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Abstract. Finding object instances from large image collections is a
challenging problem with many practical applications. Recent methods
inspired by text retrieval achieved good results; however a re-ranking
stage based on spatial verification is still required to boost performance.
To improve the effectiveness of such instance retrieval systems while
avoiding the computational complexity of a re-ranking stage, we explored
the geometric correlations among local features and incorporate these
correlations with each individual match to form a transformation consis-
tency in rotation and scale space. This weak geometric correlation con-
sistency can be used to effectively eliminate inconsistent feature matches
and can be applied to all candidate images at a low computational cost.
Experimental results on three standard evaluation benchmarks show that
the proposed approach results in a substantial performance improvement
compared with recent proposed methods.
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1 Introduction

Given a query image of an object, the objective of this work is to find images
which contain a recognisable instance of the object from a large image collection,
henceforth referred to as “instance search”. A successful application requires
efficient retrieval of instance images with high accuracy, possibly under various
imaging conditions, such as rotation, viewpoint, zoom level, occlusion and so on.

Instance search is an interesting yet challenging problem and attracts signifi-
cant research attention in recent years. Most of the state-of-the-art approaches [11],
[16], [19] have been developed based on the Bag-of-Visual-Words (BoVW) frame-
work firstly introduced by Sivic and Zisserman [3]. This framework success-
fully made use of the discriminative power of the local feature descriptors (e.g.
SIFT [1], SURF [2]) which are generally robust to changes in image condition and
are applied to build a statistical representation for each image in the database.
At query time, the BoVW representation may take advantage of indexing tech-
niques such as inverted files [4] to provide fast retrieval speed, even over large



collections. However this representation leads to a loss of the ability to encode
spatial information between local features, so spatial verification [16] was intro-
duced to improve retrieval accuracy. Based on the observation that there can be
only one local feature correspondence to any given feature from query object, the
geometric layout of objects was adopted to verify the spatial consistency between
matched local feature points. Generally, the spatial verification algorithms were
applied to refine the ranked results by iteratively optimizing the transformation
models and fitting them to the initial correspondences to eliminate inconsistent
matches. However those techniques such as RANSAC are normally computa-
tionally expensive; they can be applied only as a post-processing step to the top
ranked images in the initial result set.

In this work, we address the challenges of improving the efficiency and ro-
bustness of examining the consistency between local feature matches to enhance
the retrieval performance of instance search systems. Recent work of Jégou et
al [5] proposed a novel approach to efficiently apply spatial verification and made
it suitable for very large datasets. They used the weak geometric constraints,
specifically in the rotational and scale spaces, to examine each individual feature
match and filter out those inconsistent feature matches at a very low compu-
tational cost. Although it improved retrieval performance for instance search,
we observed that their approach considered feature matches independently and
ignored the geometric correlation between local features, thus performed less
effectively when searching more challenging datasets like FlickrLogos-27 [18].
In this work, we believe that the geometric correlation between reliable feature
matches should also be consistent to the weak geometric constraints, just like
each individual feature match. Based on that, we propose a scheme to incor-
porate the geometric correlations between matched feature correspondences to
form a weak geometric correlation consistency to improve the effectiveness of
spatial verification.

The experimental results on three standard evaluation benchmarks, in Sec-
tion 5, illustrate that the proposed method is more reliable, and also more
tractable for large image collections, which leads to an overall significant im-
provement of instance search performance compared to state-of-the-art methods.

2 Related work

In this section, we briefly review the development of visual instance retrieval
systems and discuss existing approaches to improve retrieval performance with
the geometric information.

Sivic and Zisserman [3] were the first to address instance search using a
BoVW representation combined with scalable textual retrieval techniques. Sub-
sequently, a number of techniques have been proposed to improve the perfor-
mance. The work in [11] suggested using very high dimensional vocabulary (1
million visual words) during the quantization process. This method has improved
the retrieval precision with more discriminative visual words, and also increased
the retrieval efficiency with more sparse image representations, especially for



large scale database. Chum and Philbin [13] brought query expansion techniques
to visual search domain and improved instance recall by expanding the query
information. For further improvement on the retrieval performance, both ap-
proaches added the spatial verification stage to re-rank the results in order to
remove noisy or ambiguous visual words. Recent works in [7], [10], [9] and [8] ex-
tended the BoVW approach by encoding the geometric information around the
local features into the representation and refine the matching based on visual
words. Those methods were very sensitive to the change in imaging condition
and made them only suitable for partial-duplicate image search.

