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Abstract

Visual recording of everyday human activities and behaviour
over the long term is now feasible and with the widespread
use of wearable devices embedded with cameras this offers
the potential to gain real insights into wearers’ activities and
behaviour. To date we have concentrated on automatical-

ly detecting semantic concepts from within visual lifelogs
yet identifying human activities from such lifelogged images
or videos is still a major challenge if we are to use lifelogs
to maximum benefit. In this paper, we propose an activity
classification method from visual lifelogs based on Fisher
kernels, which extract discriminative embeddings from Hid-
den Markov Models (HMMs) of occurrences of semantic
concepts. By using the gradients as features, the resulting
classifiers can better distinguish different activities and from
that we can make inferences about human behaviour. Ex-
periments show the effectiveness of this method in improv-
ing classification accuracy, especially when the semantic
concepts are initially detected with low degrees of accuracy.
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Figure 1: The dynamics of concept
attributes quantified by confidences
returned by concept detections.

Introduction

As an important source of quantified self information, lifel-
ogging [5] is concerned with digitally capturing media-rich
representations of everyday activities, making available a
person’s experiences in the form of events, interactions and
relationships. Such rich pools of information are collect-
ed by individuals to characterize their own activities and
behaviour for a variety of use cases. Visual recordings

of events contain rich semantics which can be used to in-
fer information about underlying activities including ‘Who’,
‘What', ‘Where’ and ‘When'. Visual lifelogging has now de-
veloped as an important aspect of the quantified self field
which represents human behaviour using image-based or
video-based media.

Whatever the reason for collecting such personal lifelog
images or videos, be it for posterity, medical or well-being
reasons, memory support or just for leisure, finding discrete
human activities of interest from large lifelog collections
and interpreting them via semantic meaning is crucial if

we are to build real-world applications which focus on hu-
man behaviour. State-of-the-art approaches to identifying
semantics from visual media use statistical techniques to
map low-level local or global features like colour, texture or
shape, to high-level semantic concepts like “indoor", “build-
ing" or “walk", a process termed “concept detection”. The
natural progression is from a lifelog image or video, to a set
of such semantic concepts occurring in the image, and then
to infer an activity the wearer was participating in while the
image was taken based on the presence or absence of se-
mantic concepts. Following that, we can then to aggregate
activities over a long period of time in order to reason about
the wearer’s behaviour or identify changes in it.

Though effective in annotating visual media with individu-
al concepts, concept detection in lifelogging has, to date,

mostly failed to exploit temporal relationships among con-
cepts which could provide useful information for activity

or event classification. Some previous work has looked at
temporal modeling of activities on top of concept detection
in order to enhance the accuracy of either the underlying
semantic concept detection [12], or the resulting activity
characterization [11]. In [2], the authors showed that com-
bining concept detection with temporal representations of
those concept occurrences is promising when detecting
more complex events on top of which events can then be
inferred. In [8], Fisher kernel techniques were applied to
encode the transitions between concept occurrences and
absences over time. This encoding was into a compact and
fixed-length feature vector which was used as the basis

for further classification. Motivated by this previous work
on modelling of events from a temporal viewpoint, we pro-
pose to apply Hidden Markov Models (HMMs) to model the
time-varying dynamics of concept attributes, capturing the
streams of occurrence and absense of semantic concept-
s individually and in combination. The Fisher scores are
then extracted from the resulting generative model to form
a set of even more compact and discriminate features. In
theory this method has the capability of combining the ad-
vantages of generative and discriminative approaches in
both temporal modeling and classification and we shall see
how effective it is in practice.

Dynamics of Semantic Attributes

Using state-of-the-art concept detection methods, accept-
able results can be achieved in some cases particular-

ly for narrow domains and for concepts for which there
exists enough annotated training data, according to the
TRECVid benchmark [7]. The technology of automatic de-
tection of concepts enables searching through visual lifel-
ogs based on semantic attributes and this kind of content-
based search on visual media has been validated as use-



ful for carrying out analysis of lifestyle behaviour patterns
[3], [4]. However, despite recent progress, automatic con-
cept detectors are still far from perfect and how to classify
high-level events/activities based on such noisy semantic
attributes needs to be tackled. This is especially important
for cases where we then build upon the detected concepts
such as using them to infer activities and then behaviour.
For quantified self applications, there is a further challenge
because of the diverse range of usable concepts, and the
generally noisy nature of the lifelog data because of the
wearers’ movements and because even the images cap-
tured passively within the same lifelogged event may have
significant perceptual differences.

