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Abstract

We study optimal asset allocation in a crash-threatened financial market with propor-
tional transaction costs. The market is assumed to be in either a normal state, in which the
risky asset follows a geometric Brownian motion, or in a crash state, in which the price of
the risky asset can suddenly drop by a certain relative amount. We only assume the max-
imum number and the maximum relative size of the crashes to be given and do not make
any assumptions about their distributions. For every investment strategy, we identify the
worst-case scenario in the sense that the expected utility of terminal wealth is minimized.
The objective is then to determine the investment strategy which yields the highest expected
utility in its worst-case scenario.

We solve the problem for utility functions with constant relative risk aversion using a
stochastic control approach. We characterize the value function as the unique viscosity
solution of a second-order nonlinear partial differential equation. The optimal strategies
are characterized by time-dependent free boundaries which we compute numerically. The
numerical examples suggest that it is not optimal to invest any wealth in the risky asset
close to the investment horizon, while a long position in the risky asset is optimal if the
remaining investment period is sufficiently large.

Keywords: Portfolio optimization, worst-case scenarios, crash modeling, transaction costs,
dynamic programming, viscosity solutions

AMS Subject Classification: 91B28, 91A15, 90C39, 35D05

1 Introduction

The continuous-time portfolio optimization problem was introduced by Merton in his seminal
articles [25] and [26]. Since then, this classical model has been extended in numerous directions
in order to account for a vast variety of different investment objectives, trading constraints and
market conditions. In the present paper we make a first step towards unifying two streamlines
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which emerged from Merton’s original work: Worst-case portfolio optimization as first intro-
duced by Korn and Wilmott [21] and optimal trading in the presence of proportional transaction
costs as first analyzed by Magill and Constantinides [24].

1.1 The worst-case approach to portfolio optimization

In Merton’s papers [25] and [26], the price processes of the risky assets have continuous sam-
ple paths which do not fully explain extreme price movements (especially sudden downward
movements, i.e. crashes). Even though Merton’s results can be extended to price processes
with jumps (see e.g. Merton [27] or Aase [1]), the investor may still suffer substantial losses
at the moment a crash occurs, since the optimal strategy hedges crashes only on average over
the investment period. Korn and Wilmott [21] proposed a model which does not only include
crash scenarios, but also leads to optimal strategies which make the investor indifferent about
the occurrence of the worst possible crash scenario. Instead of maximizing the expected utility
of terminal wealth, the so-called worst-case bound of a trading strategy is used as optimization
criterion. That is, for each admissible trading strategy, a worst-case scenario is determined,
and the strategy yielding the highest expected utility in its worst-case scenario is considered
optimal.

The model of Korn and Wilmott has been extended in several directions. A recent overview
can be found in Korn and Seifried [19]. Originally, Korn and Wilmott [21] derived the optimal
trading strategy using an indifference argument. Korn and Menkens [18] formalized this bal-
ancing argument by a dynamic programming argument and thereby embedded the worst-case
approach into the stochastic control framework. Korn and Steffensen [20] derived a verification
theorem which proves optimality in a bigger class of admissible strategies. Finally, Seifried [29]
solved the worst-case problem for more general price processes by means of martingale opti-
mality arguments, Desmettre et al. [13] extended the results to optimal consumption over an
infinite time horizon, and Belak et al. [4] extend the model to allow for an unbounded number
of crashes.

Korn and Wilmott [21] showed that the optimal risky fraction (i.e. the optimal fraction of
the total wealth invested in the risky asset) under the threat of crashes is time-dependent and
can be determined as a solution of an ordinary differential equation. Assuming that the excess
return of the risky asset over the risk-free asset is positive, this solution is strictly positive before
terminal time and decreases as the investment horizon is approached. At terminal time, the
optimal risky fraction is zero.

1.2 Portfolio optimization in the presence of transaction costs

All of the above-mentioned models have one feature in common. In order to apply the optimal
strategies in these models, the investor would have to adjust the position in the risky asset
at every time instant and the trading volume would be of infinite variation. However, since
an investor usually has to pay a fee in order to engage in a transaction, this would lead to
immediate bankruptcy. Therefore, efforts have been made to include different types of cost
structures in Merton’s model. In this paper, we assume that the investor faces transaction costs
which are proportional to the volume of the transaction.

Due to the extensive number of research articles on portfolio optimization with proportional
transaction costs, we only give a quick overview of the articles closest to ours. The interested
reader is referred to e.g. Kallsen and Muhle-Karbe [17], Gerhold et al. [14], Choi et al. [7] and
the references therein for a different approach to tackle the problem.

The treatment of the portfolio problem under proportional costs in a continuous-time model
was initiated by Magill and Constantinides [24] and insights were gained on the nature of the op-
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timal strategy. A rigorous solution can be found in the seminal article of Davis and Norman [10].
Shreve and Soner [30] obtained similar results under weaker assumptions using a viscosity so-
lution approach. A generalization of this model was studied by Kabanov and Klüppelberg [16]
and de Vallière and Kabanov [12]. All five papers considered optimal consumption over an infi-
nite (time) horizon. The optimal terminal wealth problem with a finite horizon was first treated
in Akian et al. [2]. Davis et al. [11] considered the same dynamic programming equation in an
option pricing setting, showed that the value function is a viscosity solution thereof and proved
uniqueness in the case of exponential utility. Dai and Yi [9] derived the existence of a regular
solution of the dynamic programming equation and Belak et al. [5] proved uniqueness of the
value function for a more general class of utility functions. Kunisch and Sass [22] and Herzog
et al. [15] proposed algorithms to approximate the value function and the optimal strategies
numerically. Liu and Loewenstein [23] obtained a closed form solution under the assumption
that the terminal time is random and Bichuch [6] studied the finite-horizon problem by means
of an asymptotic analysis.

In a market with proportional transaction costs, the optimal strategy is to keep the fraction
of wealth invested in the risky asset inside a certain no-trading region. Only when the boundary
of this region is reached does the investor engage in an infinitesimal transaction in order to keep
the risky fraction just inside the region. In the optimal consumption model with infinite horizon,
the no-trading region is simply an interval, whereas in the finite-horizon problem of optimizing
expected utility of terminal wealth the boundaries of the no-trading region are time-dependent.

1.3 Outline of this paper

In this paper, we combine the two different approaches outlined above. That is, we consider a
financial market which is under the threat of a crash in the risky asset and where the investor
pays a fee proportional to the size of the transaction.

This leads to a stochastic differential game (to be more precise, our model is an instance of
Wald’s maximin model, see e.g. Wald [31]) between the investor and some opponent (which in
the sequel will be assumed to be the market), acting on a two-dimensional state process. The
investor is allowed to choose a singular control as to maximize the expected utility of terminal
wealth. On the other hand, the market chooses impulse controls consisting of a finite sequence
of stopping times and bounded relative crash sizes with the objective of minimizing terminal
wealth. The nature of our problem allows us to immediately deduce the optimal relative crash
size and hence reduces the market’s controls to finite sequences of stopping times, leading to an
iterated optimal stopping problem from the market’s point of view. The presence of transaction
costs and the presence of crashes lead naturally to a constrained state space which changes with
every crash.

In Section 2, we give a precise formulation of our model and state the optimization problem.
We gather some basic properties of the value function in Section 3. In particular, we show that
the value function is finite, concave, homothetic, and continuous. In Section 4, we give a proof
of the dynamic programming principle (Theorem 4.5). Then we show in Section 5 that the value
function is a viscosity solution of a certain nonlinear second-order partial differential equation
(Theorem 5.3) and address the issue of uniqueness in Corollary 5.8. In Section 6, we conclude
this paper with numerical examples.

The numerical results suggest that some of the features of the optimal strategy in the
presence of crashes change compared to the crash-free and/or zero-costs strategies. For example,
we always observe that the upper boundary of the no-trading region falls below the optimal
strategy in the case without transaction costs close to terminal time, which in the absence of
crashes can only occur when leverage is optimal. Moreover, not only is the buy boundary zero
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before the investment horizon T is reached (as in the no-crash case), but the sell boundary is
also zero strictly before the investment horizon T (unlike in the no-crash case). With other
words, the optimal worst-case strategy in the presence of transaction costs is not to invest in
the risky asset close to the investment horizon.

2 Market model and problem formulation

In this section, we specify the market model and formulate the optimization problem.

2.1 The market model

We consider a market consisting of two assets, namely a risk free asset P0 called bond and a
risky asset P1 called stock. On the finite time interval [t, T ], we assume that in normal times
(i.e. in crash-free times) the prices of the two assets evolve according to

dP0(u) = rP0(u−)du, P0(t) = p0,

dP1(u) = αP1(u−)du+ σP1(u−)dW (u), P1(t) = p1.

We refer to r ≥ 0 as the interest rate, α ∈ R as the trend and σ > 0 as the volatility of the
stock. We assume that W is a standard Brownian motion defined on the canonical Wiener
space

(

Ω,F ,P
)

, where Ω = C0([0,∞)) denotes the space of continuous functions ω : [0,∞) → R

satisfying ω(0) = 0 and where P denotes the Wiener measure. We denote the augmented
filtration generated by W by F = {F(u)}u≥0, and, similarly, we denote by F

t = {F t(u)}u≥t the
augmented filtration generated by {W (u)−W (t)}u≥t.

The investor’s wealth invested in the bond and the stock at time t are denoted by b and s,
respectively. We assume that whenever the investor buys or sells stocks, she has to pay a fee
proportional to the size of the transaction. That is, if the investor buys stocks for ∆s units of
money, she has to pay transaction costs of size λ∆s, where λ ∈ (0,∞). We assume that the
investor pays these costs from the bond account. Therefore, after the transaction, she holds
b − (1 + λ)∆s units of money in the bond and s + ∆s units of money in the stock. Similarly,
if the investor sells stocks for ∆s units of money, she has to pay transaction costs of size µ∆s,
where µ ∈ (0, 1).

In the absence of crashes, we can therefore model the investor’s trading strategies as follows.
Given an initial time t ∈ [0, T ), let L andM be two Ft-adapted, non-decreasing, càdlàg processes
(i.e. right-continuous paths with left limits) defined on [t, T ], and set L(t−) = M(t−) = 0. If L
and M represent the cumulative units of money used for stock purchases and sales, respectively,
the investor’s wealth invested in bond and stock, denoted by B and S, respectively, follows

dB(u) = rB(u−)du− (1 + λ)dL(u) + (1− µ)dM(u), u ∈ [t, T ], (1)

dS(u) = αS(u−)du+ σS(u−)dW (u) + dL(u)− dM(u), u ∈ [t, T ], (2)

where we set the initial values to be B(t−) = b and S(t−) = s.
A crash is modeled as a pair (τ, β(τ)) consisting of a crash time τ and an F t(τ)-measurable

crash size β(τ) ∈ [0, β] for some maximal deterministic crash size β ∈ (0, 1). τ is assumed to
be a [t, T ] ∪ {∞}-valued F

t-stopping time. On {τ ≤ T}, we assume that the stock price drops
by a fraction of β(τ) at time τ , i.e.

P1(τ) =
(

1− β(τ)
)

P1(τ−).

In particular, given a strategy (L,M), this implies for the investor’s stock position that

S(τ) =
(

1− β(τ)
)

S(τ−) +
(

L(τ)− L(τ−)
)

−
(

M(τ)−M(τ−)
)

.
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We interpret the event {τ = ∞} as the crash (τ, β(τ)) not occurring within the investment period
[t, T ]. We assume for simplicity that the crash size is constant and equal to the maximum crash
size β. In light of Korn and Steffensen [20, Remark 1(a)], this does not pose any restriction
on our model, since from a worst-case perspective, the optimal crash scenario is either a crash
of maximal size β or no crash at all. We denote the set of all crash times of the above form
by B(t).

Throughout this paper, we assume that within the investment period [t, T ], at most one
crash can occur. However, our results can be extended to the general case of at most n crashes
by an iterative procedure.

A crucial point about the definition of a crash is that we do not assume that it has a specific
distribution (neither the crash time, nor the crash size). Instead, a crash is regarded as a control
variable which can be chosen as to minimize the expected utility of terminal wealth. This will
be made more precise in Section 2.2.

In the presence of crashes, the model for the trading strategies becomes more involved, since
we want to allow the investor to observe crashes and to switch possibly to a different strategy
afterwards. However, since the investor does not know a priori when a crash occurs, she has
to choose a whole family of post-crash strategies π̌ = {(Ľτ , M̌ τ )}τ∈B(t) and apply the strategy

π̌τ = (Ľτ , M̌ τ ) if a crash is observed at time τ . For each τ ∈ B(t), we assume that the pair
(Ľτ , M̌ τ ) is F

τ -adapted and we set Ľτ (τ−) = M̌ τ (τ−) = 0. With this setup, the investor is
able to observe crashes and react on the new information made available to her. Note that this
approach is the same as in Seifried [29].

