the foreground

and the background image regions are non-trivial to be segmented by purely

low-level image processing tools. Figure 7.9 illustrates the tracking process

for the MDCK cells, with the six frames (frame No. 10, 16, 21, 28, 33, and

38), displayed. There are 79 cells initialised, and the proposed approach has

successfully tracked 69 cells over the whole image sequence. Among the 10 lost

tracking cases, 8 cases are caused by cell division, 1 lost tracking because of

temporal occlusion, and 1 case due to large deformation. Since dividing cells

in the MDCK dataset usually have large intensity changes, a high rate of lost

tracking results from cell division events.
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Fig. 7.8: From top to bottom, left to right, frames No. 11, 13, 15, 17, 19, and

21 illustrate the cell tracking process for the BAEC cell population.
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Fig. 7.9: From top to bottom, left to right, frames No. 10, 16, 21, 28, 33, and

38 illustrate the cell tracking process for the MDCK cell population.
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In the testing result for the MDCK dataset, 8 out of 11 dividing cells fail to

be tracked. The tracking accuracy including cell division events is 87.3% (as

listed in Table 7.1). When ignoring division events, the tracking accuracy has

achieved 97.1% (i.e., 66 cells out of 68 being tracked). These two types of track-

ing accuracies are consistency with the existing literature, where some works

only consider tracking accuracies of non-division cells and some others take

cell division events into account. So, the proposed approach has been proved

very stable in segmenting and tracking cells in a highly dense environment.

The tracked cell-centroid positions are recorded along the image sequences.

This has led to 2-D and 3-D cell trajectory maps. For an intuitive illustration,

Figure 7.10 displays the 2-D and 3-D trajectories for about 130 BAEC cells

being tracked over 50 image frames.

Fig. 7.10: Illustrating the 2-D and 3-D trajectory maps for a BAEC cell pop-

ulation.

Comparable with the most related, state-of-the-art cell tracking approaches,

the proposed method has achieved very impressive performances. To be more

concrete,

• In comparison with the model-based cell tracking approach of Li et al.

(2008), the proposed approach has achieved comparable results. The

reported tracking accuracies of (Li et al., 2008) are in the range of

86.9 − 92.5%. However, it should be noted that their approach involves

a sophisticated, trained motion-filtering for cell tracking, and a post-
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processing strategy for re-connecting broken cell trajectories. In con-

trast, the proposed approach does not rely on any training processes nor

extra post-processing steps.

• In the motion-based cell tracking approach of A.J. Hand and MacNeil

(2009), much sparser cellular datasets are used, and their tracking method

works well on image sequences with only a small number of frames. So,

when compared with the method of A.J. Hand and MacNeil (2009), su-

perior tracking results are enabled in the proposed approach.

• Also, compared with other related cell segmentation and tracking works,

such as (Dewan et al., 2011, Chatterjee et al., 2013, Kaakinen et al.,

2014), the cellular datasets in this work contain much higher densities of

populations. Apart from that, the time resolutions of the targeted image

sequences are more than 3 times lower than the related works. These

factors have posed large difficulties in the segmenting and tracking tasks.

While, the proposed approach has achieved superior performance.

Since the proposed approach has been tested against image sequences with

much lower time resolutions than related works, less images need to be cap-

tured, and cell damaging can be reduced. This is thus a very important merit

for the proposed approach to be applied in practical applications.

7.6 Conclusions

In this chapter, a model and motion based novel cell tracking framework has

been developed. The snake based and the motion based cell trackers are seam-

lessly combined by the proposed model-motion coherence constraint. The

DDGVF based technique has been, for the first time, applied to the track-

ing of dense cell populations over phase-contrast image sequences. After that,

qualitative as well as quantitative cell segmentation and tracking results have

been reported, by testing the proposed approach on challenging real cellular

datasets. The experimental results have confirmed that the proposed approach

can achieve superior performances, in comparison with the state-of-the-art ap-

proaches.
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Chapter 8

A Sparsity&Non-Sparsity

Constraints based

Prior-Adaptive Regularisation

Approach

Optimal motion-distribution priors (MDPs) are of crucial importance for ac-

curate optic-flow (OF) estimation. Existing OF regularisation schemes usually

empirically choose a globally fixed MDP over the whole motion field. Com-

mon choices of MDPs, in OF regularisation approaches, are TV based sparse

priors, or Tikhonov based non-sparse priors. Globally set MDPs might be help-

ful to enforce proper global statistics in the considered motion space. Global

MDPs, however, usually either result in a piecewise blocky motion field (the

so-called staircase effects), or conversely they over-smooth motion boundaries

or details. Motivated by the understanding that global MDPs based regu-

larisation approaches do not respect local variances of OF statistics, a novel

spatially adaptive regularisation scheme is proposed. More specifically, the

primary contribution of this chapter is a sparsity&non-sparsity constraints

based prior-adaptive regularisation approach, that can be applied to general

motion spaces, such as motion gradient or curvature spaces. The contribu-

tion of this chapter also includes the development of an Iteratively Reweighted

Least Squares (IRLS) and Generalised Cross Validation (GCV) based strategy
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that can simultaneously optimise the solutions for the flow field as well as the

hyperparameter1 fields.

8.1 Introduction

8.1.1 Background

Motion regularisation strategies are of crucial importance to OF estimation.

Since OF estimation is an under-constrained problem, prior knowledge about

the solution should be employed, so as to make the problem feasible. Recent

advances in regularisation approaches have emphasised the three important

aspects that have enabled significant improvements in OF estimation:

• Deciding motion integration regions, by taking advantage of the progress

in modern low- or mid-level image segmentation approaches.

• Looking for improvements or replacements for existing motion spaces

(ranging from original motion spaces to transformed spaces), or exploring

more sophisticated spaces (e.g., by training).

• Choosing more suitable MDPs that can better fit/describe the statistics

of a particular motion space.

In contrast to Chapter 4 that contributes a new non-local motion integration

strategy, the current chapter concentrates on the MDP topic.

Existing OF regularisation schemes inherently assume that the OF signal, af-

ter projection into a considered motion space, has a particular structure, that

complies with a pre-assumed MDP. By choosing a TV based smoothness reg-

ularity, the sparsity prior is to be enforced during the motion estimation pro-

cess. This encourages piecewise constant motion flows, so, slowly fluctuating

motion signals are flattened, while some high-frequency signals are preserved.

1In Bayesian statistics, a hyperparameter is a parameter of a prior distribution; the term

is used to distinguish them from parameters of the model for the system under analysis.
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In contrast, Tikhonov based regularities help to restore globally smooth mo-

tion fields. This is due to the fact that the associated MDPs (for Tikhonov

based penalisers) are Gaussian distributions, so they are tolerant about low-

frequency signals. However, by uniformly setting spatially invariant MDPs,

it does not respect that, different local regions may have differing statistical

distributions of motion flows, which may have large variances. Since impos-

ing a global MDP in regularising OF estimation is in theory not appropriate,

the main purpose of this chapter is to investigate the application of spatially

adaptive MDPs in OF estimation.

