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Abstract 

Saikumar Inguva 

Pulsed Laser Deposition and Characterisation of ZnO and Aluminium-doped ZnO 

Nanostructures on Silicon and Flexible Plastic Substrates 

    We have developed recipes for the catalyst-free growth of upstanding/vertically 

aligned ZnO nanorods featuring core/shell or interconnected core/shell architectures 

on ZnO-seeded Si (100) substrates using the pulsed laser deposition (PLD) 

technique. The structural, morphological and luminescent properties of these ZnO 

nanorod samples were established. A ZnO emission band at 3.331 eV was observed 

in the core/shell and interconnected core/shell nanorod architectures and its origin 

linked to the defects observed at the crystalline/amorphous interface of the core/shell 

structure. This particular defect PL emission appears to be a new observation for 

ZnO. 

 
         We have grown vertically aligned ZnO nanorods on PLD prepared ZnO-seeded 

Si substrates by catalyst-free vapour phase transport (VPT). The nanorods featured 

excellent optical properties and a coverage density higher than previously published 

data. The structural, morphological and luminescent properties of the seed layers and 

nanorods were inter-compared. Importantly, we also compared the near band edge 

emission of such VPT-and PLD-deposits, with a focus on the identification of the 

origin of the emission feature at 3.331 eV. 

 

         We have researched the room temperature PLD growth of highly transparent 

and conductive ZnO and Al-doped ZnO (AZO) nanocrystalline thin films on flexible 

Zeonor plastic substrates. The trends for the growth rate, surface morphology, 

hydrophobicity and the structural, optical and electrical properties of 65 nm - 420 nm 

thick ZnO/AZO films grown on Zeonor substrates were analysed as a function of 

oxygen growth pressure (1-300 mTorr). The as-grown films showed highly 

reproducible deposition behaviour, and featured high transmittance, low-electrical 

resistance, optical smoothness, low residual stress, and hydrophobicity.  

 

       The results presented in this thesis are discussed in the context of prospective 

and suitable applications.  
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Chapter 1  

 

Review of the Fields and 

Motivations for the Thesis Work  

 

 

 

 

 

        

       Semiconductors play a ubiquitous role in our day-to-day life by the virtue of 

their many commercial applications. This demands to do research on their 

development. In this regard, Silicon (Si) is the most popular semiconductor in 

scientific research and technology. Other semiconductors that have been 

investigated, e.g. gallium nitride (GaN), gallium arsenide (GaAs), zinc oxide (ZnO) 

and zinc selenide (ZnSe). Among them, ZnO is a promising candidate and has 

attracted great attention due to the abundant sources of this raw material along with 

its excellent material properties that includes simple nanostructure fabrication. 
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        This chapter provides the background information on, and applications of, the 

topics covered in this thesis. We review the field, and demonstrate our motivations 

and the goals of the thesis. We then provide an outline of the thesis with a brief 

description of the individual chapters.  

 

1.1 ZnO based core/shell nanorods: Motivation 

       Core/shell architectures enable the tailoring of novel properties via 

modification of the functionality, charge or reactivity of the nanostructure surface [1-

4]. They are also observed to have improved physical and chemical properties [1]. In 

particular, the enhancement of the luminescent properties of one-dimensional 

nanostructures can be achieved [4]. These are the reasons why core/shell 

nanostructures have attracted attention for the past few years. Core/shell 

nanostructures are made up of a variety of materials including metals (Ni-core/Ag-

shell) [5], semiconductors (ZnO/ZnS, ZnO/Ag2S, ZnO/CuS) [1-3], hydroxides 

(Ln(OH)3/SiO2) [6], and organic materials (Polypyrrole/Poly(N-vinylcarbazole)) [7]. 

They have been attracting significant attention for applications in several 

interdisciplinary fields such as sensing, multi-enzyme bio-catalysis, drug delivery 

and photonics [8], for example.  

 

        In this regard, ZnO, a semiconductor with a wide direct band gap (3.37 eV) and 

a large free exciton binding energy of 60 meV, has been used successfully in 

core/shell architectures due to its excellent material (optoelectronic, piezoelectric, 

biocompatibility) properties [9-11]
 
to include simple nanostructuring. With greater 

details of the ZnO based core/shell nanostructures and their applications, we now 

review the previous works. In terms of sensor based applications, Si et al. [12] have 

fabricated Fe2O3/ZnO core/shell nanorods for cyclohexane, ethanol and acetone gas 

sensors while Hwang et al. [13] have fabricated ZnO/SnO2 core/shell nanowires for 

NO2 and C2H5OH gas sensors. Huang and Lin [14] have also fabricated ZnO/In2O3 

core/shell nanorods for hydrogen sensors. In terms of photovoltaic applications, 

Schrier et al. [15] have grown ZnO/ZnS, ZnO/ZnTe core/shell nanowires while 

Greene et al. [16] have grown ZnO/TiO2 core/shell nanorods. Kanmani and 

Ramachandran [17] have also fabricated TiO2/ZnO core/shell nanomaterials for 

photovoltaic applications. Furthermore, Wang et al. [18] have also fabricated 
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ZnO/TiO2 core/shell nanorods. In terms of supercapacitor applications, Li et al. [19] 

have prepared ZnO/MoO3 core/shell nanocables while Yang et al. [20] have prepared 

hydrogenated ZnO based core/shell nanocables. In terms of energy storage 

applications, Xia et al. [21] have synthesised ZnO/NiO core/shell nanowires. In this 

context, Wang et al. [22] have reported crystalline ZnO/amorphous Bi2O3 core/shell 

nanorods and inorganic/organic (i.e. ZnO/ polyaniline (PANI)) core/shell nanotubes. 

Furthermore, Tang et al. [23] and Trejo et al. [24] have synthesised Zn/ZnO 

core/shell architectures. Also, Zhou et al. [25] have reported ZnO quantum dot based 

ZnO/Zn(OH)2 core/shell architectures. Similarly, Richters et al. [26] and Chen et al. 

[27] have produced ZnO/Al2O3 core/shell nanowires and nanorods, respectively.  

 

     We now review briefly the growth methods used for the production of 

core/shell nanostructures. The core/shell nanostructures are typically fabricated as 

part of complex multi-step processes. In the first step, the nanostructure core is 

fabricated, followed by the growth of the shell region in a second step, with several 

intermediate operations and possibly a change of growth method being implemented 

between these two steps. For example, Greene et al. [16] have prepared ZnO nanorod 

cores in a two-step aqueous process and subsequently fabricated a TiO2 shell by 

atomic layer deposition (ALD). Also, Huang et al. [14] have prepared the ZnO core 

and In2O3 shell by an aqueous chemical process and a combination of sputtering and 

thermal oxidation methods, respectively. Additionally, other growth methods were 

used such as hydrolysis by Si et al. [12] and Kanmani et al. [17], electro-chemical by 

Li et al. [19], and pulsed laser deposition (PLD) by Li et al. [4] and Kaydashev et al. 

[28]. Of particular interest for the present work, we note the PLD works of 

Kaydashev et al. [28]
 

and Li et al. [4] who prepared ZnO/Zn0.9Mn0.1O and 

ZnO/Er2O3 core/shell nanorods using multi-step growth processes in Ar and/or O2 

ambient pressures with the aid of an Au catalyst, respectively.  

 

        On the basis of the reported works, our goal for the present work is to reduce 

the complexity of these multi-step processes, which were used previously, to 

produce catalyst-free ZnO based core/shell nanorods. In this work [29], we grow for 

the first time, self-organised crystalline ZnO/amorphous ZnO core/shell nanorods on 

Si (100) wafers by PLD in a two stage process, without using a metal catalyst seed 

and without the need for a separate growth stage for the shell region. We also 
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investigate the structural, morphological and optical properties of the as-grown 

core/shell nanorod deposit and the relationship of the latter to the unique defect 

structure associated with the core/shell architecture. The details are discussed in 

Chapter 4.1. 

  

1.2 ZnO nanorods: Motivation 

         Vertically aligned ZnO nanostructures (1D) have been of great interest for 

many years due to applications in optoelectronic devices such as light emitting 

diodes [30,31],
 
nanolasers [32], solar cells [33], chemical and gas sensors [34,35],

 

field emission devices [36,37] and schottky diodes [38]. Furthermore, ZnO nanorods 

have also been used for biosensors [39-41]. A recent review on ZnO nanostructure-

based biosensors has been reported in refs [42,43]. Because of the biocompatibility 

properties of ZnO, it has also been used for anti-bacterial activities [44,45]. As 

mentioned earlier, ZnO has exciting material properties with a high optical gain* 

(300 cm
-1

) [46]. These features are favourable for laser processes. Low-dimensional 

ZnO single crystals are able to reduce the laser threshold via the quantum size effect 

[46]. The above stated features drive considerable interest in the growth of ZnO 

based nanostructures such as nanorods, nanowires and nanobelts.     

 

1.2.1 ZnO-seeded Si substrates 

         Silicon (Si) is a commonly used substrate due to its high melting point that 

allows high processing temperatures during deposition and results in good 

conductive/electrical properties [4,13,15,29,36,46-50]. However, direct growth of 

ZnO nanorods or nanowires on a Si substrate is not possible as ZnO does not readily 

nucleate on the Si surface. In this regard, a metal catalyst, e.g. Au-coated Si has been 

used [51]. However, due to a large mismatch of 40.1 % between the ZnO and Si 

lattices [48], the as-grown ZnO nanorods tended to grow with poor alignment. Later 

on, a thin ZnO film used as a seed layer on Si was suitable to grow highly vertically 

aligned ZnO nanorods [29,36,46-50,52-54].   

 

 

*Optical gain describes the optical amplification in the material, this is associated with stimulated 

emission of the light (photons) created by the electrons and holes recombination. 
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This is because the ZnO seed layer helps to form nucleation sites that initiate 

nanorod growth, and also it provides a crystalline substrate with a perfect lattice 

match for the ZnO nanorod growth. In this work, we used Si (100) wafers as 

substrate.  

 

1.2.2 ZnO seed layers grown by PLD on Si substrates 

           Li et al. [48,49] have reported a detailed study of the growth of ZnO nanorods 

by vapour phase transport (VPT) on ZnO seed layers grown by various techniques 

such as PLD, direct current (DC) reactive sputtering, radiofrequency (RF) sputtering 

and thermal oxidation methods. Jie et al. [54] have reported the synthesis and optical 

properties of ZnO nanorods by VPT on PLD prepared ZnO seed layers. Zhao et al. 

[50] have reported VPT grown ZnO nanorods on ZnO seed layers prepared by 

electron beam evaporation. Rajendra Kumar et al. [36] have reported VPT-grown 

ZnO nanorods on PLD-grown ZnO seed layers and studied their effects on field 

emission properties. Garry et al. [55] have reported ZnO nanorod arrays by VPT on 

PLD-grown ZnO seed layers using nanosphere lithography (NSL) patterns, with and 

without a Au catalyst. However, a drawback associated with lithography techniques 

is the low deposition temperature. On the whole, PLD-prepared ZnO seed layers are 

considered to be the best choice for the growth of high density, highly textured and 

high optical quality of vertically aligned ZnO nanorods, as observed by Li et al. [48] 

and Jie et al. [54]. 

 

1.2.3 ZnO nanorods grown by PLD on ZnO-seeded Si substrates                         

          ZnO nanorods were grown using the PLD technique on PLD deposited ZnO 

seed layers by a few workers. For example, Sun et al. have grown ZnO nanorods 

[56-58], nanowires [59] and nanotubes [60] by PLD on PLD-prepared ZnO seed 

layers. The morphologies of such nanorods/nanowires/nanowalls are highly 

dependent on background gas pressure during deposition. For example, Tien et al. 

[61] and Zhang et al. [62] have studied the effects of the ambient pressure of the 

oxygen/argon gas mixture on the morphology of the ZnO nanostructures on ZnO-

coated sapphire substrates. Their studies showed a transition from ZnO nanowalls to 

ZnO nanowires/nanorods morphology with a variation of background gas pressure 

from 150 to 500 mTorr in ref [61], and from 20 to 175 Torr in ref [62]. Premkumar 
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et al. [63] have grown ZnO nanorods and nanowalls by PLD on GaN, Al2O3 and Si 

substrates while Liu et al. [64] have grown ZnO nanorods on Si and sapphire 

substrates. Li et al. [65] and Choi et al. [66] have also grown ZnO nanorods and 

brush-shaped ZnO hetero nanorods by PLD, respectively. 

 

1.2.4 ZnO nanorods grown by VPT on ZnO seeded Si substrates 

        There are only a few reports of VPT-grown ZnO nanorods on PLD-prepared 

ZnO seed layers. Li et al. [48,49], Jie et al. [54], Rajendra Kumar et al. [36], and 

Garry et al. [55] have previously produced VPT-grown ZnO nanorods on PLD- 

prepared ZnO seed layers without a metal catalyst. 

 

         In order to understand the growth of high quality ZnO nanorods on ZnO seed 

layers, the crystalline, surface morphology and optical properties of both the ZnO 

seed layers and ZnO nanorods need to be studied. To the best of our knowledge, this 

type of work has not been reported previously. In this thesis, (i) we grow high optical 

quality and high density of vertically aligned ZnO nanorods by a catalyst-free VPT 

technique on the catalyst-free PLD-grown ZnO seed layers. (ii) For the first time, we 

systematically study and inter-compare the structural, morphological and optical 

properties of the PLD-grown ZnO seed layers, PLD-grown ZnO nanorods and VPT-

grown ZnO nanorods. (iii) Importantly, we further investigate the origin of the 3.331 

eV emission band in ZnO seen in the PLD-grown nanorod samples, by comparing 

the PL emissions seen from PLD- and VPT-grown nanorod samples. The results and 

details are given in section 4.3. 

 

1.3 ZnO and AZO thin films on plastics: Motivation  

            Deposition of transparent conductive oxide (TCO) films on thin plastic 

flexible substrates is of significant interest in research and current technological 

developments. This is due to the need for such material systems in novel applications 

of transparent electronics where flexibility has become a key factor. Plastic 

substrates feature advantageous characteristics including light weight, compactness, 

impact resistance as well as low-cost and, thus, supersede glass substrates in certain 

applications. 
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1.3.1   ZnO-based TCOs on flexible Zeonor plastics  

          In recent years, deposition of ZnO-based TCOs on flexible plastic substrates 

has attracted much attention due to the wide range of applications of such materials 

in flexible flat panel displays [67], solar cells [68], organic light emitting diodes [69], 

and thin film transistors [70,71], for example.  

 

          ZnO and Al-doped ZnO (AZO) are well-known semiconductor oxide materials 

for thin film deposition and generally produce films with excellent optical, e.g. high 

transparency [72], and electrical, e.g. n-type conductivity properties [73,74]. These 

materials also exhibit long-term environmental stability [75] and bio-compatibility 

properties [11]. There exists a body of work on the deposition and properties of thin 

films of ZnO, AZO and the related materials IGZO (indium- gallium ZnO), IZO 

(ZnO:In) and GZO (ZnO:Ga), on plastic substrates such as polyethylene 

terephthalate (PET) [68,71,76-80], polyethylene naphtalate (PEN) [70], 

polycarbonate (PC) [81], polymethyl methacrylate (PMMA or Perspex) [82], 

polymide (PI) [69,83], polyester [84] and cyclo-olefin polymer (COP) [85,86]. 

 

          In this research, we use for the first time [87] Zeonor
®
 -a proprietary brand of 

COP plastics [88]- hereafter referred to as Zeonor, as a substrate for the deposition of 

ZnO and AZO thin films. Zeonor is the material of choice for many applications in 

microfluidics [89],
 
bio-diagnostics [90] and biosensors [91], as well as in stringent 

optics applications such as high density DVDs, liquid crystal displays and plastic 

optical fibers [88,92]. These and other state-of-the-art devices may variously require 

the deposition of electrical contacts and/or high-quality optical coatings that could 

potentially be achieved with ZnO and AZO thin films. Zeonor has unique features 

compared to other plastic materials [88]; notably, its water absorption of less than 

0.01% is significantly smaller than that of PC (0.2%), PMMA (0.3%) and PET (0.01 

to 1.5%) [85,88,92]. Thus, outgassing and water absorption effects in a vacuum 

environment are minimised, enabling the direct deposition of materials on Zeonor 

without the need for buffer or barrier layers.   
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       Deposition on Zeonor plastic requires substrates at low or room temperatures, 

this is because the glass transition* temperature of Zeonor is close to 100 
o
C [88]. 

PLD appears a highly suitable and versatile preparation technique to meet this 

demanding challenge. Furthermore, due to high-energetic, on the order of or > 1 eV 

[76], plasma particles produced during deposition in the PLD chamber, the materials 

can crystallise even at low/room temperatures. Indeed, several works have reported 

the production of high-quality crystalline ZnO/AZO films on amorphous or plastic 

substrates using PLD at room/low temperatures, e.g. [76, 82,93,94]. PLD at room 

temperature (RT) is, thus, the growth technique that we use in the present work to 

grow ZnO and AZO films on Zeonor plastic substrates. More details on the PLD 

growth technique are provided in section 2.2. 

 

      The growth rate, surface morphology, hydrophobicity and the structural, optical 

and electrical properties of as-grown films with thicknesses ~ 65 nm - 420 nm were 

recorded for oxygen growth pressures between 1 and 300 mTorr. Films with high 

reproducibility, excellent crystallinity, high optical transparency and good 

conductivity were obtained. We also performed an ageing study on selected samples. 

The details are given in sections- 5.1, 5.2 and 5.3.   

 

1.4 General objectives of this work  

          Based on this background information and the reviews of the fields, we state 

our aims and goals: 

 

 To reduce the complexity of the multi-step and multi growth processes used 

previously for the production of core/shell nanorods. To produce ZnO 

core/shell architectures by PLD using a two-stage process, without the aid of 

any metal catalyst.  

 To produce high optical quality and high-density vertically aligned ZnO 

nanorods on PLD grown ZnO seed layers.  

 

 

*The glass transition in amorphous materials is the reversible transition from a hard and brittle 

state (glass state) into a molten, rubber-like, state as the temperature is increased. 

https://en.wikipedia.org/wiki/Amorphous_solid
https://en.wikipedia.org/wiki/Rubber


9 
 

 

 To use PLD to grow reproducible, high-quality ZnO and AZO nanocrystalline 

thin films on flexible Zeonor plastic substrates at room temperature, and reveal 

the dependency of the growth rates, the microstructure and the surface, 

structural, optical and electrical properties of ZnO and AZO thin films of 

different thicknesses on the oxygen ambient pressure.  

 To use PLD to grow high quality ZnO and AZO nanostructured films on 

polycarbonate plastic substrates for the investigation of glucose oxidase-based 

bio-sensing application. This work is presented in Appendix A.  

 To investigate the effects of atmospheric air plasma treatment of polished 

graphite and unpolished carbon felt electrodes on their surface roughness and 

hydrophobicity and the current output from electrochemically active S. loihica 

PV-4 biofilms for bio-fuel cell applications. This work is presented in 

Appendix B. 

 

1.5   Thesis Outline 

       This thesis comprises seven chapters. We give a brief description of the 

contents of each of the chapters.  

 

Chapter 1 

        This chapter provides the background information on, and applications of, the 

topics covered in the thesis. The reviews of the fields justify our motivation for the 

research and the various goals of the thesis.  

 

Chapter 2 

       This chapter describes the general properties of the ZnO material including the 

crystal and electronic structures. We provide background on the operating principles, 

and experimental descriptions of both the nanostructures growth and air plasma 

apparatus used in this work. 
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Chapter 3 

       This chapter describes the various characterisation techniques that were used in 

this work to study the surface morphology and material properties of the as-grown 

samples. The principles of operation and equipment setup of the techniques are also 

presented.  

 

Chapter 4 

         This chapter describes the growth and characterisation of unique crystalline-

ZnO/amorphous-ZnO core/shell nanorods. These self-organised core/shell 

architectures are prepared by a catalyst-free PLD technique on ZnO-seeded Si (100) 

substrates. The structural, morphological and luminescent properties of the ZnO 

nanorod samples are established. A ZnO emission band at 3.331eV is revealed in the 

core/shell architecture and its origin is linked to the observed defects at the 

crystalline/amorphous interface of the core/shell structure.  

 

         This chapter also presents the catalyst free-PLD growth and characterisation of 

interconnected architectures based ZnO core/shell nanorods on ZnO-seeded Si (100) 

substrates, and notably their optical properties.  

 

         This chapter also describes the growth and characterisation of high optical 

quality and high density of vertically aligned ZnO nanorods by a catalyst-free VPT 

technique on catalyst free PLD-grown ZnO seed layers. This work also compares the 

structural, morphological and optical properties of the PLD-grown ZnO seed layers, 

PLD-grown ZnO nanorods, and VPT-grown ZnO nanorods.  

 

Chapter 5  

       This chapter describes the growth and characterisation of highly transparent and 

conductive ZnO and Al-doped ZnO (AZO) nanocrystalline thin films on flexible 

Zeonor plastic substrates. These films are reproducibly grown using PLD at room 

temperature. This chapter shows the effects of oxygen in a selected pressure range on 

the growth rate, surface morphology, hydrophobicity and the structural, optical and 

electrical properties of films having different thicknesses. The pressure range 

explored should correspond with observable changes in the film properties as it is in 
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the range where nanostructuring should occur. This chapter also presents an ageing 

study on selected samples.  

       

Chapter 6 

        This last chapter summarises the works and results discussed in the thesis, as 

well as suggestions for possible future applications for the works.  

 

Appendix A 

      This section presents the growth and characterisation of ZnO and AZO 

nanostructured films on polycarbonate (PC) plastic substrates. The performance 

(measured as part of a collaborative work) of the nanostructured ZnO and AZO films 

prepared on PC substrates as part of a glucose oxidase (GOx)-based biosensor 

application is presented.  

 

Appendix B 

        This section investigates the effects of atmospheric air plasma treatment on 

surface roughness, hydrophobicity and the current output from attached S. loihica 

PV-4 cells on polished graphite, and carbon felt electrodes. This collaborative work 

demonstrated a low-cost, scalable and user friendly route to increase the current 

output in bio-electrochemical systems based on atmospheric air plasma treatments. 
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Chapter 2  

 

Background on Materials and 

Growth Methods 

 

 

 

 

 

 

2.1 Materials (ZnO) properties  

      In this section, we describe the general properties of the ZnO material including 

crystal structure and electronic structure.  

 

      Among the functional oxide materials, ZnO is the most promising candidate and 

has attracted great attention due to its excellent material (optoelectronic and 

piezoelectric etc.) properties
 
[1,2]. ZnO has a direct band-gap of 3.37 eV at room 

temperature. Compared to other wide band-gap semiconductors, especially its main 

competitor GaN, it has the following advantages. 
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(i) ZnO has a larger free exciton binding energy of 60 meV (much higher than 

that of GaN’s 25 meV) which is advantageous for efficient emission at room 

temperature for lasers and UV-emitters [3].  

(ii) ZnO is relatively cheap and abundant. It is available in large area single 

crystals (~ 2 inch), which enables homoepitaxy and also makes ZnO devices 

scalable for commercialisation [4,5].  

(iii) ZnO has better radiation hardness (with ~ 1.5 MeV high energy electron 

irridation) characteristics than GaN (~1 MeV) and GaAs (~ 1 MeV) [5]. ZnO 

has useful features including bio-compatibility [6,7], and its nanostructure 

fabrication is relatively simple.  

(iv) ZnO can be deposited at room/low-temperatures [8]. 

(v) Because of intrinsic and extrinsic defects/impurities, which lead to energy 

levels within the ZnO bandgap corresponding to emissions at a range of 

different wavelengths, ZnO can emit across the visible spectrum [9,10], 

which is a key advantage for white light LEDs. 

 

         ZnO has many applications in optoelectronic devices such as light emitting 

diodes [10-12],
 
solar cells [13], transparent conductive oxides (TCO) [14], chemical 

and gas sensors [15,16],
 
field effect transistors [17],

 
Schottky diodes [18], and also in 

surface acoustic wave devices [19].  

 

2.1.1 Crystal structure  

         ZnO is a II-VI compound semiconductor. In normal conditions such as 

standard temperature and pressures, it has a hexagonal-shaped wurtzite crystal 

structure. But, it also exists in the cubic rock salt and cubic zinc-blende forms [20-

22]. In ZnO crystal structure, each Zn ion is surrounded by four oxygen ions, and 

vice versa. The structure is in the shape of a tetrahedral configuration as shown in 

Figure 2.1 (a). The unit cell structure is shown in Figure 2.1 (b). The lattice 

parameters are a =b= 0.32498 nm and c = 0.52066 nm. The volume of the ZnO unit 

cell with a wurtzite structure is 23.8 × 10
-3

 nm
3
 [22]. 
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Figure 2.1: (a) The wurtzite crystal structure of ZnO (b) the unit cell of wurtzite structured 

ZnO (Ref. [23]). The Zn
2+

 and O
2-

  ions in grey and yellow colours, respectively. 

 

         The principal planes of the ZnO hexagonal (wurtzite) structure are shown in 

Figure 2.2. Using Miller-Bravais four index notation, a-plane and m-plane are 

denoted by (11-20) and (10-10), respectively. The a-plane and m-planes are parallel 

to the c-axis and are non-polar planes. However, c-plane consists of alternative 

positively Zn (0001) and negatively charged O (000-1) planes. Hence, the c-plane is 

a polar plane. The r-plane and R-planes are semi-polar planes and are denoted by 

(10-11) and (10-12), respectively. There is only a very little information available in 

the literature on these r- and R-planes, which is due to difficulties in epitaxial growth 

of those planes [24]. 

 
Figure 2.2: Showing the various crystal planes of the ZnO hexagonal structure (Ref [25]).   

(a) (b) a=b 

c 
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         Al-doped ZnO (AZO) material has improved electrical properties compared to 

ZnO, due to the increase in free carrier concentration as Al is an n-type dopant. In 

recent years, AZO has been considered a better choice to replace indium tin oxide 

(ITO). In AZO crystal structure, Al
+3

 ions substitute Zn
+2

 ions [25]. The further 

details on the comparisons of the structural, optical and electrical properties between 

ZnO and AZO films are presented in Chapter 5.    

 

2.1.2 Electronic structure  

         Zinc (Zn) metal has the outer shell electronic configuration of 3d
10 

4s
2
 while 

oxygen (O) has the outer shell electronic configuration of 2s
2
 2p

4
. Since ‘O’ has a 

greater electronegativity than ‘Zn’, this enables to draw the outer shell electrons of 

Zn 4s shell into unequal bonds with O. A complete band structure of ZnO has been a 

mystery for several decades. This is because of the lack of correlation between 

theoretical calculations and experimental data. Experimental evidence suggests that 

the 3d electrons of Zn have an influence on the valence band electrons of Zn and O 

such as Zn-4s and O-2p [26,27]. Additionally, hybrid orbitals strongly influence the 

Zn-4s and O-2p electrons. Figure 2.3 shows the schematic presentation of the ZnO 

band structure with the band gap in between O
2-

 2p valence band and Zn
2+

 4s 

conduction band states.      

 

           ZnO is a direct wide band gap semiconductor with a band gap of 3.37 eV at 

room temperature. This implies that the conduction band minimum and valence band 

maximum are positioned in phase at the same location. Therefore, their wave 

functions or k-vector values are the same. The conduction band is primarily 

composed of empty Zn
2+

 4s electrons associated with Г7 symmetry while the valence 

band is composed from the occupied O
2-

 2p electrons. As shown in Figure 2.3, p-

type orbitals are split by the hexagonal crystal field and spin-orbit coupling into three 

bands labelled as A,B and C with symmetries Г7, Г9 and Г7, respectively. The holes 

formed in the A valence band are referred to as light holes. Whereas, the holes 

formed in the B and C valence bands are referred to as heavy holes and spin orbit 

spin-off band holes, respectively.  
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Figure 2.3: Schematic representation of the ZnO electronic band structure [28].   

  

           ZnO is an n-type intrinsic semiconductor. The origin of this behaviour 

remained a mystery for many years. Previously it was believed that the native defects 

in ZnO such as Zn interstitials and O vacancies were the main reasons for the n-type 

conductivity [26,29,30]. However, it was later suggested that hydrogen (H) was the 

source for the n-type conductivity in ZnO. Hydrogen is amphoteric in most of the 

semiconductors, which means that it is found as H
+ 

in p-type and H
- 

in n-type 

semiconductors. In ZnO, the H
+ 

state is found and therefore hydrogen acts as a donor 

[26]. Additionally, some reports also suggest that intrinsic defects play a minor role 

in the n-type conductivity [29,30] and show that hydrogen incorporation is the prime 

cause for this n-type conductivity. The n-type conductivity of ZnO can be further 

increased by doping with aluminum (Al), gallium (Ga) and indium (In). This is 

because of the increase in free electron carrier concentration. In this work, we have 

used only Al-doped ZnO (2 wt% Al2O3 component equivalent to 3 at% Al). A 

detailed review report for the optical and electrical properties of ZnO can be found in 

ref [26]. 

 

           P-type ZnO still remains an issue due to its unstable behaviour. However, p-

type ZnO has been reported by many groups with a few different dopants, e.g. 
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Target Material  

Substrate  

Deposited Material  

Expanding Ablation 
Plume 

Laser Beam 

Medium Vacuum  
Pressure  

copper (Cu), antimony (Sb), gallium (Ga) and nitrogen (N) [31-37]. The ultimate 

success of the above works for the p-n junction-based devices still needs to be 

studied properly in terms of their stability. This may lead to the future 

commercialisation of those devices.  

        

2.2 Growth techniques 

       In this section, we describe the growth techniques such as pulsed laser 

deposition (PLD) and vapor phase transport (VPT) used in this work. These details 

include the introduction, background and principles of those techniques. PLD is the 

most extensively used growth technique in this work, while VPT is used for one 

application only.  

                                
2.2.1 General presentation and basic principles of PLD  

 

    

 

 

 

 

           

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2.4: Schematic representation of the ablation plasma production in the PLD 

apparatus.  

 

       PLD is a well-established epitaxial material deposition technique [38-40].
 
In 

PLD, when the laser pulse is focused on a material target with a suitable fluence, it 

generates a plasma plume. This plasma then expands through the low-pressure 

background gas in the PLD chamber and re-condenses on the substrate. This is the 

fundamental scheme of the PLD technique.  
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         When a pulsed laser is focused on the target material with a high energy 

density (fluence, e.g. 2 J/cm
2
), the electromagnetic energy is ultimately converted 

into thermal energy through various electronic excitation and collision processes 

[40]. This leads to a rise of the surface temperature above the vapourisation 

temperature which allows the evaporation of the source material (target). The 

duration of this process is very short and less than the laser pulse duration (e.g. 6 ns). 

So, the remaining of the laser pulse will be absorbed by the evaporated target 

material close to the surface of the target. Typically, the absorbed energy is high and 

concentrated enough to break the bonds in the material and create an ionised ablation 

plasma. The minimum laser fluence (energy per unit area) required to create plasma 

is called the ablation threshold. For ZnO, the nanosecond laser ablation threshold is 

observed to be ~ 0.23-0.47 J/cm
2 

[41]. The produced plasma starts to expand in a 

forward direction and perpendicular to the target due to the pressure gradient at the 

target surface. During the ablation plasma expansion, the high energetic plasma 

neutral or ionised atoms and molecules collide with the background gas, get 

electronic excited and emit photons in the decay. As a result, it produces the 

characteristic luminous plasma called a plasma plume. This ablation plume consists 

of a mixture of energetic species such as atomic and molecular ions, electrons, and 

clusters. They have temperatures in a range of 10
3
-10

4
 K, kinetic energy (~ 1 eV), 

velocity (~ 10
6
 cm/s) and the plasma particle densities are of the order of 10

18
 cm

-3
. 

The gas pressure in the chamber affects the mean free path of the ablated species in 

the plume. Therefore, the control of the background gas pressure is a key parameter 

to modify the kinetic energy of the ablated species. In this regard, at high gas 

pressures the kinetic energy of the ablated species is low due to high density of the 

gas molecules, which slows down the ablated species.  