Recently, alternative approaches have been developed to implicitly verify the
feature matches with respect to the consistency of their geometric relations, i.e.,
scaling, orientation, and location, in the Hough transformation space. Avrithis
et al. [12] developed a linear algorithm to effectively compute pairwise affinities
of correspondences in 4-dimensional transformation space by applying a pyra-
mid matching model constructed from each single feature correspondence. Jégou
et al. [5], increased the reliability of feature matches against imagining condi-
tion changes by applying weak constraints to verify the scaling and orientation
relations consistency according to the dominant transformation found in the
transformation space. Similarly, Zhang et al. [15] proposed to represent the fea-
ture points geometric information using topology-base graphs and verified the
spatial consistency by performing a graph matching.

Our proposed method follows the direction of implicitly verifying the fea-
ture matches to reduce the computational cost. However compared to existing
work, which focused on individual correspondences, our proposed method also
considers the spatial consistency for the geometric correlations between matched
feature correspondences, while maintaining the efficiency and increasing the ef-
fectiveness of the instance search systems.

3 Weak Geometric Correlation Consistency

In BoVW architecture, the local features are firstly extracted from each image to
encode the invariant visual information into feature vectors. Generally, a feature
vector is defined as v(x, y, θ, σ, q), where variables {x, y, θ, σ} stand for the local
salient point’s 2-D spatial location, dominant orientation, and most stable scale
respectively. While q represents a 128-D feature vector to describe the local
region. For a query image Iq and candidate image Ic, a set of initial matching
features Cinitial could be established by examining feature vector q. The task of
spatial verification is to eliminate the unreliable feature matches and only retain
the matches set Cstable that linked the patches of the same object. The following
equation formatted this process:

Cstable = {mi ∈ Cinitial and fsp(mi) = 1} (1)

where mi stands for the ith feature match in the initial match set. fsp stands
for the spatial verification function for assessing its geometric consistency. Take



the weak geometric consistency [5] for example, the verification function in their
work could be expressed as follows:

fsp =

{
1 if ∆θ ∈ Dθ and ∆σ ∈ Dσ

0 if otherwise
(2)

where ∆θ and ∆σ is the geometric transformation for individual feature match
and Dθ and Dσ is the dominated transformation in orientation and scale space.

3.1 Motivation

We take the geometric correlation among local features into consideration and
hypothesize that the pairwise geometric correlation between consistent matches
should also be consistent and follow the same spatial transformation between
objects. So instead of verifying the geometric consistency for each match individ-
ually, we proposed a novel approach to verify the consistency between pairwise
geometric correlations along with their corresponding feature points. So for a
given pair of feature matches ml and mn, we then define the proposed spatial
verification function as following:

fsp =

{
1 if ∆θ,∆θl→n ∈ Dθ and ∆σ,∆σl→n ∈ Dσ

0 if otherwise
(3)

where ∆θl→n and ∆σl→n represents spatial transformation of the geometric
correlation from feature match ml to mn.

We named our proposed approach to be Weak Geometric Correlation Con-
sistency (WGCC) and Figure 1 demonstrates our idea of using geometric cor-
relations to assess reliability of feature matches. The object of interest (front
cover of a box) is highlighted with dark yellow box. To begin with, we have
three initial feature matches for spatial validation. Matches (A,A′), (B,B′) are
considered to be consistent because the spatial transformation is consistent be-
tween match(A,A′), (B,B′) and their correlation (AB,A′B′). On the other
hand, match (C,C ′) is filtered out due to the fact that geometric correlation
between (AC,A′C ′) is not consistent with the spatial transformation. Hence, we
can successfully eliminate the inconsistent feature matches despite the fact that
they may obey weak spatial constraints individually.

