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Abstract—Clinical studies provide interesting case studies for
data mining researchers, given the often high degree of dimen-
sionality and long term nature of these studies. In areas such as
dementia, accurate predictions from data scientists provide vital
input into the understanding of how certain features (representing
lifestyle) can predict outcomes such as dementia. Most research
involved has used traditional or shallow data mining approaches
which have been shown to offer varying degrees of accuracy in
datasets with high dimensionality. In this research, we explore
the use of deep learning architectures, as they have been shown
to have high predictive capabilities in image and audio datasets.
The purpose of our research is to build a framework which allows
easy reconfiguration for the performance of experiments across
a number of deep learning approaches. In this paper, we present
our framework for a configurable deep learning machine and our
evaluation and analysis of two shallow approaches: regression and
multi-layer perceptron, as a platform to a deep belief network,
and using a dataset created over the course of 12 years by
researchers in the area of dementia.

I. INTRODUCTION

Dementia is a serious loss of cognitive ability beyond what
might be expected from normal ageing. Worldwide, the number
of people with dementia is currently estimated to be 44 million
and expected to reach approximately 76 million by 2030,
and 135 million by 2050 [18]. While dementia is a chronic
and progressive illness, with no cure, and one of the most
feared age-related conditions, there is now strong evidence
that dementia can potentially be delayed by adopting lifestyle
changes in mid-life in relation to cardiovascular health, mood,
diet and physical and cognitive activity [9]. Many healthcare
research projects have progressed into the realm of attempting
to analyse and predict outcomes based on a person’s lifestyle.
The Innovative Mid-life Intervention for Dementia Deterrence
(In-Mindd) project [21] is a collaboration between dementia
and data science research teams across Europe with an aim to
create a cloud-based profiling tool to assess the relative risk of
developing dementia for individuals of middle-age. In previous
work, this involved federating existing healthcare systems in
projects such as [19][6] to create a single patient record similar
to the standards proposed in the HL7 standard [2]. With In-
Mindd, the project involved the development of an on-Cloud
profiler and algorithm to predict a score indicating the risk of
a patient developing dementia in later years.

In recent times, there have been many examples of data
mining for sensor networks. In healthcare, efforts such as

[20] and [23] used sensor networks to harvest high volumes
of personal health data for usage in data mining activities.
However, clinical studies cannot employ automated harvesting
mechanisms for data collection. Instead, longitudinal clinical
studies contain general and biometric data gathered on a cohort
of participants at various time points over a number of years.
Consequently these are high-dimensional (many features, or
poor sample to feature ratio) and temporal datasets, which are
prone to sparsity or missing values. As part of the evaluation
process, we attempted to identify sets of features which were
strong indicators of a predictable outcome. Deep learning has
proven successful for learning models in high-dimensional
[13], [24], [16] and temporal [14] datasets, as well as those
with significant numbers of attribute values missing [25].
Deep learning, or deep architectures refer to algorithms where
multiple-layers of hidden, usually latent variables are learned
through many layers of non-linear operations [7], usually in the
artificial neural networks context. However, the issue of high-
dimensionality, discerning from a large number of features
those which best predict the class or outcome, remains a
challenge even using deep architectures.

Motivation. As part of the In-Mindd project, researchers
are using an ontology containing the MAAS data set [22], [15]
which recorded a very high number of features over a 12-year
span in an attempt to discern the determinants of cognitive
ageing from behavioural characteristics and other biometrics.
However, it is unclear as to which set(s) of features would
provide the best predictive capabilities for a particular out-
come. As different approaches have been shown in the past to
deliver varying degrees of success, our motivation is to develop
a framework by which we can test different combinations of
features in different deep learning configurations or machines
as they are known. By evaluating the success of learning
different features representations with different deep learning
architectures, our goal is to demonstrate the configuration most
applicable to prediction in clinical studies for dementia.

Contribution. Deep learning architectures have been pri-
marily used in image, audio and video domains where the
feature sets are often large and complex. More traditional or
shallow architectures are used in text based datasets. However,
we feel that the high dimensionality of clinical studies provides
a perfect domain problem for the deep learning approach. In
this research, we are one of the first projects to attempt to use a
deep architecture for a dementia-based study. Our contribution



is to develop an easily-configurable machine that provides
Regression, Multi-Layer Perception (MLP),and Deep Belief
Network (DBN) approaches as part of an overall framework
for identifying the feature sets for higher levels of predictive
accuracy and comparing the above approaches as well as
allowing for many experimental runs and test case scenarios.