 

         Depending on the substrate temperature during growth, the plume species will 

arrange on the substrate following different growth modes. The various growth 

modes and detailed growth kinetics were established using reflection high-energy 

electron diffraction (RHEED), see a review in ref [39]. In brief, the growth modes 

depend on the surface energy of the substrate (δsubstrate), surface energy of the film 

(δfilm), and energy of the substrate film interface (δsf).  
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 If δsubstrate > δfilm + δsf, then the growth mode is called layer-by-layer or Frank 

Van der Merwe growth. In this mode, the formation of new layers only 

begins when the previous layer is completed. This mode can lead to high 

quality uniform films.  

  If δsubstrate < δfilm + δsf, then the growth mode is called 3D island or Volmer 

Weber growth. In this mode, the deposited material nucleates and forms 3D 

islands. This growth mode can lead to polycrystalline films.  

 A combination of the above two modes leads to the Stranski Krastanov 

growth mode: the intial uniform layer growth is followed by 3D island 

growth.   

 

      Film growth using PLD depends on several important deposition parameters 

including substrate deposition temperature, oxygen deposition pressures, and the 

distance between target and substrate. Films properties will also depend on the 

number of laser shots, the laser frequency/repetition rate, and laser fluence on target. 

We now briefly discuss the effects of these parameters on the structure and 

properties of the material being deposited. 

 

 Effect of substrate deposition temperature: Substrate deposition temperature 

is a key growth parameter that affects the crystallinity (due to the effect of 

increased surface diffusion with increased substrate temperature) of the 

material and, hence, affects the other material properties. For example, the 

electrical conductivity and optical transmittance of the TCO film will 

increase as the substrate temperature increases. This can be explained by an 

increase in grain size of the films with increasing substrate temperature [39].  

 Effect of oxygen deposition pressure: Background gas (e.g. oxygen in this 

work) pressure also affects the surface morphology and opto-electronic 

properties significantly. This is because an increase in oxygen pressure 

reduces the kinetic energy of the ablated species due to the inelastic collisions 

between oxygen gas molecules and plume species. In this thesis (chapter 5), 

we have extensively investigated the effects of oxygen pressure as a function 

of film thickness for the ZnO and AZO thin films grown on Zeonor 

substrates.  
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 Effect of target-substrate distance: Background gas pressure and target-

substrate distance are interrelated growth parameters. As the background gas 

pressure increases the ejected plume dimensions decrease, due to the 

“confining” effect of the collisions between gas molecules and ablated 

species (just discussed above). For given laser fluence and background 

oxygen pressure, there exists an optimal target-substrate distance L (typically 

a few cm’s) for which congruent, i.e. preserved stoichiometry, deposition 

occurs [40, 42, 43]. For target-substrate distances much larger or much 

smaller than L, the deposition rate becomes much smaller than the optimal 

deposition rate (see below) [42].  

 Effect of number of laser shots: Film thickness increases with the number of 

laser shots. This increase in thickness affects the optical and electrical 

properties as the film structure becomes closer to that of the bulk material.  

 Effect of the laser repetition rate: An increase of the laser repetition rate 

increases the amount of ablated species reaching the substrate. As a result 

more nanoparticles transport to and condense on the substrate allowing the 

growth of high density nanowires/nanorods [43].  

 Effect of laser fluence: High laser fluence increases the energy of the ablated 

species. This means that the species can transfer more efficiently the 

background gas to the substrate for better crystalline quality [39,40].  

 

Some of the advantages of PLD are listed below.  

(i) PLD can be carried out even at room temperature [44]. 

(ii) PLD can produce crystalline deposits even at low temperatures due to the -

presence of high energetic ionised species in the plasma produced by the 

laser [44].  

(iii) PLD can deposit multi-layers using multi-material targets, which is very 

useful for device fabrication [45]. 

(iv) PLD can produce films of varying thicknesses, ranging from nano scale to 

micro scale, by varying the number of laser shots.  

(v) The PLD deposition rate is relatively high compared to other deposition 

techniques, and ideally of the order of 1 Å/pulse [42].  
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      There are a few drawbacks also associated with the PLD technique. The most 

important ones are: (i) Slight difficulty to produce uniform films or nanostructures. 

However improved uniformity can be achieved with a systematic rotation of the 

targets and substrates during deposition. (ii) Problems associated with large scale 

production [42,46].  

 

 

2.2.1.1 PLD apparatus  

 

      The standard PLD apparatus is shown in Figures 2.5(a, b). The system consists 

of a main 50 L stainless-steel chamber, where the deposition takes place. A 4 L 

stainless-steel load lock chamber is connected to the main chamber through a gate 

valve. These two chambers are maintained under high vacuum (~ 3×10
-5

 mTorr or 

3.9×10
-6 

Pa), independent of each other, using turbomolecular vacuum pumps. This 

allows loading and unloading the samples into the main chamber through the load-

lock chamber, without breaking vacuum in the main chamber. The vacuum pumps 

are cooled by a continuous flow of water.  The main chamber is pumped with a 

turbomolecular pump (Pfeiffer TMU 521P) and with an oil free backing pump (MVP 

055). The load-lock chamber is also pumped with a turbomolecular pump (TMU 

071) and with an oil-free backing pump (MVP 015). The main chamber is able to 

reach a vacuum of ~ 1×10
-5

 mTorr from the atmospheric pressure in 24 hrs. 

Whereas, the backing pump is able to reach a vacuum of ~ 5×10
-5

 mTorr from 

atmospheric pressure in the same 24 hrs duration. In this work, oxygen gas (99.999% 

purity) was used during the deposition as a background gas. Oxygen gas 

pressure/flow rate can be controlled by a mass flow controller (MFC) and by varying 

the speed of turbomolecular vacuum pump. Dry nitrogen gas is used for venting the 

main and load-lock chambers to the atmospheric pressure.  

 

          The target-substrate distance was kept constant at 5 cm in our experiments. 

The ZnO target was purchased from PI-KEM being a 99.999% pure sintered ceramic 

disk of 2.54 cm diameter and 1 cm height. The aluminum-doped ZnO (AZO) target 

was also used with a 2 wt% Al2O3 component equivalent to 3 at% Al. The substrates 

used were Silicon (Si) (100) and plastics such as Zeonor and polycarbonate. The 

cleaning procedures of the substrates prior to deposition are discussed in the 

respective Chapters 4 and 5. 
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Figure 2.5: (a) Showing typical representation and (b) photograph of PLD apparatus, and (c) 

the photographic view of plasma produced during the deposition.  

 

         To maintain the uniform deposition across the substrate, the substrate and target 

can be rotated by a computer-controlled motor. The sample holder in the main 

chamber is equipped with a heater coil and it is capable of reaching the maximum 

temperature of ~ 1050 
o
C. The heater coil temperatures can be measured by a 

thermocouple and it displays the reading using a digital control unit. The whole 

heating system can be controlled by a computer [46].  

 

(b) (b) 
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Load-lock Chamber 

(a) 

(c) (b) 
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         The PLD apparatus is equipped with a high-power, Q-switched, and frequency-

quadrupled Continuum Powerlite Precision II Nd:YAG Laser. This laser has a 

fundamental wavelength of 1060 nm. This is then quadrupled by two harmonic 

crystals to emit an output wavelength of 266 nm. The repetition rate, pulse width and 

energy of the laser were 10 Hz, 6 ns and 150 mJ, respectively. The laser beam was 

imaged with the help of a single biconvex lens to form a spot of ~ 4 mm diameter on 

the target surface to produce an average fluence of ~ 2.0 J/cm
2
. The laser beam was 

focused on the target at an incident angle of 45°. Values of 1.5 W, 25 MW and 2×10
8
 

Wcm
-2

 were, thus, realised for the average power (pulse energy/periodic time), peak 

power (pulse energy/pulse width) and power density (peak power/surface area), 

respectively, for all the growths in this series of experiments [47].  

 

2.2.2 Vapour phase transport (VPT)  

 

          We have used the vapour phase transport (VPT) growth technique to grow 

catalyst-free ZnO nanorods on PLD prepared catalyst free ZnO seed layers. A metal 

catalyst (e.g. Au) coated Si substrate has been used to grow ZnO nanorods [48,49] 

directly on Si, but the lattice mismatch between Si (and any native oxide present) 

and ZnO is a significant issue that results in a disordered/unaligned nanorod growth. 

Therefore, a ZnO seed/buffer layer on Si as a substrate ensures energetically 

favourable nucleation sites to initiate the growth, and also provides textured 

crystalline substrates with a perfect lattice match for the ZnO nanorod growth on the 

ZnO seed layers. The ZnO seed/buffer layers can be grown directly on Si substrates 

without catalyst [50] and also can be grown with the aid of Au catalyst [51]. As 

mentioned earlier, in our research we have used a catalyst free PLD technique to 

grow ZnO seed layers on Si substrates.  

 

            In VPT, a mixture of ZnO and carbon (in the form of graphite powder) is 

heated up and this creates a Zn vapour source. This vapour is then transported on to 

the substrate or ZnO seed layers, where it condenses or oxidises. In detail, the 

evaporated ZnO and carbon mixture reacts to form carbon monoxide and zinc 

vapour. This reaction is called carbothermal reduction and hence this growth 

technique is also called carbothermal reduction VPT. This zinc vapour is then 
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condensed at the nucleation points close to the surface and reacts with residual 

oxygen in the furnace tube and condenses into ZnO at the nucleation point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: (a) Schematic diagram of the VPT apparatus with furnace setup and (b) the 

photographic image of the same apparatus set up.  

 

        The carbothermal and subsequent oxidation reactions are shown below [51] 

(where ‘s’ is solid state and ‘g’ is gaseous state). At the growth temperatures used in 

this thesis the dominant secondary product of the carbothermal reduction is CO, at 

lower temperatures it can be CO2. 
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 ZnO(s) + C(s) → Zn(g) + CO(g) 

Zn(g) + ½ O2(g) → ZnO(s).  

 

                          

         Figure 2.6 (a) and (b) shows schematic representation and photographic view 

of the VPT apparatus. VPT growth was conducted in a quartz tube with a length of 

115 cm and an internal diameter of 37 mm. The quartz tube was positioned in a 

single temperature zone of a horizontal tube furnace (Lenton Thermal Designs), with 

a uniform supply of high purity (99.999%) Ar gas flow controlled by an Analyt GFC 

17 mass flow controller (MFC). High purity graphite power (99.9999%; 60 mg) and 

ZnO (99.9995%; 60 mg) powders were carefully weighed and then mixed and 

ground using a mortar and pestel for a few minutes until a homogeneous mixture is 

obtained. This mixture was then loaded and spread carefully over a 2 cm length in 

the middle of an alumina boat. The ZnO coated Si substrate was placed directly 

above the mixture (ZnO seed layers facing down) on the boat. This was arranged 

using supports of two thin strips of Si pieces. The alumina boat was then carefully 

loaded into the middle of the quartz tube. The quartz tube was sealed using tube caps 

and a 90 sccm (standard cubic centimeter per minute) flow of high purity Ar flow 

was used to purge the tube for 5-10 min.  After this step, the furnace was heated up 

to 900 
o
C using a temperature controller and growth took place over a period of one 

hour. The furnace was then cooled for several hours to reach a temperature of ~ 300 

o
C. The Ar flow was stopped before unloading the alumina boat from the quartz 

tube. Finally, ZnO nanorod sample was collected from the alumina boat and then 

characterised.  
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Chapter 3  

 

Characterisation Techniques and 

Principles             

 

 

 

         

       

 

      A wide selection of characterisation techniques were used to study the surface 

morphology and material properties of the as-grown samples. The schematic chart-

representation of the various characterisations is shown in Figure 3.1. Scanning 

electron microscopy (SEM), atomic force microscopy (AFM) and transmission 

electron microscopy (TEM) were used to study the surface morphology of the 

samples. The structural properties were studied by 2θ-ω and pole figure scans of x-

ray diffraction (XRD), and Raman spectroscopy. Optical properties were studied by 

UV-visible transmission and low-temperature photoluminescence (PL) spectra. 

Electrical properties were studied by Van der Pauw/Four point probe and Hall effect 

instruments. Hydrophobicity properties were studied by water contact angle (WCA) 

instruments. A brief introduction, the principles of operation and the actual 

equipment setup for the various characterisation techniques are detailed in the 

following sections.  
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Figure 3.1: The schematic chart representation showing the various characterisation 

techniques that were used to study the surface morphology and material properties of the 

samples.    

 

3.1    Dektak profilometry   

     Dektak profilometry (D150) from Veeco (currently trading as Bruker) is a 

surface profilometer that measure surface topography, step size (i.e. thickness), and 

surface roughness using stylus profilometry technology. It has 3D mapping 

capability, repeatability down to 4 Å which is the industry’s standard for lowest 

noise. There are other techniques to measure thickness, some of which require 

having a physical contact with the sample surface, while others are purely optical-

based, e.g. ellipsometry. Profilometry is an easy method to measure film thickness. 

A typical view of a contact profilometer is represented in Figure 3.2. It consists of a 
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stylus that can be moved in X,Y and Z-axes. The stylus is positioned on the surface 

of the sample as shown in Figure 3.2 and it is controlled by computer software. The 

process can be observed by a CCD camera. When the stylus is brought to contact 

with the surface, then moved laterally across the surface. This is measured as the 

change in vertical heights as a function of horizontal distances. The recorded 

readings can be plotted as a height profile of the surface.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Schematic representation of the profilometry set up.  

 

    We have used Dektak profilometry to measure the thicknesses of our ZnO and 

AZO thin films grown on Zeonor plastic substrates. Our samples (ZnO and AZO 

thin films on Zeonor substrates) have a mask on one side and thin films on the other 

side. So, the thickness was measured using the step-height from the profilometry. 

Glass cover slips were used as masks in this work. The photograph of the 

profilometry is shown in Figure 3.3 (a). The microscopy image in Figure 3.3 (b) 

shows the mask part and thin film parts of the sample. The stylus and its reflection 

can be seen in Figure 3.3 (b). The thickness was measured from the step height as 

shown in Figure 3.3 (c), as an example. The tangent drawn on profile (Figure 3.3 (c)) 

was taken as a reference to measure the accurate step height or thickness of the 

sample. Several step heights were measured for each sample and the standard 

deviation of those values was taken as an error bar length.  
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Figure 3.3: (a) Photograph of Dektak profilometry with various parts, (b) the microscope 

image for the step and (c) step height (or thickness) of the films measured using Dektak 

profilometry. 

 

3.2   X-Ray diffraction (XRD) 

3.2.1 2θ-ω scans 

         XRD (Bruker AXS D8 advance diffractometer) was used in this work to 

investigate the crystalline quality, presence of lattice planes and orientation of 

growth in the ZnO samples (thin films and nanorods). The structural characteristics 

were investigated by θ-2θ (or 2θ-ω) and rocking curve scans. Sample holder was 

positioned in x, y and z-directions, and then the circular motion was optimised by θ 

and φ in the XRD apparatus (Figure 3.4(a)). After the x, y, z, θ and φ direction 

alignments, XRD θ-2θ scan was performed with a fixed angle of X-ray source, in 

which the sample holder gradually rotated with an angle “θ” while the X-ray detector 

rotated by an angle “2θ”. The further analyses of the observed XRD θ-2θ peaks was 

performed by a rocking curve scan, where the X-ray source and the detector were 

held static, while the sample holder was rotated around the θ-value for the peak.   
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Figure 3.4: (a) Schematic representation of XRD apparatus, (b) Bragg’s diffraction of X-

rays by atomic planes of the sample.  

 

        XRD is a characterisation technique, which is used to measure the crystalline 

quality or texture of the materials. Generally, when an X-ray beam is incident on a 

material, the incident X-rays are either absorbed or scattered by the material. The 

XRD technique works only for the scattered X-ray waves. Scattering can be either 
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elastic or inelastic. The scattered inelastic waves (or Compton scattered waves) from 

different electrons do not interfere with each other because there is no phase 

relationship between the incident and the scattered waves. Hence, no 

crystallographic information can be revealed from the inelastic scattered X-rays. 

However, the elastic scattered waves are partially coherent and can interfere with the 

incident waves under certain conditions. Therefore, the crystallographic information 

can be obtained only from the elastic scattered waves. The condition for constructive 

interference is discussed below. 

 

        As discussed, when X-rays are incident on a crystal, the rays reflected by the 

atomic planes of the crystal can interfere because of their path and phase differences. 

The condition for the constructive interference is given by following equation. This 

is known as Bragg’s Law [1]. A typical representation of the interaction of the X-

rays with the periodic atomic lattice is shown in Figure 3.4 (b).  

 

                                                                     (Eq. 3.1)  

 

Here, λ = 1.5425 Å is the wavelength of the Cu Kα line: is average over Kα1 and Kα2 

components (radiation lines). θn is the Bragg angle, n is the order of reflection (e.g. 

n=1,2,3 etc.), and dhkl is the spacing between consecutive atomic planes (e.g. d002, 

d101 etc.). For hexagonal wurtzite structure of ZnO, the lattice spacing can be 

calculated from the following equation 3.2, ref [2].  

 

 

          
 
 

 
(
          

   
)  

   

   
       (Eq. 3.2) 

 

Where, a and c are the lattice constants of the unit cell.  

                                              For (002) plane,      
 

 
   and  

                                              For (100) plane,            . 

 

        We use the (002) peak FWHM values and 2θ angular positions to estimate the 

samples crystallite size and residual stress, respectively. The average crystallite size 

 can be calculated using Scherrer equation [3] D
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                                                                      (Eq. 3.3) 

where λ = 0.15425 nm is the wavelength of the Cu Kα line, θB is the Bragg angle and 

(in radian) is the 2θ FWHM of the ZnO (002) peak after 

removal of the instrumental broadening, assuming Gaussian line profiles. 

 

        The residual stress (σ) in the ZnO film plane is proportional to the strain along 

the c-axis in the biaxial strain model. Maniv et al. [4] have derived a formula to 

express σ in the biaxial strain model: 

                 (Eq. 3.4)

 

where c and c0 are the c-axes length of the strained and relaxed ZnO crystal, 

respectively. This is the expression we have used in this work.  

 

3.2.2 Pole figure scans 

        We have also performed pole figure experiments on some of our thin films and 

nanorod samples to obtain more crystallographic information. A pole figure is a 

stereographic projection. For a selected set of crystal planes, it provides a 

stereographic projection of the variation of pole density with pole concentration as a 

function of pole orientation.  

             

          In order to understand the pole figure results, we give a simple explanation 

here with an example. Suppose there are 3 grains in a metal cubic sheet. The 

orientation of these grains can be known from Laue methods. The orientation of all 

the grains can be explained by plotting a stereographic projection of the (100) poles. 

The projection plane is parallel to metal sheet plane. Pole figure stereographic 

images depend on the distribution of grains. If the grains are distributed randomly, 

the poles are then distributed uniformly on a stereographic projection. This is shown 

in Figure 3.5 (a). But, if the grains are oriented in a preferred direction then the pole 

will tend to cluster by forming only at a few particular places. This behaviour is 

represented in Figure 3.5 (b). This is called cubic texture and it reveals the texture 

behaviour of the metal sheet [5,6]. Figure 3.5 (a) and (b) are 2D stereographic 

projections.    
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Figure 3.5: (a) (100) Pole figures without texture and (b) (100) Pole figures with texture.  

 

         Pole figure experiments were performed as part of a collaboration with the 

School of Electronic Engineering, DCU. A Jordan Valley BEDE-D1 XRD 

instrument was used for the pole figure experiments.   

 

3.3    Atomic force microscopy (AFM) 

    AFM is a scanning probe microscope that depends on force interaction between 

a small probe (or tip) and the surface of the material. In certain conditions, 

instrument resolution can reach atomic scale [7]. In AFM instruments, a laser is 

focused on the surface of a small cantilever. The focused laser spot is reflected on 

the mirror towards a photodiode detector [8].
 
The cantilever is mounted on a piezo 

crystal, which is in a tripod configuration. This allows the cantilever to move freely 

in x, y and z-directions. A vacuum chuck is used to mount the sample on the sample 

holder during the scan. A schematic view and photograph of AFM apparatus are 

shown in Figures 3.6 (a) and (b). 

 

        AFM instruments can operate in three distinct modes: contact mode, dynamic 

mode and tapping mode. However, the mode of operation is decided based on the 

sample nature. For example, contact mode is often not suitable for soft, smooth and 

delicate samples. In this work, we have used the AFM instrument in tapping mode. 

In tapping mode, the cantilever oscillates close to its resonance frequency and is then 

brought close to the surface. The cantilever taps on the surface (or has intermittent 
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contact with the surface). In tapping mode, the cantilever is relatively contamination-

free as compared with the contact mode [8].  

 

 

 

 

 

 

 

 

 

 

                                       

 

 

                                  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: (a) Schematic representation of a typical AFM instrument, (b) photograph of 

AFM apparatus (Ref. [9]).  

 

       To investigate surface morphology and surface roughness, AFM (Veeco 

dimension 3100 controlled by a nanoscope IIIa controller, digital instruments) was 

used. The instrument was operated in tapping mode using standard aluminium-
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coated silicon AFM probe (Tap 300Al-G, Budget sensors) with a force constant of 

40 N/m. The collected data was analysed by WSXM software to calculate grain size 

and rms roughness of the samples [10]. 

 

3.4    Scanning electron microscopy (SEM)  

        SEM was used to study the morphology of the samples. In SEM, a high energy 

beam of electrons is incident on the sample that is examined. The interactions 

between electrons and the surface of sample may be an elastic or inelastic scattering 

process. These interactions cause the emission of the secondary electrons, 

backscattered electrons, Auger electrons, characteristic X-rays, and 

cathodoluminescence emission. The possible interactions are shown in Figure 3.7. 

The mode of operation of SEM depends on the mode of interaction of the electron 

beam with the surface of the samples being analysed. Some modes give information 

about the morphology, while others reveal information about the material properties 

of the samples. Thus, SEM can be operated in multiple modes depending on the 

information required about the samples. For SEM instruments, the operation electron 

acceleration voltage is normally between 5-25 kV. 

 

 

 

 

 

 

 

 

 

    

            

 

Figure 3.7: Schematic representation of the electron beam interaction with the sample.  

 

           In elastic collisions, the elastically scattered electrons are the ones that are 

deflected away from the surface of the sample and are known as backscattered 
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electrons. The amount of backscattering is highly dependent on the mass of the 

element being examined. Thus, the higher the mass the higher the number of back 

scattered electrons. This can be used to identify different compositions of the 

materials under investigated. Circular detectors are suitablely placed to detect the 

backscattered electrons through an aperture (see Figure 3.8 (a)).  

 

       On the other hand, in inelastic scattering the incident electron beam knocks out 

the electrons in the outer shell of the atoms of the examined material. The ejected 

electrons from the atoms are known as secondary electrons, and have low energies 

about ≤ 50 eV. As these secondary electrons have low energies, they play a 

significant role in visualising the topography of the samples. The ejected secondary 

electrons are accelerated to a sufficient energy that can activate a scintillator. 

Further, the emitted light is then amplified using a photomultiplier tube and 

converted into a digital image. Secondary electron detectors can be used to create 

high quality images with a large depth of field because of the number of secondary 

electrons emitted from the surface. The number of emitted secondary electrons 

significantly increases as the angle between the surface normal and incoming 

electron beam increases. This leads to a contrast based on the angle of tilt that is used 

during the final image.  

 

        The ejected electrons during the interactions may also possibly lead to a second 

detectable signal. Some of the secondary electrons emitted leave behind an inner 

shell hole. These holes recombine with electrons. The energy difference between the 

inner and outer orbital shells of the atoms causes the energy emission in the form of 

X-rays. The energies of the emitted X-rays characterise the binding energies of the 

orbitals present. This is known as energy dispersive X-ray spectroscopy (EDX), 

which works if a dispersive or energy-resolving device is present such as a 

multichannel analyser as shown in Figure 3.8 (b). EDX provides the stoichiometry 

information of the composite material under examination.  

 

     The schematic representation of the typical SEM apparatus is shown in Figure 

3.8 (a) and (b). The SEM system used in this work has two column chambers under 

vacuum. The lower chamber may be brought to atmosphere without breaking 

vacuum, and the other chamber using a differential vacuum pumping system. At this 
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atmospheric pressure state, the samples are mounted in the lower chamber. The top 

column contains an electron gun or electron source, which can be either a tungsten 

filament (a hot cathode) that acts as a thermionic emitter or a cold cathode emitter 

that uses a field emission source. An SEM apparatus normally uses thermionic 

emitters, whereas a Field Emission SEM (FE-SEM) instrument uses field emitters. 

The electrons emitted from the electron gun are additionally accelerated by the 

anode. A series of magnetic lenses and apertures are used to focus the electron beam 

in a column as shown in Figure 3.8 (a). A condenser lens is used to adjust the spot 

size and beam current, and an objective lens is used to adjust the focus.      

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: (a) Schematic diagram of the main components of a typical SEM system, (b) a 

detailed diagram showing the secondary electron (SE) and backscattered electron (BSE) 

detectors and the associated electronics (Ref. [11]). 

 

            In this work, SEM characterisation was performed using a Carl-Zeiss EVO 

series model SEM, fitted with secondary electron, backscattered electron and EDX 

detectors. Additionally, for high resolution purposes a FE-SEM (Hitachi S5500) was 
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also used. The FE-SEM instrument based characterisations were performed at 

laboratories of the School of Chemical Sciences, DCU.  

 

3.5 Transmission electron microscopy (TEM)  

       In order to further characterise the individual nanostructures (here nanorods), we 

have also used TEM in this work. TEM is a microscopy technique in which an 

electron beam of high energy is transmitted through an ultra-thin (~ 100 nm) sample. 

An image is formed of the electrons that were transmitted after interaction with the 

sample. For this purpose, electrostatic lenses are used to focus and magnify the 

image of the transmitted electron beam recorded on a phosphor screen or a specially 

adapted CCD camera. TEM instrument operates at an electron acceleration voltage 

in between 100 kV and 300 kV [12]. Similar to SEM, either a thermionic emission 

source or a field emission source is used to produce the electron beam in TEM.  

 

       There are various modes of operation for the TEM. They depend on the 

information that is required from the sample being examined. The different modes of 

operation in TEM are scanning transmission electron microscopy (STEM), dark field 

TEM (DF-TEM), bright field TEM (BF-TEM), selected area electron diffraction 

(SAED), high resolution TEM (HR-TEM), and electron energy loss spectroscopy 

(EELS). In this work, we have used HR-TEM and SAED operation modes. These 

two modes of operation are discussed below in a greater detail.  

 

(i) High resolution TEM (HR-TEM) 

         HR-TEM image reveals the information about the individual planes of the 

crystal structure for sample being studied. HR-TEM is a powerful tool to study the 

crystalline properties of nanostructured materials. The high-energy electron beam 

acts as an electron wave (from de Broglie’s wave-particle duality) in the TEM 

apparatus. When an electron wave interacts with crystallographic structure of the 

sample, it creates an interference pattern from the elastically scattered electrons. The 

combined information obtained by transmitting an electron beam through the sample 

and the interference pattern reveals the crystal structure of the sample. Distribution, 

grain boundaries, structural defects, dislocations, stacking faults in the material can 

also be identified by HR-TEM.  
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(ii) Selective area electron diffraction (SAED)      

         SAED is another technique that reveals crystallographic information on the 

sample. As mentioned above, an electron beam acts as an electron wave when it 

interacts with a crystalline sample. In this regard, the regular crystal structure of the 

sample acts as a diffraction grating to the electron wave. Hence, the scattering of the 

electrons takes place at different angles. Using the adjustment for the dark field 

mode of the TEM apparatus, the pattern of the scattered electrons will be observed as 

a diffraction pattern. This diffraction pattern is similar to XRD and it reveals the 

crystallographic information of the sample being examined. However, XRD is a bulk 

characterisation, which covers a whole area (~ 80 mm
2
) of the sample while SAED 

focusses on a small area (~ few 10’s of nm
2
) of the sample. Since high energetic and 

narrow electron beams are used in SAED, it allows to obtain the crystallographic 

properties of the individual features in a high resolution image of the sample to be 

studied.    

 

         In this work, TEM experiments were performed (Instrument model: FEI 

Technai G
2
 S – Twin, operating voltage of 200 kV) by our collaborators at the 

University of Hyderabad, Hyderabad, India.  

 

3.6   Water contact angle (WCA)  

        Contact angle instruments were used to investigate the degree of hydrophobicity 

of the ZnO and AZO thin films. A commercial FTA (First Ten Angstroms USA) 

200, contact angle instrument was used. A schematic representation of the WCA 

apparatus is illustrated in Figure 3.9 (a). FTA 32 software was used to control the 

water drop flow rates of the instrument between 0.05 – 125 μL/s. In this work, we 

used a flow rate 1.5 μL/s. 

 

         Contact angle works on the principle of Young’s equation (Eq. 3.5 shown 

below), which relates interaction among the liquid, solid and vapour phases [13]. 

The schematic representation of these quantities is shown in Figure 3.9 (b). The 

typical parts of the contact angle analyser are shown in photograph form of Figure 

3.9 (c). Pure (HPLC grade) water was used for all the WCA experiments. The 

syringe needle tip was placed 2 mm above the film surface. A water droplet can be 
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imaged by the camera and analysed by computer software. Generally, if water 

contact angle is less than 90° the surface of the material is considered to be 

“hydrophilic”, and if the contact angle value is more than 90° then the surface is 

considered to be “hydrophobic”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: (a) A schematic representation of WCA apparatus, (b) showing the quantities in 

Young’s equation and (c) photographic view of the contact angle instruments used in this 

work.                           

                     

                                              ϒSV =ϒSL + ϒLV cosθ                  (Eq. 3.5) 

 

Where θ is contact angle, ϒSL
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3.7   UV-visible spectrophotometer 

      UV-visible spectrophotometer (Varian CARY 50 scan) was used in this work 

to measure the optical transmittance of the samples (ZnO and AZO thin films on 

Zeonor plastics). It can measure optical transmission spectra in a wavelength range 

of 300 nm - 1100 nm. As shown Figure 3.10, a beam of light comes from the source. 

Afterwards, the light beam passes through a monochromator and is then incident on 

a sample. The transmitted light through the sample is collected by a detector. The 

collected data was analysed by the Scan software.   

           

         When monochromatic radiation of intensity Io is directed at the sample, 

absorption takes place. After absorption, if the resultant intensity is I, then the 

amount of transmittance is defined as   
 

  
.  This is also called Beer-Lambert law 

[14] and equation 3.6 is shown below.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Schematic diagram of the optical setup for UV-visible spectrophotometer (Ref. 

[15]). A reference beam is used in our experiments to set a baseline correction for the 

removal of the transparent substrate absorption.  

 

                                                         
 

  
               (Eq. 3.6) 

Where μ is the linear absorption coefficient and   is the thickness of the sample.  
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3.8    Low temperature photoluminescence  

         Photoluminescence (PL) is a powerful, non-destructive technique to analyse 

the electronic properties of semiconductor materials. Generally, it involves 

absorption of photons to excite the electrons from the valence band to the conduction 

band. Since the excited state electrons are unstable and their life time is about 10
-9

 

sec, they decay back to the ground state through electron-hole recombination. During 

this process the excited carriers first thermalise to the lowest available energies, 

either at the band edges or in available defect levels, on a timescale of a few 

picoseonds, and then emit energy in the form of light, on a timescale of nanoseconds, 

with a wavelength corresponding to the energy difference between the two states. PL 

relies on the creation of an electron-hole pair in the material during the interaction 

process with the light source (here the light source is typically a laser). When an 

electron jumps into the conduction band, it leaves a hole in the valence band. The 

creation of mobile holes in the valence band and electrons in the conduction band are 

crucial aspects of the PL technique. At low temperatures the electron-hole pair can 

form a bound state due to their mutual Coulombic attraction, known as an exciton, 

and hence the low temperature PL technique depends on the exciton features. At 

higher temperatures the exciton is thermally dissociated and the PL is determined by 

the independent electron and hole properties. The temperature at which exciton 

dissociation occurs is determined by the exciton binding energy (60 meV in ZnO). 