8.1.2 Organisation

This chapter is organised as follows: in Section 2, most related works are re-

viewed and compared. Section 3 describes the mathematical formulation of

the proposed new regularisation strategy, which is integrated into a unified

OF framework. Due to the introduced hyperparameters that need to be si-

multaneously estimated with the OF vectors, the minimisation of the proposed

objective functional is very challenging. So, implementation details are pro-

vided in Section 4. Specifically, a novel strategy is developed, based on the

Mean-Field approximation theory, the IRLS method and the GCV technique,

in order to solve the proposed, energy-minimisation functional with non only

the OF field but also the hyperparameter fields as unknowns.

8.2 Related Works

The proposed approach is a TV&Tikhonov based spatially variant MDP that

is to simultaneously model sparse and non-sparse motion statistical informa-

tion in the OF field. This section aims to review the related regularisation

approaches, and also clarify the research motivations.
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8.2.1 MDPs for Gradient based Regularities

According to the survey in Chapter 3, the Tikhonov and the TV based penal-

isation functions are most common in OF regularisation schemes. When these

two types of penalisation functions both collaborate with the traditional first-

order derivative (f.o.d) based motion spaces (referred to as gradient spaces),

the induced two types of regularities (briefly denoted as Tikhonov&f.o.d and

TV&f.o.d regularities) are respectively good at recovering globally smooth

flows and piecewise constant flows. This gives rise to a question: used in

conjunction with the same motion space, why do TV and Tikhonov based

regularities have different motion estimation capabilities?

This is due to the reason that: the TV penaliser encourages the motion gra-

dient field to obey the Laplacian distribution. So, most of the values in the

gradient space should be zero, and at the same time, only a small percentage

of large values is allowed. Because of that, the TV&f.o.d type of regulari-

ties are effective in recovering piecewise constant flows, and simultaneously

permitting motion discontinuities. However, TV&f.o.d regularities are overly-

restricted for estimating motion flows that contain denser details of small or

large gradients in the OF field (i.e. mid-frequency signals are penalised). In

the case of applying the Tikhonov&f.o.d penaliser (also combined with the f.o.d

based space): the projected motion-gradient signals are encouraged to obey the

Gaussian distribution. So, non-sparse structures (such as small or large gradi-

ents) in the OF field can be kept. The main weakness of the Tikhonov&f.o.d

regularity provides insufficient constraints for recovering sparse motion flows.

Over-smoothed flow fields are usually resulted, where discontinuities or steep

gradients are expected. Unfortunately, sparse and denser motion gradient sig-

nals usually coexist in the same OF field, it is thus necessary to design a

regularisation scheme that supports spatially variant, statistical distributions

of local regions in the gradient space.

8.2.2 MDPs for Curvature based Regularities

Recently, second-order derivatives (s.o.ds) based regularisation becomes pop-

ular in OF estimation as well as in the closely related stereo matching domain
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(see the works (Ranftl et al., 2012, Yuan et al., 2009, Trobin et al., 2008),

and (Woodford et al., 2009)). This is due to the fact that some types of

s.o.ds based motion spaces provide efficient ways to describe piecewise affine

transformations.

According to the literature survey in Chapter 3, s.o.ds based spaces are usu-

ally used in conjunction with TV penalisers in OF regularisation, such as in

the works of Trobin et al. (2008) and Yuan et al. (2009). Because of the ex-

ploited TV function, the sparsity prior is enforced on the s.o.ds induced motion

curvature spaces. The regularisation approaches of Trobin et al. (2008) and

Yuan et al. (2009) (briefly denoted as TV&s.o.d or referred to as sparse curva-

ture regularities) can achieve good performance in recovering piecewise affine

flows. The assumption that sparse structures exist in motion curvature spaces

complies well with the high-level understanding that the curvature space of a

piecewise affine motion field has only a small percentage of high curvature sig-

nals, and most of the curvature magnitudes are zero. However, for describing

motion fields with non-rigid deformation2, sparse curvature regularities might

be overly-restricted.

For dealing with non-rigid motion estimation: Li et al. (2013) recently pro-

posed a Laplacian Mesh Deformation (LMD) based regularity, where the mean

curvature of the motion surface is enforced to be as small as possible. In the

work of Kadri-Harouna et al. (2013), a s.o.d based formulation combined with

the Tikhonov penaliser is designed to encode a divergence-free prior for esti-

mating turbulent fluid motion. Apart from that, it is interesting to note that,

in the image registration world, the Tikhonov&s.o.d type of regularisation

(usually referred to as curvature based registration) has, for a long time, been

applied to non-rigid flow estimation, and has generated satisfactory results

(Fischer and Modersitzki, 2003, Henn, 2006, Köstler et al., 2008, Sotiras et al.,

2013). The similarity of the regularisation approaches (Fischer and Moder-

sitzki, 2003, Köstler et al., 2008, Li et al., 2013, Kadri-Harouna et al., 2013)

is that they all combine a s.o.d based motion space and the Tikhonov penal-

isation, for directly modelling and regularising non-rigid flows. One problem

of those regularisation approaches is that, by exploiting the Tikhonov penal-

isation, it actually assumes that the associated motion curvature space is a

2In this work, non-rigid motion refers to the non-affine type of non-rigid motion.
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denser or non-sparse field. Consequently, regularisation approaches based on

this assumption enforce a globally smooth field and penalise sparse structures

and motion discontinuities. Therefore, the non-sparse curvature regularity is

not suitable for the estimation of piecewise affine fields, or even piecewise non-

rigid fields that have occasional motion discontinuities. However, in a general

flow field of a real-world scene, different motion patterns usually coexist. The

investigation of s.o.ds based regularisation approaches also leads to the under-

standing that a spatially variant MDP is required.

8.2.3 Automated Estimation of MDPs

According to the survey in Chapter 3 as well as the above discussion, although

there are various motion spaces based regularities (e.g., derivatives based and

WTs based) in the literature, it is surprising to find that the distribution prior

is usually pre-set and globally fixed. This assumption is however not proper

for OF fields of real-world datasets, since variant motion statistics might exist

within different local or nonlocal regions of the same image, and also take place

in different datasets.

To the best of this author’s knowledge, the idea of automatically selecting

or spatially adapting the MDPs has emerged very lately in the OF estima-

tion domain. Héas et al. (2012) proposed a method that automatically selects

distribution priors for different datasets. Simpson et al. (2013) very recently

suggest to decompose a Gaussian kernel based prior into several components.

