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Vinh Pham-Xuan Accelerated iterative solver for the solution of electromagnetic scattering and wave propagation problems

Abstract

The aim of this work is to contribute to the development of accelerated iterative methods
for the solution of electromagnetic scattering and wave propagation problems. In spite of
recent advances in computer science, there are great demands for efficient and accurate
techniques for the analysis of electromagnetic problems. This is due to the increase of the
electrical size of electromagnetic problems and a large amount of design and analytical
work dependent on simulation tools. This dissertation concentrates on the use of iterative
techniques, which are expedited by appropriate acceleration methods, to accurately solve
electromagnetic problems. There are four main contributions attributed to this disserta-
tion. The first two contributions focus on the development of stationary iterative methods
while the other two focus on the use of Krylov iterative methods. The contributions are
summarised as follows:

• The modified multilevel fast multipole method is proposed to accelerate the perfor-
mance of stationary iterative solvers. The proposed method is combined with the
buffered block forward backward method and the overlapping domain decomposi-
tion method for the solution of perfectly conducting three dimensional scattering
problems. The proposed method is more efficient than the standard multilevel fast
multipole method when applied to stationary iterative solvers.

• The modified improvement step is proposed to improve the convergence rate of sta-
tionary iterative solvers. The proposed method is applied for the solution of random
rough surface scattering problems. Simulation results suggest that the proposed
algorithm requires significantly fewer iterations to achieve a desired accuracy as
compared to the conventional improvement step.

• The comparison between the volume integral equation and the surface integral equa-
tion is presented for the solution of two dimensional indoor wave propagation prob-
lems. The linear systems resulting from the discretisation of the integral equations
are solved using Krylov iterative solvers. Both approaches are expedited by appropri-
ate acceleration techniques, the fast Fourier transform for the volumetric approach
and the fast far field approximation for the surface approach. The volumetric ap-
proach demonstrates a better convergence rate than the surface approach.

• A novel algorithm is proposed to compute wideband results of three dimensional
forward scattering problems. The proposed algorithm is a combination of Krylov
iterative solvers, the fast Fourier transform and the asymptotic waveform evaluation
technique. The proposed method is more efficient to compute the wideband results
than the conventional method which separately computes the results at individual
frequency points.
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1 Introduction

The development of Maxwell’s equations in the 19th century, which are named after the
Scottish physicist James Clerk Maxwell, marked a crucial turning point in modern sci-
ence and technology as Albert Einstein once acclaimed that “The work of James Clerk
Maxwell changed the world forever.” The equations describe the relation of magnetism
and electricity, leading to the discovery of many theorical innovations such as the theory of
relativity and the field equations of quantum mechanics. They are essential for advances in
diverse areas such as communications (radio, television, radar, microwave, etc.) or medical
imaging in biomedical systems, which greatly impact human life. Therefore, much effort
has been devoted to the development of powerful electromagnetic (EM) simulation tools
which efficiently approximate the equations and are essential for electrical engineers in the
design of electrical and electronic equipments.

The EM modelling tools simulate the interaction of EM fields with physical objects and
support engineers in the prediction of EM behaviour during the design process such as the
design of antennas or the optimisation of base-station location in mobile communication
planning. The important role of computational electromagnetic (CEM) applications is
also acknowledged in particular research areas. For example, the computation of radar
cross section (RCS) is applied to estimate the effects of large bodies on communication
systems [2], to detect unknown objects at a long distance [3] or to aid the design of stealth
aircraft [4] which can avoid the detection by radar systems by the reduction of reflection
of radio-frequency spectrum. The reconstruction of an image of the human body [5, 6, 7]
based on the measurement of scattered fields is central to MRI and X-ray tomography in
the biomedical area and allow the detection of imminent diseases. As much work relies on
the simulation tools, the demand for efficient and accurate electromagnetic analysis tools
has increased dramatically, resulting in much research work concentrating on improving
and developing CEM tools.

The CEM solvers can be categorised into asymptotic techniques, full-wave techniques and
hybrid techniques which are a combination of the two former. In asymptotic techniques,
Maxwell equations are approximated by simpler forms, enabling the efficient computation
of the electromagnetic characteristics of the problem which is the main advantage of these
methods. However, the validation of asymptotic techniques depends on the operating fre-
quency range of the problem where the accuracy of the techniques increases with respect
to the frequency. The high-frequency asymptotic techniques can be classified into two fam-
ilies. The first family begins with geometrical optics [8] which considers the propagation
of electromagnetic waves as optical rays at a high frequency. Thus, the electromagnetic
problem can be analysed using ray tracing techniques which determine the amplitude of
the EM fields by the shape of the illuminated surface. The lack of evaluation of fields
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diffracted by wedges and edges results in non-physical continuities of the total field at the
incident shadow boundary (ISB) and reflection shadow boundary (RSB) in geometrical
optics. The accuracy of geometrical optics is improved by including the effects of diffracted
fields in the geometrical theory of diffraction (GTD) [9, 10] and later in the uniform theory
of diffraction (UTD) [11, 12, 13]. Another family of asymptotic techniques begins with
physical optics (PO) which focuses on the primary characteristics of a wave to approximate
the induced current density on the surfaces instead of concentrating on the shape of the
wavefront surface in geometrical optics. Using the relations of free-space field-source, the
radiated fields can be obtained by taking an integral over the induced currents. However,
the lack of evaluation of geometrical effects such as edges on the induced currents results
in a discontinuity of the induced currents at the boundary between the illuminated and
shadow surfaces. The accuracy of PO is improved in the physical theory of diffraction
(PTD) [14, 15] by the addition of non-uniform fringe currents to evaluate the geomet-
rical effects. The application of asymptotic techniques to appropriate problems such as
large and smooth problems is highly beneficial because their complexity is considerably
smaller than that of the full-wave techniques to generate an acceptably accurate solution.
However, when the complexity of the electromagnetic problems increases or the desired
accuracy is beyond the capability of asymptotic techniques, full-wave techniques are the
only choice for the solution of Maxwell equations.

The operation of full-wave techniques is fundamentally based on the idea of discretisation
of some unknown electromagnetic quantities such as the electric or magnetic field by the
finite element method (FEM) [16, 17] and the finite difference time domain (FDTD) [18,
19], and the surface current by the method of moments (MoM) [20, 21, 22]. The full-wave
techniques are further classified in terms of the operating domain (time or frequency) and
the form of Maxwell equations (integral or partial differential). The operation of the FDTD
method originates from the differential form of Maxwell equations. The approximation
of these differential operators is obtained by applying Maxwell’s curl equations to time-
space grid in the Yee’s FDTD scheme [23]. The value of the fields at the next-time step are
completely given in terms of the field at the present and the previous time-step. Therefore,
the implementation of the FDTD is considerably more straightforward than that of the
FEM and MoM which require an evaluation of a matrix equation for the value of the fields.
The FDTD method is extensively used for the analysis of wideband problems because
the method operates in the time domain. As a consequence, the wideband response
is obtained within one FDTD run while the problem has to be recomputed at discrete
frequencies for the MoM and the FEM. In addition, the treatment of inhomogeneous
problems in the FDTD is straightforward because it is not affected by the composition of
the structure. Similar to the FDTD, the FEM starts from the partial differential form of
Maxwell equations which is then applied in the frequency domain. The FEM is suitable
for the analysis of complicated geometries and inhomogeneous material whose properties
might be frequency-dependent, and has a better scaling with frequency as compared to
the MoM. However, the meshing for large three dimensional structures in the FEM is
more complicated than that in the FDTD. The MoM is derived from the integral form of
Maxwell equations and is mainly applied in the frequency domain. Instead of using the
direct computation of fields as in the FEM and the FDTD, the MoM initially replaces the
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scattering problem by equivalent currents and derives a relationship between these currents
in the form of a dense matrix equation which is later solved for the unknown equivalent
currents. Then, the fields external to the structure can be computed from these currents.
The MoM is more advantegous than the FDTD and the FEM for the analysis of highly
conducting problems and homogeneous problems because only the discretisation of the
surface of the problems is required instead of the entire space containing the problem as
in the FDTD and the FEM. In contrast, for electromagnetically penetrable materials, the
complexity of the MoM becomes prohibitively expensive due to the meshing of the entire
volumetric structure resulting in a large number of unknowns. A comparison of the three
most popular full-wave techniques (FDTD, FEM and MoM) for the application to open
region problems is presented in Table 1.1.

Techniques Equation Type Domain WB PEC HP IHP
MoM Integral Frequency ∼ + + ∼
FEM Differential Frequency ∼ − + +
FDTD Differential Time + − + +

WB: wideband PEC: perfect electric conductor
HP: homogeneous problem IHP: inhomogeneous problem

+: good −: not optimal ∼: satisfactory, but not necessarily the best
Table 1.1: Comparison of FDTD, FEM and MoM for the application to open region
problems.

The application of the MoM for the solution of electromagnetic problems is the focus of
this thesis. In the MoM, the surface of the electromagnetic problems is discretised using
appropriate basis functions such as Rao-Wilton-Glisson (RWG) basis funtions [24] which
represent the discrete current density, leading to the discrete integral form of Maxwell
equations for the fields on the surface. The approximate current density on the surface of
the problem is a linear combination of the basis functions. Applying a testing procedure
[22] to the discrete integral form results in a linear matrix equation Zx = b where x denotes
the unknown amplitudes of the corresponding basis functions. Z is a N × N impedance
matrix containing information about the mutual interactions between the basis functions
where N is the number of basis functions used to discretise the surface of the geometries.
b denotes a vector containing information about the incident field impinging on each basis
function. Different approaches depending on the characteristics of the problems have been
proposed for the solution of the matrix equations.

The first approach is to compute the product of the inverse of the impedance matrix Z and
the incident vector b, requiring a storage and computational cost of O

(
N2) and O (N3)

for performing a direct matrix inverse, respectively. However, this approach is restricted
for the solution of small problems involving a small number of unknowns. There are several
techniques proposed to alleviate the expensive cost of the direct matrix inverse such as the
multiscale compressed block decomposition (MS-CBD) method [25, 26, 27]. The operation
of the MS-CBD method is based on the use of impedance matrix compression techniques
such as the adaptive cross approximation (ACA) [28, 29, 30, 31] and the matrix decom-
position algorithm (MDA) [32, 33, 34] methods. The block-wise compressed impedance
matrices allow an efficient computation of an inverse operator of the MS-CBD method
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with the cost of O
(
N2 log2N

)
and O

(
N 3/2 logN

)
for the computation and storage re-

quirement, respectively. Another free-iteration method which received much attention
recently is the characteristic basis function method (CBFM) [35, 36, 37]. The CBFM
proceeds by first dividing the electromagnetic problem into blocks which are managable
in terms of size and then defining a set of macro basis functions including primary and
secondary basis functions for each block. These basis functions are then used to generate a
reduced matrix which is significantly smaller than the original impedance matrix, allowing
an efficient gain in terms of computational and storage cost. The main advantage of the
direct inverse approach is that most computations are in the matrix compression process
and the inverse operator decomposition process which are independent of the excitation
vector b. Once these operations have been completed, the solution for each excitation
can be quickly obtained, leading to an efficient computation of mono RCS applications.
However, the storage requirement and the need to invert the resultant matrix becomes
impractical for dense linear systems involving a large number of unknowns.

The second approach using iterative solvers for MoM dense linear systems has been con-
sidered as an appropriate solution to overcome the limitations as it requires little or no
explicit storage and significantly reduce the number of computations when compared to
making a direct inverse of a dense matrix. Approximate solutions are sequentially gen-
erated and improved at the end of each iteration until the convergence criteria is met.
The requirement of matrix-vector products (MVP) in each iteration of iterative methods
results in the cost of O

(
N2) for both storage and computational expense. There are two

main classes of iterative solvers: the non-stationary solvers and the stationary solvers. The
non-stationary solvers are typically based on the creation of Krylov subspaces. The con-
jugate gradient (CG) method [38], biconjugated gradient stabilised (BiCGSTAB) method
[39] and the generalised minimal residual (GMRES) method [40, 41] are popular among
Krylov methods for their robust convergence. The Krylov methods are reliable in terms
of convergence because it is evident that they are convergent to an exact solution within
a finite number of iterations in exact arithmetic [42]. In contrast, the stationary methods
are more unpredictable in terms of convergence rate. The advantages of the stationary
methods over the Krylov methods are that they require a smaller number of iterations to
achieve the same accuracy when applied to simple structures and they are more simple
for implementation and derivation. Some popular stationary solvers are the Gauss-Seidel
method, the Jacobi method and the successive-over-relaxation method [38].

Another key research topic is the development of computationally efficient acceleration
techniques to reduce the cost of a MVP performed within each iteration. The operation of
most accelaration techniques depends on the idea of the division of the electromagnetic field
into the near-zone region and the far-zone [43]. The field strength of the far-zone decreases
with distance while that of the near-zone decreases rapidly with distance, resulting in the
domination of the far-zone strength in the far-zone region. This phenomenon is exploited
in acceleration techniques to optimise the cost of computation where the contribution of
the near-zone is exactly computed while that of the far-zone is efficiently approximated by
different methods. The approximation of the far-zone can be achieved by the application
of low-rank approximation or matrix compression techniques [44, 45], which are purely
algebraic, to reduce the size of impedance matrices accounting for far-zone interactions,
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leading to a reduction in the cost of a MVP. The approximation can also be achieved by
taking advantage of the physical properties of the EM problems. The adaptive integral
method (AIM) [46, 47, 48, 49] replaces original basis functions by auxiliary basis functions
positioned at the nodes of a Cartesian grid. The auxiliary basis functions are required
to produce the same far-zone as the original basis functions, allowing an application of
the fast Fourier transform (FFT) for the computation of far-zone interaction which is of
O
(
N 3/2 logN

)
and O (N logN) operations for surface and volumetric problems, respec-

tively. The fast-far-field-approximation (FAFFA) [50, 51, 52, 53] efficiently approximates
the far-zone interactions using an interpolation/extrapolation scheme. The main drawback
of the FAFFA is the large size of the near-zone region, causing a considerable computation
of near-zone interaction; otherwise, the accuracy of the FAFFA can significantly worsen
when the size of the near-zone region is reduced. The fast multipole method (FMM)
[54, 55] improves the accuracy of the far-zone computation by a more careful investigation
using the interpolation/extrapolation scheme or expanding the fields using multiple plane
waves. The improvement of the FMM to the multilevel fast multipole method (MLFMA)
[56, 57, 58], which is extensively applied for the solution of EM problems, increases the
efficiency of the MVP by reducing the cost of computation to O (N logN). Besides ac-
celeration techniques, the total cost of computation can be considerably decreased by
improving the convergence rate of iterative solvers. The improvement of the convergence
rate is accomplished by the use of a wide range of preconditioners such as the diagonal
preconditioner [59], the incomplete LU factorization [60] or the sparse approximate inverse
(SPAI) preconditioner [61]. The main idea of the application of preconditioner techniques
is that the original ill-conditioned system is replaced by an equivalent better-conditioned
system. Consequently, a smaller number of iterations is required to achieve a desired
accuracy.

The principal contributions of this work are the proposal of novel algorithms integrating
iterative solvers and appropriate acceleration techniques for efficient solutions of three di-
mensional (3D) scattering and two dimensional (2D) indoor propagation problems. Much
research effort has concentrated on Krylov solvers [62, 63] for the solution of arbitrarily
3D perfectly conducting or homogeneous problems. Recently, some attention has been
focused on some particular stationary solvers which mimic the physical processes of prop-
agation by using current marching techniques. The stationary solver forward backward
method (FBM) [64, 65] was first successfully applied to one dimensional (1D) random
rough surface problems. The capture of the physical phenomenon in the FBM leads to a
high convergence rate, approaching an accurate solution with fewer iterations when com-
pared to the Krylov solvers for the random rough surface problems. The buffered block
forward backward (BBFB) method [66, 67], an extension of the FBM for 3D scattering
problems, introduces buffered regions to eliminate spurious edge effects which worsen the
performance of the FBM for 3D problems. In addition, the convergence rate of the sta-
tionary method can be further improved by an application of a special improvement step
[68, 69] at the end of each iteration. In the case that the electromagnetic responses over a
wide range of frequencies is of interest, it can be efficiently obtained by the integration of
model-order-reduction (MOR) techniques and the MoM. For the indoor propagation prob-
lems, empirical models, for example, the Motley Keenan model [70] and the COST 231
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Multi-Wall model, are popular techniques for the prediction of indoor wave propagation
because of their simplicity and speed. The main drawback of these models is the lack of
accuracy and reliability which can be achieved using the MoM with a suitable combination
of iterative solvers and acceleration methods.

The remainder of this section is for a summary of the material in each of the remaining
chapters.

Chapter 2 begins with a review of Maxwell equations to derive integral equations (IEs)
comprising of the electric field integral equation (EFIE), the magnetic field integral equa-
tion (MFIE) and the combined field integral equation (CFIE) for 2D and 3D electro-
magnetic problems. These integral equations are extensively used for the analysis of EM
problems throughout this dissertation. The application of the MoM to discretise the inte-
gral equations is also discussed in this chapter.

Chapter 3 focuses on iterative approaches for the solution of the MoM. The Krylov solvers
including the CG, the BiCGSTAB and the GMRES are briefly reviewed. The stationary
class of iterative solvers is carefully discussed. The popular stationary solvers such as the
Jacobi, the Gauss-Seidel and the successive-over-relaxation method are first mentioned
before the introduction of the FBM, the BBFB and the overlapping domain decomposition
method (O-DDM) which are the centre of one contribution of this work. The application
of preconditioning techniques to iterative solvers is briefly presented.

Chapter 4 is dedicated to the flexible combination of the MLFMA and the BBFB for 3D
perfectly conducting scattering problems. The modified MLFMA is proposed to efficiently
perform partial MVPs required often within each iteration of the BBFB. The efficiency
and the complexity of the modified MLFMA are analysed. Some numerical examples are
presented to demonstrate the accuracy and the efficiency of the proposed algorithm.

Chapter 5 extends the improvement step at the end of each iteration of the FBM or the
BFBM. Instead of the improvement of the approximate solution using a single correction
vector, the extension of the improvement step exploits the information of multiple correc-
tion vectors to further correct the approximate solution. The application of the extended
improvement step to the computation of scattering from one and two dimensional random
rough surfaces is demonstrated through several numerical results.

Chapter 6 concentrates on the application of the volume integral equation and the surface
integral equation for the solution of the 2D indoor wave propagation. The FFT and the
FAFFA are the accelerators for the discretised volume and surface integral equations,
respectively. The reduced-operator [71] and the block diagonal preconditioner are applied
to enhance the convergence rate of the iterative solvers. Some numerical results are shown
to compare the performance of the approaches.

The use of the wideband technique asymptotic waveform evaluation (AWE) [72, 73, 74]
for the analysis of 3D inhomogeneous scatterers over a wide range of frequency is the focus
of chapter 7. The GMRES-FFT is applied to iteratively solve for AWE moments which
is later used for the generation of discrete frequency responses. A numerical example
for scattering from a homogeneous dielectric sphere with frequency-dependent electrical
parameters is presented to validate the accuracy of the proposed method.
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1.1 Contribution

The summary of this thesis and possible future work are discussed in the final chapter 8.

1.1 Contribution

This work comprises the study of efficient numerical methods using iterative solvers and
appropriate acceleration techniques for the analysis of 2D and 3D electromagnetic prob-
lems. The main contributions of the dissertation described in chapter 4, 5, 6 and 7 are
summarised as follows:

• The proposal of the modified MLFMA applicable to the BBFB for the solution of 3D
perfectly conducting scatterers to speed up the partial MVPs performed constantly
within each iteration.

• The proposal of the extended improvement step for the stationary iterative methods,
the FBM and the BFBM methods, leading to a better approximate solution at the
end of each iteration.

• The application and the comparison of the FFT and the FAFFA as accelerators for
the volumetric and the surface integral equations in the 2D indoor wave propagation,
respectively.

• The application of the AWE allowing a fast analysis of 3D inhomogeneous scattering
problems over a wide range of frequencies. Each moment of the AWE is efficiently
computed using the GMRES-FFT iterative method.

The main contributions can be classified into three groups including the reduction of the
cost of each iteration, the reduction of the number of iterations and wideband as shown
in Figure 1.1.

Figure 1.1: Classification of the main contributions.

1.2 Notation

Matrices, vectors and scalars are denoted by bold capital, bold lower-case and italic lower-
case letters, respectively. The transpose and the conjugate transpose of a matrix A is
denoted by AT and AH , respectively. ‖.‖2 denotes the Euclidean norm.
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2 Method of moments for numerical
solution of Maxwell equations

This chapter introduces the fundamental electromagnetic theory required for an under-
standing of the following chapters. We start with a review of the differential form and the
time-harmonic form of Maxwell equations and then derive the auxiliary vector potentials
which aid the solution of electromagnetic scattering problems, described in Section 2.3.
Section 2.4 and Section 2.5 introduce equivalence principles which are used to derive the
volume and surface integral equations, which are extensively used in the following chapters.
Section 2.6 reviews the method of moments (MoM) as a numerical solution for Maxwell
equations.

2.1 Differential form of Maxwell equations

The differential form of Maxwell equations describes the relationship between the charge
densities, current densities and field vectors for any given space-time point. For the dif-
ferential form to be valid, the field vectors are assumed to be single-valued, continuous
functions of space and time, except for being at the interface between different media. The
discontinuity of the field vectors results in sudden changes in current and charge densities
at the interfaces. The discontinuity at such interfaces is expressed by the boundary condi-
tions which are also derived from Maxwell equations. Therefore, Maxwell equations can
completely characterise the field vectors at any given space-time point. Maxwell equations
in differential form are given by

∇×H (r, t) = J (r, t) +
∂D (r, t)

∂t
(2.1)

∇× E (r, t) = −M (r, t)−
∂B (r, t)
∂t

(2.2)

∇ · B (r, t) = %m (r, t) (2.3)

∇ · D (r, t) = %e (r, t) . (2.4)

The definitions of the field quantities are

E is the electric field intensity (volt/meter)
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2.2 Time-harmonic form of Maxwell equations

H is the magnetic field intensity (ampere/meter)

D is the electric flux density (coulomb/square meter)

B is the magnetic flux density (weber/square meter)

J is the source electric current density (ampere/square meter)

M is the source magnetic current density (volt/square meter)

%m is the magnetic charge density (weber/cubic meter)

%e is the electric charge density (coulomb/cubic meter).

Equation 2.1 is an extension of Ampère’s law often called the Maxwell-Ampère equation.
The equation states that the generation of a magnetic field can be caused by an electric
current or by time-varying electric fields. The Maxwell-Faraday equation derived from
Faraday’s law is described by Equation 2.2, stating that a magnetic current and time-
varying magnetic fields generate a spatially-varying, non conservative electric field with
rotation. Although physically non-existent, source magnetic current density is introduced
due to the symmetry of Maxwell equations. The last two equations are the consequences
of the Gauss flux theorem usually called the law of the conservation of charge. Equation
2.3 relates the behaviour of magnetic flux density to magnetic charge density, which is
naturally unphysical but aids the mathematical treatment of electromagnetic scattering
problems and allows for the symmetric form of Maxwell equations. Equation 2.4 defines
the variation of electric flux density due to electric charge density.

2.2 Time-harmonic form of Maxwell equations

In many electromagnetic scattering problems, it is practical to express the time-harmonic
fields in the complex form. These are presented by the relation

A (r, t) = <e
(
A (r) ejωt

)
, (2.5)

where ω = 2πf is an angular frequency of interest. A is a complex-valued vector which
depends only on position. The application of Equation 2.5 to the instantaneous field
quantities E , H, D, B, J ,M, %m and %e results in the corresponding complex form of E,
H, D, J, M, ρm and ρe. Consequently, the differential form of Maxwell equations 2.1-2.4
can be written in the time-harmonic form as

∇×H (r) = J (r) + jωD (r) (2.6)

∇×E (r) = −M (r)− jωB (r) (2.7)

∇ ·B (r) = ρm (r) (2.8)
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2.3 Auxiliary vector potentials

∇ ·D (r) = ρe (r) . (2.9)

At this point, we note that B can be related to H and D to E as

B (r) = µ0µr (r) H (r) , D (r) = ε0εr (r) E (r) (2.10)

in the case of linear and isotropic media. εr and µr denote the relative permittivity and the
relative permeability which characterise the electrical properties of a material, respectively.
For inhomogeneous problems, these quantities are functions of position. The permittivity
and permeability in free-space are represented by ε0 and µ0, respectively. Their values are
given by

ε0 = 8.854× 10−12(farad/meter) µ0 = 4π × 10−7 (henry/meter). (2.11)

The permittivity and permeability of a specific medium are expressed in relation with
free-space by

ε (r) = ε0εr (r) µ (r) = µ0µr (r) . (2.12)

2.3 Auxiliary vector potentials

One approach for the solution of Maxwell equations is to take advantage of the auxiliary
vector potentials including the magnetic vector potential A and the electric vector poten-
tial F [20, 75]. The illustration of the approach for the computation of radiated fields is
shown in Figure 2.1. Although these quantities are physically non-existent, their presence
aids the simplification of the solution.

Figure 2.1: Block diagram for the computation of radiated fields using the vector poten-
tials.

In the following equations, the r dependence is sometimes dropped for simplicity. Taking
the curl of Equations 2.6 and 2.7 and applying the vector identity ∇×∇×A = ∇∇·A−
∇2A leads to

∇2E− jω∇×B = ∇×M +∇∇ ·E (2.13)

∇2H + jω∇×D = −∇× J +∇∇ ·H. (2.14)
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Substituting Equations 2.6 and 2.9 into Equation 2.13, and Equations 2.7 and 2.8 into
Equation 2.14 results in the Helmholtz equations for a homogeneous medium

∇2E + k2E = ∇×M + jωµJ + 1
ε
∇ρe (2.15)

∇2H + k2H = −∇× J + jωεM + 1
µ
∇ρm (2.16)

where k = ω
√
µε is the wavenumber of the homogeneous medium.

2.3.1 Magnetic vector potential

In homogeneous space in the absence of source magnetic current and magnetic charge,
Equation 2.7 and 2.8 can be rewritten

∇×E = −jωµH, (2.17)

∇ ·B = 0. (2.18)

Applying the vector identity ∇ · (∇×A) = 0 to Equation 2.18 leads to

BA = µHA = ∇×A (2.19)

where A is a non-unique vector called the magnetic vector potential. Subscript A deter-
mines the fields due to the vector potential A. The substitution of Equation 2.19 into 2.17
results in

∇× (EA + jωA) = 0. (2.20)

We define an arbitrary electric scalar potential φe which is a function of position and
satisfies the following

∇× (−∇φe) = 0. (2.21)

The combination of Equation 2.20 and 2.21 allows the definition of EA in terms of the
electric scalar and the magnetic vector potential

EA = −∇φe − jωA. (2.22)

Applying the vector identity ∇×∇×A = ∇ (∇ ·A)−∇2A to the curl of Equation 2.19
leads to

µ∇×HA = ∇ (∇ ·A)−∇2A (2.23)
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2.3 Auxiliary vector potentials

for a homogeneous medium. Applying the Maxwell-Ampère equation

∇×HA = J + jωεEA (2.24)

to Equation 2.23 and then substituting Equation 2.22 into the resultant equation leads to

∇2A + k2A = −µJ +∇ (∇ ·A + jωµεφe) . (2.25)

To simplify Equation 2.25, the definition of the divergence of A is deliberately determined
using the Lorenz gauge

∇ ·A = −jωµεφe. (2.26)

Equation 2.26 allows the representation of EA in terms of a single quantity A

EA = −jωA− j 1
ωµε
∇ (∇ ·A) (2.27)

and the simplification of Equation 2.25

∇2A + k2A = −µJ . (2.28)

Therefore, once the magnetic vector potential A is known, the corresponding electric field
EA and magnetic field HA can be computed from Equation 2.27 and 2.19, respectively.

2.3.2 Electric vector potential

The absence of source electric current and electric charge allows the rewriting of Equation
2.6 and 2.9 for a homogeneous medium

∇×H = jωεE (2.29)

∇ ·D = 0. (2.30)

Applying the vector identity ∇ · (−∇× F) = 0 to Equation 2.30 results in

DF = εEF = −∇× F (2.31)

where the magnetic vector potential F is non-unique. Again, we refer to associated fields
by using a subscript F. Substituting Equation 2.31 into 2.29 leads to

∇× (HF + jωF) = 0. (2.32)
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The definition of an arbitrary magnetic scalar potential φm is similar to that of the elec-
tric scalar potential in Equation 2.21, allowing the representation of HF in terms of the
magnetic scalar and the electric vector potential

HF = −∇φm − jωF. (2.33)

The application of the vector identity ∇×∇×F = ∇ (∇ · F)−∇2F to the curl of Equation
2.31 produces

ε∇×EF = −
(
∇ (∇ · F)−∇2F

)
(2.34)

for a homogeneous medium. Equating the Maxwell-Faraday formulation

∇×EF = −M− jωµHF (2.35)

to Equation 2.34 and then substituting Equation 2.33 to the resultant equation leads to

∇2F + k2F = −εM +∇ (∇ · F + jωµεφm) . (2.36)

Equation 2.36 is further simplified by defining the divergence of F

∇ · F = −jωµεφm. (2.37)

Equation 2.37 allows the representation of HF in terms of a single quantity F

HF = −jωF− j 1
ωµε
∇ (∇ · F) (2.38)

and the simplification of Equation 2.36

∇2F + k2F = −εM . (2.39)

Therefore, once the electric vector potential F is known, the corresponding electric field
EF and magnetic field HF can be computed from Equation 2.31 and 2.38, respectively.
As the consequence, the total fields E and H in a homogeneous space with the presence
of sources can be obtained by means of superposition of individual components

E = EA + EF , H = HA + HF . (2.40)

Therefore, the radiated fields are expressed in terms of the vector potentials as follows

E = −jωA− j 1
ωµε
∇ (∇ ·A)− 1

ε
∇× F (2.41)
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2.4 Volume electric field integral equation

H = −jωF− j 1
ωµε
∇ (∇ · F) + 1

µ
∇×A . (2.42)

Relations between fields and vector potentials in Equations 2.41-2.42 are used to derive
the volume electric field integral equation in the following section.