 

        ZnO is a direct band gap semiconductor material; this means that the crystal 

momentum value is the same for both the extrema of the valence and conduction 

bands. In this case, an electron and a hole can recombine in a radiative process 

involving only one photon and is a highly efficient process. The energy of the 

emitted photon will be the same as the energy difference between the valence and 

conduction band extrema. However, in indirect band gap materials the crystal 

momentum is not the same for both the valence and conduction bands. Hence, 

particles such as phonons are involved, in order to conserve the crystal momentum in 

indirect band gap materials. The emitted photon energies are affected by the loss or 

gain of energy from phonons and also the recombination probability is reduced in 

such materials because of the less probable three body recombination process 

(photon, phonon and carriers). Hence direct band gap materials are more efficient 
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optical emitters. Figure 3.11 shows a schematic representation of excitation and 

recombination processes in direct and indirect band gap semiconductors.   

 

 

 

 

    

 

 

 

 

 

                  

 

 

 

Figure 3.11: Diagram showing excitation and recombination process in (a) direct and (b) 

indirect band gap semiconductors.  

         

 

 

 

 

 

 

 

 

 

Figure 3.12: Schematic representation of main types of bound excitons in the band edge 

region for ZnO (Ref. [16]).   

 

         In pure materials, the excitons are free to move through the crystal structure. 

Therefore, these freely moving excitons are called free excitons (FE). When impurity 

atoms such as donors or acceptors or other defects are present, the excitons can be 
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trapped at these sites with characteristic localization energies. These trapped excitons 

are referred to as bound excitons (BE) and they are very useful features to study 

defects and impurities in the crystal structure, since the energy emitted when the 

electron and hole of the exciton recombine has a specific value for a particular 

defect/impurity species due to the characteristic exciton localization energy. PL 

provides a method to study the defects and impurities in the material and their 

characteristic effects on the electronic states. Defects in the crystal lattice of the 

material can be point defects and impurities as well as extended defects such as 

dislocations, stacking faults and grain boundaries. By careful analysis of the PL 

spectrum, defects and impurities can in some cases be identified.  

 

      Excitons may bind at acceptor sites (A
O
X), donor sites (D

O
X) and ionised donor 

sites (D
+
X). Additionally, if a material contains both donors and acceptors then it is 

possible for donor-acceptor recombination transitions (DAP) to emit photons [17]. 

Two electron satellites (TES) are also possible if a D
O
X bound exciton recombines 

and leaves the donor atom in either a 2s or 2p excited state. Furthermore, when the 

exciton recombines, some of the energy can go into the release of a phonon (or 

multiple phonons). These features are known as phonon replicas, and the most 

common of such features in ZnO are associated with the creation of longitudinal 

optical (LO) phonons. Figure 3.12 shows the main types of bound exciton emissions 

that exist in the near band edge region for ZnO.  
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Figure 3.13: (a) Schematic representation of the optical setup used for low-temperature PL 

apparatus with the SPEX monochromator and (b) Photograph of the same apparatus.   

 

         Low-temperature PL (at 13 K) spectra were recorded (with 1 m model SPEX 

1704 monochromator) using 325 nm He-Cd laser excitation. A schematic 

representation and photographic view of the PL apparatus is shown in Figure 3.13 (a) 

and (b), respectively. All samples were loaded in a cryostat, which can lower sample 

temperatures to 10 K-13 K using a closed cycle helium gas refrigerator. The PL 

detection equipment consists of a cooled photomultiplier tube (Hamamatsu model 

R3310-02) with single photon detection and the monochromator contained a grating 

blazed* at 330 nm (ISA model 510-05). The laser beam was focused on to the 

sample using a series of mirrors. The sample was placed in the cryostat at an angle of 

45˚ to the incident laser beam. The emitted light from the sample was carefully 

collected using focusing lenses, and then directed towards the entrance of the 

monochromator through a grating slit, and using a long wavelength pass filter to 

remove short wavelength laser plasma emission features. The spectrum is then 

acquired by the computer-controlled monochromator, and analysed using software. 

The scan time needed for particular samples can be controlled by the slit width and 

the step size used during the scan.  

 

*A blazed grating is a special diffraction grating, optimised to achieve maximum reflection effiency 

at a certain wavelength. In a blazed grating, the grooves are inclined to the flat surface by an angle for 

which the direction of maximum reflectance is identical to the angle of diffraction for a given angle of 

incidence.   

 

(b) 
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In this work, some of the PL scans were performed in the presence of a Hg-lamp 

providing reference spectral lines for wavelength calibration purposes. The measured 

wavelengths were corrected for the index of refraction of air.  

 

3.9 Raman spectroscopy  

         When a monochromatic light source (the light source is usually a laser) 

interacts with a sample, the scattered photons are observed. The frequency of the 

scattered photons can be either identical with, or higher or lower, than the original 

light frequency. This is because of the nature of the interaction between the incident 

light and the sample and is called the Raman effect. This frequency shift of the re-

emitted photons can reveal information on the vibrational, rotational and other low- 

frequency excitations of the sample. Raman spectroscopy can be used for the study 

of solids, liquids and gases.  

 

          The Raman effect is based on the effect of molecular deformations (due to 

phonons or other excitations) on the polarizability of the sample (α). The laser beam 

creates an oscillating electromagnetic wave in the sample with an electrical vector E. 

This creates an induced electrical dipole moment P = αE. Certain deformations of the 

lattice due to phonons (so-called Raman active modes, whose properties can be 

understood using the symmetry characteristics of the lattice and the modes) 

modulates the polarizability at the phonon characteristic frequency υm. The net effect 

in the classical view is a molecule with a dipole oscillating with 3 frequency 

components, specifically i) Rayleigh scattering, ii) Stokes scattering and (iii) anti-

Stokes scattering [18].    

 

i) Rayleigh scattering- The scattered photon has the same frequency as the 

original incident photon. This interaction is called Rayleigh (or elastic) scattering.  

 

ii) Stokes scattering- The scattered photon has a reduced frequency (υo - υm). 

This is called Stokes scattering. 

 

iii) Anti-stokes scattering- The frequency of the scattered photon is increased to 

υo + υm. This is called anti-Stokes scattering.  
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       Raman scattering (especially in solids) induces the transistions in 

atoms/molecules of the sample. These transistions can be rotational, vibrational, and 

electronic. Sometimes these transistions may have a combination of the above. A 

detailed study of the Raman spectroscopy for solids has been reviewed by Devine 

and Adar [19]. Also, a comprehensive review of Raman spectroscopy for ZnO can 

be seen in ref [16].   

 

       A Raman spectroscopy system typically consists of an excitation source i.e. 

laser, sample illumination system and light collection optics, filter or 

spectrophotometer, and a detector (CCD or PMT). In this work, Raman spectra 

were measured at room temperature using a Jobin Yvon Horiba LabRAM 800 

spectrometer with a 488 nm Ar
+
 laser as the excitation source, focused through an 

100× microscope objective. In this work, Raman measurements were used to 

understand the lattice defects present in the interconnected nanorod samples. 

Raman experiments were performed as part of a collaboration with the School of 

Electronic Engineering, DCU.  

 

3.10 Van der Pauw and Hall effect experiments  

3.10.1 Van der Pauw/Four-point probe: Resistivity measurement 

       The four point probe method provides an accurate measurement of electrical 

resistivity via specific current-voltage measurements. This is a technique to measure 

the sheet resistance and bulk resistivity of thin films of known thicknesses. The input 

voltage can be set in between 20-200 mV, the corresponding current is then 

automatically recorded by the software controlling the instrument. This technique 

was first developed by Van der Pauw and Leo [20].  

 

        As shown in Figure 3.14, the current source is applied to the contacts 1 and 2 

(I12) and then the voltage measured across the contacts 4 and 3 (V43). Similarly, the 

current source is then applied to the contacts 1 and 4 (I14) and the voltage (V23) 

measured. 

                  

The sheet resistance is given by 

                                        Rs =  
 

    ( )
[
    

   
 
    

   
 ]   ( )    (Ω/sq)  (Eq. 3.7)  
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Figure 3.14: (a) Principle diagram for the four point probe method of resistivity 

measurements, (b) shows the photograph of the typical parts of the instruments such as four 

point probes and the sample position (magnet is used for Hall effect measurements).  

 

Where, Q and F are the symmetry and correction factors respectively. F is a 

correction factor for geometrical asymmetry. It is not related to material anisotropy 

or inhomogeneity and it is a function of symmetry factor Q.  

                  Symmetry factor Q is defined as Q= 
         

        
              (Eq. 3.8) 

 

For known thickness, resistivity can be measured using  

                                              ρ = Rs t   (Ω cm)                             (Eq. 3.9) 
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3.10.2 Hall effect experiment 

      Once the resistivity measurements are carried out, we perform Hall effect 

measurements. The apparatus is the same as used for four-point probe 

measurements. We measure the Hall mobility, Hall coefficient and carrier 

concentration of the samples. In 1879, E. H. Hall discovered this effect. He observed 

that when an electrical current passes through a sample located in a magnetic field, a 

potential (voltage difference) develops in a perpendicular direction to both the 

electric and magnetic fields, proportionally to the electric and magnetic field 

strength. In a semiconductor material, when a magnetic field Bz is applied in a 

direction perpendicular to the direction of applied electric field Ex, a transverse field 

is then developed perpendicular to the both Ex and Bz, i.e. along y-direction. This is 

shown in Figure 3.15. Suppose that the mobile charges are positive with charge q 

and move along the slab in x-axis with a drift velocity Vx. Thus, the magnitude of the 

magnetic force on a given mobile charge q is given by qVx Bz. In a steady state, the 

force created by magnetic field is balanced by the force created by electric field. 

 

 

 

 

 

 

 

 

 

 

          

Figure 3.15: The visual representation of the Hall effect measurement set up.    

 

Therefore, the equation is given by  

                                               qEy=qVx Bz                   (Eq. 3.10)  

Hole current density is defined as  

                                                Jp.x=Vxqp                   (Eq. 3.11) 

Where Jp.x is the hole current density, q is the charge and p is the hole concentration.  
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                                    Thus, Ey=RHJp.x Bz                              (Eq. 3.12) 

Where RH is the Hall coefficient and is given by RH = 1/qp. 

Suppose the charge carriers are electrons, then the RH = -1/qn.  

The carrier concentration can be obtained from 

                                       N= 1/(q.RH)  cm
-3 

                         (Eq. 3.13) 

The Hall mobility is given by  

                                             μH = RH σ                      (Eq. 3.14) 

where σ is the conductivity and σ = 1/ρ. 

 

       These measurements indicate the type of charge carriers in the material. If the 

sign for the Hall coefficient value is negative then the material is considered n-type 

conductive. If the sign for Hall coefficient value is positive then the material is p-

type conductive. A review on Hall effect and its application is seen in ref [21]. In this 

work, we used Van der Pauw method/Hall effect apparatus with model-Accent 

HL5500 instruments.  
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 Chapter 4 

 
Growth and Characterisation of 

ZnO-based Core/Shell Nanorods 

on ZnO-Seeded Si Substrates  

 
 

 

 

 

 

 
            In section 4.1, we focus on the growth and characterisation of unique 

crystalline-ZnO/amorphous-ZnO core/shell nanorods. These self-organised 

core/shell architectures are prepared by catalyst-free PLD on ZnO-seeded Si (100) 

substrates. The structural, morphological and luminescent properties of these 

samples are established. A ZnO emission band at 3.331eV is revealed in the 

core/shell architecture and its origin linked to the observed defects at the 

crystalline/amorphous interface of the core/shell structure. This particular defect PL 

emission appears to be a new observation for ZnO. In section 4.2, we present the 

catalyst free-PLD growth and characterisation of ZnO interconnected architectures 

on ZnO-seeded Si (100) substrates. In section 4.3, we present the growth and 

characterisation of the high optical quality of vertically aligned ZnO nanorods by 

catalyst-free VPT technique on PLD grown ZnO seed layers. It also includes a 
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comparison between the structural, morphological and optical properties of the PLD 

grown ZnO seed layers, the VPT grown ZnO nanorods and the PLD grown ZnO 

nanorods.  

 

4.1 Crystalline-ZnO/amorphous-ZnO core/shell nanorods   
 

4.1.1 Growth details  

            ZnO/ZnO core/shell nanorods (here onwards sample is labelled as ZnO/ZnO 

core/shell, this is because core is crystalline ZnO and shell is amorphous ZnO, see 

section 4.1.2.2 below for more details) were grown using a standard PLD apparatus 

equipped with a high-power, Q-switched, frequency-quadrupled, Nd:YAG laser. The 

laser specifications and other growth parameters of the PLD system were discussed 

earlier in Chapter 3. Here we present the growth details of the core/shell nanorods. 

The target-substrate distance was kept constant at 5 cm. Cleaved 1 cm × 2 cm pieces 

of Si (100) wafers were used as substrates. Prior to deposition, the substrates were 

degreased/cleaned for 15 minutes in an ultrasonic bath filled with acetone/isopropyl 

alcohol. Silver paste was used to mount substrates on the substrate holder in the 

deposition chamber. Before deposition, the substrates were heated to 900 °C using a 

heater coil for 30 minutes for the purpose of surface cleaning e.g. 

removal/vapourisation of hydrocarbon contaminants and then cooled down to 450 

°C. The rationale for using these growth parameters (substrate temperatures and 

oxygen pressures) is based on our previous investigations. For example, we found 

that a 450 °C growth temperature for the seed layer provides a better crystalline 

substrate compared with the 100 °C and 300 °C growths.  

 

           The fabrication of the ZnO/ZnO core/shell nanorods involved two stages [1]. 

The first stage was the preparation of a thin ZnO seed or buffer layer. The seed layer 

of thickness around 120 nm (5000 laser shots) was deposited at a substrate 

temperature of 450 °C in an ambient O2 pressure of 100 mTorr. Following 

deposition of the seed layer, the substrate temperature was increased to 700 °C at a 

rate of 12 °C /minute, then left at this temperature for 5 minutes, and finally cooled 

down to 150 °C at a rate of 9 °C/minute. The second stage involved the preparation 

of the core/shell nanorods. The ZnO seed/substrate temperature was initially raised 

to 800 °C at a rate of 7 °C/minute. The ZnO/ZnO core/shell nanorods were then 
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grown at this temperature in a 600 mTorr O2 pressure and left in these conditions for 

5 minutes. After this period, the substrate temperature was cooled down to 150 °C at 

a rate of 9 °C/minute. The actual deposition time of the core/shell nanorods was 

about 2 hrs (40,000 laser shots), excluding the sequence of heating and cooling 

phases to pre- and post-growth. The full length of the core/shell nanorod obtained in 

these conditions was around 1 μm. Five growths using the same conditions and 

sequences were performed over a two week period. The same core/shell nanorod 

architecture was obtained in each case and is thus fully reproducible. From the 

viewpoint of the growths, we conclude that the overall sequence of specific heating 

and cooling phases used in this work has allowed us to achieve self-organised 

core/shell architecture, without the need for a separate growth step for the shell 

region. The self-organisation of ZnO nanostructures is a known feature [2]. Also, to 

the best of our knowledge, similar growths of ZnO nanorods [3,4] carried out in 

similar pressure conditions, all lead to a simple nanorod structure, i.e. without a 

shell. Thus, we can conclude that the series of substrate temperatures for the given 

deposition rate used in this PLD work should be the important parameter influencing 

the growth mode and kinetics [5] that lead to the formation of the core/shell 

architecture. 

 

             The structural characteristics were investigated by 2θ-ω, and pole figure X-

ray diffraction scans, respectively. The surface morphologies and nanostructures 

were studied by scanning electron microscopy (SEM) and field emission SEM (FE-

SEM), transmission electron microscopy (TEM) at an operating voltage of 200 kV. 

High resolution TEM (HR-TEM) and selective area electron diffraction (SAED) 

were studied using the same TEM apparatus. Low-temperature photoluminescence 

(PL) spectra were recorded using a 325 nm He-Cd laser excitation. 

 

4.1.2 Results and discussions  

4.1.2.1 Structural properties  

        Figure 4.1 shows the 2θ-ω XRD scan, on a logarithmic scale, for ZnO/ZnO 

core/shell nanorods grown by PLD and similar data from a ZnO single-crystal wafer. 

The ZnO/ZnO core/shell nanorods show a dominant (002) reflection at 2θ ≈ 34.40º 

and a weaker (004) reflection at 2θ ≈ 72.62º. The origin of the weaker or impurity 
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features is also mentioned in the figure caption. No other ZnO-related peaks are 

observable. The intensity of the PLD-deposited ZnO (002) reflection is around a 

million counts. The ZnO/ZnO core/shell nanorods grown by PLD on Si (100) 

substrates are clearly highly textured and oriented with their c-axes normal to the 

substrate surface. We note that previous studies of Rajendra Kumar et al. [6], 

McCarthy et al. [7], and Wan et al. [8] showed the similar XRD data (including the 

identification of the weaker/impurity peaks) for their ZnO nanorod or thin film 

samples grown on Si substrates. Here, we have compared our ZnO/ZnO core/shell 

nanorods with normal ZnO nanorods. This is because there have been no reports 

published on ZnO/ZnO homo-material (i.e. same material in both core and shell 

regions) based core/shell nanorods.  In this regard, we believe that ZnO nanorods are 

the suitable materials for comparisons with our ZnO/ZnO core/shell nanorods. 

Indeed, these comparsions can be allowed as XRD is a bulk characterisation 

technique.   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: 2θ-ω (or 2θ-θ) XRD scans for ZnO/ZnO core/shell nanorods (black line) and a 

ZnO single crystal wafer (red line) (The features marked ‘*’ are due to the adhesive 

mounting tape used. The features marked ‘#’ are due to Cu Kβ and tungsten Lα radiations 

from the x-ray tube, the latter due to contamination). The inset shows the rocking curve 

scans from the two samples around the ZnO (002) peak position.  

 

        For comparison, we have measured a 2θ-ω XRD scan using c-plane terminated 

ZnO single crystal wafer of thickness 0.5 mm (Tokyo Denpa) using the same 

conditions. The measured 2θ value for the ZnO single crystal (002) reflection is ≈ 
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34.45º, almost identical to the value for our nanorods (≈ 34.40º). We have also 

measured the FWHM of the ZnO (002) reflection for the PLD-deposited ZnO, and 

used these 2θ and FWHM values to calculate the c-axis lattice spacing and crystallite 

size (more accurately the out-of-plane coherence length), using Bragg’s law and the 

Scherrer equation corrected for instrumental broadening, respectively (we use the 

weighted average value of the wavelengths of Cu Kα1 and Cu Kα2 radiation lines for 

the x-ray wavelength in all calculations, i.e. λ = 1.5425 Å). The details of the 

calculation are discussed earlier in Chapter 3 and also see a previous article [9] for 

more details. The PLD-deposited ZnO (002) reflection FWHM, c-axis lattice 

spacing, and crystallite size values are 0.198º, 5.216 Å, and 75.31 nm, respectively. 

The c-axis lattice spacing value is comparable with the value calculated for the ZnO 

single crystal wafer (5.207 Å). We note that the value of the lattice spacing (c) 

obtained from the aforementioned single crystal value of 2θ = 34.45º matches the 

published ZnO c-axis lattice spacing of 5.20690 Å (JCPDS card number 36-1451). 

 

      The inset of Figure 4.1 shows the rocking curve for the (002) reflection from 

the ZnO/ZnO core/shell nanorods sample (black line) and for the (002) reflection 

from the ZnO single crystal wafer (red line). The rocking curve of the ZnO/ZnO 

core/shell nanorods sample has a FWHM of 0.76º which is notably smaller than the 

data on samples of similar type reported previously for ZnO nanorods. For example, 

FWHM of rocking curve values are ~ 2º in ref [6], ~ 2.3º in ref [7], and ~ 6.3º in ref 

[10].
 
This, together with the 2θ-ω data, indicates excellent crystallite alignment and 

texture. We note that, as expected, the FWHM of the rocking curve for the ZnO 

single crystal wafer is much narrower, essentially limited by the instrument 

broadening (< 0.1º). Since no catalyst was used as a seed in our synthesis, no other 

materials or crystalline phases are identified in the XRD data. In conclusion, the 

XRD analyses confirm that the ZnO/ZnO core/shell nanorod deposit grown by PLD 

on Si (100) substrates is well-aligned with excellent c-axis orientation normal to the 

substrate surface.  

 

       XRD pole figure analyses were also used to undertake a more detailed 

investigation of the texture and in-plane orientation of the ZnO/ZnO core/shell 

nanorods. Pole figures of the (002), (101) and (102) planes were measured at 2θ 

values of 34.5°, 36.5° and 47.5°, respectively (Figure 4.2). Figure 4.2 (a) shows a 
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narrow and intense (002) pole figure centered at Ψ=0 indicating the growth of the 

core/shell nanorods with their vertical axes along the substrate normal. Figures 4.2 

(b) and (c) show rotationally (circularly) symmetric (101) and (102) pole figures at Ψ 

angle values of ~ 62.7° and ~ 42.9°, respectively. The latter are very close to the 

value of the angles between the ZnO (101)/(002) and (102)/(002) planes, as expected 

from the known crystallographic structure of ZnO [11,12]. Teki et al. [11] have 

observed the angles between ZnO (101)/(002) and (102)/(002) planes at ~ 61° and ~ 

43°, respectively. The intense spots at Ψ = 45° on the (102) pole figure, indicated in 

Figure 4.2 (c), are due to the (220) planes of the Si substrate, and seen previously 

[11].
 
The pole figure data confirm that the PLD grown ZnO/ZnO core/shell nanorods 

are well textured with excellent vertical orientation along the c-axis and also show 

the complete absence of any in-plane orientation, i.e. the absence of epitaxy, on the 

substrate.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: XRD pole figures for the (a) (002), (b) (101) and (c) (102) ZnO planes, 

respectively, in ZnO/ZnO core/shell nanorods grown by PLD. 

 

 

 

Ψ 

Φ 

Ψ 

Φ Φ 

a 

b c 

Si (220)  

Ψ 

62.7° 42.9° 



71 
 

4.1.2.2 Surface morphology and nanostructuring 

         The surface morphologies of the core/shell nanorod deposits were studied 

using SEM, FE-SEM, and TEM. Figures 4.3(a), (b) and (d) show FE-SEM images, 

and Figure 4.3(c) shows SEM images, taken at various tilt angles. These images 

show that the core/shell nanorods have almost conical terminations with rounded or 

blunt tips. Figure 4.3 also strongly supports the conclusions from XRD (2θ-ω and x-

ray pole figures) analysis concerning preferred c-axis orientation and the absence of 

in-plane epitaxial ordering. The SEM and FE-SEM images of Figure 4.3 allow us to 

conclude that the core/shell nanorods are densely packed, with a uniform 

morphology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Field emission SEM (a), (b) and (d) and SEM (c) images of ZnO/ZnO core/shell 

nanorods grown by PLD at (a) 0º tilt (plane view), (b) 20º tilt, (c) 30º tilt, and (d) 85º tilt 

angles.  

 

     Significant insights into the core/shell nanorods structure were revealed using 

TEM and HR-TEM analyses. Regions of the samples containing hundreds of 

ZnO/ZnO core/shell nanorods were peeled off from the Si (100) substrate using a 

surgical blade and mounted on the 300 mesh size TEM grid for analysis. Figure 4.4 

a b 

c d 
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(a) and (b-d) show TEM and HR-TEM images of the core/shell nanorods, 

respectively. The images in Figures 4.4 (a) and (b) show that the nanorods have a 

core/shell structure with a crystalline (cr) core and an amorphous (am) shell. We now 

use the “cr-ZnO/am-ZnO core/shell” terminology to accurately refer to the 

established structure of the nanorods. Further detailed investigations were made at 

different locations of a specific core/shell nanorod, indicated by the circled regions 

marked ‘b, c and d’ in Figure 4.4 (a), corresponding to the images shown in Figure 

4.4 (b), (c) and (d). The inset of Figure 4.4 (b) shows a HR-TEM image at the 

core/shell boundary region of the cr-ZnO/am-ZnO core/shell nanorods. These data 

confirm in greater detail the core/shell structure. A line (for a visual impression) was 

drawn as a guide to the eye in Figure 4.4 (b) to show the crystalline core and 

amorphous shell regions.  

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: TEM, HR-TEM and SAED images of cr-ZnO/am-ZnO core/shell nanorods 

grown by PLD; (a): TEM image of a core/shell nanorod; (b): crystalline core and amorphous 

shell boundary region of a nanorod in the area indicated by circle b in (a); (c): HR-TEM 

image for the core-part of a core/shell nanorod in the area indicated by circle c in (a); (d): 

Identified Moiré fringes in the area indicated by circle d  in (a). Inset of (c) shows SAED 

pattern of the area shown in (c). These images were collected at various tilts of the nanorods.  
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     The cr-core/am-shell structure can be at least partially explained by the 

combination of several plausible factors such as the rate of material deposition 

prevailing in the PLD apparatus at the 800 °C substrate temperature, shadowing 

effects due the compact nanorod distribution and the final cooling rate. All of these 

factors may contribute to prevent the adatom diffusion necessary to find an 

equilibrium lattice site in the crystalline growth directions perpendicular to the c-

axis. Additionally, we note that such cr-core/am-shell structures have also been 

produced serendipitously in previous works using different growth methods [13-17].  

  

       The HR-TEM image of the core part of the core/shell nanorods (indicated by 

circled region c in Figure 4.4 (a)) is represented in Figure 4.4 (c) and the observed 

lattice spacing from HR-TEM (0.27 nm) is in good agreement with that obtained 

from the XRD data above, see Figure 4.1(0.26 nm). The selected area electron 

diffraction (SAED) pattern was collected using a 200 nm aperture and is shown in 

the inset of Figure 4.4 (c). The ring pattern in SAED indicates the field of view 

contains polycrystalline material. The indexed (002), (101), (102) and (110) 

diffraction peaks belong to the pure ZnO phase and provide information 

complementary to the XRD pole figure data above. The HR-TEM data also allows us 

to identify specific regions at the interface between the crystalline core and 

amorphous shell, indicated by the round circles (from the circled region d of Figure 

4.4 (a)) in Figures 4.4 (d) which display clear evidence of Moiré fringes at the 

boundary. Li et al. identified no Moiré patterns in their HR-TEM data from PLD 

grown ZnO/Er2O3 core/shell nanorods, because their Er2O3 shell region was 

polycrystalline [18]. Overall, the TEM and HR-TEM data clearly show that cr-

ZnO/am-ZnO core/shell nanorods grown by PLD on Si (100) substrates have a 

core/shell structure (with a crystalline core and an amorphous shell) with Moiré 

fringes identified at the boundary region where structural defects are expected, which 

may well be associated with the core/shell boundary interface region.  

 

4.1.2.3 Optical properties  

       Because of intrinsic and extrinsic defects/impurities, which lead to a range of 

donor/acceptor levels within the bandgap, ZnO can emit right across the visible 

spectrum, as well as in the near UV [19,20]. This is a key advantage for devices such 

as white light LEDs. However, the absence of stable and high Hall mobility p-type 
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material [21]
 
remains the major obstacle for the development of large scale LEDs 

and laser diodes, and this, in turn, is due to the nature of the defect population in the 

material itself. In this regard, it remains of crucial importance to understand the 

defect population in this material, and a powerful tool for the study of such defects is 

their PL emission. 

 

      

 

 

 

 

 

 

 

 

Figure 4.5: Low temperature (13 K) PL spectra of cr-ZnO/am-ZnO core/shell nanorods (a) 

near band-edge region showing emission band at 3.331 eV and (b) visible region showing 

structured green band emission. 

 

                 Figure 4.5 shows a typical low-temperature (13 K) PL spectrum of the cr-

ZnO/am-ZnO core/shell nanorods produced in this work. Figure 4.5 (a) reveals a 

strong I6 line at 3.36 eV, which is generally attributed to Al impurities, as well as a 

surface exciton (labelled SE) at 3.366 eV, and free exciton emission (labelled FE) at 

3.377 eV (AL: longitudinal free exciton-polariton) and 3.373 eV (AT: transverse free 

exciton-polariton). Interestingly, an additional broad emission at 3.331 eV was also 

consistently observed in the low-temperature PL spectra of these samples. Defect-

related emissions in the energy region 3.31 eV to 3.35 eV have been observed in 

various ZnO structures including bulk, single crystals, micro-/nano-crystals, 

heterostructures, quantum dots, 1D structures (nanorods and nanowires) and also in 

p-type ZnO [22-27], and there are a number of reports of emission at, or very close 

to 3.331 eV [28-42]. However, as we describe below, the 3.331 eV emission seen in 

the present work in these cr-ZnO/am-ZnO core/shell nanorods grown on ZnO buffer 

layers/Si (100) substrates by PLD, has considerably different features and thus seems 

to have a different origin compared to the emissions at this energy reported by 
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others. In a number of cases the emissions listed above have been associated with 

structural defects in ZnO crystals [22,23,25]. We note that, in previous articles, the 

emission lines observed at 3.3328 eV and 3.3363 eV in a ZnO single crystals are 

labelled as Y0 and Y1, respectively [23]. Furthermore the feature at 3.3328 eV (Y0) is 

also labelled in some publications as a DBX (donor bound exciton) [43], and as a 

DD (deep donor bound exciton), emission [24,44]. The emission at 3.331 eV 

observed in this work is considerably broader (FWHM ~ 1.75 meV) than the 

emissions at or close to 3.331 eV observed in these other works (FWHM~ 0.5 meV 

and 0.2 meV) [22,23], as well as displaying a clearly asymmetric line shape not seen 

in these other works. In the particular case of the Y/DD lines we also note that the 

thermal activation energies of the Y/DD emissions are very small and the features 

are strongly quenched with increasing temperature and are not seen above 20K, 

which is completely at odds with the 3.331 eV emission observed in our samples, 

which survives to much higher temperatures (> 100 K), as described below. These 

various differences lead us to conclude that the 3.331 eV emission we observe has a 

different origin compared to the emissions at this energy reported by others. Deep 

level visible emission was also observed from the cr-ZnO/am-ZnO core/shell 

nanorods, as shown in Figure 4.5 (b) where the structured green band, due to Cu 

impurities, is clearly observed [45].    
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Figure 4.6: (a) Dependence of PL emission from cr-ZnO/am-ZnO core/shell nanorods on 

cryostat temperature, (b) Dependence of PL emission from cr-ZnO/am-ZnO core/shell 

nanorods on laser excitation power at constant cryostat temperature of 13 K and (c) Linear 

correlation between the integrated intensities of the I6 (3.36 eV) and 3.331 eV emission 

bands for the various laser powers used in this work. 

 

     The 3.331 eV emission was further investigated by varying temperature and 

laser excitation power. Figure 4.6 (a) shows temperature dependent PL spectra from 

13 K to 100 K. We observed that as temperature increases the surface and shallow 

bound exciton emissions quench rapidly. It is clear that the initially strong I6 line 

reduces in intensity much faster compared to the 3.331 eV band. The 3.331 eV band 

can still be clearly seen at a temperature of 100 K and this behaviour implies 

involvement of deeply bound constituents, either an electron or a hole or both. 

Generally, two electron satellite (TES) and longitudinal optical (LO) replicas of the 

line are located in a region 30 - 70 meV from the parent emissions. However, since 

the 3.331 eV band still remains visible at a temperature of 100 K where the shallow 

bound exciton emission has been quenched, it is not due to a TES of the shallow 

bound exciton emission. We note that TES of the dominant I6 line, and the TES and 

an LO replica of the 3.331 eV emission are also observed in Figure 4.6 (a). These 

temperature dependent PL studies enable us to conclude that the 3.331 eV emission 

is stable up to 100 K and therefore it is neither a shallow bound exciton, nor a TES 

or phonon replica of a shallower bound exciton transition, and is therefore the zero 

phonon line associated with the recombination of deeply bound carriers at a defect in 

the material. The present findings show that most of the previously published 
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assignments of the origin of the 3.331 eV emission as a TES band are likely to be 

erroneous [28-42].   