3.2 Implementation

To explicitly examine all the correlations between the initial feature matches is a
non-trivial problem. If we take a total number of N initial matches as example,
the potential pairwise correlation could be modeled as O(C2

N ). The initial feature
matching number N is usually large in practical systems, and this will cause a
high computational cost to verify all the correlations and makes this solution
less attractive for large image collections.



Fig. 1: An illustration of verifying consistency of feature matches using geometric
correlations. The green(red) line indicates the consistent(inconsistent) feature
matches.

In this work, we proposed a three-step scheme to reduce the complexity of
verifying the geometric correlation consistency, and to make it applicable at low
cost for large-scale instance search systems. The key idea is to obtain a feature
match as a reference point between the initial set of feature matches and then ex-
amine only the O(N) correlations between each match and the reference match.
These three steps are described in the following paragraphs and an example
output for each step is shown in Figure 2.

Estimating weak geometric constraints. To begin with, we establish a
weak geometric transformation, specifically rotation and scaling, in the spatial
space from the initial set of feature matches. The transformation parameters,
rotation angle ∆θ and scaling factor ∆σ for each feature match were denoted
as:

∆θ = θm − θi, ∆σ = σm/σi (4)

In order to reduce the sensitivity to non-rigid deformation, we quantize the value
of the parameters into bins to estimate an approximated transformation. We use
a factor of 30 degrees to divide the rotation range of 360 degrees into 12 bins,
and a factor of 0.5 to divide the scale range between 0 to 4 into 8 bins. To avoid
the bin quantization error, each feature match votes to the closest two bins in
each parameter space. The Hough voting scheme was applied in searching of the



(a) The initial matches set (b) After weak geometric constraints

(c) The reference feature match (d) Verified match set after WGCC

Fig. 2: An illustration of applying WGCC on the initial set of feature matches
to obtain the consistent feature matches.

dominant value Dθ and Dσ to form weak geometric constraints for two purposes.
Firstly, we can reduce the computational complexity of following process by
eliminating the matches who are not obey the constraints. Secondly, these weak
constraints will be used to assess the transformation consistency for geometric
correlation to obtain the reliable matches.

Identifying the reference matching correspondence. In this step, we
aim to determine the strongest feature matches which will be served as a ref-
erence match in the step of verifying geometric correlations. We follow the ap-
proach of Zhang [15] and adopt a topology-based graph match for this purpose.
To represent the topology structure for objects, we created Delaunay Triangula-
tion mesh from the geometric layout among the feature points in object plane.
Then we could find the strongest feature matches which corresponding to the
the common edges between topology graphs by performing a graph matching.

Verifying weak consistency for geometric correlations. The last step
focused on identify the reliable feature matches by verifying the consistency
of the geometric correlations from each feature match to the reference match.
Suppose we have a feature match ml and a reference match mn between image Q
and D, the geometric correlation from ml to mn in image Q could be expressed
as vector vl−>n = (xl, yl) − (xn, yn) where x, y represent the 2D location of
corresponding feature points in image Q for match ml and mn respectively.
Similarly we can express the geometric correlation between ml and mn in image
D as vector v′l−>n = (x′l, y

′
l)− (x′n, y

′
n). Then the transformation parameters in

orientation ∆θi−>n and the scale ∆σl−>n between geometric correlations can



be defined as:

∆θi−>n = arccos
‖vl−>n‖‖v′l−>n‖
vl−>n · v′l−>n

, ∆σi−>n =
‖v′l−>n‖
‖vl−>n‖

(5)

It is now possible to assess the spatial consistency by verifying the transformation
parameters values with the weak constraints according to equation 3 and further
filter out the inconsistent matches to obtain the final set of reliable feature
matches.