In order to simplify notations, we write π = (L,M) for pre-crash strategies and π̌ =
{(Ľτ , M̌ τ )}τ∈B(t) for a family of post-crash strategies. More generally, we make the follow-
ing convention: if we denote a pre-crash quantity by ℵ, we denote the corresponding post-crash
quantity by ℵ̌.

Given a pre-crash trading strategy π = (L,M), a family of post-crash strategies π̌ =
{(Ľτ , M̌ τ )}τ∈B(t) and a crash τ ∈ B(t), the investor’s bond position on {τ < ∞} with ini-
tial position B(t−) = b is given by

dB(u) = rB(u−)du− (1 + λ)dL(u) + (1− µ)dM(u), u ∈ [t, τ), (3)

B(τ) = B(τ−)− (1 + λ)Ľτ (τ) + (1− µ)M̌ τ (τ), (4)

dB(u) = rB(u−)du− (1 + λ)dĽτ (u) + (1− µ)dM̌ τ (u), u ∈ [τ, T ]. (5)

Similarly, the investor’s stock position on {τ < ∞} with initial position S(t−) = s is given by

dS(u) = αS(u−)du+ σS(u−)dW (u) + dL(u)− dM(u), u ∈ [t, τ), (6)

S(τ) = (1− β)S(τ−) + Ľτ (τ)− M̌ τ (τ), (7)

dS(u) = αS(u−)du+ σS(u−)dW (u) + dĽτ (u)− dM̌ τ (u), u ∈ (τ, T ]. (8)

Remark 2.1. Observe that Equation (7) is set up such that the crash is executed first, since it
is applied to S(τ−). The control of the investor (Ľτ , M̌ τ ) is applied only thereafter. Thus, the
investor can only react to a crash, but she cannot prevent being negatively affected by a crash at
time τ by selling all risky holdings at time τ , since her transaction is executed after the crash.

The net wealth X of the investor after liquidation of the stock position at time u is given by

X(u) :=

{

B(u) + (1− µ)S(u), if S(u) > 0,

B(u) + (1 + λ)S(u), if S(u) ≤ 0.
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It is sometimes necessary to stress the dependence of B, S, and X on the initial values, the
trading strategy and the crash. We denote by

Xπ,π̌,τ
t,b,s (u)

the net wealth at time u, if B(t−) = b, S(t−) = s, the pre-crash trading strategy is π, the
family of post-crash strategies is π̌ and the crash occurs at time τ . We may drop some of the
indices if they are clear from the context. Similarly, this applies to B and S in the same way.

2.2 Problem formulation

We require admissible strategies to lead to a non-negative net wealth. Taking into account that
in case of s > 0 a crash decreases the net wealth and that in case s < 0 a crash increases the
net wealth, the following open solvency regions can be defined:

S1 :=
{

(b, s) ∈ R
2
∣

∣ b+ (1 + λ)s > 0, b+ (1− µ)(1− β)s > 0
}

,

S0 :=
{

(b, s) ∈ R
2
∣

∣ b+ (1 + λ)s > 0, b+ (1− µ)s > 0
}

.

So, whenever (b, s) ∈ S
1
(here A denotes the closure of a set A), the investor can liquidate the

stock holdings and end up with non-negative wealth, even if a crash occurs momentarily. The
boundaries of the solvency regions are parametrized as follows:

∂S1
− := ∂S0

− :=
{

(b, s) ∈ R
2
∣

∣s ≤ 0, b+ (1 + λ)s = 0
}

,

∂S1
+ :=

{

(b, s) ∈ R
2
∣

∣s > 0, b+ (1− µ)(1− β)s = 0
}

,

∂S0
+ :=

{

(b, s) ∈ R
2
∣

∣s > 0, b+ (1− µ)s = 0
}

.

Figure 1 sketches the location of the boundaries of the solvency regions for large transaction
costs (to emphasize the qualitative features of S1 and S0).

Figure 1: Boundaries of the solvency regions for µ = 0.2, λ = 0.15 and β = 0.25.

Let t ∈ [0, T ]. A pre-crash trading strategy π is called admissible for initial positions

(b, s) ∈ S
1
, if the pair (B,S) given by Equations (3) and (6) with initial values B(t−) = b and

S(t−) = s and for τ ≡ ∞ takes values in S
1
for all u ∈ [t, T ]. The set of all admissible pre-crash

trading strategies of this form is denoted by A(t, b, s).
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A family of post-crash strategies π̌ = {(Ľτ , M̌ τ )}τ∈B(t) corresponding to a pre-crash strategy
π ∈ A(t, b, s) is called admissible, if for every τ ∈ B(t) and for every u ∈ [τ, T ] ∩ [t, T ], the

corresponding pair (B,S) given by Equations (3) to (8) takes values in S
0
. The set of all

admissible families of post-crash trading strategies of this form is denoted by Ǎ(π).
With this, the objective of this paper is to maximize the worst-case expected utility of

terminal wealth, i.e.

sup
π∈A(0,b,s)

π̌∈Ǎ(π)

inf
τ∈B(0)

E
[

Up

(

Xπ,π̌,τ
0,b,s (T )

)]

(9)

for a utility function Up : (0,∞) → R of the form

Up(x) :=

{

xp/p if p < 1, p 6= 0,

log(x) if p = 0.

We extend Up to [0,∞) by setting

Up(0) :=

{

0 if 0 < p < 1,

−∞ if p ≤ 0.

It is sometimes helpful to interpret the optimization problem as a game between the investor
and the market. The investor decides on a trading strategy and aims to maximize expected
utility of terminal wealth, whereas the market decides on a crash strategy with the objective of
minimizing the investor’s expected utility of terminal wealth.

Let 0 ≤ t < T , (b, s) ∈ S
1
and let π ∈ A(t, b, s), π̌ ∈ Ǎ(π) and τ ∈ B(t). We define the

performance criterion of π, π̌ and τ by

J (π, π̌, τ, t, b, s) := E
[

Up

(

Xπ,π̌,τ
t,b,s (T )

)]

.

The worst-case bound of π and π̌ is defined as

W(π, π̌, t, b, s) := inf
τ∈B(t)

J (π, π̌, τ, t, b, s).

Finally, the value function in the crash-threatened market is defined by

V(t, b, s) := sup
π∈A(t,b,s)

π̌∈Ǎ(π)

W(π, π̌, t, b, s).

Let (Ľ, M̌) be a single admissible post-crash strategy starting in t for initial values (b, s) ∈ S
0
.

Abusing notations, we write π̌ = (Ľ, M̌) and we denote the set of all admissible post-crash
strategies of this form by Ǎ(t, b, s). Then, we can define the performance criterion of π̌ in the
crash-free market by

J̌ (π̌, t, b, s) := E
[

Up

(

X π̌
t,b,s(T )

)]

.

Similarly, the value function in the crash-free market is denoted by

V̌(t, b, s) := sup
π̌∈Ǎ(t,b,s)

J̌ (π̌, t, b, s).

3 Basic properties of the value function

In this section we analyze some of the basic properties of the value function V . Note that most
of the results in this section are very similar to the results obtained by Shreve and Soner [30].
We therefore keep the exposition to a minimum.
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3.1 Some basic properties of the value function

Since the investor can always liquidate the stock position immediately at initial time t and stop
trading afterwards, we naturally obtain a lower bound on the value function. Furthermore, this
strategy is the only admissible (and hence optimal) strategy on the boundary of the solvency
region.

Lemma 3.1. 1. Let (b, s) ∈ ∂S1. Then the only admissible strategy is to instantly jump to
the position (0, 0) and remain there.

2. For (b, s) ∈ S
1
, the trading strategy of instantly closing the stock position and no trading

afterwards is an admissible strategy. Furthermore, for every (b, s) ∈ S
1
, we have

V(t, b, s) ≥

{

Up

(

(b+ (1 + λ)s) er(T−t)
)

, if s ≤ 0,

Up

(

(b+ (1− µ)(1− β)s) er(T−t)
)

, if s > 0.
(10)

Proof. 1. The proof is very similar to the proof of [30, Remark 2.1] by Shreve and Soner and
will thus not be reproduced here. The only additional difficulty arises due to the presence
of crashes. This can be handled as follows:

a) If (b, s) ∈ ∂S1
−, then s ≤ 0. In this case a crash would be beneficial for the investor

in the sense that the net wealth increases. Thus, it cannot be optimal from the market’s
point of view to trigger a crash. At this point the proof follows exactly as in Shreve and
Soner [30, Remark 2.1].

b) If (b, s) ∈ ∂S1
+, then it must be optimal for the market to crash immediately. To

see this, note that in this case the investor’s position after the crash at time t is given
by (b, (1 − β)s) ∈ ∂S0

+. Since we are in the crash-free market at this point, following
Shreve and Soner [30, Remark 2.1], we can conclude that the only admissible strategy is
to close the stock position and that the crash is indeed optimal, since it leads to a wealth
of X(T ) = 0.

2. See Shreve and Soner [30, Remark 2.2]. Note that for s > 0, the worst-case crash scenario is
an immediate crash at time t, since afterwards, once the stock position is closed, crashes
do not affect the net wealth. This explains the factor (1 − β) in the second case of
Inequality (10).

If (b, s) ∈ S
1
, Lemma 3.1 allows us to restrict the sets of admissible strategies A(t, b, s) and

Ǎ(π) to those strategies π and π̌, which have a worst-case bound satisfying

W(π, π̌, t, b, s) ≥

{

Up

(

(b+ (1 + λ)s)er(T−t)
)

if s ≤ 0,

Up

(

(b+ (1− µ)(1− β)s)er(T−t)
)

if s > 0.

Misusing notations, we denote the sets of such strategies again by A(t, b, s) and Ǎ(π). We
therefore have for all pre-crash strategies π ∈ A(t, b, s) and post-crash strategies π̌ ∈ Ǎ(π):

W(π, π̌, t, b, s) = −∞, if and only if (b, s) ∈ ∂S1 and p ≤ 0.

The next proposition gathers some further properties of the value function V .

Lemma 3.2. 1. Let γ ∈ [1− µ, 1 + λ] and define

ϕγ(t, b, s) :=
1

p
(b+ γs)p exp

(

p

[

r +
(α− r)2

2(1− p)σ2

]

(T − t)

)
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if p < 1, p 6= 0 and

ϕγ(t, b, s) := log(b+ γs) +

[

r +
(α− r)2

2σ2

]

(T − t)

if p = 0. Then V ≤ V̌ ≤ ϕγ < +∞.

2. For every (t, b, s) ∈ [0, T ]× S
1
, we have

V(t, b, s) ≤ V̌(t, b, (1− β)s). (11)

3. Let t ∈ [0, T ]. Then V(t, ·, ·) is concave on S
1
. In particular, V(t, ·, ·) is locally Lipschitz-

continuous on S1.

4. For every κ > 0 and (b, s) ∈ S
1
, we have

V(t, κb, κs) =

{

κpV(t, b, s) if p < 1, p 6= 0,

log(κ) + V(t, b, s) if p = 0.

Proof. 1. The relation V ≤ V̌ is obvious. The inequality V̌ ≤ ϕγ can be proved by similar
arguments as in Shreve and Soner [30, Proposition 5.1], since ϕγ is a classical supersolution
of the Dynamic Programming Equation (27).

2. Consider the crash time τ∗ ≡ t. Then

V(t, b, s) ≤ sup
π∈A(t,b,s)

π̌∈Ǎ(π)

E
[

Up

(

Xπ,π̌,τ∗

t,b,s (T )
)]

= sup
π̌∈Ǎ(t,b,(1−β)s)

E
[

Up

(

X π̌
t,b,(1−β)s(T )

)]

= V̌
(

t, b, (1− β)s
)

.

3. The concavity is inherited from the utility function Up. The details can be found in Shreve
and Soner [30, Proposition 3.1]. Note that every concave function is locally Lipschitz-
continuous in the interior of its domain.

4. The result follows from the linearity of the bond and stock dynamics and using the ho-
motheticity of Up, see also Shreve and Soner [30, Proposition 3.3].

Remark 3.3. The interpretation of Inequality (11) is not to be confused with a similar result
which holds in the absence of costs. In this case, it is known that the optimal trading strategy
renders the investor indifferent about the occurrence of a crash. That is, if π∗ denotes the
optimal pre-crash strategy without transaction costs, v and v̌ the value functions in the absence
of costs, and if x denotes the investor’s total wealth (that is x = b+ s) at time t, then

v(t, x) = v̌(t, (1− βπ∗
t )x)

holds. For the transaction cost problem, we cannot expect the investor to be indifferent about
the occurrence of a crash whenever

V(t, b, s) = V̌(t, b, (1− β)s)

holds, since the right-hand side of the equation does not explicitly depend on the optimal trading
strategy before the crash! However, we can expect that if we have equality, then the investor is
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usually exposed to the threat of a crash. More specifically, we expect that indifference holds only
on the boundary of the set

{

(b, s) ∈ S1 : V(t, b, s) = V̌(t, b, (1− β)s)
}

,

and that an optimal crash time from the market’s point of view (assuming that the investor also
acts optimally) is given by the first hitting time of this set, i.e.

