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Abstract

There is an ever-increasing amount of data that is being produced from various data
sources – this data must then be organised effectively if we hope to search though it.
Traditional information retrieval approaches search through all available data in a partic-
ular collection in order to find the most suitable results, however, for particularly large
collections this may be extremely time consuming.

Our purposed solution to this problem is to only search a limited amount of the
collection at query-time, in order to speed this retrieval process up. Although, in doing
this we aim to limit the loss in retrieval efficacy (in terms of accuracy of results). The
way we aim to do this is to firstly identify the most “important” documents within the
collection, and then sort the documents within the collection in order of their ”importance”
in the collection. In this way we can choose to limit the amount of information to search
through by eliminating the documents of lesser importance, which should not only make
the search more efficient, but should also limit any loss in retrieval accuracy.

In this thesis we investigate various different query-independent methods that may
indicate the importance of a document in a collection. The more accurate the measure is
at determining an important document, the more effectively we can eliminate documents
from the retrieval process – improving the query-throughput of the system, as well as
providing a high level of accuracy in the returned results. The effectiveness of these
approaches are evaluated using the datasets provided by the terabyte track at the Text
REtreival Conference (TREC).
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6.3.1 F́ısréal Search Engine . . . . . . . . . . . . . . . . . . . . . . . 101

6.3.2 Test Collection and Queries . . . . . . . . . . . . . . . . . . . 102

6.3.3 Baseline Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 Early Termination Experiments . . . . . . . . . . . . . . . . . . . . . 103

6.4.1 Maximum postings size cut-off . . . . . . . . . . . . . . . . . . 104

6.4.2 Percentage Size Cut-off . . . . . . . . . . . . . . . . . . . . . . 105

6.4.3 Score Based Cut-off . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4.4 Cut-off Comparisons . . . . . . . . . . . . . . . . . . . . . . . 106

6.5 Query-Independent Sorting . . . . . . . . . . . . . . . . . . . . . . . . 108

6.5.1 Term-Specfic Sorting . . . . . . . . . . . . . . . . . . . . . . . 111

6.5.2 Global BM25 Scores . . . . . . . . . . . . . . . . . . . . . . . 113

6.5.3 Linkage Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.5.4 Access Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.5.5 URL Information . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.5.6 Information-to-noise ratio . . . . . . . . . . . . . . . . . . . . 128

6.5.7 HTML Correctness . . . . . . . . . . . . . . . . . . . . . . . . 128

vi



6.5.8 Document Length . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.5.9 Comparing Standalone Measures . . . . . . . . . . . . . . . . 133

6.6 Index Creation and Evaluation . . . . . . . . . . . . . . . . . . . . . . 134

6.7 Combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.7.1 Combination Strategies . . . . . . . . . . . . . . . . . . . . . . 140

6.7.1.1 Leave-One-Out Strategy . . . . . . . . . . . . . . . . 141

6.7.1.2 Pair-wise Combination . . . . . . . . . . . . . . . . . 143

6.7.2 SVM Combination . . . . . . . . . . . . . . . . . . . . . . . . 146

6.7.2.1 Classification Training . . . . . . . . . . . . . . . . . 149

6.7.2.2 IP Training . . . . . . . . . . . . . . . . . . . . . . . 152

6.7.3 Combination Analysis . . . . . . . . . . . . . . . . . . . . . . 157

6.7.4 PageRank Re-visited . . . . . . . . . . . . . . . . . . . . . . . 159

6.7.5 Combining Static and Term-specific Scores . . . . . . . . . . . 162

6.7.5.1 Combining at Index Creation Time . . . . . . . . . . 162

6.7.5.2 Conventional IR Evaluation . . . . . . . . . . . . . . 165

6.7.5.3 Combining at Retrieval Time . . . . . . . . . . . . . 168

6.8 Examining Performance Trade-offs . . . . . . . . . . . . . . . . . . . 169

6.9 Impact of the Sorted Index . . . . . . . . . . . . . . . . . . . . . . . . 172

6.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7 Conclusions 176

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.2 Extensions and Future Work . . . . . . . . . . . . . . . . . . . . . . . 180

A TREC Terabyte Ad-hoc Topics 186

Appendices 186

Bibliography 193

vii



List of Figures

2.1 Basic IR System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Basic inverted index structure, which contains a lexicon as well as a

postings list for each term in the lexicon . . . . . . . . . . . . . . . . 8

2.3 Google user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Windows XP file search . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Boolean query “(tourism AND information AND Prague)” . . . . . . 12

2.6 Vector-Space Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 The introduction of an E Vector . . . . . . . . . . . . . . . . . . . . . 20

2.8 Precision-Recall Tradeoff. . . . . . . . . . . . . . . . . . . . . . . . . 29

2.9 Sample GOV2 document . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.10 Sample ad hoc topic . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Retrieval component of the IR system . . . . . . . . . . . . . . . . . . 36

3.2 Document retrieval process highlighted . . . . . . . . . . . . . . . . . 36

3.3 Accessing postings for each query term . . . . . . . . . . . . . . . . . 38

3.4 Calculate accumulator scores . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Nearest neighbour calculation . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Processing using quit and continue strategies . . . . . . . . . . . . . . 43

3.7 Query processing with a frequency sorted index . . . . . . . . . . . . 45

3.8 Query processing with an access sorted index . . . . . . . . . . . . . . 49

3.9 Resolving Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.10 Query processing with stopword removal employed . . . . . . . . . . . 51

viii



4.1 Distribution of indegree scores from the GOV2 collection on a log-log

scale (scores normalised between 0 and 1) . . . . . . . . . . . . . . . . 64

4.2 Distribution of PageRank scores from the GOV2 collection on a log-

log scale (scores normalised between 0 and 1) . . . . . . . . . . . . . 64

4.3 Creating a sorted index using static query-independent evidence . . . 74

4.4 Creating a sorted index using term specific query-independent evi-

dence (detailed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Creating a sorted index using term specific query-independent evidence 77

5.1 Basic overview of the fusion process . . . . . . . . . . . . . . . . . . . 80

5.2 Unnormalised scores from non-homogeneous sources . . . . . . . . . . 83

5.3 Min-Max normalisation on two non-homogeneous sources . . . . . . . 83

5.4 Two separate classes of data . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Multiple separating lines . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.6 SVM separating sets of data . . . . . . . . . . . . . . . . . . . . . . . 90

5.7 Misclassified examples . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.8 Generating SVM predictions from query-independent features . . . . 95

5.9 Static measure creation . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.10 Static fusion example . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.11 Term-specific fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1 Sample postings lists . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Eliminating postings using a maximum posting size . . . . . . . . . . 105

6.3 Eliminating postings using a percentage based approach . . . . . . . 106

6.4 Eliminating postings based on their score . . . . . . . . . . . . . . . . 107

6.5 Comparisons of different cut-off methods (MAP) . . . . . . . . . . . . 107

6.6 Comparisons of different cut-off methods (P10) . . . . . . . . . . . . 108

6.7 MAP performance of BM25 sorting . . . . . . . . . . . . . . . . . . . 109

6.8 P10 performance of BM25 sorting . . . . . . . . . . . . . . . . . . . . 110

6.9 Percentage of postings processed at each cut-off point . . . . . . . . . 110

ix



6.10 MAP performance of TF sorting . . . . . . . . . . . . . . . . . . . . . 112

6.11 P10 performance of TF sorting . . . . . . . . . . . . . . . . . . . . . 112

6.12 MAP performance of NTF sorting . . . . . . . . . . . . . . . . . . . . 113

6.13 P10 performance of NTF sorting . . . . . . . . . . . . . . . . . . . . 114

6.14 MAP performance of global BM25 sorting . . . . . . . . . . . . . . . 114

6.15 P10 performance of global BM25 sorting . . . . . . . . . . . . . . . . 115

6.16 MAP performance of global BM25 sorting with term frequency thresh-

old . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.17 P10 performance of global BM25 sorting with term frequency threshold117

6.18 MAP performance of global BM25 sortings using query log threshold 118

6.19 P10 performance of global BM25 sortings using query log threshold . 119

6.20 MAP performance of linkage analysis sorting . . . . . . . . . . . . . . 120

6.21 P10 performance of linkage analysis sorting . . . . . . . . . . . . . . . 120

6.22 MAP performance of PageRank sorting after varying the number of

iterations performed . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.23 P10 performance of PageRank sorting after varying the number of

iterations performed . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.24 MAP performance of access count sorting . . . . . . . . . . . . . . . . 122