Paper Structure. The remainder of this paper is structured
as follows: In Section II, we discuss the related research in
this area; in Section III, we briefly present terminology and
an overview of the deep architectures involved, as well as
a detailed discussion of our Configurable Deep Network; in
Sections IV and V, we present a detailed series of experiments,
with results and analysis to illustrate this the framework
approach; and finally in Section VI, we offer some conclusions.

II. RELATED RESEARCH

Traditionally, feature representation or selection, and sub-
sequent model learning are treated as separate processes in
the medical context [4], [10]. Arauzo-Azofra et al. [4], review
the suite of traditional feature selection methodologies and
their efficacy with various shallow learning algorithms. They
formalise the process of feature selection into two steps: the
first scores an individual feature’s predictive power; and the
second applies a cutting criterion (methodology which removes
all features under a certain threshold). It was found that when
a certain cutting threshold was exceeded, greater reductions
lead to poor prediction accuracy meaning relevant features
were lost. They also found no generic method to perform
best overall, as each learning algorithm worked better with
a different feature selection method.

Similar work [10], proposed a new confidence metric for
medical data classifications. To select relevant features, they
applied a single variable classifier to only those instances with
no missing data and measured their performance using the
area under the receiver operation characteristic curve (AUC)
measure. The final score calculated the average AUC over
multiple classifiers and the features were ranked according to
this score. There were originally nine features and the top
four ranked were selected to train upon. This number was
chosen as the accuracy of the models learned improved up
until a sixth feature was discarded. Subsequently a number
of multi-variate experiments were performed using different
feature combinations building multiple models in all possible
combinations, until performance degraded - for example: all
nine features, the top four and so on.

Both of the aforementioned cases use a two-step, manu-
ally intensive process of choosing a feature representation to
learn predictive models, with shallow algorithms in a medical
context. They sometimes eliminate relevant features [4] and
do not deal with high dimensional data as in one case [10]
only nine features were contained in the original dataset. Such
a manually intensive, two-step process would not scale to
high-dimensional data. Individually ranking each feature [4],
[10], building multiple models with different combinations of
features [10] and having to determine which feature selection
method is best out of a suite of methods [4] is intractable
where thousands of features are present in a dataset.

The power of deep algorithms for feature learning and
building accurate predictive models can be seen in a recent

development by the Google research team [16]. In this work
they successfully learn high-level features, training a face
detector in a completely unsupervised fashion by using a deep
sparse auto-encoder on a dataset of 10,000,000 images. It
demonstrates that abstract and relevant features can be learned
not only from labelled but also unlabelled data. Their work
focuses on auto-encoders, whereas ours implements a Deep
Belief Network (DBN) using a configurable framework and has
to be trained on a much smaller number of instances. Work
similar to that described, but instead using a DBN, can be
found in [13]. Like Le et. al [16], and as is often-times the
case with deep learning, they apply their methodologies to an
artificial intelligence task, which in these cases is computer
vision. We apply our DBN to clinical trial data analysis, in
an extensible architecture that allows for the easy roll-out
of multiple configurations, hence providing a building block
approach to constructing a DBN. As clinical data provides a
new domain for this approach, it is crucial to understand how
different configurations perform.

There have been recent developments in bioinformatics that
use DBNs for medical text classification [27] and healthcare
decision making with electronic medical records [17]. As yet,
none have applied deep learning to clinical trial datasets.
The work of Yepes et al. use DBNs to assign descriptive
Medical Subject Headings (MeSH R©) to MEDLINE R©citations
and compare them with the results achieved by completing
the same task with a Support Vector Machine (SVM). They
found that in smaller datasets the SVM outperformed the
DBN but when there was more data to train on the DBN
significantly improved upon the shallow models. Their DBNs
are somewhat limited in configuration, as both consisted of
only 3 layers, with one hidden layer, where one configuration
had 250 units in each layer and the other had 500. It is also
arguable that these are shallow models as they consist of only
three layers [7], where a lot of the power of deep networks
comes from multiple hidden layers [16], although they do
employ an unsupervised pre-training step as is characteristic
of most deep architectures. Similar to our work, their code is
written on Theano [5], [8], but they do not implement their
own architecture, instead using a third-party implementation
[1].