 

     We have also varied the laser excitation power (using neutral density filters), at 

a fixed cryostat temperature of 13 K, as shown in Figure 4.6(b). The 3.331 eV band 

remains visible and its shape largely unchanged with varying power of the laser. 

Slight laser heating effects can just be distinguished at the highest laser power of 

6.90 mW, where a small redshift in emission is seen across the entire near band-edge 

region. It is however clearly observed in Figure 4.6(c) that the 3.331 eV band scales 

in a similar manner to the I6 shallow bound exciton emission with varying laser 

excitation power, even at the highest laser powers. This clearly demonstrates that the 

3.331 eV emission is associated with a single electron-hole recombination, rather 

than a bi-exciton or other multi-electron-hole pair crystal excitation, and the slight 

effects of laser heating at the highest laser power do not in any way affect this 

conclusion. 

 

      Based on the general similarity in emission energy of the 3.331 eV band to that 

seen for other structural defect-related UV emissions [22,23,25,28-42], and the 

simultaneous presence of structural defects at the irregular boundary region of our 

core/shell nanorods, as revealed by HR-TEM data above (Figure 4.4 (d)), we 

propose that the origin of the 3.331 eV band is recombination of electron-hole pairs 

localised at a range of structural defects associated with the core/shell boundary 

interface region. This assignment is based on: (i) the demonstrated presence of 

structural defects at the boundary region of the core/shell nanorods, as shown by HR-

TEM, in samples which exhibit this 3.331 eV band emission, (ii) the deeper spectral 

position of the emission, similar to PL emissions from other structural defects in 

ZnO, which is also consistent with the temperature stability of the emission, and (iii) 

the expected presence of structural defects with slightly different environments at the 

core/shell boundary region which explains both the relatively large line-width of the 

3.331 eV emission as well as the quite distinct asymmetric line profile, since the 

slightly differing structural defect environments give rise to slight changes in 

emission energy from individual defects (i.e. inhomogeneous broadening), and the 

ensemble yields the broad and asymmetric emission band observed in measurements. 

This assignment is discussed further in sections 4.2 and 4.3 below, and the additional 
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measurements and analysis contained in those sections supports and strengthens this 

assignment. 

 

4.1.3 Conclusions    

           We have grown, for the first time, self-organised cr-ZnO/am-ZnO core/shell 

nanorods on Si (100) wafers by PLD, without using a metal catalyst seed and 

without the need for a separate growth stage for the shell region. This was achieved 

by using a specific sequence of heating and cooling phases pre- and post-deposition. 

The deposits were characterised using x-ray diffraction, electron microscopies and 

photoluminescence. The characterisation studies showed that the nanorods are highly 

textured with their c-axis oriented normal to, but without epitaxial in-plane ordering 

on, the substrate surface. The nanorods have conical terminations with rounded/blunt 

tips. They present unique core/shell architecture with a crystalline core and an 

amorphous shell while structural defects feature in the region of the core/shell 

boundary interface. The samples exhibit an emission band at 3.331 eV in their low-

temperature photoluminescence spectrum. This emission arises from a single 

electron-hole pair recombination involving deeply bound constituents likely 

associated with the structural defects at the core/shell boundary interface region. 
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4.2 Interconnected cr-ZnO/am-ZnO core/shell nanorods  

            There are some reports on ZnO interconnected nanorods in the literature. For 

example, Gao et al. [46] have reported three-dimensional interconnected network of 

ZnO nanowires and nanorods grown by a high temperature solid–vapor deposition 

(also called as vapour phase transport) process on Al2O3 or Si (110) substrates. 

Breedon et al. [47] have reported the interconnected ZnO nanowires grown by 

hydrothermal aqueous synthesis on spray pyrolysis deposited ZnO seeded glass 

substrates. Yu et al. [48] have reported the interconnected network based ZnO 

nanostructures grown by aqueous solution method on MOCVD prepared cracked-

GaN seeded Si (111) substrates. Yin et al. [49] have reported ZnO interconnected 

nanowall networks on ZnO/Si substrates by thermal evaporation of metallic Zn 

powder at low temperature. Also, Rahmani et al. [50] have reported interconnected 

ZnO nanowires by a hydrothermal method on spray pyrolysis prepared ZnO seeded 

glass substrates. Furthermore, Ranjith et al. [51] have also reported interconnected 

ZnO nanowires by a solution growth method on spray pyrolysis prepared ZnO 

seeded glass substrates. On the basis of the reported works, our goal for the present 

work is to reduce the complexity of these multi-step processes (including a change of 

growth method being implemented between the growth steps), which were used 

previously, to produce interconnected ZnO nanorods. The ZnO morphology in the 

above reported works is completely different from our present interconnected 

nanorods because our interconnected nanorods have core/shell architectures. These 

were grown by PLD on a PLD prepared ZnO seeded Si (100) substrates.  

 

4.2.1 Growth details  

          ZnO/ZnO core/shell interconnected nanorods were grown using the same PLD 

apparatus in identical growth conditions as in the previous work (see section 4.1), 

except for a laser energy of 110 mJ. Four growths (over a two week) using the same 

conditions and sequences were performed and the same interconnected based 

core/shell nanorod architecture was obtained in each case. It is thus fully 

reproducible. 

 

         The structural characteristics were investigated by 2θ-ω x-ray diffraction scans 

(XRD). The surface morphologies and nanostructures were studied by scanning 
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electron microscopy (SEM) and transmission electron microscopy (TEM). Low-

temperature photoluminescence (PL) spectra were recorded using a 325 nm He-Cd 

laser excitation. Raman spectra were measured using Ar
+
 laser excitation at 488 nm. 

The electrical properties were also studied by four point probe/Hall effect 

instruments.  

 

4.2.2 Results and discussions  

4.2.2.1 Structural properties  

        Figure 4.7 shows the 2θ-ω XRD scan, on a log scale, for interconnected 

ZnO/ZnO core/shell nanorods grown by PLD and similar data from a ZnO single-

crystal wafer. The interconnected nanorod sample shows a dominant (002) reflection 

at 2θ ≈ 34.53º and a weaker (004) reflection at 2θ ≈ 72.74º. The intensity of the ZnO 

(002) reflection for the same nanorod sample is around a million counts. No other 

ZnO related peaks were observed in our XRD experiments. We note that the reason 

behind the annealing of this interconnected core/shell nanorod sample is discussed in 

the optical properties (see section 4.2.2.3). We also note that there is no significant 

change observed with the annealing of the interconnected core/shell nanorod samples 

in terms of their structural properties (see black and blue lines in Figure 4.7).   

              

  

 

 

 

 

 

 

 

 

Figure 4.7: 2θ-ω XRD scans for the interconnected ZnO/ZnO core/shell nanorods (black 

line), annealed interconnected core/shell nanorods (blue lines) and a ZnO single crystal 

wafer (red line) (The features marked ‘*’ are impurity lines. The features marked ‘#’ are due 

to Cu Kβ and tungsten Lα radiations from the x-ray tube, the latter due to contamination). 
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The inset shows the rocking curve scans from the two samples around the ZnO (002) peak 

position. 

 

          The FWHM, c-axis lattice spacing and crystallite size values for the (002) 

reflection of the interconnected nanorod sample are 0.205º, 0.519 nm and 38.74 nm, 

respectively. The above stated crystallite size value was measured from Scherrer 

equation (Eq 3.3) considering the correction factor for instrumental broadening. For 

comparison, we have measured a 2θ-ω XRD scan using c-plane terminated ZnO 

single crystal wafer of thickness 0.5 mm (Tokyo Denpa) using the same conditions. 

We note that the c-axis lattice spacing values of our interconnected nanorod sample 

(i.e. 0.519 nm) is in a good agreement with the ZnO wafer (i.e. 0.520 nm) values. 

We also note that the c-axis lattice spacing (i.e. 0.519 nm) of interconnected 

core/shell nanorods reported here is also close to previously reported (see section 

4.1.2.1) core/shell nanorods (i.e. 0.5216 nm), but that there is some evidence of 

strain in these laterally interconnected nanostructures. This slight strain may be due 

to the effect of the lateral interconnections, since the morphology is no longer that of 

free standing, separated nanorods (see section 4.2.2.2 below). The crystallite size 

value for interconnected core/shell nanorod sample (38.74 nm) is observed to be 

small compared with normal core/shell nanorods, as reported previously (75.31 nm). 

This indicates that interconnection morphology affects the crystallite size and hence 

the crystallinity of the nanorods.  

 

          The inset of Figure 4.7 shows the rocking curve (RC) for the (002) reflection 

from the interconnected ZnO/ZnO core/shell nanorods sample (black line) and the 

same reflection from the ZnO single crystal wafer (red line). The FWHM of the RC 

for the interconnected nanorods is about 0.86º, which is comparatively larger than 

the previously (see section 4.1.2.1) reported core/shell nanorods (i.e. 0.76º). 

However, we note that the FWHM of RC reported in this work is much smaller than 

the previously reported values for ZnO nanorods [6,7,10]. Overall, the XRD analyses 

confirm that the interconnected ZnO/ZnO core/shell nanorods are well-aligned with 

c-axis orientation, however, their crystalline quality is less than that of the core/shell 

nanorods of section 4.1.2.1.      
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4.2.2.2 Surface morphology and nanostructuring    

             The surface morphologies of the interconnected ZnO/ZnO core/shell 

nanorods are studied by SEM and TEM. Figure 4.8 shows the interconnected 

nanorods captured at various tilt angles. It is clearly seen that the nanorods are 

interconnected with one another, and this interconnection behaviour also appears to 

be uniform across the sample. The length of interconnection junction was measured 

to be in a range of ~ 120-160 nm and the height of the nanorod was measured at 

about 1 μm. Figure 4.8 (d) shows that the nanorods have almost conical terminations 

with rounded or blunt tips, which is similar to the previously reported (see section 

4.1.2.2) core/shell nanorods. Furthermore, SEM images show that the nanorods are 

densely packed with a uniform morphology. Overall, the SEM images confirm the 

vertical orientation of the nanorods, which supports our previous arguments from the 

XRD analyses.   

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: SEM images of the interconnected ZnO/ZnO core/shell nanorods grown by PLD 

at (a) 0º tilt (plane view), (b) 30º tilt, (c) an enlarged view of (b) at 30º tilt, and (d) 70º tilt 

angles. The insets of (a) and (b) showing enlarged views of the same images.  

a 

c d 

b 
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            Greater details of the interconnected core/shell nanorods structure were 

revealed using TEM and HR-TEM. Regions of the samples containing hundreds of 

ZnO/ZnO core/shell interconnected nanorods were peeled off from the Si (100) 

substrate using a surgical blade and mounted on the 300 mesh size TEM grid for 

analysis. Figure 4.9 (a) and (c) show the TEM images, and (b) shows the HR-TEM 

images of the interconnected core/shell nanorods. The images (a), (b) and (c) show 

the crystalline (cr)-core/amorphous (am)-shell architectures of the interconnected 

nanorods. Figure 4.9 (b) further confirms this cr-ZnO/am-ZnO core/shell architecture 

of the interconnected nanorods by HR-TEM analyses, where high crystallinity 

behaviour in the core region and an amorphous nature in the shell region were 

observed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: TEM and HR-TEM images of the interconnected cr-ZnO/am-ZnO core/shell 

nanorods grown by PLD; (a): TEM image of an interconnected core/shell nanorod at the top 

surface; (b): HR-TEM image showing crystalline core and amorphous shell architecture of a 

nanorod; (c): TEM image showing the core/shell architecture of the nanorod in a broader 

view at the middle of the nanorod.  

 

a b 

c 
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          The reasons for the cr-core and am-shell architecture were explained 

previously in terms of the heating and cooling sequences used in the nanorod 

growth. We believe that the laser energy (i.e. 110 mJ, but no change in spot size) 

used for growth of the interconnected core/shell nanorods plays an important role for 

this interconnection behaviour. Indeed, the previous studies of Wang et al. [52] have 

observed a significant effect of the laser energy on the nanorods morphology. In our 

work, we propose the following explanation for the observed interconnected 

morphology. As a decrease in laser energy reduces the kinetic energy of the ablated 

species, they will not have sufficient energy to find their correct lattice sites as soon 

as the heating has stopped. As a result, they will form ZnO material at random 

places, notably in between the nanorods, leading to the observed interconnected 

morphology. More detailed work, using TEM for example, is required to fully 

understand the interconnection behaviour.  

 

4.2.2.3 Optical properties  

        The normalised low-temperature PL spectra for the interconnected cr-ZnO/am-

ZnO core/shell nanorods show a free exciton (FE), surface exciton (SE) and a strong 

I6 bound exciton (BX) line observed at 3.372 eV, 3.367 eV and 3.361 eV, 

respectively. Additionally, the emission at 3.331 eV is also seen identically to the 

previously reported (see section 4.1.2.3) cr-ZnO/am-ZnO core/shell nanorods. In our 

previous studies, reported in section 4.1 above and also in ref [1], we have 

investigated this 3.331 eV emission using HR-TEM, cryostat temperature and laser 

power dependent PL and we proposed that the origin of the 3.331 eV band is due to 

electron-hole recombination at structural defects associated with the core/shell 

boundary interface region. Since the interconnected cr-ZnO/am-ZnO core/shell 

nanorods reported in this section also show the same emission as well as a similar 

defective core/shell boundary interface region, these data further confirmed the 

origin of the 3.331 eV band (see Figure 4.9 and 4.10). In this section, we undertake 

further investigations on this emission by (i) thermal annealing of the deposited 

sample and (ii) Raman studies. The interconnected core/shell nanorod sample was 

placed in a quartz tube for the annealing at 500 °C. The duration for the annealing 

was about 1 hr in atmospheric air. The normalised low-temperature PL for the 

annealed sample was measured and the results show in Figure 4.10. This study 

reveals that the intensity of the 3.331 eV emission is slightly enhanced with 



85 
 

annealing, but that no major differences are observed with this level of annealing. It 

is unlikely that such low temperature anneals cause significant changes to the crystal 

structure of the deposit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Normalised low temperature (13 K) PL spectra of the interconnected cr-

ZnO/am-ZnO core/shell nanorods; (a): near band-edge region showing free exciton, surface 

exciton and 3.331 eV emission before anneal (black lines) and after anneal (red lines), and 

(b): visible region showing structured green band emission for before anneal (black lines) 

and after anneal (red lines).  

 

             In the visible region, the structured green band is seen in Figure 4.10 (b) 

indicating Cu impurities present in the ZnO nanorod samples. After the annealing, 

the intensity of structured green band is also slightly enhanced. We have also 

analysed the surface morphology of these annealed interconnected nanorods using 

SEM. These images are shown in Figure 4.11. These SEM images of annealed 
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nanorod samples show the same interconnected architecture as the previous (Figure 

4.8). The totality of these data (XRD, SEM and PL) shows that thermal annealing 

has not affected significantly the structure, surface morphology and the luminescent 

properties of the interconnected nanorods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: SEM morphology of the interconnected cr-ZnO/am-ZnO core/shell nanorods 

after annealing. a) 0º tilt (plane view), (b) 30º tilt, (c) and (d) 70º tilt angles. The insets of (a) 

and (b) showing enlarged views of the same images.  

 

4.2.2.4 Raman scattering studies 

             Raman analyses of the interconnected cr-ZnO/am-ZnO core/shell nanorods 

(for both unannealed and annealed samples) were performed to obtain additional 

information on the samples. Calibration of the spectrometer was performed using a 

Silicon (100) standard sample with a strong Raman line at 520.07 cm
-1

 (Figure 4.12 

(c)) and the laser spot size used was ~ 1 μm. Strong and sharp bands around 98 and 

437 cm
-1

 were observed in the Raman spectra for both the unannealed and annealed 

nanorod samples (Figure 4.12 (a)). These bands are attributed to the non-polar E2 

a b 

c d 
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vibrational modes corresponding to the wurtzite phase of ZnO [53-55]. The E2 (low) 

mode is associated with the vibration of the heavy Zn sub-lattice, while the E2 (high) 

mode involves mostly the oxygen atoms [56]. Additionally, two other weak lines, 

attributed to the A1(TO) (~ 376 cm
-1

) mode, which has polar symmetry, and the 

E2High-E2Low (~ 330 cm
-1

) mode, a second order non-polar E2 symmetry mode,  were 

also observed [57,58].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Raman spectra in a range 50-450 cm
-1

 for the (a) interconnected cr-ZnO/am-

ZnO core/shell nanorods (unannealed sample-black lines and annealed sample-red lines) and 

a ZnO single crystal wafer (blue lines); (b) an enlarged view of E2 (low) Raman band for the 

three samples; (c) Raman spectrum for Si standard sample, showing Si related strong and 

weak Raman bands in a range 50-900 cm
-1 

marked with ‘*’ features. 

 

        For comparison purposes, we have also measured a Raman spectrum for a c-

axis oriented ZnO single crystal wafer. In order to understand the stress in the 

interconnected nanorods sample, the E2(high) mode of the sample was compared 
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with that of the wafer sample, as this mode is sensitive only to stress [59]. The 

FWHM and position of the E2 (high) mode of both the samples were found by fitting 

using Lorentzian function. A slight red shift (0.5 cm
-1

) (a clear view of the data is not 

shown) accompanied by an increase in the FWHM (from 6.1 cm
-1

 to 8.6 cm
-1

) of the 

E2 (high) band of the interconnected nanorods sample with respect to the bulk wafer 

was observed, which is attributed to the presence of tensile stress in the sample [59], 

consistent with the XRD data shown earlier. In addition to that a slight blue shift of 

E2 (low) band of ~ 1 cm
-1

 was also observed for the nanorod samples compared with 

the single crystal wafer (Figure 4.12 (b)), which may attributed to the defects in the 

sample [60]. We note that the Raman data analyses are currently in progress. 

Overall, Raman studies confirm the wurtzite phase of the interconnected cr-ZnO/am-

ZnO core/shell nanorods.  

  

4.2.2.5 Electrical properties   

             Since our core/shell nanorods are interconnected, we have performed four 

point probe/Hall electrical measurements in order to investigate the electrical 

properties of this sample.  

 

 

 

 

 

 

 

 

 

Figure 4.13: I-V curve for the n-type interconnected cr-ZnO/am-ZnO core/shell nanorods 

showing a good ohmic behaviour.  

 

           The linear behaviour of the I-V curve shows that the interconnected nanorods 

have ohmic behaviour. The resistivity, Hall mobility, and electron carrier 
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concentration of the nanorods were measured to be ~ 1.95 × 10
2 

Ω cm, ~ 22 cm
2
/V-s 

and ~ 2.14 ×10
14

 cm
-3

. This large resistivity value can be expected for the nanorod 

morphology as observed by Lee et al. [61] for similar morphologies. The large 

resistivity value could also be explained in terms of high oxygen pressure (600 

mTorr) used for the growth. If oxygen pressure is high (corresponding to less kinetic 

energy of the ablated species) during deposition, then it decreases the number of 

oxygen vacancies. This further allows decreasing the carrier concentration and hence 

increases the resistivity (see discussions in Chapter 5 for more details). We note that, 

after the annealing at 500 °C, the resistivity value was reduced to ~ 8.25×10
1
 Ω cm 

(decreased by a factor of two), Hall mobility was reduced by a small amount to ~ 21 

cm
2
/V-s, and the carrier concentration was increased to 2.18×10

15
 cm

-3
. The slight 

improvement in conductivity upon annealing could possible be correlated with a 

partial improvement of the crystallinity for those samples (see section 4.2.2.1).  

 

4.2.3 Conclusions  

             We have grown, an interconnected architecture of crystalline 

ZnO/amorphous ZnO core/shell nanorods by catalyst-free PLD on ZnO seeded Si 

(100) substrates. XRD showed that these interconnected core/shell nanorods are 

well-aligned with c-axis orientation. The SEM images showed that the nanorods 

have interconnected architectures with a uniform morphology. The nanorods have 

conical terminations of rounded/blunt tips. TEM and HR-TEM studies revealed that 

these nanorods have crystalline ZnO/amorphous ZnO core/shell architectures. In 

terms of optical properties, the low-temperature PL showed the same emission at 

3.331 eV seen in the PL spectra of the normal cr-ZnO/am-ZnO core/shell nanorods. 

The intensity of this emission was slightly enhanced after the thermal annealing at 

500 °C, without a change of morphology. Raman studies showed the strong Raman 

bands at ~ 98 and 437 cm
-1

, which are attributed to the non-polar E2 vibrational 

modes corresponding to wurtzite ZnO. Electrical studies showed the n-type material 

with ohmic behaviour. The resistivity and Hall mobility values are ~ 1.95 × 10
2 

Ω 

cm and ~ 22 cm
2
/V-s, respectively. The conductivity was further partially improved 

for the annealed sample.  
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4.3 Origin of the 3.331 eV emission in ZnO nanorods: 

comparison of vapour phase transport and pulsed laser 

deposition grown nanorods 

           The utilisation of ZnO nanorods in optoelectronic devices is ultimately 

determined by the optical quality of the nanorods [62]. Thus, an understanding of the 

different optically-active defects which contribute to the near-UV band edge 

photoluminescence (PL) in ZnO and its nanostructures and the relationship of these 

defects to the nanostructure morphology is key to the choice of the optimum 

deposition methods and conditions for a particular application. In this work, we have 

grown ZnO nanorods by catalyst-free VPT and catalyst-free PLD, with the aim of 

further elucidating the origin of the 3.331 eV defect emission [1]. The near band 

edge PL spectra of the nanorods grown by either PLD or VPT show that the 3.331 

eV emission is present in the former and completely absent in the latter. These data 

are considered together with SEM data and provide strong support for the 

assignment of the origin of the 3.331 eV emission to structural defects at the nanorod 

interface region.  

  

4.3.1 Growth details 

4.3.1.1 ZnO seed layer formation 

        ZnO seed layers were first prepared by PLD on Si (100) substrates for both the 

VPT and PLD nanorod depositions. Prior to deposition, Si substrates were cleaned 

by ultrasonication firstly in acetone and then in isopropanol for 15 min each. The 

details of the seed layer growth have been given in previous section 4.1.1.  

4.3.1.2 VPT nanorod growth  

            ZnO nanorods were grown by VPT on these ZnO-seeded Si substrates at 900 

°C using an Ar gas flow rate of 90 sccm for 1 hour. The temperature ramping of the 

furnace was varied between 25 and 50 °C/min until 900 °C. 60 mg of high purity 

graphite powder and 60 mg of ZnO powder were ground together for a few minutes 

until a homogeneous mixture was obtained. This mixture was then loaded and spread 

carefully over a 2 cm length in the middle of an alumina boat and the substrate 

suspended above it. This boat was then loaded into the furnace for the nanorod 
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growth [6,63]. Further details concerning the VPT growth process are discussed 

earlier in section 2.2.2.  

4.3.1.3 PLD nanorod growth  

             ZnO nanorods were also grown by PLD on ZnO seeded Si substrates. Prior 

to nanorod deposition, the seed layers were annealed to 800 °C for 110 min. The 

ZnO nanorods were then grown at this substrate temperature in a 600 mTorr oxygen 

pressure using 40,000 laser shots for the deposition over a period of ~ 2 hrs. The 

details of the PLD nanorod growth are presented earlier in section 4.1.1.  

             

4.3.2 Results and discussions  

4.3.2.1 Structural properties  

          XRD data (2θ-ω scans) from PLD-grown ZnO seed layers, VPT-grown ZnO 

nanorods and PLD-grown ZnO nanorods in addition to data from a c-plane 

terminated ZnO single crystal wafer (Tokyo Denpa) of thickness 0.5 mm are shown 

in Fig 4.14. All the deposited material shows a dominant ZnO (002) reflection at 2θ 

≈ 34.5º. Since the XRD data shown in Fig 4.14 is plotted on log scale, a weak ZnO 

(004) reflection was also observed at 2θ ≈ 72.80º in both the seed layer and nanorod 

samples (shown in the right hand side inset). No other ZnO-related diffraction peaks 

were observed, which indicates a high degree of texture (vertical orientation) for all 

the deposited materials. No other deposited material or crystalline phases were 

observed in the XRD data. A number of other reflections, due either to the Si 

substrates [64] or impurities in the x-ray tube, are indicated in the figure and 

explained in the figure caption.  

 

 As mentioned above, a ZnO single crystal wafer was also measured with the 

same apparatus and its ZnO (002) reflection was observed at 2θ ≈ 34.45º. The (002) 

reflection full width at half maximum (FWHM), c-axis lattice spacing and out-of-

plane coherence length (crystallite size, from the Scherrer equation) were measured 

for the PLD-grown ZnO seed layer (0.225º, 0.520 nm and 35.30 nm, respectively), 

the VPT-grown ZnO nanorods (0.208º, 0.519 nm and 38.11 nm, respectively) and 

the  PLD-grown ZnO nanorods (0.198°, 0.521 nm, and 75.31 nm, respectively). The 

crystallinity of the nanorods is improved compared to the seed layers. The value of 

c-axis lattice spacing for VPT- and/or PLD-grown ZnO nanorods is in excellent 
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agreement with the value determined from the data from the ZnO wafer (i.e. 0.521 

nm).  

 

 

 

 

 

 

 

 

 

 

Figure 4.14: 2θ−ω XRD data for PLD-grown ZnO seed layers (black line), VPT-grown 

ZnO nanorods (red line), PLD-grown ZnO nanorods (blue line) and a ZnO wafer (orange 

line). The features marked with # are due to Cu Kβ and tungsten Lα radiation from the X-ray 

tube, with the latter due to contamination. The left hand side inset shows the rocking curve 

(RC) data from the four samples around the ZnO (002) peak position. The right hand side 

inset shows the 2θ−ω data for the deposited samples over a broader 2θ angular range. Both 

insets use the same colours as in the main figure. 

 

              The left hand side inset of Fig 4.14 shows rocking curve (RC) data for the 

(002) reflection of the PLD-grown ZnO seed layers, VPT-grown ZnO nanorods, 

PLD-grown ZnO nanorods and the ZnO wafer. The FWHM of the RCs for the PLD-

grown ZnO seed layers, VPT-grown ZnO nanorods and PLD-grown ZnO nanorods 

are 2.16º, 0.84º and 0.76º, respectively. We note that our FWHM value for the RC 

for VPT-ZnO nanorods is much smaller compared to reports of similar VPT-grown 

samples from Rajendra Kumar et al. and Li et al. who find FWHM values of ~ 2-2.8º 

and ~ 1.5º, respectively [6,65] and are comparable (albeit slightly larger than) the 

values for our PLD-grown ZnO nanorods. These data further indicate the highly 

textured nature (with c-axis orientation) of the nanorod deposits and the high 

crystalline quality of these materials.  
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4.3.2.2 Surface morphologies and nanostructuring  

             Figure 4.15 shows the morphologies of the PLD-grown ZnO seed layers (a), 

VPT-grown ZnO nanorods (b-d) and PLD-grown ZnO nanorods (e-f). The PLD-

grown ZnO seed layer appears smooth and continuous. PLD-grown ZnO seed layers 

have been reported to be excellent substrates for the growth of high quality nanorods 

by Jie et al. [10] and Li et al. [65]. Fig 4.15(b) shows VPT-grown ZnO nanorods at a 

30º tilt view while the inset shows a plan view of the same nanorods. Fig 4.15(c) 

shows a higher magnification view of the individual VPT-grown nanorod 

morphology at the same 30º tilt view while the Fig 4.15(d) shows a 70º tilt view of 

these nanorods. These data show that the VPT-grown nanorods have excellent c-axis 

orientation normal to the substrate surface, which correlates well with the XRD 

analysis discussed above. 

 

              

 

 

 

 

 

 

 

 

Figure 4.15: SEM data from the (a) PLD-grown ZnO seed layers at 30º tilt view, (b) VPT-

grown ZnO nanorods at 30º tilt view, (c) an enlarged view of (b), and (d) the same VPT-

grown ZnO nanorods at 70º tilt view, (e) PLD-grown ZnO nanorods at 30º tilt view, (f) the 

same PLD-grown ZnO nanorods at 80º tilt view. The inset of (b) shows a plan view of (b) 

with a smaller magnification scale while the inset of (e) shows a plan view of (e).  

 

              Figure 4.15(c) in particular shows that the VPT-grown nanorods are well 

separated (typically by some 100’s of nm) and show smooth, facetted top and side 

surfaces, indicative of the underlying hexagonal crystalline symmetry. Previous 
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TEM studies [66-68] carried out in this laboratory of VPT grown ZnO nanorods 

have shown that VPT-grown nanorods synthesized under similar conditions have 

smooth surfaces and are crystalline throughout, consistent with the SEM data in Fig 

4.15. SEM data from PLD-grown ZnO nanorods at 30º tilt view is shown in Fig 

4.15(e) while the inset shows a top view of the same nanorods. Fig 4.15(f) shows an 

85º tilt view of these PLD-grown ZnO nanorods. Although an identical PLD-grown 

ZnO seed layer was used for the growth of both VPT- and PLD-ZnO nanorods, the 

PLD-grown ZnO nanorods are very closely packed and the nanorod surfaces appear 

rougher (from a visual impression), which is likely due to both the underlying 

crystalline core/amorphous shell nature of these nanostructures, as revealed by 

previous TEM studies [1], as well as proximity effects from neighbouring nanorods 

contacting each other during growth. Again the data show that the PLD-grown 

nanorods have excellent c-axis orientation normal to the substrate surface. 

 

            The lengths and widths of the VPT-grown ZnO nanorods were extracted 

using ‘Image J’ software [69] and are in the range of 1.5 - 2 μm and ~ 175 - 200 nm, 

respectively. The same quantities for the PLD-grown ZnO nanorods are in the range 

of 0.9 - 1.2 μm and ~ 135 - 200 nm, respectively. The surface coverage density of the 

VPT-grown ZnO nanorods was measured to be ~ 18 per μm
2
 (based on a count of ~ 

75 nanorods in a 4 μm
2 

region) and ~ 28 per μm
2
 for the PLD-grown ZnO nanorods 

(based on a count of ~ 113 nanorods in a 4 μm
2 

region). The density value for the 

VPT nanorod sample shows somewhat larger value than in previous works (8 per 

μm
2
 and 12 per μm

2
), e.g. [6,65].  

 

4.3.2.3 Optical properties  

           Figure 4.16(a) shows the near band edge emission region for all the deposited 

samples, which is dominated by the I6 bound exciton (BX) line at 3.36 eV in all 

cases, which is attributed to Al impurities, as well as the surface exciton (SE) and 

free excitons (FE) for the three samples, which can be seen in the inset of Fig 

4.16(a). FWHM values of the I6 BX for the PLD-grown ZnO seed layers, VPT-

grown ZnO nanorods and PLD-grown ZnO nanorods are 2.062 meV, 1.994 meV and 

1.437 meV, respectively indicating the high optical quality of these samples. Two 

electron satellite (TES) and longitudinal optical (LO) phonon replicas are normally 

observed in the highest optical quality materials and are located in the spectral region 
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~ 30-70 meV from the parent emissions. Such features are clearly seen for VPT-

grown ZnO nanorods, we observe the TES of the I6 line at 3.320 eV and its two LO 

replicas, TES 1LO and TES 2LO, at 3.251 eV and 3.182 eV, respectively. The LO 

replicas of the BX emission, such as BX-1LO, BX-2LO and BX-3LO are also 

clearly seen for the VPT-grown ZnO nanorods at 3.290 eV, 3.217 eV and 3.145 eV, 

respectively, and less clearly for the PLD-grown materials. The LO replicas in all 

cases are spaced ~ 72 meV apart, characteristic of the ZnO crystal. The PL intensity 

from the VPT-grown ZnO nanorods is much greater than both the PLD-grown ZnO 

seed layer and the PLD-grown nanorods in both the near band edge and visible 

spectral regions (the latter shown in Fig 4.16(b)).  