τ∗ := inf
{

u ≥ t : V
(

u,B(u), S(u)
)

= V̌
(

u,B(u), (1− β)S(u)
)

}

.

This is to be expected by the classical optimal stopping theory (see e.g. Peskir and Shiryaev [28]).

3.2 Continuity of the value function

The aim of this section is to prove that V and V̌ are continuous. We prove the continuity of V
in detail, whereas the continuity of V̌ is proved in Belak et al. [5], or follows by imitating the
arguments leading to the continuity of V . We start by proving a time-shifting property of V ,
which will allow us to establish the time-continuity by varying the terminal time T instead of
the initial time t.

Lemma 3.4. Denote the value function corresponding to the terminal time T by VT . Let
t ∈ [0, T ] and h ≥ −t. Then

VT (t, b, s) = VT+h(t+ h, b, s), (b, s) ∈ S1.

Proof. We denote by AT (t, b, s), ǍT (π), and BT (t) the respective sets of admissible strategies
corresponding to terminal time T . We will show that there is a one-to-one correspondence
between the sets AT (t, b, s) and AT+h(t + h, b, s). By similar arguments, one can then show
that there is also a one-to-one correspondence between ǍT (π) and ǍT+h(π), and BT (t) and
BT+h(t+ h), respectively. From this, it easily follows that VT (t, b, s) = VT+h(t+ h, b, s).

Let therefore π = (L,M) ∈ AT (t, b, s). Since Ω is assumed to be the canonical space and
since L and M are F

t-adapted, it follows that we can write

L(u, ω) = L
(

u, ω([t+ ·] ∧ u)− ω(t)
)

, M(u, ω) = M
(

u, ω([t+ ·] ∧ u)− ω(t)
)

,

where ω ∈ Ω and u ∈ [t, T ]. Now define

Lh(u, ω) := L
(

u− h, ω([t+ h+ ·] ∧ u)− ω(t+ h)
)

, ω ∈ Ω, u ∈ [t+ h, T + h],

Mh(u, ω) := M
(

u− h, ω([t+ h+ ·] ∧ u)− ω(t+ h)
)

, ω ∈ Ω, u ∈ [t+ h, T + h].

Then (Lh,Mh) is F
t+h-adapted and hence (Lh,Mh) ∈ At+h(t + h, b, s). Since we can similarly

construct admissible strategies for terminal time T from strategies with terminal time T + h,
there is a one-to-one correspondence between the two sets AT (t, b, s) and AT+h(t+ h, b, s).

Lemma 3.5. Let π ∈ A(t, b, s), π̌ ∈ Ǎ(π), and τ ∈ B(t) and denote

B(u) := Bπ,π̌,τ
t,b,s (u), S(u) := Sπ,π̌,τ

t,b,s (u).

Assume that τ is such that S(τ) ≤ S(τ−).

1. There exists a constant C0 > 0, such that

E [B(T ) + S(T )] = E [|B(T ) + S(T )|] ≤ C0(b+ s).
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2. There exists a constant C1 > 0, such that

E
[

(B(T ) + S(T ))2
]

≤ C1(1 + b2 + s2).

Proof. We will frequently make use of the fact that on S1 and S0, we have

s ≤ |s| ≤ C(b+ s), b ≤ |b| ≤ C(b+ s)

for C = 1+max{1/µ, 1/λ}. We note further that by Equations (3)-(8) and by the condition on
τ , it can easily be verified that for every stopping time θ ≤ T , we have

B(θ) + S(θ) ≤ b+ s+

∫ θ

t
rB(u) + αS(u) du+

∫ θ

t
σS(u) dW (u).

To see this, assume for simplicity that the crash time τ satisfies τ ≤ θ. Using the integral
representation for B, we obtain

B(θ) = b+

∫ θ

t
rB(u) du− (1 + λ)[L(τ) + Lτ (θ)] + (1− µ)[M(τ) +M τ (θ)].

For S(θ), we obtain similarly

S(θ) = S(τ) +

∫ θ

τ
αS(u) du+

∫ θ

τ
σS(u) dW (u) + Lτ (θ)−M τ (θ). (12)

Now, by assumption, we have S(τ) ≤ S(τ−) and, again by the integral representation of S(τ−),
we have

S(τ) ≤ S(τ−) = s+

∫ τ

t
αS(u) du+

∫ τ

t
σS(u) dW (u) + L(τ)−M(τ).

Using this in (12) yields

S(θ) ≤ s+

∫ θ

t
αS(u) du+

∫ θ

t
σS(u) dW (u) + Lτ (θ)−M τ (θ) + L(τ)−M(τ),

and upon adding B(θ) on both sides of the inequality we see that

B(θ) + S(θ) ≤ b+ s+

∫ θ

t
rB(u) + αS(u) du+

∫ θ

t
σS(u) dW (u)

− λ[L(τ) + Lτ (θ)]− µ[M(τ) +M τ (θ)]

≤ b+ s+

∫ θ

t
rB(u) + αS(u) du+

∫ θ

t
σS(u) dW (u).

1. Let τn := inf{u ≥ t : |S(u)| ≥ n} ∧ T . Setting K := C(r + α) ∧ 0, we have

B(τn) + S(τn) ≤ b+ s+

∫ τn

t
rB(u) + αS(u) du+

∫ τn

t
σS(u) dW (u)

≤ b+ s+K

∫ τn

t
B(u) + S(u) du+ σ

∫ τn

t
S(u) dW (u).

Taking expectations on both sides implies that

E [B(τn) + S(τn)] ≤ b+ s+KE

[
∫ τn

t
B(u) + S(u) du

]

.
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Since B(u) + S(u) ≥ 0, this implies that

E [B(τn) + S(τn)] ≤ b+ s+KE

[
∫ T

t
B(u) + S(u) du

]

.

Taking the limit n → ∞ and using that τn → T , this implies that

E [B(T ) + S(T )] ≤ b+ s+K

∫ T

t
E [B(u) + S(u)] du,

and we conclude by Gronwall’s inequality.

2. We have

(B(T ) + S(T ))2 ≤ (1 +B(T ) + S(T ))2

≤

(

1 + b+ s+K

∫ T

t
B(u) + S(u) du+ σ

∫ T

t
S(u) dW (u)

)2

.

Using the fact that (a + b)2 ≤ 2a2 + 2b2, this implies that there exists a constant L > 0,
such that

(B(T ) + S(T ))2

≤ L

(

1 + b2 + s2 +KT

∫ T

t
(B(u) + S(u))2 du+ σ2

[
∫ T

t
S(u) dW (u)

]2
)

. (13)

Note that

E

[

(
∫ T

t
S(u) dW (u)

)2
]

= E

[
∫ T

t
S(u)2 du

]

≤ C2E

[
∫ T

t
(B(u) + S(u))2 du

]

.

Hence, taking expectation in Inequality (13), we see that

E
[

(B(T ) + S(T ))2
]

≤ L

(

1 + b2 + s2 +KT

∫ T

t
E
[

(B(u) + S(u))2
]

du

+ σ2C2

∫ T

t
E
[

(B(u) + S(u))2
]

du

)

,

and we can again conclude by Gronwall’s inequality.

Remark 3.6. Since we take a worst-case perspective, the condition on τ in Lemma 3.5 poses
no restriction to our subsequent analysis, since clearly, an optimal crash should never increase
the net wealth. We therefore assume from now on that this condition always holds.

We can now prove the continuity in time. As a first step, we prove the result in the case
0 < p < 1 and then extend the result to p ≤ 0 by means of an approximation procedure.

Proposition 3.7. Assume that 0 < p < 1 and let (b, s) ∈ S
1
be fixed. Then V(·, b, s) is

uniformly continuous on [0, T ].

Proof. By Lemma 3.4, we have

|VT (t, b, s)− VT (t+ h, b, s)| = |VT (t, b, s)− VT−h(t, b, s)|

for every h ≥ −t, and hence in order to prove continuity in t it suffices to prove continuity in T .
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1. We first show that VT is increasing in T . Let therefore T0 < T1 and fix t ∈ [0, T0].
Let π0 ∈ AT0

(t, b, s), π̌0 ∈ Ǎ(π0) and define π1 and π̌1 such that π1 = π0 and π̌1 = π̌0
(componentwise) on [t, T0) and such that Sπ1,π̌1(u) = 0 on [T0, T1] (i.e. liquidation of the
stock position at time T0 and no trading afterwards). Then π1 ∈ AT1

(t, b, s), π̌1 ∈ Ǎ(π1)
and, noticing that every crash time for time horizon T0 is also admissible for horizon T1,
it follows for every τ ∈ BT0

(t) that

Xπ1,π̌1,τ
t,b,s (T1) = er(T1−T0)Xπ0,π̌0,τ

t,b,s (T0) ≥ Xπ0,π̌0,τ
t,b,s (T0). (14)

Thus, since the stock position is closed on [T0, T1] and hence the worst-case bound of
(π1, π̌1) is not attained for stopping times with values in this interval, we get

WT1
(π1, π̌1, t, b, s) ≥ WT0

(π0, π̌0, t, b, s),

and since π0 and π̌0 were chosen arbitrarily it follows that

VT1
(t, b, s) ≥ VT0

(t, b, s).

2. Let ε > 0. We are left with showing that

VT1
(t, b, s)− VT0

(t, b, s) ≤ ε,

if T1 − T0 is sufficiently small. Choose π1 ∈ AT1
(t, b, s) and π̌1 ∈ Ǎ(π1) to be ε-optimal,

i.e.
WT1

(π1, π̌1, t, b, s) + ε ≥ VT1
(t, b, s).

Denote by π0 and π̌0 the restrictions of the strategies π1 and π̌1 to [t, T0], then π0 ∈
AT0

(t, b, s) and π̌0 ∈ Ǎ(π0). Furthermore, there exists a crash time τ ε ∈ BT0
(t) which is

ε-optimal in the sense that

WT0
(π0, π̌0, t, b, s) + ε ≥ JT0

(π0, π̌0, τ
ε, t, b, s)

and since it is possible to consider BT0
(t) ⊂ BT1

(t), τ ε also defines an admissible crash
time for time horizon T1. Then we obtain

VT1
(t, b, s)− VT0

(t, b, s) ≤ WT1
(π1, π̌1, t, b, s)−WT0

(π0, π̌0, t, b, s) + ε

≤ JT1
(π1, π̌1, τ

ε, t, b, s)− JT0
(π0, π̌0, τ

ε, t, b, s) + 2ε

≤ E
[

Up

(

Xπ1,π̌1,τε

t,b,s (T1)
)

1A

]

− E
[

Up

(

Xπ0,π̌0,τε

t,b,s (T0)
)

1A

]

+ 2ε

= E
[

Up

(

Xπ1,π̌1,τε

t,b,s (T1)1A

)

− Up

(

Xπ0,π̌0,τε

t,b,s (T0)1A

)]

+ 2ε

≤ E
[

Up

([

Xπ1,π̌1,τε

t,b,s (T1)−Xπ0,π̌0,τε

t,b,s (T0)
]

1A

)]

+ 2ε

≤ Up

(

E
[(

Xπ1,π̌1,τε

t,b,s (T1)−Xπ0,π̌0,τε

t,b,s (T0)
)

1A

])

+ 2ε, (15)

where A := {Xπ1,π̌1,τε

t,b,s (T1)−Xπ0,π̌0,τε

t,b,s (T0) > 0}. Here, it has been used that Up(X(T1))−
Up(X(T0)) ≤ 0 on Ac (to obtain the third line), that Up(0) = 0 (fourth line). Finally, the
subadditivity of Up (fifth line) and Jensen’s inequality (last line) have been used.

Next, since (π1, π̌1) and (π0, π̌0) coincide on [t, T0] and since τ ε is [t, T0] ∪ {+∞}-valued,
it is not hard to see that
(

Xπ1,π̌1,τε

t,b,s (T1)−Xπ0,π̌0,τε

t,b,s (T0)
)

1A

≤ (1 + λ)
∣

∣

∫ T1

T0

rB(u) + αS(u) du
∣

∣+ (1 + λ)
∣

∣

∫ T1

T0

σS(u) dW (u)
∣

∣
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with
B(u) := Bπ1,π̌1,τε

t,b,s (u), S(u) := Sπ1,π̌1,τε

t,b,s (u).