6.25 P10 performance of access count sorting . . . . . . . . . . . . . . . . 123

6.26 MAP performance of access count sorting, with different numbers of

training queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.27 P10 performance of access count sorting, with different numbers of

training queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.28 MAP performance of access count sorting, with different access count

thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.29 P10 performance of access count sorting, with different access count

thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.30 Recall performance of access count sorting, with different access count

thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

x



6.31 MAP performance of URL length and depth . . . . . . . . . . . . . . 127

6.32 P10 performance of URL length and depth . . . . . . . . . . . . . . . 128

6.33 MAP performance of information-to-noise ratio . . . . . . . . . . . . 129

6.34 P10 performance of information-to-noise ratio . . . . . . . . . . . . . 129

6.35 MAP performance of HTML error no. and warning number. . . . . . 130

6.36 P10 performance of HTML error no. and warning number. . . . . . . 130

6.37 MAP performance of HTML error rate. and warning rate. . . . . . . 132

6.38 P10 performance of HTML error rate. and warning rate. . . . . . . . 132

6.39 MAP performance of document length. . . . . . . . . . . . . . . . . . 133

6.40 P10 performance of document length. . . . . . . . . . . . . . . . . . . 133

6.41 Calculating Index Precision (IP). . . . . . . . . . . . . . . . . . . . . 137

6.42 Re-sorting postings list. . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.43 Combining using leave one out strategy. . . . . . . . . . . . . . . . . 142

6.44 Combining using leave-one-out strategy (log). . . . . . . . . . . . . . 143

6.45 Pair-wise combination strategy. . . . . . . . . . . . . . . . . . . . . . 146

6.46 Pair-wise combination results. . . . . . . . . . . . . . . . . . . . . . . 147

6.47 Generating SVM training and testing files. . . . . . . . . . . . . . . . 148

6.48 SVM Classification Accuracy. . . . . . . . . . . . . . . . . . . . . . . 150

6.49 IP Scores trained using classification accuracy. . . . . . . . . . . . . . 151

6.50 Training SVM using IP scores with a linear kernel. . . . . . . . . . . 153

6.51 Training SVM using IP scores with a RBF kernel. . . . . . . . . . . . 154

6.52 High and low quality documents. . . . . . . . . . . . . . . . . . . . . 156

6.53 High and low quality documents with positive (P) and negative (N)

examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.54 High and low quality documents with positive (P) and random nega-

tive (N) examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.55 IP scores with a RBF kernel on an unseen set of topics. . . . . . . . . 159

6.56 Comparison between the different combination methods. . . . . . . . 160

6.57 Personalised PageRank performance. . . . . . . . . . . . . . . . . . . 161

xi



6.58 Changing damping factor of personalised PageRank. . . . . . . . . . . 162

6.59 Comparing static and term-specific measures. . . . . . . . . . . . . . 163

6.60 Combining static and term-specific measures. . . . . . . . . . . . . . 164

6.61 Percentage of postings processed at each cut-off point on topics 801-850166

6.62 Evaluating BM25 + PAC index using MAP. . . . . . . . . . . . . . . 167

6.63 Evaluating BM25 + PAC index using P10. . . . . . . . . . . . . . . . 167

6.64 Evaluating BM25 + PAC at both the index and retrieval stages. . . . 169

6.65 Evaluating BM25 + PAC at both the index and retrieval stages. . . . 170

6.66 Comparing performance with a different search system (P10). . . . . 171

6.67 Impact of using a sorted index (P10). . . . . . . . . . . . . . . . . . . 173

xii



List of Tables

2.1 Overview of TREC collections . . . . . . . . . . . . . . . . . . . . . . 31

6.1 Comparison of measure using average MAP . . . . . . . . . . . . . . 134

6.2 Comparison of measure using average P10 . . . . . . . . . . . . . . . 135

6.3 Comparison of measure using average IP score . . . . . . . . . . . . . 139

6.4 Comparison of measure using average IP score (topics 701-800) . . . . 144

6.5 Weights used for pair-wise combinations. . . . . . . . . . . . . . . . . 145

6.6 Comparison of measures using average IP score (topics 751-800) . . . 151

6.7 Comparison of measures using average IP score (topics 801-850) . . . 159

6.8 Optimal weights used in the combinations . . . . . . . . . . . . . . . 164

6.9 Measuring statistical difference between combinations and BM25 . . . 165

6.10 Examining the trade-off in MAP between a conventional index and a

(“pruned”) sorted index. . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.11 Examining the trade-off in P10 between a conventional index and a

(“pruned”) sorted index. . . . . . . . . . . . . . . . . . . . . . . . . . 171

A.1 TREC terabyte topics (701-801). . . . . . . . . . . . . . . . . . . . . 186

xiii



Chapter 1

Introduction

Recent advances in technology have made it possible to acquire and store an ever

increasing amount of data from a number of heterogeneous sources, such as wireless

sensor networks, text, and video. Having amassed these large collections of data, if

we then wish to search through these effectively and efficiently we must take into

account the usefulness of the data both at the time of storage as well as the time of

retrieval – with a view to the type of retrieval that is required on this data, so that

the search system can provide a more effective and efficient service.

Perhaps the most well known of these rapidly expanding collections is the World

Wide Web, which has grown dramatically in recent years. However, with the ex-

istence of such a huge collection of documents, it also becomes more difficult for a

user to find the information that they need, and so users require better searching

facilities in order to find useful information. In tandem with the rapid growth of

the Web, there has also been rapid growth in search engines such as Google (Google

Inc., 2006), which have become tremendously successful due to their ability to ef-

fectively search the Web. However, even with the large size of the Web, users still

demand rapid responses to their search requests, as well as highly accurate answers

– most users do not look at more that the top 5 - 10 results returned by a Web

search engine, even though the users themselves generally issue quite vague queries

consisting of two words on average (Silverstein et al., 1999).
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All this makes rather large demands on the search engine, both to be effective

and efficient. An effective search engine is one that can present relevant documents

to a user in response to their search query, while an efficient search engine is one that

can make the most out of the system resources available to it, i.e. memory, hard-

disk space and CPU cycles. Although the effectiveness and efficiency of a system

are often in conflict, as it is difficult to make an increase in one without degrading

the other.

Apart from dealing with the sheer size of the Web (estimated at over 11.5 bil-

lion pages by Gulli and Signorini (2005)), search engines also have to deal with

information coming from a number of diverse sources and due to the lack of con-

straints and controls on the publishing of information on the Web, understandably

the quality of the documents varies considerably. Much of the success of the Google

search engine has been attributed to the incorporation of their PageRank formula,

which identifies “important” documents in the Web (based on the Web’s linkage

structure) and so gives these a prioritised ranking. We may view this importance

(or popularity) estimation of a document as one indicator of the overall quality of a

document, and if we can somehow identify and discriminate between documents of

high and low quality with a certain degree of confidence we may be able to leverage

this information in order to make considerable gains, by promoting the high quality

documents while demoting documents of lower quality. Also if we can identify these

high quality documents and then only search these, then not only should we be able

to improve the effectiveness of the search, but we should also be able to reduce the

amount of processing that is required to answer a user’s information need. This

would allow potential for faster query-throughput, as well as reducing the hard-disk

space necessary to store the collection, if we take the decision to eliminate these

lower-quality documents from the search entirely.

In this thesis we investigate a number of different measures (such as PageRank)

which may indicate the quality of a document in a query-independent manner, and

use these not only to help filter out documents that may not be of particularly high
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quality (and so making the search process more efficient), but also promoting the

higher quality documents, so that the search process may be made more effective

also.

1.1 Thesis Organisation

The thesis is organised as follows:

In Chapter 2 we give a general introduction to an information retrieval system,

and describe its main components: document gathering, indexing and retrieval. We

then focus on the retrieval component of the system, describing the main retrieval

strategies that are used to retrieve documents in response to a user’s query, as well

as describing the use of linkage analysis in the retrieval process. We then describe

how to evaluate the usefulness of an IR system.

Chapter 3 again focuses on the retrieval process of an IR system – firstly giving

a detailed example of this process. We then outline related work in the area of

“reducing the search space”, not only to show what has previously been done in

this area but also to highlight the specific area that the work contained within this

thesis fits into.