2.4 Volume electric field integral equation

The volumetric approach can be applied for the solution of inhomogeneous problems where
the constitutive parameters ε and µ are functions of position. The approach is to replace
the inhomogeneity by equivalent induced currents and charges which are assumed to gen-
erate the same fields as the original problem. The volumetric equivalence principle is
introduced in Section 2.4.1 and then the derivation of integral equations for volumetric
problems is presented in Section 2.4.2.

2.4.1 Volume equivalence principle

We assume that an inhomogeneous scatterer is embedded in free-space as in Figure 2.2a.
The volume equivalence principle simplifies the original problem by replacing the inho-
mogeneous scatterer with equivalent sources radiating in free-space as in Figure 2.2b. To
derive the volume equivalence principle, we first consider that the source electric current
Ji and the source magnetic current Mi are placed in infinite free-space and generate the
incident electric and magnetic fields Ei and Hi, which satisfy Maxwell equations

∇×Ei = −Mi − jωµ0Hi (2.43)

∇×Hi = Ji + jωε0Ei. (2.44)

If instead the sources radiate inside a different medium characterised by ε and µ, they
produce the fields E and H which also satisfy Maxwell equations

∇×E = −Mi − jωµH (2.45)

∇×H = Ji + jωεE. (2.46)

The difference between the two pairs of fields
(
Ei,Hi) and (E,H) is due to the difference

between the constitutive parameters of the free-space and those of the medium. The sub-
traction of Equations 2.43-2.44 from Equations 2.45-2.46 results in the following equations

∇×Es = −jω
(
µH− µ0Hi

)
(2.47)
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2.4 Volume electric field integral equation

∇×Hs = jω
(
εE− ε0Ei

)
(2.48)

where Es and Hs denote the scattered electric and magnetic fields caused by the medium,
respectively. The scattered fields are defined as

Es = E−Ei (2.49)

Hs = H−Hi. (2.50)

The manipulation of the right hand side of Equations 2.47-2.48 by the addition and sub-
traction of the terms jωµ0H and jωε0E, respectively yields

∇×Es = −Meq − jωµ0Hs (2.51)

∇×Hs = Jeq + jωε0Es (2.52)

where the equivalent induced sources responsible for the scattered fields in Figure 2.2b are
defined as

Jeq = jω (ε− ε0) E (2.53)

Meq = jω (µ− µ0) H. (2.54)

Therefore, the fields produced by equivalent volumetric electric current Jeq and magnetic
current Meq radiating in free-space are the same as those produced by the scatterer.

2.4.2 Volume integral equations

The application of the same procedure presented in Section 2.3 to Equations 2.51-2.52
allows the representation of the scattered fields in terms of the vector potentials as in
Equations 2.41-2.42

Es = −jωA− j 1
ωµbεb

∇ (∇ ·A)− 1
εb
∇× F (2.55)

Hs = −jωF− j 1
ωµbεb

∇ (∇ · F) + 1
µb
∇×A (2.56)

where the vector potentials satisfy

∇2A + k2
bA = −µbJeq (2.57)
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2.4 Volume electric field integral equation

∇2F + k2
bF = −εbMeq (2.58)

where εb, µb and kb denote the permittivity, permeability and wavenumber of the ho-
mogeneous background medium, respectively. For example, the background medium in
Figure 2.2 is free-space. The solution of the Helmholtz equations 2.57-2.58 can be expressed
as a convolution between the right hand side and the Green’s function

A = (µbJeq) ∗G (2.59)

F = (εbMeq) ∗G (2.60)

where G is the Green’s function which is defined for three-dimensions and two-dimensions
in Equations 2.61-2.62, respectively.

G (r) = e−jkb|r|

4π |r| (2.61)

G (r) = 1
4jH

(2)
0 (kb |r|) (2.62)

Equations 2.59-2.60 for three dimensional problems can be written in a form of an integral

A (r) = µb

˚
v
Jeq

(
r′
) e−jkb|r−r′|

4π |r− r′|dv
′ (2.63)

F (r) = εb

˚
v
Meq

(
r′
) e−jkb|r−r′|

4π |r− r′|dv
′. (2.64)

Substituting Equations 2.63-2.64, 2.26 and 2.37 into Equations 2.55-2.56 yields

Es (r) =−jωµb
˚

v

(
Jeq (r′) + 1

k2
b
∇′∇′ · Jeq (r′)

)
e−jkb|r−r′|
4π
∣∣r−r′

∣∣ dv′−
∇×

˚
v
Meq (r′) e

−jkb|r−r′|
4π
∣∣r−r′

∣∣ dv′
(2.65)

Hs (r) =−jωεb
˚

v

(
Meq (r′) + 1

k2
b
∇′∇′ ·Meq (r′)

)
e−jkb|r−r′|
4π
∣∣r−r′

∣∣ dv′+
∇×

˚
v
Jeq (r′) e

−jkb|r−r′|
4π
∣∣r−r′

∣∣ dv′
(2.66)

Substituting Equations 2.65-2.66 into Equations 2.49-2.50 leads to the volume electric field
integral equation (VEFIE) and the volume magnetic field integral equation (VMFIE) in
Equations 2.67-2.68, respectively.
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2.4 Volume electric field integral equation

Figure 2.2: Volumetric equivalence problem.
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2.5 Surface integral equations

Ei (r) = Jeq(r)
jω(ε−εb) + jωµb

˚
v

(
Jeq (r′) + 1

k2
b
∇′∇′ · Jeq (r′)

)
e−jkb|r−r′|
4π
∣∣r−r′

∣∣ dv′+
∇×

˚
v
Meq (r′) e

−jkb|r−r′|
4π
∣∣r−r′

∣∣ dv′
(2.67)

Hi (r) = Meq(r)
jω(µ−µb) + jωεb

˚
v

(
Meq (r′) + 1

k2
b
∇′∇′ ·Meq (r′)

)
e−jkb|r−r′|
4π
∣∣r−r′

∣∣ dv′−
∇×

˚
v
Jeq (r′) e

−jkb|r−r′|
4π
∣∣r−r′

∣∣ dv′
(2.68)

The VEFIE and the VMFIE can be applied for the analysis of scattering from inhomoge-
neous bodies. However, for the solution of a homogeneous problem where the constitutive
parameters ε and µ are constant, the use of surface integral equations is more favourable
due to the smaller size of the equivalent problem.

2.5 Surface integral equations

In contrast to the volume integral equations where the entire volumetric scatterer is re-
placed by equivalent volumetric sources, the surface integral equations exploit the bound-
ary conditions to substitute a homogeneous original problem by equivalent surface sources
located on the interface between the media. The boundary conditions are briefly reviewed
in Section 2.5.1 before the introduction of the surface equivalence principle in Section 2.5.2.
The surface integral equations are derived in Section 2.5.3.

2.5.1 Boundary conditions

The differential form of Maxwell equations is only applicable to regions where the con-
stitutive parameters are unchanged or vary continuously. However, this form is invalid
at the boundary of media where the constitutive parameters change abruptly. For these
situations, the boundary conditions derived from the integral form of Maxwell equations
are applied to investigate the behaviour of the electromagnetic fields across the interface.
The boundary conditions define the continuity requirements of the tangential and the nor-
mal components of fields at the interface between two media. We examine the interface
of two media with constitutive parameters (ε1, µ1) and (ε2, µ2) where (E1, H1, D1, B1)
and (E2, H2, D2, B2) are their corresponding fields in each region as in Figure 2.3. The
normal vector n̂ to the interface points from region 1 to region 2. The boundary conditions
for such an interface are expressed as

n̂× (E2 −E1) = −Ms (2.69)
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2.5 Surface integral equations

n̂× (H2 −H1) = Js (2.70)

n̂ · (D2 −D1) = ρes (2.71)

n̂ · (B2 −B1) = ρms (2.72)

where Ms and Js are the surface magnetic current density and the surface electric current
density, respectively. ρes and ρms are the electric and magnetic charge densities on the
surface, respectively. Equations 2.69-2.70 imply that the tangential component of E and H
is continuous across the interface without the presence of the surface currents. Equations
2.71-2.72 state that the differences between the normal components of D and B are equal
to the surface electric and magnetic charges on the surface, respectively.

For the interface between a perfect conductor having an infinite electric conductivity σ
and a dielectric medium in Figure 2.4, the boundary conditions become

n̂×E = 0 (2.73)

n̂×H = Js (2.74)

n̂ ·D = ρes (2.75)

n̂ ·B = 0. (2.76)

Details about derivation of the boundary conditions are presented in [75].

2.5.2 Surface equivalence principle

The fundamental idea of the surface equivalence principle is to replace the actual sources
by a different set of fictitious sources which are considered to be equivalent due to their
production of the same fields within a region as the original sources. These equivalent
sources are located on an imaginary closed surface enclosing the actual sources. The
radiated fields of the equivalent electric and magnetic current densities satisfying the
boundary conditions on the imaginary surface are zero inside the surface and equal to the
fields generated by the actual sources outside the surface.
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2.5 Surface integral equations

Figure 2.3: Geometry for boundary conditions at the interface between two homeoge-
neous media.

Figure 2.4: Geometry for boundary conditions at the interface between a perfect con-
ductor and a dielectric medium.
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2.5 Surface integral equations

The derivation of the surface equivalence theorem starts by considering an actual source
which is electrically described by the electric and magnetic current densities J1 and M1,
radiating the fields E1 and H1 in a homogeneous region with constitutive parameters
ε1 and µ1 as shown in Figure 2.5a. To produce a set of fictitiously equivalent sources,
the entire homogeneous space is separated by a closed surface S presented as a dashed
line in Figure 2.5a, leading to an introduction of a volume V1 within S and a volume
V2 outside S. The original problem in Figure 2.5a is replaced by an equivalent problem
shown in Figure 2.5b where the removal of the physical currents and the introduction of
the equivalent currents Js and Ms produce the fields (E,H) inside V1 and the original
fields (E1,H1) inside V2. The equivalent surface currents radiating into the unbounded
space V2 are required to fulfil the boundary conditions

Js = n̂× (H1 −H) (2.77)

Ms = −n̂× (E1 −E) . (2.78)

The surface currents in Equations 2.77-2.78 are considered to be equivalent to the original
currents only for the external region V2 because they only generate the same fields (E1,H1)
outside the closed surface S.

2.5.3 Surface integral equations

We examine a scattering problem where an electromagnetic source located in a homo-
geneous region 1 characterised by (ε1, µ1) illuminates a homogeneous scatterer 2 charac-
terised by (ε2, µ2) in Figure 2.6a. The total fields in region 1 and 2 are denoted by (E1,H1)
and (E2,H2), respectively. The application of the surface equivalent theorem allows the
replication of the original fields in both media using equivalent sources on the scatterer
surface.

Applying the surface equivalent principle to the exterior problem introduces the equivalent
currents (Js1,Ms1) as illustrated in Figure 2.6b. These surface currents replicate effects
of the scatterer and are responsible for the scattered fields. The combination of the
replicated fields (Es,Hs) and the incident fields

(
Ei,Hi) produced by the electromagnetic

source ensures that the original fields are produced in region 1. Because the fields inside
the scatterer are not of interest for the exterior problem, we can assume they are zero.
Thus, the boundary conditions for the exterior problem can be interpreted as

Js1 = n̂×H1 (2.79)

Ms1 = (−n̂)×E1 = E1 × n̂. (2.80)
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2.5 Surface integral equations

Figure 2.5: Surface equivalence problem.
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2.5 Surface integral equations

A similar procedure is applied for the interior region, resulting in an interior equivalent
problem in Figure 2.6c. In the absence of the original source, the equivalent currents
(Js2,Ms2) produce the same scattered fields (E2,H2) inside the scatterer. With the same
normal vector n̂ pointing from region 2 to 1 as in Figure 2.6b, the boundary conditions
for the interior problem are stated as

Js2 = (−n̂)×H2 (2.81)

Ms2 = n̂×E2. (2.82)

Applying the boundary conditions for the tangential components of E and H on the
dielectric interface gives the relationship between two pairs of the equivalent currents

Js1 = −Js2 (2.83)

Ms1 = −Ms2. (2.84)

Using the source-field relationship in Equation 2.41 for region 1 and 2 allows us to rewrite
Equation 2.80 and 2.82 as

n̂×Ei = −Ms1 − n̂×Es

= −Ms1 − n̂×
{
η1
jk1

(
k2

1Js1 +∇ (∇ · Js1)
)
−∇×Ms1

}
S+

∗ G

(2.85)

0 = −Ms2 + n̂×E2

= −Ms2 + n̂×
{
η2
jk2

(
k2

2Js2 +∇ (∇ · Js2)
)
−∇×Ms2

}
S+

∗ G

(2.86)

Equation 2.85 together with Equation 2.86 after the substitution of Equations 2.83-2.84
form the coupled surface electric field integral equations (SEFIE)

n̂×Ei = −Ms1 − n̂×
{
η1
jk1

(
k2

1Js1 +∇ (∇ · Js1)
)
−∇×Ms1

}
S+

∗ G1

0 = Ms1 − n̂×
{
η2
jk2

(
k2

2Js1 +∇ (∇ · Js1)
)
−∇×Ms1

}
S−

∗ G2

(2.87)
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2.6 Method of moments

where ka, ηa and Ga are wavenumber, wave impedance and Green’s function in region a,
respectively. The subscripts S+ and S− indicate that the function within the bracket is
evaluated an infinitesimal distance outside and inside the scatterer surface, respectively.
Similarly, the coupled magnetic field integral equations (SMFIE) are obtained using Equa-
tions 2.79,2.81 and 2.42

n̂×Hi = Js1 − n̂×
{

1
jk1η1

(
k2

1Ms1 +∇ (∇ ·Ms1)
)

+∇× Js1

}
S+

∗ G1

0 = −Js1 − n̂×
{

1
jk2η2

(
k2

2Ms1 +∇ (∇ ·Ms1)
)

+∇× Js1

}
S−

∗ G2

(2.88)

These equations are later specialised for the particular case of perfect electric conductor
(PEC) in chapter 4.

2.6 Method of moments

In this section, we review a numerical procedure called the method of moments for the
solution of linear equations. The continuous integral equations in the previous sections
are converted into a discrete matrix equations. By this process, the form of an integral
equation to be solved is

Lf = g (2.89)

where L is a continuous linear operator, g is the known excitation and f is the unknown
function to be determined. The solution of the equation is given by

f = L−1g (2.90)

where L−1 is the inverse operator of L. However, the determination of the continuous
inverse operator is usually impossible in practice. To numerically solve Equation 2.89, the
method of moments is applied to transform the linear operator into a dense matrix from
which the inverse operator in a discretised form can be computed. Let f be expanded in
the domain L into a finite series of the form

f ≈
N∑
n=1

αnfn (2.91)

where αn are constant and unknown coefficients to be determined and fn are expansion
functions or basis functions. For an exact solution, the summation should be taken to in-
finity but has to be truncated in practice. The substitution of Equation 2.91 into Equation
2.89 together with the linearity of L yields
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2.6 Method of moments

L
N∑
n=1

αnfn ≈ g. (2.92)

We define a set of weighting functions or testing functions in the range of L as

w = {w1, w2, · · · , wN} . (2.93)

Assuming the availability of an appropriate inner product 〈f, g〉 for the problem and taking
the inner product of Equation 2.92 results in

∑N
n αn 〈wm, Lfn〉 = 〈wm, g〉 m = 1 · · ·N . (2.94)

This set of equations can be represented in a matrix form as

Zx = b (2.95)

where

Z =



〈w1, Lf1〉 〈w1, Lf2〉 · · · 〈w1, LfN 〉

〈w2, Lf1〉 〈w2, Lf2〉 · · · 〈w2, LfN 〉
...

... . . . ...

〈wN , Lf1〉 〈wN , Lf2〉 · · · 〈wN , LfN 〉


(2.96)

x =



α1

α2

...

αN


(2.97)

b =



〈w1, g〉

〈w2, g〉
...

〈wN , g〉


. (2.98)

The solution of Equation 2.95 can be obtained by means of a direct inversion or iterative
methods. The choice of the basis functions and testing functions is important within the
implementation of MoM. fn should be linearly independent and carefully selected to well
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2.7 Conclusion

approximate f by means of the superposition in Equation 2.91. The selection of the test-
ing functions similarly should ensure linear independence. The choice of basis functions
depends on many practical features such as the desired accuracy of the approximate so-
lution, the ease of the evaluation of the matrix entries, the computational constraints or
the nature of the particular operator L.

The simplest and most popular basis function for two dimensional problems is the pulse
basis function [22]. For three dimensional problems, more complicated basis functions
are applied including the rooftop and the RWG functions [24]. As the size of the problem
increases in terms of wavelength, the number of basis functions used for the approximation
of the problem must also increase in order to accurately capture the behaviour of the
system.

2.7 Conclusion

Fundamental electromagnetic theory has been reviewed in this chapter. Integral equa-
tions, the volume integral equations and the surface integral equations, are derived from
the differential form and the time-harmonic form of Maxwell equations. The surface inte-
gral equations are used to formulate electromagnetic scattering problems in chapter 4 and
chapter 5 while the volume integral equations are applied to analyse electromagnetic prop-
agation and scattering problems in chapter 6 and chapter 7. The method of moments is
introduced for the discretisation of the integral equations, resulting in dense linear matrix
systems. The prohibitively large size of the matrix systems, resulted from the application
of the method of moments to the discretisation of large-scale electromagnetic scattering
problems, leads the use of iterative methods for the solution of such matrix equations.
Iterative methods are introduced in chapter 3.
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3 Iterative methods for the solution of linear
systems

This chapter reviews iterative methods for the solution of linear systems. Such meth-
ods successively approximate the solution over a number of steps. The two main classes
of iterative methods, the non-stationary and stationary, are presented in Section 3.2 and
Section 3.3, respectively. Some preconditioning techniques which are applied for the im-
provement of the convergence rate of iterative methods are discussed in Section 3.4.

3.1 Introduction

The application of the MoM to the integral equations (IEs) for the solution of Maxwell
equations produces a dense linear system

Zx = v (3.1)

where Z is a N ×N impedance matrix containing information about mutual interactions
between basis functions. N is the number of basis functions used to discretise the problem.
v is a N × 1 vector containing information about incident fields impinging on each basis
function and x is a N × 1 unknown vector containing information about amplitudes of
equivalent currents. There are two main approaches for the solution of the system. x
can be directly computed by the product of the inverse of the matrix Z and the vector v.
However, this solution is restricted to small systems where the storage and computational
complexity of making the inverse scale with O

(
N2) and O (N3) respectively which become

prohibitively expensive for large problems. Due to the computational constraint, the use
of iterative methods has been considered as a suitable solution for large systems because of
the significant reduction in computational complexity and the requirement of no explicit
storage. Iterative solvers apply successive corrections to attain more accurate solutions at
each step which requires a computation ofO

(
N2). The termination of the iterative process

is activated when some convergence criteria are met. However, the rate of convergence
remains a challenge for determination. There are two main types of iterative methods
comprising of non-stationary, such as those based on the Krylov subspaces, and stationary
techniques.
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3.2 Krylov subspace iterative methods

3.2 Krylov subspace iterative methods

Krylov subspace iterative solver is based on the application of projection processes for the
extraction of an approximate solution from a specified low-dimensional subspace, called
the Krylov subspace. The original idea of the Krylov subspace is based on the Cayley-
Hamilton theorem [76] which states that the inverse of a N ×N invertible matrix Z can
be expressed by an (N − 1)th degree polynomial in Z. Therefore, the inverse of the matrix
Z can be demonstrated as

Z−1 = α1I + α2Z + α3Z2 + · · ·+ αNZN−1 (3.2)

where αn are corresponding coefficients. Consequently, the solution of Equation 3.1 can
be given by

x = Z−1v = α1v + α2Zv + α3Z2v + · · ·+ αNZN−1v. (3.3)

In other words, the accurate solution of Equation 3.1 is a linear combination of bases
forming the Krylov subspace associated with the matrix Z and defined by

KN (Z,v) = span
{
v,Zv,Z2v, · · · ,ZN−1v

}
. (3.4)

As the result, the approximation of the solution requires the iterative computation of
the bases of the Krylov subspace by mean of the power iteration. The computation of
a newly generated basis and an approximate solution is required for each iteration until
the desired accuracy is achieved. The satisfactory solution is usually obtained by the
ith iteration where i � N . The Krylov solvers attempt to minimise the corresponding
residual vector at the ith iteration defined as

r(i) = v− Zx(i) (3.5)

where x(i) is the approximate solution at the ith iteration. x(i) can be expressed as

x(i) = KN×iai (3.6)

where

KN×i =
(
v,Zv,Z2v, · · · ,Zi−1v

)
(3.7)

ai = (α1, α2, · · · , αi)T . (3.8)

T denotes the transpose of a matrix. The coefficient vector ai is found by the mechanism of
minimising the corresponding residuals. Different approaches for the minimisation result
in different kinds of Krylov subspace iterations.
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3.2 Krylov subspace iterative methods

3.2.1 Arnoldi iteration

The application of the power iteration to the formation of the Krylov subspace usually
leads to instability of the generated subspace. According to the properties of the power
iteration, the computed basis Zi−1v at the ith iteration is gradually getting close to the
direction of the largest eigenvector of Z as i increases, causing most of the basis vectors
to have nearly the same direction. The similarity in direction makes the resultant Krylov
subspace ill-conditioned. The condition of the basis can be improved by using the Gram-
Schmidt orthogonalisation process. Details about the application of the Gram-Schmidt
process to an arbitrary basis {u1,u2, · · · ,uN} for the construction of an equivalent or-
thogonal basis {q1,q2, · · · ,qN} are outlined in Algorithm 3.1.

Assuming that {q1,q2, · · · ,qi} is a set of orthogonal basis for a Krylov subspace Ki (Z,v),
the subspace can be represented as

Ki (Z,v) = span
{
v,Zv,Z2v, · · · ,Zi−1v

}
= span

{
q1,Zq1,Z2q1, · · · ,Zi−1q1

} (3.9)

where q1 = v. The application of the Gram-Schmidt procedure allows the representation
of Zv using q1 and q2 as

Zv = αq1 + βq2. (3.10)

Therefore, Equation 3.9 can be rewritten as

Ki (Z,v) = span
{
q1, αq1 + βq2,Z (αq1 + βq2) , · · · ,Zi−2 (αq1 + βq2)

} . (3.11)

Because each basis in Equation 3.11 can be decomposed into a linear combination of q1,
q2 and Zmq2 where m = 1 · · · i− 2

Z (αq1 + βq2) = αZq1 + βZq2 = α (αq1 + βq2) + βZq2

Z2 (αq1 + βq2) = Z (α (αq1 + βq2) + βZq2)

= α2Zq1 + αβZq2 + βZ2q2

= α2 (αq1 + βq2) + αβZq2 + βZ2q2

· · · · · · · · ·

(3.12)

Equation 3.11 can be changed to
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3.2 Krylov subspace iterative methods

Ki (Z,v) = span
{
q1,q2,Zq2,Z2q2,Z3q2, · · · ,Zi−2q2

}
= span

{
q1,q2,q3,Zq3,Z2q3, · · · ,Zi−3q3

}
= · · ·

= span {q1,q2,q3,q4,q5, · · · ,qi−1,Zqi−1} .

(3.13)

As the result, instead of orthogonalising Zi−1q1 against q1, · · · ,qi−1, qi can be obtained
by orthogonalising Zqi−1 against q1, · · · ,qi−1. This formulation of the Krylov basis is
generally called the Arnoldi iteration. To minimise the loss of orthogonality due to the
round-off error of the classical Gram-Schmidt process, the Arnoldi iteration takes advan-
tage of the modified Gram-Schmidt process to produce a set of orthonormal bases for
the Krylov subspace. The Arnoldi algorithm using the modified Gram-Schmidt process is
outlined in Algorithm 3.2. Applying the Arnoldi process generates an upper Hessenberg
matrix [38] formed by the coefficients hm,n computed by the algorithm

Hi×i =



h1,1 h1,2 h1,3 · · · · · · h1,n · · · · · · h1,i

h2,1 h2,2 h2,3 · · · · · · h2,n · · · · · · h2,i

0 h3,2 h3,3 · · · · · · h3,n · · · · · · h3,i

... 0 h4,3 · · · · · ·
... · · · · · ·

...
... · · · 0 . . . hn−1,n−1

... · · · · · ·
...

... · · · · · · . . . hn,n−1 hn,n · · · · · ·
...

... · · · · · · · · · 0 hn+1,n · · · · · ·
...

... · · · · · · · · · · · · . . . . . . . . . ...

0 0 0 · · · · · · · · · 0 hi,i−1 hi,i



(3.14)

and a matrix Q whose columns are the Arnoldi vectors q1,q2, · · · ,qi.

Qi = (q1,q2, · · · ,qi) (3.15)

The property of orthonormalisation of the Arnoldi vectors implies that

QHQ = I (3.16)

where H denotes the Hermitian transpose of a matrix. In addition, there is a relation
between the matrix Z, Q and the Hessenberg matrix H as follows

ZQ = QH. (3.17)

Inserting Equation 3.16 into 3.17 results in
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Algorithm 3.1 The classical Gram-Schmidt process.

For n = 1 · · ·N

qn = un (assign an initial value to the next vector spanning the subspace)

For m = 1 · · ·n− 1

hm,n = 〈un,qm〉 (compute the projection of the vector un onto qm)

qn = qn − hm,nqm (make the new vector orthogonal to qm)

End

hn,n = ‖qn‖2
If hn,n == 0

Quit

End

qn = qn
hn,n

(make qn a unit vector)

End

Algorithm 3.2 The Arnoldi - modified Gram-Schmidt iteration.

q1 = v
‖v‖2

For n = 2 · · · i

qn = Zqn−1 (assign an initial value to the next vector spanning the subspace qm)

For m = 1 · · ·n− 1

hm,n−1 = 〈qn,qm〉 (compute the projection of the vector qn onto qm)

qn = qn − hm,n−1qm (make the new vector orthogonal to qm)

End

hn,n−1 = ‖qn‖2
If hn,n−1 == 0

Quit

End

qn = qn
hn,n−1

(make qn a unit vector)

End
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3.2 Krylov subspace iterative methods

H = QHZQ . (3.18)

Equation 3.18 is another interpretation of the Arnoldi iteration as an orthogonal transfor-
mation of matrix Z to an upper Hessenberg matrix. As the value of i is sufficiently large,
the eigenvalues of the Hessenberg matrix H are good approximations of the i largest eigen-
values of Z. Therefore, the Arnoldi iteration is efficient for the computation of eigenvalues
due to the reduction of the large and unmanageable matrix Z to the significantly smaller
and more structural upper Hessenberg matrix H. To derive the relation between the ma-
trices Q in successive iterations, we consider the matrix Qi+1 and the partial Hessenberg
matrix H̃ at the (i+ 1)th iteration

Qi+1 = (q1,q2, · · · ,qi+1) (3.19)

H̃(i+1)×i =



h1,1 h1,2 h1,3 · · · h1,i−1 h1,i

h2,1 h2,2 h2,3 · · · h2,i−1 h2,i

0 h3,2 h3,3 · · · h2,i−1 h3,i

0 0 h4,3
. . . ...

...

0 0 0 . . . hi−1,i−1
...

...
...

... . . . hi,i−1 hi,i

0 0 0 · · · 0 hi+1,i



(3.20)

From Equation 3.17, the relation is expressed as

ZQi = Qi+1H̃ . (3.21)

3.2.2 Conjugate gradient method

The conjugate gradient algorithm is a Krylov subspace method for the solution of Equation
3.1 where Z is a real, symmetric and positive-definite matrix. The solution of Equation
3.1 is equivalent to the minimisation of a quadratic equation

φ (x) = 1
2xTZx− xTv. (3.22)

The minimisation of Equation 3.22 is achieved at x = Z−1v, which is also the solution of
Equation 3.1. Therefore, instead of solving Equation 3.1, we aim to minimise Equation
3.22. The solution of Equation 3.22 is obtained by iteratively creating a sequence of
approximate solutions. We denote x(i) and r(i) as the approximation and the residual at
the ith iteration. The residual is defined as
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Algorithm 3.3 Algorithm for the minimisation of Equation 3.22 using general direction
vectors.

x(0) = initial guess

r(0) = v− Zx(0)

For i = 1 · · ·n

Choose a direction d(i)

αi = d(i)T r(i−1)

d(i)T Zd(i)

x(i) = x(i−1) + αid(i)

r(i) = v− Zx(i)

If
∥∥∥r(i)

∥∥∥
2
< tolerance

Quit

End

End

Algorithm 3.4 The conjugate gradient method.

x(0) = 0

r(0) = v− Zx(0)

For i = 1 · · ·n

If i == 1

d(i) = r(0)

Else

βi = r(i−1)T r(i−1)

r(i−2)T r(i−2)

d(i) = r(i−1) + βid(i−1)

End

αi = r(i−1)T r(i−1)

d(i)T Zd(i)

x(i) = x(i−1) + αid(i)

r(i) = r(i−1) − αiZd(i)

If
∥∥∥r(i)

∥∥∥
2
< tolerance

Quit

End

End
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r(i) = v− Zx(i). (3.23)

We assume that an approximation at iteration i+1 is a linear combination of the previous
approximated solution and a direction vector d(i+1)

x(i+1) = x(i) + αi+1d(i+1) (3.24)

where αi+1 is a coefficient for the minimisation along the direction vector d(i+1). Substi-
tuting Equation 3.24 into Equation 3.22 results in

φ
(
x(i) + αi+1d(i+1)

)
= φ

(
x(i)

)
+ 1

2α
2
i+1d(i+1)TZd(i+1) − αi+1d(i+1)T r(i). (3.25)

In the method of steepest descent, the minimisation of Equation 3.25 with respect to αi+1

is obtained at

αi+1 = d(i+1)T r(i)

d(i+1)TZd(i+1)
. (3.26)

The algorithm for the minimisation of Equation 3.22 using general direction vectors is
presented in Algorithm 3.3. We can represent the approximation and the residual at
iteration i as

x(i) = x(0) + α1d(1) + α2d(2) + · · ·+ αid(i) (3.27)

r(i) = v− Zx(i)

= r(0) − α1Zd(1) − α2Zd(2) − · · · − αiZd(i)

= r(i−1) − αiZd(i).