 

 

 

 

 

 

 

 

Figure 4.16: Low-temperature (13 K) PL spectra of PLD-grown ZnO seed layers (black 

lines), VPT-grown ZnO nanorods (red lines) and PLD-grown ZnO nanorods (blue lines): (a) 

near band edge region, (b) visible region. Inset of (a) shows magnified view of surface 

exciton (SE) and free exciton (FE) spectral region.   

 

 In the case of PLD-grown ZnO nanorods, a defect-related emission at 3.331 

eV and its TES and LO replicas were also seen, as discussed in sections 4.1 and 4.2 

above. These are not present in either the PLD-grown seed layer or the VPT-grown 

nanorod emissions. The intensity of the 3.331 eV emission is comparable to the BX 

emission in the same sample. The present study allows us to make comparisons with 

ZnO nanorod deposits grown by VPT, as well as with continuous ZnO film deposits. 

We assigned the origin of this spectral feature to structural defects at the nanorod 

interface region based on the data in section 4.1 and 4.2 above, and also in ref [1]. 
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The present work adds considerable weight to this assignment since the feature is not 

seen in the continuous film deposited by PLD at similar temperatures, nor it is seen 

in the VPT-grown nanorods also deposited at similar temperatures. The latter are 

well separated and display smooth, facetted surfaces, indicative of a crystalline 

interface boundary. The emission is only seen from PLD-grown ZnO nanorods 

which are closely packed and whose surfaces appear rough and irregular due to the 

underlying core-shell architecture and proximity effects from neighbouring nanorods 

[1]. 

 

 The totality of data from our present measurements allows us to confidently 

assign the 3.331 eV emission to recombination of electron-hole pairs localised at a 

range of structural defects with slightly different environments at the core/shell 

boundary region giving rise to a relatively large and asymmetric inhomogeneously 

broadened line. Our data show that the appearance of this feature is intimately linked 

to the presence of an inhomogeneous interface at a nanorod core/shell boundary 

region, and that the absence of interfaces (in continuous films such as the PLD-

grown seed layer) or their replacement by smooth, facetted ones (in the VPT-grown 

sample) leads to the complete disappearance of this feature. 

 

4.3.3 Conclusions  

              We have successfully grown ZnO nanorods by both VPT and PLD on PLD-

grown ZnO seed layers and have studied their structural, morphological and 

luminescent properties as well as that of the underlying PLD-grown ZnO seed layers. 

XRD studies show that the VPT-grown and PLD-grown ZnO nanorods, as well as 

the PLD-grown seed layers are highly textured with c-axis orientation normal to the 

substrate plane. SEM images confirm this and further show that the VPT-grown ZnO 

nanorods are well separated with the nanorods spaced by distances of 100’s nm, with 

smoothly facetted top and side surfaces while PLD-grown ZnO nanorods are densely 

packed and show rough surfaces by comparison. Low temperature PL from all 

samples shows a dominant I6 BX line, along with SE and FE emission in the near 

band edge region, while the VPT-grown nanorods clearly show TES and TES LO 

phonon replicas as well as LO replicas of the  I6 BX. These data reflect the high 

optical quality of the deposited materials, in particular for the case of VPT-grown 
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ZnO nanorods. In the near band edge spectrum from PLD-grown ZnO nanorods, a 

defect related emission was observed at 3.331 eV, which was not seen for either the 

PLD-grown seed layer or VPT-grown nanorod samples. Overall, the present report 

allows us to confidently assign the 3.331 eV emission to recombination at structural 

defects at the core/shell boundary region, and shows that the presence of an 

inhomogeneous interface at a nanorod core/shell boundary is crucial to the 

observation of this emission feature. Hence, the present work contributes to the 

understanding of the different optically-active defects related to the near-UV band 

edge photoluminescence (PL) in ZnO nanostructures and the relationship of these 

defects to the nanostructure morphology, which is crucial to the choice of the 

optimum growth parameters when targeting a particular application.  
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Chapter 5  

 

ZnO and AZO Nanocrystalline 

Thin Films on Flexible Zeonor 

Plastic Substrates   

 

 

 

   

 

 

 

        In this chapter, we present the properties of high quality ZnO and AZO 

nanostructured films deposited on flexible Zeonor plastic substrates. On Zeonor 

substrates, we systematically study the effects of oxygen growth pressure in a 

selected pressure range (1-300 mTorr) on the growth rate, surface morphology, 

hydrophobicity and the structural, optical and electrical properties of films having 

different thicknesses. We divide the pressure range into two regions: The high 

oxygen growth pressure region (75-300 mTorr) and low oxygen growth pressure 

region (1-75 mTorr). We note that the pressure range explored should correspond 

with observable changes in the film properties as it is in the range where 

nanostructuring should occur.  
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5.1 High oxygen growth pressures: 75-300 mTorr 

           The ZnO and AZO thin films were grown by room temperature PLD. We now 

recall briefly the aspects of ZnO thin film formation relevant to the present work. 

PLD growth of ZnO thin film is typically carried out in an ambient oxygen pressure, 

the value of which largely determines the prevalent growth mode, e.g. layer-by-

layer. In the 1 –75/100 mTorr (~ 0.1 –7.5/10 Pa) range continuous thin film growth 

occurs, while upward of 100’s mTorr (> 50 Pa) so-called high-pressure PLD-, film 

nanostructuring [1] is generally observed with concomitant changes in the 

microstructure and optoelectronic properties. Such pressure-dependent studies were 

carried out by Zhu et al. [2] and Gondoni et al. [3,4] using the PLD of ZnO and AZO 

on glass and sapphire substrates, respectively. During film growth (at a given 

ambient pressure), the polar ZnO material will undergo significant lattice re-

organisation due to defect formation and defect/atomic diffusion, formation of a 

depletion layer, crystal grain formation and densification. These effects will be 

reflected in the variations of the film properties with film thickness. For example, 

Zhu et al. [5] studied the change of the crystallinity, microstructure and surface 

morphology of ZnO thin films of various thicknesses prepared by PLD on glass; 

while Guillen and Herrero [6] conducted a similar study for AZO films of various 

thicknesses deposited on glass at room temperature by DC sputtering. Finally, all 

growth parameters being equal, comparison of the properties of ZnO and AZO films 

will tell the specific effects of doping by aluminium substitution on the zinc lattice 

sites [7].  

 
            Based on these considerations, the aims of the present work [8] were to: (i) 

Use PLD to grow reproducible, high-quality ZnO and AZO thin films on flexible 

plastic Zeonor substrates at room temperature. (ii) Reveal the dependency of the 

growth rates, the microstructure and the surface, structural, optical and electrical 

properties of ZnO and AZO thin films of different thickness on the oxygen ambient 

pressure. In the rest of this section, we provide the necessary experimental details. 

We then present and discuss the results on thin film properties and associated 

deposition ambient/oxygen pressure and film thickness trends. Also, we have 

broadly reviewed the literature relevant to this work. Finally, we propose 

applications suitable for the range of film properties obtained in the work.  
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5.1.1 Growth details  

            All the films were grown in a standard PLD apparatus equipped with a high-

power, Q-switched, frequency-quadrupled, Nd:YAG laser. The laser specifications 

and growth parameters are mentioned earlier in Chapter 2.2. Sheets of 1.2 mm thick 

1060R Zeonor [9] cut into 1 cm × 2 cm rectangles were used as substrate. A gentle 

clean of the bare substrate surfaces with isopropyl alcohol was applied and then 

dried with nitrogen gas. The Zeonor substrates were mounted and kept at the 

deposition chamber base pressure of 3×10
-5

 mTorr (3.9×10
-6 

Pa) for about an hour 

prior to deposition. Growths were carried out in ambient oxygen (deposition) 

pressures of 75 mTorr (10 Pa), 150 mTorr (20 Pa) and 300 mTorr (40 Pa). From 

previous literature, see ref. [1] and references therein, in this relatively wide range of 

deposition pressures, the film growth should span over the transition from 2D layer-

by-layer to 3D nanostructuring modes. All the growths were carried out at room 

temperature (RT) and all the samples characterised as-grown, without post-growth 

high temperature anneal. The details of the growth parameters of the samples 

produced in this work are given in Table 5.1. 

 

             Film thickness was measured using a Dektak profilometer. Surface 

morphology was studied by atomic force microscopy (AFM) in tapping mode. The 

AFM images were acquired by scanning areas of dimensions 5 μm × 5 μm with a 

fixed resolution of 512 pixels × 512 pixels. The AFM measurements were repeated 

several times at three randomly chosen locations of every sample with no remarkable 

differences found between these locations. The water contact angle (WCA) was 

measured with the help of a computer-controlled WCA commercial instrument 

implementing the sessile drop technique. In all the WCA experiments, high-purity 

HPLC grade water was used and released at a flow rate of 1.5 μL/s from a needle tip 

2 mm above the film surface. The quoted WCA values are the average of typically 

ten measurements on different locations over the surface of the sample and the error 

bars represent the corresponding standard deviations. Structural characteristics were 

investigated by x-ray diffraction (XRD) using 2θ-ω and pole figure scans, 

respectively. Optical transmittance spectra were measured using a double-beam UV-

vis spectrophotometer, while low-temperature photoluminescence spectra were 

recorded with a 1 m focal length monochromator following a 325 nm He-Cd laser 
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excitation. Electrical properties were measured with a commercial 4-point probe/Hall 

effect apparatus. The experimental uncertainties or statistical errors associated with 

all these measurements are recorded, where possible, as error bars on the relevant 

tables and graphs shown in the following.  

   

 

 

 

Sam-

ple 

label 

No. of 

laser 

shots  

Oxygen 

pressure 

(mTorr) 

Thicknes

s ±error   

(nm) 

2θ 

(deg) 

c-

parameter 

(nm) 

FWHM     

(deg) 

Resistivity 

 (10
3
 × 

   Ω cm) 

 

 

  

 

ZnO 

Z1 5000 75 85±10 34.25 0.5238 0.39 462 

Z2 10000 75 169±22 34.27 0.5235 0.42 17 

Z3 20000 75 340±18 34.34 0.5225 0.44 452 

Z4 5000 150 92±23 34.21 0.5244 0.38 0.15 

Z5 10000 150 190±37 34.23 0.5240 0.41 0.49 

Z6 20000 150 382±74 34.24 0.5240 0.43 17 

Z7 5000 300 97±23 34.21 0.5243 0.38 0.83 

Z8 10000 300 209±43 34.27 0.5235 0.41 22 

Z9 20000 300 422±6 34.26 0.5236 0.41 1.8 

 

 

 

 

AZO 

A1 5000 75 67±17 34.34 0.5224 0.52 0.49 

A2 10000 75 131±13 34.40 0.5216 0.52 2.0 

A3 20000 75 263±28 34.45 0.5208 0.49 2.1 

A4 5000 150 74±23 34.40 0.5216 0.49 0.39 

A5 10000 150 140±10 34.48 0.5204 0.49 0.97 

A6 20000 150 289±7 34.46 0.5207 0.46 0.75 

A7 5000 300 86±26 34.48 0.5204 0.70 6.9 

A8 10000 300 199±54 34.48 0.5204 0.66 11 

A9 20000 300 415±4 34.52 0.5198 0.64 21 

 

Table 5.1: Experimental parameters (number of laser shots and oxygen growth pressure) 

used for the pulsed-laser deposition of ZnO and AZO films on Zeonor substrates. The 

resulting thickness, 2θ angular position, FWHM of the (002) Bragg reflection, value of the 

c-axis length and resistivity are given for each film. “Z” indicates ZnO films and “A” 

indicates AZO films.  

            

5.1.2 Results and discussions   

5.1.2.1 Thickness measurements and growth rate studies 

           From Table 5.1, we see that the range of film thicknesses considered in this 

work is 74–422 nm. Thus, all the films are optically thin and quantum confinement 

effects are not expected to play any role in the physics underlying their properties. 

Fig 5.1 shows the variations of the ZnO and AZO films thickness with the number of 

laser shots for the three oxygen deposition pressures of 75, 150 and 300 mTorr. For 

all the samples and growth conditions used, film thickness closely fits a linear 
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function of the number of laser shots (correlation coefficient (R) ~ 1 for the six 

graphs of Fig 5.1). From the laser repetition rate of 10 Hz and the slope of each plot, 

the growth rates are obtained with minimum and maximum values of 0.13 nm/s and 

0.22 nm/s respectively. 

 

            

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Thickness of ZnO (closed symbols, solid lines) and AZO (open symbols, broken 

lines) thin films, grown by pulsed-laser deposition, on Zeonor substrates as a function of the 

number of laser shots (repetition rate 10 Hz) for oxygen ambient pressures of 75 (black), 150 

(red) and 300 mTorr (blue). The inset shows the corresponding ZnO and AZO film growth 

rates (nm/s) as a function of oxygen pressure (mTorr). 

 

         From the inset of Fig 5.1, where the growth rates are plotted as a function of 

deposition pressure, we see that the ZnO and AZO film growth rates increase 

linearly with increasing oxygen deposition pressure at the rates of 2.2×10
-3

 nm/s/10 

mTorr and 4.2×10
-3

 nm/s/10 mTorr, respectively. The growth rates have equalised at 

300 mTorr oxygen pressure while the AZO growth rate is about 25% lower than that 

of ZnO for the lower pressures. The lower growth rates for AZO can be explained by 

a very high chemical affinity of aluminium with oxygen, which reduces their growth 

rate. From these observations showing linear dependences, we can conclude that 

similar growth mechanisms leading to optically thin (compared with the wavelength 

of light) ZnO and AZO films prevail in the range of experimental parameters notably 

the 75 – 300 mTorr pressure range used. The consistency of growth rates shows that 
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the thin films of ZnO and AZO can be reproduced when grown on Zeonor substrates 

by PLD. 

 

5.1.2.2 Surface morphology studies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.2: AFM images showing the typical surface topography of a selection of ZnO 

(upper row) and AZO (lower row) films obtained in this work (samples Z3, Z9, A3 and A9). 

The films were grown by PLD on Zeonor substrates using 20,000 laser shots at ambient 

oxygen pressures of 75 mTorr (left-hand column) and 300 mTorr (right-hand column). The 

insets show the same surfaces on a more magnified scale to reveal the finer details of the 

nanostructured grains. All the scale bars in the insets are 400 nm.  

 

             Fig 5.2 shows AFM images of the surface of the thickest ZnO (Z3 and Z9) 

and AZO (A3 and A9) samples as typical examples. The insets of Fig 5.2 show that 

the ZnO and AZO films present similar microstructures, for the two growth 

pressures of 75 and 300 mTorr, in the form of nanostructured, pea-shaped, grains 

with typical lateral sizes in the range 50 – 200 nm. Similar nanostructured ZnO 

deposits have been observed in comparable PLD experiments by many authors [10-

Z3 Z9 

A3 A9 
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13] and also in the laser ablation of silicon [14]. The underlying physical 

mechanisms have been explained for ZnO in the works of Okada and Kawashima 

[10] and Hartanto et al. [11]. In short, ZnO nano-clusters of various sizes are initially 

condensed in the expanding ablation plume and transported to and captured on the 

substrate. If the substrate is cold and amorphous, as is the case in our work, the 

nanoparticles have very limited surface diffusion and crystal growth is minimal. The 

next ablation plume will then build up another patchy layer of similarly shaped 

nanoparticles and so on. In the case of a high-temperature (and possibly crystalline) 

substrate, the initial nanoclusters will diffuse rapidly forming a wetting nucleation 

layer onto which crystalline ZnO nanorods can subsequently grow in a 3D growth 

mode [13,15]. Relevant to the present work are the fundamental aspects of the 

synthesis of silicon nanoclusters by conventional PLD discussed by Marine et al. 

[14] and the work by Jensen [16] on the growth of nanostructures by cluster 

deposition. From our low-oxygen pressure study (see section 5.2 below), we can 

conclude that, all other conditions being equal, the transition to 2D film growth on 

Zeonor substrate will occur at oxygen pressures lower than 75 mTorr. Overall, the 

AFM observations and their analyses are consistent with the conclusion, drawn at the 

end of the previous section, of a similar growth mechanism in the investigated 

pressure range. On the micrometer length scale (main parts of Fig 5.2), no particular 

organization of the nanostructures can be distinguished and they appear randomly 

distributed over the observed surface area. All the films surfaces were found to be 

identically smooth, devoid of cracks, fracture lines or delaminations. 

 

       We have estimated the values of the average nanostructure lateral grain size and 

root mean square (rms) roughness Rq for every sample with the help of imaging 

processing software (WSXM). The results are plotted in Fig 5.3. The AFM grain 

sizes typically range from 75 nm (ZnO) – 90 nm (AZO) for the thinner films to 

values of 180 nm (ZnO) – 140 nm (AZO) for the thicker films. They are also seen to 

increase in almost linear fashion with increasing film thickness. The grain size data 

for the ZnO films show a weak dependency on the oxygen pressure with a pattern of 

lower pressures producing larger nanostructure grain sizes in films of roughly equal 

thickness being discernable. Whereas, the AZO grain size values appear almost 

insensitive to the oxygen pressure within the 75 – 300 mTorr range. The ZnO films 

show a wider dispersion of grain sizes with varying ambient pressure and, on the 
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whole, nanostructure grain sizes are larger by a few 10’s of nm for the ZnO films at 

equal pressure compared with AZO films.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Grain size (closed symbols, solid lines) and rms roughness Rq (open symbols, 

dashed lines) as a function of film thickness for ZnO and AZO thin films deposited by 

pulsed-laser on Zeonor substrates at ambient oxygen pressures of 75 (black), 150 (red) and 

300 mTorr (blue). 

 

           Overall the data of Fig 5.3 show that the ZnO film morphology results from 

interplay between ambient pressure and film thickness effects. According to the 

growth model presented earlier, for thicker films, the ZnO nanoparticles deposited at 

a later stage will be captured by a nanostructured ZnO film allowing for better 

nanocrystal growth leading to larger grains at the lower pressure of 75 mTorr. For 

AZO, the role of the aluminium dopant in the film growth and lattice reconstruction 

seems significant to the extent that it appears to shadow the role of the oxygen 

pressure in the range used. Our experimental observations on grain sizes are 

generally comparable with previous works on ZnO and AZO nanostructured films 

deposited on COP and other plastic substrates, e.g. [17,18,19]. The RT PLD work of 
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Gondoni et al. [3,4], in particular, showing that AZO growth on glass becomes 

granular for oxygen pressures greater than 10 Pa (77 mTorr) supports our findings 

and the basic model of nanocluster plume formation.  

 

            The rms (Rq) surface roughness of the films is represented on the right 

vertical axes of Fig 5.3 with different scales for ZnO and AZO. Overall, the trends 

are similar for the ZnO and AZO films and follow the linear behaviour observed for 

the nanostructure grain size. The thinner films have Rq values of 1-2 nm, while for 

the thicker films this is in the range 4-8 nm with the bare Zeonor 1060R surface 

measured at 0.5 nm [20]. Therefore, all the films are optically smooth* for near-

normal incidence illumination. Overall, the surface rms roughness increases close to 

linearly with oxygen pressure for both the ZnO and AZO films. AZO films of 

comparable thickness have very similar surface roughness, irrespective of the 

oxygen pressure, while for ZnO films they are more dispersed. Overall, the ZnO 

films appear to be rougher by several nm compared with the AZO films in the 

pressure range used in the work. This is consistent with our observations on grain 

size as discussed above. The rms surface roughness values of typically a few 

nanometers reported here compare favourably with those reported in the quoted 

previous works [2,6,17,18,19]. In particular, we have retrieved the observations by 

Zhu et al. of an increase in ZnO film rms roughness with an increase in both the 

oxygen pressure [2] and the film thickness [5]. We have pointed out the importance 

of a smooth surface for reliable device performance and enhanced lifetime. For 

example, Han et al. [21] have successfully fabricated AZO TFT’s on PET substrates 

quoting a rms roughness of 1.36 nm, while Connolly et al. [22] have reported the 

successful deposition of ZnO films on Perspex flexible substrates with a rms 

roughness of 2.2 nm for use as electrodes in a biofuel cell. The typical roughness of 

~ 2 nm for the ZnO and AZO thinner films produced here would thus seem 

advantageous for similar devices fabricated on flexible Zeonor substrates. 

 

 

 

*According to Rayleigh criterion: d < λ/(8cosθ), where d is surface roughness (rms), λ is incident 

illumination wavelength, and θ is angle of incidence of the illumination. 
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5.1.2.3 Water contact angle (WCA) studies  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        

 

Figure 5.4: Water contact angle as a function of film thickness for ZnO and AZO thin films 

deposited by pulsed-laser on Zeonor substrates at ambient oxygen pressures of 75 (black), 

150 (red) and 300 mTorr (blue). 

 

           The wettability of the nanostructured ZnO and AZO thin films was assessed 

from the variation of the water contact angle (WCA) value with film thickness as 

shown in Fig 5.4. The size of some of the error bars in this figure reflects the large 

variations of several degrees which were occasionally found between successive 

measurements on the same sample. This is compatible with the high sensitivity of 

the ZnO surface wettability on both exposure to near ultraviolet radiation [23] and 

chemical contamination [24]. A WCA of 92.0° has been measured for the bare 

1060R Zeonor surface, which is therefore hydrophobic [9,20]. Overall, it is seen that 

the main effect of ZnO and AZO thin film deposition is to increase the 

hydrophobicity of the Zeonor surface. However, the ZnO and AZO films show 
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marked differences in this regard when considering the thickness and pressure 

dependences. For the ZnO films, it is seen that the WCA increases with thickness at 

all pressures, but the rate of increase is inversely proportional to the oxygen pressure. 

Indeed, for a 75 mTorr deposition pressure, the ZnO WCA is seen to increase to a 

maximum value of about 110° for the 340 nm film, while it increases only to about 

95° for the 422 nm film deposited at 300 mTorr. For the AZO films, the general 

trend is a slight decrease of the WCA as a function of film thickness, from about 94° 

to slightly less than 92° and almost within the error bar, while there appears to be 

little sensitivity of this decrease on the ambient oxygen pressure. The WCA data of 

Fig 5.4 can be correlated with the microstructure data of Fig 5.3. The larger WCA 

values for the thicker ZnO films correspond with the larger nanostructure sizes and 

rms surface roughnesses observed at the 75 mTorr pressure while the 

aforementioned lack of sensitivity of the rms roughness on the film thickness and 

deposition pressure is also seen in the WCA trends for AZO. This is indicative of a 

lower surface energy for the rougher surfaces which, thus, exhibit larger contact 

angles [25]. The present results confirm the work of Subedi et al. [26] showing a 

WCA greater for ZnO than for AZO films and that of Sun et al. [23] reporting the 

dependence of the ZnO surface wettability on its surface morphology. 

 

5.1.2.4 Structural properties 

           Fig 5.5 shows the out-of-plane 2θ-ω xrd angular scans measured in the 2θ ≈ 

32º-38º range for all the ZnO and AZO samples. All these scans showed a single 

dominant (002) peak with a weak (101) peak appearing for some of the AZO 

samples. More extended angular scans also include the broad Zeonor substrate peak 

at 2θ ≈ 16º as shown in the inset (Z3 sample). These data show that all the ZnO and 

AZO thin films deposited on Zeonor substrates by PLD have the wurtzite crystalline 

structure and are highly textured with c-axis orientation, i.e. the hexagonal (002) 

plane (basal plane) lies parallel to the plane of the substrate. The AZO material has a 

more polycrystalline structure in the thicker films with some grains showing the 

(101) plane (facet) lying parallel to the substrate plane. It is observed from Fig 5.5 

that the (002) peaks are more intense and narrower for ZnO than AZO films of 

comparable thickness.  
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Figure 5.5: 2θ-ω XRD scans for ZnO and AZO thin films deposited by pulsed-laser on 

Zeonor substrates with 5000 (dotted lines), 10000 (dashed lines) and 20000 (solid lines) 

laser shots at ambient oxygen pressures of 75 (black), 150 (red) and 300 mTorr (blue). The 

insets show: (top left) an extended angular range including the amorphous Zeonor 

diffraction and wurtzite ZnO (002) diffraction peaks; (top and bottom right) the integrated 

intensities of the (002) peaks as a function of film thickness for the various oxygen pressures 

used in this work. 

 

            In order to establish the effect of oxygen pressure on crystalline quality, the 

integrated intensity of the (002) peaks was plotted as a function of film thickness for 

the various growth pressures used in this work. The plots are shown in the insets of 

Fig 5.5 with added linear trend lines: The effect of pressure on crystalline quality can 

be assessed by reading the graph along a vertical line of constant film thickness. It is 

seen that for both the ZnO and AZO films crystalline quality is significantly better at 

the oxygen pressure of 75 mTorr, while for the AZO films crystalline quality appears 

less sensitive to oxygen pressure being almost pressure-independent at 150 and 300 
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mTorr. This is also true for both the ZnO and AZO films of thickness less than or 

equal to 100 nm. From Fig 5.3 (AFM data), we note that for these films the lateral 

grain size is of the same order as the thickness. Thus, the films crystalline structure is 

likely to be initially dominated by the unfavourable interface between the cold 

amorphous Zeonor surface and the ZnO and AZO nanocrystals. Further film growth 

atop ZnO or AZO material will then favour better lattice reconstruction minimising 

surface energy by favouring c-axis orientation. This accounts for the general increase 

of crystalline quality with thickness seen in the inset of Fig 5.5. For AZO, the point 

defects introduced by the aluminium dopant will also play a role in this regard as the 

thickness increases (see pole figure data below). The complete set of data of Fig 5.5 

points to the enhanced crystalline quality of the ZnO material compared to the AZO 

material in films grown on thin amorphous Zeonor plastic substrates at room 

temperature. 

 

(a) Crystallite size studies 

           The 2θ angular position and full width at half maximum (FWHM) of the 

(002) peak as well as the c-axis length are given in Table 5.1 for all the samples. For 

reference, we have also measured a c-axis oriented ZnO single-crystal wafer of 

thickness 0.5 mm (Tokyo Denpa) with the same apparatus (shown in Fig 5.5 with 

scaled down intensity). The measured 2θ value for this wafer sample is about 34.45º. 

We use the (002) peak FWHM values and 2θ angular positions to estimate the 

samples crystallite size and residual stress, respectively, The average crystallite size 

(D) can be calculated [27] using Scherrer equation , where λ = 0.15425 

nm is the wavelength of the Cu Kα line, θB is the Bragg angle and 

is the 2θ FWHM of the ZnO (002) peak after removal of the 

instrumental broadening assuming Gaussian line profiles. The instrumental 

contribution is estimated from the value of the 2θ FWHM for the (002) peak of the 

single-crystalline ZnO wafer measured at 0.167º. This assumes an essentially infinite 

“crystallite” size for the ZnO wafer sample. The corresponding graphs are shown in 

Fig 5.6 from which we see that crystallite sizes are in the ranges 20 – 25 nm and 12 – 

18 nm for the ZnO and AZO films, respectively. Overall, the larger D values 

observed for the ZnO samples are further evidence of the better crystalline quality of 

D 
0.9

hkl cosB

hkl  hkl
meas 

2

 hkl
instr 
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the ZnO compared to the AZO material. The small variations of D observed with 

oxygen pressure and sample thickness in the measured ranges appear not significant 

being roughly within or just outside of the error bars (relative error of about 5% on D 

for the strongest peak of Fig 5.5). 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 5.6: Crystallite size as a function of film thickness for ZnO and AZO thin films 

deposited by pulsed-laser on Zeonor substrates at ambient oxygen pressures of 75 (black), 

150 (red) and 300 mTorr (blue). 

 

            The present as-grown crystallite size values are similar to literature values 

obtained in comparable experimental conditions, with additional temperature anneals 

applied by some of the authors. Zhu et al. [5] report values of 15 and 25 nm for 50 

and 225 nm thick ZnO films, respectively, grown at an oxygen pressure of 12 Pa 

(~100 mTorr) on glass substrates heated at 350 °C. In the present case of Zeonor 

substrates, the increase in crystallite size with ZnO film thickness seen in [5] is not 

retrieved, while the same increase with oxygen pressure reported in [2] is broadly 
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confirmed here. A mean crystallite size of about 23 nm for ~ 250 nm thick AZO 

films grown on a PET substrate at RT and oxygen pressure of 0.4 Pa (3 mTorr) is 

reported in refs [6,28], while this is around 10 nm for 500 nm thick AZO films 

grown on glass substrates at RT and 10 Pa (75 mTorr) oxygen pressure [4]. The 

small increase in crystallite size with film thickness reported in [6,28] is also 

observed in the present work. The general trend of a larger AZO crystallite size with 

decreasing pressure shown in [3,4] is generally followed here for AZO films on 

Zeonor substrates.  

 

(b) Residual stress studies  

        The residual stress (σ) in the ZnO film plane is proportional to the strain along 

the c-axis in the biaxial strain model and can be estimated from equation (5.1)  

                                                   Eq (5.1)    

 

where c and c0 are the c-axes length of the strained and relaxed ZnO crystal, 

respectively [29]. The c-axis length and stress values of all the samples are shown in 

Table 5.1 and Fig 5.7, respectively. As the films are grown at RT, thermal stress 

components are neglected. The experimental value of the c-axis length for the ZnO 

single-crystal wafer is taken as the c0 value of 0.52072 nm. This is obtained from 

values of 2θ(002) = 34.451º and λ = 0.15425 nm and matches accurately the ZnO c-

axis length of 0.520690 nm (JCPDS card number 36-1451) when rounded off to the 

fourth decimal place (i.e. 0.5207 nm). This shows that the film stress values 

estimated from the measured change in the length of the c-axis are significant and 

reliable. A pointing error of ± 0.005º on the Bragg angle value yields an absolute 

error of ± 0.0002 nm on the c-axis length. The corresponding relative errors on the c-

axis strain/film stress amount to about 5% and 15% for c-values of 0.5244 nm and 

0.5220 nm, respectively. From equation (5.1), it is seen that this relative error gets 

larger as the c-axis length gets closer to c0, while a negative  value indicates a film 

in a compressive state of stress with its c-axis length larger than c0. 

 

            Fig 5.7 shows that the ZnO and AZO films are in a compressive state of 

stress with  values of – (2-3) GPa and – 0.5 GPa, respectively. The AZO films 

follow a similar trend. It is also seen that the stress has changed from compressive to 

tensile in the case of the AZO films grown at 300 mTorr (see below the discussion of 

  4.54 1011
c c0 
c0

 Nm-2




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pole figures). For all the films, except the A9 sample, the stress values decrease 

linearly with film thickness at a given pressure indicating a relief of in-plane stress 

for the thicker films. Overall, the ZnO films grown at the lower oxygen pressure of 

75 mTorr have less in-plane compressive stress than those grown at the higher 

pressures of 150 and 300 mTorr. These observations are consistent with our previous 

conclusions on both crystalline quality and growth mechanisms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: In-plane film stress (GPa) as a function of film thickness for c-axis oriented 

ZnO and AZO thin films deposited by pulsed-laser on Zeonor substrates at ambient oxygen 

pressures of 75 (black), 150 (red) and 300 mTorr (blue). 

 

            The compressive stress values for the ZnO films on Zeonor substrates are 

comparable with those (~ – 2 GPa) in the work of Maniv et al. [29] in which RT 

glass substrates were used, but differ from those of Zhu et al. [5] and Novotny et al. 

[30] in which tensile stress values of ~ 0.3 and 0.9 GPa were found for ZnO 

deposited on glass. Deposition temperatures of ~ 350 ºC were used in these last two 

works as well as a 750 ºC oxygen anneal in [30]. Thus, deposition and processing 
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temperatures significantly larger than RT can lead to different mechanical states for a 

ZnO film. For AZO films, the compressive stress is smaller than for ZnO due to the 

smaller ionic radius of Al
3+

 substituting on the Zn
2+

 sites. The  or c–axis length 

values obtained here for AZO on Zeonor substrates are similar with comparable 

works quoted previously [4,7,28]. 