The work of Liang et al [17] also focus on text classifi-
cation as opposed to our efforts with clinical trial data. They
found that the DBN is successful and outperforms the standard
SVM or decision tree (DT) models, extracting relevant features
and performing more accurate classifications on data. They do
not however, describe a single algorithm architecture that can
implement both shallow and deep algorithms and be extended
to incorporate different hidden units and activation functions.
They employ a SVM as their classification output layer which
could arguably be more powerful in classification than the
softmax regression layer which we used. In both of the afore-
mentioned projects they also do not provide possible heuristics
on how to choose the hyper-parameters of the learning rate1

and regularisation term2 or model configurations for the DBN.

1Learning rate is a coefficient for the model parameter updates and decides
how big of a step to take in gradient descent.

2The regularisation term is the coefficient for the regularisation terms of L1
or L2 norm and decides on how much to penalise the data values.



III. THE CONFIGURABLE DEEP NETWORK

Every deep network is composed of two main constructs:
nodes which execute the activation functions, and layers which
contain the nodes. The bottom or input layer contains a nodes
which reflects each feature in the dataset. At the top of each
configuration (with the exception of Restricted Boltzmann ma-
chines), there is an output layer which performs, for example,
a classification function.

For most deep networks, each node in layer L(i) is con-
nected to every node in layer L(i−1), and to every node in
L(i+1). The activation energy from each node in Layer L(i)

is passed to every node in layer L(i+1). In Figure 1, the links
shown connecting nodes from L(i−1) to L(i) are only shown for
the first node in L(1), but are in fact, repeated for every node
in L(1). A vector of weights forms part of the input into each
node, giving a particular weight to multiply by a particular
activation energy depending on the activation energy’s origin
and destination.

Each layer L(i) contains a set of nodes n(i)1 to n(i)
m , where

each node n(i)j contains a non-linear activation function through
which the sum of the products of all inputs go through
(Equations 1 and 2/3 ) to generate an energy value a(i)j . In
all configurations shown in Figure 1, a matrix of weights is
randomly generated for each layer L(i), containing a distinct
set of weights W(i)

j for every node n(i)
j in L(i). Thus, the two

sets of input parameters to every node n(i)j are the weights W(i)
ij

and the energy values a(i−1)i . This occurs for every {W(i)
ij ,

a(i)j } to reflect the connection between each node in L(i) to
each node in L(i−1).

We now describe the four configurations currently imple-
mented in our architecture in Python and built upon Theano
[8], [5]: Regression, Multi-Layer Perceptron(MLP), Restricted
Boltzman Machine (RBM) and Deep Belief Network (DBN),
which are displayed in figure 1 and are based on the research
presented in [7]. Each configuration has the following func-
tions described below.

• initialise. This function instantiates the model
parameters of a particular configuration: the number
of inputs and outputs, nodes, weights and biases for
that architecture. It associates the necessary hyper-
parameters (like learning rate and the regularisation
parameter) with the architecture.

• buildhypothesis. This function builds the sym-
bolic expressions for the hypothesis i.e. the function
that classifies or gives you Y for a particular sam-
ple (explained in further detail in the configurations
below).

• buildcost. This function creates a symbolic cost
expression based on the classification type or algo-
rithm output. It also adds regularisation to the cost
function if required. If applicable, it also builds an
expression to compute output error.

• buildmodel. This uses Theano’s automatic differ-
entiation to compute the gradients of the cost func-
tion and thus, builds a symbolic expression for the
update of the parameters of the model. It subsequently

compiles these expressions into Theano functions for
training and pre-training (if applicable), on training,
validation and test data.

• pretrain. This function is only relevant to RBM
and DBN configurations. Its purpose is the unsuper-
vised pretraining of the layers, before the fine-tuning
stage. It essentially puts the parameters of the model
in a bound where they can effectively represent the
data, narrowing the search space for the fine-tuning
function and is similar to creating clusters based on
the data.

• train. This function fine-tunes the model with
respect to an outcome, not relevant in the case of the
RBM.