(3.28)

A new direction vector d(i) at iteration i should be chosen so as to avoid reversing of
the effects made by the previous direction vectors d(j) with j < i. This means that the
direction vectors are chosen to be linearly independent. Therefore, the direction vectors
can be selected to be Z-orthogonal or orthogonal with respect to Z.

d(i)TZd(j) = 0 i 6= j (3.29)

In addition, a newly generated direction vector d(i) is required to be the closest vector to
r(i−1). In other words, the generation of d(i) minimises the distance

∥∥∥d− r(i−1)
∥∥∥

2
where

d = span
{
Zd(1),Zd(2), · · · ,Zd(i−1)

}⊥
. The fulfillment of the requirements draws the

relation between the search directions d(i), the residuals r(i) and the Krylov subspace as
follows
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3.2 Krylov subspace iterative methods

span
{
d(1),d(2), · · · ,d(i)

}
= span

{
r(0), r(1), · · · , r(i−1)

}
= Ki

(
Z, r(0)

)
(3.30)

d(i) ∈ span
{
r(i−1),d(i−1)

}
(3.31)

r(i)T r(j) = 0 i 6= j. (3.32)

Further analysis for the conclusions of Equation 3.30-3.32 is presented in [38]. From
Equation 3.31, we assume a newly generated direction vector is in a form of

d(i) = r(i−1) + βid(i−1). (3.33)

Left multiplying both sides of Equation 3.33 with d(i−1)TZ and applying d(i−1)TZd(i) = 0
result in

βi = − d(i−1)TZr(i−1)

d(i−1)TZd(i−1)
. (3.34)

Applying the orthogonality of the residuals to Equation 3.28 leads to

r(i−1)T r(i−1) = −αi−1r(i−1)TZd(i−1) (3.35)

r(i−2)T r(i−2) = αi−1d(i−1)TZd(i−1). (3.36)

Substituting Equation 3.35-3.36 into Equation 3.34, we obtain

βi = r(i−1)T r(i−1)

r(i−2)T r(i−2)
. (3.37)

The complete CG is shown in Algorithm 3.4. From Equation 3.30 and 3.32, the conjugate
gradient method is considered to approximate the solution on the Krylov subspace using
the orthogonality of the residuals to Ki.

3.2.3 Biconjugate gradient method

The biconjugate gradient method (BiCG) is an improvement to the CG which makes it
applicable to non-symmetric systems. The BiCG proceeds by generating of two mutually
orthogonal sequences of residuals instead of a single sequence as in the CG. One sequence
is based on the original matrix Z and the other is derived from the transpose of the original
matrix ZT . Thus, the BiCG involves the computation of two different sets of residuals and
direction vectors in each iteration, causing the requirement for two MVPs. The search
direction vectors are given by
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Algorithm 3.5 The biconjugate gradient method.

x(0) = 0

r(0) = v− Zx(0)

r̃(0) = r(0)

For i = 1 · · ·n

If i == 1

d(i) = r(0)

d̃(i) = r̃(0)

Else

βi = r̃(i−1)T r(i−1)

r̃(i−2)T r(i−2)

d(i) = r(i−1) + βid(i−1)

d̃(i) = r̃(i−1) + βid̃(i−1)

End

αi = r̃(i−1)T r(i−1)

d̃(i)T Zd(i)

x(i) = x(i−1) + αid(i)

r(i) = r(i−1) − αiZd(i)

r̃(i) = r̃(i−1) − αiZT d̃(i)

If
∥∥∥r(i)

∥∥∥
2
< tolerance

Quit

End

End

37
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d(i) = r(i−1) + βid(i−1) (3.38)

d̃(i) = r̃(i−1) + βid̃(i−1) (3.39)

where the updated residuals are defined as

r(i) = r(i−1) − αiZd(i) (3.40)

r̃(i) = r̃(i−1) − αiZT d̃(i). (3.41)

The coefficients α and β are specified as

αi = r̃(i−1)T r(i−1)

d̃(i)TZd(i)
(3.42)

βi = r̃(i−1)T r(i−1)

r̃(i−2)T r(i−2)
. (3.43)

The BiCG generates a sequence of approximate solutions x(i) belonging to the subspace
x(0) + Ki and a sequence of residuals which is orthogonal to Ki

(
ZT , r(0)

)
. However, the

BiCG eliminates the minimisation in the CG, resulting in unreliability. The outline of the
BiCG is shown in Algorithm 3.5. The biconjugate stabilised method is an extension of
the BiCG for a faster and smoother convergence rate.

3.2.4 Biconjugate gradient stabilised method

The biconjugate gradient stabilised method is an improved version of the BiCG for the
solution of nonsymmetric linear systems intended to reduce the irregularity in the conver-
gence rate of the BiCG. The recurrence relations in Equation 3.38-3.41 can be transformed
into

d(i+1) = Ti (Z) r(0) (3.44)

d̃(i+1) = Ti
(
ZT
)

r̃(0) (3.45)

r(i) = Pi (Z) r(0) (3.46)

r̃(i) = Pi
(
ZT
)

r̃(0) (3.47)
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Algorithm 3.6 The biconjugate gradient stabilised method.

x(0) = 0

r̄(0) = v− Zx(0)

r̃ = r̄(0)

For i = 1 · · ·n

ρi−1 = r̃T r̄(i−1)

If i == 1

d̄(i) = r̄(i−1)

Else

βi = ρiαi
ρi−1γi−1

d̄(i) = r̄(i−1) + βi
(
d̄(i−1) − γi−1u(i−1)

)
End

u(i) = Zd̄(i)

αi = ρi−1
r̃Tu(i)

s = r(i−1) − αiu(i)

t = Zs

γi = tT s
tT t

x(i) = x(i−1) + αid̄(i) + γis

r̄(i) = s− γit

If
∥∥∥r̄(i)

∥∥∥
2
< tolerance

Quit

End

End
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where Ti (Z) and Pi (Z) are ith-order polynomials in Z. From Equation 3.46-3.47, the
product of residuals and the product of direction vectors are rewritten as

ρi = r̃(i)T r(i) =
(
Pi
(
ZT
)

r̃(0)
)T

Pi (Z) r(0) = r̃(0)P 2
i (Z) r(0) (3.48)

χi+1 = d̃(i+1)Td(i+1) =
(
Ti
(
ZT
)

r̃(0)
)T

Ti (Z) r(0) = r̃(0)T 2
i (Z) r(0). (3.49)

As a consequence, it becomes unnecessary to separately compute r̃(i) and r(i) as in the
BiCG. The redundancy of the explicit record keeping of the direction vectors and residuals
in the BiCG can be replaced in the biconjugate gradient squared method [77]. In the
biconjugate gradient squared method, the residuals are defined by

r̄(i) = P 2
i (Z) r(0) (3.50)

to duplicate the effect of Pi (Z) on r(0) with an expectation that
∥∥∥P 2

i (Z) r(0)
∥∥∥

2
is much

smaller than
∥∥∥Pi (Z) r(0)

∥∥∥
2
. However, this frequently is not the case. The BiCGSTAB

instead describes the residual vectors as

r̄(i) = Qi (Z)Pi (Z) r(0) (3.51)

where Qi (Z) are ith-order polynomials in Z.

Qi (Z) = (I− γ1Z) (I− γ2Z) . . . (I− γiZ) (3.52)

γi are suitable coefficients to be found at each iteration to minimise the residual norm.
From Equations 3.52, 3.46, 3.44 and 3.40, the new form of Equation 3.51 is

r̄(i) = Qi (Z)Pi (Z) r(0)

= (I− γiZ)Qi−1 (Z)
(
r(i−1) − αiZd(i)

)
= (I− γiZ)Qi−1 (Z) (Pi−1 (Z)− αiZTi−1 (Z)) r(0).

(3.53)

Similarly, the BiCGSTAB defines the direction vector d̄(i+1) as

d̄(i+1) = Qi (Z)Ti (Z) r(0)

= Qi (Z)
(
r(i) + βi+1d(i)

)
= Qi (Z) (Pi (Z) + βi+1Ti−1 (Z)) r(0).

(3.54)

Equations 3.53-3.54 can be written in the form of a recurrence relation as

r̄(i) = (I− γiZ)
(
r̄(i−1) − αiZd̄(i)

)
(3.55)
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d̄(i) = r̄(i−1) + βi (I− γi−1Z) d̄(i−1). (3.56)

To represent the approximate solution in a recurrence relation, we define

s(i) = r̄(i−1) − αiZd̄(i). (3.57)

Consequently, the residual and the approximation are rewritten

r̄(i) = r̄(i−1) − αiZd̄(i) − γiZs(i) (3.58)

x(i) = x(i−1) + αid̄(i) + γis(i). (3.59)

The values of αi and βi can be derived from their definition in the BiCG while the values of
γi are chosen to minimise the Euclidean norm of (I− γiZ) s(i). Details about the derivation
of the constants are discussed in [39]. The BiCGSTAB requires two MVPs within each
iteration. The algorithm is outlined in Algorithm 3.6.

3.2.5 Generalised minimal residual method

The generalised minimal residual method [40] is an iterative technique for the solution of
nonsymmetric linear problems. The principles of the GMRES are the establishment of
the approximate solution using the Krylov subspace and the minimisation of the residual
norm at each iteration. The GMRES is extensively applied for the solution of linear
systems because of its superior convergence rate, resulting in a small number of iterations
i (i� N) required to obtain an acceptable solution. The construction of the GMRES
iterates are represented using the Arnoldi vectors in Equation 3.15

x(i) = x(0) + y1q1 + y2q2 + · · ·+ yiqi (3.60)

Equation 3.60 can be rewritten as

x(i) = x(0) + Qiyi (3.61)

where Qi is the matrix defined in Equation 3.19 and yi is an i-element vector containing
the coefficients yj (1 ≤ j ≤ i)

yi =
(
y1 y2 · · · yi

)T
. (3.62)

Therefore, the residual at iteration i is

r(i) = v− Z
(
x(0) + Qiyi

)
= r(0) − ZQiyi.

(3.63)
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Substituting the relation between the partial Hessenberg matrix and the matrix Q in
consecutive iterations in Equation 3.21 into Equation 3.63, we obtain

r(i) = r(0) −Qi+1H̃yi. (3.64)

If the first Arnoldi vector is defined as

q1 = r(0)

ρ0
(3.65)

where ρ0 =
∥∥∥r(0)

∥∥∥, the initial residual becomes

r(0) = ρ0q1

= ρ0Qi+1e1

(3.66)

where e1 =
(

1 0 · · · 0
)T

. Substituting Equation 3.66 into 3.64, the residual can be
interpreted as

r(i) = Qi+1
(
ρ0e1 − H̃yi

)
. (3.67)

Because Q is an orthonormal matrix, the residual norm at iteration i becomes

∥∥∥r(i)
∥∥∥

2
=
∥∥∥ρ0e1 − H̃yi

∥∥∥
2
. (3.68)

The GMRES aims to minimise Equation 3.68 by solving a least squares problem to find
an optimal yi. The GMRES method is outlined in Algorithm 3.7.

The main disadvantage of the GMRES is the linear increase of the storage for the Arnoldi
vectors and increase in the work required for the solution of a least-squares problem within
each iteration. In some cases, the solution requires a large number of iterations, leading
to a prohibitive cost of storage and workload per iteration. To reduce the undesired cost,
the original GMRES is modified to allow a restart scheme after m iterations. However, it
remains a challenge to select an appropriate value for m.

3.3 Stationary iterative methods

Stationary iterative methods approximate the solution of Equation 3.1 as a stationary
point of a fixed-point iteration.

x(i) = F
(
x(i−1)

)
(3.69)
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Algorithm 3.7 The generalised minimal residual method.

x(0) = initial guess

r(0) = v− Zx(0)

ρ0 =
∥∥∥r(0)

∥∥∥
2

q1 = r(0)

ρ0

For i = 1 · · ·n

u = Zqi
For j = 1 · · · i

hj,i = 〈u,qj〉

u = u− hj,iqj
End

hi+1,i = ‖u‖2
qi+1 = u

hi+1,i

Find y that minimises
∥∥∥ρ0e1 − H̃y

∥∥∥
2

x(i) = x(0) + Qiy

If
∥∥∥r(i)

∥∥∥
2
< tolerance

Quit

End

End
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For the satisfaction of the stationary condition, it generally makes sense to choose a fixed
point iteration where the mapping F is affine. The fixed point iteration can be expressed
using a splitting of matrix Z

Z = P−K (3.70)

where P is a nonsingular matrix. Substituting Equation 3.70 into Equation 3.1, we obtain

Px = Kx + v (3.71)

or, equivalently

x = P−1 (Kx + v) . (3.72)

Arising from Equation 3.72, stationary iterative methods generate successive approxima-
tions by the process

x(i) = Mx(i−1) + b (3.73)

where the matrix M and the vector b are constant and are defined as

M = P−1K (3.74)

b = P−1v. (3.75)

The matrix M is called the iteration matrix. All stationary iterative schemes can be
expressed using the form of Equation 3.73. The choice of the iteration matrix M defines
different stationary techniques. Assuming that xexact is the exact solution of Equation
3.1, we denote the error vectors at iteration (i− 1) and i as follows

ε(i−1) = xexact − x(i−1) (3.76)

ε(i) = xexact − x(i). (3.77)

Substituting Equation 3.76-3.77 into 3.73, we obtain

xexact − ε(i) = M
(
xexact − ε(i−1)

)
+ b. (3.78)

Substituting Equation 3.70, 3.74 and 3.75 into 3.78 results in
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ε(i) = Mε(i−1) −Mxexact + xexact − b

= Mε(i−1) − (M− I) xexact −P−1v

= Mε(i−1) −P−1 (P (M− I) xexact + v
)

= Mε(i−1) −P−1 ((K−P) xexact + v
)

= Mε(i−1) −P−1 (−Zxexact + v
)

= Mε(i−1).

(3.79)

Therefore, the relation between the successive errors can be expressed as

ε(i) = Mε(i−1) (3.80)

or, equivalently

ε(i) = Miε(0). (3.81)

Thus, the convergence rate of a stationary iterative method depends on the spectral radius
of the iteration matrix M. The spectral radius is defined as

ρ (M) = Nmax
i=1

(|λi|) (3.82)

where λi (1 ≤ i ≤ N) are the eigenvalues of M. To be able to converge, a stationary
method must satisfy the following condition

ρ (M) < 1. (3.83)

At this stage, we give another decomposition of the matrix Z. This definition will be
repeatedly used in the rest of this section. The matrix Z can be split into 3 component
matrices

Z = U + L + D (3.84)

where U and L are the strictly upper and lower triangular submatrices of Z, respectively
while D is the diagonal matrix of Z

U =



0 z1,2 · · · z1,N

0 0 · · · z2,N

...
... . . . ...

0 0 · · · 0


(3.85)
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L =



0 0 · · · 0

z2,1 0 · · · 0
...

... . . . ...

zN,1 zN,2 · · · 0


(3.86)

D =



z1,1 0 · · · 0

0 z2,2 · · · 0
...

... . . . ...

0 0 0 zN,N


(3.87)

3.3.1 Jacobi method

For the construction of the Jacobi method, we place Equation 3.84 into 3.1 as follows

Zx = v

(U + D + L) x = v

x = −D−1 (U + L) x + D−1v.

(3.88)

For the Jacobi method, the definitions of the iteration matrix M and the vector b are

M = −D−1 (U + L) (3.89)

b = D−1v. (3.90)

The Jacobi iteration can be generalised by an updating process given by

x(i+1) = −D−1 (U + L) x(i) + D−1v. (3.91)

Equation 3.91 can be expressed in component-wise form as

x
(i+1)
m =

vm−
∑
n6=m

zm,nx
(i)
n

zm,m m = 1, · · · , N (3.92)

where zm,n, xm, vm are elements of Z, x and v, respectively. Equation 3.92 implies
that each element in the approximate solution x is treated independently. Therefore, the
updating process for each of the elements can be performed simultaneously. This leads
to an ease of parallelising the method. Though the Jacobi method is easy to understand
and implement, the slow and irregular convergence rate is its main drawback. The Jacobi
method is described in Algorithm 3.8.
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Algorithm 3.8 The Jacobi method.

x(0) = initial guess

For i = 1, 2, . . .

For m = 1 · · ·N

a = 0

For n = 1 · · ·N

If (m 6= n)

a = a+ zm,nx
(i−1)
n

End

End

x
(i)
m = vm−a

zm,m

End

If

∥∥∥v−Zx(i)
∥∥∥

2
‖v‖2

< tolerance

Quit

End

End

Algorithm 3.9 The Gauss-Seidel method.

x(0) = initial guess

For i = 1, 2, . . .

For m = 1 · · ·N

a = 0

For n = 1 · · ·m− 1

a = a+ zm,nx
(i)
n

End

For n = m+ 1 · · ·N

a = a+ zm,nx
(i−1)
n

End

x
(i)
m = vm−a

zm,m

End

If

∥∥∥v−Zx(i)
∥∥∥

2
‖v‖2

< tolerance

Quit

End

End
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3.3.2 Gauss-Seidel method

The Gauss-Seidel method is given by the re-arrangement of Equation 3.88 to obtain

x = − (L + D)−1 Ux + (L + D)−1 v. (3.93)

For the Gauss-Seidel method, the iteration matrix M and vector b are defined as

M = − (L + D)−1 U (3.94)

b = (L + D)−1 v. (3.95)

Consequently, the updating process for the Gauss-Seidel method is given by

x(i+1) = − (L + D)−1 Ux(i) + (L + D)−1 v. (3.96)

The component-wise form of the Gauss-Seidel method can be written as

x
(i+1)
m = 1

zm,m

(
vm −

∑
n<m

zm,nx
(i+1)
n −

∑
n>m

zm,nx
(i)
n

)
m = 1 · · ·N . (3.97)

It is noticed that the most recently updated components xm are used where possible in
the Gauss-Seidel method. Thus, the Gauss-Seidel method generally converges faster than
the Jacobi method. The sequential updating process due to the use of the most updated
components may cause difficulties in parallelising the Gauss-Seidel method. The Gauss-
Seidel algorithm is outlined in Algorithm 3.9.

3.3.3 Successive overrelaxation method

The derivation of the successive overrelaxation (SOR) method from Equation 3.1 is pre-
sented as

Zx = v

$ (D + L + U) x = $v

(D +$L) x = ((1−$) D−$U) x +$v

x = (D +$L)−1 (((1−$) D−$U) x +$v) .

(3.98)

The iteration matrix M and the vector b are defined as follows

M = (D +$L)−1 ((1−$) D−$U) (3.99)

b = $ (D +$L)−1 v. (3.100)
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Algorithm 3.10 The successive overrelaxation method.

x(0) = initial guess

For i = 1, 2, . . .

For m = 1 · · ·N

a = 0

For n = 1 · · ·m− 1

a = a+ zm,nx
(i)
n

End

For n = m+ 1 · · ·N

a = a+ zm,nx
(i−1)
n

End

a = vm−a
zm,m

x
(i)
m = (1−$)x(i−1)

m +$a

End

If

∥∥∥v−Zx(i)
∥∥∥

2
‖v‖2

< tolerance

Quit

End

End
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Therefore, the updating process for the SOR is

x(i+1) = (D +$L)−1
(
((1−$) D−$U) x(i) +$v

)
(3.101)

where the constant $ denotes the relaxation factor. The SOR in component-wise form is

x
(i+1)
m = (1−$)x(i)

m + $
zm,m

(
vm −

∑
n<m

zm,nx
(i+1)
n −

∑
n>m

zm,nx
(i)
n

)
m = 1 · · ·N .

(3.102)

When the relaxation factor is 1, the SOR becomes the Gauss-Seidel method. In other
words, the application of extrapolation, using a weighted average between the current
and the previous iterate, to the Gauss-Seidel method results in the SOR, often leading
to a better spectral radius of the iteration matrix. Thus, the convergence rate of the
SOR is usually faster than that of the Gauss-Seidel. Choosing the optimal value of $ to
maximise the convergence rate of the SOR is not possible in general. Some suggestions for
the determination of the value of $ can be found in [78, 79]. The combination of two SOR
sweeps, which update the unknowns in reverse directions, forms the symmetric successive
overrelaxation (SSOR ) method.

3.3.4 Forward backward method

The Krylov subspace iterative methods are favourable due to their robustness and their
assurance of being convergent and achieving the exact solution within at most N itera-
tions. However, the Krylov subspace methods may require a large number of iterations
to obtain a solution with a desired accuracy for a large system because of being purely
algebraic and lacking physical intuition. In addition, the implementation process of the
Krylov subspace iterations are mathematically more complicated than that of the station-
ary iterative methods. Recently, much research effort has focused on the development of
stationary solvers for application to EM problems [64, 65, 80, 81]. In order to enhance the
convergence rate of stationary methods, some EM characteristics are implicitly embedded
into the operating procedure.

For illustration of the EM mechanism in such stationary methods, we investigate a 1-
D propagation problem shown in Figure 3.1a where the source located in the upper left
corner radiates the fields in the entire region. The total fields in free-space are expected
to be computed as would be the case for wireless network planning. For the calculation
of the total fields, the equivalent surface currents are required. Applying the MoM to the
problem in Figure 3.1a leads to the discretisation of the 1D dielectric surface into small
flat segments in Figure 3.1b. Assuming that we examine the surface current of the red
discretisation m in Figure 3.1b, the total current consists of two components

xm = xfor-scatm + xback-scatm (3.103)
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where xfor-scatm denotes the current due to the incident fields and forward contribution or
scattering from the discretisations in front of the discretisation m, while xback-scatm stands
for the current due to backscattering from discretisations beyond the discretisation m.
Vectors containing information about the forward and backward scattering are denoted
by xfor-scat and xback-scat, respectively

xfor-scat =
(
xfor-scat1 . . . xfor-scatN

)T
xback-scat =

(
xback-scat1 . . . xback-scatN

)T (3.104)

and

x = xfor-scat + xback-scat (3.105)

The forward scattering current xfor-scat can be computed from knowledge about the back-
ward scattering current xback-scat by solving the Volterra integral equation in [64]. Like-
wise, the backward scattering current xback-scat can be estimated by the value of the
forward scattering current xfor-scat. The procedure of sequentially solving the xfor-scat and
xback-scat results in a good approximation of a solution x. This forms the basic idea of the
forward backward method which consists of two sweeps in each iteration. The forward
sweep is responsible for the computation of the xfor-scat contribution while the backward
sweep computes the value of the xback-scat contribution. In the forward sweep, the current
discretisations are computed sequentially with respect to the propagation direction. Simi-
larly, they are computed sequentially in the reverse direction for the backward sweep. This
process of updating currents imitates the physical process of wave propagation, leading to
a better convergence rate of the forward backward method. The method was simultane-
ously proposed by Holliday [64], and Kapp and Brown [80], and is termed by the forward
backward method (FBM) and the method of ordered multiple interactions (MOMI ), re-
spectively. According to [65], the current discretisation at iteration i can be computed as
follows

forward sweep: (D + L) xfor-scat(i) = v− Lxback-scat(i−1)

backward sweep: (D + U) xback-scat(i) = −Uxfor-scat(i) .
(3.106)

The summation of the backward part at the (i− 1)th iteration and the forward part at
the ith iteration of Equation 3.106 leads to

D
(
xfor-scat(i) + xback-scat(i−1)

)
= v− L

(
xfor-scat(i) + xback-scat(i−1)

)
−U

(
xfor-scat(i−1) + xback-scat(i−1)

)
.

(3.107)

In the similar manner, we can derive the following equation
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D
(
xfor-scat(i) + xback-scat(i)

)
= v− L

(
xfor-scat(i) + xback-scat(i−1)

)
−U

(
xfor-scat(i) + xback-scat(i)

)
.

(3.108)

Consequently, the FBM is re-arranged into the following form

forward sweep: Dx(i−1/2) = v− Lx(i−1/2) −Ux(i−1)

backward sweep: Dx(i) = v− Lx(i−1/2) −Ux(i)
(3.109)

where

x(i−1) = xfor-scat(i−1) + xback-scat(i−1)

x(i−1/2) = xfor-scat(i) + xback-scat(i−1)

x(i) = xfor-scat(i) + xback-scat(i) .

(3.110)

The FBM in element-wise form is

forward sweep: x
(i−1/2)
m = 1

zm,m

(
vm −

∑
n<m

zm,nx
(i−1/2)
n −

∑
n>m

zm,nx
(i−1)
n

)
m = 1 · · ·N

backward sweep: x
(i)
m = 1

zm,m

(
vm −

∑
n<m

zm,nx
(i−1/2)
n −

∑
n>m

zm,nx
(i)
n

)
m = N · · · 1

(3.111)

Generally, the current discretisations are sequentially approximated in two sweeps and
the computation of each discretisation uses the most up-to-date information from other
discretisations. Comparing Equation 3.111 and 3.97 draws a conclusion that the FBM
comprises of two separate Gauss-Seidel iterations which are in reverse directions. In other
words, the FBM is equivalent to the SSOR with $ = 1. This leads to a small number of
iterations required to achieve a desired solution. The advantage has been demonstrated
in numerous 1-D applications for random rough surface scattering problems [65, 68, 69]
or 2-D wave propagation [82].

3.3.5 Block forward backward method

The block forward backward method (BFBM) is an extension of the FBM for the im-
provement of the convergence rate in certain cases. Though the performance of the FBM
is excellent due to the requirement of a small number of iterations, it is only applicable
to low-grazing angle scattering problems or rural propagation without abrupt changes in
the height of terrain profile. Some examples of abrupt changes in the terrain surfaces are
the appearance of a ship over a sea surface in Figure 3.2a, the shape edges of buildings in
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a terrain profile for urban areas in Figure 3.2b or very rough surface scattering problems.
Abrupt changes or obstacles along the propagation path cause strong local scattering ef-
fects that cannot be computed using the forward backward process. The fields must be
computed exactly in these regions before the iterative process can progress further. This
is done using a block technique which inverts a local sub-matrix, implicitly incorporating
all backward and forward scattering within the obstacle. An alternative way of think-
ing about the effect of the block forward backward method is to consider that its use
is equivalent to preconditioning the linear system before applying the forward backward
method. The BFBM applies the FBM scheme to groups of current discretisations. Instead
of using the discretisation-by-discretisation updating scheme in the FBM, the BFBM as-
sembles current discretisations into groups and then updates the surface currents using
the group-by-group scheme shown in Figure 3.3. Assuming that the problem of N current
discretisations are divided into M groups, the BFBM in group-wise form is

forward sweep: x̄(i−1/2)
m = Z̄−1

m,m

(
v̄m −

∑
n<m

Z̄m,nx̄(i−1/2)
n −

∑
n>m

Z̄m,nx̄(i−1)
n

)
m = 1 · · ·M

backward sweep: x̄(i)
m = Z̄−1

m,m

(
v̄m −

∑
n<m

Z̄m,nx̄(i−1/2)
n −

∑
n>m

Z̄m,nx̄(i)
n

)
m = M · · · 1

(3.112)

where x̄m is a vector containing information about current discretisations in groupm, v̄m is
a vector containing information about incident fields impinging on discretisations in group
m. Z̄m,n is a matrix containing information about interactions between discretisations in
group m and those in group n. The representations of Z, x and v using Z̄m,n, x̄m and v̄m
are

Z =



Z̄1,1 Z̄1,2 · · · Z̄1,M

Z̄2,1 Z̄2,2 · · · Z̄2,M

...
... . . . ...

Z̄M,1 Z̄M,2 · · · Z̄M,M


(3.113)

x =
(

x̄1 x̄2 · · · x̄M
)T

(3.114)

v =
(

v̄1 v̄2 · · · v̄M
)T

. (3.115)

To derive the iteration matrix of the BFBM, we define the block-diagonal, block-upper-
triangular and block-lower-triangular matrices as follows, respectively
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Figure 3.2: Block forward backward method for problems with abrupt changes in height.

Figure 3.3: Group-by-group scheme of the block forward backward method.
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D̄ =



Z̄1,1 0 · · · 0

0 Z̄2,2 · · · 0
...

... . . . ...

0 0 · · · Z̄M,M


(3.116)

Ū =



0 Z̄1,2 · · · Z̄1,M

0 0 · · · Z̄2,M

...
... . . . ...

0 0 · · · 0


(3.117)

L̄ =



0 0 · · · 0

Z̄2,1 0 · · · 0
...

... . . . ...

Z̄M,1 Z̄M,2 · · · 0


. (3.118)

We denote M̄f and M̄b as the iteration matrices for the forward sweep and for the backward
sweep, respectively. They are defined as follows

M̄f = −
(
L̄ + D̄

)−1
Ū (3.119)

M̄b = −
(
Ū + D̄

)−1
L̄. (3.120)

Thus, the iteration matrix of the BFBM is presented as

M = M̄fM̄b. (3.121)

The BFBM is applied for the solution of propagation in urban areas [82, 83], random
rough surface scattering [65] or inhomogeneous problems [84]. The convergence rate of
the BFBM increases with the size of the blocks but this creates a storage burden because
the inverse of the block-diagonal matrices, which are used repeatedly in each iteration,
need to be computed and stored for the efficient operation of the BFBM.