 

(c) Pole figure studies   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.8: Perspective view of the (002) x-ray pole figure for a selection of ZnO (upper 

row) and AZO (middle row) films obtained in this work (samples Z3, Z9, A3 and A9). The 

films were grown by PLD on Zeonor substrates using 20,000 laser shots at ambient oxygen 

pressures of 75 mTorr (left-hand column) and 300 mTorr (right-hand column). The psi scale 

varies between -90° and 90°. The lower panel is a planar projection of the A9 figure on an 

enlarged psi scale to show the details of the peak splitting. 

 

         In order to investigate further the effects of deposition pressure on the texture 

and c-axis orientation of our ZnO and AZO thin films, we have measured the 

corresponding (002) pole figures for the selected samples Z3, Z9, A3 and A9 (same 


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as in Fig 5.2). The results are shown in Fig 5.8. The ZnO pole figures show high 

circular symmetry with narrow widths of 20° (75 mTorr) and 22° (300 mTorr) 

indicating a uniform alignment of the c-axis with small angular distribution about the 

substrate surface normal. The narrower width (20°) and more intense (20286 counts) 

pattern for sample Z3 suggests that the 75 mTorr deposition pressure creates better 

textured ZnO films. Kim et al. [19] have reported similar observations for Al and Ga 

doped ZnO films grown by RF sputtering. The AZO films appear to also follow this 

trend although the pole figures are much broader with widths of 34° (75 mTorr) and 

54° (300 mTorr) indicating large variations of the c-axis orientation about the 

surface normal in the doped films. For sample A9 (AZO, 300 mTorr) the pole figure 

intensity maximum is split and off-centered indicating an overall tilt of the c-axis by 

about 5° with respect to the normal to the substrate surface. It has been shown that 

the state of stress in this sample was uniquely tensile as opposed to compressive for 

all the other ZnO and AZO films. From the pole figure study, we can conclude that 

both Al-doping and deposition pressure have noticeable effects (see Figure 5.5(b): 

presence of (101) plane in AZO samples) on the c-axis orientation of thin ZnO films 

deposited on Zeonor substrates indicating the sensitivity of the growth mode to these 

two parameters. We note here that Takayanagi et al. [31] have shown recently that 

tilted c-axis ZnO layered structures can be used as ultrasonic transducers and our 

work thus shows an experimental route for the fabrication of such structures. 

 

5.1.2.5 Optical properties 

          The effect of deposition pressure on the optical properties/quality of the ZnO 

and AZO films of different thickness has been studied using UV-Vis absorption 

spectroscopy and low temperature photoluminescence spectroscopy. 

 

(a) Transmission studies 

         The transmission spectra of the ZnO and AZO samples, referenced to the bare 

Zeonor substrate (visible transmission of 90%), are shown in Fig 5.9. All the spectra 

show the absorption onset behaviour characteristic of the direct band gap of ZnO 

consisting of almost complete transparency in the visible region followed by a sharp 

cut off in the near ultraviolet, around 370 nm for ZnO and 350 nm for AZO, and 

almost complete absorption at the shorter wavelengths. All the samples are 

characterised by a visible transparency of at least 85-90% and this can even be 



122 
 

greater than 95% for some samples (for particular wavelengths). The enhancement 

effect of multiple interferences due to multiple reflections at the air/ZnO-

AZO/Zeonor/air interfaces is clearly present and indicative of the sharpness of these 

interfaces.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9:  Optical transmission spectrum in the 300 – 800 nm wavelength range for ZnO 

and AZO thin films deposited by pulsed-laser on Zeonor substrates with 5000 (dotted lines), 

10000 (dashed lines) and 20000 (solid lines) laser shots at ambient oxygen pressures of 75 

(black), 150 (red) and 300 mTorr (blue). The insets show the absorption coefficient as a 

function of photon energy in the immediate vicinity of the ZnO (Z3 sample) and AZO (A3 

sample) fundamental absorption edges and the graphical method employed in this work to 

determine the value of the latter.  

 

      It has been shown by several authors
 
[30,32] that the commonly used method for 

determining the “optical band gap”  based on an extrapolation to  of the 

linear part of the  graph (Tauc plot), where  are the absorption 

coefficient and photon energy respectively, systematically underestimates the value 

Eg
opt   0

 2  vs h   and h
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of , due to the presence of excitonic and other effects (e.g. broadening and stress 

effects), in ZnO which the Tauc model does not take into account. In addition, this 

method can lead to significant absolute errors for thick films (100 nm or greater) as 

the transmission values at the higher photon energies are then much less than a few 

percent and contain significant noise. We have thus evaluated the absorption edge 

energy from the transmission spectra using the following procedure to ensure a 

consistent approach allowing discussion of systematic trends. In the vicinity of the 

absorption edge, the ZnO and AZO layers are heavily absorbing and the 

transmittance assumes a simple exponential form from which the value of the 

absorption coefficients can be estimated with the knowledge of the layer thickness 

[7,33]. Typical results, showing  (cm
-1

) as a function of  in eV on a semi-log 

plot, are shown in the insets of Fig 5.9 (for Z3 and A3 samples). It is seen (for ZnO) 

that the value of  is around  cm
-1

 near the edge without any distinct 

excitonic structure as would be expected in un-annealed samples [34]. For all the 

other samples, we found values of  in the  range near the 

absorption edge which, thus, fall in the expected domain [32]. The value of the 

absorption edge can be estimated from semi-log plots of vs  [35,36]. We have 

applied the graphical method depicted in the insets of Fig 5.9 systematically to all 

the ZnO and AZO samples data to estimate their fundamental absorption edge 

energy (with ±1% relative error). In the following, we treat these absorption edge 

values as our best estimation of the optical band gap values although we cannot 

properly take into account the 60 meV exciton binding energy and thus we still 

slightly underestimate the band gap. The results are shown in Fig 5.10 from which it 

is seen that the absorption edge energy of all the ZnO films is almost constant near 

an average value of 3.34 eV. This is just slightly less than the 3.37 eV band gap 

energy of bulk ZnO at room temperature [32]
 
and thus confirms the validity of our 

method of estimation of the band gap energy. The variations of the ZnO optical band 

gap energy as a function of thickness and deposition pressure are observed to be 

relatively small. This behaviour of the band gap energy is compatible with the 

relatively small variations of the stress and grain size values with deposition pressure 

and thickness that we have discussed in the previous sections. In the comparable 

PLD works of Zhu et al. [2,5] and Novotný et al. [30], “Tauc band-gap” energies  of 

Eg
opt

 h

 1.3105

 (0.9 2.0)105  cm-1

 h
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3.25 eV and 3.28 eV for ZnO films of similar thickness are reported and discussed 

by the authors.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Fundamental absorption edge energy as a function of film thickness for ZnO 

and AZO thin films deposited by pulsed-laser on Zeonor substrates at ambient oxygen 

pressures of 75 (black), 150 (red) and 300 mTorr (blue). 

 

          For the AZO films a more dispersed pattern is observed in Fig 5.10 with 

values varying between 3.48 eV and 3.60 eV about a mean of 3.54 eV, larger than 

ZnO, as expected, as a result of the increased n-type dopant concentration. As the 

electron carrier densities measured (see section 5.1.2.6 below) are typically much 

lower than the ZnO critical density of ~10
19

 cm
-3

, the observed band gap widening 

for AZO can be largely attributed to the Burstein-Moss shift [7,37,38]. Use of the 

Tauc plot method to determine  in AZO (2 wt% Al2O3) gave values of 3.68 eV 

for RT deposition on PET substrates [28], 3.4 eV for RT deposition on glass 

substrates [3] and 3.45 eV for 400 ºC deposition on fused quartz substrates [7]. Our 

data lies within this spread of literature values. From Fig 5.10, the band gap energies 

for the 300 mTorr AZO films are seen to be consistently lower than for AZO films 

grown at the lower pressures and this can be related to our previous observation of a 

significant compressive to tensile change in the in-plane stress for 300 mTorr AZO 

films. This behaviour is similar to that reported by Mohanty et al. [39]. A trend 

whereby the AZO optical band gap slightly decreases in a linear fashion with film 

thickness is just discernable above the error margin in Fig 5.10. Again, this could be 

related to the corresponding grain size/stress behaviours discussed above.  

Eg
opt
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(b) Photoluminescence studies 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Low temperature (13 K) photoluminescence spectra for ZnO and AZO thin 

films deposited by pulsed-laser with 20000 laser shots on Zeonor substrates at ambient 

oxygen pressures of 75 (black), 150 (red) and 300 mTorr (blue). 

 

          Fig 5.11 shows the low temperature (13 K) photoluminescence spectra of the 

thickest (20,000 laser shots) of our ZnO and AZO thin films (samples Z3, Z6, Z9 

and A3, A6, A9) for the three pressures of 75 mTorr, 150 mTorr and 300 mTorr used 

in this work. The spectra of the ZnO films show the characteristic near band edge 

(NBE) emission in the near UV emission and the deep-level emissions (DLE) in the 

visible spectrum composed of the yellow (2.2 eV) and orange/red (1.9 eV) bands. 

The NBE band is due to shallow bound excitonic recombinations while the yellow 

and orange/red DLE emissions are defect bands usually attributed to oxygen 

interstitials [40-42]. The NBE bands are significantly more intense than the defect 

bands at any deposition pressure, testifying to the good optical quality of the ZnO 
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material in the films. It is seen that the NBE peak emission wavelength shifts from 

392 nm to 385 nm when the oxygen pressure increases from 75 mTorr to 300 mTorr. 

As this 7 nm wavelength shift is small, it cannot be conclusively correlated with the 

equally small differences in energy gap seen in Fig 5.10 for these samples.    

 

        For the AZO films, a strong NBE band is observed for all the oxygen pressures 

with a complete quenching of the deep level emissions. This effect is known and 

several reasons have been invoked in the literature to explain the absence of DLE in 

AZO films, see e.g. [43], though, to the best of our knowledge no consensus has yet 

been reached. We put forward one plausible explanation for the quenching of the 

DLE band in AZO. Native defects in ZnO, such as the oxygen interstitials 

responsible for the DLE, have higher formation energy in AZO than in ZnO due to 

the presence of aluminium which has a very strong chemical affinity for oxygen. 

Thus, oxygen displacement from its normal binding site is energetically less 

favorable in AZO compared to undoped ZnO. The concentration of oxygen 

interstitials may then be reduced when Al is incorporated during growth and hence 

no DLE is observed in AZO films. The AZO NBE peak emission wavelengths have 

blue-shifted to around 380 nm which is consistent with our previous observation of 

an increased band gap energy for AZO. Finally, we note that the NBE emission 

intensity is significantly reduced for the 300 mTorr AZO sample indicating that the 

optical quality of the material is highly sensitive to the oxygen deposition, in 

agreement with the markedly different structural and mechanical properties already 

noted for this particular sample. 

 

5.1.2.6 Electrical properties 

              Fig 5.12 shows that the electrical properties of the ZnO and AZO samples in 

the form of the variations of Hall mobility and carrier concentration with film 

thickness for the various deposition pressures while the resistivity values are given in 

Table 5.1. It is worthwhile recalling here that all the measurements were carried out 

on the as-grown films without any thermal annealing or carrier activation treatments. 

For the ZnO films deposited at 75 mTorr, high resistivity values of 5×10
5
 Ω cm (85 

nm film), 2×10
4
 Ω cm (169 nm film) and 4×10

5
 Ω cm (340 nm film) and carrier 

concentrations ≤ 10
9
 cm

-3
 were typically obtained. Hall effect measurements on these 

highly resistive samples turned out to be too noisy and unreliable. The 75 mTorr 
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ZnO samples typically exhibit semi-insulating behaviour. For the ZnO samples 

grown at the higher pressures of 150 mTorr and 300 mTorr, resistivity values tend to 

drop by 2-3 orders of magnitude, down to 1.5×10
2
 Ω cm (92 nm thick sample at 150 

mTorr), although some remain high, for example 2×10
4
 Ω cm (209 nm thick sample 

at 300 mTorr). Hall mobility values for these samples are all around 1 cm
2
/V-s, 

whereas n-type carrier concentration values vary between 5×10
14

 cm
-3

 and 5×10
16

 

cm
-3

. Overall, the electrical behaviour of the ZnO/Zeonor samples varies 

significantly from semi-insulating to n-type semiconducting as a function of the 

oxygen deposition pressure. This pattern for ZnO thin films deposited by PLD under 

similar oxygen pressure conditions has been observed by many workers; see for 

example, Grundmann et al. [44]. 

 

             

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: Hall mobility (closed symbols, solid lines) and carrier concentration (open 

symbols, dashed lines) as a function of film thickness for ZnO and AZO thin films deposited 

by pulsed-laser on Zeonor substrates at ambient oxygen pressures of 75 (black), 150 (red) 

and 300 mTorr (blue). 
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          As expected, the electrical properties of the AZO thin films tend to show an 

improved conductive behaviour compared to ZnO. Notably, the resistivity values 

have all dropped significantly at all growth pressures and are mostly found in the 

range 4×10
2
 Ω cm - 2×10

3
 Ω cm for the lower pressures of 75 mTorr and 150 mTorr 

and around 9×10
3
 Ω cm for the films grown at 300 mTorr. Hall mobility values are 

significantly increased in AZO compared with ZnO, with the bulk of the values 

found in the range 4 - 14 cm
2
/V-s with n-type carrier concentrations in the range 10

15
 

cm
-3 

- 5×10
16

 cm
-3

. The data of Table 5.1 shows that resistivity values tend to 

increase with both pressure and film thickness. The strong dependence of the 

resistivity of as-deposited AZO films grown by PLD at RT on glass with oxygen 

pressure was shown in ref [3], with the resistivity tending to insulator values at 

pressures of 10 Pa (75 mTorr) and greater. This behaviour is also verified in our 

work. Lu et al. [7] have also shown that the AZO electrical properties depend 

critically on the Al concentration with increase in resistivity from 10
-3

 Ω cm to 100 

Ω cm when the concentration drops from about 3 at% to 1.5 at%. The AZO Hall 

mobility, resistivity and carrier density values reported in the present work are 

generally compatible with those of ref [7]. The 4-14 cm
2
/V-s Hall mobility values for 

the AZO films obtained here could be suitable for use in transparent flexible thin 

film transistor applications, as reported by Nomura et al. [45] with 6-10 cm
2
/V-s Hall 

mobility values. For applications requiring transparent conductive oxide (TCO) 

properties, the AZO resistivity would be significantly lowered (by a couple of orders 

of magnitude) and match that of other works on plastic substrates [17,28,46], by (i) 

carrying out the depositions at oxygen pressures in the 0.1 – 1 Pa (0.75 mTorr- 7.5 

mTorr) range and (ii) non-thermal post-processing of the films using laser annealing 

[47]. 

 

5.1.3 Conclusions 

          In this high oxygen pressure work, we have shown for the first time that ZnO 

and Al-doped ZnO (AZO) nanocrystalline thin films with high material quality can 

be reproducibly grown on flexible Zeonor plastic substrates using pulsed laser 

deposition (PLD) at room temperature. We have also systematically studied the 

effects of oxygen in a selected pressure range on the growth rate, surface 

morphology, hydrophobicity and the structural, optical and electrical properties of 
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films having different thicknesses, and shed light on the aspects of the growth 

mechanisms. 

 

        All the films were observed to have the same nanostructured morphology. This 

was shown to be compatible with existing film growth models based on the capture 

by the Zeonor substrate of nanoclusters that have condensed in the expanding 

ablation plume. Highly linear growth rates were obtained showing that ZnO and 

AZO films with identical properties can be reproducibly deposited using the PLD 

technique. The deposition of ZnO or AZO films was shown to enhance the 

hydrophobicity of the Zeonor plastic surface. All the films were nanocrystalline 

(wurtzite structure) with high texture (c-axis orientation) and good crystallinity. 

Their optical quality was good: All the ZnO and AZO films displayed high visible 

transparency, greater than 95% in some cases, while their low temperature 

photoluminescence spectra showed intense near band edge emission. A considerable 

spread from semi-insulating to n-type conductive was observed in the ZnO and AZO 

films electrical behaviour, with marked dependences on film thickness and oxygen 

deposition pressure. The resistivity values of typically around 10
3
 Ω cm and Hall 

mobility values in the range 4 - 14 cm
2
/Vs showed that the ZnO and AZO films 

would be suitable for applications in flexible sensors, transducers and transparent 

thin film transistors. 

 

 

 

 

 

 

 

 

 

 

 



130 
 

5.2 Low oxygen growth pressures: 1-75 mTorr    

           In this section, we report the effects of oxygen growth pressures ≤ 75 mTorr, 

and show its very strong influence on ZnO and AZO thin films properties.  

 

5.2.1 Growth details  

 

 

Table 5.2: Oxygen pressures used for PLD of ZnO and AZO films on Zeonor substrates. 

The resulting thickness, XRD 2θ angular position of the (002) and (100) Bragg reflection, 

XRD 2θ FWHM of the (002) and (100) Bragg reflection, crystallite size corresponding to 

the (002) and (100) Bragg reflection, value of the c-axis length and in-plane compressive 

stress are given for the films. “Z” indicates ZnO and “A” indicates AZO films.  

 

       The films were grown in a standard PLD apparatus with the substrate at room 

temperature. The details of laser specifications and growth parameters used in this 

section were kept the same as in the previous section 5.1. Growths were carried out 

in oxygen pressures in the PLD chamber of 75 mTorr (10 Pa), 40 mTorr (5.33 Pa), 

25 mTorr (3.33 Pa), 10 mTorr (1.33 Pa) and 1 mTorr (0.13 Pa). In this section, all 

growths were carried out with a constant number of laser shots i.e. 20000 shots. The 

details of growth parameters, sample labelling, and some sample data are listed in 

Table 5.2. 

 

 

 

 Sample 

labels  

Oxygen 

pressure 

(mTorr) 

Thickness  

(nm) 

Plane  2θ 

(deg) 

FWHM     

(deg) 

Crystallite 

(or grain) 

size (nm) 

c-

parameter 

(nm) 

Stress 

(GPa)  

   

 ZnO 

Z1 1    310 100 31.48 1.26 6.31     -    - 

Z10  10    314 002 34.25 1.55 5.14 0.5237 -2.63 

Z25 25    321 002 33.87 1.71 4.66 0.5294 -7.58 

Z40 40    328 002 34.13 0.93 8.51 0.5256 -4.27 

Z75 75    340 002 34.34 0.44 19.65 0.5225 -1.53 

 

  

AZO 

A1 1    181 100 31.50 1.11 7.17     -     - 

A10 10    188 100 31.48 1.11 7.18     -     - 

A25 25    201 002 34.15 2.59 3.07 0.5252 -3.92 

A40 40    214 002 33.78 1.19 6.65 0.5308 -8.80 

A75 75    263 002 34.45 0.49 17.13 0.5208 -0.09 
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5.2.2 Results and discussions  

5.2.2.1 Surface morphology studies 

           Fig 5.13 shows AFM images for all the ZnO and AZO thin films grown at 

various oxygen pressures (75, 40, 25, 10 and 1 mTorr) on Zeonor substrates. The 

deposited films show micro and nanostructures for oxygen pressures above 25 

mTorr. However, when the oxygen pressure in the PLD chamber decreased below 25 

mTorr, a significant change was observed in both ZnO and AZO films. At lower 

oxygen pressures (10 mTorr and 1 mTorr), the deposits show a continuous film-like 

morphology, as shown in Fig 5.13. The change in the morphology may be due to the 

effects of the interaction of the ablated species with the background oxygen gas 

molecules on the cold and amorphous substrate, as suggested in previous works 

[1,3,4]. Fig 5.13 also shows that the films have no cracks when deposited at higher 

oxygen pressures i.e. 75 mTorr and that clear evidence of film cracking is seen at 

lower oxygen pressures (see below explanation). The surface roughness (rms) of the 

films was measured from the AFM data using WSXM software and is shown in Fig 

5.14 (a). It is observed that, as oxygen pressure decreases from 75 mTorr to 1 mTorr, 

the surface rms roughness (calculated over an area of ~ 5 m x 5 m with a fixed 

resolution of 512 pixels × 512 pixels) increases dramatically from 5 nm to 60 nm for 

both ZnO and AZO films, due to the cracks observed in the lower oxygen pressure 

samples. However, the lower oxygen pressure samples appear smoother when the 

rms roughness is calculated over smaller areas (~ 1 m x 1 m ) not including 

cracks, because of the depth (~ 150 nm) of the cracks which increases the overall 

surface roughness significantly.  

 

            We note that ZnO and ZnO:In (IZO) films grown by sputtering (growth at 

150 
o
C) and PLD (growth at room temperature and similar oxygen pressures) on 

PEN and PET plastic substrates also show cracks [17,18]. By contrast, when using 

similar growth conditions (room temperature and similar oxygen pressures) AZO 

films grown by PLD on Si and glass substrates show no cracks in their morphology 

[3]. This indicates that the plastic substrates are key factors leading to the cracking, 

and this may be related to the substrate properties when interacting with high kinetic 

energy ablated species at lower oxygen pressures.  
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Figure 5.13: AFM images showing the surface morphologies of samples grown with various 

oxygen pressures (1 to 75 mTorr) for ZnO (left hand side column) and AZO (right hand side 

column) thin films (top to bottm).  
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Figure 5.14: (a) Surface roughnesses (rms) obtained from AFM images of ZnO (closed 

symbols with solid lines) and AZO (open symbols with broken lines) thin films grown using 

various oxygen pressures (1-75 mTorr), (b) Water contact angle (WCA) for ZnO films 

(closed symbols with solid lines) and AZO thin films (open symbols with broken lines) 

grown using various oxygen pressures (1-75 mTorr).  

 

      Our surface roughness values are comparable with previous PLD reports on 

plastics substrates [17]. Overall, these findings indicate a significant effect of oxygen 

pressure on the surface morphology and surface roughness of films grown on Zeonor 

substrates.  

 

5.2.2.2 Water contact angle (WCA) studies  

         The variation of water contact angle (WCA) as a function of oxygen pressure 

in the growth chamber for ZnO and AZO thin films are shown in Fig 5.14 (b) (see 

above Fig). The results are the average of several measurements (typically around 

10) on different locations over the entire surface of the sample and the error bar 

represents the standard deviation of these measurements. The WCA for the bare 

hydrophobic substrate 1060 R Zeonor was measured at 92.0° [8]. As the oxygen 
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pressure decreases, the degree of hydrophobicity also decreases from 111° to 88° 

(for ZnO) and from 92° to 80° (for AZO). However, most of the films show a 

hydrophobic behaviour except the samples grown at 1 mTorr oxygen pressure. Thus, 

oxygen pressure during growth modifies the surfaces rendering them more 

hydrophobic, which may be related to the reduction in oxygen vacancy sites on the 

surface due to the higher oxygen pressure. The surface wetting properties generally 

depend on surface texture and roughness, as well as crystal structure [26,48,49]. As 

mentioned above, the surface roughness increases with decreasing oxygen pressure 

while the surface texture and grain size decrease with decreasing oxygen pressure 

(see below XRD data). These observations are consistent with our WCA results that 

hydrophobicity decreases with decreasing oxygen pressure. The relationship of 

hydrophobicity to the surface structure can be explained in terms of the number of 

trapped air spaces observed on surface of the films [26,48,49].
 
The trapped air 

pressure counteracts gravity as well as the surface tension of the water droplets and, 

as a result, the water droplets maintain a spherical shape (indicating greater 

hydrophobicity). Therefore, large numbers of air traps on the surface increase the 

hydrophobic behaviour [28]. This is consistent with the present work as the number 

of air traps is likely to be greater for the films with nanostructured grains, i.e. those 

formed at high oxygen pressures (≥ 25 mTorr). Furthermore, the degree of 

hydrophobicity seems greater for ZnO than AZO samples, although for many 

samples the difference is within the error bars, and this is consistent with previous 

works, e.g. [26]. 

 

5.2.2.3 Structural properties 

           Fig 5.15 shows 2θ-ω XRD scans for ZnO (Fig 5.15(a)) and AZO (Fig 5.15(b)) 

thin films grown by PLD on Zeonor plastic substrates, deposited at various oxygen 

pressures. Broad peaks associated with the amorphous Zeonor substrate were 

observed at around 2θ ≈16º and 41º [8]. The ZnO films grown at oxygen pressures 

above 1 mTorr (Z75, Z40, Z25, Z10) show evidence of wurtzite structure with dominant 

(002) and (004) peaks, and the Z1 film deposited at an oxygen pressure of 1 mTorr 

shows a change in orientation of the crystalline fraction with the (100) peak being 

dominant, although the reduction in overall signal intensity may indicate an 

increased amorphous deposit fraction. Zhu et al. [2] also observed a reduction in 
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(002) peak intensity of ZnO films grown by PLD on glass substrates with decreasing 

oxygen pressure, consistent with the present work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15: 2θ-ω XRD scans for (a) ZnO, (b) AZO thin films on Zeonor substrates. The 

features marked ‘*’ are due to the adhesive mounting tape used.  

 

      The AZO films grown at oxygen pressures above 10 mTorr (A75, A40 and A25) 

also show dominant (002) and (004) peaks, whereas the AZO films grown at oxygen 

pressures below 25 mTorr (A10 and A1) show a complete absence of the (002) peak 

and the growth of the (100) peak, although again the reduction in overall signal 

intensity may indicate an increased amorphous deposit fraction at lower oxygen 

pressures [50]. We note that AZO and IZO films grown by room temperature PLD 

on PET substrates also show an amorphous structure [17]. At high oxygen pressures 

(≥ 25 mTorr) both ZnO and AZO films on Zeonor substrates show a crystalline 

deposit fraction with (002) orientation (see above section 5.1), which changes to 

(100) orientation at low growth pressures (≤ 25 mTorr), i.e. from c-plane to m-plane. 

This crystalline fraction orientation shift correlates with our previously discussed 
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AFM surface morphology, where significant changes in surface morphology from 

nanocrystalline to film-like morphology occur in the same oxygen pressure region. 

 

         In order to study the effect of oxygen pressure on the crystalline quality, we 

have measured 2θ angular values and FWHM and have deduced the value of the c-

axis length and in-plane stress of the films, as well as the average crystallite (or 

grain) size corresponding to the (002) and/or (100) Bragg reflection. These results 

are listed in Table 5.2. As mentioned earlier in Chapter 3.2 (see equation 3.2), 

measurement of the a-parameter is possible only from a measurement of the angular 

position of the (100) diffraction peak and hence no c-parameter value can be shown 

for the (100) oriented sample. For reference, we have also measured a c-axis oriented 

ZnO single crystal wafer of thickness 0.5 mm (Tokyo Denpa) with the same 

apparatus.
 
The corresponding 2θ and c-parameter values are 34.45º and 0.5207 nm 

respectively. It is observed from Table 5.2 that the 2θ angular value reduces and 

diverges from the bulk ZnO value of 34.45
o
 as oxygen pressure decreases for both 

ZnO and AZO films, for oxygen pressures above 25 mTorr. However, for samples 

grown at oxygen pressures of 25 mTorr and 10 mTorr, this trend does not hold and 

the 2θ angular value increases towards the bulk ZnO value for both ZnO and AZO 

films at low oxygen pressures (< 25 mTorr). This relaxation towards the bulk crystal 

value at low oxygen pressures is consistent with the evidence of cracks appearing in 

the low oxygen pressure samples (Z1, A1 and A10 samples). In all cases the 2θ 

angular values of ZnO and AZO films are smaller than the ZnO wafer value. From 

the known 2θ(002) angular values, we calculate the c-axis length of the samples using 

Bragg’s Law and the residual stress in the films. It is observed (Table 5.2) that the 

films are compressively stressed in the c-axis direction (i.e. elongated in the substrate 

plane). This is consistent with our previous observations of ZnO and AZO films 

grown at oxygen pressures above 75 mTorr on Zeonor substrates (see above section 

5.1).
 
As mentioned in the previous section 5.1, the compressive stress values for 

AZO samples are also smaller than the ZnO samples due to the smaller ionic radius 

of Al
3+

 substituting on the Zn
2+

 sites [28].  

 

            From the experimental full width half maximum (FWHM) of the (002) peak, 

we have evaluated the average crystallite size using the Scherrer equation (see above 

section 5.1 for calculation details). The results are shown in Table 5.2. It is observed 
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from the data that, as oxygen pressure decreases the (002) FWHM increases 

(therefore, crystalline quality decreases), which can be taken to represent a proxy 

measure of the crystalline quality which seems to improve for samples grown at 

higher oxygen pressures. Similar results were reported previously for ZnO films 

grown by PLD on amorphous glass substrates [2].
 
The average crystallite size in our 

samples is in the range 2-12 nm for ZnO films and 3-18 nm for AZO films. We note 

that crystallite sizes reported in this work are comparable with previous reports of 

thin films on other plastic and glass substrates deposited by PLD (with similar 

oxygen growth pressures) [2,3], sputtering [28], and cathodic vacuum arc technology 

[51].   

 

5.2.2.4 Optical properties 

 

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16: Transmission spectra in the 300 nm-1100 nm wavelength range for (a) ZnO 

and (b) AZO thin films grown by PLD at various oxygen pressures between 1 mTorr and 75 

mTorr.   
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          Transmission spectra of ZnO and AZO thin films in the range 300 -1100 nm 

are shown in Fig 5.16 (a) and (b), respectively. For reference, the transmission of a 

bare Zeonor substrate is also shown in Fig 5.16 (a and b), which has a transmission 

of 90 %. For both ZnO and AZO films, it is observed that the transmission is higher 

(85-95 %) with a sharp onset and clear evidence of interference fringes at higher 

oxygen pressures (75, 40 and 25 mTorr), whereas at low-oxygen pressures (10 and 1 

mTorr) the transmission drops to 70-85 % with fewer fringes and a less sharp onset 

in transmission. These data are consistent with our AFM data (Fig 5.13 and Fig 5.14) 

where surface (rms) roughness increases (due to the formation of large cracks) with 

decreasing oxygen pressure. This roughness is very likely to lead to increased 

scattering, giving rise to the optical properties seen in Fig 5.16 (a) and (b) for these 

samples. We note that Gondoni et al. [3,4] have also observed this type of behaviour 

for samples grown under similar oxygen pressures by room temperature PLD on 

soda-lime glass substrates.
 
We also note that the transmittance of our samples (with 

similar thicknesses) on Zeonor substrates at oxygen pressures ≥ 25 mTorr is higher 

than those reported previously on other plastic and glass substrates [18,28,52]. For 

example, Sierros et al. [18] have reported a 80 % transmission for ZnO films grown 

on PET substrates while Guillén et al. [28] have reported a 85-90 % transmission for 

AZO films grown on PET substartes. Also, Gong et al. have reported a 80 % 

transmission for GZO (ZnO:Ga) films grown on PC substrates.   

 

5.2.2.5 Electrical properties  

         Fig 5.17 shows the electrical properties of the ZnO and AZO films grown on 

Zeonor substrates (resistivity, Hall mobility and carrier concentration). For ZnO 

films, the LHS of Fig 5.17 (a) shows that the resistivity value (black coloured  

symbols) is ~ 10
5 

Ω cm at higher oxygen pressures (75, 40 and 25 mTorr), and the 

films are semi-insulating. It is worth recalling here that all the films were deposited 

at room temperature, i.e without any annealing or activation treatments. The 

resistivity of the films dropped sharply to 10
-2

-10
-3 

Ω cm at low oxygen pressures (10 

and 1 mTorr). Furthermore, the decrease in the resistivity with decreasing oxygen 

pressure is mainly attributed to the increasing oxygen vacancy concentration in the 

films, although the morphology transition of the samples to a thin film-like deposit 

from the nanocrystalline form (see Fig 5.13) may be of importance in explaining the 

behaviour of the Hall mobility at the lowest values of oxygen pressure, as discussed 
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below. Decreasing the oxygen pressure is expected to increase the number of oxygen 

vacancies, leading to an increase in carrier concentration and conductivity [1,2]. A 

similar correlation between resistivity and oxygen growth pressure has been reported 

by many authors [1,3]. The inner right hand side of Fig 5.17 shows that Hall 

mobility increases initially to 35 cm
2
/V-s and then decreases to ~ 2 cm

2
/V-s as 

oxygen pressure decreases, again correlating with the morphology and crystallinity 

behaviours observed previously. The Hall mobility variation can be explained in 

terms of grain boundary scattering as well as defect scattering [2]. As the oxygen 

pressure decreases the grain size of the film decreases (see Table 5.2), leading to an 

increase in grain boundary scattering. Simultaneously, the defect scattering also 

increases with decreasing oxygen pressure because of the increasing defect 

population (oxygen vacancies) at low pressures [1,2,3]. We observed the Hall 

mobility of the ZnO samples deposited at 75 mTorr were quite noisy and thus 

deemed unreliable. Hence we have not shown Hall mobility values for these 

samples. The carrier concentration increases sharply from 10
9 

cm
-3 

to 10
21 

cm
-3 

as the 

oxygen pressure decreases from 75 mTorr to 1 mTorr, which we attribute to the 

oxygen vacancies created at lower oxygen growth pressures [1,2,3]. Our electrical 

resistivity, Hall mobilities and carrier concentration results for ZnO films are 

comparable with previous reports on other plastic substrates such as PET [51].
  