A. Regression

The Regression class is the simplest module in our
architecture and is called upon as the output layer in the
MLP and DBN classes. If other classification algorithms are
added to the architecture in the future like the Support Vector
Machine, this module is easily interchangeable as an output
layer. Currently our Regression layer can handle linear,
binary-class and multi-class classification where, in the case
of multi-class classification, the class is mutually exclusive.

In the case of running regression, as a model itself or as
the output layer in a neural network, it is initialised based
on the type of data one is modelling. In the case of linear
data, only Equation 1 is executed in the hypothesis function,
multiplying the input X by the model parameters (weights
with the bias term) θ. In the case of binary classification and
multi-class classification, the logistic sigmoid (Equation 2) or
the softmax (generalised sigmoid Equation 3) expressions are
called respectively on the output of the linear function, all
shown below in matrix notation. In the case of linear data, the
output is an estimate of what the continuous output should be,
whereas in the case of the logistic and softmax functions it
outputs a probability of class membership, where the different
classes are class 1 to class K.

z(i) = θ(i)T ˙X(i) (1)

sigmoid(z(i)) =
1

1 + e−Z(i)
(2)

softmax(z(i)) =
ez

(i)∑K
k=1 e

z
(i)

k

forj = 1, . . . ,K. (3)

Next the buildcost function is called, again dependant
on the classification task. In the case of linear data, the mean
square error is sufficient as seen in Equation 4 but for more
complicated non-linear models of logistic and softmax regres-
sion, cross entropy cost and the negative log likelihood (or
negative log probability) are employed as shown in Equation
5 and 6 respectively.



Fig. 1: Machine Configurations

1

|D|

|D|∑
i=1

(ŷi − yi)2 (4)

−
|D|∑
i=0

yi∗logP (ŷi = yi|xi, θ)−(1−yi)∗log(1−P (ŷi = yi|xi, θ))

(5)

−
|D|∑
i=0

logP (ŷi = yi|xi, θ) (6)

buildmodel then calculates the gradient of the cost
function with respect to the model parameters and compiles
them into Theano functions. Finally, these parameters are
updated through stochastic gradient descent in the train
function, where for each instance in the dataset the derivative
of the cost with respect to the model parameters, multiplied
by the learning rate is taken away from the current weights
for each step.

B. Multi-Layer Perceptron

This is a simple form of one hidden layer neural network
where the values are propagated through the network as
explained in the start of this section. It is trained via back-
propagation in a similar fashion to regression except that the
parameters in each layer must be updated with respect to the
cost of the predicted output compared to the actual output.

It makes use of a further Layer class which determines the
activation energy function to be used and holds the weights
for that layer, taking the relevant activation energy value from
the previous layer and multiplying it by the relevant weight
before going through the activation function for each node
in the layer. The Layer class allows for extension and the
swapping of different activation functions, when required. The
activation function used for this configuration was the logistic
sigmoid function as in Equation 2

C. Restricted Boltzmann Machine

An RBM is a two layer neural network, with one hidden
and one visible layer. The total energy of an RBM is given by
the function shown in Equation 7, again in matrix notation, and
the aim is to learn a model which occupies a low energy state
for desirable configurations of the data. This is done through
maximising the probability of the training data in the hidden
and visible layers, learning the joint probability distribution
over the visible and hidden layers as shown in Equation 8.

E(v, h) = −aT v − bT v − vTWh (7)

P (v, h) =
1

Z
e−E(v,h) (8)

To train a RBM, the contrastive divergence [12] algorithm
is used. This performs a step of Gibbs sampling inside the
gradient descent procedure. It takes the visible vector and
computes the probabilities of the hidden layer. It subsequently



samples from this probability, computes the outer product of
the v and h layers and this is called the positive phase. Next,
a sample v′ is taken from the hidden layer in an attempt
to reconstruct the data. The probabilities of the hidden layer
are recalculated from v′ and the hidden values sampled from
this are h′. The outer product of v′h′ is calculated, giving
the negative gradient or negative phase. The weights are then
updated by multiplying the learning rate against the result of
subtracting the negative phase from the positive phase and
subsequently, subtracting the result from the weights for each
step of gradient descent for each instance in the dataset.

D. Deep Belief Network

A Deep Belief Network is an artificial deep neural network
with multiple hidden layers. It is a generative model charac-
terised by unsupervised pre-training, where subsequent dual-
layers are trained as back to back RBMs - previously explained
in Section III-C, and supervised fine-tuning where parameters
are updated with respect to an outcome, in the same way as
in a MLP, explained previously in Section III-B.