3.3 Computational Complexity

The major computational cost in the proposed scheme is in the second step
where we build the triangulation mesh and discover the reference matches by
identifying the common edges. These computations are closely related to the
total number of feature matches. The good news is that we already build weak
geometric constraints in the first step to verify the initial feature matches, so only
a subset of smaller set of feature matches (the cardinality of this set is denoted
by n) needs to be conducted in this step, which leads to a cost of O(n log n).
In the end, O(n) operations are required to perform the geometric correlation
verification which is much less than O(C2

n) required for a full verification of all
the possible geometric correlations.

4 Experiments

The goal of experiments is to assess the performance of the proposed weak geo-
metric correlation consistency methods in instance search tasks. Therefore a com-
plete instance search system was developed and comparative experiments were
designed to evaluate retrieval performance against state-of-the-art approaches on
three standard and publicly available benchmark datasets. The datasets chosen
were the Oxford, Pairs6K and FlickrLogis-32 datasets. Each of these datasets
includes a set of queries and relevance judgements.

In the rest of this section, we introduce the three chosen benchmark datasets,
describe the evaluation protocol and analyse the experimental results by com-
paring them to the three state-of-the-art approaches.

4.1 Datasets

The Oxford dataset. This dataset [11] contains 5,062 high resolution images
crawled from Flickr using texture queries for famous Oxford landmarks. 11 build-
ing topics with 55 images queries was provided with manually annotated ground
truth for users to evaluate the retrieval performance. The images are considered
to be positive if more than 25% of the instance is clearly visible.

Pairs6K This collection [16] consists of 6,412 images collected by searching
for particular Paris landmarks from Flickr. In total, 11 Landmarks with 55 im-
ages queries was provided with manually annotated ground truth for users to



evaluate the retrieval performance. The images are considered to be positive if
more than 25% of the instance is clearly visible.

FlickrLogos-27 This dataset [18] consists of 5,107 images including 810
annotated positive images corresponding to 27 classes of commercial brand logos
and 4,207 distraction images that depict its own logo class. It is a very challenging
dataset because the positive images share much more visually similar regions
with the distraction images and have more noisy background. For each logo, 5
query example images are given for evaluation purposes.

4.2 Evaluation protocol

The standard evaluation protocol based on the classic BoVW scheme was adopt-
ed to assess the improvements of our proposed method for instance search. The
Hessian detector and SURF descriptor implemented in the OpenCV Library [20]
were used to extract the local features from database images. Subsequently, a vi-
sual vocabulary was generated using the approximate K-means algorithm [11] to
quantize each feature into visual words for indexing. After that, the represented
visual words (along with auxiliary information, e.g. the geometric information)
are indexed in an inverted structure for the retrieval process. When performing
the search tasks, the candidate images sharing same visual words are retrieved
from the database collections. Auxiliary information is used to perform the spa-
tial verification to improve retrieval performance.

We measured the mean Average Precision (mAP) score of the top 1,000
results to evaluate the retrieval accuracy. mAP is defined as the mean of the
average precision (AP) over all the queries. To evaluate the retrieval efficiency,
we also record the response time accurate to one hundredths of a second. Each
approach was implemented and evaluated on the same computing hardware.

4.3 Experiment Settings

The Weak Geometric Correlation Consistency (WGCC) was compared against
the standard BoVW approach as the baseline, but it was also compared against
two other advanced approaches; Weak Geometric Consistency(WGC) and De-
launay Triangulation(DT), both of which also adopt the geometric information
to enhance the baseline method.

Baseline. The baseline approach was based on [11] with a vocabulary of
1M words which had been shown to give the best performance. The tf − idf
weighting scheme and hard assignment was used to keep a consistent setting for
all the systems.

WGC [5]. We chose this approach for evaluation because this method as-
sessed each feature match by verifying its transformation against a weak geo-
metric consistency to increase the robustness in changing of rotation and scale
space. The constraints for geometric consistency was obtained by converting the
parameter values into Hough transformation space.

DT [15]. This approach make use of relations between matched points in
a 2-dimensional translation space to improve the matching reliability between



Table 1: mAP comparison between our proposed WGCC and the baseline
and two other state-of-the-art advanced approaches, on Oxford, Pairs6K and
FlickrLogo-27 datasets.