 

            The AZO films generally show improved electrical behaviour compared to 

ZnO films in terms of resistivity, particularly at higher oxygen pressures. The 

resistivity decreases almost linearly with decreasing oxygen pressure and the 

maximum resistivity is ~ 10
3
 Ω cm at an oxygen pressure of 75 mTorr and the 

minimum resistivity is in the range of 10
-3

-10
-4

 Ω cm at an oxygen pressure of 1 

mTorr. The overall decrease in the resistivity of AZO compared to ZnO films is 

attributed to an increase in the free carrier concentration for AZO for all growth 

conditions, due to the ubiquitous donor electrons from the Al dopant [1]. In terms of 

Hall mobilities for the AZO films, as the oxygen pressure decreases the Hall 

mobility value increases initially to 18 cm
2
/V-s until an oxygen growth pressure of 

40 mTorr and then a sudden drop is observed to a value of 1 cm
2
/V-s at an oxygen 

pressure of 25 mTorr. As discussed above, the sudden decrease in the Hall mobility 

at 25 mTorr is again associated with the decrease in grain size of the AZO film (see 

Table 5.2). At the lowest oxygen pressures (1 mTorr) in both ZnO and AZO 
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samples, the Hall mobility increases slightly which may be related to the 

morphology transition of the samples to a film-like deposit (albeit with cracks) from 

the nanocrystalline form (see Fig 5.13). In terms of carrier concentrations in the 

AZO films, the concentration increases almost linearly from 10
15 

cm
-3 

to 10
21

 cm
-3 

as 

the oxygen pressure decreases from 75 mTorr to 1 mTorr.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17: Resistivity (black coloured square symbols and left-hand scale), Hall mobility 

(red coloured circle symbols and inner right hand scale) and carrier concentration (blue 

coloured triangle symbols and outer right hand scale) of (a) ZnO and (b) AZO thin films 

grown by PLD at various oxygen pressures (mTorr).  

 

       Overall, the electrical properties of both the ZnO and AZO samples improve 

significantly at low oxygen growth pressures and all the films show n-type 

conductivity. By contrast, ZnO films grown at high oxygen pressures show a semi-

insulating behaviour. 
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5.2.3 Conclusions  

            The effect of oxygen pressure on the surface morphology, structural, optical 

and electrical properties of as-grown ZnO and AZO thin films grown on Zeonor 

plastic substrates were studied. As the oxygen pressure decreases from 75 mTorr to 1 

mTorr (i) the surface morphology changes from nanocrystalline to a  film-like form 

and the surface rms roughness increases significantly from 4 nm to 65 nm, primarily 

due to the appearance of deep surface cracks (see Fig 5.13); (ii) the degree of 

hydrophobicity of the samples decreases. All the films show a hydrophobic 

behaviour (but WCA is very close to 90 °) except the 1 mTorr oxygen pressure 

sample; (iii) the orientation of the crystalline fraction (with possibility of large 

amorphous fraction at low oxygen pressures) of the deposit shifts from c-plane to m-

plane for the ZnO material; (iv) the visible optical transmittance decreases 

significantly from 95 % to 70 % (or even less) while the band-edge onset becomes 

much less sharp and the interference fringes are obscured, most likely all due to 

increased scattering; (v) the electrical properties are significantly improved overall 

e.g. the resistivity of the ZnO films decreases from 10
6
 Ω cm to 10

-3
 Ω cm and the 

carrier concentration increases from 10
9
-10

15 
cm

-3 
to 10

21
 cm

-3
. Overall, the effect of 

oxygen pressure on the structure and properties of ZnO and AZO films has been 

shown to be an important factor. Researchers will benefit from this work for the 

control and tailoring of the properties of ZnO and AZO films on plastic substrates.  

Thin films such as these grown on flexible Zeonor substrates may find applications 

in flexible optoelectronics in the first instance, but also, because Zeonor plastics are 

used in many healthcare and medical applications, the outcomes from our work 

could also be used in microfluidic, bio-sensing or biofuel-cell energy applications 

amongst others.  
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5.3 Ageing effect study      

             In this section, we present a study of the ageing effect of ZnO and AZO thin 

films grown at oxygen pressures ˂ 75 mTorr on Zeonor substrates. We observe the 

effect over a six month period. The samples grown in section 5.2 (low-oxygen 

pressure grown films) were used to study the ageing effect.  

 

            We now briefly review the literature on the ageing of ZnO thin films. Li et al. 

[53] have reported the effect of ageing time of ZnO sol on the properties of ZnO thin 

films grown by sol-gel method on glass substrates, while Shan et al. [54] have 

reported the ageing and annealing effects on ZnO films grown by PLD on GaN 

substrates. In those reports, the authors focused on the surface and PL properties. 

Shan et al. have also reported similar works on glass and sapphire substrates, 

respectively in refs [55,56]. Karamdel et al. [57] have reported an ageing study of 

nitrogen-doped ZnO films grown by RF sputtering on Si substrates, while Guillén-

Santiago et al. [58] have done similar work on fluorine-doped ZnO films grown by 

chemical spray technique on glass substrates. Furthermore, Vidor et al. [59] and 

Pearton et al. [60] have reported an ageing study on ZnO and InGaZnO thin films 

grown on plastic substrates based TFTs, respectively. To the best of our knowledge, 

no report has been published on the ageing effect study of ZnO and AZO thin films 

grown on Zeonor plastic substrates. We present the effect of ageing on the optical 

transmittance, electrical and hydrophobic properties of the ZnO and AZO thin films 

grown by room temperature PLD on flexible Zeonor plastic substrates. The samples 

placed in transparent polycarbonate boxes were aged in a transparent desiccator 

cabinet at constant room temperature. Ageing studies were performed without any 

surface treatments or exposure to light.    

 

5.3.1 Effect of ageing on optical properties 

           Figure 5.18 shows the ageing effect on the transmission properties of the ZnO 

and AZO thin films grown by PLD at various oxygen pressures between 1 and 40 

mTorr on Zeonor substrates. The six-months ageing study shows that the 

transmission properties of the ZnO and AZO thin films are stable, including the 

features associated with the absorption edge. This means that the optical band gap 

properties also remain stable with ageing over the time period studied. Interference 
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fringes observed for the high oxygen pressure (25 and 40 mTorr) samples are not 

affected by ageing. Overall, the ageing effect on the transmission properties of the 

films is very minor and thus, the properties appear to be very stable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.18: Ageing effect study on transmission spectra in the 300 nm-1100 nm 

wavelength range for ZnO and AZO thin films grown by PLD at various oxygen pressures 

between 1 mTorr and 40 mTorr on Zeonor substrates.  Black lines- fresh sample, red line- 2 

months, blue lines- 3 months, magenta lines- 4 months, orange lines- 5 months, and grey 

lines- 6 months.  

          

5.3.2 Effect of ageing on electrical properties 

          The ageing effect study of the ZnO and AZO films on the resistivity and 

carrier concentrations is shown in Fig 5.19. For ZnO, the resistivity values of Z1 and 

Z10 samples increase almost linearly with ageing time. For example, the resistivity of 

Z1 increases from 0.02 Ω cm to 0.5 Ω cm, whereas, the resistivity of Z10 increases 

from 0.002 Ω cm to 1.26 Ω cm. The electrical measurements on the samples Z25 and 

Z40 are not shown here. This is due to the films becoming highly resistive with 

ageing and the data was too noisy and unreliable. 
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            Interestingly, in the case of AZO, the resistivity of the films remains stable 

over the 6 month ageing. However, A40 sample shows a slight decrease in resistivity 

(from 15 to 3 Ω cm) with the ageing, but the other AZO samples such as A1, A10 and 

A25 show a slight increase in their resistivity. This could be correlated with the 

nanostructured morphology of the A40 sample (see above Fig 5.13). We believe that 

the film like morphology of the A1, A10 and A25 films is the reason for this stable 

behaviour with ageing time. Overall, the carrier concentration for AZO samples 

shows a stable behaviour i.e. followed the similar trend of the resistivity trend. The 

stable behaviour of the AZO samples with ageing could possibly be explained in 

terms of chemical differences affecting the ZnO lattice stability with or without the 

aluminium dopant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19: Ageing effect study on the resistivity (left hand side column) and carrier 

concentration (right hand side column) for ZnO and AZO thin films grown by PLD at 

various oxygen pressures between 1 mTorr and 40 mTorr on Zeonor substrates.   

 

          Fig 5.20 shows Hall mobilities for ZnO and AZO films grown by PLD on 

Zeonor substrates. We note that we have repeated all the electrical measurements for 

several times and the standard deviation of those measurements were taken as an 

error bar length. In case of Hall mobility values of ZnO samples, the error bar length 
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was observed to be large. Hall mobility for ZnO samples appear to be constant with 

ageing time, with values within the error bars. In case of AZO, except A40 the 

remaining samples show a constant behaviour for Hall mobility with ageing time. 

This is again correlated with nanostructured morphology of A40 sample. Overall, the 

ZnO films seem affected with ageing, whereas the AZO films seem almost stable 

with ageing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.20: Ageing effect study on Hall mobility for ZnO and AZO thin films grown by 

PLD at various oxygen pressures between 1 mTorr and 40 mTorr on Zeonor substrates.  

 

5.3.3 Effect of ageing on hydrophobic properties 

           The variation of water contact angle (WCA) as a function of ageing time for 

ZnO and AZO thin films are shown in Fig 5.21. The figure shows the linear fit of the 

respective data points. The size of some of the error bars in this figure reflects the 

large variations of several degrees which were occasionally found between 

successive measurements on the same sample. This is compatible with the high 

sensitivity of the ZnO surface wettability on both exposure to near ultraviolet 

radiation [23] and chemical contamination [24]. In ZnO, the films (except Z1 sample) 
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are observed to be reducing in their hydrophobicity with ageing time by lowering 

WCA by a several degrees. Overall, the ZnO films show a reduced degree of 

hydrophobicity with the ageing. In the case of AZO, the A1 film shows an increased 

degree of hydrophobic behaviour from 80° to 92°, whereas the remaining films 

showing a reduced hydrophobic behaviour. However, the reduction in 

hydrophobicity is observed to be smaller.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.21: Ageing effect study on water contact angles for ZnO and AZO thin films 

grown by PLD at various oxygen pressures between 1 mTorr and 40 mTorr on Zeonor 

substrates.  

 

5.3.4 Conclusions   

         We have studied the ageing effect over a period of 6 months on the optical 

transmittance, electrical and hydrophobic properties of the ZnO and AZO thin films. 

These films were grown by room temperature PLD on Zeonor substrates. Our studies 

confirmed that the AZO films have more stability against ageing in terms of optical, 

electrical and hydrophobic properties than the ZnO films. This is due to a very strong 

chemical affinity of the aluminium for the oxygen atoms, which may not affected by 
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ageing. However, the optical transmittance properties for both ZnO and AZO 

showed a stable behaviour with ageing. In terms of electrical properties, the 

resistivity, carrier concentration and Hall mobilities are observed to be affected by 

the ageing for ZnO samples. In case of AZO samples, the electrical properties 

appeared to be stable. In terms of hydrophobic properties, the degree of 

hydrophobicity is reduced for the both ZnO and AZO samples with ageing. 

However, the WCA of 1 mTorr samples (Z1 and A1) in both ZnO and AZO show a 

different behaviour from the other samples. Overall, the AZO thin films grown by 

room temperature PLD on Zeonor substrates show a stable behaviour with the ageing 

time for the period of 6 months. The stable behaviour of the films is important for a 

long term based device performance.   

 

5.4 References  

[1] R. Eason (Eds.), Pulsed Laser Deposition of Thin films: Applications-Led growth 

of Functional Materials, John Wiley and Sons Inc., New Jersey, 2007, pp.278-285. 

[2] B.L. Zhu, X.Z. Zhao, S. Xu, F.H. Su, G.H. Li, X.G. Wu, J. Wu, R. Wu, J. Liu, 

Oxygen pressure dependences of structure and properties of ZnO films deposited on 

amorphous glass substrates by pulsed laser deposition, Jpn. J. Appl. Phys.47 (2008) 

2225-2229. 

[3] P. Gondoni, M. Ghidelli, F. Di Fonzo, M. Carminati, V. Russo, A.L. Bassi, C.S. 

Casari, Structure-dependent optical and electrical transport properties of 

nanostructured Al-doped ZnO, Nanotechnology 23 (2012) 365706. 

[4] P. Gondoni, M. Ghidelli, F. Di Fonzo, V. Russo, P. Bruno, J. Marti-Rujas, C.E. 

Bottani, A.L. Bassi, C.S. Casari, Structural and functional properties of Al:ZnO thin 

films grown by Pulsed Laser Deposition at room temperature, Thin Solid Films 520 

(2012) 4707-4711. 

[5] B.L. Zhu, X.H. Sun, S.S. Guo, X.Z. Zhao, J. Wu, R. Wu, J. Liu, Effect of 

thickness on the structure and properties of ZnO thin films prepared by pulsed laser 

deposition, Jpn. J. Appl. Phys. 45 (2006) 7860-7865. 

[6] C. Guillen, J. Herrero, Optical, electrical and structural characteristics of Al:ZnO 

thin films with various thicknesses deposited by DC sputtering at room temperature 

and annealed in air or vacuum, Vacuum 84 (2010) 924-929. 



148 
 

[7] J.G. Lu, Z.Z. Ye, Y.J. Zeng, L.P. Zhu, L. Wang, J. Yuan, B.H. Zhao, Q.L. Liang,       

Structural, optical, and electrical properties of (Zn,Al)O films over a wide range of 

compositions, J. Appl. Phys. 100 (2006) 073714.  

[8] S. Inguva, R.K. Vijayaraghavan, E. McGlynn, J.-P. Mosnier, Highly transparent 

and reproducible nanocrystalline ZnO and AZO thin films grown by room 

temperature pulsed-laser deposition on flexible Zeonor plastic substrates, Mater. Res. 

Express 2 (2015) 096401.  

[9] Web reference: Zeon Corporation, Available at: www.zeon.co.jp (last accessed 

2
nd

 May 2015) 

[10] T. Okada, K. Kawashima, Synthesis of a variety of ZnO nanostructured crystals 

by nanoparticle-assisted pulsed-laser deposition, Proc. SPIE Japan 5662 (2004) 420 

(doi:10.1117/12.596394). 

[11] A.B. Hartanto, X. Ning, Y. Nakata, T. Okada, Growth mechanism of ZnO 

nanorods from nanoparticles formed in a laser ablation plume, Appl. Phys. A 78 

(2004) 299-301. 

[12] R. O'Haire, E. McGlynn, M.O. Henry, J.-P. Mosnier, ZnO nanostructured thin 

films grown by pulsed laser deposition in mixed O2/Ar background gas, Superlat. 

Microstruct. 42 (2007) 468-472. 

[13] T. Okada, B.H. Agung, Y. Nakata, ZnO nano-rods synthesized by nano-particle-

assisted pulsed-laser deposition, Appl. Phys. A 79 (2004)1417-1419. 

[14] W. Marine, L. Patrone, B. Luk'yanchuk, M. Sentis, Strategy of nanocluster and 

nanostructure synthesis by conventional pulsed laser ablation, Appl. Surf. Sci. 154 

(2000) 345-352. 

[15] S. Inguva, S.K. Marka, R.K. Vijayaraghavan, E. McGlynn, Vadali V.S.S. 

Srikanth, J.-P. Mosnier, Crystalline ZnO/Amorphous ZnO Core/Shell Nanorods: 

Self-Organized Growth, Structure, and Novel Luminescence, J. Phys. Chem. C 119 

(2015) 4848-4855. 

[16] P. Jensen, Growth of nanostructures by cluster deposition: Experiments and 

simple models, Rev. Mod. Phys. 71 (1999) 1695-1735. 

[17] G. Socol, M. Socol, N. Stefan, E. Axente, G. Popescu-Pelin, D. Craciun, L. 

Duta, C.N. Mihailescu, I.N. Mihailescu, A. Stanculescu, D. Visan, V. Sava, A.C. 

Galca, C.R. Luculescu, V. Craciun, Pulsed laser deposition of transparent conductive 

oxide thin films on flexible substrates, Appl. Surf. Sci. 260 (2012) 42-46. 



149 
 

[18] K.A. Sierros, D.A. Banerjee, N.J. Morris, D.R. Cairns, I. Kortidis, G. Kiriakidis, 

Mechanical properties of ZnO thin films deposited on polyester substrates used in 

flexible device applications, Thin Solid Films 519 (2010) 325-330. 

[19] J.-P. Kim, J.-S. Bae, T.-E. Hong, M.-S. Won, J.-H. Yoon, B.-S. Lee, H.-J. Lee, 

Optical and electrical properties of ZnO films, codoped with Al and Ga deposited at 

room temperature by an RF sputtering method, Thin Solid Films 518 (2010) 6179-

6183. 

[20] C. Volcke, R.P. Gandhiraman, V. Gubala, J. Raj, Th. Cummins, G. Fonder, R.I. 

Nooney, Z. Mekhalif, G. Herzog, S. Daniels, D.W.M. Arrigan, A.A. Cafolla, D.E. 

Williams, Reactive amine surfaces for biosensor applications, prepared by plasma-

enhanced chemical vapour modification of polyolefin materials, Biosens. 

Bioelectron. 25 (2010)1875-1880.  

[21] (a) D. Han, W. Wang, J. Cai, L. Wang, Y. Ren, Y. Wang, Z. Shengdong, 

Flexible Thin-Film Transistors on Plastic Substrate at Room Temperature, J. 

Nanosci. Nanotechnol. 13 (2013) 5154-5157; (b) D. Han, C. Zhuofa, N. Zhao, W. 

Wang, F. Huang, S. Zhang, X. Zhang, Y. Wang, Flexible aluminum-doped zinc-

oxide thin-film transistor fabricated on plastic substrates, Proc. SPIE USA 8987 

(2014) 89871L (doi: 10.1117/12.2044554).  

[22] J. Connolly, A. Jain, G. Pastorella, S. Krishnamurthy, J.-P Mosnier, E. Marsili, 

Zinc oxide and indium tin oxide thin films for the growth and characterization of 

Shewanella loihica PV-4 electroactive biofilms, Virulence 2 (2011) 479-482.  

[23] M. Sun, Y. Du, W. Hao, H. Xu, Y. Yu, T. Wang, Fabrication and Wettability of 

ZnO Nanorod Array, J. Mater. Sci. Technol. 25 (2009) 53-57. 

[24] M. Guo, P. Diao, S. Cai, Highly hydrophilic and superhydrophobic ZnO 

nanorod array films, Thin Solid Films 515 (2007) 7162-7166.  

[25] P.G. De Gennes, Wetting -Statics and Dynamics, Rev. Mod. Phys. 57 (1985) 

827-863. 

[26] D.P. Subedi, D.K. Madhup, A. Sharma, U.M. Joshi, A. Huczko, Study of the 

Wettability of ZnO Nanofilms, Int. Nano Lett. 1 (2011)117-122. 

[27] V.D. Mote, Y. Purushotham, B.N. Dole, Williamson-Hall analysis in estimation 

of lattice strain in nanometer-sized ZnO particles, Journal of Theoretical and 

Applied Physics 6 (2012)1-8. 



150 
 

[28] C. Guillen, J. Herrero, Structure, optical and electrical properties of Al:ZnO thin 

films deposited by DC sputtering at room temperature on glass and plastic substrates, 

Phys. Status Solidi A 206 (2009) 1531-1536. 

[29] S. Maniv, W.D. Westwood, E. Colombini, Pressure and angle of incidence 

effects in reactive planar magnetron sputtered ZnO layers, J. Vac. Sci. Technol. 20 

(1982)162-170. 

[30]  M. Novotny, J. Cizek, R. Kuzel, J. Bulir, J. Lancok, J. Connolly, E. McCarthy, 

S. Krishnamurthy, J.-P. Mosnier, W. Anwand, G. Brauer, Structural characterization 

of ZnO thin films grown on various substrates by pulsed laser deposition, J. Phys. D: 

Appl. Phys. 45 (2012) 225101. 

[31] S. Takayanagi, T. Yanagitani, M. Matsukawa, Wideband Multimode 

Transducer Consisting   of c-Axis Tilted ZnO/c-Axis Normal ZnO Multilayer, Jpn. 

J. Appl. Phys. 51 (2012) 07GC08. 

[32] C.F. Klingshirn, B.K. Meyer, A. Wagg, A. Hoffman, J. Geurts, Intrinsic Linear 

Optical Properties Close to the Fundamental Absorption Edge, in: R. Hull, C. 

Jagadish, R.M. Osgood, Jr., J. Parisi, Z. Wang, H. Warlimont (Eds.), Zinc Oxide-

From Fundamental Properties Towards Novel Applications, Springer, Berlin, 

vol.120, 2010, pp.149-150. 

[33] O.S. Heavens, Optical Properties of Thin Solid Films, Dover, New York, 1991, 

Chapter 4, pp.77. 

[34] J.F. Muth, R.M. Kolbas, A.K. Sharma, S. Oktyabrsky, J. Narayan, Excitonic 

structure and absorption coefficient measurements of ZnO single crystal epitaxial 

films deposited by pulsed laser deposition, J. Appl. Phys. 85 (1999) 7884-7887. 

[35]  P.Y. Yu, M. Cardona, Fundamentals of semiconductors: Physics and Materials 

Properties, third ed., Springer, Berlin, 2010, Chapter 6, pp. 270.  

[36] E.J. Johnson, H.Y. Fan, Impurity and Exciton Effects on the Infrared 

Absorption Edges of III-V Compounds, Phys. Rev. 139 (1965) A1991-A2001.  

[37] J.G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, 

Z.Z. Ye, Y.J.  Zeng, Y.Z. Zhang, L.P. Zhu, H.P. He, B.H. Zhao, Carrier 

concentration dependence of band gap shift in n-type ZnO:Al films, J. Appl. Phys. 

101 (2007) 083705. 

[38] B.E. Sernelius, K.-F. Berggren, Z.-C. Jin, I. Hamberg, C.G. Granqvist, Band-

Gap Tailoring of Zno by Means of Heavy Al Doping, Phy. Rev. B 37 (1988)10244-

10248. 



151 
 

[39] B.C. Mohanty, Y.H. Jo, D.H. Yeon, I.J. Choi, Y.S. Cho, Stress-induced 

anomalous shift of optical band gap in ZnO:Al thin films, Appl. Phys. Lett. 95 (2009) 

062103. 

[40] A.B. Djurisic, Y.H. Leung, K.H. Tam, L. Ding, W.K. Ge, H.Y. Chen, S. Gwo, 

Green, yellow, and orange defect emission from ZnO nanostructures: Influence of 

excitation wavelength, Appl. Phys. Lett. 88 (2006)103107.  

[41] A.B. Djurisic, Y.H. Leung, K.H. Tam, Y.F. Hsu, L. Ding, W.K. Ge, Y.C. 

Zhong, K.S. Wong, W.K. Chan, H.L. Tam, K.W. Cheah, W.M. Kwok, D.L. Phillips, 

Defect emissions in ZnO nanostructures, Nanotechnology 18 (2007) 095702. 

[42] C.H. Ahn, Y.Y. Kim, D.C. Kim, S.K. Mohanta, H.K. Cho, A comparative 

analysis of deep level emission in ZnO layers deposited by various methods, J. Appl. 

Phys. 105 (2009) 013502. 

[43] Z.-q. Xu, H. Deng, Y. Li, H. Cheng, Al-doping effects on structure, electrical 

and optical properties of c-axis-orientated ZnO:Al thin films, Mater. Sci. Semicond. 

Process 9 (2006) 132-135. 

[44] M. Grundmann, H.V. Wenckstern, R. Pickenhain, T. Nobis, A. Rahm, M. 

Lorenz, Electrical properties of ZnO thin films and optical properties of ZnO-based 

nanostructures, Superlattices Microstruct. 38 (2005) 317-328. 

[45] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Room-

temperature fabrication of transparent flexible thin-film transistors using amorphous 

oxide semiconductors, Nature 432 (2004) 488-492. 

[46] D.H. Zhang, T.L. Yang, J. Ma, Q.P. Wang, R.W. Gao, H.L. Ma, Preparation of 

transparent conducting ZnO:Al films on polymer substrates by r. f. magnetron 

sputtering, Appl. Surf. Sci.  158 (2000) 43-48.  

[47] Q. Xu, R.D. Hong, H.L. Huang, Z.F. Zhang, M.K. Zhang, X.P. Chen, Z.Y. Wu, 

Laser annealing effect on optical and electrical properties of Al doped ZnO films, 

Opt. Laser Technol. 45 (2013) 513-517. 

[48] S.B. Kim, W.W. Lee, J. Yi, W.I. Park, J.-S. Kim, Simple, Large-Scale 

Patterning of Hydrophobic ZnO Nanorod Arrays, W. T. Nichols, ACS Appl. Mater. 

Interfaces 4 (2012) 3910-3915.  

[49] E.L. Papadopoulou, M. Barberoglou, V. Zorba, A. Manousaki, A. Pagkozidis, 

E. Stratakis and C. Fotakis, Reversible Photoinduced Wettability Transition of 

Hierarchical ZnO Structures, J. Phys. Chem. C 113 (2009) 2891-2895.  



152 
 

[50] E. McCarthy, R.T. Rajendra Kumar, B. Doggett, S. Chakrabarti, R.J. O’Haire, 

S.B. Newcomb, J.-P. Mosnier, M.O. Henry, E. McGlynn, Effects of the crystallite 

mosaic spread on integrated peak intensities in 2 theta-omega measurements of 

highly crystallographically textured ZnO thin films, J. Phys. D: Appl. Phys. 44 

(2011) 375401.  

[51] R.-Y. Yang, M.-H. Weng, C.-T. Pan, C.-M. Hsiung and C.-C. Huang, Low-

temperature deposited ZnO thin films on the flexible substrate by cathodic vacuum 

arc technology, Appl. Surf. Sci. 257 (2011) 7119-7122. 

[52] L. Gong, J. Lu and Z. Ye, Transparent and conductive Ga-doped ZnO films 

grown by RF magnetron sputtering on polycarbonate substrates, Sol. Energy Mater. 

Sol. Cells 94 (2010) 937-941.  

[53] Y. Li, L. Xu, X. Li, X. Shen, A. Wang, Effect of aging time of ZnO sol on the 

structural and optical properties of ZnO thin films prepared by sol–gel method, Appl. 

Surf. Sci. 256 (2010) 4543-4547.  

[54] F.K. Shan, Z.F. Liu, G.X. Liu, W.J. Lee, G.H. Lee, I.S. Kim, B.C. Shin, Y.S. 

Yu, Aging and Annealing Effects of ZnO Thin Films on GaAs Substrates Deposited 

by Pulsed Laser Deposition, J. Electroceram. 13 (2004) 195-200. 

[55] F.K. Shan, B.I. Kim, G.X. Liu, Z.F. Liu, J.Y. Sohn, W.J. Lee, B.C. Shin, Y.S. 

Yu, Blueshift of near band edge emission in Mg doped ZnO thin films and aging, J. 

Appl. Phys., 95 (2004) 4772-4776.  

[56] F.K. Shan, G.X. Liu, W.J. Lee, G.H. Lee, I.S. Kim, B.C. Shin, Aging effect and 

origin of deep-level emission in ZnO thin film deposited by pulsed laser deposition, 

Appl. Phys. Lett. 86 (2005) 221910.  

[57] J. Karamdel, C.F. Dee, B.Y. Majlis, Characterization and aging effect study of 

nitrogen-doped ZnO nanofilm, Appl. Surf. Sci. 256 (2010) 6164-6167.  

[58] A. Guillén-Santiago, M. de la L. Olvera, A. Maldonado, R. Asomoza, D.R. 

Acosta, Electrical, structural and morphological properties of chemically sprayed F-

doped ZnO films: effect of the ageing-time of the starting solution, solvent and 

substrate temperature, phys. stat. sol. (a) 201 (2004) 952-959.  

[59] F. F. Vidor, G. I. Wirth, U. Hilleringmann, Low temperature fabrication of a 

ZnO nanoparticle thin-film transistor suitable for flexible electronics, Microelectron 

Reliab. 54 (2014) 2760-2765.  



153 
 

[60] S. J. Pearton, W. Lim, E. Douglas, F. Ren, Y. W. Heo, D. P. Norton, Oxide thin 

film transistors on novel flexible substrates, Proceedings of SPIE 7603 (2010) 

760315.  

 

 

 

 

 

 

 

 

 

 

 

 

 



154 
 

Chapter 6  

 

Conclusions and Outlook  
 

 

 

 

 
 
 
            

 

6.1 PLD growth of cr-ZnO/am-ZnO core/shell nanorods on 

ZnO-seeded Si substrates: Self-organised growth and 3.331 

eV luminescence 

            In section 4.1 of this thesis, we have reported for the first time the self-

organised crystalline (cr)-ZnO/amorphous (am)-ZnO core/shell nanorods by pulsed 

laser deposition (PLD) on ZnO-seeded Si (100) substrates. These core/shell nanorods 

were grown without using a metal catalyst seed and without the need for a separate 

growth stage for the shell region. The structural, morphological and luminescent 

properties of the ZnO core/shell nanorod samples were established and show that the 

core/shell nanorods are highly textured with their c-axis oriented normal to the 

substrate surface, but without epitaxial in-plane ordering. The core/shell nanorods 

have a closely packed morphology and they also have conical terminations with 

rounded/blunt tips. A ZnO emission band at 3.331 eV is seen and its origin linked to 

the defects observed at the crystalline/amorphous interface of the core/shell 
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structure, specifically that the 3.331 eV emission arises from a single electron-hole 

pair recombination involving deeply bound constituents likely associated with the 

structural defects at the core/shell boundary interface region. This emission feature 

appears to have a different origin compared to the emissions at this energy reported 

by other workers and thus to be a new contribution to the body of knowledge 

concerned with ZnO nanostructures and their PL properties. 

 

              In section 4.2, we have grown crystalline (cr)-ZnO/amorphous (am)-ZnO 

core/shell nanorods in interconnected architectures. These interconnected cr-

ZnO/am-ZnO core/shell nanorods were grown by catalyst free-PLD on ZnO-seeded 

Si (100) substrates. These deposits were characterised using x-ray diffraction, 

electron microscopies, photoluminescence and Raman spectroscopy, and four point 

probe/Hall effect instruments. The interconnected core/shell nanorods have a similar 

morphology to the previously discussed cr-ZnO/am-ZnO core/shell nanorods with a 

high degree of c-axis orientation. These nanorods also exhibit the characteristic 

emission at 3.331 eV. This study strongly supports our previous assignment 

concerning this defect related emission. No substantial differences in optical 

properties are seen following annealing at 500 °C. In terms of the electrical 

properties, the results reveal that the nanorods show good ohmic behaviour.   