For our DBN class, the initialise phase spools up multiple
Layer and RBM classes in parallel and shares the weights
between them. The pre-train function trains the layers of
RBMs and the train function uses the same weight matrices
(that can be accessed as they are in a shared variable) and fine-
tunes these in respect to the outcome of interest. What training
layers initially as RBMs seeks to do, is to tune the weights
to fit the data, narrowing the search space for optimising the
weights to fit the outcome data. Once again, sigmoid activation
functions are used. Finally, an output layer of regression is put
on top of the model in order to classify.

IV. EVALUATION: PREPARATION OF DATASETS AND
SET-UP

A. The Dataset

The dataset used in our evaluation is the Maastricht ageing
study, or MAAS dataset [15]. The Maastricht ageing study
is a longitudinal clinical trial that took place over 12 years
with biometric data on ageing individuals taken at fixed (3
year) intervals over the period of the study. The entire dataset
contains 3441 unique records and 1835 unique attributes
distributed over 86 ’tests’ or study subsections.

As this is an exploratory analysis into the efficacy of DBNs
for modelling high-dimensional data in the health context, we
chose to remove the temporal and sparse aspects of the data.
The baseline data was analysed and 414 datasets extracted,
containing disjoint sets of participants where all participants
took part in exactly the same tests. This removed the temporal
aspect of the data as well as the sparsity on a test level.
From these datasets we chose a set containing 523 instances
(participant records) and 556 features, taken from 14 ’tests’ or
study sub-sections.

The 14 tests in the chosen dataset along with their subject
matter were: “ax‘ deelname” - whether the respondent will
participate in the follow up and reasons; “bezoek npp” - health
complaints and treatments; “conv oude nieuwe patnr a1” -
study wave the participant was in and their national patient
number; “genmid nu” - prescription drugs and how often they

are taken; “genmid vl” - further questions on drugs; “klachten”
- information on whether treatments for ailments were sought;
“nacrose” - relating to being under anesthesia; “pe cognstat”
- questions relating to memory complaints; “pe medinfo”
- general medical information; “pe mia” - general memory
questions; “pe psyche” - psychological questions; “pe voeg2”
- general well-being i.e. pains, sleeping, etc.; “planvoort” -
administrative information about their participation in the sur-
vey; “resp basis” - where the participant lives, their education
and information regarding their career. The variable we chose
to predict was“vergeet” which equates to the answer to the
question: “do you find yourself forgetful? (yes/no)”.

To remove missing data on a feature level, all those
features that had over 20% missing were deleted, leaving 347
features. For those remaining any missing data was imputed
using a mean imputation.Next the data was scaled to give it
unit variance, which makes sure no one feature dominates
the model because of large data values. After scaling, some
features contained only zeros and thus were removed as they
would not have contributed to the model.

At this point features were still continuous, therefore it was
required they be categorised into vectors of zeros and ones, due
to binomial hidden and visible units in our RBMs. As such, a
unique dictionary was created for each feature, similar to the
bag of words representation [3]. For each feature, a list of only
unique values was extracted, counted, and ordered. Then, for
each individual feature value, a vector the same length as the
number of unique elements in the feature was created and the
zero was changed to a one at the index where that value was
stored in the list of unique, ordered elements for that feature,
thus mapping each feature to the original extracted key and
leaving the feature in a categorical ’one-hot’ encoded state.
Once the features were categorised the cardinality of each input
vector was 3567.

B. Parameter Initialisation

In all of our models the bias terms were initialised to zero.
For the MLPs, RBMs, and DBNs we randomly initialised
the weights between the upper and lower bounds shown in
Equation 9, which are the bounds for the sigmoid activation
function, taken from the work of Glorot et. al [11]. fanin
refers to the number of inputs into the current node from
the previous layer and fanout stands for the number of
outputs to nodes in the subsequent layer. This ensures that
values can be easily forward and back-propagated through
the activation function and mitigates against exploding or
vanishing gradients. The weight for the regression model were
randomly initialised without upper or lower bounds.