With this, we see that there exists a constant C > 0 (which is allowed to change from line
to line), such that

E
[(

Xπ1,π̌1,τε

t,b,s (T1)−Xπ0,π̌0,τε

t,b,s (T0)
)

1A

]

≤ (1 + λ)E

[

∣

∣

∫ T1

T0

rB(u) + αS(u) du
∣

∣+
∣

∣

∫ T1

T0

σS(u) dW (u)
∣

∣

]

≤ CE

[
∫ T1

T0

|B(u) + S(u)| du

]

+ CE

[

∫ T 1

T0

S(u)2 du

]1/2

≤ C

∫ T1

T0

E[B(u) + S(u)] du+ C

[

∫ T 1

T0

E[(B(u) + S(u))2] du

]1/2

By Lemma 3.5, we can hence find a constant K > 0 independent of π1, π̌1 and τ ε, such
that

E
[(

Xπ1,π̌1,τε

t,b,s (T1)−Xπ0,π̌0,τε

t,b,s (T0)
)

1A

]

≤ K(b+s)(T1−T0)+K(1+b2+s2)1/2(T1−T0)
1/2.

Combining this with Inequality (15) yields the desired result.

For p ≤ 0, we define

U j
p (x) := Up(x+ 1/j), Ũ j

p (x) = U j
p (x)− U j

p (0), x ∈ [0,∞),

where j ∈ N. Note that, with this, Ũ j
p (0) = 0. We denote by Vj the value function corresponding

to U j
p (x). It can then be verified that Vj(·, b, s) is also uniformly continuous on [0, T ] for all (b, s)

fixed. Indeed, in the proof of Proposition 3.7, we only need to replace Up by Ũ j
p in Inequality (15)

to make the same proof work.

Lemma 3.8. Let p ≤ 0 and fix (b, s) ∈ S1. Then

lim
j→∞

Vj(t, b, s) = V(t, b, s)

uniformly in t.

Proof. First, note that the family
{

Up

(

Xπ,π̌,τ
t,b,s (T )

)

}

t∈[0,T ],π∈A(t,b,s),π̌∈Ǎ(π),τ∈B(t)
(16)

is uniformly integrable. Indeed, choose q > 1 arbitrary. Then

E
[

∣

∣Up

(

Xπ,π̌,τ
t,b,s (T )

)∣

∣

q
]

=
pq

|p|q
E
[

Upq

(

Xπ,π̌,τ
t,b,s (T )

)

]

and since

Upq

(

b+min{(1− µ)(1− β)s, (1 + λ)s}
)

≤ E
[

Upq

(

Xπ,π̌,τ
t,b,s (T )

)

]

≤
1

pq
(b+ s)pq exp

(

pq

[

r +
(α− r)2

2(1− pq)σ2

]

T

)
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by Lemma 3.2.1, the uniform integrability follows.
Let us now fix some j ∈ N, (t, b, s) ∈ [0, T ]×S1, π ∈ A(t, b, s), π̌ ∈ Ǎ(π), and τ ∈ B(t). Let

furthermore δ > 0 be such that U j
p (δ) ≤ 0. We calculate

0 ≤ E
[

U j
p

(

Xπ,π̌,τ
t,b,s (T )

)

]

− E
[

Up

(

Xπ,π̌,τ
t,b,s (T )

)

]

= E
[(

U j
p

(

Xπ,π̌,τ
t,b,s (T )

)

− Up

(

Xπ,π̌,τ
t,b,s (T )

)

)

1{Xπ,π̌,τ

t,b,s
(T )>δ}

]

+ E
[(

U j
p

(

Xπ,π̌,τ
t,b,s (T )

)

− Up

(

Xπ,π̌,τ
t,b,s (T )

)

)

1{Xπ,π̌,τ

t,b,s
(T )≤δ}

]

≤ U j
p (δ)− Up(δ)− E

[

Up

(

Xπ,π̌,τ
t,b,s (T )

)

1{Xπ,π̌,τ

t,b,s
(T )≤δ}

]

,

where the last inequality follows from the fact that the difference U j
p (x) − Up(x) on [δ,∞) is

maximal at δ, and since U j
p (x) ≤ 0 for all x ≤ δ. Let now ε > 0. By the uniform integrability

of (16), it follows that if δ is small enough, then

∣

∣

∣
E
[

Up

(

Xπ,π̌,τ
t,b,s (T )

)

1{Xπ,π̌,τ

t,b,s
(T )≤δ}

]∣

∣

∣
≤ ε/2,

uniformly in t, π, π̌ and τ . Next, for this choice of δ, there exists J ∈ N large enough, such that

U j
p (δ)− Up(δ) ≤ ε/2

for all j ≥ J . In total, this implies that

sup
t∈[0,T ]

sup
π∈A(t,b,s),

π̌∈Ǎ(π)

inf
τ∈B(t)

∣

∣

∣
E
[

U j
p

(

Xπ,π̌,τ
t,b,s (T )

)

]

− E
[

Up

(

Xπ,π̌,τ
t,b,s (T )

)

]∣

∣

∣
≤ ε

for all j ≥ J , from which the result follows.

Proposition 3.9. Assume that p ≤ 0 and let (b, s) ∈ S1 be fixed. Then V(·, b, s) is uniformly
continuous on [0, T ].

Proof. Let ε > 0, t ∈ [0, T ], and let tn, n ∈ N, be a sequence in [0, T ], converging to t. By
Lemma 3.8, there exists j ∈ N, such that

sup
t∈[0,T ]

|V(t, b, s)− Vj(t, b, s)| ≤ ε/3

and by the continuity of Vj , there exists some N ∈ N, such that

|Vj(tn, b, s)− Vj(t, b, s)| ≤ ε/3

for all n ≥ N . Hence

|V(tn, b, s)− V(t, b, s)|

≤ |V(tn, b, s)− Vj(tn, b, s)|+ |Vj(tn, b, s)− Vj(t, b, s)|+ |Vj(t, b, s)− V(t, b, s)| ≤ ε

for all n ≥ N .

Putting the pieces together, we can prove the joint continuity of V and V̌.

Theorem 3.10. The value function V is continuous.
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Proof. Since V(t, b, s) is locally bounded in a small neighborhood of (b, s) uniformly in t, the
local Lipschitz continuity (Lemma 3.2.3) of V holds uniformly in t. With this, it is easy to prove
the joint continuity on [0, T ]× S1. Indeed, let t ∈ [0, T ] and (b, s) ∈ S1, and choose a sequence
(tn, bn, sn) converging to (t, b, s). Note that, eventually, (bn, sn) is contained in a compact subset
K of S1. By the local Lipschitz continuity of V , there exists a constant L > 0 such that

|V(u, bn, sn)− V(u, b, s)| ≤ L(|bn − b|+ |sn − s|)

for all u ∈ [0, T ] and n sufficiently large. Hence

lim
n→∞

|V(tn, bn, sn)− V(t, b, s)| ≤ lim
n→∞

|V(tn, bn, sn)− V(tn, b, s)|+ |V(tn, b, s)− V(t, b, s)|

= lim
n→∞

L(|bn − b|+ |sn − s|) + |V(tn, b, s)− V(t, b, s)| = 0.

In order to show that the continuity of V extends to the boundary of S1, we let (t, b, s) ∈
[0, T ]× ∂S1 and let (tn, bn, sn), n ∈ N, be a sequence converging to (t, b, s). If s ≤ 0, we have

lim
n→∞

V(tn, bn, sn) ≤ lim
n→∞

ϕ1+λ(tn, bn, sn) = Up(0)

and if s > 0, we have

lim
n→∞

V(tn, bn, sn) ≤ lim
n→∞

V̌(tn, bn, (1− β)sn) ≤ lim
n→∞

ϕ1−µ(tn, bn, (1− β)sn) = Up(0).

Corollary 3.11. The value function V̌ is continuous.

Proof. This follows by imitating the arguments leading to the continuity of V .

4 The dynamic programming principle

Equipped with the continuity of the value function, we are now in the position to prove the
dynamic programming principle. The main problem arising in the proof is the construction of
strategies πε ∈ A(t, b, s) and π̌ε ∈ A(πε) which are ε-optimal in the sense that

V(t, b, s) ≤ W(πε, π̌ε, t, b, s) + ε.

The existence of such strategies is clear if the initial time t as well as the initial bond and
stock holdings b and s are deterministic. The first aim is the construction of such strategies for
random t, b, s.

4.1 Existence of ε-optimal strategies

The problem with the construction of ε-optimal strategies is the following. Denote by τ a
random initial time and by (B,S) a random initial position of the investor. Then clearly, for
every ω ∈ Ω, we can find a strategy πε

ω ∈ A(τ(ω), B(ω), S(ω)) which is ε-optimal. However, if
we compose such strategies πε

ω into a single strategy πε, then it is not clear if πε ∈ A(τ, B, S)
due to measurability issues.

We start by constructing suitable partitions of (0, T ]×S0 and (0, T ]×S1, respectively. For
this, let ε > 0 and let (t, b, s) ∈ (0, T ] × S1. By the continuity of V , there exists r(t, b, s) > 0,
such that

|V(t̄, b̄, s̄)− V(t̂, b̂, ŝ)| ≤ ε
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for all (t̄, b̄, s̄), (t̂, b̂, ŝ) ∈ (t − r(t, b, s), t] × K̃(b, s; r(t, b, s)), where K̃(b, s; r(t, b, s)) is the set of
all (b̄, s̄), such that ‖(b, s)− (b̄, s̄)‖2 < r(t, b, s), and such that there exist l,m ≥ 0 with

b = b̄+ (1− µ)m− (1 + λ)l, s = s̄−m+ l,

i.e. (b, s) can be reached by a transaction (l,m) from (b̄, s̄). With this, the family {(t −
r(t, b, s), t]×K̃(b, s; r(t, b, s))}(t,b,s)∈(0,T ]×S1 forms an open covering of (0, T ]×S1 (in the topology

induced by the half open sets of the form (u, t]× K̃(b, s; r)), and hence there exists a countable
sub-covering (t̃i − r(t̃i, b̃i, s̃i), t̃i] × K̃(b̃i, s̃i; r(t̃i, b̃i, s̃i)), i ∈ N. By the usual method of taking
appropriate set differences, it follows that we can construct a sequence (ti, bi, si) ∈ (0, T ]× S1,
i ∈ N, and a corresponding sequence of sets K1

i := K1(ti, bi, si), i ∈ N, such that

|V(t̄, b̄, s̄)− V(t̂, b̂, ŝ)| ≤ ε (17)

for all (t̄, b̄, s̄), (t̂, b̂, ŝ) ∈ K1
i , such that there exist l,m ≥ 0 with

bi = b+ (1− µ)m− (1 + λ)l, si = s−m+ l,

for all (t, b, s) ∈ K1
i , and such that the K1

i form a partition of (0, T ]×S1. In the same way, we
can construct a sequence (ťi, b̌i, ši), i ∈ N, and a corresponding partition K0

i , i ∈ N, of (0, T ]×S0

with the same properties, but where the continuity property (17) holds for V̌ instead of V .

Lemma 4.1. Let ε > 0 and let θ be a [t, T ]-valued stopping time. Fix an arbitrary pre-crash
trading strategy π ∈ A(t, b, s) and a crash time τ ∈ B(t). Then there exists πε ∈ A(t, b, s) which
coincides with π on [t, τ ∧ θ) and a post-crash strategy π̌ε,τ corresponding to πε and τ such that

E
[

Up

(

Xπε,π̌ε,τ ,τ
t,b,s (T )

)∣

∣

∣
F t
(

(τ ∧ θ)−
)

]

+ ε

≥ V̌
(

τ, B(τ−), (1− β)S(τ−)
)

1{τ≤θ} + V
(

θ,B(θ−), S(θ−)
)

1{τ>θ}.

Proof. Let ε > 0. We let {(ťi, b̌i, ši)}i∈N and {K0
i }i∈N be the sequences constructed above,

such that the K0
i form a partition of (0, T ] × S0. For every i ∈ N, there exists a strategy

πi ∈ Ǎ(ťi, b̌i, ši) (in the crash-free world) such that

J̌ (πi, ťi, b̌i, ši) ≥ V̌(ťi, b̌i, ši)− ε.

Let now h ∈ [0, δ) such that (ťi − h, b̌i, ši) ∈ K0
i . As in the proof of Lemma 3.4, we can

shift the strategy πi from [ťi, T ] to [ťi − h, T − h] and we extend this new strategy, denoted
by π̄i, in such a way, that the stock position of the investor is closed on [T − h, T ]. Then
π̄i ∈ Ǎ(ťi − h, b̌i, ši) and

J̌T (πi, ťi, b̌i, ši)− J̌T (π̄i, ťi − h, b̌i, ši) ≤ J̌T (πi, ťi, b̌i, ši)− J̌T−h(π̄i, ťi − h, b̌i, ši) = 0. (18)

For every (b, s) ∈ K0
i (b̌i, ši), there exist (by construction) some m, l ≥ 0, such that

b̌i = b− (1 + λ)l + (1− µ)m, ši = s+ l −m,

i.e. (b̌i, ši) can be reached by a transaction from (b, s). Define

π̃i = π̄i + (l,m).