 

            This work contains important new results in the field of ZnO nanorod growth 

and optical properties. Detailed characterisations of the ZnO nanorod samples were 

carried out and their analyses provide a deep physical insight into the nature of the 

new data reported. The most important findings are: (a) the self-organised growth of 

highly c-axis oriented cr-ZnO/am-ZnO core/shell nanorods without the need for (i) a 

separate shell growth and (ii) the use of a metal catalyst; (b) the formation of a 

crystalline ZnO core and an amorphous ZnO shell achieved as part of a unique two-

staged sequence of growths at different temperatures and a single ambient oxygen 

pressure and (c) importantly, the identification of a emission band at 3.331 eV in the 

low temperature photoluminescence spectrum of the cr-ZnO/am-ZnO core/shell 

nanorods and its relationship with the defect structure observed at the irregular 

interface of the core-shell region.  
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               We confirmed the origin of this emission from the ‘interconnected cr-

ZnO/am-ZnO core/shell nanorods’ work (section 4.2), where this interconnected 

core/shell nanorod sample also exhibits this emission band with the same 

characteristic broad and asymmetric profile. Furthermore, the complete absence of 

this emission for either PLD-grown ZnO seed layer or VPT-grown ZnO nanorod 

samples (see section 6.2 below) further supports and strengthens our previous 

assignment on the origin of this emission band. Our extensive investigations on this 

defect-related ZnO emission contributes to an important increase in understanding of 

the different optically-active defects which contribute to the near-UV band edge 

photoluminescence in ZnO nanostructures, and the relationship of these defects to 

the nanostructure morphology is key to the choice of the optimum deposition 

methods and conditions for a particular application. 

 

              We believe that these features and properties of the cr-ZnO/am-ZnO 

core/shell nanorods would be advantageous in a number of state-of-the art 

applications based on the core/shell architecture. Specifically, the unique architecture 

and properties of the core/shell cr-ZnO/am-ZnO nanorods produced in this work 

should prove useful in applications where the functionality arises from the presence 

of an amorphous shell on a ZnO crystalline nanorod core. Examples of such 

applications would be in ZnO supercapacitor electrodes for energy storage, the 

passivation of ZnO photoanodes in dye-sensitized solar cells, or the control of the 

emission properties of ZnO nanolasers.  

 

6.2 High optical quality ZnO nanorods on ZnO-seeded Si 

substrates: 3.331 eV luminescence  

           In section 4.3 of this thesis, we have also reported the growth of vertically 

aligned ZnO nanorods with excellent optical quality by catalyst-free vapour phase 

transport (VPT) on the PLD prepared ZnO-seeded Si (100) substrates. We have 

mainly compared the near band edge emission of such VPT nanorod deposits to the 

previously discussed PLD core/shell nanorod deposits (where identical PLD-grown 

ZnO seed layers were used for both VPT- and PLD-grown nanorods), with a focus 

on the identification of the origin of the 3.331 eV emission feature. The main 

difference between the PLD- and VPT-grown nanorod samples is the presence of the 
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3.331 eV emission in the former, and its complete absence in the latter (as well as in 

continuous PLD-grown seed layers) which was discussed in light of the differing 

surface morphologies and which provides strong support for our previous 

assignment of the origin of this defect to structural defects at the nanorod interface 

region. 

 

          The most important findings of this work are: (a) the nanorods are well 

separated and show smooth, facetted surfaces with a high c-axis orientation; (b) the 

nanorods also have a very high surface coverage density of ~ 18 per μm
2
, compared 

to the previous literature; (c) importantly, the nanorods have an excellent optical 

quality, revealed by their low-temperature PL analyses and (d) finally, this study 

allows us to confidently assign the 3.331 eV emission to recombination at structural 

defects at the core/shell boundary region as this emission band was not seen for 

either the PLD-grown seed layer or VPT-grown nanorod samples.  

 

6.3 Transparent and conductive ZnO and AZO 

nanocrystalline thin films on flexible Zeonor plastic 

substrates 

            Zeonor (a brand of COP) plastics are highly versatile due to exceptional 

optical and mechanical properties which make them the choice material in many 

novel applications. In section 5.1 and 5.2 of this thesis, we have investigated for the 

first time, the use of Zeonor as a flexible substrate for the deposition of high quality 

ZnO and Al-doped ZnO (AZO: 3 at% Al) thin films. Films were prepared by PLD at 

room temperature in oxygen ambient pressures between 1 and 300 mTorr. The 

growth rate, surface morphology, hydrophobicity and the structural, optical and 

electrical properties of as-grown films with thicknesses in the range 65 nm - 420 nm 

were measured. The films obtained are highly reproducible, with high optical 

transparency (> 90%), and optically very smooth (rms roughness ~ 4-8 nm for ZnO 

and ~ 1-2 nm for AZO). The films are also highly crystalline (average crystallite size 

~ 4-22 nm for ZnO and ~ 3-18 nm for AZO) with strong c-axis orientation, and in-

plane residual compressive stress in the ranges 2-7 GPa and 0.5-4 GPa for ZnO and 

AZO, respectively. Their electrical properties show low resistivities (10
-2

-10
-3 

Ω cm 

for ZnO and 10
-3

-10
-4

 Ω cm for AZO), high carrier concentrations (10
20

-10
21

 cm
-3 

for 
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ZnO and 10
21

-10
22 

cm
-3

 for AZO) and reasonable Hall mobilities (4-35 cm
2
/Vs for 

ZnO and 1-18 cm
2
/Vs for AZO). All films display a marked hydrophobic behaviour 

(water contact angle > 90°). Overall, the film properties are found to depend strongly 

on oxygen growth pressure and mildly on film thickness. The possible applications 

for these films are suggested. Furthermore, the effect of ageing on the properties of 

these films was also investigated over a 6-month period. This ageing study shows 

that the AZO samples have greater stability than the ZnO samples. 

 

         The work reported in this thesis shows that the high-quality ZnO and AZO 

electrodes can be successfully deposited at room temperature on amorphous, flexible 

Zeonor plastic substrates using PLD. The most important findings of this work are: 

(a) for the first time, Zeonor
 
(a flexible, highly transparent (> 90%), low water 

absorption (< 0.01%) and hydrophobic) was used as a substrate for the deposition of 

high quality ZnO and AZO nanocrystalline thin films by PLD at room temperature; 

(b) we have successfully grown high transmittance, optically smooth, low stress, 

highly reproducible ZnO and AZO thin films at room temperature, which show 

hydrophobic surfaces; (c) we have extensively investigated the film properties as a 

function of thickness and oxygen ambient pressure, and shed light on the aspects of 

the growth mechanisms and (d) the large variations of film properties with oxygen 

growth pressure (especially for 40 and 1 mTorr range) will attract significant 

attention from a wide range of scientists working in many disciplines, especially in 

flexible TCO-based optoelectronics, as well as the PLD community.  

 

             The work broadly discussed in the context of current literature in the field of 

TCO growth on plastics. This work contains new and important results in the field of 

flexible TCOs for the flexible optoelectronic applications. In addition, as Zeonor 

plastics are a widely used material in many healthcare and medical applications, the 

work could also find applications in the fields such as microfluidics, biosensors and 

biofuel-cells.  
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Appendix A: 

Nanostructured ZnO and AZO thin films grown by PLD on 

polycarbonate plastic substrates for glucose oxidase (GOx)- 

biosensor applications 

 

A.1 Motivation  

         ZnO is a well-established material for bio-sensing applications due to its 

unique features such as a high catalyst efficiency, bio-compatibility, strong 

adsorption ability, electrochemical activity, good source material availability and 

long term environmental stability [1-6]. Importantly, ZnO has a high iso-electric 

point* of 9.3, which provides a suitable interface for proteins with the iso-electric 

point at acidic pH [2]. We note that more details of the ZnO material properties are 

discussed in section 2.1.  

 

           In recent years, ZnO nanostructures have attracted great attention for 

biosensor applications due to their high specific surface area, faster response and 

high sensitivity [2,4,5] compared with continuous films. The high iso-electric point 

of ZnO combined with its excellent material properties at room temperature allows 

the study of the electron transfer mechanisms of the enzyme (GOx) [1-3,7]. Two 

strategies can be used to improve the enzyme-ZnO nanostructures interaction: (i) 

modification of the ZnO nanostructure to improve the surface area and (ii) n-type 

doping to improve the free carrier concentration [1-5]. Previous studies have shown 

slightly improved enzyme loading on modified ZnO nanostructures [5,8]. However, 

such uniform nanostructures have proven difficult to reproduce [9]. Moreover, 

production of these nanostructures requires high temperatures in stringent 

experimental conditions [10]. In this thesis (section 5.1 and 5.2), we reported a 

highly reproducible growth of ZnO and AZO nanostructured films by room 

temperature PLD on Zeonor plastic substrates. In a similar context, we report here 

high quality ZnO and AZO nanostructured films on polycarbonate (PC) plastic 

substrates.  

 

*iso-electric point is the pH at which a particular molecule carrier has zero net electrical charge.  
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PC features high optical transparency (90 %), temperature compatibility (145 °C), 

low-water absorption (0.2 %) and relatively low cost [11,12]. Because of the glass 

transition temperature of PC plastics being close to 145 °C, the deposition of high 

quality films needs to be carried out around 100 °C. PLD seems a highly suitable 

technique for these conditions (see section 2.2 for more details on PLD).    

 

          We now review the importance of doping in ZnO to study the electron transfer 

mechanisms of the enzyme in GOx-based bio-sensing applications. Doping is a 

common method to alter the electronic properties of ZnO thin films [13]. Aluminium 

(Al) and gallium (Ga) n-type dopants increase the concentration of free electrons, 

thus improving the conductivity of ZnO films [11,12,14,15]. Although Ga-doping 

causes a smaller deformation of the lattice [14], Al-doped ZnO (AZO) has a higher 

reactivity [15]. Furthermore, AZO has better optical transmittance [16] and n-type 

electrical properties [17,18]. Biosensors normally need a conductive bottom 

electrode for the efficient transfer of the electrons produced by biochemical 

reactions, and indium tin oxide (ITO) has been used extensively in this regard. 

However, the drawbacks associated with ITO such as limited source of the material 

and hence high cost, and relative toxicity have limited its usage [3]. We note that 

Saha and Gupta [3] have reported an Al- and Fe- co-doped ZnO-based biosensor on 

glass substrates, thus, obviating the need for a bottom electrode. Therefore, AZO is a 

suitable material for studying enzyme-nanostructured film interfacial interaction, as 

the reaction kinetics depends on the charge transfer resistance at the film surface. 

However, the possible changes that doping brings about in regard of the enzyme 

immobilization and activity remain largely unexplored.  

 

          We report for the first time the use of high quality transparent and conductive 

ZnO and AZO nanostructured thin films, grown by PLD on PC substrates, for GOx-

based biosensing application.  

 

A.2 Growth details  

           We have used PLD apparatus (see section 2.2 for more details) to grow ZnO 

and AZO nanostructured thin films on 1 cm × 2 cm rectangular sheets of 1.2 mm 

thick polycarbonate (Lexan 9030) substrates. The deposition chamber was pumped 
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down to the base pressure of 3×10
-5

 mTorr (3.9×10
-6 

Pa) for all the depositions. The 

oxygen pressure in the chamber was kept at 10 mTorr and 30 mTorr for the ZnO and 

AZO thin films, respectively. The substrate temperature was raised to 100 °C and 

kept constant for the whole deposition. Ten thousand laser shots were used for the 

depositions of duration around 15 min, after which the substrate temperature was 

lowered to 30 °C. 

 

            The nanostructured thin films were characterised using X-ray diffraction 

(XRD), optical transmission and four point probe electrical measurements. The 

electro-kinetics and the charge transfer mechanisms at the GOx-ZnO/AZO thin films 

interface have been studied using cyclic voltammetry (CV), chronoamperometry 

(CA) and electrochemical impedance spectroscopy (EIS). The nature of the 

interfacial interactions was studied using x-ray photoelectron spectroscopy (XPS). 

This work was conducted in collaboration with the Department of Biotechnology, 

Indian Institute of Technology-Madras (IITM), Chennai, India. The samples were 

prepared by ourselves at the laboratories of the School of Physical Sciences, DCU 

and the characterisation experiments were conducted by our collaborators at the 

laboratories of IITM, India.    

 

A.3 Results and discussions  

           Figure A.1 (a) shows the nanostructured morphologies of the ZnO and AZO 

films. For the AZO films, clear nanostructured grains were observed with typical 

sizes around 20-30 nm. Quite similar nanostructures were also seen for ZnO films 

grown by PLD on PC substrates, as shown in the inset. Previous works have shown 

that nanostructured ZnO films can be grown by PLD on glass [19], sapphire [20], 

Perspex (or PMMA) [21] and Zeonor [22] substrates with a similar nanostructured 

grain morphology. From the XRD pattern (Fig A.1 (b)), 2θ values for the ZnO and 

AZO films were seen at around 2θ ≈ 34.4º. These correspond to the (002) reflections 

of the wurzite structure showing a preferred c-axis orientation for the ZnO and AZO 

thin films. The crystallite sizes of the deposited films were measured using the 

Scherrer equation and the results were 38 nm and 23 nm for ZnO and AZO, 

respectively. Software analyses (Xpert high score) of the diffraction peak profiles 
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also indicated higher lattice strain for AZO than for ZnO thin film, likely due to 

aluminium lattice incorporation.  

 

 

Figure A.1: (a) SEM morphology of the nanostructured AZO film, ZnO film is in the inset 

and (b) 2θ-ω XRD scans of the ZnO and AZO films (These experiments were performed at 

IITM laboratories).  

 

 

 

 

 

 

 

 

 

 

 

Figure A.2: Measured and fitted optical transmission spectra of undoped ZnO thin films and 

Al-doped ZnO (AZO) thin films (These experiments were performed at IITM laboratories).  

 

             In Figure A.2, the transmission spectra between 200 nm and 1100 nm of the 

ZnO and AZO films are presented. The thickness and the optical band gap of the 

deposited thin films were estimated by fitting the transmission spectra using the 

Scout 2 software [23]. A non-linear least square fitting algorithm was used to extract 

the optical constants of the films, from transmittance data alone, based on a 

(nm) 
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composite model for the complex dielectric function. The model assumes parabolic 

bands in the UV-vis region and a Drude model in the NIR region. The thicknesses 

thus obtained for the ZnO and AZO thin films were approximately 132 nm and 90-

100 nm, respectively. The small difference observed for the lower visible 

transparency of the ZnO films can be accounted by the thickness difference and the 

oxygen pressure difference [24,25]. The fitted optical band gap for ZnO was 3.24 eV 

whereas for AZO it was estimated to be around 3.35 eV, which are comparable with 

the values of previous works [26,27].  

 

         The electrical measurements showed that both AZO and ZnO thin films have a 

sheet resistance in the range of 4000 Ω/sq corresponding to a bulk resistivity of 

about 0.04 Ω cm indicative of good conductive properties [17]. From the Hall 

measurements, n-type (electron) sheet concentrations of 1.44 × 10
15

 cm
-2

 and 6 × 

10
14

 cm
-2 

for the AZO and ZnO thin films, respectively, were obtained.  

 
          Other characterisations such as XPS, CV, CA and EIS were performed to 

explore the nature of the electrical interactions of ZnO and AZO nanostructured thin 

films with the enzyme glucose oxidase (GOx) and performed by our collaborators. 

These results and analyses will be published later.  

 

A.4 Conclusions  

          We have grown nanostructured ZnO and AZO thin films on polycarbonate 

plastic substrates by PLD at 100 °C substrate temperature. The films displayed c-axis 

orientation with good crystalline, optical and electrical quality. These films are used 

by our collaborators to immobilise the enzyme glucose oxidase (GOx) and assess the 

potential use of the GOx/AZO/PC material system for bio-sensing applications. 
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Appendix B: 

Atmospheric air plasma treatment of graphite and carbon 

felt electrodes to attach of Shewanella cells in a bio-fuel cell 

application 

 

 B.1 Motivation  

         We briefly review the background and importance of atmospheric air plasma 

treatments of graphite and carbon-felt (CF) electrodes for the attachment of S. 

loihica PV-4 cells in bio-fuel cell applications. The use of atmospheric air plasmas 

for surface treatment is well established [1,2]. The combination of the main plasma 

parameter values, such as discharge voltage (kV), power density (W cm
−2

), discharge 

gap (mm) and treatment time (s), determines the nature of the possible plasma 

surface processes. These processes can be broadly classified as etching, cleaning, 

film deposition, ion implantation, oxidation or functionalisation. The last two 

processes are relevant to the present work and are also dependent on the nature of the 

surface e.g. metal, ceramic, polymer or glass. The formation of functional groups on 

the surface of electrodes results from chemical reactions between gaseous plasma 

active species, e.g. OH radicals, ozone and atomic oxygen species, and reactive 

surface species/sites over a depth of 1 nm. Functionalisation is known to 

significantly improve the wettability and adhesion properties of a plasma-treated 

surface as it generally increases the surface energy. The effects of atmospheric air 

and oxygen plasmas on graphite [3,4], carbon-based [5] e.g. carbon nanotubes [6-8] 

or carbon felt [9,10] and hydrocarbon polymer [11] surfaces, have been studied. All 

these works report significant oxidation of the surfaces with the formation of 

oxygen-rich polar groups like carbonyl, acetals or carboxyl groups, depending on the 

experimental conditions, e.g. relative humidity and plasma parameters [3-5,11]. A 

notable concomitant effect of plasma surface treatment is the increase in surface 

roughness [11,12]. The effects of plasma processing/treatment on biomaterials are 

similar to those just described [13]. 

 

          Previous works have considered the effects of plasma treatment of surfaces or 

electrodes for increased adhesion of bacterial cells, notably in the context of biofuel 
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cell applications. Bax et al. [14] have applied plasma treatment to polymeric surfaces 

to improve eukaryotic biofilm formation and bio-adhesion, thus improving the 

tissue–polymer interface. Kamgang et al. [15] showed that treatment with 

atmospheric air plasma rendered the polymer surface more hydrophilic, thus 

improving bacterial cell attachment and electricity production at anodes, despite 

electrostatic repulsion between cells and the electrode. Radiofrequency generated-

plasmas have also been beneficially used for electrode surface treatments. For 

example, Flexer et al. [16] demonstrated that radio-frequency oxygen and nitrogen 

plasma treatment of electrodes increased the initial anodic current from a mixed 

microbial consortium, with faster cellular adhesion on the electrode surface and 

higher biofilm growth. Using radio-frequency oxygen-plasma treatment, Okajima et 

al. [17] showed that surface functionalisation with hydrophilic groups on a carbon 

fiber surface also increased its surface capacitance by 28% for a specific oxygen gas 

feed concentration. To the best of our knowledge, this effect has not been reported in 

works using atmospheric air plasmas. Interestingly, He et al. [18] used plasma-based 

N
+
 ion implantation to treat the carbon paper anode in a microbial fuel cell and 

showed significantly enhanced electricity production as a result. In spite of the 

promising results achieved with both radio-frequency plasma reactors and plasma-

based ion implanters, atmospheric air plasma seems to be a more economically 

viable technique for the routine treatment of large electrodes as it does not require 

vacuum chambers/systems and gas manifolds, and thereby minimises the overall 

cost. 

 

          In our research [19], we investigate for the first time the effects of atmospheric 

air plasma treatment on surface roughness, water contact angle/wettability and the 

current output from attached S. loihica PV-4 cells on polished graphite and 

unpolished carbon felt electrodes. We demonstrate that plasma treatment increases 

the maximum current output and adsorption of microbially produced flavins is the 

main driver for electricity production. The results are presented below in section B.4. 

This work was conducted as part of a collaboration with the School of 

Biotechnology, DCU. We present only the physics related experiments performed by 

us as part of this thesis work.  
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B.2 Dielectric barrier discharge (DBD)  

       We have produced atmospheric air plasma using DBD experimental set up. In 

this section, we describe the background and experimental details of DBD set up.  

 

B.2.1 Background on DBD 

         In 1857, a German scientist named Siemens first proposed an electrical 

discharge for “ozonizing” air. In detail, suppose atmospheric pressure air or oxygen 

gas passes through a narrow annular space in a double-walled cylindrical glass vessel 

constituting an electrode. Inside this cylindrical electrode, the outer tube is wrapped 

around the inner tube, similar to Figure B.1 (b). These were used to apply an 

alternating electrical field. If this electrical field has a sufficient energy (~ 1 eV), 

then it can caused a breakdown of the gases inside the annular discharge gap. 

Because of this discharge, a part of oxygen gas is converted into ozone. Here, the 

glass walls act as dielectric barriers (see ref [1] for more details on the DBD 

background) and have a strong influence on the discharge properties. This device is 

referred to as a dielectric barrier discharge (DBD). It produces non-equilibrium 

discharge plasma, in which chemical reactions happen among the electrons, ions and 

free radicals produced. The comprehensive details of the air plasma chemistry can be 

found in ref [1]. The control over the non-equilibrium atmospheric plasmas and their 

simple production methods are the main advantages of the DBD set up. DBD was 

used originally to generate ozone. However, DBD has many additional advantages in 

surface treatments, generation of UV radiation in excimer lamps, IR radiation in CO2 

lasers, flat plasma display panels, Hg-free fluorescent lamps and biomedical 

applications [1,20].  

          

B.2.2 DBD experimental set up 

        The DBD apparatus (see Figure B.1) consists of two planar electrodes made up 

of two wooden formers covered by a dielectric material, and separated by a narrow 

air gap. DBD set up is operated at an atmospheric pressure with a high applied 

voltage to the electrodes in a range typically from 1 to 20 kV, and with the 

frequencies ranging from a few hundred Hz to a few kHz. In DBDs, the dielectric 

material (wooden former with turns of plastic (sheath around the cabling) act as the 

dielectric) placed between the electrodes plays an important role to keep the non-

equilibrium nature of the discharge. As mentioned in the earlier section, when a 
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sufficiently high voltage is applied to the electrodes, the gas breaks down and 

ionisation occurs (plasma formation). This allows the flow of an electrical current in 

the gas. Because of the electrical current, the electrical charges start accumulates on 

the surface of the dielectric. This now creates an electrical potential between the 

electrodes in the DBD set up, which counteracts the externally applied voltage and 

limits the current flow [1].  

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure B.1: (a) Schematic representation of DBD configuration, (b) close up view of 

electrode cross section, and (c) showing photograph view of (b).     

 

              The DBD apparatus used in this work is described (Figure B.1) in refs [20, 

21]. DBD plasmas are out of equilibrium (non-thermal) plasmas characterised by 

electron temperatures of the order ~ 1 eV while the gas remains at room temperature. 

This is because of the abundant production of reactive oxygen species such as ozone 

and atomic oxygen. The samples were placed inside a 5 L commercial polyethylene 

zip-lock bag. The plastic package ensures containments of the active gaseous species 

during operation. The plastic bag was flushed with an ambient air, then zip-locked. 

This was kept in-between the two high-voltage discharge electrodes separated by a 1 

cm gap. The high-voltage of 15 kV with a 50 Hz source frequency was switched on 

for 120 seconds. These treatment parameters were produced a discharge power of ~ 
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0.1 Wcm
-2

. These operation conditions including plasma treatment time are typical 

of those required for surface functionalisation using DBD air-plasma treatment [19]. 

 

B.3 Experimental details 

         The CF and graphite (isotropic graphite Grade 347 from Tokai Carbon Co. 

Japan) sheets were both cut into 2 × 1 × 0.2 cm electrodes, defining a total surface 

area of 5.2 cm
2
. Current output values were normalised to the electrode surface area. 

The graphite electrodes were sanded with either P240 (grit diameter 58.5 μm), P400 

(grit diameter 35 μm) or P600 (grit diameter 25.8 μm), P-graded sandpapers in order 

to obtain different surface roughness. The roughest graphite electrode surface was 

thus obtained by polishing with P240 sandpaper. All electrodes were cleaned 

overnight in 1 M of HCl and then stored in deionised water.  

 

             Atomic force microscopy (AFM) was used to determine the surface 

morphology of the P240, P400, and P600 graphite electrodes. CF electrodes could 

not be imaged with AFM, as the AFM tip remained entangled in the CF thin fiber. 

Images were taken in tapping mode, using standard aluminium coated silicon AFM 

probe (Tap 300Al-G, Budget Sensors, Bulgaria) with a force constant of 40 N-m
-1

. 

The AFM images were acquired by scanning areas of dimensions 20 μm ×20 μm 

with a fixed resolution of 512 pixels × 512 pixels. The details of the AFM instrument 

were discussed earlier in section 3.3. Although a precise evaluation of the resolution 

would require the knowledge of the AFM tip shape and size, we can estimate, from 

the knowledge of standard AFM performance and the present acquisition conditions, 

the lateral and vertical (z-axis) resolutions to be at least 50 nm and greater than 1 nm, 

respectively. The latter value, quite lower than typical AFM performance, is due to 

the inherent roughness of the bare graphite electrode [22], which tends to blunt the 

tip during scans. Where possible, AFM scans for the electrodes were repeated 

several times at different locations over the electrode surface. The surface rms 

roughness (Rq) of each electrode was evaluated from image pixel data analyses using 

the WSXM software [23]. The Rq value is specified in this work, instead of the 

average roughness (Ra), as Rq is more sensitive to large differences in the surface 

peaks and valleys, which allows for the effects of plasma treatment at the sub-μm 

level to be better ascertained. 
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           In order to investigate the wettability of the graphite and CF electrodes for 

before and after air plasma treatments, we have performed water contact angle 

(WCA) experiments. The WCA apparatus and procedures were discussed earlier in 

section 3.6.  

 

B.4 Results and discussions 

 
B.4.1 Effect of air plasma treatments on electrode roughness and current output 

in S. loihica PV-4 attached cells 

        Previous studies of Marsili et al. [24] with G. sulfurreducens biofilms have 

shown that the rougher surface obtained with sandpaper polishing treatment 

increased the current output in electrochemically active biofilms. Here we obtained 

similar results with P240, P400, and P600 sanded graphite electrodes. The lag phase 

increased with the P-grade of the sandpaper used, e.g., 240 < 400 < 600, from 2 to 6 

hr and the maximum current density in the initial growth phase (approx. 15–20 hr) 

decreased from 104 ± 9 to 67±2 and 67±2 μA cm
−2

, respectively (see Figure 1 in ref 

[19], i.e. our publication on this work). These results are consistent with slow 

attachment and growth of the biomass on smoother electrodes. Both surface 

topography and chemistry determine current output enhancement in 

electrochemically active biofilms [25]. The surface rms roughness of the polished 

graphite electrodes calculated from the AFM images (see Figure B.2 shown below) 

of the P240, P400 and P600 graphite electrodes were 0.74 ± 0.14, 0.86, and 1.14 μm, 

respectively. The relative uncertainty on the rms roughness for the P400 and P600 

graphite is likely to be comparable to the P240 surface and thus at least 20%. 

Therefore, these differences in surface roughness are marked but not significant from 

the viewpoint of the sandpaper P-grade (see grit diameters quoted above). The 

surface roughness of P240 graphite electrodes increased by 75% to 1.301 μm after 

plasma treatment, as expected and in accordance with previous works [11,12]. The 

AFM results show the surface roughness at the nm scale level while the SEM images 

(see supplementary material in ref [19], i.e. our publication on this work) show 

surface topography details at the μm scale level. 
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         Following plasma treatment, the lag phase on P240 graphite electrodes 

increased from approximately 1 to 5 hr and the current slope, roughly corresponding 

to cell attachment rate, increased by 45%, while the maximum current density did 

not change significantly (101±1.5 μA cm
−2

, n=3) with respect to the untreated P240 

graphite electrodes (see Figure 1 in ref [19], i.e. our publication on this work). 

Interestingly, the current stabilised sooner for the plasma treated electrode but 

decreased rapidly after the maximum (data not shown). This might be due to 

diffusional limitations at the interface cells/electrode caused by rapid cell 

attachment. We note that the current output experiments were performed by our 

collaborators at the School of Biotechnology, DCU. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.2: AFM images of graphite electrodes. (A) P600, (B) P400, (C) P240 and (D) 

plasma treated P240 graphite electrodes.  

 

B.4.2 Effect of air plasma treatments on the electrode wettability  

            The air plasma treatments are observed to be affected the WCA very 

significantly for the CF electrodes (see Figure B.3). Before the plasma treatments, 

the water was completely absorbed by the CF electrode and hence a WCA of 0° was 
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realised. Interestingly, after the plasma treatment the WCA of the same CF electrode 

is increased to 108°, indicating a hydrophobic behaviour. In case of graphite 

electrodes, the increase in WCA is not very significant, especially for P400 

electrode, where its WCA increased from 55° to 68°. However, the WCA for the 

P240 and P600 electrodes increased significantly from 43° to 87° and 31° to 72°, 

respectively. We note that the WCA values for the graphite electrodes can be 

partially correlated with their grit diameters. As mentioned earlier, the grit diameter 

of P240 and P400 is greater than the P600 electrodes. Hence, the WCA of P240 and 

P400 electrodes is also greater than the P600 electrode by considering the error bars. 

All graphite electrodes show a hydrophilic behaviour. 

 

 

 

 

 

 

 

 

 

 

 

Figure B.3: WCA results of graphite (P600, P400 and P240) and CF electrodes for the 

before and after air plasma treatments.  

 

            The increase in WCA with plasma treatments has been observed previously 

by several authors. For example, Shiu et al. [26] have observed the increase in WCA 

with oxygen plasma treatments on Polystyrene nanospheres. Furthermore, Tsougeni 

et al. [27] have also observed the increase in WCA with oxygen plasma treatments 

on Polydimethylsiloxane (PDMS) surface coated with Teflon. The formation of 

functional groups result from chemical reactions between gaseous plasma active 

species, e.g. OH radicals, ozone and atomic oxygen species, and reactive surface 

species/sites over a depth of 1 nm is the reason for the WCA increase. Furthermore, 

we note that functionalisation is known to significantly improve the wettability and 

adhesion properties of a plasma-treated surface as it generally increases the surface 
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energy [1,19]. We also note that the increase in WCA with plasma treatment mainly 

depends on the duration of the plasma treatment and the type of the electrode or 

substrate used for the treatment. For example, Kamgang et al. [15] have observed the 

reverse behaviour compared to present work. They showed that the treatment with 

atmospheric air plasma render the surface of polymers (AISI stainless steel (SS), 

polytetrafluoroethylene (PTFE) and low density polyethylene (LDPE)) to more 

hydrophilic. However, their plasma treatment durations were very high (in a range of 

0-300 sec) and hence their results were not accurately comparable with the present 

study. Overall, the WCA studies showed that the plasma treatments modified the CF 

electrode from a complete water absorption state to a good hydrophobic (WCA ~ 

108°) behaviour. The plasma treatments improved the hydrophilic behaviour of the 

graphite electrodes at about 50 %.    

 

B.5 Conclusions  

         In this appendix section and our publication based on this work [19], we have 

investigated the effects of atmospheric air plasma treatments on the surface 

roughness, wettability and the current output from electrochemically active biofilms 

formed by the model organism S. loihica PV-4 on polished graphite and carbon felt 

electrodes. The plasma treatments were shown to be improved the surface rms 

roughness and thus, improve the adhesion of the bacteria cells. The plasma 

treatments were also observed to be improved the wettability of the electrodes. This 

improvement was very significant in case of carbon felt electrodes. This work 

suggests that plasma treatment is a feasible option to increase power output in 

bioelectrochemical systems in the absence of microbially produced redox mediators. 

 

          The most important findings of this work are: (a) the work reported shows a 

low-cost, easily scaled-up and user friendly route of air plasma treatments to increase 

the current output in bio-electrochemical systems; (b) the work also shows that the 

air plasma treatments used marginally improves the maximum current output on 

graphite electrodes and significantly increases the maximum current output for 

carbon felt electrodes through increased cellular attachment (due to increased surface 

roughness) and not by adsorption of microbially produced flavins.  
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           The atmospheric air plasma set up used in this work seems to be a more viable 

technique for the routine plasma treatment of large electrodes as it does not require 

vacuum chambers/systems and gas manifolds, and thereby minimises the overall cost 

significantly. Hence, this work opens up a new route for the low-cost air-plasma 

treatments based bio-fuel cells. 
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