By allowing the weights of the Gaussian components to vary spatially, they

have enabled a spatially adaptive regularisation for image registration prob-

lems. Another related work is (Chantas et al., 2014) that enables spatially

adaptive motion-regularisation models for OF estimation.

The main difference between (Héas et al., 2012) and the proposed approach is

that, rather than fixing a global distribution prior, spatially varied distribution

priors are considered in the proposed work. The adaptive regularisation ap-

proach of Simpson et al. (2013) relies on a Gaussian distribution based prior.

By comparing the proposed approach with (Chantas et al., 2014), the following

key differences are noted:
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• The main purpose of Chantas et al. (2014) is to reform the traditional

Horn-Schunck OF algorithm into a variational Bayesian framework. The

proposed strategy in this section follows the existing regularisation ap-

proaches in deterministic OF frameworks. Specifically, the proposed ap-

proach is inspired by: 1) the work of Krähenbühl and Koltun (2012),

who demonstrate that many existing, well-known smoothness penalisers

can be uniformly approximated by mixtures of exponential distribution

kernels; and 2) Cho et al. (2010), who exploit a generalised Gaussian dis-

tribution model to simultaneously model sparse and non-sparse gradient

distributions in local image patches, for the task of image restoration.

Specifically, the idea of Cho et al. (2010) particularly inspired this work

in the exploration of sparse and non-sparse signal distributions.

• Another key difference is that: by employing the Student’s t-distribution

(Hill, 1970) to model the motion distribution, the approach of Chantas

et al. (2014) actually enforces Gaussian distributions based priors for each

local region, inside the considered motion-gradient space. Their mecha-

nism of spatially adaptive regularisation is enabled by spatially varying

the variance value for the associated Gaussian distribution. Since the es-

timated value for the degrees of freedom parameter (a global parameter,

associated with the Student’s t distribution) is always small, a consider-

able rate of Gaussian kernels with large variances are allowed. By this

means, in some local regions, large motion discontinuities can be consid-

ered as “outliers”. In its essence, the regularisation scheme of Chantas

et al. (2014) enforces non-sparse MDPs everywhere. So their approach

is not efficient where a sparsity prior is preferred. By contrast, the work

in this chapter takes into account both Gaussian and Laplacian based

MDPs. By doing so, spatially variant non-sparse or sparse statistics

that might coexist in the motion gradient/curvature spaces can be more

properly modelled.

• Compared with (Chantas et al., 2014) that imposes the regularisation

constraint only in the motion gradient field, the current work is also

inspired by the understanding that, in more complex motion spaces, such

as higher-order motion spaces, spatially variant MDPs are also required

and should be made possible.
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In summary, is has been overlooked in the literature that spatially variant

MDPs are very important for OF estimation. To this end, this section proposes

a spatially adaptive MDP, in order to flexibly enable sparse and non-sparse

signal structures in different local or non-local regions in the considered motion

space, for the purpose of improving the accuracy of OF estimation.

8.3 A Sparsity&Non-Sparsity Constraints based

Prior-Adaptive Regularity

Recall the generalised Gaussian model (GGM) based, generalised regularisa-

tion term in Section 3.6,

E0
S(v, L, η, σ) =

∑

x

|Lv
σ

|η (8.1)

where L represents the operator that transforms the field v into a desired

domain or space. The hyperparameters η and σ are the shape parameters of

local latent distributions in the considered motion space. | · | denotes the total
variation. Note that this formulation treats L, η and σ as unknowns.

Separately treating L or (η, σ) as unknowns corresponds to two different prob-

lems: the automated estimation of motion spaces, and the automated estima-

tion of MDPs. It can be anticipated that, if both groups of parameters L and

(η, σ) are to be sought together with the field v, a very difficult, or technically

untackable energy-minimisation issue will result. As far as it is known, the

potential underlying connections between these two problems have not been

investigated in the literature. Based on the knowledge from the compressive

sensing field, for a global region or different local regions in a targeted OF

field, there should be optimal motion-space candidates that are able to more

compactly describe the projected signals. Since it is not clear yet how to find

optimal motion-space candidates for global/local motion fields, in this work,

commonly adopted motion spaces are considered for L, such as derivatives

based spaces and wavelet transformations (WTs) induced spaces. This means

that L in Equation (8.1) will be pre-selected. By doing so, the current research

focus narrows down on the topic of automatically estimating spatially variant

MDPs.
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The proposed, spatially adaptive MDPs based regularisation term (with L as

known) is thus formulated as,

ES(v, η, σ) =
∑

x

|Lv|η
σ

(8.2)

where η ∈ (0, 2] determines the peakiness of the associated motion-distribution

pdf, and σ > 0 is the width of the pdf (see corresponding explanations in

Section 3.6). The larger the value of η, the flatter the pdf shape for the MDP.

Smaller η means a more peaked shape. Due to the design, the L1-norm and the

Tikhonov based regularities are two particular cases when setting η = 1 and

η = 2 in Equation (8.2). Note that the motion-space projector L is pre-chosen

for this regularisation term. General examples for L can be gradient operator

∇, s.o.ds based or WTs based operators.

Further, by combining the proposed regularisation term with a standard data-

conservation term, the following OF energy functional is formulated as,

E(v, η, σ) = γED(v) + ES(v, η, σ) (8.3)

with

ED(v) =
∑

x

(Ix(x)u(x) + Iy(x)v(x) + It(x))
2 (8.4)

where v = (u, v)T , Ix = ∂I2
∂x

, Iy = ∂I2
∂y

and It = I2 − I1. So, there are four

fields of unknowns in the objective functional, namely u, v, η, and σ. Note

that the data term can use many other forms (see Section 2.1.1 for data term

candidates).

Gaussian priors (corresponding to η = 2 in the GGM) are good for mod-

elling mid-frequency signals (either small or relatively large signals), and sparse

structures in the motion field can be modelled well by Laplacian distributions

(corresponding to η = 1 in the GGM) as well as hyperLaplacian distribu-

tions (0.5 ≤ η ≤ 0.8) (Krishnan and Fergus, 2009). Since introducing hyper-

Laplacian based penalisers (into Equation (8.3)) leads to highly non-convex

energy-minimisation problems, in practice, the Laplacian-distribution based

penaliser is usually exploited as a replacement for hyperLaplacian-distribution

based ones. So, a discrete value set {η = 1, 2} is employed. This means
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that only Laplacian and Gaussian distributions are considered in the proposed

algorithm.

Additionally, in the case of η(x) = 2, the enforced regularisation constraint for

a local motion-region around pixel x is a Gaussian-distribution based prior.