3.3.6 Buffered block forward backward method

The buffered block forward backward method is a modified version of the BFBM for
application to 3-D scattering problems. Though the BFBM is extensively applied for
2-D problems, its application to 3-D is limited due to spurious edge effects which may
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lead to the divergence of the BFBM. The artificial decomposition of the surface in the
BFBM shown in Figure 3.4a causes unrealistic current densities with high values along the
boundaries between groups or sub-regions, which are defined as specific physical areas on
the surface of the problem. This phenomenon is termed the spurious edge effect and is
demonstrated later in Section 3.3.6.2. To minimise this undesired edge effect, the BBFB
[67, 81, 85] introduces local buffer regions for each group or sub-region. There are two
sweeps in each iteration of the BBFB: the forward sweep and the backward sweep. It
is noted that the associated buffer regions for the same sub-region are different in the
forward sweep and the backward sweep, and they are chosen to be the area following the
sub-region with regard to the marching direction as shown in Figure 3.4b,c. Similar to
the BFBM, the current discretisations are updated sequentially from the sub-region 1 to
M as the BBFB marches across the surface of the scatterer in the forward sweep. In the
backward sweep, the current discretisations are updated in the reverse direction from the
sub-region M to 1. The forward and backward sweeps of the BBFB are illustrated in the
following matrix equations

forward sweep: x̂(i−1/2)
m = Ẑ−1

m,m

(
v̂m − p̂(i−1/2)

m − ŝ(i−1)
m

)
m = 1 · · ·M

backward sweep: x̂(i)
m = Ẑ−1

m,m

(
v̂m − p̂(i−1/2)

m − ŝ(i)
m

)
m = M · · · 1

(3.122)

The linear matrix systems in the forward and backward sweeps illustrated in Equation
3.122 are called the local problems. Ẑm,m denotes a matrix containing information about
the mutual interaction between basis functions in the sub-region m and those in its asso-
ciated buffer region b (m) as shown in Equation 3.123.

Ẑm,m =

 Z̄m,m Z̄m,b(m)

Z̄b(m),m Z̄b(m),b(m)

 (3.123)

A similar interpretation is applied to x̂m and v̂m

x̂m =

 x̄m

x̄b(m)

 (3.124)

v̂m =

 v̄m

v̄b(m)

 (3.125)
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Figure 3.4: Buffer regions in the buffered block forward backward method.
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p̂(i)
m and ŝ(i)

m are vectors holding information about the most up-to-date scattered fields
(from the ith iteration of the current) radiated from the prior and subsequent regions,
respectively, onto the domain comprising of the sub-region m and its buffer region b (m).
For example we can write

p̂(i−1/2)
m =

m−1∑
n=1

 Z̄m,n

Z̄b(m),n

 x̂(i−1/2)
n (3.126)

ŝ(i)
m =

M∑
n=b(m)+1

 Z̄m,n

Z̄b(m),n

 x̂(i)
n (3.127)

The local problems illustrated in Equation 3.122 are solved at each step in the forward
and the backward sweeps. At each step, the buffer region is used to aid the accuracy of
the updated current in that sub-region. Therefore, only the currents on the sub-region are
retained while those on the associated buffer region are discarded and overwritten as one
moves to the next local problem.

To examine the enhanced convergence properties of the BBFB, the iteration matrix of the
BBFB is derived as shown below. The object is divided into sub-regions and the buffer
region in each case is the entirety of the next sub-region. In other words, we assume that
the sub-region and the buffer region are the same size to ease the derivation, though, they
can be different. Each sweep of the BBFB can be represented in the form of an augmented
matrix equation. The augmented linear equation for the forward sweep is given by

Zfxf = vf (3.128)

where

Zf =



Z̄1,1 Z̄1,2 0 0 Z̄1,3 0 · · · Z̄1,M

Z̄2,1 Z̄2,2 0 0 Z̄2,3 0 · · · Z̄2,M

Z̄2,1 0 Z̄2,2 Z̄2,3 0 0 · · · Z̄2,M

Z̄3,1 0 Z̄3,2 Z̄3,3 0 0 · · · Z̄3,M

Z̄3,1 0 Z̄3,2 0 Z̄3,3 Z̄3,4 · · · Z̄3,M

Z̄4,1 0 Z̄4,2 0 Z̄4,3 Z̄4,4 · · · Z̄4,M

...
...

...
...

...
... . . . ...

Z̄M,1 0 Z̄M,2 0 Z̄M,3 0 · · · Z̄M,M



(3.129)

and
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xf =
[

x̄1 d̄2 x̄2 d̄3 · · · x̄M
]T

(3.130)

vf =
[

v̄1 v̄2 v̄2 v̄3 · · · v̄M
]T

(3.131)

where d̄m is a vector containing temporary information about current segments in sub-
region m. We denote the solution before the process of the forward sweep as xf(0) and the
approximate solution after the completion of the forward sweep as xf(1)The solution after
one forward sweep is formulated as

(
Lf + Df

)
xf(1) = vf −Ufxf(0) (3.132)

where Df, Lf and Uf denote the block-diagonal, block-lower-triangular and block-upper-
triangular parts of Zf, respectively. As the result, the iteration matrix of the forward
sweep is defined as

Mf =
(
Lf + Df

)−1
Uf. (3.133)

Similarly, the iteration matrix of the backward sweep is

Mb =
(
Ub + Db

)−1
Lb (3.134)

where Db, Lb and Ub denote the block-diagonal, block-lower-triangular and block-upper-
triangular parts of Zb, which is the augmented matrix in the backward sweep. The spectral
radius of these matrices determines the convergence rate of the BBFB. This is examined
in the next examples. The main disadvantage of the BBFB is the requirement of creating
and storing the inverses of the local matrices defined in Equation 3.123, which are used
repeatedly in each iteration. However, this burden can be reduced by the use of matrix
compression techniques such as the MS-CBD [25, 26, 27].

3.3.6.1 Test case 1: spectral radius of the iteration matrices - perfectly conducting
square plate

The spectral radius of the iteration matrices of the BBFB, which determines the conver-
gence rate of the method, is investigated in this test case to demonstrate the advantage of
the BBFB as compared to the BFBM. The eigenvalue distributions of the iteration ma-
trices in the BBFB and the BFBM are examined separately in the forward sweep and in
the backward sweep to study the convergence properties of the BBFB against the BFBM
and to highlight the importance of the buffer region. A perfect electric conducting (PEC)
square plate of λ × λ, where λ is the wavelength at the operating frequency, placed on
the XZ plane is descretised into 1, 267 RWG basis functions. The plate is split into 5
equal slices along the x-axis. In the BFBM (without buffer region), the sub-region size is
2 slices. The size of the sub-region and buffer region is 1 slice each in the BBFB (with
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buffer region). Elements in the impedance matrix Z is computed using the combined field
integral equation (CFIE) with the coefficient α = 0.3. We give the derivation of the CFIE
in chapter 4 where it is used most.

Figure 3.5 shows the eigenvalue distributions for two sweeps in the BBFB (with buffer
region) and the BFBM (without buffer region). The eigenvalue spectrum of the BFBM
shown in Figure 3.5 c,d is unacceptable for both sweeps since many eigenvalues are outside
the unit circle, resulting in the divergence of the method. The buffer region in the BBFB
significantly improves the eigenvalue spectrum shown in Figure 3.5 a,b, forcing most eigen-
values within the unit circle. It is worthwhile to note that the dimensions of the iteration
matrices of the BBFB are not equal. Therefore, they have to be examined individually.
We illuminate the plate with a vertically polarised plane wave with an incident angle
of (θ = π/2;ϕ = 2π/3) and use the BBFB and the BFBM to solve the problem. Figure 3.6
compares the convergence rate of the BBFB and the BFBM in terms of iteration. Residual
norms shown in the figure are computed by

residual norm =

∥∥∥Zx(i) − v
∥∥∥

2
‖v‖2

. (3.135)

It can be seen that the BFBM start to diverge after few iterations while the BBFB remains
to converge to a correct solution.

3.3.6.2 Test case 2: spurious edge effect - NASA almond

The edge effect is visualised in this test case to emphasize the importance of the buffer
region. We investigate a scattering problem shown in Figure 3.7 a. A NASA almond
defined in [1] is laid along the x-axis with the tail-to-head direction aligning with the
positive direction of the x-axis. The scatterer is illuminated using a vertically polarised
plane wave source of 7.0GHz at the azimuth angle of 120o and the elevation angle of 0o.
The almond is discretised using 12, 834 RWG basis functions as shown in Figure 3.7a and
the CFIE is applied and discretised using the MoM. The scatterer is decomposed into 23
equal slices along the x-axis. The sub-region and the buffer region comprise 3 and 1 slices,
respectively.

The BBFB processes with the direction of the forward sweep coinciding with the tail-to-
head direction and the initial guess set to zero. At the first step of the forward sweep in the
1st iteration, the current segments of the first sub-region including the associated buffer
region are updated as shown in Figure 3.7 c. The presence of the spurious current densities
at the boundary between the first and the second sub-regions can be seen in Figure 3.7 c.
These are eliminated at the end of the step, leading to more natural current densities in the
first sub-region as shown in Figure 3.7 d. A similar process is used for updating the current
densities in the other sub-regions as shown in Figure 3.7 e,f,g,h. The approximate solution
converges within 1 iteration with a residual norm of 0.003 which is defined in Equation
3.135. The surface current after one iteration is illustrated in Figure 3.7 b. Although the
BBFB is applied to symmetrical problems (a square plate in Section Section 3.3.6.1 and
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a NASA almond in Section Section 3.3.6.2), it is not necessary that the geometry of the
problems be symmetrical in order to apply the BBFB.

3.3.7 Overlapping domain decomposition method

The overlapping domain decomposition method [86, 87] is a variant of the BBFB for more
general EM problems. In the BBFB, a problem is usually decomposed into slices along
the largest extent of the geometry. Instead of using an inflexible partition scheme, the
O-DDM randomly divides a problem into non-overlapping sub-regions which are nearly
the same size as shown in Figure 3.8b. The decomposition can be achieved by using graph
partitioning techniques [88, 89] such as METIS [75, 90, 91] or Chaco [92]. The creation
of the buffer region is the main difference between the O-DDM and the BBFB. While the
associated buffer region in the BBFBmust be the area following the sub-region with respect
to the marching direction, the buffer region in the O-DDM is formed by the extension of
the boundary of each sub-region. Therefore, the associated buffer region in the O-DDM
entirely wraps the sub-region of a closed geometry as shown in Figure 3.8b. This property
of the buffer region allows the O-DDM to be defined by a single sweep in each iteration
instead of two sweeps as in the BBFB. Assuming that a geometry is partitioned into M
non-overlapping sub-regions, the algorithm of the O-DDM is described by the following
equation

x̂(i)
m = Ẑ−1

m,m

(
v̂m − p̂(i)

m − ŝ(i)
m

)
m = 1 · · ·M (3.136)

where the definitions of x̂(i)
m , v̂m, p̂(i)

m , ŝ(i)
m and Ẑm,m are presented in Equations 3.124,

3.125, 3.126, 3.127 and 3.123, respectively.

3.4 Preconditioning techniques

Preconditioning techniques [38, 77, 93] are a vital element in the development of iterative
methods for the solution of challenging problems. For large linear problems in scientific
computation, a large number of iterations is usually required for an accurate solution due
to the unfavourable spectral properties of the matrix Z. The most crucial property of
preconditioning techniques is the efficient transformation of the original problem to an
equivalent problem which is more favourable in terms of spectral properties. A precondi-
tioner is a matrix that enables this type of transformation. There are three main types of
preconditioning techniques namely the left, right and left-right preconditioning. The pre-
conditioner matrix M is generally chosen to be close in some sense to the matrix Z. Left
preconditioning transforms the original matrix system into the following matrix system

M−1Zx = M−1v (3.137)
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3.4 Preconditioning techniques

Figure 3.5: Eigenvalue distributions for a square plate.

Figure 3.6: Comparison between the BBFB and the BFBM for a PEC square plate.
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3.4 Preconditioning techniques

Figure 3.7: Spurious edge effects in the case of a NASA almond.
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3.4 Preconditioning techniques

Figure 3.8: Sub-region and buffer region in the overlapping domain decomposition
method.
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3.4 Preconditioning techniques

where M is a non-singular matrix. The new system is equivalent to Equation 3.1 but the
newly transformed matrix M−1Z may have a better spectral properties, leading to fewer
iteration being required to solve the problem. The application of right preconditioning to
Equation 3.1 results in the following equation

ZM−1y = v where x = M−1y (3.138)

The left-right preconditioning for Equation 3.1 is presented as follows

M−1
1 ZM−1

2 y = M−1
1 b where x = M−1

2 y (3.139)

where M1 and M2 are left and right preconditioners, respectively. It should be noted that
the matrix-matrix products of M−1Z, ZM−1 and M−1

1 ZM−1
2 are not created explicitly

because of the expensive computation and the loss of sparsity of the preconditioners. The
main criteria for the selection of a suitable preconditioning technique are the generation of a
preconditioned system with better spectral properties and a reasonable cost of construction
and application of the preconditioner.

3.4.1 Block Jacobi preconditioner

The simplest preconditioning applied in EM problems is the block Jacobi preconditioner
[56, 94] where the preconditioner M approximates the impedance matrix Z in the form of
a block-diagonal matrix.

M =



Z̄1,1 0 · · · 0

0 Z̄2,2 · · · 0
...

... . . . ...

0 0 · · · Z̄M,M


(3.140)

The main diagonal block square matrices of M are taken from the corresponding parts of
the impedance matrix Z. The inverse of the preconditioner, therefore, is

M−1 =



Z̄−1
1,1 0 · · · 0

0 Z̄−1
2,2 · · · 0

...
... . . . ...

0 0 · · · Z̄−1
M,M


. (3.141)

The implementation of the block Jacobi preconditioner is straightforward and well suited
for parallelisation. However, the efficiency of the block Jacobi preconditioner is limited
when compared with more complicated preconditioners.
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3.4 Preconditioning techniques

3.4.2 Incomplete LU preconditioner

In EM problems, the impedance matrix Z can be decomposed into two parts comprised
of the near-zone contributions and the far-zone contribution as follows

Z = Znf + Zff (3.142)

where Znf and Zff denote the matrices that contain information about the near-zone and
the far-zone contributions, respectively. The near-zone matrix can be used to construct a
preconditioner

M = Znf (3.143)

The inverse of the preconditioner is obtained using direct methods involving the generation
of the lower-triangular L and the upper-triangular U matrices. However, this process of
matrix decomposition causes fill-in [95], leading to the loss of sparsity. To preserve the
computational advantage of sparse matrices, some parts of fill-in can be discarded resulting
in

LU ≈ Znf. (3.144)

Different strategies to remove fill-in results in various types of the incomplete LU precon-
ditioners [96, 97, 98].

3.4.3 Sparse approximate inverse preconditioner

The main drawback of the incomplete LU preconditioner is the incompatibility with paral-
lelisation and a large storage requirement for the lower-triangular and the upper triangular
matrices. Thus, the sparse approximate inverse preconditioners (SPAI) [61, 98, 99] are
more popular for the solution of large-scale problems. The basic idea of the SPAI is to
compute a matrix M that minimises the following Frobenius norm

∥∥∥I− ZnfM−1
∥∥∥
F

=
n∑
j=1

∥∥∥ej − Znfmj

∥∥∥
2

(3.145)

where the size of the near-zone matrix Znf is n×n, ej is the jth canonical unit vector and
mj is the mth column of M−1. We denote the inverse of M as P. The main challenge
of the SPAI is to select a suitable P which is sparse and contains large entries of the
inverse, which are expected to improve the quality of the preconditioner. The selection of
different sparsity patterns [100, 101] of P leads to different kinds of SPAI. There are two
main approaches for the selection of the sparsity including adaptive techniques and static
techniques. Adaptive techniques dynamically attempt to identify the best pattern for P,
resulting in sophisticated and costly algorithms. Static techniques determine the sparsity
pattern in advance based on some heuristics. In electromagnetic scattering problems,
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3.5 Conclusion

an effective pattern can be pre-determined by exploiting the physical and geometrical
properties [102, 103].

3.5 Conclusion

This chapter decribed a number of iterative methods applied to the solution of integral
equations, which are discretised using the method of moments. Both stationary and
non-stationary iterative methods are presented. Stationary methods are applied to solve
electromagnetic scattering problems in chapter 4 and chapter 5. The buffered block for-
ward backward method and the overlapping domain decomposition method are applied
to solve three-dimensional perfectly conducting problems in chapter 4 while the forward
backward method and the block forward backward method are applied to the solution of
electromagnetic scattering from one-dimensional and two-dimensional random rough sur-
faces in chapter 5, respectively. Non-stationary methods, the generalised minimal residual
method and the biconjugate gradient stabilised method, are applied to solve electromag-
netic scattering problems in chapter 6 and chapter 7.

68



4 Modified multilevel fast multipole
algorithm for stationary iterative methods

In this chapter, a modified multilevel fast multipole algorithm (MLFMA) is presented for
the acceleration of the partial matrix-vector products (MVPs) required in each iteration
of stationary iterative solvers used for the solution of electromagnetic wave propagation
and scattering problems. Applying the standard MLFMA to the computation of the
partial MVPs leads to significant redundancy, causing a loss of efficiency of the stationary
method. A modified MLFMA is proposed to regain the efficiency. The modified MLFMA
is based on two small novel algorithms which are responsible for a precise determination
of small subsets of cubes which are in need of having their associated fields recomputed
in the MLFMA upward or downward process during each step of the stationary iteration
process. The combination of the modified MLFMA and the stationary methods is applied
for the solution of perfectly conducting 3D scattering problems. Numerical results are
presented to demonstrate the efficiency of the proposed technique.

4.1 Introduction

The application of the MoM to IEs is an extensively used technique for the numerical
solution of electromagnetic wave scattering problems. As discussed in chapter 3, the stor-
age requirements and the impractical complexity to invert the resultant matrix Z are the
main challenges for the solution of large and dense linear systems. Iterative methods be-
come a suitable approach for the solution of electrically large problems. Iterative solvers
are categorised into two main classes including non-stationary methods and stationary
methods. The non-stationary solvers approximate a solution using a linear combination
of Krylov bases which forms the Krylov subspace. The GMRES [40] and the BiCGSTAB
[39] are popular among Krylov iterative methods for their robust convergence. “Current
marching” solvers based on stationary solvers, especially the FBM [64], have received
much attention for their rapid convergence. The FBM gradually builds up a solution as it
marches across the surface of the scatterer. It has been demonstrated to converge within
considerably fewer iterations as compared to the Krylov methods for certain two dimen-
sional scattering problems [68]. The FBM has also been extended to the BBFB which is
applicable to three dimensional problems in [81, 85].

The stationary solver, particularly the BBFB, would at first glance appear to be a po-
tentially powerful complement to acceleration methods such as the MLFMA [57]. The
acceleration techniques reduce the cost of each iteration while the stationary solvers re-
duce the overall number of iterations required for the solution. Together they tackle the
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4.2 Combined field integral equation for 3D perfectly conducting problems

overall computational burden associated with this type of full-wave solver. However, the
situation is complicated by the nature of the iterations that occur in the stationary solvers.
The main computational burden of a non-stationary solver is a full MVP, with a cost of
O
(
N2) operations which can be reduced by, for example, the MLFMA to O (N logN). In

contrast, the stationary solvers such as the BBFB method require the computation of a
large number of partial MVPs, the overall cost of which is also O

(
N2). However, the

application of the standard MLFMA to the computation of these partial MVPs results in
considerable computational redundancy which means that the speed up achieved by the
MLFMA is greatly reduced, potentially offsetting the computational gains achieved due
to the reduced number of iterations.

The modified MLFMA is presented in this chapter to efficiently perform these partial
MVPs. The modifed MLFMA is combined with the stationary solvers, the BBFB and the
O-DDM, for the computation of scattering from three dimensional perfectly conducting
scatterers. The chapter is organised as follows. Firstly, the combined field integral equation
and the MLFMA are briefly reviewed prior to the explanation of the need for the modified
MLFMA. Then, details about the proposed method are presented. Finally, numerical
results are shown to demonstrate the accuracy and efficiency of the modified MLFMA.

4.2 Combined field integral equation for 3D perfectly
conducting problems

The SEFIE and SMFIE in Equations 2.87-2.88 for a perfectly conducting scatterer located
in free-space become, respectively

n̂×Ei = −n̂×
{
η0
jk0

(
k2

0Js +∇ (∇ · Js)
)}

S+
∗G (4.1)

n̂×Hi = Js − n̂× {∇× Js}S+ ∗G. (4.2)

The EFIE is applicable for both thin-shell structures and solid bodies while the MFIE is
only suitable for closed-surface scatterers [104]. In addition, both equations are singular
for closed-surface scatterers at interior resonant frequencies [57, 105, 106, 107], leading
to incorrect solutions of the surface current Js. The CFIE proposed by J. R. Mautz et
al [105] is considered as an efficient treatment for the interior Maxwell resonances. The
CFIE is a linear combination of the EFIE and the MFIE as

CFIE = αEFIE + (1− α) η0n̂×MFIE (4.3)

where α is a coefficient chosen as 0 < α < 1. The RWG basis functions [24] are used to
expand the surface currents as

Js (r) =
N∑
n=1

xnfn (r) (4.4)
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4.3 Multilevel fast multipole algorithm

where N is a number of basis functions required for the discretisation and fn (r) denotes
the RWG basis functions [24]. These are the most commonly applied sub-domain basis
functions for MoM problems. The choice of basis functions is discussed further in [20, 104].
The EFIE part and the MFIE part of the CFIE is tested by the div-conforming RWG
fn (r) and the curl-conforming RWG n̂ × fn (r), respectively. The resultant elements of
the impedance matrix Z can be represented as

zm,n = αzEFIEm,n + (1− α) η0z
MFIE
m,n (4.5)

where

zEFIEm,n = − η0
jk0

k2
0

ˆ

Tm

fm (r) ·
ˆ

Tn

G (r, r′)fn (r′) dS′dS+

+
ˆ

Tm

fm (r) · ∇
ˆ

Tn

G (r, r′)∇′ · fn (r′) dS′dS


= jωµ0

ˆ
Tm

fm (r) ·
ˆ

Tn

(
I + 1

k2
0
∇∇′

)
G (r, r′)fn (r′) dS′dS


(4.6)

and

zMFIE
m,n = −

ˆ

Tm

(n̂× fm (r)) · ∇ ×
ˆ

Tn

G (r, r′)fn (r′) dS′dS (4.7)

where Tm is the support of the basis function fm. The computation of the above inte-
grals should be performed with care to avoid singularities by using singularity extraction
techniques or singularity cancellation techniques. Treatment of singularities is beyond
the scope of this thesis. Several subtraction and cancellation techniques are presented in
[108, 109, 110]. The specific subtraction technique used in this thesis is presented in [108].

4.3 Multilevel fast multipole algorithm

Most acceleration techniques start by separating the computational electromagnetic do-
main into a near-zone region and a far-zone region. Therefore, the MVP in Equation 3.1
can be rewritten as

Zx = Znearx + Zfarx (4.8)

where Znear is a sparse matrix containing information about coefficients representing in-
teraction between basis functions which are in the near-zone range of each other. Zfar is
a dense matrix containing information about coefficients representing interaction between
basis functions in the far-zone range. Most computations of Equation 4.8 are performed
in the second part of the right hand side. The first part of the right hand side of Equation
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4.3 Multilevel fast multipole algorithm

4.8 is computed directly using Equations 4.6-4.7, while the second part is approximated
to reduce the computational cost.

The FMM [54] optimises the computational cost of the second part by grouping basis
functions and expanding the basis functions’ interactions into outgoing and incoming plane
waves. Assume that the testing function m and the basis function n are in the far-zone
range of each other and belong to groups i and j, respectively. Gegenbauer’s addition
theorem [111] is applied to the diagonalisation and the factorisation of the kernel function
[57, 98]. As the result, the coefficients of the impedance matrix in Equations 4.6-4.7 can
be expressed as [57, 112, 113]

zEFIEm,n = η0
(
k0
4π
)2 ˛

d2k̂VEFIE
mi Tij

(
k̂ · r̂ij

)
·Vnj (4.9)

zMFIE
m,n =

(
k0
4π
)2 ˛

d2k̂VMFIE
mi Tij

(
k̂ · r̂ij

)
·Vnj (4.10)

where

VEFIE
mi =

ˆ

Tm

e−jk0(r−ri)
(
Ī− k̂k̂

)
fm (r) dS (4.11)

VMFIE
mi =

ˆ

Tm

e−jk0(r−ri)
(
k̂ × n̂× fm (r)

)
dS (4.12)

Vnj =
ˆ

Tn

ejk0(r−rj)
(
Ī− k̂k̂

)
fn (r) dS (4.13)

Tij
(
k̂ · r̂ij

)
=

L∑
l=0

(−j)l (2l + 1)h(2)
l (k0rij)Pl

(
r̂ij · k̂

)
. (4.14)

Integrals in Equations 4.9-4.10 are over the surface of a unit sphere. Centres of groups i
and j are denoted by ri and rj , respectively. The spherical Hankel function of the second
kind and the Legendre polynomial of degree l are denoted by h(2)

l and Pl, respectively. A
vector pointing from the centre of group j to the centre of group i is defined as

rij = ri − rj rij = ‖rij‖ r̂ij = rij
rij

. (4.15)

Ī = k̂k̂+ θ̂θ̂+ ϕ̂ϕ̂ where k̂, θ̂ and ϕ̂ are the orthogonal unit vectors in oriented directions
of the radial, polar and azimuth in the spherical coordinate system of the expanded plane
waves, respectively. The expression

(
Ī− k̂k̂

)
in Equations 4.11 and 4.13 represents the

removal of the components of the integral along k̂. It can be seen from Figure 4.1 that
the contribution of basis functions (blue dots) in group j to testing funtions (red dots) in
group i is separated into three steps. In the first step, the contribution is expanded into
outgoing plane waves (green arrows) centred at rj using Equation 4.13. Then, the outgoing
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4.3 Multilevel fast multipole algorithm

plane waves are translated into incoming plane waves (blue arrows) centred at ri using the
translation Equation 4.14. Finally, the incoming plane waves are converted into the real
contribution using Equations 4.11-4.12. As a consequence, the MVP in the FMM is divided
into two parts as shown in Figure 4.2. The near-zone contribution of basis functions inside
the nearby groups (grey cubes) is computed analytically while the contribution of basis
functions belonging to non-nearby groups (yellow cubes)is approximated using Equations
4.9-4.10. The approximation in the FMM allows the reduction of the storage requirements
and the complexity of the MVP to O

(
N 3/2

)
[54].

The idea of the FMM can be extended to the multilevel scheme to further optimise the
complexity. In the MLFMA, the size of groups increase with the distance between the
source and the testing groups to reduce the computational cost associated with these
groups. For example, in Figure 4.3 the contribution of basis functions (blue dots) in group
j (smaller blue cube) to testing functions (red dots) in group i (smaller red cube) can be
computed via their parents (larger cubes). Thus, the outgoing and incoming plane waves
centred at the centre of the parent cubes are required to be computed. The outgoing plane
waves of the source parent cube j′ (green arrows in Figure 4.4b) can be obtained from the
wave expansions of the children cube j (red arrows in Figure 4.4b) by using shifting and
interpolation. The shifting for outgoing waves is expressed as

Vnj′ = ejk0rjj′Vnj (4.16)

where

rjj′ = rj − rj′ . (4.17)

rj′ denotes the centre of group j′. As the size of groups increases, the number of outgoing
plane waves, required for the representation of the radiation, increases to preserve the
accuracy of the MLFMA. Thus, the outgoing plane waves resulting from Equation 4.16
are interpolated to obtain suitable outgoing plane waves in Figure 4.4b. Conversely, the
incoming plane waves of the children cube i (blue arrows in Figure 4.4a) are computed
from the expansions of its parent i′ (green arrows in Figure 4.4a) as

VEFIE
mi = e−jk0rii′VEFIE

mi′ (4.18)

VMFIE
mi = e−jk0rii′VMFIE

mi′ (4.19)

where

rii′ = ri − ri′ . (4.20)
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4.3 Multilevel fast multipole algorithm

Figure 4.1: Illustration of the fast multipole method.

Figure 4.2: Translations in the fast multipole method.
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Figure 4.3: Parent cubes of source and testing groups.

Figure 4.4: Shifting and interpolation/anterpolation in the multilevel fast multipole al-
gorithm.
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Figure 4.5: Recursive division of a cube into smaller cubes in the multilevel fast multipole
algorithm.

Figure 4.6: Octtree structure of the multilevel fast multipole algorithm.
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ri′ denotes the centre of group i′. The incoming plane waves resulting from Equations 4.18-
4.19 are anterpolated to obtained suitable expansions in Figure 4.4a. Discussion about
interpolation/anterpolation schemes can be found in [57, 114, 115]. Consequently, the
contribution of basis functions in group j to testing functions in group i can be obtained
through five steps. Firstly, the outgoing plane waves of cube j are computed. In the second
step, the expansions of cube j′ are calculated using shifting and interpolation. Then the
plane wave translation from cube j′ to cube i′ is performed. The incoming plane waves
of cube i is computed from those of cube i′ before the final step of conversion to the real
contribution is performed.