Inspired by recent work on attribute-based temporal mod-
eling [8], [11], we model the dynamic evolution of human
activities using concept detection results as input. In ef-
fect this means that streams of activities are represent-

ed as sequences of units such as clips or frames. Con-
cept detections are applied to each of units and by con-
catenating the output results (confidences) of pre-trained
concept detectors at the same timestep as a vector, one
activity stream can be represented by a temporally or-
dered sequence of vectors, as shown in Fig. 1. In a set

of activity samples X, each activity can be structured as
X, = {2p1,Tno, oo, Tnt, ...} With 2,,; € R? representing a
fixed length confidence vector whose dimension is equal to
d, the number of concepts detected.

Using a HMM Fisher Kernel for Activity Classifi-

cation

Since HMMs have previously been validated as effective in
characterising lifelogging activities [11], we employed HMM-
s to encode the dynamic distributions of concepts through-
out lifelog events. Assume there are [ hidden states in the
HMM and each pair of states have a transition probability

a;; = P(s;|s;). The parameters of the HMM can be denot-
edas A = (A, B, ), where A = {a;;}, = = {m;} stands
for the initial state distribution. b;(X) is the distribution of
the concept observation X; at time step ¢ with respect to
state j. Because the confidence vector X; has continu-
ous values, we employed Gaussian emission distributions
b;(X:) = N(Xy, pi,04) and B = {p;,0;}. Parameters p;
and o; are the mean and covariance matrix of the Gaussian
distribution in state ¢ respectively.

The principle of the Fisher kernel is that similar samples
should have similar dependence on the generative model,
i.e. the gradients of the parameters [6]. Instead of directly
using the output of generative models, using a Fisher kernel
tries to generate a feature vector which describes how the
parameters of the activity model should be modified in order
to adapt to different samples. Based on the above formal-
ization of a HMM, X can be characterized as Fisher scores
with regard to the parameters A:

OlogP OlogP O0OlogP 6logP]T
5‘aij ’ c’)ulk ’ a(fik ’ 87@-

(1)
wherel < ¢ < land1l < k < d. Therefore, the Fisher
kernel can be formalized as K (X;, X;) = Uy, IrU%,,
where I = Ex(UxUL) denotes the Fisher information
matrix.

Ux = ValogP(X|\) = |

Experiments and Evaluation

Experimental Setup

To evaluate our proposed activity classification algorith-

m, we performed a comprehensive assessment of our ap-
proach using datasets with various accuracies for semantic
concept detection [11]. The 16 everyday activity types list-
ed in Table 1 are used in the evaluation for which 10,497
lifelogged images have been collected from the SenseCam
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Figure 2: Averaged concept MAP
with different p1 values.
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Figure 3: Confusion matrix when
using HMM log-likelihood
representation as features.
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Figure 4: Confusion matrix for our
proposed Fisher kernel-based
classification.

wearable camera, worn by 4 people with different demo-
graphics. SenseCam' is a camera, worn around the neck
and facing forward, which continuously captures images
from a first-person view of the wearer. Note that the activi-
ties in Table 1 are chosen based on time dominance, gen-
erality and high frequency of occurrence [10], and can be
used to support applications like independent living assis-
tance, obesity analysis, and chronic disease diagnosis.

Eating Drinking Cooking

Clean/Tidy Use computer  Watch TV

Child care  Food shopping  Shopping (non-food)
Reading Using phone Driving

Taking bus  Walking (listen to) Presentation
Talking

Table 1: Everyday activity types in our evaluation.

Since we wish to explore the impact of the accuracy of se-
mantic concept detection as a variable in the recognition

of activities, concept detection results are simulated based
on groundtruth annotations, following the work of [1] and
[11]. By simulating downgrading of the detection accuracy
based on a 100% accurate ground truth as a starting point
we can control the levels of concept detection accuracies
and in this way a comprehensive comparison can be car-
ried out to evaluate our proposed activity classification in a
realistic setting. In this experiment, concept detectors for 85
concepts are simulated by changing the controlling parame-
ter pp [11] and Fig. 2 shows averaged concept MAP (mean
average precision) by 20 simulation runs.

Baselines
In order to evaluate the performance of the Fisher kernel
in a discriminative classifier, we employed two widely used

Twww.research.microsoft.com/sensecam/

classifiers: support vector machines (SVMs) and k-nearest
neighbor classifiers (KNNs).

The generative method based on HMMs as used in [11] is
employed as one baseline. The HMMs are first trained for
each activity class and we concatenate the log-likelihood
representations of per-class posteriors into a vector. The
LibSVM 2 implementation of SVMs with the linear kernel is
employed to perform SVM classifications on log-likelihood
representations.