With the larger the value of τ(x), the pdf shape of the associated Gaussian

distribution has a smaller variance. So, most of the gradient signals are en-

couraged to be small in the local region around the pixel x. Motion regions

with small τ values correspond to allowing a considerable rate of relatively

large gradients. The Gaussian distribution based MDP with a relatively small

variance is very common in the regularisation literature. This type of MDPs,

due to the tolerance of small gradients, can efficiently recover piecewise smooth

signals. A Gaussian distribution with a large variance (i.e. a small τ) leads to

a MDP that permits non-sparse structures of relatively large gradients. As far

as it is known, the latter type of MDPs has not been exploited in OF regular-

isation. It is only recently, in the field of image restoration, Cho et al. (2010)

proposed a regularisation approach that involves MDPs with large variances

of Gaussian distributions, for restoring fractal-like textures, such as tree leaves

and grass.

The smoothness penaliser in Equation (8.2) takes into account both sparse

and non-sparse MDPs during motion estimation. For each image pixel in the

considered motion field, apart from calculating the associated OF vector, a

theoretically optimal MDP is also estimated. Therefore, the proposed strategy

is referred to as the sparsity&non-sparsity constraints based prior-adaptive

regularisation approach.

8.4 An Approximation Solution for the Objec-

tive Functional

Minimising the proposed energy functional in Equation (8.3) involves simulta-

neously computing the field v and the hyperparameter maps of η and σ. So,

the optimisation of the proposed functional is very challenging. Because of

this, detailed implementation procedures are described in this section.
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Different strategies have been proposed in the literature to estimate hyperpa-

rameters, such as (generalised) cross-validation (GCV) (Wahba, 1977, Foroosh,

2005, Favati et al., 2014), Mean-Field approximation (MFA) (Geiger and Girosi,

1991, Xu et al., 2012), maximum a posterior (MAP), etc. Inspired by the works

of Geiger and Girosi (1991) and Xu et al. (2012), a MFA based approach is

employed to marginalise out the hyperparameter η to simplify the objective

energy functional, at the first stage. The hyperparamter σ is dealt with by a

GCV based approach at another separate stage. The estimation of the v and

σ fields are simultaneously performed according to the Iteratively Reweighted

Least Squares method.

Before going to the next section, since η takes a discrete value set {1, 2}, a
binary field α is introduced into the regularisation term (Equation (8.2)). This

will transform the regulariser into a more comprehensive form,

ẼS(v, α, τ) =
∑

x

{α(x)τ(x)|∇v(x)|1 + (1− α(x))τ(x)|∇v(x)|2} (8.5)

with τ(x) = 1
σ(x)

. The binary variable α(x) works as a sparsity&non-sparsity

switcher that guides whether the TV or the Tikhonov based penaliser will be

chosen in the local/non-local region around x. Correspondingly, the objective

functional is changed to,

E(v, α, τ) = γED(v) + ẼS(v, α, τ) (8.6)

8.4.1 Averaging Out the Sparsity&Non-Sparsity Switch-

ing Process

According to the Clifford-Hammersley theorem, the probability of a particular

state of the system is given by

P (v, α, τ) =
1

Z
e−βE(v,α,τ) (8.7)

where β is the inverse temperature, and Z is the normalising factor called the

partition function, defined as

Z =
∑

{v}

∑

{α}

∑

{τ}
e−βE(v,α,τ) (8.8)
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where {v} denotes all the possible configurations of v of the system. {α} rep-

resents the set of values that the hyperparameter α can take, i.e., {α} = {0, 1},
and {τ} is the set of candidate values for τ (the inverse of the variance param-

eter σ). The computation of the partition function requires the evaluation of

a multi-dimensional integral that can not be explicitly solved, due to the vari-

able interaction inside E(v). So, an approximate solution is sought by making

use of MFA. Note that MFA is a general tool used in statistical mechanics. It

consists in substituting the interaction among the fields at different locations

by the interaction of the field at each site with the mean field value at different

locations (Geiger and Girosi, 1991).

The first task is to average out the sparsity&non-sparsity switching process

through MFA, i.e. marginalising out the α(x) parameter from the system

(Equation (8.6)). For the moment, τ is assumed to be known in advance. Z

can then be re-written as

Z =
∑

{v}

∑

α={0,1}
e−βE(v,η) (8.9)

The sum is first computed over all possible α values, which yields,

Z =
∑

{v}
e−βγED(v)

∑

α{=0,1}
e−β

∑
x
{α(x)τ(x)|∇v(x)|1+(1−α(x))τ(x)|∇v(x)|2}

=
∑

{v}
e−βγED(v)

∏

x

(e−βR1(v(x)) + e−βR2(v(x)))

=
∑

{v}
e−β{γED(v)−

∑
x

1
β
ln(e−βR1(v(x))+e−βR2(v(x))}

(8.10)

where R1(v(x)) = τ(x)|∇v(x)| and R2(v(x)) = τ(x)|∇v(x)|2. Then, either

using the strategy of Geiger and Girosi (1991), or simply referring to the saddle

point approximation approach, a same approximated result for Z is resulted,

Z ≈ e−β{γED(v)−
∑

x

1
β
ln(e−βR1(v(x))+e−βR2(v(x))} (8.11)

Because of the above adaptation, the sparsity&non-sparsity switching process

can thus be averaged out in the partition function.

According to the transformed simpler form of Z, the effective energy functional

is yielded,

Eeff (v) = γED(v)−
∑

x

1

β
ln(e−βR1(v(x)) + e−βR2(v(x))) (8.12)
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E
eff
Reg(v) =

∑

x

1

β
ln(e−βR1(v(x)) + e−βR2(v(x))) (8.13)

Once the Mean-Field (MF) approximation of the flow v is obtained, the ap-

proximation of Z can be achievable. As shown by Geiger and Girosi (1991),

the MF approximation of the switching process α can be computed using

ᾱ(x) = − 1

β

∂lnZ

∂G(x)
=

1

1 + eβ(R1(v(x))−R2(v(x)))
(8.14)

where G(x) is a coefficient, set to R1(v(x))−R2(v(x)). So given β and the ap-

proximated flow v, the MF approximation of α(x), i.e., ᾱ(x), can be obtained.

The effect of ᾱ(x) equates that of α(x).

To summarise, the underlying idea of MFA is to first eliminate the MDP’s

degree of freedom from Z. By doing so, the effect of the interaction between

the hyperparameter α (or η) with the field v can be simulated by an “effective

potential”, that depends only upon v and τ .

8.4.2 IRLS based Flow-Field Estimation

Based on the MFA scheme, the field of ᾱ is obtained, i.e. η can be determined.