For a discussion of the mathematical aspects of the MLFMA, the reader is referred to
[57, 98]. In this chapter, the workflow of the MLFMA is revisited as it will be required
to understand later sections. The MLFMA proceeds by the establishment of an octtree
structure. The entire scatterer is placed inside a large box which is decomposed into eight
smaller and identical cubes. Each of the smaller cubes is again subdivided into eight
smaller cubes. This recursive division shown in Figure 4.5 is performed until the size of
the smallest cubes (called leaf cubes) is of a quarter wavelength. Cubes with no basis
function are simply discarded. At the end of the recursive division, an octtree structure
is constructed where the root of the tree is the largest cube and the leaf cubes are located
at the bottom of the tree as shown in Figure 4.6. The number of octet divisions or the
number of the MLFMA levels is denoted by L. The coarsest level of the largest cube is
level 0 while the finest level of the leaf cubes is level L.

The operation of the MLFMA can be separated into three phases: aggregation, translation
and disaggregation. In the aggregation step, the outgoing plane waves are computed for
every cube. At the leaf level, the outgoing plane waves are computed from the radiation
patterns of the basis functions inside individual leaf cubes. At the next coarser level, the
outgoing plane waves of a cube are obtained by means of shifting and summation of the
outgoing expansions of its children. This is similar to the explanation for Figure 4.4. The
aggregation step is propagated in the upward direction of the octtree until reaching level
2. It results in the computation of the outgoing plane waves of every cube from level L to
level 2 at the end of the step.

For ease of illustration of the translation and disaggregation steps, we investigate the
application of the MLFMA to a two dimensional problem as shown in Figure 4.7. The
testing functions (blue dots) are enclosed in a leaf cube (blue square). The parent and
grand-parent of the testing cube are indicated by green and red squares, respectively.
Yellow circles located at the centre of the cubes represent the outgoing plane waves of
the corresponding cubes. The translation converts the outgoing plane waves of a radiating
cube to the incoming plane waves of a testing cube at the same level. To preserve accuracy,
the translation step is only performed between non-nearby cubes which are spaced by at
least one cube. The MLFMA performs simultaneously the translation and disaggregation
steps which start from level 2 as shown in Figure 4.8. The figure illustrates the translation
step performed at the grand-parent cube (red square in Figure 4.7). The parent of the
red cube is presented by the orange square in Figure 4.8. The scattering cubes at this
step are those that satisfy two requirements. The first is that they are the children of the
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4.4 Modified MLFMA for buffered block forward backward method

neighbours of the orange square. The second is that they are non-nearby cubes of the red-
square. The outgoing plane waves of the scattering cubes are translated into the incoming
fields of the red square. After that, these incoming plane waves are shifted to the centre of
the parent cube. A similar procedure is performed for the next finer level. The outgoing
expansions of the children of the neighbours of the grand-parent cube are transformed
into the incoming expansions of the parent cube as shown in Figure 4.9. At this stage,
the incoming plane waves centred at the parent cube consist of two components: one
from the shifted incoming fields of the grand-parent cube and another resulting from the
translation step at this level. The total incoming plane waves are then shifted to the testing
cube at the next finer level. This procedure of translation and disaggregation propagates
downward the octtree until reaching the leaf level. At the end of the translation and
disaggregation steps, the incoming plane waves of a leaf cube comprise the contribution of
all basis functions except for those inside the nearby cubes. This conclusion is applied for
a general MLFMA case with L levels. Finally, the near-zone contribution of the nearby
cubes shown in Figure 4.10 is included to form the total interaction of all basis functions
to the testing functions. It is worth noticing that the translation and disaggregation of all
cubes at each level is performed simutaneously. In addition, the computed outgoing and
incoming plane waves are shared between cubes, leading to the efficiency of the MLFMA.
The MLMFA reduces the computational cost to O (N logN).

4.4 Modified MLFMA for buffered block forward backward
method

The matrix equation 3.122 of the buffered block forward backward method for the ith step
can be rewritten as

forward sweep: Ẑm,mx̂(i−1/2)
m = v̂m − p̂(i−1/2)

m − ŝ(i−1)
m

m = 1 · · ·M

backward sweep: Ẑm,mx̂(i)
m = v̂m − p̂(i−1/2)

m − ŝ(i)
m

m = M · · · 1

(4.21)

The inverses of the impedance matrices Ẑm,m are used constantly throughout the process
of the BBFB. Instead of repeatedly making these inverses, it is beneficial to have them
precomputed and stored in advance. Several matrix compression techniques such as the
MS-CBD [25, 26, 27] can be applied to efficiently compute the impedance matrices and
their inverse. Consequently, it is the computation of the right hand sides of Equation 4.21
that constitutes the significant burden for the solution of the local problem, x̂m. The first
component of the right hand side represents the incident fields impinging on the testing
region which is comprised of the sub-region m and the buffer region b (m). The testing
region is shown by the red region in Figure 4.11. The latter two components on the right
hand side represent the fields scattered from other regions (blue region in Figure 4.11).
While the first component is known, the sum of the others is in need of computation at
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4.4 Modified MLFMA for buffered block forward backward method

Figure 4.7: Illustration of the translation and disaggregation steps of the multilevel fast
multipole method.

Figure 4.8: Translation and disaggregation at level 2 of an example in Figure 4.7.
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Figure 4.9: Translation and disaggregation at level 3 of an example in Figure 4.7.

Figure 4.10: Near-zone contribution of an example in Figure 4.7.
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4.4 Modified MLFMA for buffered block forward backward method

Figure 4.11: Illustration of the scattered fields at step m of the forward sweep of the
BBFB.

Figure 4.12: Illustration of the scattered fields at step (m+ 1) of the forward sweep of
the BBFB.
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every single step of the forward and backward sweeps. The computation of the scattered
fields represents the significant computational burden of the method. The computation
can be considered a partial MVP involving some of the overall impedance matrix Z and
some of the unknown vector x. Specifically, if sub-regionm and buffer region b (m) contain
unknowns between i and j, we are required to compute Equation 4.22 as follows



z1,1 · · · z1,i−1 z1,i · · · z1,j z1,j+1 · · · z1,N

... . . . ...
...

...
...

...
...

...

zi−1,1 · · · zi−1,i−1 zi−1,i · · · zi−1,j zi−1,j+1 · · · zi−1,N

zi,1 · · · zi,i−1 zi,i · · · zi,j zi,j+1 · · · zi,N

... · · ·
...

... . . . ...
...

...
...

zj,1 · · · zj,i−1 zj,i · · · zj,j zj,j+1 · · · zj,N

zj+1,1 · · · zj+1,i−1 zj+1,i · · · zj+1,j zj+1,j+1 · · · zj+1,N

... · · ·
...

... · · ·
...

... . . . ...

zN,1 · · · zN,i−1 zN,i · · · zN,j zN,j+1 · · · zN,N





x1

...

xi−1

0
...

0

xj+1

...

xN



=



t1

...

ti−1

ti

...

tj

tj+1

...

tN



. (4.22)

Blue elements of the vector x denote the amplitudes of the basis functions located in
the scattering region (blue region) which are required in the computation. Red elements
correspond to the unknowns in sub-region m and its associated buffer region b (m), and
have been set to zero. Similarly, we highlight in red the elements in the right hand
side vector that we need to compute, namely fields scattered to unknowns in the testing
region. Equation 4.22 is called a partial MVP because it does not involve the entirety
of the unknown vector x and needs only be computed for some unknowns. Note that
computing this partial MVP is not in itself a difficult problem. One can easily multiply by
the relevant rows of the Z matrix (coloured in both blue and red) by x with the appropriate
elements set to zero to produce the desired (red-coloured) components on the right hand
side. However, doing this independently for each sub-problem will result in a method
that is O

(
N2) in complexity. The challenge is in computing it in an efficient manner. To

do this, it is preferable to use an acceleration technique such as the MLFMA. A naive
application of the MLFMA to the BBFB would commence with such a decomposition of
the whole scattering structure. Each partial MVP occuring in Equation 4.21 as illustrated
in Equation 4.22 can then be performed using the MLFMA, resulting in the computation
of the complete right hand side vector t. However, for any given local sub-problem only
a few elements of this right hand side vector (namely tl where l = i · · · j) are of interest.
Thus the application of the standard MLFMA to the computation of Equation 4.22 can
result in significant redundancy as more fields are computed than necessary.

A further problem is that the computation of the fields in sub-region m requires that we
use the most up-to-date amplitudes of the current elements in the vector x. This requires
that we re-perform the aggregation phase at the scattering cubes each time currents are
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updated. However, for any given sub-problem of the BBFB, only several cubes have
updated currents as compared to the previous sub-problem. It is only these updated
current amplitudes that need be considered in a re-calculation of the aggregation phase.
Performing a full aggregation computation is wasteful.

For example, suppose the BBFB is marching from sub-region m to sub-region (m+ 1)
as shown in Figure 4.11 and Figure 4.12. The computation of the current elements in the
sub-region (m+ 1) and the associated buffer region b (m+ 1) (red region in Figure 4.12)
requires knowledge of the current elements in other regions including the blue and green
regions. However, only the current elements in the green region have changed between
this sub-problem and the previous one. Consequently, only the recomputation of the
aggregation of fields associated with the green region is required.

If the MLFMA is applied naively, the three phases are recomputed across the octtree struc-
ture at a cost of a full MVP for each of the M sub-problems of the forward and backward
sweeps. As a result, each iteration of the BBFB requires a computation of O (2MN logN),
considerably slowing down the performance of the BBFB. A similar problem would ham-
per the application of the MLFMA to other stationary methods such as the overlapping
domain decomposition method [86, 87]. Instead, we proposed a modified MLFMA algo-
rithm which only recomputes the fields within the octtree structure where necessary. The
proposed algorithm is also applicable to other stationary methods.

4.4.1 Modified MLFMA

In a manner similar to the MLFMA, the modified MLFMA separates the partial MVP into
two components: the near-zone component and the far-zone component. The near-zone
component is for neighbouring cells and is computed exactly, while the far-zone compo-
nent is expedited using the aggregation-translation-disaggregation ideas underpinning the
MLFMA. The modified MLFMA optimises the computational cost for both calculations.

4.4.1.1 Near-zone computation

The conventional computation of the near-zone in the MLFMA becomes less onerous in the
case of a partial MVP. For illustration, we assume that we wish to compute the scattered
fields from scattering regions (blue regions) to the mth sub-problem region (red region) of
the forward sweep as shown in Figure 4.13. The computation of the mutual interactions
between basis functions within the sub-problem region is neglected (as it is included on
the left hand side of Equation 4.21). Thus, for many leaf cubes in the red region no near
field calculation is required at all, such as the red cube marked X. Red cubes which are
adjacent to the scattering regions do require a near-zone computation. However, only a
few cubes in the scattering region are involved in the near-zone computation. They are
represented by dark blue cubes in Figure 4.13. For example, the computation of the near-
zone contribution of the leaf cube marked with the � involves only the two cubes marked
⊗.

The modified MLFMA incorporates such information and reduces the cost of the near-
zone computation by a process of two steps. In the first step, only sub-problem (red)
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leaf cubes adjacent to the scattering regions are selected for near-zone computation while
the near-zone contribution to other cubes is set to zero. Near-zone cubes of each selected
sub-problem leaf cube are determined in the second step. Only leaf cubes in the near-zone
region and belonging to the dark blue regions are used for the computation of the near-
zone. The computation of the near-zones is thus given by Equation 4.23 where t̂near−C is
a vector denoting the near-zone interaction of the leaf cube C which is inside the testing
region. ZC,C′ is an impedance matrix representing interactions between basis functions
inside the leaf cubes C and C ′. xC′ is a vector containing the most up-to-date amplitudes
of current elements inside C ′. NF (C) denotes the set of indices of leaf cubes with are both
inside the near-zone range of C and inside the scattering region.

t̂near−C =
∑

C′∈NF(C)
ZC,C′xC′ (4.23)

4.4.1.2 Far-zone computation

In the MLFMA, far-zones are computed in a three step process, namely aggregation,
translation and disaggregation. In what follows, we denote the aggregation phase as the
upward process while the translation-disaggregation phase is denoted as the downward
process. Assume that the BBFB is marching from the sub-region (m− 1) to the sub-
region m in the forward sweep. In other words, we are solving Equation 4.21 for some
sub-region m, having just solved it for sub-region (m− 1). Specification of the right hand
side of Equation 4.21 requires the computation of a partial MVP of the form Equation
4.22. The cubes at the leaf level belonging to the previous sub-problem (m− 1) are
denoted by Cm−1. Cm−1 is thus comprised of leaf cubes in the sub-region (m− 1) and
the associated buffer region b (m− 1). Similarly, the leaf cubes which are in the current
sub-problem are denoted by Cm. Thus at the leaf level, the incoming and outgoing fields
remain unchanged for all cubes except for the few cubes in Cm−1 (whose currents are
the most recently updated) and Cm (whose currents are being updated at this step of
the sweep). This requirement propagates upward to the root of the octtree structure. At
higher levels, cubes associated with Cm−1 and Cm (i.e. their parents, grand parents, etc.)
must have those fields changed. Therefore, only a subset of cubes at each level of the
octtree structure are in need of field re-computation during the upward and downward
processes. We refer to Ctotal = Cm−1 ∪ Cm. These concepts are schematically illustrated
in Figure 4.14. The recomputed-upward cubes are cubes where the upward process must
be re-calculated (and are shown in blue). Similarly, the downward process should be re-
calculated for the recomputed-downward cubes (shown in red). Green cubes are cubes
which feature in both processes.

To implement the modified MLFMA we introduce four flags named: flag-down, flag-up,
flag-recomputed-down, and flag-recomputed-up denoted by FD, FU, FRD and FRU, re-
spectively. These flags are used to identify cubes whose fields are in need of re-computation.
The flags FD and FU are used to notify whether a cube is present in the downward process
and the upward process, respectively. The flags FRD and FRU respectively indicate that
a cube must have its incoming fields and outgoing fields recomputed. Thus, the outgoing
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Figure 4.13: Near-zone computation in the modified MLFMA.

Figure 4.14: Illustration of the recomputation of the upward and downward processes in
the modified MLFMA.
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Algorithm 4.1 Indication of flags of leaf cubes in the modified MLFMA.

For (all cubes in the leaf level)

set FU

clear FD

clear FRU

clear FRD

End

For (all cubes in the leaf level)

If (a cube is in Cm)

clear FU

set FD

set FRD

End

End

For (all cubes in the leaf level)

If (a cube is in Ctotal)

set FRU

End

End
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Algorithm 4.2 Indication of flags of cubes at the higher levels in the modified MLFMA.

For (the second lowest level to the highest level)

For (all cubes in the level)

If (there is any son with a FD set)

set FD

End

If (there is any son with a FU set)

set FU

End

If (there is any son with a FRD set)

set FRD

End

If (there is any son with a FRU set)

set FRU

End

End

For (all cubes in the level)

If (FRU is set)

If (there is any other cube at the same level has FD set)

set FRU

Else

clear FRU

End

End

End

For (all cubes in the level)

If (FRD is set)

If (all other cubes at the same level have FU set and FRU clear)

clear FRD

Else

set FRD

End

End

End

End

87



4.4 Modified MLFMA for buffered block forward backward method

fields are recomputed during the upward process for only cubes with both flags FU and
FRU set. The outgoing fields of these cubes are recomputed by means of interpolation and
shifting of the outgoing fields of their children, which in turn have flag FU set. Similarly,
the downward process is recomputed for only cubes having both FD and FRD set.

Algorithm 4.1 determines the flags of cubes at the leaf level from the information about
Ctotal and Cm. At first, we assume that all leaf cubes are involved in the aggregation
process and their outgoing/incoming fields are unchanged. The downward process is as-
sumed to be unnecessary. Secondly, cubes in Cm have flags FD and FRD set to indicate
a requirement of recomputing the downward process. The mutual contributions between
unknowns within sub-problem m is neglected, resulting in cleared FUs. Finally, the FRUs
are set for only cubes in Ctotal because the amplitudes of current elements in the previous
sub-problem Cm−1 have been updated and the current elements in Cm are not involved in
the partial MVP at the current step. At the end of Algorithm 4.1, only cubes in Cm have
FD and FRD set to perform the downward process and only cubes in Ctotal \ Cm have
both FU and FRU set for the performance of the upward process.

The flags of cubes at the higher (non-leaf) levels are indicated by the application of
Algorithm 4.2. The indication is based on flags at the lower levels. Algorithm 4.2 is
divided into three main steps. At the first step, the flags of the parent cubes are a logical
sum of the flags of their children cubes because a parent cube is in need of recomputation
if at least one of its children is recomputed. Step one is a preliminary for the second
step where the FRUs are determined. Cubes with FRUs set are re-examined to ensure
that there is no redundant computation in the upward process. The recomputation of
the upward process is only necessary when the computed outgoing fields are used in the
downward process of at least one cube at the same level. The second step will check
whether any other cube at the same level has the FD set. In the case that there is no cube
with FD set, the FRU of the examined cube is cleared. The FRDs are re-examined in the
third step for the elimination of redundant computation in the downward process. The
recomputation of the downward process is required when there is a change in the upward
direction at the same level. Cubes with FRD set are examined to guarantee that at least
one cube at the same level has the outgoing fields changed. Otherwise, the FRD of the
examined cube is cleared. The three steps are applied for every level except for the leaf
level.

After the determination of the flags, the upward and downward processes are recomputed.
The upward process is performed from the leaf level to the highest level. At the leaf level,
the upward process is recomputed for cubes with both FU and FRU set. The computation
of the outgoing fields is given in Equation 4.24

SC =
∑
j∈C

xjSCj (4.24)

where C is a leaf cube with FU and FRU set. SCj represents the radiation pattern of
a basis function j inside C and SC denotes the combined radiation pattern of all basis
functions inside the cube. At higher levels, the outgoing fields are again re-calculated for
cubes with both FU and FRU set. They are a combination of the outgoing fields of the
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children cubes and are presented as follows

SC =
∑
C′∈C

βC,C
′SC′ (4.25)

where C ′ is a child cube with FU set. βC,C
′ is a function which shifts the radiation

patterns centred at C ′ to be centred at C. If C ′ has FRU set, SC′ is obtained from the
recomputation of the outgoing fields at the lower level. Otherwise, SC′remains the same
from the previous step. After the recomputation of the upward process, we recompute the
downward process. The translation-disaggregation is performed only for cubes with both
FD and FRD set. The translation stage is illustrated in the following equation

GC =
∑

C′∈FF(C)
αC,C

′SC′ (4.26)

where FF (C) denotes a list containing indices of cubes in the far-zone range of C. C ′ is
a cube in the list FF (C) and has FU set. αC,C′ is a translation function which converts
the outgoing fields centred at C ′ to the incoming fields centred at C. The disaggregation
stage is recomputed from the highest level to the leaf level. The incoming fields of the
cube having both FD and FRD set is a combination of the translated fields and the shifted
fields centred at its parent

IC = GC + βC,C
′IC′ (4.27)

where C ′ is the parent of C. IC is the total incoming fields centred at C. At the leaf level,
the actual scattered fields at an individual testing function j is given by

tfar−Cj = ICFC
j (4.28)

where FC
j represents the receiving pattern of the testing function j inside C. As the result,

the total scattering fields at the cube C is computed as

t̂C = t̂near−C + t̂far−C (4.29)

where

t̂far−C =
(
tfar−Ci · · · tfar−Cj

)T
. (4.30)

The index of the testing functions inside C ranges from i to j. Algorithm 4.1 and
Algorithm 4.2 are repeatedly performed as the BBFB marches over the surface of the
scatterer. They allow the use of the MLFMA to perform partial MVPs without having
to entirely recompute the far-zone tree structure and perform the entire aggregation-
translation-disaggregation for each sub-problem, thereby retaining the efficiency of the
MLFMA.
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4.4.2 Computational complexity

In this section, we estimate the computational cost of a single BBFB iteration using
the modifed MLFMA routine as introduced in Section 4.4.1. The computational cost of
each BBFB iteration is comprised of two parts: the cost for the solution of the local
problems (by premultiplying both side of Equation 4.21 by Ẑ−1

m,m) and the cost to perform
the modified MLFMA in order to compute the right hand sides of the equation. The
local problems are assumed to be negligible in terms of physical size as compared to the
entire scatterer. Thus, the computational complexity of each BBFB iteration is dominated
by the complexity of the modified MLFMA. By using the original MLFMA, each sub-
problem of the BBFB (i.e. solving Equation 4.21 for a given m) requires a full MVP,
leading to a cost of O (MN logN) for each sweep. A full MVP implies that each cube
in the octtree structure performs the upward and the downward processes once. The
modified MLFMA reduces the computational cost by implementing Algorithm 4.1 and
Algorithm 4.2 which results in individual cubes only sometimes having fields re-computed
as part of the upward-downward processes. The complexity of each BBFB iteration, when
using the modified MLFMA, can be estimated by the number of the upward and downward
processes performed by each cube. We call them the number of updates of the upward
and downward processes.

Several quantities must be defined for the estimation of the complexity. The extent of
the sub-region and the buffer region are denoted by GS and BS, respectively as shown in
Figure 4.15. GS and BS are measured in terms of the size of a leaf cube. For example,
the values of GS and BS in Figure 4.15 are 3 and 1, respectively. As shown in Figure 4.15,
a testing region is represented by a rectangular cube extending over a three dimensional
space. A spanning-level of the testing region over one extent is defined as the number of
hierarchical tree levels over which the region spreads. A spanning-level is denoted by SLa
where a represents a direction. SL1 is a spanning-level along the marching direction. For
example, the value of (SL1, SL2, SL3) in Figure 4.15 is (2, 2, 1) as it has 4 leaf cubes in two
directions and two in the other. The four leaf cubes span two hierarchical tree levels, while
the two leaf cubes span one

(
22 = 4, 22 = 4, 21 = 2

)
. The largest value of {SL1, SL2, SL3}

is denoted by SL.

SL = max {SL1, SL2, SL3} (4.31)

Application of Algorithm 4.1 and Algorithm 4.2 results in different numbers of updates
of individual leaf cubes, depending on the problem geometry and choice of sub-regions,
buffer regions, etc. This variation propagates upward to the root of the octtree structure
and it is difficult to therefore give precise values for the complexity. However, we estimate
it for the simplified case of scattering from a rectangular plate in what follows. We denote
l as a level of the octtree structure where the complexity is analysed. To ease the analysis,
the number of updates of the upward process and the downward process are analysed
separately.
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Figure 4.15: Illustration of a sub-region size (GS) and a buffer region size (BS).

Figure 4.16: Illustration of the complexity of the upward process - cu1 .
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To ensure the clarity of Figures 4.16− 4.20, some explanations of the coloured shaped are
provided as follows. Dashed and solid bars represent the previous and the current steps
of the marching sweep, respectively. The dark and light orange parts of the bar illustrate
the sub-region and the buffer region, respectively. The dark blue cube represents the
investigated cube while the light blue cubes represent the children of the investigated
cube.

4.4.2.1 Numbers of updates of the upward process

An update of the upward process is needed if the following two conditions are to be fulfilled.
The first requirement is that an investigated cube or any of its children has the outgoing
fields changed. The second is that at least one cube at the same level needs the updated
outgoing fields for the computation of the incoming fields.

For cubes belonging to levels l where L− log2GS < l ≤ L, the number of upward updates
is 1. An illustration is shown in Figure 4.16 where GS = 4 and BS = 1. The iteration is
marching from sub-region (m− 1) to sub-region m. Thus, cubes belonging to sub-region
(m− 1) (strip-blue cubes) will have their outgoing fields updated at step m. The blue
cubes, which are of levels l where L − log2GS < l ≤ L, are sequentially updated once
when the iteration marches over the surface of a scatterer. The number of upward updates
of cubes of these levels is denoted by cu1 = 1.

Cubes, belonging to levels l where L − SL1 < l ≤ L − log2GS, may have to update
their outgoing fields if any of their children are in the current testing region. Figure 4.17a
demonstrates that the dark blue cube may have the outgoing fields updated from step m
to step n. Its children are shown in light blue. The first child of this cube involves in step
m while its last child participates in step n. The number of possible updates nu2a is shown
in Equation 4.32. However, when the cube is entirely inside the testing region as shown in
Figure 4.17b, updating the upward process becomes unnecessary. It is because the cube is
entirely outside the scattering region. The number of unnecessary updates nu2b is given in
Equation 4.33. Consequently, the number of updates of cubes belonging to these levels cu2
is given in Equation 4.34.

nu2a = 2L−l +GS +BS − 1
GS

(4.32)

nu2b = GS +BS − 2L−l
GS

(4.33)

cu2 = nu2a − nu2b = 2L−l+1 − 1
GS

(4.34)

An availability of levels l, where L − SL < l ≤ L − SL1, is subject to the condition of
SL 6= SL1. This means that the marching extent of the testing region is not the largest
extent. Thus, the upward update is required whenever any of its children is involved in
the testing region. Consequently, the number of upward updates is computed as follows
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(a)

(b)

Figure 4.17: Illustration of the complexity of the upward process - cu2 .
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(a)

(b)

(c)

Figure 4.18: Illustration of the complexity of the upward process - cu4 .
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cu3 = 2L−l +GS +BS − 1
GS

. (4.35)

For cubes of levels l where 2 ≤ l ≤ L − SL, the complexity can be divided into three
components. The first component is the complexity of the first phase when the testing
region is marching into the dark blue cube as shown in Figure 4.18a. When the testing
region partially belongs to two different cubes (the dark blue cube and the orange cube)
at the investigated level, it causes the upward process to be updated for both cubes.
The number of updates during the first phase nu4a is given in Equation 4.36. The second
component is the complexity of the second phase when the testing region is entirely inside
the investigated cube as shown in Figure 4.18b. In this phase, updating the upward process
of the investigated cube becomes redundant. The complexity of the third phase, when the
testing region is marching out the investigated cube, is analysed in a similar manner to
that of the first phase. The complexity of this phase nu4c is given in Equation 4.37. Finally,
the complexity of cubes belong to these levels cu4 is expressed in Equation 4.38.

nu4a = GS +BS − 1
GS

(4.36)

nu4c = GS +BS − 1
GS

+ 1 (4.37)

cu4 = nu4a + nu4c = 2GS +BS − 1
GS

+ 1 (4.38)

4.4.2.2 Numbers of updates of the downward process

There are two conditions for the performance of the update of the downward process of
a cube. The first condition is that an investigated cube or any of its children is in need
of the recomputation of the incoming fields. Secondly, at least one cube at the same level
has the outgoing fields changed, leading to a requirement of downward updating.

For cubes belonging to levels l where L− SL1 < l ≤ L, the number of downward updates
is larger than 1 due to the buffer region. Cubes inside buffer regions may require multiple
recomputations of the downward process. An average number of the downward updates
cd1 is computed as follows

cd1 = 1 + BS

GS
. (4.39)

The inequality of the largest extent and the marching extent of the testing region leads
to the appearance of levels l where L − SL < l ≤ L − SL1. The complexity of cubes of
these levels comprises three parts. The first part corresponds to a phase when the testing
region starts approaching an investigated cube. Figure 4.19a shows that the testing region
is partially inside one child (blue cube with a marker X) of the investigated cube (dark
blue cube). Therefore, the incoming fields of the investigated cube is only shifted and
anterpolated to the single cube with a marker X. It means that this computational cost
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is half of the cost to perform the full downward process of the investigated cube. The
complexity of the first phase is given in Equation 4.40. The second phase corresponds
to a situation when the testing region is partially inside both children as illustrated in
Figure 4.19b. Consequently, the incoming fields of the dark blue cube are shifted and
anterpolated to both children with markers X. The complexity of the second phase is
expressed in Equation 4.41. The third phase is illustrated in Figure 4.19c. The complexity
of this phase cd2c is derived in a similar manner to that of the first phase. cd2c is given
in Equation 4.42. As the result, the total complexity of cubes belong to these levels is
expressed by Equation 4.43.

cd2a = 1
2n

d
2a = 1

2
2L−l
2GS = 2L−l

4GS (4.40)

cd2b = nd2b = 2L−l +GS +BS − 1
GS

− 22L−l
2GS (4.41)

cd2c = cd2a = 2L−l
4GS (4.42)

cd2 = cd2a + cd2b + cd2c = 1 + 2L−l
2GS + BS − 1

GS
(4.43)

For cubes belonging to levels l where 2 ≤ l ≤ L− SL, their computational cost has three
components. The first phase is shown in Figure 4.20a. The testing region is across two
cubes (dark blue cube and orange cube) at the investigated level. The incoming fields
are computed only for the child on the left hand side of the dark blue cube. Thus, the
complexity of each update is a half of the full disaggregation of the investigated cube. The
complexity of the first phase is shown in Equation 4.44. The next phase is demonstrated
in Figure 4.20b. In this phase, the testing region is partially inside both children of the
investigated cube. The complexity of this phase is given in Equation 4.45. The derivation
of the complexity of the third phase shown in Figure 4.20c is similar to that of the first
phase. The computation of the third phase is given in Equation 4.46. nd3a, nd3b and nd3c are
the number of updates performed in the first, second and third phase, respectively. The
total complexity of cubes in these levels are expressed in Equation 4.47.

cd3a = 1
2n

d
3a = 1

2

(
GS +BS − 1

GS
+ 1

)
(4.44)

cd3b = nd3b = GS +BS − 1
GS

+ 1
2 (4.45)

cd3c = 1
2n

d
3c = 1

2
GS +BS − 1

GS
(4.46)

cd3 = cd3a + cd3b + cd3c = 2GS +BS − 1
GS

+ 1 (4.47)
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(a)

(b)

(c)

Figure 4.19: Illustration of the complexity of the downward process - cd2.
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4.5 Numerical results and validations

The number of updates required for cubes at different levels for a rectangular plate was
analysed is shown in Table 4.1. They are based on consideration of typical cubes located
in the centre of the scatterer (where the sub-region and the buffer region size is constant
- note that as we approach the ends of the scatterer, the sub-region and the buffer region
can sometimes change in order to properly fit the structure). We note also that it is only
applicable to the case of a rectangular plate. Nonetheless, the table is useful in that it
give some quantification of the complexity of the modified MLFMA.