Then π̃i ∈ Ǎ(ťi − h, b, s). By the construction of π̃i, we have

J̌ (π̃i, ťi − h, b, s) = J̌ (π̄i, ťi − h, b̌i, ši), (19)
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since the paths of X π̃i and X π̄i coincide after the initial transaction at time ťi − h. In total, we
have therefore

J̌ (π̃i, ťi − h, b, s) = J̌ (π̄i, ťi − h, b̌i, ši) ≥ J̌ (πi, ťi, b̌i, ši) ≥ V̌(ťi, b̌i, ši)− ε ≥ V̌(ťi − h, b, s)− 2ε,

i.e. π̃i is 2ε-optimal. The first equality is just Equation (19). The following two inequalities
follow from Inequality (18) and the ε-optimality of πi, respectively. The last inequality is a
consequence of the continuity of V̌ and the construction of K0

i .
Let now θ be a [t, T ]-valued stopping time, π ∈ A(t, b, s) and fix an arbitrary crash time

τ ∈ B(t). We can assume without loss of generality that (τ, B(τ−), (1 − β)S(τ−)) ∈ (0, T ] ×
S0 and (θ,B(θ), S(θ)) ∈ (0, T ] × S1, since we know the optimal strategies on ∂S1 and ∂S0

(Lemma 3.1.1), and since F(0) is trivial. We denote by Ci the set {τ ≤ θ} intersected with the
event

(τ, Bπ(τ−), (1− β)Sπ(τ−)) ∈ K0
i .

By the construction of K0
i , there exist (random) li,mi ≥ 0 solving

b̌i = Bπ(τ−)− (1 + λ)li + (1− µ)mi,

ši = (1− β)Sπ(τ−) + li −mi.

Denote hi = τ − ťi. Using li,mi and hi, we can construct strategies π̃C
i as above which are

2ε-optimal on Ci. Similarly, if we denote by Di the set {τ > θ} intersected with the event

(θ,Bπ(θ−), Sπ(θ−)) ∈ K1
i ,

we can construct pre-crash strategies π̃D
i and post-crash strategies π̃D,τ

i corresponding to π̃D
i

and τ which are 2ε-optimal on Di. Define

πε(u) := π(u)1{u<τ∧θ} + 1{u≥τ∧θ}

∞
∑

i=1

π̃D
i (u)1Di

,

π̌ε,τ (u) := 1{u≥τ∧θ}

∞
∑

i=1

[

π̃C
i (u)1Ci

+ π̃D,τ
i (u)1Di

]

.

Then πε ∈ A(t, b, s) and π = πε on [t, τ ∧ θ). Furthermore, π̌ε,τ is a post-crash strategy
corresponding to πε and τ . On the set {θ < τ}, by the 2ε-optimality of πε and π̌ε,τ , we have

V
(

θ,B(θ−), S(θ−)
)

≤ E
[

Up

(

Xπε,π̌ε,τ ,τ
θ,B(θ−),S(θ−)(T )

)]

+ 2ε

= E
[

Up

(

Xπε,π̌ε,τ ,τ
t,b,s (T )

)∣

∣

∣
F t(θ−)

]

+ 2ε

= E
[

Up

(

Xπε,π̌ε,τ ,τ
t,b,s (T )

)
∣

∣

∣
F t((τ ∧ θ)−)

]

+ 2ε. (20)

Similarly, on the set {θ ≥ τ}, we have

V̌
(

τ, B(τ−), (1− β)S(τ−)
)

≤ J̌
(

π̌ε,τ , τ, B(τ−), (1− β)S(τ−)
)

+ 2ε

= E
[

Up

(

X π̌ε,τ ,τ
τ,B(τ−),(1−β)S(τ−)(T )

)]

+ 2ε

= E
[

Up

(

Xπε,π̌ε,τ ,τ
t,b,s (T )

)∣

∣

∣
F t(τ−)

]

+ 2ε

= E
[

Up

(

Xπε,π̌ε,τ ,τ
t,b,s (T )

)∣

∣

∣
F t((τ ∧ θ)−)

]

+ 2ε. (21)

18



Combining Inequalities (20) and (21), we see that

E
[

Up

(

Xπε,π̌ε,τ ,τ
t,b,s (T )

)
∣

∣

∣
F t
(

(τ ∧ θ)−
)

]

+ 2ε

≥ V̌
(

τ, B(τ−), (1− β)S(τ−)
)

1{τ≤θ} + V
(

θ,B(θ−), S(θ−)
)

1{τ>θ},

which concludes the proof.

Remark 4.2. Note that we can make the strategies π̄i in the previous proof perform worse (by
both buying and selling at terminal time). Hence, instead of Inequality (18), we could even
obtain

J̌ (πi, ťi, b̌i, ši) = J̌ (π̄i, ťi − h, b̌i, ši).

We will need this observation for the proof of Lemma 4.3.

As a next step, we prove that there exist crash times which are ε-optimal from a random
time onwards.

Lemma 4.3. Let ε > 0 and let θ be a [t, T ]-valued stopping time. Let π ∈ A(t, b, s) and
π̌ ∈ Ǎ(π) be ε-optimal. Then there exists a crash time τ ε ∈ B(t) with τ ε ≥ θ such that

E
[

Up

(

Xπ,π̌,τε

t,b,s (T )
)∣

∣

∣
F t(θ−)

]

≤ V
(

θ,B(θ−), S(θ−)
)

+ ε.

Proof. We can without loss of generality assume that π is of the same form as constructed in
Lemma 4.11. Indeed, if π ∈ A(t, b, s) and π̌ ∈ Ǎ(π) are arbitrary ε-optimal strategies and
πε ∈ A(t, b, s) and π̌ε ∈ Ǎ(π) are as in Lemma 4.1, then πε and π̌ε satisfy

V(t, b, s) ≤ W(πε, π̌ε, t, b, s) + 2ε,

meaning that πε and π̌ε are 2ε-optimal. As before, we can furthermore assume (θ,B(θ), S(θ)) ∈
(0, T ]× S1.

Let therefore π ∈ A(t, b, s) and π̌ ∈ Ǎ(π) such that π can be written as

π(u) = π0(u)1{u<θ} + 1{u≥θ}

∞
∑

i=1

π̃i1Di

for some π0 ∈ A(t, b, s). The sequence {Di}i∈N consists of the sets

Di =
{

ω ∈ Ω :
(

θ,B(θ−), S(θ−)
)

∈ K1
i

}

,

where {K1
i }i∈N is the sequence as constructed in the beginning of this section. Also, recalling

the corresponding sequence of corner points (ti, bi, si), the strategies {π̃i}i∈N can be written as

π̃i = π̄i + (l,m),

where l and m are chosen minimally, such that we have on Di

bi = B(θ−)− (1 + λ)l + (1− µ)m, si = S(θ−) + l −m.

The strategies {π̄i}i∈N are just time-shifted (to the grid points ti) versions of corresponding
ε-optimal strategies {πi}i∈N, where πi ∈ A(ti, bi, si). We denote the post-crash strategies corre-
sponding to πi by π̌i and the post-crash strategies corresponding to π̃i by π̈i. Then we have

W(πi, π̌i, ti, bi, si) ≤ W(π̃i, π̈i, u, b, s), for all (u, b, s) ∈ K1
i , i ∈ N.

1For a proof not relying on this assumption see Belak [3].
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Note that we even obtain

W(πi, π̌i, ti, bi, si) = W(π̃i, π̈i, u, b, s), for all (u, b, s) ∈ K1
i , i ∈ N, (22)

if we adjust the strategies π̄i and their corresponding post-crash strategies as discussed in
Remark 4.2.

For every i ∈ N, we can find ε-optimal crash times τi ∈ B(ti) such that

W(πi, π̌i, ti, bi, si) ≥ J (πi, π̌i, τi, ti, bi, si)− ε. (23)

By applying the same time-shift to τi as applied to obtain the strategy π̄i from πi and denoting
the resulting crash time by τ̄i, we see that τ̄i ∈ B(u) for all u such that (u, bi, si) ∈ K1

i . By the
construction of π̃i, it follows that

J (πi, π̌i, τi, ti, bi, si) ≥ J (π̃i, π̈i, τ̄i, u, b, s), for all (u, b, s) ∈ K1
i . (24)

So, in total, combining Equations (22) to (24), we have for every i ∈ N and every (u, b, s) ∈ K1
i

W(π̃i, π̈i, u, b, s) ≥ J (π̃i, π̈i, τ̄i, u, b, s)− ε,

meaning that τ̄i is ε-optimal on the set Di. Now, set

τ ε = τ̄i on Di

to obtain the desired ε-optimal crash time τ ε ∈ B(t) satisfying τ ε ≥ θ.

Lemma 4.4. Let ε > 0 and let θ be a [t, T ]-valued stopping time. Let π ∈ A(t, b, s) and
π̌ ∈ Ǎ(π) be ε-optimal and fix τ̄ ∈ B(t). Then there exists a crash time τ ε ∈ B(t) such that

E
[

Up

(

Xπ,π̌,τε

t,b,s (T )
)∣

∣

∣
F t
(

(τ̄ ∧ θ)−
)

]

≤ V
(

θ,B(θ−), S(θ−)
)

1{τ̄>θ} + V̌
(

τ̄ , B(τ̄−), (1− β)S(τ̄−)
)

1{τ̄≤θ} + ε.

Proof. By the previous Lemma 4.3, there exists a crash time τ̃ ε ∈ B(t) satisfying τ̄ ε ≥ θ such
that

E
[

Up

(

Xπ,π̌,τ̄ε

t,b,s (T )
)∣

∣

∣
F t(θ−)

]

≤ V
(

θ,B(θ−), S(θ−)
)

+ ε.

Set

τ ε :=

{

τ̄ ε, on {τ̄ > θ},

τ̄ , on {τ̄ ≤ θ}.

Then, on {τ̄ ≥ θ}, we have

E
[

Up

(

Xπ,π̌,τε

t,b,s (T )
)∣

∣

∣
F t
(

(τ̄ ∧ θ)−
)

]

= E
[

Up

(

Xπ,π̌,τ̄ε

t,b,s (T )
)∣

∣

∣
F t(θ−)

]

≤ V
(

θ,B(θ−), S(θ−)
)

+ ε

≤ V̌
(

τ̄ , B(τ̄−), (1− β)S(τ̄−)
)

1{τ̄=θ}

+ V
(

θ,B(θ−), S(θ−)
)

1{τ̄>θ} + ε, (25)

where the last inequality follows from Inequality (11). On the set {τ̄ ≤ θ}, we have

E
[

Up

(

Xπ,π̌,τε

t,b,s (T )
)
∣

∣

∣
F t
(

(τ̄ ∧ θ)−
)

]

= E
[

Up

(

Xπ,π̌,τ̄
t,b,s (T )

)
∣

∣

∣
F t(τ̄−)

]

≤ V̌
(

τ̄ , B(τ̄−), (1− β)S(τ̄−)
)

. (26)

Combining Inequalities (25) and (26), we deduce the assertion of the lemma.
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4.2 The dynamic programming principle

With the help of Lemma 4.1 and Lemma 4.4, we can prove the dynamic programming principle.

Theorem 4.5. Let (t, b, s) ∈ [0, T )× S1 and let θ be a [t, T ]-valued stopping time. Then

V(t, b, s) = sup
π∈A(t,b,s)

inf
τ∈B(t)

E
[

V
(

θ,B(θ−), S(θ−)
)

1{θ<τ} + V̌
(

τ, B(τ−), (1− β)S(τ−)
)

1{θ≥τ}

]

.

Proof. 1. Let ε > 0 and fix an arbitrary pre-crash strategy π ∈ A(t, b, s) and a crash time
τ ∈ B(t). By Lemma 4.1, we can find πε ∈ A(t, b, s) which coincides with π on [t, τ ∧ θ)
and a post-crash strategy π̌ε ∈ Ǎ(π) corresponding to πε and τ such that

E
[

Up

(

Xπε,π̌ε,τ
t,b,s (T )

)
∣

∣

∣
F t
(

(τ ∧ θ)−
)

]

+ ε

≥ V
(

θ,B(θ−), S(θ−)
)

1{τ>θ} + V̌
(

τ, B(τ−), (1− β)S(τ−)
)

1{τ≤θ}.