Therefore, the objective functional with the already-known hyperparameter η

can be written as

E(v, τ) = γ
∑

x

(Ix(x)u(x)+Iy(x)v(x)+It(x))
2+

∑

x

τ(x)|(Lv)(x)|η(x) (8.15)

At this stage, still assuming that the field of τ is known, a so-called Iteratively

Reweighted Least Squares (IRLS) technique will be employed to find the solu-

tion of v. This first requires the representation of the OF objective functional

(Equation (8.15)) with a more compact, matrix based formulation,

E(U, τ) = γ|HU − b|2 + τ |LU |η (8.16)

with U,H, L defined as,

H = [Ix Iy] ∈ RN×2N ,

U =
(

u1 u2 · · · uN v1 v2 · · · vN

)T

∈ R2N×1

b =
(

[It]1 [It]2 · · · [It]N

)T

∈ RN×1

(8.17)
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where N is the total number of pixels in the image, Ix = diag(Ix), Iy = diag(Iy),

and [It]i stands for the value in the linear index location i in It. L represents

the matrix that could correspond to a f.o.d or s.o.d based space transformator.

For example, taking x− or y− directional derivative filters as examples, LU

denotes the convolution of U with the mask [0− 1 1].

Inspired by Wohlberg and Rodriguez (2007) and Daubechies et al. (2010), the

optimisation processes of two special cases (related to Equation (8.16)) are

examined in detail:

• When all values in the η field are equal to 2 (corresponding to using the

Tikhonov based regularity everywhere in the motion field), the solution

of v in Equation (8.16) is given by,

U1 = (HTH + τLTQ1L)
−1HT b (8.18)

where Q1 is an identity matrix I. This equation provides an analytic

solution of U1, for OF objective functionals3 that use the spatially in-

variant Tikhonov penaliser in the smoothness term. The value of U1 can

be determined using direct solvers for small-scale problems and iterative

solvers, for example a conjugate gradient (CG) method, for large-scale

problems.

• When all values in the η field are equal to 1, a similar equation to (8.18)

can be obtained,

U2 = (HTH + τLTQ2L)
−1HT b (8.19)

with Q2,

Q2 = diagi=1,2,...,N

( 1
√

[LU2]2i + ǫ

)

(8.20)

where i ∈ {1, 2, ..., N} represents the linear index for the OF vectors involved.

[LU2]i stands for the value in the linear index location i in the matrix LU2.

ǫ is a small positive value. This form of U2 solution corresponds to where a

TV or L1-norm based spatially invariant MDP is employed. Since Q2 depends

3All the considered OF objective functionals use the same data term (as in Equation

(8.16), except where noted.
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on U2, U2 elements exist on both sides of Equation (8.19). This is different

from that, in Equation (8.18), there is no U1 element on the right hand side of

the equation. Therefore, Equation (8.19) can not be directly solved. However,

thanks to the works of Wohlberg and Rodriguez (2007), Daubechies et al.

(2010) and Liu (2009), IRLS can be used to estimate U2 for Equation (8.19).

Table 8.1 summarises the processes of IRLS.

Table 8.1: The IRLS method to find the solution for Equation (8.19)

Step 1: set k = 0, Q0 = I, U0
2 = 0

Step 2: solve Uk+1
2 = (HTH + τLTQk

2L)
−1HT b

Step 3: define Qk+1
2 = diagi=1,2,...,N

(

1√
[LUk+1

2 ]2i+ǫ

)

Step 4: if U2 converges, stop; else set k = k + 1 and go to Step 2

Returning to the original Equation (8.16) with spatially variant η values, an

equation similar to (8.18) and (8.19) can be written as,

U = (HTH + τLTQL)−1HT b (8.21)

where Q, a diagonal matrix, is defined as,

Qii =







1 if ηi = 2,
1√

[LU ]2i+ǫ
if ηi = 1.

(8.22)

where ηi represents the η value in the linear index location i. By analogy with

how U2 is optimised (according to IRLS), U in Equation (8.21), can be solved

in an iterative matter, under the condition of pre-estimated τ and η fields.

With the assumption that τ values are known, Equation (8.15) can be also

solved by the commonly used Euler-Lagrange method. The reason for choosing

the IRLS based approach is three-fold:

• Different MDPs based penalisers, apart from the TV and the Tikhonov

based, can be easily incorporated into the IRLS framework by changing

the matrix Q, i.e. the weighting parameter matrix. Derivatives based

motion spaces, or WTs induced spaces can be also easily exploited, cor-

responding to choosing a desirable L operator in Equation (8.21).
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• An IRLS based approach provides a more straightforward way for esti-

mating the τ field. Details will be present in the next section.

• As proved by Liu (2009), the IRLS based approach is identical to the

variational method in minimising this type of energy functionals as pro-

posed.

8.4.3 GCV and IRLS based Local Variance Estimation

The remaining problem is how to estimate τ . Regarding this issue, a strategy

that combines GCV and IRLS is developed.

First, considering the problem of estimating a globally invariant τ value, using

the GCV based approach amounts to minimising (Galatsanos and Katsaggelos,

1992)

A(τ) =
|b−HU |2

tr(I−HUb−1)2
=

|(I−H(HTH + τLTQL)−1HT )b|2
(tr(I−H(HTH + τLTQL)−1HT )2

(8.23)

with respect to τ , where tr(·) denotes the trace of the matrix. U is defined in

Equation (8.21). Inspired by Galatsanos and Katsaggelos (1992), and Foroosh

(2005), a simplified expression is to be sought for the minimiser of this GCV

criterion. By letting P = I−H(HTH + τLTQL)−1HT , the GCV function can

then be written as

A(τ) =
|Pb|2

(tr(P ))2
(8.24)

Rearranging P leads to,

P = I−HL−1L(HTH + τLTQL)−1LTL−THT

= I−HL−1(L−THTHL−1 + τL−TLTQLL−1)−1L−THT

= I−K(KTK + τQ)−1KT

= I− (I+ τK−TQK−1)−1

(8.25)

According to the matrix inversion lemma4 (Tylavsky and Sohie, 1986), Equa-

tion (8.25) can be further transformed into,

P =
(

I+
1

τ
KQ−1KT

)−1
(8.26)

4(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1, for invertible A and C.
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with K = HL−1. Since KQ−1KT is a symmetric matrix, the spectral decom-

position of KQ−1KT can be written as,

KQ−1KT = ΞΛΞT =

n
∑

j=1

λjξjξ
T
j (8.27)

where ξjs are the columns of Ξ that are a set of vectors orthogonal to each

other, i.e. eigenvectors, and λjs are the corresponding eigenvalues. n denotes

the number of eigenvectors of Ξ, and it is associated with the number of pixels

involved. For the estimation of a globally invariant τ value, information of all

pixels inside the image will be used. Putting KQ−1KT into Equation (8.26)

gives:

P =

n
∑

j=1

τ

τ + λj

ξjξ
T
j (8.28)