Several principles regarding the optimisation of the performance of the modified MLFMA
can be inferred from Table 4.1. Firstly, a decrease in the computational cost can be
achieved by an increase of the sub-region size GS and a reduction of the buffer region size
BS. An increase of the sub-region size may also lead to a better convergence rate of the
BBFB. However, the size of the regions is limited by our ability to compute and store the
local sub-matrix inverses Ẑ−1

m,m. Secondly, the complexity can considerably increase for
cubes belonging to levels l where L− SL1 < l ≤ L− log2GS and L− SL < l ≤ L− SL1.
The increase is mainly due to the term 2L−l. The undesirable increase can be avoided by
a decrease of the buffer region size, and equality of SL1 and SL. However, a decrease in
a size of the buffer region can impact negatively on the convergence rate of the BBFB.
Therefore, a determination of the size of these regions should be carried out carefully. The
expressions in Table 4.1 are validated numerically in the next section.

If the sizes of the sub-regions and the buffer regions are chosen in accordance with the
above, the complexity of a single BBFB sweep is approximately (1 + BS/GS) times that
of a full MVP. As the result, our estimation of the computational cost of each BBFB
iteration is O (2 (1 + BS/GS)N logN), which is significantly smaller than the complexity
of O (2MN logN) if the standard MLFMA is applied.

4.5 Numerical results and validations

Some numerical experiments were conducted to examine the efficiency and the accuracy
of the proposed algorithm. The proposed algorithm was developed using an open-source
MLFMA code PUMA-EM [116] and an open-source linear algebra library LAPACK [117].
Firstly, the verification of the complexity estimation against some simulation results is
presented. Next, comparisons between the proposed method and several popular solvers
are shown to demonstrate its efficiency. Finally, the proposed method is applied in com-
bination with a low-rank matrix decomposition for a fast generation of RCS results. All
experiments presented in this section were carried out on a Dell-Precision Workstation
670 with a 3.0GHz Xeon CPU and 3.0GB of RAM.

4.5.1 Verification of the complexity estimation

Numbers of updates computed using formulations in Section 4.4.2 are verified by com-
parison with the numbers of updates counted in simulations. The simulations count the
number of upward and downward updates of all cubes from the finest to the coarsest level.
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(a)

(b)

(c)

Figure 4.20: Illustration of the complexity of the downward process - cd3.
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Level (l)
Number of updates

Upward process Downward process

2 ≤ l ≤ L− SL 2GS+BS−1
GS + 1 2GS+BS−1

GS + 1

L− SL < l ≤ L− SL1
2L−l+GS+BS−1

GS 1 + 2L−l
2GS + BS−1

GS

L− SL1 < l ≤ L− log2GS
2L−l+1−1

GS 1 + BS
GS

L− log2GS < l 6 L 1

Table 4.1: Numbers of updates of the upward and downward processes for a single sweep
of the BBFB using the modified MLFMA.

Level
Upward process Downward process

Formulation Middle Average Formulation Middle Average

2 3 − 1.5 3 − 2

3 3 3 2 3 3 2.33

4 3 3 2.16 3 3 2.5

5 3 3 2.55 3 3 2.73

6 3 3 2.76 3 2.34 2.26

7 2.33 2.33 2.24 1.66 1.66 1.64

8 1 1.3 1.3 1.33 1.33 1.32

9 1 1 1 1.33 1.34 1.33

Formulation: the number of updates computed using formulations in Table 4.1.
Middle: the number of updates of cubes in the middle of a plate.

Average: the average number of updates.
Table 4.2: Numbers of process updates for a rectangular PEC plate with a size of 1.5λ×

40λ using the BBFB accelerated by the modified MLFMA.
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For example, an investigated cube has n children. The number of upward or downward
updates will increase by 1/n if one of its children performs a corresponding process.

4.5.1.1 Test case 1: Complexity estimation for a rectangular PEC plate size of
1.5λ× 40λ

A rectangular PEC plate size of 1.5λ× 40λ is illuminated by a vertically polarised plane
wave at a frequency of 500MHz, where λ is the associated wavelength of an excitation.
RWG basis functions are used. for the discretisation of the surface of the scatterer. The
marching direction of the BBFB is chosen to be the largest extent of the plate. The
application of the modified MLFMA allows a partition of the entire scatterer into cubes
where leaf cubes are size of λ/4. The number of octtree levels is L = 9. Consequently,
there are 161 leaf cubes along the greatest extent of the plate. The sizes of the sub-region
and the buffer region are chosen as GS = 3 and BS = 1, respectively. The numbers
of downward and upward updates that actually occured in the simulation are shown in
Table 4.2. The number of updates estimated using the formulations in Table 4.1 are shown
in “Formulation” columns. The “Middle” columns contain an average number of updates
of cubes located in the middle of the scatterer where the estimate should be most accurate.
The overall average numbers of updates of each level are given in “Average” columns. It
can be seen that values estimated using the formulations of Table 4.1 are close to those
observed in the simulation for the middle cubes where the conditions used to make the
estimate are best met.

4.5.1.2 Test case 2: Complexity estimation for a rectangular PEC plate size of
0.5λ× 20λ

A similar experiment is performed for a rectangular PEC plate size of 0.5λ × 20λ. The
greatest extent of a scatterer is chosen to be the marching direction. The application of
the modified MLFMA to the scatterer leads to an octtree structure of 8 levels. In this
experiment, the size of the buffer region is increased to observe its effect on the performance
of the modified MLFMA. The sizes of the sub-region and the buffer region are 1 and 4,
respectively. The numbers of updates are presented in Table 4.3. Numbers computed
using formulations are similar to those counted by the simulation. The enlargement of
the buffer region leads to a significant increase in the number of updates. As a result, the
larger size of the buffer region degrades the performance of the modified MLFMA. The
comparison between the runtime of one BBFB iteration and that of one full MVP is shown
in Table 4.4. The table confirms the estimated cost of O (2 (1 + BS/GS)N logN) for each
BBFB iteration.

4.5.1.3 Test case 3: Comparsion between the standard MLFMA and the modified
MLFMA for a perfectly conducting NASA ogive with a length of 10 inches

A comparison between the performance of the standard MLFMA and that of the modified
MLFMA is presented in this experiment. The NASA ogive [1] is positioned along the x-
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Level
Upward process Downward process

Formulation Middle Average Formulation Middle Average

2 9 − 4.5 9 − 5.75

3 9 9 6 9 9 7.5

4 9 9 6.8 9 9 7.9

5 9 8 6.95 9 8 7.55

6 7 5 4.65 5 6 5.8

7 3 2 1.91 5 5 4.88

8 1 1 0.99 5 5 4.87

Formulation: the number of updates computed using formulations in Table 4.1.
Middle: the number of updates of cubes in the middle of a plate.

Average: the average number of updates.
Table 4.3: Numbers of process updates for a rectangular PEC plate with a size of 0.5λ×

20λ using the BBFB accelerated by the modified MLFMA.

Plate size titer(sec) tMVP(sec) titer/tMVP

1.5λ× 40λ 38 13 2.92

0.5λ× 20λ 14 2 7

titer: time to perform one BBFB iteration
tMVP: time to perform one full matrix-vector product using the MLFMA

Table 4.4: Comparison of runtime of a BBFB iteration and that of a full matrix-vector
product for rectangular PEC plates size of 1.5λ× 40λ and 0.5λ× 20λ.

Figure 4.21: Comparison of the runtime (divided by runtime of one full MVP) between
the standard MLFMA and the modified MLFMA for the NASA ogive.
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Number of slices Sub-region size (GS) Buffer region size (BS)
Scenario 1 24 2 1
Scenario 2 24 3 1
Scenario 3 24 4 1

Table 4.5: List of scenarios performed in test case 4.

Local problems
Scenario 1 Scenario 2 Scenario 3

Forward Backward Forward Backward Forward Backward
1 868 536 1204 868 1626 1204
2 1090 1062 1754 1570 2438 2259
3 1418 1238 2142 2016 3178 3004
4 1536 1501 2663 2499 3557 3520
5 1791 1626 2812 2796 3254 3431
6 2057 1984 2808 2873 1713 2336
7 2088 2063 2290 2509 − −

8 2202 2133 1166 1713 − −

9 2084 2140 − − − −

10 1838 1962 − − − −

11 1385 1622 − − − −

12 714 1166 − − − −

Table 4.6: Size of local problems of scenarios in test case 4.

Local problems Forward Backward
1 1520 232
2 2112 1520
3 1944 2112
4 1664 1944
5 1504 1664
6 1680 1504
7 1927 1680
8 1859 1927
9 1827 1859
10 1568 1827
11 928 1568
12 232 928

Table 4.7: Size of local problems in test case 6.
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axis and is illuminated by an incident wave which has a frequency varying from 3GHz to
20GHz. Thus, a total number of unknowns is within a range of (2, 040-106, 125). The
marching direction of the BBFB is the greatest extent of the problem. The size of the
sub-region and the buffer region is fixed with GS = 1 and BS = 1. The complexity
of the methods is measured in terms of the ratio between the average runtime of one
BBFB iteration and the runtime of one full MVP using the MLFMA (i.e. with complexity
of O (N logN) and is shown in Figure 4.21. The complexity of the proposed method is
considerably smaller than that of the BBFB with the standard MLFMA. The ratio for
the case of the modified MLFMA slowly increases with the size of the problem. This is
due to SL1 6= SL as the frequency increases. This leads to a larger complexity required
to compute processes at levels l where L− SL < l ≤ L− SL1 as shown in Table 4.1.

4.5.2 Efficiency and accuracy of the modified MLFMA applied to the BBFB

In this section, comparisons between the performance of the proposed method and that of
some popular Krylov iterations are presented. An improvement step, which is analysed in
detail in the next chapter, is performed at the end of each BBFB iteration for enhancement
of the convergence rate. Two Krylov solvers, the GMRES and the BiCGSTAB, are chosen
for comparison. They are preconditioned by the sparse approximate inverse technique.
The combined field integral equation with a coupling parameter of α = 0.3 is applied
to improve the condition number of the resultant impedance matrix. The threshold of
the improvement step of the BBFB is η = 0.6. Residual norms, which are shown in the
following test cases, are computed by

residual norm =

∥∥∥Zx(i) − v
∥∥∥

2
‖v‖2

. (4.48)

4.5.2.1 Test case 4: Comparison for a perfectly conducting NASA almond with a
length of 9.936 inches1

The NASA almond [1], placed along the x-axis as shown in Figure 4.22a, is illuminated
by a vertically polarised plane wave with an incident angle of (θ = π/2;ϕ = 2π/3) at 7GHz.
The scatterer is discretised by 12, 858 RWG basis functions. The almond is decomposed
into thin and equal slices along the marching direction which is the greatest extent of the
problem (x-axis). The total number of slices is 24. The width of each slice is equal to
a size of a leaf cube. Different scenarios of the BBFB are applied for the solution of the
problem. The different scenarios correspond to the size of the sub-region as presented
in Table 4.5. The number of basis functions within individual local problems for each
scenario is given in Table 4.6. The comparisons between the BBFB and the preconditioned
Krylov solvers are shown in Figure 4.22b and c. The number of iterations required by the
proposed algorithm is significantly fewer than that of the Krylov solvers to achieve the
same accuracy. Although the complexity of each BBFB iteration is larger than that of

1inch is used to describe the size of geometries such as NASA almond, NASA double-ogive in [1].
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the SPAI-GMRES and the SPAI-BiCGSTAB, the overall performance of the proposed
algorithm remains better than the others, due to the fact that fewer iterations are needed.

The main issue with application of the proposed method is the determination of the
sizes of the sub-region and the buffer region. It can be seen clearly that when the size
of the sub-region increases, the convergence rate of the proposed algorithm is improved.
However, the increase would lead to more complexity for the solution of local problems. In
our experience, the performance of the BBFB is acceptable for the size of the sub-region
GS = 2 when the CFIE with α = 0.3 is applied to the solution of smooth, long and
narrow structures. The size of the buffer region is kept to be small to minimise redundant
computations. In numerous experiments, the size of the buffer region BS = 1 yields a
desired accurate solution.

4.5.2.2 Test case 5: Comparison for a perfectly conducting wind turbine blade with
a length of 40 meters

The application of the BBFB to a solution of a real-life problem is presented in this
experiment. The scatterer is a PEC wind turbine blade with a length of 40 meters, placed
along the z-axis as shown in Figure 4.23a. The geometry is discretised using 52, 893 basis
functions, and is partitioned into 136 equal slices along its greatest extent. The blade
is illuminated by a vertically polarised plane wave at 200MHz with an incident angle of
(θ = π/2;ϕ = 2π/3). The BBFB marches along the z-axis. The sizes of the sub-region
and the buffer region are GS = 2 and BS = 1, respectively. The performance of the
algorithms are presented in Figure 4.23b and c. The proposed algorithm demonstrates a
good convergence rate, reaching a residual norm of 10−3 within 3 iterations. The overall
performance of the BBFB remains considerably better than that of the Krylov iterations
in terms of runtime.

4.5.2.3 Test case 6: RCS computation of a perfectly conducting NASA double-ogive
with a length of 7.5 inches

The comparison between the measurement data in [1] and the results computed by the
BBFB is presented in this experiment. A NASA double-ogive [1] is positioned along the x-
axis as shown in Figure 4.24a. The scatterer is discretised into 12, 552 RWG basis functions
and is illuminated by plane waves at 9GHz. The double-ogive is partitioned into 23 equal
slices along the marching direction which is the greatest extent of the problem. The width
of each slice is λ/4, equal to the size of leaf cubes. The size of the sub-region and the buffer
region are 2 and 1, respectively. The size of local problems is shown in Table 4.7. The RCS
results are shown in dBsm (decibel relative to one square meter) as a function of ϕ with
θ = π/2. The RCS characteristics for both horizontal (HH) and vertical (VV) polarisations
are computed using the proposed method. The simulated results are compared with the
published measurement in Figure 4.24b. The results show a good agreement with the
measured data for both polarisations at all aspect angles.
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(a)

(b)

(c)

Figure 4.22: Comparison between the BBFB and the Krylov iterations for the NASA
almond.
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(a)

(b)

(c)

Figure 4.23: Comparison between the BBFB and the Krylov iterations for the wind
turbine blade.
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(a)

(b)

Figure 4.24: Comparison between the RCS results computed using the BBFB and the
measurement data in [1].
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4.5.3 Combination with the interpolative decomposition for an efficient
computation of radar cross section

The ability to accurately and efficiently compute the radar cross section of three dimen-
sional bodies for a large number of incident angles is important for many electromagnetic
applications. The MoM discretisation of a surface integral equation representation of the
problem remains a very popular solution method especially for electrically small bodies
where one can directly compute the inverse of the associated impedance matrix and then
use it to solve for multiple excitations. An advantage of such direct solvers is that the
most burdensome computation of the inverse is performed only once. However, due to
the dense nature of the impedance matrix, storage becomes an issue as the problem size
grows and iterative solvers become more appropriate for the solution of medium and large
problems. A disadvantage of iterative solvers is that the iterative process must be re-
peated independently for every excitation vector. Several approaches have been proposed
to alleviate the drawback. One approach is to reduce the number of iterations for each
incident excitation by improving the initial guess. The initial guess can be obtained from
the previous solution with a phase correction [57] or established by reusing descent vectors
computed in previous iterative processes [118]. Another approach is to reduce the number
of right hand side vectors by application of matrix decomposition techniques such as the
singular value decomposition (SVD) [119], interpolation models [120] or asymptotic mod-
els [121]. However, the lack of an error-controllable scheme or the computational burden
of matrix decomposition techniques are disadvantages of the methods. The interpolative
decomposition (ID) [122, 123] also reduces the number of right hand side vectors and
demonstrates several desirable features. The algorithm offers an error-controllable scheme
[122]. In addition, the cost to construct matrices in ID is cheaper than in SVD [122].

4.5.3.1 Interpolative decomposition

We assume that there are Ninc distinct time harmonic sources (Figure 4.25) illuminating
a scatterer. Thus, we can rewrite Equation 3.1 as

ZX = V (4.49)

where V is a N × Ninc matrix with column vectors containing information about Ninc

excitations. X is a N × Ninc matrix with column vectors containing information about
corresponding currents. These are unknowns and must be computed. A naive solution
proceeds by solving Ninc distinct problems of the form Equation 3.1. A better way to
solve the system in Equation 4.49 is to somehow reduce the number of vectors in V, or
equivalently the number of excitations under consideration. This is achieved by application
of the ID to the excitation matrix V. The right hand side of Equation 4.49 is decomposed
into the product of a skeleton matrix and an interpolation matrix as
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Figure 4.25: Illustration of multiple excitation angles in a mono RCS computation of a
PEC problem.

Original MLFMA Modified MLFMA Speed-up

Almond 90 33 2.73

Double-ogive 135 35 3.86

Table 4.8: Runtime in seconds for each O-DDM iteration when using the modified
MLFMA and the original MLFMA for the NASA almond and the NASA double-ogive.

(a)

(b)

Figure 4.26: Partition of the NASA almond and the NASA double-ogive in the overlap-
ping domain decomposition method.
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V = V̄P (4.50)

where V̄ is a N ×K skeleton excitation matrix and P is a K ×Ninc interpolation matrix
(K � Ninc). The representation of V in Equation 4.50 allows us to rewrite Equation 4.49
as

Z
(
X̄P

)
= V̄P (4.51)

where X̄ is a corresponding N ×K skeleton current matrix. Consequently, the application
of ID reduces the original system Equation 4.49 with Ninc excitations to a reduced system
with K excitations where K � Ninc.

ZX̄ = V̄ (4.52)

X̄ can be computed by solving K problems of the form 3.1. Having computed X̄, it
is possible to reconstruct the full-solution X by performing the product of the skeleton
current matrix and the interpolation matrix.

X = X̄P (4.53)

Individual linear systems in Equation 4.52 are solved by using the O-DDM accelerated by
the modified MLFMA. In addition, the cube-based scheme proposed in [87] is applied to
facilite the performance of the modified MLFMA.

4.5.3.2 Test case 7: Comparison between the modified MLFMA and the MLFMA
applied to the O-DDM

The modified MLFMA is applied to the O-DDM for the solution of perfectly conducting
three dimensional problems. To illustrate the advantage of using the modified MLFMA
as opposed to the original MLFMA, we compare the runtime of each O-DDM iteration
for both cases in Table 4.8. The methods are applied to the NASA almond and the NASA
double-ogive which are discretised into 12, 834 and 12, 555 RWG basis functions at 7GHz
and 9GHz, respectively. The almond and the double-ogive are partitioned into 10 and
15 overlapping domains as shown in Figure 4.26, respectively. In each case, the runtime
required for the modified MLFMA O-DDM iteration is greatly reduced when compared
to that of the original MLFMA O-DDM.
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Figure 4.27: Comparison between the RCS computed using ID-ODDM and that com-
puted using the ODDM for the NASA almond.

Figure 4.28: Comparison between the RCS computed using ID-ODDM and that com-
puted using the ODDM for the NASA double-ogive.

Method Ninc K Runtime (sec)

Almond
ID-ODDM 776 63 9, 764

ODDM 776 N/A 80, 365

Double-ogive
ID-ODDM 776 59 11, 020

ODDM 776 N/A 95, 474

Table 4.9: Runtime for the computation of mono RCS using the ID-ODDM and the
ODDM with a phase correction for the NASA almond and the NASA double-ogive.

112



4.6 Conclusion

4.5.3.3 Test case 8: Efficiency of ID applied to the O-DDM

The RCS results of the problems in test case 7 are investigated to examine the efficiency
of ID applied to the O-DDM. The RCS of the almond is evaluated at 776 distinct incident
angles. For each angle in the horizontal plane, we compute the monostatic RCS using the
O-DDM with the modified MLFMA. To improve the convergence rate, the initial guess
is obtained from the previous solution with a phase correction [57]. This is plotted in
Figure 4.27 for both horizontal (red solid line) and vertical (blue solid line) polarisations.
We then used ID to solve the same problem. It was possible to compress the right hand
side matrix and instead solve K = 63 distinct skeleton excitations. These were then used
to solve for the surface currents for all 776 incident angles using the interpolative matrix
P and Equation 4.53. These were in turn used to compute the monostatic RCS, shown in
Figure 4.27 using red and blue circles. The results for a similar simulation of the NASA
double-ogive are also presented in Figure 4.28. The agreement is extremely good, with
no error being discernible. The simulation results for both geometries also match the
measured data in [1] very well. The runtime for the computation of RCS using the ID-
ODDM and the ODDM with a phase correction is given in Table 4.9. Using ID method,
the total time required to solve for the multiple right hand sides was reduced by a factor
of 8.

4.6 Conclusion

A modified MLFMA is presented in this chapter to accelerate the partial matrix vector
products required in each iteration of stationary solvers such as the buffered block for-
ward backward method and the overlapping domain decomposition method. Applying
the standard MLFMA to the performance of the partial matrix vector products results in
significant redundancy, causing the loss of efficiency of the stationary methods. A reduc-
tion of the redundancy can be achieved by using the modified method which is based on
two simple algorithms which can be used to set flags to determine what small subset of
cubes is in need of having their associated fields recomputed in the MLFMA upward or
downward processes. Numerical experiments are presented to demonstrate the efficiency
and the accuracy of the proposed method over the standard method.
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5 Modified improvement step for stationary
iterative methods

In this chapter, the modified improvement step is proposed for the improvement of the
convergence rate of stationary iterations. The proposed technique is an extension of the
optimally sized correction (or the improvement step) introduced by Mullen et al in [124].
The optimal correction is modified for the use of multiple correction vectors instead of a
single correction vector. The improvement step is briefly reviewed prior to the introduction
of the modified technique. The mathematical derivation and a complexity analysis of the
method are given in Section 5.3. Some numerical experiments are presented to illustrate
the advantages of the technique.

5.1 Introduction

Stationary iterative methods have been proven to be efficient for application to specific
problems such as scattering from randomly rough surfaces [125, 126]. However, the per-
formance of the stationary methods is greatly dependent on the spectral radius of the
associated iteration matrix as explained in chapter 3. Small values of the spectral ra-
dius lead to a good performance of the stationary solvers. Nevertheless, the operation
of the methods deteriorates when the value of the spectral radius approaches 1. This
happens to randomly rough surface scattering problems when the roughness of the surface
increases, resulting in an unsatisfactory convergence rate. An improvement step [124] can
be operated at the end of each FBM iteration when a certain criterion is met for better
convergence behaviour. However, the successive process of stationary iterations may result
in the loss of effectiveness of the previous improvement steps. In this chapter, the modified
improvement step is proposed to alleviate the loss by using multiple correction vectors.

5.2 Improvement step

The error vector of the approximate solution at the ithiteration is defined as

ε(i) = x− x(i) (5.1)

where x is the exact solution. From Equation 3.80, the relationship between consecutive
errors is given by

ε(i) = Mε(i−1) (5.2)
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Figure 5.1: Illustration of the improvement step.

Figure 5.2: Illustration of the modified improvement step.
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where M is the iteration matrix of the stationary method. Assume that the representation
of the initial error vector is given by

ε(0) =
K∑
n=1

β(0)
n en (5.3)

where K is the rank of the iteration matrix. β(0)
n are initial coefficients and en are eigen-

vectors of the iteration matrix. The error vector at iteration i can be written in terms of
the eigenvectors en and the corresponding eigenvalues λn.

ε(i) =
K∑
n=1

λinβ
(0)
n en (5.4)

It can be seen that the error vector is a linear combination of error components which are
in the direction of eigenvectors en. The magnitude of these components at the ith iteration
is given by λinβ

(0)
n . This suggests that the error components associated with small λn will

decay rapidly due to the multiplication by λn at each iteration. In contrast, the error
components related to large λn will slowly decay. After a large number of iterations, the
error vector ε(i) is dominated by error components associated with the largest eigenvalues
of the iteration matrix. We denote the set of indices of the largest eigenvalues by Ω.
Therefore, the error vector in Equation 5.4 can be approximated by

ε(i) '
∑
n∈Ω

λinβ
(0)
n en. (5.5)

The largest eigenvalue of the iteration matrix is denoted by λdom. Equation 5.5 can be
rewritten as

ε(i) ' λidomq (5.6)

where

q =
∑
n∈Ω

β(0)
n en. (5.7)

Equation 5.6 implies that ε(i) may lie essentially in the direction of vector q after a number
of iterations. In this situation, it is more beneficial to perform an error correction along
the approximate direction q instead of waiting for a slow decay of the error by a costly
performance of a sequential left-multiplication by M. Identification of this situation is
based on a similarity of successive correction vectors defined as

ζ(i−1) = x(i−1) − x(i−2) (5.8)

ζ(i) = x(i) − x(i−1). (5.9)
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The similarity is estimated by the computation of a parameter η

η =
∣∣∣ζ̂(i−1) · ζ̂(i)

∣∣∣ (5.10)

where ζ̂(i−1) and ζ̂(i) are unit vectors in the direction of ζ(i−1) and ζ(i), respectively. If η
is greater than a pre-defined threshold, it means that corrections are taking place in the
same direction and an improvement step is performed along the direction of vector ζ̂(i).
The approximate solution after the improvement step is

x(i′) = x(i) + αζ̂(i) (5.11)

where the coefficient α is chosen to minimise the residual norm along the direction of
vector χ(i) which is given by

χ(i) = Zζ̂(i). (5.12)

The improvement step is illustrated in Figure 5.1. The corresponding residual of the
approximate solution x(i′) is defined as

r(i′) = r(i) + αχ(i) (5.13)

where

r(i) = Zx(i) − v. (5.14)

The square of the residual norm after the improvement step is

∥∥∥r(i′)
∥∥∥2

= r(i′)H · r(i′)

=
(
r(i)H + αreχ(i)H − jαimχ(i)H

)
·
(
r(i) + αreχ(i) + jαimχ(i)

) (5.15)

where αre and αim are the real and the imaginary components of the coefficient α, respec-
tively. Equation 5.15 is minimised if its partial derivatives with respect to αre and αim are
forced to be zero. In other words, the residual norm is minimised along the direction of
χ(i) if

αre = −r(i)H · χ(i) + χ(i)H · r(i)

2χ(i)H · χ(i)
(5.16)

αim = −j r(i)H · χ(i) − χ(i)H · r(i)

2χ(i)H · χ(i)
. (5.17)

It should be noticed that the improvement step is performed only if η is larger than the
pre-defined parameter. However, the improvement step can be carried out several times
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during the solution of a particular problem. The improvement step considerably enhances
the convergence rate of the FBM as shown in [68].

5.3 Modified improvement step

5.3.1 Formulation

The minimisation of Equation 5.15 is similar to that applied in the method of steepest
descent. Thus, updating the current elements along the previous correction vector be-
comes unnecessary. However, the stationary methods operate without guaranteeing that
the currents along the previous correction vector will not be updated again. This may
cancel the effect of the previous improvement steps. To preserve the effectiveness of the
previous steps, the modified improvement step is proposed. The proposed method allows
a simultaneous correction along multiple correction vectors.

We assume that the modified improvement step is performed at the end of iteration i where
(n− 1) optimal corrections have previously been executed. This results in n computed
correction vectors ζ̂1, . . . , ζ̂n at the end of iteration i. We assume that the correction
vectors are in reverse chronological order where ζ̂1 is the most recent correction direction.
We define the corresponding products between the impedance matrix and the correction
vectors as

χl = Zζ̂l (5.18)

where l = 1, . . . , n. A residual which is minimised along n directions is represented as

r(i′) = r(i) + α1χ1 + α2χ2 + · · ·+ αnχn (5.19)

where α1, . . . , αn are unknown coefficients. Consequently, a square of the residual norm is
computed by

∥∥∥r(i′)
∥∥∥2

=
(

r(i)H +
n∑
l=1

(
αrel χ

H
l − jαiml χHl

))
·
(

r(i) +
n∑
l=1

(
αrel χl + jαiml χl

))
(5.20)

where αrel and αiml are the real and the imaginary components of the corresponding coeffi-
cient αl. Forcing the partial derivatives of Equation 5.20 with respect to αre1 , αim1 , . . . , αren , α

im
n

to zero leads to a series of equations as

(
r(i)H

· χ1 + χH1 · r(i)
)

+ 2αre
1 χ

H
1 · χ1 +

∑
l 6=1
αre
l

(
χH1 · χl + χHl · χ1

)
+
∑
l 6=1
jαim

l

(
χH1 · χl − χHl · χ1

)
= 0(

r(i)H

· χ2 + χH2 · r(i)
)

+ 2αre
2 χ

H
2 · χ2 +

∑
l6=2
αre
l

(
χH2 · χl + χHl · χ2

)
+
∑
l 6=2
jαim

l

(
χH2 · χl − χHl · χ2

)
= 0

...(
r(i)H

· χn + χHn · r(i)
)

+ 2αre
n χ

H
n · χn +

∑
l6=n

αre
l

(
χHn · χl + χHl · χn

)
+
∑
l 6=n

jαim
l

(
χHn · χl − χHl · χn

)
= 0

118



5.3 Modified improvement step

and

j
(

r(i)H

· χ1 − χH1 · r(i)
)

+ 2αim
1 χ

H
1 · χ1 +

∑
l 6=1
jαre

l

(
χHl · χ1 − χH1 · χl

)
+
∑
l 6=1
αim
l

(
χH1 · χl + χHl · χ1

)
= 0

j
(

r(i)H

· χ2 − χH2 · r(i)
)

+ 2αim
2 χ

H
2 · χ2 +

∑
l 6=2
jαre

l

(
χHl · χ2 − χH2 · χl

)
+
∑
l 6=2
αim
l

(
χH2 · χl + χHl · χ2

)
= 0

...

j
(

r(i)H

· χn − χHn · r(i)
)

+ 2αim
n χ

H
n · χn +

∑
l6=n

jαre
l

(
χHl · χn − χHn · χl

)
+
∑
l 6=n

αim
l

(
χHn · χl + χHl · χn

)
= 0

The above equations can be arranged into the following matrix equation



A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n

...
... . . . ...