For the KNN classifier, dynamic time warping (DTW) is ap-
plied to the activity samples based on Euclidian similarity,
i.e. minimizing the sum of distances between correspond-
ing samples. As previously pointed out, the length of the
human activity will naturally vary across different classes or
samples and this step is to perform temporal alignment on
these variable-length time series.

Results

To alleviate the sub-optimal problem of Fisher kernels in-
duced by (nearly) zero gradient representations of a gener-
ative model, we employed a model parameter learning as
proposed in [9], to train the model so that samples of the
same class will have more similar gradients than the other
classes. The Fisher kernel is then embedded in the SVMs
for activity classification. To simplify the computation, we
approximate I by the identity matrix in the implementation.

In Table 2, activity classification accuracies are listed for
all methods at different performance levels for concept de-
tection. For classifications based on log-likelihood (HM-
M+SVM) and on Fisher kernel (FK+SVM), the generative
models are obtained with two-state ergodic HMMs to mod-
el the sequence of concept occurrences. Following [11],

2http://www.csie.ntu.edu.tw/~cjlin/libsvm/



Concept Detection Performances (MAPs)

Methods 0.095 0.157 0.265 0412
DWT+KNN 10.0+1.7 20.8+2.8 40.1+6.4 59.1+2.6
HMM+SVM 262+22 652+16 69.8+18 77.4+2.1

FK+SVM 50.0+2.8 727+22 80.6+26 85.1+1.5

0.580 0.731 0.848 0.925
DWT+KNN 73.5+4.8 81.3+28 858+1.7 89.1+0.8
HMM+SVM 82.1+31 851+16 859+15 86.6+1.2
FK+SVM 86.1+2.6 87.6+0.3 902+20 89.2+0.8

Hidden States
MAPs 5 10 20

0.095 0.50 0.50 0.50
0.157 0.72 0.73 0.75
0.265 0.81 082 0.84
0412 0.87 0.88 0.89
0580 0.90 0.91 0.93
0731 092 093 0.95
0.848 0.93 0.95 0.96
0925 094 095 0.97

Table 2: Accuracy comparison (in percentages) at different
concept detection accuracies.

we applied latent semantic analysis to map the original
attribute space to a more compact 35-dimensional space
according to the contextual correlation of concept occur-
rences. Multivariate Gaussian emission probabilities with
full covariance matrices are employed in the HMMs to mod-
el the high dimensional features.

As shown in Table 2, the classification based on the Fisher

Table 3: Performances of FK+SVM
with different numbers of hidden

kernel significantly out-performs the baselines across var-

states.

ious concept detection accuracies. Most especially, when
concept detection accuracies are not high, such as when
the M AP < 0.5 which is a realistic expectation accord-
ing to the TREVid benchmark [7], the improvement can be
as high as greater than 10% for most cases. This suggests
that our proposed method can encode the dynamic features
of concept occurrences into more discriminative features.
This is especially useful for real-world quantified self appli-
cations where concept detections are noisy and inaccurate
due to reasons including visual diversity, user movemen-

t of the camera causing blurring, image quality, etc. The
discriminative capability of the proposed method is also il-

lustrated by Fig. 3 and 4 in which the two features extracted
from HMMs are used at the same concept detection M AP
(0.157). While more samples are mistakenly classified us-
ing HMM log-likelihood representations (average accuracy
65.2%), less mis-classifications are made when embedding
SVMs with Fisher scores and kernels (average accuracy
72.7%).

In addition to the performances demonstrated in Table 2 us-
ing two hidden states, the results for the proposed FK+SVM
methods with 5, 10, and 20 states are also shown in Ta-

ble 3. As shown in the table, similar results to Table 2 are
obtained across different numbers of hidden states. This
reflects the robustness of the Fisher kernel-based activity
classification method.

Conclusions

Automatic detection of human activities based on visual
lifelogs represents a natural use of such lifelogs. However,
due to the variety of activities humans are involved in com-
bined with the movement of the wearable lifelog camera as
images are taken, the diversity of concepts and the quali-
ty of images poses challenges to reliably detecing human
activities form visual media. This is partly due to the diffi-
culty of discriminating activities of interest from others. In
this paper, we propose to employ a Fisher kernel to extract
embedding from HMMs which model human activities, for
more accurate activity classification based on concept oc-
currences. Experimental results have shown the advantage
of reflecting temporal features and making classification
more accurate, especially when concept detection has poor
performance as measure by M AP, which is common in
real-world quantified self applications.
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