We have

V(t, b, s) ≥ inf
τ∈B(t)

E
[

Up

(

Xπε,π̌ε,τ
t,b,s (T )

)]

= inf
τ∈B(t)

E
[

E
[

Up

(

Xπε,π̌ε,τ
t,b,s (T )

)∣

∣

∣
F t
(

(τ ∧ θ)−
)

]]

≥ inf
τ∈B(t)

E
[

V
(

θ,B(θ−), S(θ−)
)

1{τ>θ}

+ V̌
(

τ, B(τ−), (1− β)S(τ−)
)

1{τ≤θ}

]

− ε.

Since ε and τ were chosen arbitrarily and since we can find corresponding πε and π̌ε for
every π ∈ A(t, b, s), this implies

V(t, b, s) ≥ sup
π∈A(t,b,s)

inf
τ∈B(t)

E
[

V
(

θ,B(θ−), S(θ−)
)

1{θ<τ}

+V̌
(

τ, B(τ−), (1− β)S(τ−)
)

1{θ≥τ}

]

.

2. Let ε > 0, and let both π ∈ A(t, b, s) and π̌ ∈ Ǎ(π) be ε-optimal. By Lemma 4.4, for
every τ ∈ B(t), we can find τ ε ∈ B(t) such that we have

E
[

Up

(

Xπ,π̌,τε

t,b,s (T )
)
∣

∣

∣
F t
(

(τ ∧ θ)−
)

]

≤ V
(

θ,B(θ−), S(θ−)
)

1{τ>θ} + V̌
(

τ, B(τ−), (1− β)S(τ−)
)

1{τ≤θ} + ε.

We therefore have, for every τ ∈ B(t), by the ε-optimality of the trading strategies,

V(t, b, s) ≤ inf
τ∈B(t)

E
[

Up

(

Xπ,π̌,τ
t,b,s (T )

)]

+ ε

≤ E
[

E
[

Up

(

Xπ,π̌,τε

t,b,s (T )
)
∣

∣

∣
F t
(

(τ ∧ θ)−
)

]]

+ ε

≤ E
[

V
(

θ,B(θ−), S(θ−)
)

1{τ>θ}

+ V̌
(

τ, B(τ−), (1− β)S(τ−)
)

1{τ≤θ}

]

+ 2ε.
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Taking the infimum over B(t) and the supremum over A(t, b, s), this implies

V(t, b, s) ≤ sup
π∈A(t,b,s)

inf
τ∈B(t)

E
[

V
(

θ,B(θ−), S(θ−)
)

1{θ<τ}

+V̌
(

τ, B(τ−), (1− β)S(τ−)
)

1{θ≥τ}

]

+ 2ε.

We conclude since ε was chosen arbitrarily.

5 The dynamic programming equations and the viscosity prop-

erty

It is a known result that the value function V̌ is the unique viscosity solution of the second-order
partial differential equation

0 = min{LntV̌(t, b, s),LbuyV̌(t, b, s),LsellV̌(t, b, s)} (27)

with suitable boundary conditions. The differential operators Lnt, Lbuy and Lsell are given by

Lnt := −
∂

∂t
− rb

∂

∂b
− αs

∂

∂s
−

1

2
σ2s2

∂2

∂s2
,

Lbuy := (1 + λ)
∂

∂b
−

∂

∂s
,

Lsell := −(1− µ)
∂

∂b
+

∂

∂s
,

respectively. The proof of the viscosity property of V̌ can e.g. be found in Davis et al. [11] (in
a slightly different context) or by a straightforward adaptation of the methods in Shreve and
Soner [30]. The uniqueness is proved in Belak et al. [5].

The aim of this section is to show that V is the unique viscosity solution of

0 = max
{

V(t, b, s)− V̌(t, b, (1− β)s),min{LntV(t, b, s),LbuyV(t, b, s),LsellV(t, b, s)}
}

. (28)

We begin with recalling the definition and some properties of viscosity solutions.

5.1 Viscosity solutions

The notion of viscosity solutions of partial differential equations can be defined in many equiv-
alent ways. We recall the definitions which we will use in the sequel. An overview of viscosity
solutions and their properties can be found in Crandall et al. [8].

Denote by S
2 the set of symmetric 2× 2 matrices with entries in R. Let

F : [0, T )× S1 × R× R× R
2 × S

2 → R

be a continuous function satisfying

X ≤ X ′ ⇒ F (t, x, r, q, p,X) ≥ F (t, x, r, q, p,X ′)

and
q ≤ q′ ⇒ F (t, x, r, q, p,X) ≥ F (t, x, r, q′, p,X),

where t ∈ [0, T ), x ∈ S1, r, q, q′ ∈ R, p ∈ R
2, and X,X ′ ∈ S

2. By X ≤ X ′ we mean that X ′−X
is non-negative definite.
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Let w : [0, T ] × S
1
→ R. If w is sufficiently smooth, we can consider differential equations

of the form
F (t, x, w,Dtw,Dxw,D

2
xw) = 0, (t, x) ∈ [0, T )× S1. (29)

Here, Dtw denotes the derivative of w with respect to t, Dxw denotes the gradient of w with
respect to x and D2

xw denotes the matrix of second order partial derivatives of w with respect
to the components of x. However, if w is not sufficiently smooth, say only continuous, then we
need to introduce a weaker concept of a solution of (29).

Definition 5.1. 1.) Let w : [0, T ] × S
1
→ R be continuous. Then w is called a viscosity

subsolution of (29), if for each (t, x) ∈ [0, T ) × S1 and all ϕ ∈ C1,2([0, T ] × S
1
) with ϕ ≥ w

satisfying ϕ(t, x) = w(t, x), we have

F
(

t, x, ϕ(t, x), Dtϕ(t, x), Dxϕ(t, x), D
2
xϕ(t, x)

)

≤ 0.

2.) w is called a viscosity supersolution of (29), if for each (t, x) ∈ [0, T ) × S1 and all

ϕ ∈ C1,2([0, T ]× S
1
) with ϕ ≤ w satisfying ϕ(t, x) = w(t, x), we have

F
(

t, x, ϕ(t, x), Dtϕ(t, x), Dxϕ(t, x), D
2
xϕ(t, x)

)

≥ 0.

3.) w is called a viscosity solution of (29), if it is both a viscosity sub- and supersolution.

It was shown in Crandall et al. [8], that a sufficiently regular viscosity solution is also a
solution in the classical sense and vice versa.

An equivalent definition of viscosity sub- and supersolutions can be given in terms of the
sub- and superjets of the function w. We define the superjet J2,+w(t, x) of w(t, x) to be the set
of all (q, p,X) ∈ R× R

2 × S
2 such that

lim sup
s→t,
y→x

1

|t− s|+ ||x− y||22

[

w(t, x)− w(s, y)− q(t− s)

− 〈p, x− y〉 −
1

2
〈X(x− y), x− y〉

]

≤ 0,

where we assume that (s, y) ∈ [0, T )×S1 and where 〈·, ·〉 denotes the inner product on R
2. We

define the subjet J2,−w(t, x) of w(t, x) by setting

J2,−w(t, x) := −J2,+(−w)(t, x).

We define the closure J
2,+

w(t, x) of the superjet J2,+w(t, x) to be the set of all (q, p,X) ∈
R×R

2×S
2, for which we can find a sequence {(tj , xj , qj , pj , Xj)}j∈N in [0, T )×S1×J2,+w(tj , xj),

such that
lim
j→∞

(tj , xj , qj , pj , Xj) = (t, x, q, p,X).

The closure J
2,−

w(t, x) of the subjet J2,−w(t, x) is defined analogously.
In terms of the sub- and superjets, a viscosity solution can be defined as follows.

Definition 5.2. 1.) Let w : [0, T ] × S
1
→ R be continuous. Then w is called a viscosity

subsolution of (29), if for each (t, x) ∈ [0, T )× S1 and all (q, p,X) ∈ J2,+w(t, x), we have

F
(

t, x, w(t, x), q, p,X
)

≤ 0.

2.) w is called a viscosity supersolution of (29), if for each (t, x) ∈ [0, T ) × S1 and all
(q, p,X) ∈ J2,−w(t, x), we have

F
(

t, x, w(t, x), q, p,X
)

≥ 0.

3.) w is called a viscosity solution of (29), if it is both a viscosity sub- and supersolution.
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As mentioned before, Definition 5.1 and Definition 5.2 are equivalent, see Crandall et al. [8].
The first definition is more convenient for proving that V is a viscosity solution of (28), while
the second definition is more convenient when proving uniqueness.

5.2 The viscosity property of the value function

This section addresses the viscosity property of V . We summarize the result in the next theorem.

Theorem 5.3. V is a viscosity solution of

0 = max
{

V(t, b, s)− V̌(t, b, (1− β)s),min{LntV(t, b, s),LbuyV(t, b, s),LsellV(t, b, s)}
}

, (30)

where (t, b, s) ∈ [0, T )× S1, with boundary condition

V(t, b, s) =

{

0, if (b, s) ∈ ∂S1 and 0 < p < 1,

−∞, if (b, s) ∈ ∂S1 and p ≤ 0,
(31)

and terminal condition

V(T, b, s) =

{

Up(b+ (1− µ)(1− β)s), if s > 0,

Up(b+ (1 + λ)s), if s ≤ 0.
(32)

Remark 5.4. To see that V satisfies the terminal condition (32), note that from the market’s
point of view, a crash at terminal time must be optimal whenever the stock position is positive.

We split the proof in two cases, the supersolution and the subsolution property.

Proposition 5.5. V is a viscosity supersolution of (30) with boundary condition (31) and
terminal condition (32).

Proof. The proof works similarly to Shreve and Soner [30, Lemma 7.8]. However, some addi-
tional care needs to be taken about the term arising from the crash possibility.

Let (t, b, s) ∈ [0, T ) × S1 and let ϕ ∈ C1,2([0, T ] × S
1
) with ϕ ≤ V be a function satisfying

ϕ(t, b, s) = V(t, b, s). We want to show that

0 ≤ max
{

ϕ(t, b, s)− V̌(t, b, (1− β)s),min{Lntϕ(t, b, s),Lbuyϕ(t, b, s),Lsellϕ(t, b, s)}
}

.

By Lemma 3.2.2, we have

ϕ(t, b, s) = V(t, b, s) ≤ V̌
(

t, b, (1− β)s
)

.

If equality holds we are done. Otherwise, it follows as in Davis et al. [11, Theorem 2, Part (ii)]
that

Lbuyϕ(t, b, s) ≥ 0, Lsellϕ(t, b, s) ≥ 0.

Let ε > 0 be small enough, such that the open ball around (b, s) with radius ε, denoted by
Bε(b, s), is contained in S1 and such that t+ ε < T . Consider the strategy L ≡ M ≡ 0 on [t, τε],
where τε is given by

τε := (t+ ε) ∧ inf{u ≥ t : (B(u), S(u)) 6∈ Bε(b, s)}.

Since V and V̌ are continuous and since we have

V(t, b, s) < V̌(t, b, (1− β)s),

24



we can choose ε small enough such that

V(t̄, b̄, s̄) < V̌(t̄, b̄, (1− β)s̄) for all (t̄, b̄, s̄) ∈ [t, τε]× Bε(b, s),

which implies that it cannot be optimal to crash on [t, τε], since this would contradict the
dynamic programming principle. Using V(t, b, s) = ϕ(t, b, s) together with Itô’s formula yields

V(t, b, s) = ϕ(τε, B(τε), S(τε)) +

∫ τε

t
Lntϕ(u,B(u), S(u)) du

−

∫ τε

t
σS(u−)ϕs(u−, B(u−), S(u−)) dW (u).

Take expectation on both sides to obtain

V(t, b, s) = E [ϕ(τε, B(τε), S(τε))] + E

[
∫ τε

t
Lntϕ(u,B(u), S(u)) du

]

. (33)

By Theorem 4.5, since crashes cannot be optimal on [t, τε] and since ϕ ≤ V , we have

V(t, b, s) ≥ E
[

V
(

τε, B(τε), S(τε)
)]

≥ E
[

ϕ
(

τε, B(τε), S(τε)
)]

= V(t, b, s)− E

[
∫ τε

t
Lntϕ(u,B(u), S(u)) du

]

,

where the last equality follows from Equation (33). Hence,

E

[
∫ τε

t
Lntϕ(u,B(u), S(u)) du

]

≥ 0,

i.e.
max

(t̄,b̄,s̄)∈[t,τε]×Bε(b,s)
Lntϕ(t̄, b̄, s̄) ≥ 0.

Let ε ↓ 0 to obtain
Lntϕ(t, b, s) ≥ 0,

which completes the proof.

Proposition 5.6. V is a viscosity subsolution of (30) with boundary condition (31) and ter-
minal condition (32).

Proof. Let (t, b, s) ∈ [0, T )×S1 and let ϕ ∈ C1,2([0, T ]×S
1
) with ϕ ≥ V be a function satisfying

ϕ(t, b, s) = V(t, b, s). We want to show that

0 ≥ max
{

ϕ(t, b, s)− V̌(t, b, (1− β)s),min{Lntϕ(t, b, s),Lbuyϕ(t, b, s),Lsellϕ(t, b, s)}
}

.