With ΞT b = z = [z1, z2, ..., zn]
T , the GCV function can be rewritten as (see

(Galatsanos and Katsaggelos, 1992)),

A(τ) =

∑n

j=1

(

τ
τ+λj

)2
z2j

(
∑2

j=1
τ

τ+λj

)2 (8.29)

In order to further simplify the GCV function of A(τ), an idea is borrowed from

the approach of Foroosh (2005). Considering that most of the information in

KQ−1KT is carried by the first singular value. Therefore, KQ−1KT is approx-

imated by the value of λ1ν1ν
T
1 . In practice, due to the particular construction

of the matrix KQ−1KT , the largest singular value is, in most situations, orders

of magnitude larger than the second singular value. Therefore,

A(τ) ≈
(

τ
τ+λ1

)2
z21 +

∑n
j=2 z

2
j

(

n− 1 + τ
τ+λ1

)2 (8.30)

Based on the simplified expression of the GCV function, in order to minimise

the value of A(τ), the equation is differentiated with respect to τ , and set to

zero. By this it means, the optimal variance hyperparameter of τ is given by

τ̂ =
λ1

∑n

j=2 z
2
j

(n− 1)z21 −
∑n

j=2 z
2
j

(8.31)

Since the calculation for the above A(τ) involves the total number of pixels in

the image, a globally constant τ value is obtained. While, it is straightforward
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to consider the estimation of a spatially variant τ field. This can be accom-

plished by first segmenting the motion field into superpixel regions, and then

estimating τ values locally.

Noting that, inside the work (Foroosh, 2005), the matrix Q is an identity

matrix, since the Tikhonov penaliser is employed in the regularity. So, τ

values in their case can be directly calculated without pre-estimating v or U .

However, in the current work, Q (as defined in Equation (8.22)) contains the

elements of v. Direct estimation of the field τ̂ is thus infeasible. Recall that,

due to the non-linearity of the original Equation (8.16), v can not be totally

separated from other values/parameters in Equation (8.21). So, an iterative

approach is used to optimise v. By analogy, τ̂ can be dealt with by IRLS. v

and τ̂ can then be estimated in an iterative manner. Implementation steps

that simultaneously estimate v and the two hyperparameters are summarised

in the next section.

8.4.4 Summary of Implementation Steps

The proposed energy-minimisation strategy is mainly based on IRLS, which

iteratively estimates the field v, and the two agent fields α and τ (respectively

corresponding to the hyperparameters η and σ). Given temporarily estimated

fields vk, αk and τk at some mid-stage k in the whole energy-minimisation

process, by fixing two of the three temporary fields, the third field at the k+1

stage can be estimated, according to the previously designed Equations (8.21),

(8.14), or (8.31). For example, by fixing αk and τk, vk+1 can be calculated,

according to Equation (8.21).

Note that, to start the whole process, there is a necessity to get some initial

estimates for v, and τ and/or α. The initial field of v, denoted as v́, can

be obtained by OF algorithms such as the Horn-Schrunk approach. The val-

ues of the initial τ and α fields, represented as τ́ and ά, can be set as the

corresponding, spatially invariant values that are commonly used in the OF

literature. See Table 8.2 that presents the proposed optimisation steps that

simultaneously estimate the flow and the hyperparameter fields.
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Table 8.2: The proposed iterative optimisation steps that simultaneously esti-

mate the flow and the hyperparameter fields

Step 1: Construct pyramids for both of the images, and set the initial

pyramid level l = 0. Set v0 and τ0 as down-sampled versions

of the initially estimated fields v́ and τ́ at level 0.

Step 2: Propagate flow field vl and τl from the last pyramid layer to

the current level l + 1, which yields two temporal fields v̆l+1,

and τ̆l+1.

Step 3: Take v̆l+1 and τ̆l+1 into Equation (8.14) to compute ᾱl+1.

Step 4: Take ᾱl+1 and τ̆l+1 into Equation (8.21) to compute vl+1.

Step 5: Based on ᾱl+1 and vl+1, according to Equations (8.31) and

(8.22), calculate τl+1.

Step 6: If l 6= n− 1, where n is the pre-assumed total number of the

pyramid layers, l = l + 1, and go to the second step.

To deal with the problem of large motion estimation, a pyramid framework

of OF estimation is adopted. Based on the description above, the processing

steps (as listed in Table 8.2) are iterated in each pyramid layer of the motion

estimation process.

At this stage, the most common motion space, the f.o.d based space, is em-

ployed, since the current concentration is to investigate the importance of

adaptive regularisation priors. Other motion spaces, such as curvature spaces,

can also be considered by correspondingly changing the L operator in Equation

(8.2).

Since the optimisation process needs to simultaneously estimate the OF field

and the hyperparameter fields, this involves a highly non-convex energy min-

imisation problem. The algorithm thus has the problem of converging to local

minima. In practice, graph-cut based discrete optimisation approaches can be

considered to relieve the problem.
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8.5 Conclusions

This chapter has proposed a sparsity&non-sparsity constraints based prior-

adaptive regularisation approach. Since the objective OF energy functional,

due to the involved hyperparameters, is particularly challenging to minimise,

the chapter has also developed an IRLS&GCV based strategy that can simul-

taneously optimise the solutions for the flow field as well as the hyperparameter

fields. The proposed regularisation algorithm and the new optimisation strat-

egy are thus the two contributions in this chapter. Based on the well-grounded

research motivation (as elaborated in both this chapter and Chapter 3), the al-

gorithm design procedure, and the detailed introduction of the implementation

approach, there are ample reasons to believe that the proposed prior-adaptive

regularisation approaches has theoretical correctness and feasibility in prac-

tice.
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Chapter 9

Conclusions and Future Work

The first aim of this chapter is to summarise the work and contributions of

this thesis. Then, the publications that directly stem from this research work

are presented. The final part of this chapter suggests potential directions that

are worthy of future research.

9.1 Summary

This section aims to summarise the whole thesis. The main findings and

contributions that are resulted from this research work are highlighted.

The first half part of this thesis concerns optic-flow (OF) based motion estima-

tion. The ill-posed problem of OF estimation needs prior knowledge about the

solution space, so as to make the problem feasible. Regularisation strategies

are thus of crucial importance to the accuracy of OF estimation. Recent ad-

vances in regularisation approaches have emphasised three important aspects,

namely exploring new motion integration strategies, looking for improvements

or replacements of existing motion spaces, and investigating more suitable

motion-distribution priors (MDPs) that can better fit or describe the statis-

tics of a particular motion space. Motivated by this, by concentrating on the

first and the third aspects, two motion regularisation approaches have been

proposed. To be more concrete,
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• An oriented geodesic distance (OGD) based non-local regularisation ap-

proach has been developed. At the heart of this approach is a novel

pairwise-feature-affinity measurement. To the best of this author’s knowl-

edge, this is the first time that geodesic distances based non-local regu-

larisation schemes have been investigated in the literature in the context

of optic flow.