In Chapter 4 we discuss the use of search quality in information retrieval, and

introduce a number of measures that may indicate quality in a query-independent

manner. We then discuss how we may use these measures to filter out documents

by using a sorted inverted index. This chapter also describes the steps necessary for

creating such a sorted inverted index.

In Chapter 5 we describe some of the traditional methods for combining sources

of evidence together: linear combination, rank fusion, Dempster-Shafer, as well

as using support vector machines. We describe these methods as we use them

to combine different query-independent sources of evidence and in this chapter we

describe specifically how to combine these types of sources.

In Chapter 6 we firstly evaluate a number of early termination methods as a
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means of reducing the amount of processing that is done at retrieval time. We

then evaluate a number of query-independent measures for their effectiveness in

sorting an inverted index. We also assess how best to evaluate the usefulness of a

sorted inverted index. We then evaluate the effectiveness of using various types of

combination on our query-independent measures. Then finally we take a look at the

trade-offs that are being made with our proposed approach, when compared with a

conventional retrieval approach.

In Chapter 7 we summarise our results, as well as proposing some extensions

and future directions for this work.
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Chapter 2

Background

In this chapter we provide the necessary background in the area of information

retrieval, that we feel is needed to understand the content of the work in the chapters

that are to follow. Firstly we describe an information retrieval system, and its main

components. We then concentrate specifically on the area of retrieval – looking at

various ways in which the system can choose which documents to return to a user, in

order to satisfy their information need. Then finally we look at how an information

retrieval system may be evaluated.

2.1 Information Retrieval System

“The ultimate search engine would basically understand everything

in the world, and it would always give you the right thing. And we’re a

long, long ways from that.”, Larry Page (2004)

With the huge amount of information currently available to us, as well as the

new information that is being created daily, this information should be stored effec-

tively, so that it is capable of being retrieved when required. For centuries humans

have communicated using written documents, and today with the emergence of the

World Wide Web and digital libraries, the need for effective storage and retrieval of

documents has become ever more apparent.
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In order to manage the storage and retrieval of these documents, an Information

Retrieval System is needed. This Information Retrieval (IR) system consists of three

main components: a Document Gatherer, an Indexer, and a Retrieval component,

each of which are shown in Figure 2.1 and are discussed in this section.

User
Interface

Results

Query

Query
Handler

Document
Retreival

Result
Formatter

Inverted
Index

Document
Collection

Retrieval

Query System Query

ResultsFormatted Results

Documents

Document
Gatherer

Indexer

IR System

User

Figure 2.1: Basic IR System

2.1.1 Document Gathering

Document gathering (or document crawling, in the context of the Web) involves

gathering together the documents that are subsequently searched by the IR system.

For large search systems, such as a web search engine, this would involve the crawling

of web documents; following the links from one page to the next and downloading the

required documents into a central location. For other types of documents, this would
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require other forms of acquisition. For example books or handwritten documents

may be digitised by scanning, and by using Optical Character Recognition (OCR)

techniques, words within the documents may be identified. Other documents such

as emails may be gathered from a central mail server for example.

There are also many issues when dealing with a constantly changing collection

of documents such as the Web, for instance, consideration would need to be given to

how often to download each document, in order to keep the documents up to date.

A knowledge of the rate of change of these documents allows the crawler to estimate

how often to visit each document. Some document crawlers (focused crawlers) aim

to only download documents relating to specific topics, or are personalised for a

particular person, or group of people (Chakrabarti et al., 1999).

2.1.2 Indexing

In order to facilitate fast searching on a large collection of documents, in response to

a user’s query, it is necessary to store the data associated with each of the documents

in specialised data structures. As the documents are to be retrieved in response to a

query, we wish to be able to quickly find the location of all occurrences of that query

term (or terms) in the collection. Although there are many ways to achieve this, “in

applications involving text, the single most suitable structure is an inverted index”,

as described by Witten et al. (1999). The index supplies information about the

terms that appear in each document, as well as the number of times they appear.

The index may store additional information, such as the position that the terms

occur at, which may be useful to the IR system, depending on the type of retrieval

that the system is to provide (which will be discussed further in this section).

2.1.2.1 Inverted Index

The conventional inverted index structure consists of a lexicon, which stores all

the indexed terms in the collection, as well as additional information about these

terms. The lexicon contains the location of each term’s postings list, which holds the
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location (or document number, d) of each occurrence of that term in the collection,

along with the count of how many times the term occurs in that document, fd,t.

The lexicon itself may also hold information regarding each of the terms that are

indexed, such as the number of documents that a particular term occurs in. Figure

2.2 illustrates a basic inverted index structure.

    aardvark      
    aardwolf         
    aare               
    aargau          
    aarhus          
    aaronic         
    aaronite        
          ...
          ...
    zyzzogeton   

Lexicon
|||||||||||||||||||| 
|||||||||      
|||||||              
|||       
||||||||||||||||         
||||||||        
|||||||||||        
          ...
          ...
|||   

Postings 
Lists

                     Term
  Doc ID   Frequency

 
     15               3

Posting

Figure 2.2: Basic inverted index structure, which contains a lexicon
as well as a postings list for each term in the lexicon

For each postings list there is a list of postings <d, fd,t>, for example the postings

list for a given term might look as follows:

<15, 4> <17, 1> <104, 2>

meaning that the searched term occurs in document 15 four times, in document 17

once and in document 104 twice.

This type of index organisation is sufficient to process both Boolean queries

(which provide a set of results in response to a query, based on a binary relevance

assessment) and ranked queries (which provide a ranked list of results in response

to a query, in order of the document’s similarity to the query), both of which will be

discussed in greater detail in section 2.2. In order to support phrase queries (where

the user is searching for the occurrence of an exact phrase, for example “to be or

not to be”), for each posting it is also necessary to store the position(s) within each

document where the term occurs. Expanding the previous example of an inverted

index to include positional information, i.e. the position within the document of

each term occurrence, the posting list might look like the following:
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<15, 4; 10, 15, 35, 80> <17, 1; 38> <104, 2; 19, 57>

This additional information tells us that the term occurs in document 15 four times

at word offset positions 10, 15, 35 and 80.

These postings lists can then be optimised further: as the document numbers

will be processed sequentially from the beginning of the file, the list can be stored as

the initial position, followed by a list of d-gaps or run-lengths in document identifiers

(Witten et al., 1999). This generally results in smaller integers, which are more suit-

able for compression using schemes such as those of Elias (1975) or Golomb (1966).

This would result in the previous example (without positional information) being

stored as follows:

<15, 4> <2, 1> <87, 2>

As this list will be processed sequentially from disk, the original values can be found

by summing the previous values. For example the sum of 15 and 2 gives back the

original value of 17. All this has a significant positive effect on the compressibility

of the inverted index, meaning that the time to read each postings list from disk is

reduced.

2.1.3 Retrieval

Having represented the information contained with the documents in the form of an

inverted index, we now look at how this information is then accessed in response to

a user request for information.

There are many different ways in which a user may specify their information

need. This is done most often by specifying a query, which usually consists of a

few words that the user believes best encompasses their need. Depending on the

application, the process for inputting this information into the IR system can differ.

For example Figure 2.3 shows the Google web search engine interface (Google Inc.,
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2006), which provides the option for “Advanced Search”, “Preference”, as well as

specifying the type of content, web, images, etc, yet the main component is the

facility to input a user specified query. Figure 2.4 shows the user interface for

the the search facility on the Windows XP operating system, to search for files and

folders contained on the system. Again, as well as extra options allowing the filtering

of results based on certain criteria, we can also see that the main input is in the

form of text input, to specify the file name of the document being sought and/or

text within that document.

Figure 2.3: Google user interface

It is then the job of the search system to take this user specified information as

input and to provide the user with the information that they require. Depending

on the system being used, as well as the type of information that is being searched,

the ambiguity associated with the user’s information need may vary. For example

for a web search, a query consisting of only one or two keywords may be very vague

and may relate to many distinct topics (many of which may not be of relevance to

the user). This may pose difficulties to the IR system, whose responsibility it is to

decide which of the documents that are available to it (if any), are the most likely

to satisfy the user’s need. In section 2.2 we look at different ways in which an IR
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Figure 2.4: Windows XP file search

system may choose which documents to return to a user, in response to a specified

query.

Once this list of documents has been chosen by the system (depending on the

type of system), it may return the actual documents, or simply a reference to the

location of the documents, and present these to the user. As shown in Figure 2.1,

there may also be a feedback mechanism, which allows the user to refine their search,

based on the information that has been presented to them.