[−4
√

6

fanin + fanout
, 4

√
6

fanin + fanout
] (9)

C. Experimental Procedure

Before the DBN was trained, softmax regression and mlp
models were learned with many different hyper-parameter
configurations in a process known as grid search. This was
performed as a proxy for choosing the hyper-parameters of
best fit for the deep belief network, as the regression and



Experiment Initial Train Cost Train cost Validation cost Test cost Test Error Epsilon Lambda Steps Data
8, 0, 0 13.188452 0.001 45.818 2.960 0.258 0.9 0.001 100 one-hot
8, 1, 0 4.925 0.002 7.725 2.909 0.305 0.9 0.003 100 one-hot
8, 2, 0 7.608 0.00334 22.615 1.809 0.225 0.9 0.009 100 one-hot
7, 0, 1 21.066 0.003 6.449 2.690 0.391 0.3 0.001 1000 one-hot
8, 1, 1 9.718 0.004 35.637 1.090 0.238 0.9 0.003 1000 one-hot
8, 0, 1 9.200 0.003919 15.913 1.250 0.305 0.9 0.001 1000 one-hot
4, 0, 2 12.103 0.004 14.097 2.73 0.298 0.03 0.001 10000 one-hot
4, 0, 2 16.553 0.004 16.351 3.106 0.338 0.03 0.001 10000 continuous
7, 0, 1 6.193 0.004 8.180 2.816 0.298 0.3 0.001 1000 continuous
5 0 2 11.149 0.005 9.223 1.090 0.291 0.09 0.001 10000 one-hot

TABLE I: Learning Rate and Regularisation Parameter Grid Search Results - Regression

Experiment Initial Train Cost Train cost Validation Cost Test cost Test Error Data Epsilon Lambda Steps Nodes
2 2.389 0.17 2.107 0.76 0.232 continuous 0.3 0.001 1000 337 10 2
4 5.319 0.231 4.609 0.889 0.225 continuous 0.3 0.001 1000 337 30 2
6 13.466 0.332 12.436 0.97 0.225 continuous 0.3 0.001 1000 337 100 2
8 33.467 0.456 30.394 1.176 0.238 continuous 0.3 0.001 1000 337 337 2
1 11.247 0.842 11.664 0.974 0.291 one-hot 0.9 0.003 100 3567 10 2
10 64.252 0.929 62.453 2.224 0.232 continuous 0.3 0.001 1000 337 900 2
12 73.305 1.426 78.562 3.5761 0.212 continuous 0.3 0.001 1000 337 1300 2
3 30.256 1.473 35.802 1.363 0.318 one-hot 0.9 0.003 100 3567 30 2
14 121.088 2.211 113.605 5.452 0.219 continuous 0.3 0.001 1000 337 2000 2
5 99.757 2.549 134.606 4.533 0.616 one-hot 0.9 0.003 100 3567 100 2
7 318.028 8.859 378.284 9.371 0.616 one-hot 0.9 0.003 100 3567 337 2
9 795.223 24.819 1057.241 22.025 0.384 one-hot 0.9 0.003 100 3567 900 2
11 1097.768 35.089 1487.919 31.769 0.384 one-hot 0.9 0.003 100 3567 1300 2
13 1581.871 61.142 2381.085 47.163 0.384 one-hot 0.9 0.003 100 3567 2000 2

TABLE II: Layer Grid Search Results - Multi-Layer Perceptron

MLP models can be seen as constituent parts of a DBN. Thus,
it was thought individually fine-tuning the constituent parts
should contribute to the efficacy of the overall DBN model.
To compare the results before and after categorisation, the
regression and MLP experiments were run on both categorical
and continuous data.

D. Experimental Set-up

All experiments were run on a Dell Optiplex 790 running
64-bit Windows 7 Home Premium SP1 with an Intel Core i7-
2600 quad-core 3.40 GHz CPU and 16.0GB of RAM. The
code for the experiments was developed in Python using the
Enthought Canopy (1.4.1.1975) distribution of 64-bit Python
2.7.6 and developed in PyCharm 3.4.1 IDE. The code makes
use of the NumPy 1.8.1-1 and Theano 0.6.0 (and hence its
dependencies). All algorithms were trained with stochastic
gradient descent. The dataset was also broken into three parts
for the training, validation and test sets, in a ratio of 5:2:3.

V. EVALUATION: RESULTS AND ANALYSIS

A. Regression Grid-Search Experiments

Table I shows the top ten configurations of hyper-
parameters found via a grid search for regression, ranked by
the lowest cross entropy cost achieved on the training set.