Oxford Pairs6K FlickrLogos

Methods mAP Time1 mAP Time1 mAP Time1

BoF 0.489 0.46 0.526 0.62 0.145 0.26
WGC 0.530 1.06 0.576 1.12 0.193 0.41
DT 0.542 0.86 0.546 0.89 0.201 0.31
WGCC 0.693 1.07 0.607 1.23 0.231 1.06

Time1 measures the average response time per query in second, excluding feature
extraction.

two sets of features. It used the Delaunay Triangulation (DT) based graph rep-
resentation to model and match the layout topology of initial matched feature
points. A Hamming embedding signature was used to enforce an point-to-point
matches and ensure the number of nodes in each graph is identical.

WGCC. This is our proposed method and the contribution of this work,
as described in section 3. We follow the recent work in feature search in high-
dimensional space and use the product-quantization based algorithm [6] to build
up search components for initial feature matching. Then we applied the proposed
weak geometric correlation consistency(WGCC) for spatial verification.

5 Results and discussion

Table 1 presents the experimental results of comparing our proposed approach
WGCC with the baseline and two enhanced approaches, on the three bench-
marks. To study the impact of adopting geometric information for enhancing
the retrieval performance in instance search system, we compared the advanced
systems against baseline system on the three described datasets. We observed
that the advanced approaches for spatial verification consistently improves per-
formance in mAP compared to the baseline. Compared to the other two ad-
vanced systems, our proposed approach achieved the best results. Especially on
the FlickrLogos dataset, our approach have a 59% relative improvement in the
mAP performance from the baseline’s 0.145 to 0.231 in our method. This proved
that our approach are strong enough to reject inconsistent feature matches, while
also flexible for keep the evidence from locally consistent patches.

Figure 3 shows some examples of the improvement in mAP obtained by the
proposed WGCC approach compared to the baseline system. The interested
object delimited in the yellow box from the query image on left side of each sub-
figure. The Precision-Recall curve is displayed on the right side with baseline
results shown in blue line and WGCC method shown in red. The gap area
between two lines indicates the performance improvement for our methods. The
high precision value in low recall range indicates that our proposed approaches



(a) Query example: All Soul (b) Query example: Fedex logo

Fig. 3: Examples of the improvement in the precision-recall curve obtained by
using proposed approaches compared to the baseline system.

improved retrieval performance by ranking the good images higher in the ranked
list.

Figure 4 displays some good queries results retrieved from the experiment
benchmark collections. The results demonstrates the robustness of the proposed
methods to the considerable variations in viewpoint, scale, lighting and partial
occlusion from practical environment.

The experiments were carried out on a desktop computer with 4-core 2.3
GHz CPU and 8G RAM. Only one core was used when performing the query
task. At run-time, our proposed method achieved comparable retrieval efficiency
with the two advanced approaches while providing better accuracy. Although the

Fig. 4: Some good examples of searching experiment benchmark: First row:
“Magdalen” in Oxford, Second row: “Ashmolean” in Oxford, Third row: “Fer-
rari” in FlickrLogo-27, and Fourth row: “Apple” in FlickrLogo-27



retrieval efficiency of WGCC was slightly less than the other approaches, retrieval
efficiency could be optimised by adopting parallel computing approaches.

6 Conclusion

This paper proposed novel approach to improve retrieval performance of instance
search systems by combining the pairwise geometric correlations with individual
feature match transformation to form a weak geometric correlation consistency.
This model is strong enough to eliminate inconsistent feature matches while
keeping reliable matches using locally spatial correlation. Our experiments shows
that our approach consistently outperformed the baseline system in three stan-
dard benchmark evaluations and achieved improved results when compared with
two advanced systems. This indicates the effectiveness of our method for spatial
verification. Another positive aspect is that other advanced technologies, such as
automatic query expansion [13], re-ranking base on full spatial verification [11]
are compatible with our proposed method and could be used as complementary
components to further improve the retrieval performance. In future work, we will
investigate how to incorporate WGCC methods in vary large data collections,
e.g. collection with millions of images.
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