2.2 Retrieval Strategies

In order to satisfy a user’s information need, a search engine must supply the user

with a list of the most relevant documents that can be found in its collection. In

order to supply this list there must be some process by which the relevance of a

document can be assessed between the documents in the collection and the query

itself.

In order to supply each document in the collection with a degree of similarity to

a query (or simply a document score), a retrieval model is employed. This defines

how the relevance between a query and a document is to be assessed, and so allowing

the retrieval of documents that the model deems to be likely to be relevant to the
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query.

In this section we shall outline some of the classic models that have been used in

information retrieval: Boolean, Vector-Space and Probabilistic. Each of these models

define relevance based on the term distribution within documents, however other

evidence such as the links between documents may also be considered for assessing

potential relevance for certain applications (this will be discussed in section 4.2.1).

2.2.1 The Boolean Model

The Boolean model of document retrieval is based on set theory and Boolean algebra.

Queries are formulated by combining query terms with AND, OR and NOT logic.

Using this approach, there is no sense of a partial match between the query and

document: a document is either a match or not, and is so known as an exact match

technique. Figure 2.5 shows graphically how documents are matched to the Boolean

query “(tourism AND information AND Prague)”.

tourist information

Prague

Figure 2.5: Boolean query “(tourism AND information AND
Prague)”

Although for many years most commercial systems used a Boolean model of

retrieval, the model does suffer from the absence of ranking of documents. This can

be problematic, particularly when dealing with large collections of documents, due

to the problems associated with navigation through large sets of retrieved documents
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(Baeza-Yates and Ribeiro-Neto, 1999). Boolean search can be advantageous, in that

it can successfully use very restrictive search, and can often be used more effectively

by an experienced user (Cleverdon, 1984). However the complex query formulation

poses a difficultly to novice users, who generally prefer the use of natural language

queries.

2.2.2 The Vector-Space Model

The Vector-Space model, proposed by Salton et al. (1975), represents queries and

documents as high dimensional vectors, with an orthogonal dimension for each term

in the collection. The model provides the general retrieval framework, that requires

a choice of term weighting scheme, as well as a similarity function to calculate the

distance between the vector representations.

 
!

1d

!

2d

!

1q
2"

1"

!

1d

!

2d

!

1q
2"
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Figure 2.6: Vector-Space Model.

The most basic term vector representation is known as the binary vector model,

which identifies a term as being present or not, i.e. binary [1,0]. The document

representation can be extended to include document and term statistics, such as in-

formation regarding the frequency of occurrence of terms within a document (term

frequency, tf ) (Salton, 1968). A term may also provide a means for discrimination,

based on the fact that commonly occurring terms are less likely to provide mean-

ingful retrieval information. A frequently used measure based on this is the inverse

document frequency (idf ) (Sparck Jones, 1972). Using these tf and idf measures,

the weight of a term in a document can be defined as:

wt,d = tft,d × idft (2.1)
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where idft is the inverse document frequency of a term t:

idft = log

(
N

nt

)
(2.2)

where N is the total number of documents in the collection, and nt is the number

of documents in the collection that contain the term t.

Work was done subsequently on improving upon this basic combination of the

primary tf-idf weights (as shown in equation (2.1)) by Salton and Buckley (1988).

This resulted in an improved weighting scheme, which did not allow single matching

terms with a high term frequency to skew the results over other term matches, as

can happen with the basic tf-idf formulation (2.1). This weighting is calculated as

follows:

wij =
(logtfij + 1.0)× idfj∑t

j=1[logtfij + 1.0)× idfj]2
(2.3)

A similar normalisation can also be carried out by incorporating the maximum

within-document term frequency, maxtf :

wij =
tfij

maxtfij

× log

(
N

dfj

)
(2.4)

Singhal et al. (1996) extended this work further, incorporating pivoting to compen-

sate for the favouring of long documents in retrieval

Although there are a number of functions that can measure the distance be-

tween a document vector (D) and query vector (Q) (Sparck Jones, 1972), the most

commonly used is the Cosine similarity measure,

sim(D, Q) =
D ·Q

|D| × |Q|
(2.5)

or:
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sim(D, Q) =

∑
t∈Q wt,D × wt,Q√∑

t∈Q w2
t,D ×

∑
t∈Q w2

t,Q

(2.6)

The main benefit of the vector-space model in comparison to the Boolean model

is that it provides a ranking of the results, based on their degree of similarity to

the query, as well as not requiring a full match between all query and document

terms. This model has proved very effective across a number of test collections and

so remains a popular and widely used method for document retrieval.

2.2.3 The Probabilistic Model

The Probabilistic Retrieval Model is similar to the vector-space model in its rep-

resentation of documents and queries as vectors. However, instead of retrieving

documents based on their similarities to the query, the probabilistic model retrieves

documents based on their probability of relevance to the query. The model was pro-

posed by Maron and Kuhn (1960) and was later extended by Robertson and Sparck

Jones (1976). The Probability Ranking Principle (Robertson and Sparck Jones,

1976) suggests ranking documents by decreasing probability of relevance between a

query Q and document D, P (R|Q, D). We next discuss the use of the Binary Inde-

pendence Model and Okapi BM25, which are examples of the probabilistic model.

2.2.3.1 Binary Independence Model

Assuming term independence, the probability of relevance for a given document

can be calculated by summing its individual term relevance weights. Documents are

represented as binary vectors of terms, which are the estimations of the probabilities

that the given terms in a query will appear in a relevant document, but not in a

non-relevant document. These term probabilities can be estimated from a sample

set of documents and queries with corresponding relevance judgments (Robertson

and Sparck Jones, 1976; Robertson et al., 1982). This was later revised by Croft and

Harper (1979a) so that the model did not include these prior estimates of relevance,
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as these are not always available.

2.2.3.2 Okapi BM25

The Okapi BM25 model was proposed by Robertson et al. (1994), and is a more

effective probabilistic model than the Binary Independence model. The BM25 model

approximates the 2-Poisson model (Harter, 1975; Bookstein and Swanson, 1974).

The base BM25 formulation is:

BM25(q, d) =
∑
ti∈Q

log
(ri + 0.5)(N − ni −R + ri + 0.5)

(R− ri + 0.5)(ni − ri + 0.5)
× (k1 + 1)tfi

K + tfi

× (k3 + 1)qtfi

k3 × qtfi

(2.7)

where

K = k1((1− b) + b× dl/avdl) (2.8)

Here tfi represents the term frequency within the document, qtfi is the term fre-

quency within the query, dl is the document length and avdl is the average document

length. R is the number of documents known to be relevant to a topic, and ri is

the number of these containing the term i. The parameters k1, k3, b depend on the

nature of the queries and the collection, and can be optimised, for example to suit

small or large queries.

Here k1 controls the influence of tfij: k1 approaching 0 reduces the influence of

the term frequency, while a larger k1 increases its influence. Likewise k3 controls the

query term weight. The b parameter adjusts the document length normalisation: b

approaching 1 increases the document length normalisation, while b = 0 results in

no document length normalisation.

For a typical retrieval task of retrieving a list of results in response to a user

specified query and ignoring any repetition of terms in the query, as is the case for

the vast majority of web queries, this function can be simplified to:
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bm25(q, d) =
∑
tεq

log

(
N − dfi + 0.5

dfi + 0.5

)
× (k1 + 1)tfi

k1((1− b) + b dl
avdl

) + tfi

(2.9)

where dfi is the number of documents in the collection that contain the term i.

The BM25 model has been extensively tested on the Text Retrieval Conference

(TREC) test collections (discussed in section 2.3.4), and in general performs very

well on these collections. For this reason we will make use of this model to provide

a baseline ranking in our experiments in Chapter 6.

2.2.4 Linkage Analysis

Linkage analysis utilises the hypertext structure of the web to provide a ranking

for documents, which is independent of their content, and is primarily used in com-

bination with content-based retrieval techniques for web retrieval. Many of the

techniques used within linkage analysis have been developed from social network

analysis, and have been originally used in information retrieval to promote docu-

ments based on the analysis of the citations between documents (Garfield, 1955,

1972). Certain linkage analysis techniques have also been applied to other forms of

documents such as emails, where the importance of an email may be deduced, not

only by the sender and receiver(s), but also the level of response that it generates,

for example the number of replies, as well as other sub-emails that this spawns.