An,1 An,2 · · · An,n





c1

c2

...

cn


=



d1

d2

...

dn


(5.21)

where

Al,m =

 χHl · χm + χHm · χl j
(
χHl · χm − χHm · χl

)
j
(
χHm · χl − χHl · χm

)
χHl · χm + χHm · χl

 (5.22)

cl =

 αrel

αiml

 (5.23)

dl =

 −
(
r(i)H · χl + χHl · r(i)

)
−j
(
r(i)H · χl − χHl · r(i)

)
 . (5.24)

The coefficients αl are the solution of the 2n × 2n matrix equation 5.21. Having these
coefficients computed, the approximate solution after the modified improvement step is
given by

x(i′) = x(i) + α1ζ̂1 + α2ζ̂2 + · · ·+ αnζ̂n. (5.25)

Equation 5.25 minimises the resultant norm along the n directions of vectors χl, resulting
in the preservation of the minimisation of the previous steps. Figure 5.2 illustrates the
modified improvement step using three correction vectors. The modified improvement
step reduces to the original method of Section 5.2 when n = 1.
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5.3.2 Computational complexity

The computational complexity of the modified improvement step is comprised of three
components. The first component is the complexity for the computation of r(i), χ1, . . . ,χn

and ζ̂1, . . . , ζ̂n. The vectors χ2, . . . ,χn and ζ̂2, . . . , ζ̂n have been computed and stored in
the previous modified improvement steps. Thus, the actual complexity of the first part is
the cost to compute r(i), χ1 and ζ̂1. This cost is equal to the complexity of the similar
process performed in the original technique, which is of one MVP as presented in [68].
The complexity of this part is of O

(
N2) which can be further reduced if acceleration

techniques are applied. Therefore

c1 = O
(
N2
)

(5.26)

The second component is the complexity to establish the matrix Equation 5.21. Matrix
elements Al,m, where 2 ≤ l,m ≤ n, have been computed and stored in the previous step.
In addition, the matrix in Equation 5.21 is symmetric. Therefore, the actual complexity
of the second part is the cost to compute A1,1, . . . ,A1,n and d1, . . . ,dn. Consequently,
the computation of this part is of order O (nN + n),

c2 = nN + n ' nN . (5.27)

The last component is the complexity for the solution of Equation 5.21, which is of O
(
n3)

if the direct matrix inversion is applied.

c3 = n3 (5.28)

The total complexity of the modified improvement step is

ctotal = c1 + c2 + c3. (5.29)

The extra-cost of the modified technique when compared to the original technique is the
sum of the second and the third components.

cextra = c2 + c3 (5.30)

In practice, the number of correction vectors required in the modified step is very small
when compared to the number of unknowns n � N . As a result, the complexity of the
modified step is approximately equal to that of the original step.

ctotal ' c1 (5.31)
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5.4 Numerical results and validations

This section demonstrates the accuracy and the efficiency of the proposed method. Two
applications of the modified improvement step are presented. The proposed technique
is applied for the solution of scattering from one dimensional randomly rough surfaces,
and the computation of scattering from two dimensional randomly rough surfaces. All
experiments were carried out on a Dell-Precision Workstation 670 with a 3.0GHz Xeon
CPU and 3.0GB of RAM.

5.4.1 Application to the solution of scattering from one dimensional
randomly rough surface

In this section, the modified improvement step is performed to enhance the convergence
rate of the FBM. The FBM has been shown to be more efficient than non-stationary iter-
ations when applied to randomly rough surface problems because of its rapid convergence
rate [68]. The spectral acceleration (SA) [126] is applied for the acceleration of the MVPs
performed in each FBM iteration. We denote the applied technique by IFBM-SA(n) where
n is a number of correction vectors used in the modified improvement step. If more than n
correction steps have been performed before the current iteration, only the n most recent
correction vectors are retained for the next improvement step.

5.4.1.1 Efficiency and accuracy of the IFBM-SA(n)

The efficiency and the accuracy of the proposed method is demonstrated by two test
cases. The first test case presents that the rate of convergence improves with the number
of correction vectors used while the second test case compares the performance of the
IFBM-SA(n) against a reference method [125]. The configuration for the simulations
relating to Figure 5.3a is as follows. The relative permittivity of the lower medium is
of εr = 14.15 + j5.21. An incident angle of 50o and a tapering parameter of g = L/4

were used to remove edge effects where L is the length of the rough surfaces. Tapering
parameters are further discussed in [127]. 128 basis functions per wavelength were used
for the discretisation of the surface.

Performance of the modified improvement step with an increase in the number of
correction vectors

The simulated exponential correlation surface has the root mean square height of hrms =
0.88λ, correlation length of lc = 2.8λ and length of L = 300λ. λ is the wavelength of a
horizontally polarised incident wave of 10GHz. The total number of unknowns is 76, 800.
The IFBM-SA(n) is applied for the solution of the problem. The number of correction
vectors is varied from 1 to 20 to observe the behaviour of the modified improvement
step. IFBM-SA(1) corresponds to the original method of Section 5.2. A realisation of the
simulated rough surface and the computed scattering coefficients are shown in Figure 5.3a
and b, respectively.
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5.4 Numerical results and validations

(a)

(b)

Figure 5.4: Comparison of the performance of the modified improvement step using
different numbers of correction vectors.
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5.4 Numerical results and validations

The comparison between the performance of different values of the number of correction
vectors is shown in Figure 5.4. Figure 5.4a shows that as the number of correction vectors
increases, the number of required iterations to achieve the desired residual norm of 10−4

decreases. Thus, the convergence rate of the FBM increases with the number of correction
vectors used. The improvement in terms of the number of iterations and runtime is shown
in Figure 5.4a and b, respectively.

Comparison between the modified technique and the reference method

The performance of the modified technique is compared to the original technique and the
one in [125] which shall be termed the reference method to exhibit the efficiency of the
proposed method. The reference method is based on stationary iterative methods with
inner iterations solved by using the GMRES. Both SA and FFT are applied to expedite
the reference method. Very rough exponential and Gaussian correlation surfaces with a
root mean square height of 2.0λ and a length of 150λ are considered. The ratio of the
root mean square height and the correlation length of the surface is varied from 0.2 to 0.6
to examine the robustness of the new technique. Two types of polarisations, horizontal
and vertical, are considered. The total number of unknowns is 38, 400. The tolerance of
the iterative solvers is set to 10−4. The results for exponential surfaces are presented in
Table 5.1 and Table 5.2 for horizontal and vertical polarisation, respectively. Similarly, the
results for Gaussian surfaces are shown in Table 5.3 and Table 5.4. The number outside
the parenthesis denotes the runtime in seconds while the number inside the parenthesis
denotes the number of iterations required to achieve the desired residual norm.

For exponential cases, the proposed method outperforms the reference method and the
original IFBM-SA. The reference method diverges for all cases due to the extreme rough-
ness of the surface. The IFBM-SA(1), the original method, mostly diverges. If not, it
requires a large number of iterations to achieve the accuracy of 10−4. The proposed
method converges for all cases and can save up to 75% of the runtime when compared to
the original method.

For Gaussian cases, the performance of the reference method and the original IFBM-SA
is improved due to the difference in the roughness of exponential surfaces and Gaussian
surfaces. However, the performance of the proposed method remains better than the
reference method. In Table 5.3 and Table 5.4, an increase in the number of correction
vectors barely results in a better performance of the proposed method because very few
iterations are required to solve the problems, leading to negligible effect of the modified
improvement step. However, the effect of the proposed method improves with the ratio
hrms/lc. It can be seen clearly that the efficiency of the proposed method increases with the
roughness of the surface, which results in an increase of the number of iterations required
to solve the problems when the original IFBM-SA is applied.
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5.4 Numerical results and validations

hrms/lc 0.2 0.3 0.45 0.6

Reference method diverge diverge diverge diverge

IFBM-SA(1) stagnate stagnate stagnate stagnate

IFBM-SA(10) 1, 842 (35) 1, 881 (35) 1, 613 (28) 2, 429 (44)

IFBM-SA(20) 1, 118 (21) 1, 279 (23) 1, 413 (25) 2, 107 (38)

IFBM-SA(30) 1, 120 (21) 1, 250 (23) 1, 391 (25) 1, 511 (27)

Table 5.1: Runtime (outside parenthesis) in seconds and number of iterations (inside
parenthesis) required to achieve a residual norm of 10−4. Exponential surface. Horizon-
tal polarisation.

hrms/lc 0.2 0.3 0.45 0.6

Reference method diverge diverge diverge diverge

IFBM-SA(1) 2, 217 (42) 4, 112 (77) stagnate stagnate

IFBM-SA(10) 844 (15) 1, 044 (17) 1, 031 (17) 1, 129 (19)

IFBM-SA(20) 843 (15) 990 (16) 1, 036 (17) 1, 080 (18)

Table 5.2: Runtime (outside parenthesis) in seconds and number of iterations (inside
parenthesis) required to achieve a residual norm of 10−4. Exponential surface. Vertical
polarisation.

hrms/lc 0.2 0.3 0.45 0.6

Reference method 987 (13) 1, 452 (17) 2, 616 (28) diverge

IFBM-SA(1) 270 (6) 334 (7) 433 (9) 626 (13)

IFBM-SA(10) 271 (6) 330 (7) 391 (8) 448 (9)

Table 5.3: Runtime (outside parenthesis) in seconds and number of iterations (inside
parenthesis) required to achieve a residual norm of 10−4. Gaussian surface. Horizontal
polarisation.

hrms/lc 0.2 0.3 0.45 0.6

Reference method stagnate 951 (17) 1, 361 (22) 2, 085 (33)

IFBM-SA(1) 267 (6) 373 (8) 389 (8) 454 (9)

IFBM-SA(10) 266 (6) 331 (7) 345 (7) 364 (7)

Table 5.4: Runtime (outside parenthesis) in seconds and number of iterations (inside
parenthesis) required to achieve a residual norm of 10−4. Gaussian surface. Vertical
polarisation.
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5.4.1.2 Validation against measurement

To validate the proposed method, we compare the brightness temperature computed by
the proposed method against the measured brightness temperature of actual soil surfaces.
Brightness temperature is used to sense land surface soil moisture or to retrieve estimates
of the surface wind speed, rain rate, etc [128]. More details about brightness temperature
can be found in [129]. The exponential smooth surface with the root mean square height
of hrms = 0.88cm and the relative permittivity of εr = 19.2 + j2.41 [130] corresponding
to a soil moisture of 0.35cm3/cm3 is investigated. Because the correlation length of the
surface is not provided in measurement setup information [131], the correlation length is
assumed to be 8.4cm corresponding to the measurement in [132, 133]. The experiments
were performed at the wavelength of 21.4cm over a range of incident angles from 20o to
50o. Detail about the experiments are given in [131].

Polarisation
Incident Brightness temperature (K)

angle Simulation Measurement Difference % difference

Vertical 20o 159.96 167.56 7.6 4.53%

Vertical 35o 148.41 153.29 4.88 3.18%

Vertical 50o 127.68 135.73 8.05 5.93%

Horizontal 20o 191.97 181.46 10.51 5.79%

Horizontal 35o 205.62 196.83 8.79 4.47%

Horizontal 50o 230.19 223.81 6.38 2.85%

Table 5.5: Comparison of the brightness temperature between simulation and measure-
ment. hrms = 0.88cm. εr = 19.2 + j2.41

The comparison between the simulation results and the measurement data is presented
in Table 5.5. It can be seen that there is a good agreement between the results gener-
ated by simulation and the measurement for different incident angles and polarisations.
The difference between the measurement and the simulation is within 10K, guaranteeing
adequate accuracy [129].

5.4.2 Application to the solution of scattering from two dimensional
randomly rough surface

The convergence rate of the BFBM is enhanced by the application of the modified im-
provement step. The BFBM [129], which is expedited by using the spectral acceleration,
is applied to the solution of scattering from two dimensional randomly rough surface. We
denote the applied technique by IBFBM-SA(n) where n is a number of correction vec-
tors used in the modified improvement step. The random rough surfaces are defined as
follows. The lower medium is assumed to be wet soil with the relative permittivity of
εr = 15.57 + j3.71 [134] at 1.5GHz. An incident angle of 40o and a tapering parameter of
g = L/3 were applied to eliminate edge effects where L is the length of the surface along
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both x and y directions as shown in Figure 5.5. Two types of random rough surfaces, the
Gaussian and exponential surfaces illuminated by the horizontal polarised incidence, are
investigated. The surface area is 4λ×4λ and 32 basis functions per wavelength were used,
resulting in totally 16, 384 pulse basis functions or equivalent to 98, 304 unknowns. The
width of each slice in the BFBM-SA is λ/8, resulting in total to 32 groups. The correlation
length is fixed with the value lc = 0.3λ while the root mean square height is varied from
0.2λ to 0.27λ to examined the robustness of the new technique. The tolerance of the
iterative solver is set to 10−4. The results are presented in Table 5.6 and Table 5.7 for
the Gaussian and exponential surfaces, respectively. The number outside the parenthesis
denotes the number of iterations required to achieve the desired residual norm. It can be
seen clearly that the proposed method outperforms the standard IBFBM-SA. The num-
ber of iterations and the required runtime increase with the roughness of the surface. In
addition, the convergence rate of the proposed method is improved with an increase in a
number of correction vectors.

5.5 Conclusion

A novel technique is proposed for the solution of random rough surface scattering. The
convergence rate of the IFBM-SA and the IBFBM-SA is enhanced by the application of
the modified improvement step without significant extra complexity. Numerical results
are presented to illustrate the advantages of the proposed algorithm and to validate the
simulation results against measurement data.
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Figure 5.5: Two dimensional dielectric random rough surface profile.

hrms 0.2λ 0.25λ 0.27λ

IFBM-SA(1) 50, 680 (16) 65, 094 (20) 72, 214 (22)

IFBM-SA(5) 38, 263 (12) 49, 628 (15) 55, 434 (17)

IFBM-SA(10) 35, 039 (11) 46, 326 (14) 52, 169 (16)

Table 5.6: Runtime (outside parenthesis) in seconds and number of iterations (inside
parenthesis) required to achieve a residual norm of 10−4. Gaussian surface. Horizontal
polarisation.

hrms 0.2λ 0.25λ 0.27λ

IFBM-SA(1) 61, 342 (19) 89, 714 (28) 176, 252 (55)

IFBM-SA(5) 47, 507 (15) 76, 375 (24) 121, 360 (37)

IFBM-SA(10) 47, 463 (15) 73, 480 (23) 117, 161 (37)

Table 5.7: Runtime (outside parenthesis) in seconds and number of iterations (inside
parenthesis) required to achieve a residual norm of 10−4. Exponential surface. Horizon-
tal polarisation.
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6 Integral equation approaches for indoor
wave propagation

Two integral equation formulations for the analysis of two dimensional indoor EM wave
propagation are investigated in this chapter. The volume and the surface electric field
integral equations are discretised by the MoM, resulting in dense linear systems whose
iterative solutions are accelerated by using acceleration techniques. The purpose of the
investigation is to identify which formulation is more efficient with a view to future work
analysing three dimensional indoor EM wave propagation. Numerical results are presented
to compare the performance of the two approaches when applied to the same indoor
propagation problem.

6.1 Introduction

Reliable and accurate electromagnetic wave propagation models are highly desirable for
radio channel modelling and wireless system development. The unique characteristics of
the indoor environment, such as the variety of materials and the geometrical complexity of
structures, pose troublesome challenges in the development of indoor propagation models.
New generations of mobile communication systems have introduced the use of low-powered
radio access nodes operating in femto/pico-cells positioned inside buildings. These cells
are vital to the improvement of service coverage and network capacity within the cellular-
based system. Thus, there is a growing demand for accurate propagation models, served
as design tools in base-station location optimisation, to estimate signal strength at various
location within a cell. It is noted that signal strength monitoring is only a part of cell
planning and optimisation. These models aim to include as much of the physics of the
environment as possible but yield a solution within a reasonable runtime.

Empirical models, for example the Motley-Keenan model [70] and the COST 231 multi-
wall model [135], are popular techniques to predict indoor wave propagation because of
their speed and simplicity. However, the lack of accuracy and reliability are the main
drawbacks of these models. Significant research efforts have focused on ray-tracing based
models which originate from the approximation of Maxwell’s equations at high frequencies.
The GTD [9, 10] and the UTD [11, 12, 13] are applied in [136, 137] to include the diffraction
phenomenon, leading to an enhanced accuracy of ray-tracing models. Nevertheless, the
increase in geometrical complexity may cause significant additional computations when
applying the asymptotic diffraction models, which further degrades the performance of
these methods.
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6.2 Volume integral equation accelerated by the fast Fourier transform

To the best of the author’s knowledge, there are only a few attempts to develop full-
wave models based on for example the FDTD or the MoM [58, 138, 139, 140]. In this
chapter, the application of the MoM to the volume and the surface electric field integral
equations for solving the indoor wave propagation problem is discussed. The dense linear
systems resulting from the discretised integral equations are solved by using a Krylov-
based iterative solver, the BiCGSTAB [39], instead of using the BBFB or the BFBM as
in chapter 4 and chapter 5 because the application of the BBFB and the BFBM is only
suitable for quasi-smooth, long and narrow problems which are unlikely to happen in
indoor enviroment. The FFT and the fast far field approximation (FAFFA) are applied to
accelerate MVPs performed within each iteration for the volume and the surface integral
equations, respectively. Because the aim of the study is to investigate the efficiency of the
integral equation formulations, the FFT and FAFFA are chosen for their implementation
simplicity.

6.2 Volume integral equation accelerated by the fast Fourier
transform

In this section, the analysis of two dimensional wave propagation problems is based on
the discretisation of the volume integral equation.

6.2.1 Volume electric field integral equation for two dimensional TMz

polarisation problem

The volume electric field integral equation can be applied to the analysis of a two dimen-
sional inhomogeneous dielectric cylinder. In the case of two dimensional TMz polarisation
problems, we assume that a scatterer is illuminated by an incident TMz wave which has
three components including Ei

z, H i
x and H i

y. Therefore, the representation of the scattered
field in Equation 2.55 is rewritten as

Es
z (r) = −jωAz (r) (6.1)

where

Az (r) = µ0

ˆ
Jz
(
r′
) 1

4jH
(2)
0
(
k0
∣∣r− r′

∣∣) ds′. (6.2)

ε0, µ0 and k0 denote the permittivity, the permeability and the wavenumber of the back-
ground medium (free-space in this case), respectively. Jz is the z-component of the volume
current and H(2)

n denotes the nth order Hankel function of the second kind. In addition,
the relationship between the volume current and the total electric field in Equation 2.53
is transformed into

Jz (r) = jωε0 (εr (r)− 1)Ez (r) . (6.3)
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Substituting Equation 6.3 into Equation 6.1 results in

Ei
z (r) = Jz (r)

jωε0 (εr (r)− 1) + jωAz (r) . (6.4)

Note that Equation 6.4 only holds for points inside the scatterers where the relative per-
mittivity εr (r) 6= 1 (blue region in Figure 6.1a). We can alternatively derive an integral
equation which represents the incident field in terms of Ez (r) as follows

Ei
z (r) = Ez (r) + j

4

ˆ
χ
(
r′
)
Ez
(
r′
)
H

(2)
0
(
k0
∣∣r− r′

∣∣) ds′ (6.5)

where

χ (r) = k2 (r)− k2
0 (6.6)

k2 (r) = ω2µ0ε0εr (r) ; k2
0 = ω2µ0ε0 (6.7)

χ (r), which expresses the difference between the wavenumber at point r and the wavenum-
ber of the background, is called the contrast value. Equation 6.5 holds for every point
within an investigated space (both blue and white regions in Figure 6.1b). The MoM is
applied to discretise Equation 6.5 using N = Nx × Ny pulse basis functions defined on
a uniform grid as shown in Figure 6.1b where Nx and Ny are numbers of discretisation
points in the horizontal and vertical directions of the scenario, respectively. This results
in a linear system

Zx = v (6.8)

where Z is a N × N impedance matrix, v is a N × 1 vector containing incident field
information and x is a N × 1 vector containing the unknown total electric fields. The
impedance matrix Z can be expressed in the following form

Z = I + GD (6.9)

where I is aN×N identity matrix and D is aN×N diagonal matrix containing information
about the contrast values of the basis functions

D =



χ1 0 · · · 0

0 χ2 · · · 0
...

... . . . ...

0 0 · · · χN


(6.10)

G is a N ×N Green’s function matrix
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6.2 Volume integral equation accelerated by the fast Fourier transform

G =



g1,1 g1,2 · · · g1,N

g2,1 g2,2 · · · g2,N

...
... . . . ...

gN,1 gN,2 · · · gN,N


(6.11)

where

gm,n = j
4

(
2πa
k0
H

(2)
1 (k0a)− j4

k2
0

)
; for m = n

gm,n = j
4

2πa
k0
J1 (k0a)H(2)

0 (k0 |rm − rn|) ; for m 6= n

(6.12)

J1 is the Bessel function of the first order and a is the radius of the equivalent circle defined
in [20]. Because the entire investigated space is discretised into pulse basis functions
located on a uniformly spaced grid as shown in Figure 6.1b, G can be expressed in form
of a block Toeplitz matrix as follows

G =



Ḡ1,1 Ḡ1,2 Ḡ1,3 · · · Ḡ1,Ny

Ḡ1,2 Ḡ1,1 Ḡ1,2 · · · Ḡ1,Ny−1

Ḡ1,3 Ḡ1,2 Ḡ1,1 · · · Ḡ1,Ny−2

...
...

... . . . ...

Ḡ1,Ny Ḡ1,Ny−1 Ḡ1,Ny−2 · · · Ḡ1,1


(6.13)

where Ḡm,n are Toeplitz matrices with a size of Nx ×Nx. This allows the use of the FFT
in the subsequent solution.

6.2.2 Fast Fourier transform applied to the discretised volume integral
equation

Krylov-based iterative solvers can be applied for the solution of Equation 6.8. The ap-
proximation of the solution requires the performance of the MVPs at the cost of O

(
N2).

However, the particular form of Z allows an efficient computation of the MVPs. By
substituting Equation 6.9 into 6.8, the MVP in Equation 6.8 is rewritten as

Zx(i) = x(i) + Gx̄(i) (6.14)

where x(i) denotes the approximate solution at iteration i and x̄(i) is defined as

x̄(i) = Dx(i). (6.15)
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(a) Discretisation of the volumetric scatterers.

(b) Discretisation of the entire volumetric space.

Figure 6.1: Discretisation of the volume integral equation using pulse basis functions.

Figure 6.2: Illustration of the MVP in Equation 6.15.
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Consequently, the cost to compute the product of Zx(i) is comprised of two components:
the cost c1 to perform the MVP in Equation 6.15 and the cost c2 to perform the MVP
in the right hand side of Equation 6.14. Because D is a diagonal matrix, the MVP in
Equation 6.15 can be computed efficiently with the cost c1 of O (N). The Toeplitz form of
G suggests the application of the FFT to the computation of the MVP in Equation 6.14
with the cost c2 of O (N logN). Thus, the total complexity to compute Equation 6.14 is
proportional to O (N logN). As the result, the FFT reduces the computational cost to
perform the MVP in Equation 6.8 from O

(
N2) to O (N logN).

The application of the MoM to Equation 6.4 requires only the discretisation of the scatter-
ers as compared to Equation 6.5 which needs the discretisation of the entire investigated
space as shown in Figure 6.1. Thus, the number of unknowns in the latter is larger than
that in the former. However, the latter form of the VEFIE allows the use of the FFT to
accelerate the performance of the MVP required in each Krylov iteration.

6.2.3 Reduced operator for the enhancement of convergence rate

Recasting Equation 6.4 into 6.5 permits the use of the FFT but significantly increases
the number of unknowns because the entire environment is discretised instead of only the
local scatterers. This may worsen the convergence rate of the iterative methods. However,
we can distinguish between unknowns located in free-space, the values of which do not
affect the values of unknowns elsewhere, and unknowns located in the scatterers which are
more important and do influence the field elsewhere. It becomes more efficient to focus
the iterative solver on correcting the latter unknowns and leaving the computation of the
former to a post-processing step.

To see this more clearly, we denote l and m as the indices of basis functions which are
located in free-space and inside the scatterers, respectively. The MVP in Equation 6.15
is illustrated in Figure 6.2. Because all elements of the diagonal matrix D will be zero
except for elements dm,m, the product in Equation 6.15 will generate the same vector x̄(i)

regardless of the values of x(i)
l (orange elements of x(i)). When we keep the values of

the scatterer unknowns x(i)
m (blue elements of x(i)) and vary the values of the free-space

unknowns x(i)
l (orange elements of x(i)), the values of the resultant elements correspond-

ing to the scatterer unknowns x̄(i)
m (green elements of x̄(i)) are unchanged while those

corresponding to the free-space unknowns x̄(i)
l (yellow elements of x̄(i)) are always zero.

Consequently, elements corresponding to the scatterer unknowns of the resultant vector
v(i) = Zx(i) remain the same regardless of the value of x(i)

l . In other words, the free-space
unknowns are merely present to enforce a regular grid and facilitate the use of the FFT.
After each MVP, it is beneficial to extract only significant elements of v(i) and to concen-
trate the solver on correcting the corresponding unknowns. This technique, the reduced
operator, is presented in detail in [141]. The application of the reduced operator leads to
the improvement of the convergence rate of the Krylov solver, and counteracts the possible
loss of efficiency introduced by the discretisation of the entire investigated space.
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6.3 Surface integral equation accelerated by the fast far field approximation

6.3 Surface integral equation accelerated by the fast far field
approximation

In this section, we develop an alternative formulation for the analysis of two dimensional
wave propagation problems. The alternative approach is based on the discretisation of the
surface integral equation.

6.3.1 Surface electric field integral equation for two dimensional TMz

polarisation problem

The surface integral equation is mainly applied for homogeneous problems where it can
take advantage of the boundary conditions to reduce the number of unknowns as compared
to the volume integral equation. Assume that a homogeneous cylinder is illuminated by a
TMz polarised incidence. The coupled EFIE in Equation 2.87 can be written as follows

Ei
z (r) = Mt (r) + jωA

(1)
z (r) + 1

ε1

{
∂F

(1)
y

∂x −
∂F

(1)
x
∂y

}
S+

0 = −Mt (r) + jωA
(2)
z (r) + 1

ε2

{
∂F

(2)
y

∂x −
∂F

(2)
x
∂y

}
S−

(6.16)

where

A(α)
z (r) = µα

ˆ
Jz
(
r′
) 1

4jH
(2)
0
(
kα
∣∣r− r′

∣∣) dl′ (6.17)

F̄
(α)
t (r) = εα

ˆ
t̂
(
r′
)
Mt

(
r′
) 1

4jH
(2)
0
(
kα
∣∣r− r′

∣∣) dl′. (6.18)

t̂ denotes a unit vector tangent to the contour of the cylinder as shown in Figure 6.3. k1 and
k2 represent the wavenumbers of the exterior region and the interior region, respectively.
(µ1, ε1) and (µ2, ε2) denote the permeability and the permittivity of the exterior medium
and the interior medium, respectively. The expressions in brackets in Equation 6.16 depend
on the side of the surface where the observer is located. We assume that pulse basis
functions are used for the discretisation of the scatterer contour. The application of the
MoM to Equation 6.16 yields a 2N × 2N linear system

 Za Zb

Zc Zd


 j

m

 =

 ei

0

 (6.19)

where N is the number of pulse basis functions used to discretise the boundary of the
scatterer. It is assumed that the nth segment is defined on a domain of length 4n with a
centre rn and a normal vector n̂n. j and m are N×1 vectors containing information about
the electric current Jz and the magnetic currentMt on the surface of the scatterer, respec-
tively. ei denotes a N × 1 vector containing information about incident fields impinging
on the basis functions. Matrix entries are given by
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6.3 Surface integral equation accelerated by the fast far field approximation

Figure 6.3: Illustration of a homogeneous cylinder illuminated by a TMz incidence.