Experiment refers to a particular hyper-parameter config-
uration. Each configuration was only run twice, once on the
categorical (one-hot) data and continuous data. For example
code 8 8 0 would refer to the eighth learning rate value to be
tested, the eighth regularisation value, and the first value for the
number of training steps. Initial Train Cost refers to the cross
entropy cost on the data before training. Train/Test/Validation
Cost refer to the cross entropy cost achieved after training

on the training, validation or test sets respectively. Test Error
refers to a measure of predictive accuracy as can be calculated
from Equation 10. Epsilon in each experiment refers to the
value used for the learning rate and Lambda refers to the
value used for the regularisation co-efficient. Steps tells us the
number of steps of stochastic gradient descent taken and Data
tells us whether continuous or categorical (one-hot) data was
used. All figures are rounded to three decimal places.

1− (
true pos+ true neg

num predictions
) (10)

Grid search involves testing a range of values for the hyper-
parameter configuration. The range of the grid search for both
the regularisation and learning rate values was from 0.001 to
1. This range was roughly divided into 10 giving us values of
0.001, 0.003, 0.009, 0.01, 0.03, 0.09 and so on up to 0.9. We
chose three values for the number of steps for gradient descent,
that is 100, 1000, and 10000. Given such a small sample size
we estimated that any more would lead to over-fitting the data
(not generalising well to unseen data). All combinations of the
above parameters were tested, giving 246 experiments in total.

In bold, in Table I, are hyper-parameter configurations we
found as the best performing for the categorical and continuous
data respectively. The configuration chosen in both cases was
that which achieved the second lowest cost on the training data,
this was because for the configurations that performed best on
the training data did not perform very well on the validation
data and although the model chosen performed worse on the
training data it had a significantly lower cost on the validation
set, suggesting these hyper-parameters generalised better. We
were able to learn a relatively good model with both types of
data, achieving an error rate of less that 0.31 for both, meaning
that over 69% of the instances were classified correctly for the



one-hot encoded data and over 70% for the continuous data.
Immediately striking is that even though the categorical, one-
hot encoded data achieves a lower cost, the continuous data
performs better in making predictions achieving a lower test
error. This may suggest that categorising the data removed
some noise present in the continuous data but along with the
noise it removed some information necessary to generalise
better. Another distinction to be drawn between the categorical
and continuous data is that learning rate (epsilon) is much
higher for the categorical data and the regularisation parameter
is also larger than in the continuous data but ten-times less
steps were required suggesting that gradient descent was much
larger and steeper on the categorical data and as a result,
converging in a smaller number of steps.

B. MLP Grid-Search Experiments

The three figures in the extra column of Nodes in Table
II refers to the the number of Nodes in the input, hidden and
output layers respectively. Shown are the entirety of the 14
experiments performed on the data with a multi-layer percep-
tron. Seven different hidden layer configurations were tested
on the categorical and continuous data, giving 14 experiments
in total.

When instantiating a multi-layer perceptron there are con-
siderations beyond the configurations of the hyper-parameters
of learning rate, regularisation parameter and training steps.
The number of nodes in the hidden layer must also be de-
termined, which could itself be considered a hyper-parameter.
As such, we performed a grid-search on the number of hidden
nodes with the best performing hyper-parameters from the first
set of experiments for the categorical and continuous data
respectively. The search for the optimal number of hidden was
in the range of 10 to 2000 inclusive, with values of 30, 337
(number of features before categorisation) 900 and 1300 also
used for this series of experiments. We chose this sequence of
node counts as they are broadly in line with gaps of values
tested in our first series of experiments (Regression), although
increased by several factors of ten.

From Table II it can be seen that the smallest number
of hidden nodes performs best for both the categorical and
continuous data - Experiments 2 and 10. The test error for the
MLP is an improvement upon that of the test error in regression
for both types of data, this time achieving a prediction accuracy
of over 70% for both types of data and achieving a predictive
accuracy of just under 78% for the continuous data. Therefore,
a better representation of the data must have been learned by
the MLP. The best performance coming from a small number
of hidden nodes suggests that the number of features in the
datasets that actually describe the outcome are relatively few,
and we use this as a heuristic for choosing the number of
nodes in our second last hidden layer in the DBN. Again, it is
also clear that the continuous data has greater predictive power
when compared to the one-hot encoded data, suggesting that
information is lost when it is coded into binary features.