Over the last number of years the more popular web search engines appear to

have integrated linkage analysis into the scoring of their systems. Anecdotally at

least, this appears to have increased the performance of these systems, although up

until recently there has been little scientific evidence in support of better quality

results, particularly using the conventional TREC evaluation (Gurrin and Smeaton,

2004).

Linkage analysis is said to exploit the latent human judgement on the web, in

the form of the hyperlink structure. The basis for this latent human judgement is
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as follows:

• A link between two documents carries an implication of related content.

• The author of one document found the content of another document useful

(provided they were created by two different authors)

Linkage analysis techniques utilise these in different ways, in order to provide a

measure of importance for each of the documents in the collection.

Networks of interaction have been studied for a long time in social sciences

(Wasserman and Faust, 1994), where nodes represent people or organisations and

edges represent connections or interactions. Intuitively, increasing the number of

connections to a node should increase its “importance”. However it would also seem

intuitive that measuring the number of incoming links should not be as accurate a

measure of prestige as also taking into account the type of nodes that are providing

the links, as some nodes offer more prestige than others. Similarly with linkage

analysis on the web, these types of consideration are also made: most web based

linkage analysis techniques are calculated via an iterative process, which allocates a

popularity score to each of the documents and so allowing these scores to be prop-

agated to any documents that they are linked to. Although many linkage analysis

techniques have been introduced, we choose to discuss two of the most popular and

well understood approaches: PageRank and HITS.

2.2.4.1 PageRank

PageRank is one of the best known linkage analysis techniques, popularised by the

Google search engine (Google Inc., 2006) and is a query-independent method. The

description of the model has been compared to a “random surfer” who is given a

web page at random and keeps clicking on links, never hitting “back” but eventually

gets bored and starts on another random page. The probability that the random

surfer visits a page is its PageRank, and the damping factor is the probability at
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each page the “random surfer” will get bored and request another random page,

(Page et al., 1998).

PageRank is calculated as follows: for a set of documents (S) that link to a

particular document (d), the PageRank of d is the combined PageRank of every

document in the set S, divided by the number of outlinks (outdegree) from each

document in S. PageRank is then calculated over a number of iterations: Page et al.

(1998) report acceptable convergence ranks in 52 iterations for a crawl of 322 million

links, while convergence on half that data takes roughly 45 iterations. To calculate

PageRank, firstly all documents are assigned an initial PageRank score PRn, and

we then calculate a simple PageRank score for each document as follows:

PR′
n = c ·

∑
mεSn

PRm

outdegreem

(2.10)

where c is a constant that is maximised and Sn is the set of documents that link

into document n.

After calculating a PageRank value for each document we store the new value

PR′
n as the value PRn and continue this process until convergence occurs. However

this initial PageRank formula is susceptible to certain problems, such as dangling

links and rank sinks, which do not allow their scores to be propagated back into

the rest of the linkage graph. These problems can be overcome by introducing

a vector
−→
E , which receives a link from all nodes in the graph, thereby ensuring

that their weight can be distributed back into the graph, as illustrated in figure

2.7. The reasoning behind this is that a web surfer will traverse through the web

by following links, but will eventually become bored and want to jump from their

current document to some other location.

The weight accumulated in the
−→
E vector is usually distributed equally across all

nodes in the graph, however by tailoring the distribution of weights we can create

a personalised PageRank, based on a user’s preference. This can be introduced

into the PageRank calculation as a preference vector, and so changes the browsing
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Figure 2.7: The introduction of an E Vector

behavior of the “random surfer” to be more like a specific user, or group of users

(Page et al., 1998; Haveliwala, 2002, 2003). The calculation of PageRank, including

the
−→
E vector is calculated as follows:

PR′
n = c ·

∑
mεSn

PRm

outdegreem

+ c(E(m)) (2.11)

where E(m) is the value of the E vector that is to be be distributed back to document

m.

The main benefit of PageRank is that its calculation occurs prior to query ex-

ecution and so does not effect the query execution time. However this does lead

to the problem of trying to effectively combine a purely linkage based score with a

query-specfic score, without introducing the problem of topic drift. This can arise

because the documents with the highest PageRank scores are not necessarily going

to be relevant to a particular query (as the documents’ PageRank scores are query-

independent) and so the incorporation of PageRank into the ranking process may
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promote documents that may not be relevant to the query.

2.2.4.2 Hyperlink Induced Topic Search

As opposed to PageRank, Hyperlink Induced Topic Search (HITS), proposed by

Kleinberg (1999) is a query-dependent form of linkage analysis. An initial subset of

documents is formed from the output of a standard IR system for a query. From

this initial subset it calculates two scores for each document: an authority and a

hub, defined as follows:

Authority: A good authority page is one that contains a lot of information

relevant to the query, as well as being linked to by many pages that are relevant to

the query.

Hub: A good hub page is one that contains many links to pages that are good

authorities.

The basic hub and authority scores are calculated as follows: an initial set of

relevant documents (top 200 for example) is retrieved from a standard IR system for

a specific query (known as a base set). This set is then expanded using off-site inlinks

as well as off-site outlinks to produce an expanded set of relevant documents (1,000

- 5,000 documents). We make use of the relationship between hubs and authorities

via an iterative algorithm that maintains and updates numerical weights for each

page. Thus, with each page (p), we associate a nonnegative authority weight (x(p))

and a nonnegative hub weight (y(p)). We maintain the invariant that the weights of

each type are normalised so their squares sum to 1:

∑
p∈Sσ

(x(p))2 = 1 (2.12)

and ∑
p∈Sσ

(y(p))2 = 1. (2.13)

We view the pages with larger x and y values as being “better” authorities and hubs,

respectively (Kleinberg, 1999).
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The HITS approach however, has the disadvantage that it is calculated at query

time: not only as it requires extra resources from the search system at query time,

but also as the system response time is increased. This represents a major disadvan-

tage to the general user, who requires the minimum delay in the system response.

Having examined various ways in which an IR system may provide an estimate

of the relevancy of the documents in the collection to a user’s information need, we

now look at the ways in which these documents may be assessed for relevance to

the user’s need. We also look at various evaluation measures, by which to ascertain

which approach performs best.

2.3 Evaluation

To consider the true effectiveness of a search system, there are many areas that

need to be accounted for: accuracy of results, speed, efficiency, to name but a few.

Within each of these areas there are various metrics by which to measure their

effectiveness, and depending on the type of information need of the user, certain

evaluation metrics may be more appropriate. In this section we outline the main

types of information needs of a IR system user. We then show how the retrieval

system’s effectiveness, in meeting those needs, may be evaluated.

2.3.1 Information needs and search tasks

“Knowledge is of two kinds. We know a subject ourselves, or we know

where we can find information upon it.”, Samuel Johnson (1775)

According to both Broder (2002) and Rose and Levinson (2004) web queries

can be classified into three different types: informational, navigational and trans-

actional/resource. The following describes each of these query classes, as well as

outlining the various search tasks used in research to replicate these search scenar-

ios.
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2.3.1.1 Informational Search

An informational query occurs when we are seeking information on a particular topic.

Ad hoc search is the typical informational search task. Ad hoc search involves a user

searching for a particular topic on a static collection of documents. In this task the

user’s query or topic comes from a general information need, in which they are

looking for information regarding some topic, which (depending on the collection

used) is likely to have many relevant documents. An example ad hoc topic might

be: “Tourist attractions in the United States”.

2.3.1.2 Navigational

With a navigational query the user is trying to navigate to a particular document,

and possibly has a clear idea of the document that they want. This type of query

is discussed below in terms of named page finding and homepage finding.

• Named Page Finding: In the Named page finding task there is only one

particular page (or near duplicates) that is considered relevant to the query.

This task mimics the case where the user knows exactly the document that

they are looking for (as they may have viewed the document previously),

and they wish to find that specific document again. Here the emphasis for

the search system is to return just that document to the user, although in

practice the system usually returns a small list of the most likely candidate

documents. For example, the query “DCU library opening hours”, specifies

the user’s requirement for very specific information about the opening hours

of the Dublin City University library, to be found at http://www.dcu.ie/ li-

brary/about/openhours.htm.

• Homepage Finding: In a homepage finding task, the aim is to find the

relevant homepage associated with the query. This is similar to the named
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page finding task, and is in fact a more defined case of that task, in that we

know that the named page is a homepage (not just any page in the entire

collection). The query is the name of an entity which has a specific homepage

associated with it, and the aim of the task is to find this page and return

it at the top of the result list. For example with the query “Dublin City

University” the associated homepage would be http://www.dcu.ie. The user

may be seeking particular information that they know to be available on that

specific page, as would be the case in the named page task. Also, quite often

with the homepage finding task the user is looking for general information on a

particular topic, or looking for a good entry point to explore from, and usually

a homepage provides a good entry point for this type of browsing.