• A sparsity&non-sparsity constraints based prior-adaptive regularisation

approach. This is mainly motivated by the fact that globally fixed

MDPs based regularities do not respect local variances of OF statis-

tics, and thus, a spatially variant MDP is necessary to be introduced

to the OF regularisation field. In the meantime, considering that the

involved OF energy functional is particularly challenging to minimise,

a novel IRLS&GCV based strategy has been designed that is able to

simultaneously optimise the solutions for the flow field as well as the

hyperparameter fields.

The proposal of the two regularisation schemes, including the novel motioninte-

gration strategy, and the spatially variant MDP based regularisation approach,

has constituted the first core contribution of this thesis.

Moreover, a comprehensive literature survey on OF regularisation approaches

has been provided. This has finally led to the design of a new generalised

regularisation formulation. The remarkable advantage of the generalised reg-

ularisation scheme relies on the fact that it better respects the following facts:

• Local or non-local motion statistics may be different from the global

distribution in the same motion field.

• Different datasets may need tailed choices of MDPs and/or motion spaces.

The detailed bibliography content and the revealed underlying connections,

between different existing regularities, will potentially draw more researchers’

attention to the exploration of new MDPs and motion spaces based regulari-

sation approaches. This investigation is very promising to further advance the

development of the OF field.
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The second half part of this thesis focuses on the problem of cell tracking.

Quantitative analysis on whole populations of cells, and identification of cell

division events has great meaning for the study of normal/abnormal pheno-

types and the effectiveness of drugs, and thus plays vital roles in the biomedical

research domain. Driven by that, the computer vision domain has seen increas-

ing attention in the design of automated tools for cellular biology researchers.

Compared with non-biomedical tracking tasks, inherent difficulties associated

with cell tracking include dynamic backgrounds, cellular contrast changes, am-

biguous boundaries, frequent intercellular interactions, the dramatic intensity

change during cell division and death, etc. Regarding that, the second major

contribution in this work is a model and motion based cell tracking frame-

work, that is particularly designed for automatically tracking dense cell pop-

ulations, over phase-contrast image sequences. The proposed system fully ex-

ploits the complementary properties from model and motion based cell tracking

approaches. So, the shortcomings of the two worlds are both suppressed. The

outstanding advantage of the proposed approach is reflected by the fact that,

many challenging problems have been solved or relieved, including accurately

segmenting and tracking partially overlapped cells, consistently tracking elon-

gated cells, and the tracking of large displacement cells. It is worth noting

that these problems are commonly considered to be difficult, and have not

been well solved or are usually ignored in existing works. Within the new cell

tracking system, there are two points worthy emphasising:

• The dynamic directional, gradient vector flow (DDGVF) technique is,

for the first time, applied to segmenting and tracking dense cell popula-

tions. It has demonstrated superior performances in precisely outlining

ambiguous cell boundaries, and correctly tracking cells in clustered en-

vironments.

• A novel strategy that seamlessly integrates the snake and the OF tech-

nique has been proposed, by incorporating a new soft external-energy

term into the objective functional. The new energy term encourages

model and motion based tracking results to be coherent to each other.

A concentrated literature survey on state-of-the-art cell tracking approaches
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and systems has also been provided. Thanks to the indepth analysis of the

survey, important new trends have been identified. This gives valuable insight

into the topic of cell tracking, and will encourage future research.

In addition, another important contribution of this thesis is the development of

a motion-occlusion analysis based automated cell-division detection approach.

The proposed approach is quite different from the existing segmentation or

training based methods. The major advantage of this approach is that dividing

cells with a variety of division behaviour can be successfully detected, without

the requirement of training assistances.

9.2 Publications Arising

The following peer-reviewed publications have arisen from this research.

1. Oriented Geodesic-Distance based Non-Local Optic Flow Approach, Sha

Yu, Molloy D., IEEE Visual Communications and Image Processing

(VCIP) 2013, 17- Nov-13 - 20-Nov-13, Kuching, Malaysia. Awarded

Student Travel Grant.

2. Optic Flow based Occlusion Analysis for Cell Division Detection, Sha

Yu, Molloy D., International Conference on Robotics, Vision, Signal Pro-

cessing & Power Applications (ROVISP) 2013. 10-Nov-13 - 12-Nov-13,

Penang, Malaysia.

3. Optic Flow Providing External Force for Active Contours in Visually

Tracking Dense Cell Population, Sha Yu, Molloy D., 2011 Irish Machine

Vision and Image Processing Conference (IMVIP2011), 07-SEP-11 - 09-

SEP-11, Dublin, Ireland.

4. Automated Image-based Cell Tracking in Dense Cell Datasets, Sha Yu,

Molloy D., 2010 Irish Machine Vision and Image Processing Conference

(IMVIP2010), 08-SEP-10 - 10-SEP-10, University of Limerick. Awarded

Best Paper.

5. Automated Cell Tracking using a Model-based Approach in Phase-Contrast
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Dense Cell Datasets, Sha Yu, Molloy D., BioPhotonics and Imaging Con-

ference (BioPIC 2010), Dublin, Ireland, 2010.

6. Automated Vision-based Tracking of Cell Movement and Deformation

in Image Sequences, Sha Yu, Molloy D., 2010 China-Ireland Interna-

tional Conference on Information and Communications Technologies (CI-

ICT2010), 10-OCT-10 - 11-OCT-10, Wuhan, China.

Apart from the aforementioned, there are three journal papers in preparation

listed below,

1. A Sparsity&Non-Sparsity Constraints based Prior-Adaptive Regularisa-

tion Approach for Motion/Contour Estimation.

2. A Novel Model and Motion based Framework for Tracking Dense Cell

Populations in Phase-Contrast Datasets with Automated Mitosis Detec-

tion.

3. Smoothness and Sparsity Priors based Optic-Flow Regularisation Ap-

proaches: Literature Survey and Generalisation.

9.3 Directions for Future Research

A first future plan is to fulfill the evaluation of the proposed prior-adaptive

regularisation approach. Since motion fields of real-world images usually con-

tain spatially varying statistics, the application of this approach is promising.

Specifically, it is very interesting to improve the motion estimation accuracy

for cellular images of dense populations, where spatially varying densities of

cells usually lead to spatially variant motion patterns.