As in the proof of Proposition 5.5 we have ϕ(t, b, s) − V̌(t, b, (1 − β)s) ≤ 0. That is, we only
have to show that

min{Lntϕ(t, b, s),Lbuyϕ(t, b, s),Lsellϕ(t, b, s)} ≤ 0.

Assume that, on the contrary, we have

min{Lntϕ(t, b, s),Lbuyϕ(t, b, s),Lsellϕ(t, b, s)} > 0.
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That is, there exist some δ, ε > 0 such that on [t, t+ ε]× Bε(b, s) ⊂ [t, T )× S1, we have

Lntϕ(t̄, b̄, s̄) ≥ δ, Lbuyϕ(t̄, b̄, s̄) ≥ δ, Lsellϕ(t̄, b̄, s̄) ≥ δ.

Given π ∈ A(t, b, s) and h > 0 small enough such that t + h ∈ (t + ε, T ), define the stopping
times

τε := inf
{

u ≥ t :
(

Bπ(u), Sπ(u)
)

6∈ Bε(b, s)
}

∧ (t+ ε),

τh := inf
{

u ≥ t+ h : V
(

u,Bπ(u), Sπ(u)
)

= V̌
(

u,Bπ(u), (1− β)Sπ(u)
)}

.

Application of Theorem 4.5 yields

V(t, b, s) = sup
π∈A(t,b,s)

inf
τ∈B(t)

E
[

V
(

τε, B(τε−), S(τε−)
)

1{τε<τ}

+ V̌
(

τ, B(τ−), (1− β)S(τ−)
)

1{τε≥τ}

]

≤ sup
π∈A(t,b,s)

E
[

V
(

τε, B(τε−), S(τε−)
)

1{τε<τh}

+ V̌
(

τh, B(τh−), (1− β)S(τh−)
)

1{τε≥τh}

]

= sup
π∈A(t,b,s)

E
[

V
(

τε ∧ τh, B((τε ∧ τh)−), S((τε ∧ τh)−)
)

]

= sup
π∈A(t,b,s)

E
[

V
(

τε, B(τε−), S(τε−)
)

]

.

The second last equality follows from the definition of τh and the last equality follows since
h > ε. At this point, we can proceed as in the proof of Shreve and Soner [30, Lemma 7.9] after
equation (7.9) to obtain a contradiction2, proving that

min{Lntϕ(t, b, s),Lbuyϕ(t, b, s),Lsellϕ(t, b, s)} ≤ 0

and thus concluding the proof.

Clearly, combining Proposition 5.5 and Proposition 5.6 yields Theorem 5.3 which finalizes
this section.

5.3 Uniqueness of solutions

We now turn our focus on the uniqueness of viscosity solutions of Equations (27) and (28). For
convenience, we define

F c(t, b, s, u) := u− V̌(t, b, (1− β)s),

Fnt(b, s, q, p,X) := −q − rbp1 − αsp2 −
1

2
σ2s2X22,

F buy(p) := (1 + λ)p1 − p2,

F sell(p) := −(1− µ)p1 + p2,

where (t, b, s) ∈ [0, T )×S1, u, q ∈ R, p = (p1, p2) ∈ R
2, and X = (Xij)i,j=1,2 ∈ S

2. Furthermore,
set

F̌ (b, s, q, p,X) := min
{

Fnt(b, s, q, p,X), F buy(p), F sell(p)
}

, (34)

F (t, b, s, u, q, p,X) := max
{

F c(t, b, s, u), F̌ (b, s, q, p,X)
}

. (35)

2See also Belak [3] for full details.
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Then (34) corresponds to the Dynamic Programming Equation (27) and (35) corresponds to
the Dynamic Programming Equation (28).

Theorem 5.7. Let u, v ∈ C([0, T ]× S
1
). Assume that u is a viscosity subsolution of (28) and

v is a viscosity supersolution of (28) with u ≤ v on ([0, T ]×∂S1)∪ ({T}×S1). Assume further
that

Up

(

b+min{(1− µ)(1− β)s, (1 + λ)s}
)

≤ u(t, b, s), v(t, b, s) ≤ Up

(

(b+ s)
[

2r −
α2

(1− p)σ2

]

(T − t)
)

. (36)

Then u ≤ v on [0, T ]× S
1
.

Proof. u is a viscosity subsolution, i.e. for each (q, p,X) ∈ J2,+u(t, b, s), we have

F (t, b, s, u(t, b, s), q, p,X) ≤ 0.

In particular,
F c(t, b, s, u(t, b, s)) = u(t, b, s)− V̌(t, b, (1− β)s) ≤ 0.

v is a viscosity supersolution, i.e. for every (q̄, p̄, X̄) ∈ J2,−v(t, b, s), we have

F (t, b, s, v(t, b, s), q̄, p̄, X̄) ≥ 0.

If F c(t, b, s, v(t, b, s)) ≥ 0, i.e. v(t, b, s) ≥ V̌(t, b, (1− β)s), it follows that

u(t, b, s) ≤ V̌(t, b, (1− β)s) ≤ v(t, b, s)

and we are done. Otherwise, if F̌ (b, s, q̄, p̄, X̄) ≥ 0, we can use the same arguments as in Belak
et al. [5] to establish u(t, b, s) ≤ v(t, b, s).

Theorem 5.7 implies that the Dynamic Programming Equation (28) characterizes the value
function V uniquely.

Corollary 5.8. V is the unique viscosity solution of (28) in the class of continuous functions
satisfying the growth condition (36).

6 Numerical Results

We conclude this paper with some numerical examples. By means of the homotheticity property
(see Lemma 3.2.4), we first reduce the dimension of the state space. We then adapt the algorithm
introduced by Kunisch and Sass [22] to simulate the value functions and determine the free
boundaries. A different algorithm can be found e.g. in Herzog et al. [15], which does not require
any structural assumptions on the dynamic programming equations.

Throughout this section, we assume for simplicity that the constants r, α, σ and p 6= 0 are
such that

1

1− p

α− r

σ2
∈ (0, 1).
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6.1 Reduction to risky fractions and the optimal strategies

As a first step, we use the homotheticity property of the value functions to reduce the dimension
of the state space. Setting x := s/(b+ s) and

V (t, x) := V(t, 1− x, x), V̌ (t, x) := V̌(t, 1− x, x),

we have, by the homotheticity property (Lemma 3.2.4),

V(t, b, s) = (b+ s)pV (t, x), V̌(t, b, s) = (b+ s)pV̌ (t, x).

By formally expressing the derivatives of V̌ in terms of the derivatives of V̌ , one can show (as
in Shreve and Soner [30, Proposition 8.1]) that V̌ is the unique viscosity solution of

0 = min
{

L
nt

V̌ (t, x),L buy
V̌ (t, x),L sell

V̌ (t, x)
}

, (37)

on [0, T )× S 0, with terminal condition

V̌ (T, x) = V̌(T, 1− x, x) =

{

1
p(1− µx)p, if x > 0,
1
p(1 + λx)p, if x ≤ 0,

where S 0 := (−1/λ, 1/µ), and where the operators L nt, L buy and L sell are given by

L
nt

V := −Vt −
(

αx+ r(1− x)−
1

2
(1− p)σ2x2

)

pV

−
(

(α− r)(1− x)− (1− p)σ2x(1− x)
)

xVx −
1

2
σ2x2(1− x)2Vxx,

L
buy

V := pλV − (1 + λx)Vx,

L
sell

V := pµV + (1− µx)Vx.

Similarly, V is the unique viscosity solution of

0 = max
{

V (t, x)− (1− βx)pV̌

(

t,
(1− β)x

1− βx

)

,

min
{

L
nt

V (t, x),L buy
V (t, x),L sell

V (t, x)
}

}

(38)

on [0, T )× S 1, with terminal condition

V (T, x) = V(T, 1− x, x) =

{

1
p(1− x+ (1− µ)(1− β)x)p, if x > 0,
1
p(1 + λx)p, if x ≤ 0,

where S 1 := (−1/λ, 1/[1− (1− β)(1− µ)]).
As a next step, let us take a look at the optimal strategies. We start with the crash-free

case. We define the regions

Ř
nt :=

{

(t, x) ∈ [0, T ]× S
0
: L

nt
V̌ (t, x) = 0

}

,

Ř
buy :=

{

(t, x) ∈ [0, T ]× S
0
: L

buy
V̌ (t, x) = 0

}

,

Ř
sell :=

{

(t, x) ∈ [0, T ]× S
0
: L

sell
V̌ (t, x) = 0

}

.

Under the assumption α > r, Dai and Yi [9] show that V̌ is indeed sufficiently smooth such
that we can apply the operators L nt, L buy and L sell in the classical sense. Furthermore,
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the three regions form a partition of [0, T ] × S
0
and each of the regions is a connected set.

The boundaries between the regions can be described by two continuous functions of time.
Additionally, if (t, x1) ∈ Řbuy, (t, x2) ∈ Řnt, (t, x3) ∈ Řsell, then x1 < x2 < x3. That is, the sell
region always lies above the no-trading region, which in turn lies above the buy region. From
this, we can conjecture the form of the optimal trading strategy.

1. If (t, x) ∈ Řnt, then the investor does nothing. We therefore call Řnt the no-trading
region.

2. If (t, x) ∈ Řbuy, then the investor buys stock until the new position reaches Řnt. We
therefore call Řbuy the buy region.

3. If (t, x) ∈ Řsell, then the investor sells stock until the new position reaches Řnt. We
therefore call Řsell the sell region.

With this, the optimal risky fraction process is a diffusion reflected at the boundaries of the
no-trading region. Shreve and Soner [30] rigorously prove the existence of the optimal strategy
for the infinite-horizon case.

In the sequel, we compute V̌ numerically which allows us to determine Řnt, Řbuy, and Řsell

which in turn determine the conjectured optimal strategy. However, before we do so, let us
consider the crash-threatened case.

In the presence of crashes, we have to adjust the definition of the three regions slightly, since
we have an additional operator in the dynamic programming equation. This operator leads to
an additional region which we call the crash region:

R
crash :=

{

(t, x) ∈ [0, T ]× S
1
: V (t, x) = (1− βx)pV̌

(

t,
(1− β)x

1− βx

)}

.

Note that Rcrash is a closed set. The best crash time from the market’s point of view can then
be conjectured to be the first hitting time of Rcrash, see Remark 3.3. Assume now that V is
sufficiently smooth to be a classical solution of (38). Then we define

R
nt :=

{

(t, x) ∈
(

[0, T ]× S
1
)

\ R
crash : L

nt
V (t, x) = 0

}

,

R
buy :=

{

(t, x) ∈
(

[0, T ]× S
1
)

\ R
crash : L

buy
V (t, x) = 0

}

,

R
sell :=

{

(t, x) ∈
(

[0, T ]× S
1
)

\ R
crash : L

sell
V (t, x) = 0

}

.

We conjecture that these sets form a partition of ([0, T ] × S
1
) \ Rcrash and that the optimal

trading strategy on these sets is determined in the same way as in the crash-free case. We
furthermore conjecture that selling is optimal within the crash region. To see this, we show
that if V(t, b, s) = V̌(t, b, (1− β)s) and (t, b, s) is not on the boundary of the crash region, then

LsellV(t, b, s) < 0,

whenever

β >
µ+ λ

1 + λ
.
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To this end, set s̃ := (1− β)s and calculate

LsellV(t, b, s) = −(1− µ)V̌b(t, b, s̃) + (1− β)V̌s̃(t, b, s̃)

= −(1− β)
[

(1 + λ)V̌b(t, b, s̃)− V̌s̃(t, b, s̃)
]

+
[

−(1− µ) + (1− β)(1 + λ)
]

V̌b(t, b, s̃)

= −(1− β)LbuyV̌(t, b, s̃) +
[

µ+ λ− β(1 + λ)
]

V̌b(t, b, s̃).

The claim follows since LbuyV̌ ≥ 0 and V̌b > 0. We therefore have L sellV < 0 in the interior of
Rcrash and L sellV ≥ 0 outside of Rcrash. Since V is assumed to be of class C1,2, this implies
L sellV = 0 on the boundary of Rcrash. Hence, we expect that the investor should sell whenever
she reaches the crash region.

Note that as in the case without costs, the investor switches the strategy after a crash occurs.
That is, as long as the investor knows that there is one crash left, she follows the optimal
strategy for one crash (determined by Rcrash, Rnt, Rbuy, and Rsell). After observing the crash,
the investor switches to the optimal strategy without crashes, i.e. the strategy determined by
Řnt, Řbuy, and Řsell.

Let us now consider some numerical examples. We start with the crash-free case in Sec-
tion 6.2 and then compare the results with the crash-threatened case in Section 6.3.