2.3.1.3 Transactional/Resource Search

With a transactional, or resource seeking information need, the user has a particular

transaction that they need to perform or a particular resource that they are seeking,

such as to book a hotel or download a file. The task of the IR system is to identify

this need, then find the most suitable web page at which to perform this transaction.

These types of queries can often be quite difficult to deal with correctly. Aside from

identifying a relevant result, based on the topic match between the document and

the query, the search system may also have to provide different results to different

users, depending on certain criteria, such as the the user’s location. For example,

if an Irish web user issues the query “pay motor tax”, they would most likely be

looking for www.motortax.ie, whereas this page would be of little use to web users

from Singapore wishing to pay their motor tax.

Although these types of queries are important to understand and worthy of

substantial research, there is yet no test collections available to allow for this. Most

of the current research in this area is carried out by large commercial search engines,

who have an interest in providing more accurate answers for their users.
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2.3.2 Evaluation Strategies

In order to evaluate the efficacy of an IR system it is necessary to evaluate the per-

formance of the system using a number of criteria. In terms of efficiency, the query

throughput, as well as the system resources required to execute a user’s query must

be evaluated. These are elements of a search system that can be rigorously tested in

a laboratory environment, in which accurate performance figures can be gathered.

However measuring the degree of user satisfaction and fulfillment of information

needs are much more difficult concepts to evaluate.

The satisfaction of a user’s information need is something that can be difficult

to evaluate, as we must consider all factors that the user brings to the situation:

their prior knowledge; awareness of information available; use of the information;

time constraints, etc. We must also be aware that a user’s information need may be

constantly changing or be updated, due to new information that the user receives

from the IR system.

When trying to determine the accuracy of the returned set of documents in re-

sponse to a user’s query, the key concept underlying this evaluation is relevance.

However it has been found that this concept of relevance is not a static relation-

ship between an information need and information, “relevance is not fixed but is a

temporal and fluid concept that is sensed or observed at a specific moment for a

particular need” (Park, 1993), and “relevance judgments are users’ evaluations of

information...in relation to their information need situations at particular points in

time” (Schamber et al., 1990). Nonetheless, currently the majority of IR system

evaluations are computed within a laboratory setting, using document collections

and pre-determined relevance judgments between queries and documents. There are

also issues with the task of completely assessing a document collection for relevance

to a set of queries. This is a non trivial task, particularly with a large collection of

documents, which is currently addressed using document pooling.

In order to evaluate an IR system for a certain search task, a suitable collection

of documents must be gathered, so that repeated experiments can be run on the
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same collection. These collections (which are referred to as test collections) remain

static, as changes to the collection may cause some deviation in the results of the

experiments. Often the same test collection is used between a large number of

research groups, so that their results may be compared.

The remainder of this section describes methods used in research to evaluate the

performances of search systems, on a test collection of documents and generated

queries.

2.3.2.1 Human Relevance Judgments

The most effective way of judging the relevance of a document to a query is to use

human relevance assessors, who evaluate each document’s relevance to each query.

However, there may be discrepancies among human judges about which documents

are relevant and which are non-relevant. The difficulty of this assessment is also

dependent on what is being evaluated, for example if it is the quality of a document

that is being assessed, this is a somewhat more ambiguous notion, when compared

to the relevance of a document to a query, and so the discrepancies between judges

can become more pronounced (Amento et al., 2000). Attention also needs to be

given to other aspects of the evaluation process, such as ensuring that the judge is

representative of a general searcher using the system.

2.3.2.2 Document Pooling

Due to the increasing size of test collections, it has become increasingly difficult for

a human assessor to assess every document in a collection as being either relevant

or non-relevant for every query. To allow effective relevance judgments to be carried

out on large test collections, document pooling can be employed. This involves

taking the top N results from a number of different IR systems for a set of queries,

and these documents are then pooled together. Then it is this pool of retrieved

documents that is assessed (rather than the entire collection) (Sparck Jones and

van Rijsbergen, 1976). It is hoped that the diversity used by the different systems
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provide a large enough pool of results, so that the majority of relevant documents

can be found for each query. This process of document pooling and judging has

been shown to be sufficient for research purposes (Zobel, 1998; Voorhees, 1998).

The variable pool depth approach (Zobel, 1998) has been shown to improve on

this initial method by increasing the number of relevant documents found. This

works by firstly judging each query to an initial depth, and then for each query

using extrapolation to predict the likely number of relevant documents to be found

if the per-query pool depth is increased. One can then, either identify the most

promising runs and judge them to a greater depth, or remove the runs with the

least number of relevant documents, so that they need not be considered further.

Aslam and Yilmaz (2006) provide a method of evaluating retrieval systems, us-

ing only a limited number of relevance judgments, by inferring document relevance

based on average precision. Given: the ranked lists of documents returned in re-

sponse to a given topic; the average precisions associated with these lists; R (the

number of documents relevant to the topic), their approach aims to find the binary

relevance judgments associated with the underlying documents. They define this as

a constrained integer optimisation problem. However to alleviate the problem of this

being intractable, they relax the condition that the inferred relevance assessments

must be binary, instead allowing the inferred relevance assessments to be probabil-

ities of relevance. They can then infer an expected value for average precision from

these probabilistic relevance assessments, which are calculated as follows:

E[AP ] =
1

R

Z∑
i=1

pi

i
1 +

i−1∑
j=1

pj (2.14)

where pi is the probability of relevance associated with the document at rank i in

the list of length Z. To ensure that the inferred relevance judgments incur average

precision values “close” to those given, they minimise the sum squared error between

the real and the inferred average precision values. Using this approach they show

that once given values or estimates of average precision, they can then accurately
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infer the relevances of unjudged documents and so allowing a large judgment pool to

be created, from a relatively small number of judged documents. This is something

that is particularly appealing for carrying out effective evaluations on large document

collections.

2.3.3 Evaluation Measures

How the efficacy of a search system is to be evaluated is very much dependent on

the task that is being performed. For example, for a general web query there may

be a huge number of relevant documents, but the user may only consider the top 5

- 10 documents. On the other hand, for certain medical searches it may be vital to

have all relevant documents, with the user willing to browse all documents. With

this in mind we must consider different performance measures, depending on the

search task being performed.

2.3.3.1 Precision and Recall

To examine precision and recall, consider a query that is issued to a search system,

and this produces a set of candidate relevant documents C (with the actual relevant

documents to the query being the set R). If the intersection of the two sets R and

C forms the set Rc, i.e. the set of relevant documents found by the system, then

precision and recall can be explained as follows:

Precision

Precision is the fraction of the documents found within a certain cutoff point which

are relevant:

Precision =
|Rc|
|C|

(2.15)

Recall
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Recall is the fraction of the total relevant documents found by the system within a

certain cutoff point:

Recall =
|Rc|
|R|

(2.16)

Precision and recall are generally used to evaluate the usefulness of informational

type queries. Depending on the actual application, one may be more important than

the other. The goal is to have high precision and high recall, however in practice one

is generally achieved at the expense of the other (as shown in figure 2.8). Finding a

suitable balance between the two is the realistic goal.

Typical

Optimal

Precision

Recall

100%

100%

Figure 2.8: Precision-Recall Tradeoff.

Mean Average Precsion (MAP)

A widely used single measure of retrieval performance, which gives an indication

of the number of non-relevant documents incurred before all relevant documents

are found is mean average precision (MAP). If there are relevant documents that

are absent, each of these are also taken into account, therefore indirectly measuring

recall. In general, the value of MAP also depends on the cut-off level (the number

of documents to be evaluated for each query).
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2.3.3.2 Mean Reciprocal Rank and Success Rates

The Mean Reciprocal Rank (MRR) measure is commonly used when there is only

one correct answer to a query, as in a homepage finding search task. For a given

query the reciprocal rank is calculated as the reciprocal of the position in the ranked

list that the document is found at. For an overall measure for a set of queries the

average across all queries is taken.

Similarly, success rate evaluation measures are often used when there is only one

correct document corresponding to a query. The success rate is indicated by S@k,

where k is the cutoff rank and indicates the percentage of queries for which the

correct answer was retrieved in the top k ranks.