C. Deep Belief Network Versus Shallow

For the DBN run, we use the hyper-parameters found
through grid-search for the regression layer on the binary data
(again as our RBMs can only currently model binary hidden

units), and the number of hidden nodes found to work best
from the multi-layer perceptron in the second last layer of our
DBN.

Table III compares the best results from the models learned
from MLP and regression respectively on both the continuous
and categorical data and the initial model learned by our DBN
with the heuristic hyper-parameters applied from grid-searches
in the regression and MLP models.

Although the Deep Belief Network performs comparably
when the cost is examined, it performs worse then the re-
gression and MLP models when predicting. This was par-
tially expected for a number of reasons. First, where there
are not a lot of instances to train the DBN, it has been
found to perform worse compared to models learned with
shallow algorithms [27]. Second, a DBN can take on very
high numbers of configurations because of: the cardinality of
hidden layers; the cardinality of nodes within each hidden
layer; and in settings for other hyper-parameters, we performed
only an initial run of the DBN and perhaps did not use
the best possible configuration. We were not in a position
to test multiple configurations as the time cost incurred was
prohibitively expensive on the current hardware. Finally, the
data the model was trained on was categorical which, as shown
in previous experiments, built less accurate models compared
to continuous data. Interestingly the DBN had lowest cost of
all the models but performed worst when classifying on the test
set. This could signify that the model over-fitted the data and
did not generalise to the extent that was necessary or possible
did not learn a relevant feature representation.

VI. CONCLUSIONS AND FUTURE WORK

Clinical trials are an important area for data scientists as the
provision of good predictive models can have a high impact on
society. This is one of the main goals in the In-Mindd project
which seeks to reduce the risk of dementia, using profiling
and a predictive algorithm. As part of that research, we are
building a strategy that involves deep learning architectures
to address one of the primary issues with clinical study data:
high dimensionality. However, these architectures are complex,
with many combinations of weights, feature sets and hyper-
parameters. We require a framework in which we can carefully
measure the results of different machine and algorithm types
(e.g. regression, MLP, DBN) and configurations (e.g. number
of hidden layers and nodes and hyper-parameters). In this
paper, we presented our Configurable Deep Network and a
series of experiments used to evaluate the Regression and
Multi-Layer Perceptron components.

While this research is ongoing, our initial results as pre-
sented in our evaluation sections, are quite promising. Apart
from the ability to easily configure many experimental runs,
it also demonstrated a function to tune results to make them
more accurate. For current and future work, we are now
focused on utilising the Deep Belief Network configuration
and using results as feedback to rerun the original experiments.
Although the initial DBN run performed poorly against the
first 2 series of experiments, we did not make use of many of
the main advantages of these models, such as sampling from
the RBM to infer missing data and using Gaussian units to
model continuous data in order to train a DBN and not lose



Model Initial Train Cost Train cost Validation Cost Test cost Test Error Data Epsilon Lambda Steps Nodes (In, Hidden, Out)
Regression 1 6.193 0.004 8.180 2.816 0.298 continuous 0.3 0.001 1000 n/a
Regression 2 4.925 0.002 7.725 2.909 0.305 one-hot 0.9 0.003 100 n/a
MLP 1 2.389 0.17 2.107 0.76 0.232 continuous 0.3 0.001 1000 337, 10, 2
MLP 2 11.247 0.842 11.664 0.974 0.291 one-hot 0.9 0.003 100 3567, 10, 2
DBN 0.815 0.693 0.791 0.703 0.616 one-hot 0.9 0.003 100 3567 200, 10, 2

TABLE III: Comparing Deep Versus Shallow

information encoding the features into a binary configuration.
Apart from this there are state-of the art regularisation methods
[26] which have been shown to vastly improve upon the
predictive power of deep architecture.

As part of future research, there are a vast number of
possible configurations to test. This was not possible during
this initial set of experiments as the computational costs were
prohibitively expensive. A new set of experiments are planned
using a Graphical Processing Unit (GPU) which Theano ex-
ploits for much faster code-completion, which would in turn
lead to a higher throughput of experiments. Our Configurable
Deep Machine is designed for use with a GPU, hence allowing
for a far higher number of tests.
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