6.2 The crash-free case

Let us first consider the crash-free case, i.e. we are in the same situation as considered in Kunisch
and Sass [22]. Therefore, we can apply the algorithm proposed in their paper to determine V̌
and the location of the free boundaries between the regions Řnt, Řbuy, and Řsell. We consider
the following market parameters:

r := 0, α := 0.096, σ := 0.4,

T := 10, p := 0.1, µ := λ := 0.01.

Note that the numerical method applied below also works for negative values of p. The constants
α, σ, and p in this example are chosen so that the optimal strategy in the crash-free market
without transaction costs is equal to 2/3. Note that this strategy is not admissible in the
presence of transaction costs, since it requires infinite variation trading which would lead to
immediate bankruptcy of the investor.

Let us give a short outline of the algorithm, the details of which can be found in Kunisch
and Sass [22]. We discretize [0, T ] using an equidistant grid with mesh size ∆t. Similarly,
we discretize [0, 1] with an equidistant grid with mesh size ∆x. Note that we restrict the
approximation of V̌ to [0, 1] ⊂ S 0. The derivatives in the operators L nt, L buy, and L sell are
approximated using a central finite-difference scheme. We solve the differential equation (37)
backwards in time. In every time step (say, we are at time t < T ), we make an initial guess
N0 := [a0, b0] for the no-trading region. On [a0, b0], we solve L ntv1(t, x) = 0 for v1 and
extend the solution to [0, 1] using the explicit solutions of L buyv1(t, x) = 0 on [0, a0) and
L sellv1(t, x) = 0 on (b0, 1] using a smooth pasting condition at a0 and b0. For every x ∈ [0, 1],
we define

λB
1 (t, x) := −L

ntv1(t, x)1[0,a0], λS
1 (t, x) := −L

ntv1(t, x)1[b0,1],
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and we introduce the sets

B1 :=
{

x ∈ [0, 1] : λB
1 (t, x) + L

buyv1(t, x) < 0
}

,

S1 :=
{

x ∈ [0, 1] : λS
1 (t, x) + L

sellv1(t, x) < 0
}

.

We set N1 = [0, 1] \ (B1 ∪ S1) to be the new guess for the no-trading region and repeat the
procedure until Nk ≈ Nk−1 for some k > 0. Once the no-trading region converged, we proceed
with the next time step t−∆t.

Figure 2 depicts the resulting free boundaries. Whenever the investor holds a position
which is below the buy boundary, it is optimal to buy stock and if the position is above the sell
boundary, it is optimal to sell stock. If the position is in between the buy and sell boundary,
the optimal action of the investor is not to trade at all. Nevertheless, the value function of the
optimization problem varies in the no–trading area as well. The maximum line shows which
risky fraction maximizes the value function.
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Figure 2: Optimal trading regions without crashes.

For comparison, we also plotted the optimal strategy for the case without transaction costs.
It is a well known result, see Merton [26], that in this case the optimal strategy is to keep the
risky fraction constant at the level

η̌ :=
1

1− p

α− r

σ2
=

2

3
.

We call η̌ the Merton optimal portfolio or simply the Merton fraction. In Figure 2, note that,
if the investment horizon is sufficiently large, the boundaries become stationary. When the
investment horizon becomes smaller, we have two effects. First, the sell boundary decreases.
This is because we optimize the total wealth after liquidation of the stock, i.e. the investor
has to close the stock position at terminal time. Since she has to pay transaction costs in the
process of liquidation, a lower stock position at terminal time is preferable. On the other hand,
the buy boundary also decreases. This shows that the closer the investor comes to maturity,
the less she wants to engage in transactions, since there is not enough time left to gain the
transaction costs back. Dai and Yi [9, Theorem 4.7] show, that from the point

t∗ := T −
1

α− r
log

(

1 + λ

1− µ

)

(39)
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onwards, buying shares of the stock is never optimal (i.e. t∗ is the point at which the buy
boundary hits 0). Also, note that the boundaries are only decreasing if the excess return of the
stock over the bond is positive, i.e. α > r. Otherwise, if α < r, the boundaries are increasing
(c.f. Herzog et al. [15, Example 3.3]).

Figure 2 also shows the risky fraction which maximizes the value function over time. The
maximum is attained in the interior of the no-trading region and has similar qualitative features
as the buy boundary. In particular, the maximum is attained at a risky fraction of 0 if the
investment period is sufficiently small. This feature has already been observed in Herzog et
al. [15]. Also, notice that for long horizons, the maximum can be above the Merton fraction,
i.e. the two quantities do not necessarily have to coincide.

6.3 The crash-threatened case

Let us now consider what happens if the market is under the threat of a crash. We assume
the crash size to be β = 0.2 and let the remaining parameters be as in Section 6.2. First, we
need to adjust the algorithm in Kunisch and Sass [22] to work with our Dynamic Programming
Equation (38). This is done as follows. Assume that we want to approximate the value function
at time t < T . For the k-th iteration, we first solve as before

0 = L
ntvk(t, x)

inside our guess for the no-trading region [ak−1, bk−1] ⊂ [0, 1] and extend vk to [0, 1] using the
explicit solutions of L buyvk(t, x) = 0 and L sellvk(t, x) = 0. Also, we construct the active sets
Bk and Sk as before. Then, we check if the crash constraint is satisfied for all x ∈ [0, 1]. For
this, define

Ck :=

{

x ∈ [0, 1] : vk(t, x)− (1− βx)pV̌

(

t,
(1− β)x

1− βx

)

≤ 0

}

.

On Ck, we set

vk(t, x) = (1− βx)pV̌

(

t,
(1− β)x

1− βx

)

.

Now set Nk = [0, 1] \ (Bk ∪ Sk ∪ Ck) and proceed with the next iteration.
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Figure 3: Optimal trading regions for a crash of size β = 0.2.
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The resulting buy and sell boundaries are plotted in Figure 3. Again, for comparison, we
plotted the optimal strategy in the case without costs. From Korn and Steffensen [20], the
optimal strategy without costs and with one crash is given by the solution η(t) of the ordinary
differential equation

ηt(t) =
1

β
(1− η(t)β)

(

(α− r)(η(t)− η̌)−
1

2
(1− p)

(

(η(t))2 − η̌2
)

)

(40)

with terminal condition η(T ) = 0. Under the condition

0 ≤ η(t) ≤ η̌,

the differential equation (40) has a unique solution. Note that the optimal strategy here involves
continuous trading which is no longer feasible in the presence of transaction costs.

In Figure 3, we observe a striking feature of the sell boundary. If the time to maturity
becomes smaller, the sell boundary crosses the optimal strategy without costs. Even more, the
sell boundary hits zero strictly before terminal time T . We would furthermore like to emphasize
that the buy and the sell boundary do not reduce to zero at the same time. That is, the buy
boundary hits zero at time t ≈ 9.52, whereas the sell boundary hits zero at time t ≈ 9.74.
Note also that t∗, i.e. the time at which the buy boundary in the crash-free setting hits zero,
verifies t∗ ≈ 9.79 (compare this also with Remark 6.1). The maximum is again attained inside
the no-trading region, which implies that for small investment horizons it is attained at a risky
fraction of 0, since the sell boundary reaches 0 before terminal time. Also, for larger horizons,
the maximum is attained above the optimal strategy of the no-costs case and the difference is
even more pronounced than in the no-crash case (compare with Figure 2).

We would like to point out that even in the models without crashes one can observe that
the sell boundary falls below the optimal strategy without costs (see e.g. Shreve and Soner [30,
Equation (11.4)] for the infinite-horizon model and Liu and Loewenstein [23, Equation (22)] for
the finite-horizon case). However, in these models, this behavior can only be observed in special
cases, e.g. if the Merton fraction is sufficiently high (in particular, η̌ > 1). See also Gerhold et
al. [14] for a discussion of this effect. In our model, this behavior can be observed as soon as
β > 0, that is, as soon as we allow for crashes.

Remark 6.1. Let us consider a (heuristic) example to explain why the sell boundary reaches
zero strictly before terminal time. Let r = 0 and assume that t0 ∈ [0, T ] is such that

T − t0 <
1

α
log

(

1 + λ

1− µ

)

. (41)

In particular, this implies that t0 > t∗. Assume that at time t0, the investor has a positive stock
position s > 0 and a positive bond position b > 0 sufficiently large, such that s/(b+ s) is close
to 0. Assume now, that we are in the crash-threatened case and assume that a crash of size β
occurs at time t0, leaving the investor with (1− β)s units of money invested in the stock. After
the crash we are in the crash-free setting and since t0 is such that Inequality (41) holds, we see
that buying is not optimal (since t0 > t∗). Intuitively, we can conclude that the sell boundary
reaches 0 (at time t0) in the crash case at least as soon as the buy boundary in crash-free case
reaches zero, that is t0 ≤ t∗. This is, because the investor cannot recoup any losses made in the
stock by buying more stock after the crash. Heuristically, the wealth invested in the stock follows
approximately a geometric Brownian motion starting in (1 − β)s (remember that we assume
s/(b+ s) to be close to 0). The expected terminal stock wealth is then approximately

(1− β)seα(T−t0).
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In order to benefit from a positive stock position we need

(1− β)seα(T−t0) ≥ s,

which clearly can only hold if T − t0 is large enough. Hence, for small investment periods, it is
not optimal to invest any money in the stock at all!

Remark 6.2. It turns out that the sell region is empty in our numerical example, i.e. Rsell = ∅,
and the crash region Rcrash is given as the whole region above and including the sell boundary
in Figure 3 (by the discussions at the end of Section 6.1, however, the investor sells whenever
the risky fraction touches the crash region). This means that the only reason why the investor
sells shares of the stock is to protect herself against the impact of crashes on her portfolio. On
the other hand, whenever the risky fraction is below the sell boundary, then the investor would
benefit from a crash since in this case V(t, b, s) < V̌(t, b, (1−β)s), and only on the sell boundary
is the investor truly indifferent between an immediate crash and no crash at all.
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Figure 4: Difference of sell and buy boundaries with and without crashes.

In the case without crashes, the difference between the sell and the buy boundary is known
to stabilize quickly as T−t becomes large (see e.g. Gerhold et al. [14]). In the presence of crashes
this effect can no longer be observed, since even for long times to maturity, the presence of a crash
threat has a significant influence on the optimal trading strategy. This can be seen in Figure 4,
where the difference between the buy and the sell boundary is plotted over a time horizon of
a hundred years for both the case with and without crashes. Without crashes, the difference
appears to be stable for maturities greater than approximately two to three years, meaning that
the time-influence of the transaction costs on the optimal strategies is only significant for small
investment periods. On the other hand, in the presence of crashes, the difference is increasing
with increasing time to maturity even for large time horizons, indicating that the sensitivity
of the optimal strategies with respect to time is significantly higher in the presence of crashes.
Note, however, that the difference is always smaller for the case with a potential crash than for
the case with no crash.

Remark 6.3 (Relative loss of utility). Clearly, assuming that no crash occurs, an investor fol-
lowing the optimal strategy in the presence of crashes will achieve less expected utility compared
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Figure 5: Relative loss of utility.

to the investor who follows the optimal strategy for zero crashes. To estimate the trade-off, we
present in Figure 5 the relative loss of utility given by

V̌ (t, x)− V (t, x)

V̌ (t, x)
, (t, x) ∈ [0, T ]× [0, 1].

One can see that the relative loss of utility for protection against a 20% crash is at most 2.5%
and, as long as the initial risky fraction is small (meaning that at time t = 0 it is in the
no-trading region), the relative loss is at most around 1% even for long investment periods of
around 10 years.

7 Conclusions and outlook

We studied the optimal portfolio problem under transaction costs and under the threat of a
crash. We characterized the value function as the unique continuous viscosity solution of the
Dynamic Programming Equation (28) and analyzed the optimal trading strategies numerically.

Numerical simulations indicate that for the optimal worst-case strategy with transaction
costs, the sell boundary will not only be below the optimal no-costs strategy close to the invest-
ment horizon as soon as there is a strictly positive crash size, but moreover, the sell boundary
will be zero before the investment horizon is reached (see Figure 3 and Remark 6.1). While
the first property can be observed also in the case without crashes under suitable conditions,
the latter property is unique to the worst-case scenario optimization problem with transaction
costs.

It remains for future research to study the regularity of V in more detail, to prove the
existence of optimal controls (both in the case with and without crashes) and to verify the
structural assumptions made in Section 6. Furthermore, Figure 4 indicates that the presence of
crashes has a significant influence on the spread of the trading boundaries, even for very large
time periods, while in the absence of crashes the spread becomes essentially stationary even
for short time horizons. It would therefore be interesting to study the sensitivity of the value
function with respect to the crash size in more detail and analyze its effects on the liquidity
premium.
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