2.3.4 The Text REtreival Conference

In the early 1960’s the Cranfield College of Aeronautics created a static document

collection of 1400 documents with 225 queries. Due to the relatively small size of

the collection, each of the documents could be manually classified as relevant or

not to each of the user queries. Based on these queries and on manual relevance

judgments, the group were then able to evaluate different indexing and retrieval

techniques, using such measures as precision and recall.

In an effort to scale the size of these document test collections to more realis-

tic sizes, the Text Retrieval Conference (TREC) was established in 1992, by the

National Institute of Standards and Technology (NIST) and the Defense Advanced

Research Projects Agency (DARPA), as part of the TIPSTER Text program. Its

purpose was “to support research within the information retrieval community, by

providing the infrastructure necessary for large-scale evaluation of text retrieval

methodologies” (TREC, 2000). This has proven very successful, as it provides the

framework to allow researchers to test the effectiveness of different approaches on

a common test collection. TREC’s primary focus began on ad hoc search, and has

since grown to include dozens of other IR related tasks, with a total of 117 partici-
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pating research groups in the 2005 TREC workshop. Table 2.1 shows a comparison

of some of the major test collections used by TREC.

Table 2.1: Overview of TREC collections

Collection No. of Documents Size Year Composition
VLC2 18.5 M 100 GB 1998 Crawl from Internet Archive
WT2g 0.25 M 2 GB 1999 Subset of VLC2
WT10g 1.7 M 10 GB 2000 Subset of VLC2
GOV 1.25 M 18.1 GB 2002 2002 crawl of .gov
GOV2 25 M 426 GB 2004 2004 crawl of .gov

Next we discuss the GOV2 collection (which is the largest test collection used

by TREC), as we utilise this collection in our experiments in Chapter 6.

2.3.4.1 GOV2 Collection

The GOV2 collection consists of a collection of documents crawled from the .gov

domain of the web in early 2003, and amounts to a large proportion of the available

pages in .gov. The collection amounts to over 25 million documents, from over

17,000 distinct hosts, and occupies 426 gigabytes of disk space. This is composed

mainly of html and text, as well as the extracted text of pdf, word and postscript

files. Figure 2.9 shows a sample document from the GOV2 collection.

2.3.4.2 The Terabyte Track in TREC

The terabyte track in TREC began in 2004 (Clarke et al., 2004), in an effort to again

scale the size of the test collections being used, from approximately 18 gigabytes in

size to around one terabyte. This provides a more realistic representation of the

size of document collections being dealt with by commercial search engines. As it

turned out, the crawl of the .gov web sites amounted to less than half a terabyte of

text, nonetheless this provides a substantial increase in size over the previous GOV

collection.

The goals of the terabyte track in TREC were to:
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Figure 2.9: Sample GOV2 document

• Investigate the performance of traditional search algorithms on a terabyte sized

collection.

• Investigate the performance of evaluation measures, as well as the relevance

judgement process, on a larger test collection than previously used.

The main task associated with the terabyte track is the ad hoc task: “The adhoc

task in TREC investigates the performance of systems that search a static set of

documents using previously-unseen topics” (Clarke, 2006). Figure 2.10 shows a

sample ad hoc query from the 2004 task:

We can see from a sample query, or topic, (shown in Figure 2.10) that the topic is

divided into different sections: each topic has a unique number (num); a title, which
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Figure 2.10: Sample ad hoc topic

is the actual user query; a description, and a narrative section, which help to clarify

the information need of the topic, as well as helping to remove any ambiguities that

may exist.

For the ad hoc task, participants may submit either a manual or an automatic

query. For an automatic query the system may use any or all of the topic fields

specified. For the experiments contained within this thesis we have utilised only the

title field of the topic, as we feel that this is the most representative of a typical user

query, which we are trying to replicate. Participants may also submit a manual run,

in which a searcher manually forms what they believe to be the best query for the

topic.

In both 2005 and 2006 the track also consisted of a named page finding task (as

discussed in 2.3.1.2), as well as an efficiency task, which attempts to measure (and

allow comparisons of) the effectiveness of IR systems, in terms of their efficiency.

2.4 Summary

In this chapter we described the operation of a typical information retrieval system,

outlining its main components and describing how each contributes to the system.

We then took a more detailed look at the operation of the retrieval process, how

relevance is assessed between a document and a query using the classic retrieval
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models. We also presented the use of linkage analysis, as an additional way to

provide document ranking.

Having looked at the way in which documents are returned to the user, we

then focussed on how to assess the effectiveness of the system, describing some of

the typical user tasks, then discussing how to assess the performance of the system

using certain measures. Finally we introduced TREC, which provides the framework

for the evaluation of system effectiveness that we utilise for the experiments carried

out in this thesis.

After discussing the background area (in this Chapter), we can now move closer

to the area of work carried out in this thesis. We do this by, firstly detailing the

related work in the domain (in Chapter 3). We then discuss the main subject of the

thesis in Chapter 4.
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Chapter 3

Related Work

In this chapter we describe related research to the work carried out in this thesis.

This is done in an effort not only to show what currently has been done, but also

to explain how the work carried out in this thesis correlates with these other works.

Specifically, we describe associated work in the area of reducing the search space,

which prunes the number of documents examined at retrieval, in order to reduce

the effort from the retrieval system at query time.

We firstly provide a detailed analysis of the typical steps involved for an IR

system to retrieve documents in response to user input. This will provide us with

an example, that we will use to compare and contrast different methods for reducing

the search space. We also use this example as a means to illustrate our own approach

in this area.

3.1 Information Retrieval Search Implementation

In Chapter 2 we looked at the operation of an IR system, as well as making a

more detailed examination of the retrieval process, namely, how relevance is assessed

between a document and a query during the retrieval stage. Here we wish to examine

in more detail how the IR system performs this retrieval task. Specifically, we

examine how it extracts information from the inverted index, and then calculates a
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similarity measure between the user query and the documents.

If we look at the retrieval process of the IR system (as shown in Figure 3.1),

we can see the operations undertaken in order to provide the user with a list of

documents, that aim to answer their query.

User
Interface

Results

Query

Query
Handler

Document
Retreival

Result
Formatter

Inverted
Index

Document
Collection

Retrieval

Query System Query

ResultsFormatted Results

User

Figure 3.1: Retrieval component of the IR system

The process that we are chiefly concerned with is that of document retrieval, as

highlighted in Figure 3.2.

Document
Retreival

Inverted
Index

System Query

Results

Figure 3.2: Document retrieval process highlighted
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This process receives a system query1, and based on this system query the re-

trieval process will consult the inverted index, in order to provide the user with a

list of relevant documents. As described in Chapter 2, the inverted index consists of

a lexicon, which holds each of the terms in the index of the system. The lexicon also

holds the location of the postings list associated with each of these terms. When

the system wishes to execute a query, the document retrieval process consults the

lexicon for each term in the query. This provides the locations of each postings list,

and so allows the postings to be retrieved (usually from disk, particularly for a large

document collection) for each term. Then for each term, the postings are evaluated

for potential relevancy according to a specified retrieval strategy, as discussed in

section 2.2. This provides a list of potentially relevant documents, that are to be

returned to the user.

To illustrate this process further we provide the following example, with the user

specified query: “Tourism in Italy”. Firstly the user query is transformed into a

system query; for example, by converting all characters to lower case, this becomes

“tourism in italy”. The document retrieval process receives this query, then looks

up each term (in the lexicon), on finding a term the postings list for that term can

then be located and all the postings for that term are accessed. This process of

accessing all postings for each query term is shown in Figure 3.3.

All the postings associated with a particular term show us in which documents

that term occurred, as well as the number of times it occurred in each document

(in addition to other more detailed positional information, if the retrieval being

performed requires it). The next step in the retrieval process is to decide on the

documents that are to be returned to the user. For this we must evaluate each of

the postings associated with each of the query terms, and based on the retrieval

strategy we employ, we update an accumulator’s “score” with each new posting

encountered. An accumulator holds the score accumulated for each document, as

1A system query is the result of a user query undergoing the same transformation as the
documents’ terms in the collection, before they are stored in the inverted index.
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            ...
||||||||||||||||||||||||||            
            ...
|||||||||
            ...
|||||||||||||        
            ...
         

         ...
    in    
         ...  
    italy         
         ...               
    tourism
         ...
    