Secondly, while most of the concepts developed in this thesis have been ex-

perimentally evaluated, some future work, directly related to the proposed

regularisation approaches, can be considered to further advance the ideas in

this research domain. Specifically, the generalisation of the state-of-the-art OF

regularisation approaches, and the proposed spatially adaptive regularisation
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schemes open up a wide range of future directions for research. To name a

few,

1. Considering that different MDPs based penalisation functions can be

easily incorporated into the proposed prior-adaptive regularity, a natu-

ral suggestion is to introduce more types of MDPs, in addition to the

Laplacian and Gaussian based priors, into the prior-adaptive regularisa-

tion approach. By this means, it is reasonable to expect further increased

accuracies for OF estimation.

2. At the current stage, the most common motion space, i.e., the gradient

based space, has been adopted in the proposed regularisation schemes.

Other motion spaces, such as higher-order derivatives based, and WTs

induced spaces, can also be straightforwardly employed. Specifically, the

curvature space based regularities have been proven very useful in the

estimation of either piecewise affine motion flows, or globally non-rigid

motion fields. While the current literature has not seen a direct regular-

isation strategy that can effectively regularise rigid and non-rigid flows

that simultaneously exist in the same motion field. Thanks to the find-

ings in this thesis, a first possible way to achieve the purpose is to exploit

the curvature space based prior-adaptive regularisation approach. The

rational relies on the high-level understanding that: the curvature space,

if projected by a piecewise affine flow field, has only a small percentage

of high curvature signals, and most of the curvature magnitudes are zero.

When transforming a non-rigid flow region into the curvature space, the

resulting field will contain a denser or non-sparse structure of curvatures.

A spatially adaptive, sparse&non-sparse curvature constraints based reg-

ularisation approach is thus a direction that is worthy of investigation.,

3. The proposed OGD based regularity is essentially a novel pairwise-feature-

affinity measurement, that is based on an orientation-adaptive geodesic

path strategy. So, it can be extended as a non-local image smoothing

technique that has an advantage of edge preservation. In addition, since

the accurate feature grouping capability of OGD has been demonstrated

in boundary regions in motion signal fields, it is reasonable to expect

that the non-local OGD strategy can be transplanted into the image
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segmentation domain as well.

4. Since the regularisation approaches, that have been proposed or are

planned as future works, involve the ideas of the non-local motion in-

tegration strategy, as well as higher-order derivatives based constraints,

the computation requirement for the associated OF approaches will be

extremely high. Apart from that, in current literature, the topic of the

enhancement of computation efficiency has also attracted more atten-

tion. These factors make it very appealing to looking for efficient ways

to optimise OF estimation processes.

Thirdly, there are other promising directions that have not been mentioned

up to now. They are also conceived during the process of the review and

generalisation of the state-of-the-art OF regularisation approaches.

1. Another possible way for regularising rigid and non-rigid motion flows

that coexist in the same field. From the existing works that take into

account the estimation of non-rigid motion, some carefully designed reg-

ularisation strategies have been proposed. For example, Xu et al. (2008)

present a multi-stage strategy to first compute a piecewise affine mo-

tion field, and then re-calculate the flows in candidate non-rigid motion

regions (that are selected by a pre-estimated, motion-estimation confi-

dence map in the early stages). However, during the flow recalculation

process, an approximated TV penaliser is utilised in the smoothness

term. This still results in piecewise constant flows, and hence produces

over-smoothed flows. Sun, Sudderth and Black (2010) and Sun et al.

(2012) exploit a semi-parametric regularisation scheme, by encouraging

the motion in image super-pixels or layers to be close to pre-estimated

affine flows, whilst allowing deviations from the affine motion. The basic

logic of this strategy considers that a non-rigid flow region consists of a

piecewise affine layer and a “more textured” residual layer. Similar to

(Xu et al., 2008), a TV-like penalisation function is employed. While,

it can be understood that the residual layer (i.e. the residual between

the non-rigid layer and the associated affine flow layer) cannot be prop-

erly modelled by sparsity-inducing regularities only. According to the
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understanding that a non-rigid flow layer can be decomposed by a piece-

wise affine flow layer and a residual layer, another potential approach to

model a rigid and non-rigid, coexisting field is to combine a TV based

curvature regularity and an adaptive sparsity&non-sparsity prior based

gradient regularity. In theory, this also leads to a regularisation approach

that can adaptively choose to recover piecewise affine or constant flows

or non-rigid motion surfaces.

2. Integrating segmentation into sparsity priors based regularisation. Re-

cently, sparsity-based motion priors have achieved encouraging results for

motion estimation. These priors assume that the flow can be sparsely

represented in certain domains. Compared with traditional smoothness

constraints, one advocated advantage of sparsity-based constraints lies

in the simultaneous handling of motion homogeneities and motion dis-

continuities (Shen and Wu, 2010, Jia et al., 2011). By doing so, the issue

that is associated with selecting motion integration regions might be

avoided. However, allowing crossing-boundary regularisation is actually

a two-side sword. Due to occlusions that exist near motion boundaries,

flow vectors that are constrained by the OF data-conservation term are

usually erroneous. Simultaneous modelling of smooth and discontinuous

motion, however, will allow incorrect estimation that is caused by occlu-

sions on motion boundaries. Therefore, purely relying on the sparsity

based regularisation may not lead to well-localised flow edges in motion

boundaries. So, there arises a natural suggestion to combine segmenta-

tion based motion estimation and sparse priors based regularisation.

3. Investigating the pairwise asymmetric motion-coherence constraint. In

existing local or non-local regularisation schemes, the motion-coherence

constraint is usually symmetrically enforced between the two pixels in-

volved. It is well accepted that motion estimation for textureless fea-

tures needs to borrow information from more distinguishable features.

However, as long as the pairwise motion-supporter mode is symmetri-

cal between the two pixels, unreliable motion information (such as from

outliers, textureless features, and even incomplete motion derived from

edge features) can potentially blur or contaminate the should-be reliable

motion vectors (i.e. texture features, and corner features).
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wavelets and high order regularization.’, Int. J. Comput. Vis. 103(1), 80–99.

Kanade, T., Yin, Z., Bise, R., Huh, S., Eom, S. E., Sandbothe, M. and Chen,
M. (2011), Cell image analysis: Algorithms, system and applications, in
‘IEEE Workshop on Applications of Computer Vision’, WACV ’11.

Kass, M., Witkin, A. and Terzopoulos, D. (1988), ‘Snakes: Active contour
models’, Int. J. Comput. Vision 1(4), 321–331.

Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A. and Yezzi, A. (1995),
Gradient flows and geometric active contour models, in ‘Proceedings of the
Fifth International Conference on Computer Vision’, ICCV ’95, IEEE Com-
puter Society, Washington, DC, USA, pp. 810–815.

Kitagawa, G. (1987), ‘Non-gaussian state-space modeling of nonstationary
time series’, Journal of the American Statistical Association 82, 1032.
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