(a)

(b)

Figure 6.4: Illustration of the FAFFA.
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z(a)
m,n =


k1η1

4 H
(2)
0 (k1rmn)4n m 6= n

k1η1
4 4m

{
1− j 2

π

[
ln
(
γk14m

4 − 1
)]}

m = n

(6.20)

z(b)
m,n =


−k1

4j n̂n · r̂nmH
(2)
1 (k1rmn)4n m 6= n

1
2 m = n

(6.21)

z(c)
m,n =


k2η2

4 H
(2)
0 (k2rmn)4n m 6= n

k2η2
4 4m

{
1− j 2

π

[
ln
(
γk24m

4 − 1
)]}

m = n

(6.22)

z(d)
m,n =


−k2

4j n̂n · r̂nmH
(2)
1 (k2rmn)4n m 6= n

−1
2 m = n

(6.23)

where ηi denotes the surface impedance of the corresponding medium and γ = 1.781. r̂nm
and rmn are unit vectors and the length of rnm which is defined as follows

rnm = rn − rm. (6.24)

6.3.2 Fast far field approximation applied to the surface integral equation

The FAFFA [50, 51, 82] can be applied to efficiently evaluate the MVP requested to solve
Equation 6.19. A coarse grid is superimposed over the scatterer boundary, resulting in the
collection of fine segments into large groups with associated centres. Considering a basis
function m located in group Gl with a centre rl, contributions from other basis functions
onto the basis function m can be divided into two parts: the near-zone contributions from
groups close to Gl denoted by NFl, and the far-zone contributions from the other groups
denoted by FFl. The near-zone contributions are computed exactly while the far-zone
contributions are approximated using the FAFFA. The idea of the FAFFA is based on the
far-field form of the Hankel function:

H(2)
α (x) '

√
2
πx
e−j(x−α

π
2−

π
4 ) (6.25)

For rmn � rlm, we can write

rmn ' rln − r̂ln · rlm

' rln − r̂ll′ · rlm
(6.26)

where rl and rl′ are the centres of group Gl and Gl′ as shown in Figure 6.4a, respectively.
Inserting Equation 6.26 into 6.19 and applying the far-field form of the Hankel function
allow us to write

137



6.4 Numerical results and validations

Z̄m,n =

 z
(a)
m,n z

(b)
m,n

z
(c)
m,n z

(d)
m,n


'

 ejψ1 0

0 ejψ2


 z

(a)
l,n z

(b)
l,n

z
(c)
l,n z

(d)
l,n


≡ S̄Z̄l,n

(6.27)

where the phase shifting functions are given by

ψα = kαr̂ll′ · rlm. (6.28)

Therefore, the far-zone contributions onto the segment m can be expressed as

∑
Gl′∈FFl

∑
n∈Gl′

Z̄m,nx̄n '
∑

Gl′∈FFl

S̄
∑
n∈Gl′

Z̄l,nx̄n (6.29)

where x̄n is a vector containing information about the electric and magnetic currents of
segment n

x̄n =

 jn

mn

 (6.30)

The important point to note is that the final sum in Equation 6.29 needs only to be
computed once per pair of groups. The shifting matrix S̄ allows an efficient shift of the
fields computed at the centre of group Gl to all the points in the group as illustrated in
Figure 6.4b. The application of the FAFFA reduces the complexity to perform a MVP
from O

(
N2) to O (N1.5). The efficiency of the FAFFA can be further improved without

losing the overall accuracy of the method by the enlargement of the groups when the
distance between the source and the test segments increases.

6.4 Numerical results and validations

In this section, numerical results are presented to compare the performance of two integral
equation approaches applied to the solution of two dimensional indoor propagation prob-
lems. Experiments presented in this section were performed on a laptop with a 2.27GHz
core i5 CPU and 4.0GB of RAM.

6.4.1 Efficiency of the reduced operator

To investigate the advantage of the reduced operator (described in Section 6.2.3), a two
dimensional indoor problem with a size of 10m× 10m is examined as shown in Figure 6.5.
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A line source radiating at 1GHz is positioned at (3, 2) inside the building. There are
two types of material in the scenario concrete and glass with relative permittivities of
εconcreter = 3.5 − j0.6 and εglassr = 7.0 − j0.05, respectively. The values of the relative
permittivities are referenced from [138].A discretisation of 10 samples per wavelength was
used in order to adequately describe the problem and resulted in 640, 000 unknowns for
the VEFIE. However, only 89, 568 unknowns are located in non free-space regions. The
BiCGSTAB is applied for the solution of the problem, is accelerated by the FFT. We
compare the performance of the Krylov method with and without the aid of the reduced
operator. The results are shown in Figure 6.6 . The convergence rate of the BiCGSTAB
is considerably improved by the use of the reduced operator.

6.4.2 Efficiency of the adaptive FAFFA

The same problem as in Section 6.4.1 is solved by using the surface electric field integral
equation. The surface of the scatterers is sampled with a rate of 10 pulse basis functions per
wavelength. This leads to a total number of 6, 341 basis functions and 12, 682 unknowns.
The average length of each pulse basis function domain is 0.015m. Basis functions are
assembled into leaf groups with a size of 0.2m. Groups which are within a range of
3m are considered the near-zone groups while the others are the far-zone groups. The
BiCGSTAB which is accelerated by the FAFFA is used to solve the linear matrix system.
The BiCGSTAB can be further accelerated by the enlargement of groups when the distance
between the source and the testing groups increases. This method is denoted by the
adaptive FAFFA. The size of groups is doubled everytime the distance increases by a
factor of 2. The comparison between the performance of the FAFFA and the adaptive
FAFFA is demonstrated in Figure 6.7. The total fields computed using the BiCGSTAB
accelerated by the adaptive FAFFA are shown in Figure 6.8.

6.4.3 Comparison between the VEFIE and the SEFIE

The VEFIE and the SEFIE approaches are used for the solution of two dimensional indoor
wave propagation. The volume and the surface integral equations are solved using the
BiCGSTAB accelerated by the FFT and the adaptive FAFFA, respectively. In addition,
the block diagonal preconditioning technique is implemented to enhance the convergence
rate of the Krylov method. The indoor environment problem in Figure 6.9 has a size of
15m × 15m. A line source radiating at 1GHz is placed at (0, 0). Three types of material
in the scenario are concrete, glass and wood with relative permittivities, referenced from
[138], of 3.5−j0.6, 7.0−j0.05 and 1.8−j0.045, respectively. The total numbers of unknowns
are 1, 440, 000 and 40, 952 for the VEFIE and the SEFIE, respectively. Note that in the
VEFIE approach only 141, 472 of the 1, 440, 000 unknowns corresponded to real scatterers.
The total fields throughout the room computed using the two approaches are compared
in Figure 6.10. The total fields along lines y = −1.2437m and x = −1.2437m are shown
in Figure 6.11 and Figure 6.12, respectively. The lines are shown in blue and red dashed
line in Figure 6.9, respectively. In Figure 6.11, the total fields in both approaches drop
significantly around x = −3 where the line passes out of sight. Similarly, the drops can be
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observed around y = 3 and y = −2 in Figure 6.12. It can be seen clearly that there is a good
agreement between results computed by the two approaches with the standard deviation of
2.03dB. The computation of the standard deviation is based on the dB values of the total
fields evaluated at 1, 440, 000 points uniformly spaced throughout the scenario. Although
the VEFIE has considerably more unknowns than the SEFIE, the overall performance of
the VEFIE is far better than that of the SEFIE in terms of both iterations and runtime
as shown in Table 6.1. The better convergence rate of the VEFIE as compared to the
SEFIE may be due to the more efficient application of the block diagonal preconditioner
when applied to the VEFIE. The block diagonal preconditioning technique enhances the
convergence rate of iterative solvers using an assumption that interaction between basis
functions only depends on the distance between them. The assumption is fulfilled in the
VEFIE case as shown in Equation 6.12 where the mutual interaction is only dependent
on the argument of the Green’s function. The assumption is only partially fulfilled in
the SEFIE case where the mutual interaction depends on both the distance between basis
functions and their orientation as shown in Equation 6.21 and Equation 6.23. Therefore,
two far-away basis functions may have great interaction or two close basis functions may
have negligible effect on each other. This leads to the poorer performance of the block
diagonal preconditioner when applied to the SEFIE.

VEFIE-FFT SEFIE-FAFFA

residual norm 10−3 0.02

iterations 61 445

runtime (sec) 242.6 38, 224

Table 6.1: Comparison of the two approaches for the scenario in Figure 6.9.

6.5 Conclusion

Two approaches, based on the SEFIE and the VEFIE, are applied to model the charac-
teristics of 2D indoor wave propagation and the two techniques have been shown to yield
similar results. However, the convergence rate of the VEFIE is considerably better than
that of the SEFIE in terms of runtime. Possible future work can concentrate on the wide-
band analysis of 2D indoor wave propagation based on some wideband techniques such as
the asymptotic waveform evaluation (AWE) [74].
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Figure 6.5: Two dimensional indoor environment with a size of 10m× 10m.

Figure 6.6: Comparison between the BiCGSTAB with and without the reduced operator
for scenario in Figure 6.5.
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Figure 6.7: Comparison between the BiCGSTAB with the FAFFA and with the adaptive
FAFFA for scenario in Figure 6.5.

Figure 6.8: Total field throughout the room computed using the SEFIE.
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Figure 6.9: Two dimensional indoor environment with a size of 15m× 15m.

Figure 6.10: Total fields throughout the room using the VEFIE and the SEFIE ap-
proaches.
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6.5 Conclusion

Figure 6.11: Total fields along the line y = −1.2437m in the scenario shown in Figure
Figure 6.9.

Figure 6.12: Total fields along the line x = −1.2437m in the scenario shown in Figure
Figure 6.9.
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7 Wideband solution for three dimensional
forward scattering problems

In this chapter, a novel approach for wideband solution of three dimensional scattering
problems is presented. The asymptotic waveform evaluation (AWE) is combined with
the fast Fourier transform (FFT) for an efficient computation of scattered fields from
three dimensional arbitrarily shaped dielectric objects over a wide range of frequencies.
Numerical results are presented to demonstrate the accuracy and computational efficiency
of the technique in comparison with analytical and conventional numerical methods.

7.1 Introduction

Accurate solution of three dimensional wave scattering problems is an important and on-
going research topic, due to the diverse range of important applications such as breast
cancer detection [142] and radar cross section computation. The MoM is one of the most
popular techniques that have been developed and provides a purely numerical solution of
such scattering problems. Historically, this approach has been limited to the analysis of
scattering from electrically small bodies because of the intensive computational require-
ments, in terms of both time and storage. Recently, the development of more efficient
algorithms has facilitated the examination of larger and more complicated bodies. In
particular, the use of iterative solvers such as the GMRES [40] in conjunction with ac-
celeration techniques such as the FFT [143] can significantly enhance the computational
performance without compromising accuracy. In addition, if an analysis over a wide range
of frequencies is of interest, it can be more efficient to use model-reduction methods such
as the AWE [72, 73] and the Padé via Lanczos (PVL) algorithm [144] rather than repeated
application of the MoM at many individual frequency points. Traditionally, the AWE has
been applied by explicitly computing and applying the inverse of the impedance matrix
at a central frequency in order to generate so-called moments [145]. This has restricted
its application to relatively small problems, due to the dense nature of the impedance
matrix. In this chapter, we investigate the use of the GMRES-FFT to iteratively solve
for the moments which are used to approximate responses at other frequencies using the
AWE. This allows a fast analysis of large-scale three dimensional problems over a wide
frequency band.
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7.2 Volume integral equation

7.2.1 Volume electric field integral equation

The volume electric field integral equation (VEFIE) formulation is applicable to the prob-
lem of wave scattering from inhomogeneous bodies and has the advantage that unknowns
need only be iteratively solved within the scatterer volume. Fields exterior to the scat-
terer can be computed at a later step via a simple convolution with a Green’s function.
We consider a problem where an inhomogeneous body is located in a homogeneous back-
ground medium characterised by permittivity εb, conductivity σb and permeability µb.
The inhomogeneous scatterer has a finite volume V and is specified by position-dependent
permittivity ε (r) and conductivity σ (r) while its permeability is assumed constant and
equal to that of the background. Therefore, the scattered electric fields are generated
by only the induced volume electric current Jeq [57]. Equation 2.65 can be rewritten as
follows

Es (r) = −jωµb

˚
V

(
Jeq

(
r′
)

+ 1
k2
b
∇′∇′ · Jeq

(
r′
)) e−jkb

∣∣r−r′
∣∣

4π
∣∣r−r′

∣∣ dv′. (7.1)

It should be noted that Equation 7.1 only holds for points inside the scatterers. We
can apply a similar procedure as shown in Section 6.2.1 to derive an alternative integral
equation which holds for every point within an investigated space by the introduction of
a contrast function. Substituting Equation 2.53 into 7.1 results in

Es (r) = ω2µbεb

˚
V

(
ε
(
r′
)

εb
− 1

)(
E
(
r′
)

+ 1
k2
b
∇′∇′ ·E

(
r′
)) e−jkb

∣∣r−r′
∣∣

4π
∣∣r−r′

∣∣ dv′. (7.2)

We define the magnetic vector potential A as

A (r) = −jωµbεb

˚
V

χ
(
r′
)
E
(
r′
)
G
(
r, r′

)
dv′ (7.3)

and the irrotational part of the scattered electric field as

Eirr (r) = jω

k2
b
∇∇ ·A (r) (7.4)

where the contrast function χ (r) is defined as

χ (r) = ε (r)
εb
− 1 (7.5)

and G (r, r′) is the scalar Green function for the background medium. Thus, Equation 7.2
is rewritten as

Es (r) = jωA (r) + Eirr (r) . (7.6)
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7.2 Volume integral equation

The VEFIE can be expressed as

Ei (r) = E (r)− jωA (r)−Eirr (r) . (7.7)

7.2.2 The weak-form discretisation

A weak-form discretisation [142, 146] is introduced to reduce the singularity in Equation
7.7. The volumetric scatterer is inscribed in a larger cube with dimension of Lx×Ly×Lz.
The cube is discretised into a set of Nx×Ny×Nz uniform cells of volume4V = 4x4y4z
where 4ι = Lι/Nι for ι = x, y, z. The total number of cells is thus M = NxNyNz. The
centre of individual cells is positioned at

rl,m,n = (xl, ym, zn) = [l.4 x,m.4 y, n.4 z] (7.8)

where (l,m, n) ∈ [1, Nx] ⊗ [1, Ny] ⊗ [1, Nz] is a set of integers. ⊗ denotes a Cartesian
product. The application of the MoM to Equation 7.7 leads to

Ei
l,m,n = El,m,n − jωAl,m,n −Eirr

l,m,n (7.9)

where El,m,n = E (rl,m,n). A similar definition is applied for Ei
l,m,n, Al,m,n and Eirr

l,m,n.
The magnetic vector potential component Al,m,n can be obtained through Equation 7.3
as

Al,m,n = B0

Nx∑
l′=1

Ny∑
m′=1

Nz∑
n′=1

Gl−l′,m−m′,n−n′χl′,m′,n′El′,m′,n′ (7.10)

where B0 = −jωµbεb4V for (l,m, n) ∈ [0, Nx + 1]⊗ [0, Ny + 1]⊗ [0, Nz + 1]. The central
finite difference is used to approximate Eirr

l,m,n in Equation 7.4 as follows

Eirr
x;l,m,n= jω

k2
b4x2 (Ax;l−1,m,n − 2Ax;l,m,n +Ax;l+1,m,n)

+ jω
4k2

b4x4y
(Ay;l−1,m−1,n −Ay;l−1,m+1,n −Ay;l+1,m−1,n +Ay;l+1,m+1,n)

+ jω
4k2

b4x4z
(Az;l−1,m,n−1 −Az;l−1,m,n+1 −Az;l+1,m,n−1 +Az;l+1,m,n+1)

(7.11)

Eirr
y;l,m,n= jω

k2
b4y2 (Ay;l,m−1,n − 2Ay;l,m,n +Ay;l,m+1,n)

+ jω
4k2

b4x4y
(Ax;l−1,m−1,n −Ax;l−1,m+1,n −Ax;l+1,m−1,n +Ax;l+1,m+1,n)

+ jω
4k2

b4y4z
(Az;l,m−1,n−1 −Az;l,m−1,n+1 −Az;l,m+1,n−1 +Az;l,m+1,n+1)

(7.12)
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Eirr
z;l,m,n= jω

k2
b4z2 (Az;l,m,n−1 − 2Az;l,m,n +Az;l,m,n+1)

+ jω
4k2

b4x4z
(Ax;l−1,m,n−1 −Ax;l−1,m,n+1 −Ax;l+1,m,n−1 +Ax;l+1,m,n+1)

+ jω
4k2

b4y4z
(Ay;l,m−1,n−1 −Ay;l,m−1,n+1 −Ay;l,m+1,n−1 +Ay;l,m+1,n+1)

(7.13)

We can rewrite Equation 7.10 in matrix notation as


Ax

Ay

Az

 = B0GD


Ex

Ey

Ez

 (7.14)

where for example Ex is a vector of length M which contains the unknown x-components
of the electric field at the cell centres, with similar interpretations for the other quantities.
G is a Greens function matrix with three blocks on the diagonal.

G =


G1 0 0

0 G2 0

0 0 G3

 (7.15)

Each of the Gi has a block Toeplitz form while D is a diagonal matrix containing contrast
values. Equation 7.11-7.13 can be rewritten as


Eirr
x

Eirr
y

Eirr
z

 = 4VHGD


Ex

Ey

Ez

 (7.16)

where H is a sparse matrix containing a suitable numerical approximation to the grad-div
operation. Finally, Equation 7.9 can be rewritten as

Z ·E = Ei (7.17)

where

Z = I− k2
b 4 VGD−4VHGD (7.18)

and for example

148



7.3 Asymptotic waveform evaluation

E =


Ex

Ey

Ez

 (7.19)

Equation 7.17 can be solved using an iterative method which requires O
(
N2) operations

per iteration instead of O
(
N3) computations required for direct inversion where N = 3M

is the total number of unknowns. However, because of the special form of G and the
sparsity of D and H, we can take advantage of the FFT for a fast MVP to reduce the
number of operations per iteration to O (N logN).

7.3 Asymptotic waveform evaluation

Because both the Z matrix and incident field vector Ei are frequency dependent, the total
field E also varies with frequency and hence with kb. If a response over a certain band of
frequency is of interest, then the repeated independent solution of Equation 7.17 at each
frequency is computationally expensive and time-consuming. An alternative method in
this situation is to use the AWE which generates a reduced order model, exact at the central
frequency and approximate to a desired accuracy over the band of interest. Let the central
frequency be f0 with a corresponding value of kb given by kb0. We create an approximate
solution at a desired frequency f (with corresponding background wavenumber kb) by
using a Taylor series

E (kb) =
Q∑
k=0

mk (kb − kb0)k (7.20)

or more accurately by using Padé aproximation

E (kb) =
∑L
i=0 ai (kb − kb0)i

1 +∑P
j=1 bj (kb − kb0)j

(7.21)

where mk denotes the moments, given by the following recursive relation for k = 1...Q

Z (kb0) mk = Ei(k) (kb0)
k! −

k∑
i=1

Z(i) (kb0) mk−i
i! . (7.22)

Z(i) (kb0) is the ith derivative of Z with respect to kb and evaluated at kb0. Other quantities
have similar interpretations. In the Padé expression L+P = Q and the unknowns can be
obtained by matching the moments
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Pf



b1

b2

...

bP


=



mL+1

mL+2

...

mL+P


(7.23)

with

Pf =



mL mL−1 · · · mL−P+1

mL+1 mL · · · mL−P+2

...
... . . . ...

mL+P−1 mL+P−2 · · · mL


. (7.24)

bj computed from Equation 7.23 are used for the calculation of ai as

a0 = m0

a1 = m1 + b1m0

a2 = m2 + b1m1 + b2m0

...

ai = mi +∑i
j=1 bjmi−j

(7.25)

A key part in the computation of the derivatives of Z required in Equation 7.22 is to
calculate the derivatives of K where K is defined as the product of G and D. We get

K(i) (kb0) =
i∑

j=0

 i

j

G(i−j) (kb0) D(j) (kb0) . (7.26)

The GMRES-FFT is applied for the solution of Equation 7.22. The key observation is
that H is not frequency dependent and that both the derivatives of G and D retain their
computationally efficient form, namely block Toeplitz and diagonal respectively, which
permits the rapid O (N logN) computation of the right hand side vectors of Equation
7.22. This coupled with the use of GMRES to solve for the moments allows the use of the
AWE for larger problems.

7.4 Numerical results and validations

Numerical results are presented in this section to illustrate and validate the proposed
method. All of the simulations were performed on a core i5 CPU running at 2.27GHz.
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7.4 Numerical results and validations

The scatterer is a dielectric sphere with a radius of 0.09m centred at the origin and
illuminated by an incident plane wave from the direction (θ = 0;ϕ = 0), with an electric
field polarised along the x-axis. The sphere is centred in a cube with the side length of
0.3m. Each side is discretised using 36 cells resulting in a total of 139, 968 unknowns as
shown in Figure 7.1. The number of terms retained in the Taylor series is Q = 20 and a
Padé approximation with L = P = 10 is created. The tolerance for the iteration scheme
used to compute the moments is specified to be 10−6. Firstly, we examine the accuracy of
the method by making a comparison of the monostatic RCS computed using an analytic
method (Mie series), a conventional numerical method (MoM computed independently
at each frequency) and our proposed method. The frequency band of interest is from
700MHz to 1.3GHz and the expansion frequency is 1.0GHz. In order to illustrate the
ability of the model to handle frequency dependent parameters, the relative permittivity
of the dielectric bodies is modelled as a cubic polynomial in kb varying from 1.87 to
1.96 when the frequency changes from 700MHz to 1.3GHz as shown in Figure 7.2. A
comparison is shown in Figure 7.3. It can be seen that the result from the described
method agrees exactly with the numerical method and is in close agreement with the
analytic method (small deviations are due to the simplistic nature of the basis functions
used in the discretisation and can be reduced by increasing the number of basis functions
used, at the expense of greater run times). The total fields at 1.3GHz along lines in x-, y-,
z-directions are presented in Figure 7.4− 7.6, respectively. The fields are computed using
the three methods. Again the reduced order model agrees perfectly with the repeated
MoM calculations. The efficiency of the proposed method is demonstrated in Table 7.1.
The table outlines the computation time associated with the two numerical methods, for
different numbers of frequency points spanning the range. The computational time of
the MoM increases linearly with the number of frequency points while the computational
time of the AWE is almost constant because the computation of moments comprises most
complexity of the AWE. Once the moments are computed, the results at different frequency
points can be calculated quickly. It can be seen that the AWE is more computationally
efficient, and the speed-up increases with the number of desired frequencies.

Number of frequencies 41 61 81 101

MoM time (sec) 3, 112 4, 629 6, 139 7, 673

AWE time (sec) 2, 384 2, 422 2, 468 2, 494

Speed up 1.31 1.91 2.49 3.08

Table 7.1: Comparison of runtime using the conventional MoM and the AWE for the
dielectric sphere.
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7.5 Conclusion

This chapter presents an efficient method to analyse electromagnetic wave scattering from
arbitrarily shaped bodies over a wideband of frequencies. The formulation is based on
the three dimensional weak-form formulation of the VEFIE discretised using the MoM.
AWE is used to rapidly compute the electromagnetic response over a wide frequency
range. GMRES-FFT is used to solve for the individual moments and the form of the
impedance matrix means that the right hand side of each moment equation retains a
structure compatible with the use of the FFT. Numerical results for a dielectric lossless
sphere with frequency-dependent permittivity have been shown to demonstrate the accu-
racy and computational efficiency in comparison with Mie series and conventional MoM.
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Figure 7.1: Discretisation of the dielectric sphere.

Figure 7.2: Value of the relative permittivity of the dielectric sphere with respect to
frequency.
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Figure 7.3: Radar cross section results of the dielectric sphere with the radius of 0.09m.

Figure 7.4: Total field along x direction with y = −0.0874m and z = −0.1208m at
f = 1.3GHz.
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Figure 7.5: Total field along y direction with x = −0.1124m and z = −0.1124m at
f = 1.3GHz.

Figure 7.6: Total field along z direction with x = −0.1041m and y = −0.1041m at
f = 1.3GHz.
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8 Conclusions

The central focus of this dissertation is on the development of accelerated iterative al-
gorithms, which are a combination of iterative methods and acceleration techniques, to
efficiently solve electromagnetic (EM) scattering and wave propagation problems. There is
a need for appropriate algorithms for fast solution of diverse applications in EM problems
in spite of impressive recent improvements in computer technology and much research
focusing on the area of accelerated iterative methods. Chapters 2 and 3 provide the basic
materials necessary to understand the following chapters. Maxwells equations are reviewed
in Chapter 2 to derive the electric field integral equations and the magnetic field integral
equations which are used extensively in the later chapters. The method of moments is also
presented as a numerical solution for the integral equations. Chapter 3 revisits popular
iterative solvers which are categorised into non-stationary and stationary methods. The
iterative solvers are reviewed as an appropriate approach for a solution of dense linear
systems, resulting from the application of the method of moments to integral equations.
Chapters 4 − 7 demonstrate the four main contributions of the dissertation. Chapters 4
and 5 focus on the use of stationary iterative methods in combination with several acceler-
ation techniques such as the multilevel fast multipole method and the spectral acceleration
for the solution of two and three dimensional scattering problems. Chapters 6 and 7 con-
centrate on using Krylov iterative methods to solve two dimensional indoor propagation
problems and three dimensional wideband forward scattering problems, respectively.

In Chapter 4, the modified multilevel fast multipole algorithm is applied to improve the
performance of stationary iterative solvers. The application of the standard MLFMA to
stationary iterative methods cancels the advantage of the stationary methods due to an
inefficient performance of partial MVPs which are required constantly in the process of
the methods. The modified MLFMA is a variant of the standard one with two additional
simple algorithms enabling a considerably better performance of the partial MVPs. Nu-
merical experiments demonstrate the efficiency of the proposed method as compared to
the standard MLFMA when applied to stationary iterative methods, in particular, the
BBFB and the O-DDM. The proposed algorithm is applied for the solution of three di-
mensional perfectly conducting scattering problems. However, it is noteworthy that the
modified algorithm is extendable to other applications, such as three dimensional scatter-
ing problems for dielectric geometries or random rough surface scattering problems, where
the stationary methods and the MLFMA are used for the solution.

The improvement of the performance of the stationary iterative solvers is extended in
Chapter 5. Despite focusing on acceleration techniques to reduce the computational com-
plexity as in Chapter 4, Chapter 5 concentrates on improving the convergence rate of
the iterative methods. The modified improvement step is the main contribution of the
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chapter. The proposed algorithm is an extension of the original improvement step which
uses a single correction vector for an enhancement of the convergence rate. The main
disadvantage of the original method is that in the process of stationary methods updating
currents along the previous correction vector may be performed, causing the loss of effi-
ciency of the previous improvement step. The modified improvement step is proposed to
preserve the effectiveness of the previous correction steps, leading to a better convergence
rate with negligible additional complexity. The greater the number of correction vectors
is, the better the achieved convergence rate is. Simulation results are shown to confirm the
advantage of the proposed algorithm. Although the proposed algorithm is only applied
for a solution of two and three dimensional random rough surface scattering problems in
this chapter, it can be extended to other applications.

Chapter 6 turns our attention to the application of Krylov iterative solvers in conjunction
with acceleration techniques to solve two dimensional indoor wave propagation problems.
A contribution of Chapter 6 is a comparison between the volume and the surface integral
equations for solving the problems. The fast Fourier transform and the fast far field ap-
proximation algorithm are implemented for the volume and the surface integral equations,
respectively, to speed up the MVP performed within each iteration. Simulation results
suggest that the volume integral equation approach converges to a desired accuracy sig-
nificantly faster than the surface integral equation approach. Although the number of
unknowns in the volumetric approach is considerably greater than that in the surface
approach, the former converges within greatly fewer iterations. Further investigation is
necessary for an explanation of the convergence rate. The AWE technique, presented in
Chapter 7, could be applied to analyse indoor wave propagation problems over a wide
range of frequency. In addition, the volume integral equation could be applied for the
solution of three dimensional indoor propagation with the aid of graphic processing unit
(GPU) and parallelisation techniques.

Chapter 7 is devoted to the last contribution of this dissertation. The chapter investigates
the wideband solution of three dimensional scattering problems using Krylov iterative
methods in combination with an acceleration technique, the fast Fourier transform, and a
wideband technique, asymptotic waveform evaluation. The proposed method which com-
bines several techniques approximates wideband results from information about moments
at the central frequency while the conventional method has to separately compute the
results at individual frequency points. Numerical results demonstrate that the proposed
method is more computationally efficient for the computation of the wideband results as
compared to the conventional method. Numerical experiments are presented for homoge-
neous dielectric spheres with frequency-dependent electrical parameters because this per-
mits comparison with analytical solutions. However, it should be noted that the method
can be readily applied to homogeneous lossy objects.

8.1 Future study

Several avenues of future research can be envisaged from this dissertation. The first is
the potential application of the modified MLFMA to stationary iterative solvers for a
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solution of larger and more complicated geometries made from imperfectly conductor or
dielectric materials. The method has been applied to solve problems where the number of
unknowns is of the order of hundred thousands. Larger and more complex problems may
require further investigation into the use of graphic processing unit and parallelisation
techniques.

Secondly, modified MLFMA concept is potentially applicable to three dimensional random
rough surface scattering. The BBFB or the O-DDM accelerated by the steepest descent
fast multiple method (FMM) could borrow the idea of the modified MLFMA to reduce
the computational complexity of the partial MVPs and potential for the improvement
of the convergence rate of the block forward backward method used in Chapter 5. For
three dimensional random rough surface problems, the block forward backward method
can easily diverge as the roughness of the surface increases with respect to the operating
frequency. The BBFB and the O-DDM could be an effective resolution for the improve-
ment of the convergence rate. The stationary methods can be accelerated by the steepest
descent FMM which may adopt the idea of the modified MLFMA to efficiently perform
the partial MVPs required.

Next, the work presented in Chapter 6 maybe potentially extended for three dimen-
sional indoor wave propagation problems. Although the FFT is applied to accelerate
the performance of the MVP and to reduce the computational complexity from O

(
N2) to

O (N logN), it is noted that the number of unknowns N is a large value because it includes
the free-space unknowns which contain irrelevant information for iterative solvers. The
large value of N , especially in three dimensional cases, leads to significant redundancy.
Thus, there is a need for new acceleration algorithms which preserve the advantage of the
FFT and also reduce the number of unknowns N . Knowledge about supercomputer and
parallelisation may be necessary when the size of the problems is beyond the capability of
the normal computer.

Another possible avenue for future work extends the application of wideband solutions for
three dimensional forward scattering problem presented in Chapter 7. The asymptotic
waveform evaluation technique may be replaced by the well-conditioned asymptotic wave-
form evaluation for a better accuracy over a wider range of frequency. In addition, a strict
error control scheme needs to be developed to determine the number of moments required
with respect to the pre-defined accuracy.
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