Lexicon
Postings 

Lists

Terns are
looked up
in lexicon

All postings 
for each term
are accessed

                     Term
  Doc ID   Frequency

 
      2                 5
      9                 7
               ...

               ...

     142              4

Postings
List - "in"

Figure 3.3: Accessing postings for each query term

each of the postings are processed (according to the given retrieval strategy). This

step is demonstrated in Figure 3.4.

Query 
Postings Lists

    Doc ID      Score

 
      2                  8
      4                 12
               ...

               ...

     142               7

Accumulators

Retrieval 
Strategy

Process postings list 
for each term.

Accumulator scores for 
all documents found in

postings

calculate score for
each posting encountered

                     Term
  Doc ID   Frequency

 
      12                 2
      54                 9
               ...

               ...

     103                3

-----
-----
-----
-----
-----
-----
-----
-----
-----
-----
-----
-----
-----
-

in
-----
-----
-----
-----

italy
-----
-----
-----
-----
-----
-----
-----

tourism

Postings 
ordered 

by doc ID

Figure 3.4: Calculate accumulator scores

It is worth noting, that for most purposes a retrieval strategy that provides

a ranked list of results is most favourable, although for Boolean search we may

also hold binary scores in the accumulators. Once all the postings lists have been
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evaluated, the documents are sorted based on their accumulator’s score, and then

this list, or a portion of it (for example the top 20) is returned to the user.

3.2 Reducing Search Space

Having outlined how the typical document retrieval process deals with a user query,

we now illustrate some alternative approaches that aim to reduce the search space,

while also aiming to providing the same accuracy of results.

3.2.1 Nearest Neighbour Search

In the context of information retrieval, finding the “nearest neighbour” corresponds

to finding the n closest documents to a query, where “closeness” is measured by a

similarity measure. This typically can be done by performing a sequential search

through the complete collection, and then selecting the top n documents (as shown

from our previous example). In order to reduce the search complexity, it has been

proposed that the query terms be evaluated in order, with terms with the lowest

ft starting first. These are the terms with the lowest number of occurrences in the

collection, and therefore (according to most retrieval strategies) of most influence to

the ranking process. Using this approach, the inverted file records containing query

term(s) with the highest ft are not searched at all once an upperbound is reached

(Smeaton and van Rijsbergen, 1981).

Using the previous query example, “tourism in italy”, this approach would have

the effect of changing the order in which the postings lists are processed by the

retrieval system. For example, with the terms, tourism, in, and italy having ft values

of 28, 63 and 21 respectively, the order in which the postings lists are processed is

changed, so that the postings of the term with the lowest ft are processed first, i.e.

italy, followed by tourism, then finally in.

The algorithm for calculating the nearest neighbours maintains two sets: R and

S, where R contains all documents, which at any point are candidates for the final
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set of nearest neighbours, and S contains all documents that have been examined

so far. When processing each of the postings, if the document is in the set S it is

ignored (as it has been encountered previously), otherwise it is added to S, and a

similarity value is calculated between the document and the query. If this value is

higher than any of the values in R, then the document is also added to R (as a

candidate for the list of nearest neighbours). After processing all documents for a

given term, a maximum possible similarity value of the documents containing the

unprocessed query term(s) can be calculated: the upperbound. If this upperbound

is lower than the current best value, then the process can be terminated. This

means that whole postings lists for a particular term, or terms, may not need to

be processed in order to find the nearest neighbours, and so allowing faster query

throughput. This process is illustrated in Figure 3.5.
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Figure 3.5: Nearest neighbour calculation

This approach performs substantially faster than a complete search, while at

the same time it maintains the same level of performance. However, it requires a

list to be maintained in order to calculate the threshold. Also the queries used in

the experiments of Smeaton and van Rijsbergen (1981) contained on average more
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than 7 terms, which is much more than the number of terms used in an average

web search (2-3 terms on average according to Spink and Jansen (2004)), and so

the gains of this approach would not be as great if used in this typical web search

scenario.

3.2.2 Self-Indexing Index

Moffat and Zobel (1994) proposed modifying the inverted index, to create a self-

indexing index, to allow faster scanning, or skipping into the inverted index. This

was shown to potentially add 20% to the size of the inverted file. However it allowed

Boolean queries to be processed in 20% of the time (5-10 query terms), and ranked

queries could also achieve a “time saving of about 50%...without measurable degra-

dation in retrieval effectiveness”, by restricting the accumulators used at query time

(40-50 query terms) (Moffat and Zobel, 1994).

3.2.2.1 Skipping

By inserting additional access points, or synchronisation points, in each of the in-

verted lists (where decoding can commence from), a mechanism is provided where

postings that are not required to be evaluated for a particular query can be skipped.

According to Moffat and Zobel (1994), when these values are “interleaved with the

runlengths of the list as a sequence of skips, a single self-indexing inverted list is

created”.

If we extend our index example of <d, fd,t>, from section 2.1.2:

<15,4><17,1><104,2><112,19><142,8><157,2><204,3><248,4><304,1>

and then storing these using d-gaps, this becomes:

<15,4><2,1><87,2><8,19><30,8><15,2><47,3><44,4><56,1>

With skips over every three pointers, this becomes:

<<15,a2>><15,4><2,1><87,2><<112,a3>><8,19><30,8><15,2><<204,a4>><47,3><44,4><56,1>
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where a2 is the address of the first bit of the second skip pair, a3 is the address of the

first bit of the third skip, etc. The last of the redundancy in the above representation

can be alleviated by storing only the differences between the documents and the

pointers in the skips. Also the first document number in each set of three <d, fd,t>

is no longer needed, as it is held in the skip. The final inverted list looks like the

following:

<<15,a2>><15,4><2,1><87,2><<8,a3-a2>><19><30,8><15,2><<47,a4-a3>><3><44,4><56,1>

For a conjunctive Boolean query, the maximum number of accumulators required is

the frequency of the least common query term. If the query is processed from least

to most common query term, only the documents that are common to all need to be

evaluated. This self-indexing allows the inverted lists to be scanned quickly in order

to retrieve these required postings. It also allows postings that are not common to

all query terms processed at that point to be skipped (enabling faster evaluation of

Boolean queries).

Moffat and Zobel (1994) identify “the principal costs of ranking” as “the space

in random access memory, and the time required to process inverted lists”. In an

attempt to eliminate the number of accumulators necessary to process a query, they

proposed two strategies: quit and continue. The quit strategy is carried out in

a similar way to that of the nearest neighbour search: ordering query terms by

decreasing weight, and then stopping once a certain criterion is met. An alternative

to the quit strategy, is to continue processing once this criterion is met (however at

this stage no new accumulators are created): this is known as the continue strategy.

These are demonstrated further in Figure 3.6, again using our previous example

query of “tourism in italy”.

3.2.3 Sorted indices

As alternatives to the traditional document-ordered index, research has been carried

out on sorting posting lists by various metrics, as well as other methods of reducing

the time and resources necessary to produce a ranked set of results in response to a
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Figure 3.6: Processing using quit and continue strategies

query. These are now described.

3.2.3.1 Frequency sorted

Persin (1994) and Persin et al. (1996) introduced frequency-sorted indexes, where the

posting lists are sorted by decreasing within-document term frequency dt,d. Again

using our previous example of a postings list:

<15,4><17,1><104,2><112,19><142,8><157,2><204,3><248,4><304,1>

which is currently ordered by the document identifiers. By sorting in order of the

within-document frequency, dt,d, this becomes:

<112,19><142,8><15,4><248,4><204,3><157,2><104,2><17,1><304,1>.

Persin (1994) suggests that the majority of query time and memory is spent

on processing the most commonly occurring terms, which are the least informative

in terms of contribution to query-document similarity. He proposes a frequency

sorted index, so that documents may be filtered in order to reduce the number of

documents to be processed. In doing so, both the main memory in use, as well as the

query time, are reduced. This reduction is achieved by “processing only the most
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informative parts of the term entries”; to allow this the postings lists are sorted in

descending order of the within-document frequency of each posting.

In order to filter documents at query time, two thresholds are calculated for

each query term: “an insertion threshold kins and an addition threshold kadd, where

kins ≤ kadd”. During processing, a tf.idf score is calculated for each document in the

postings list, and if this tf.idf score is more than kins, the document is considered as

a candidate. If the document is already present as a candidate then this gets added

to its previous score, otherwise a new accumulator is created for this document. If

tf.idf is less than kins, but more than kadd, then if this document has an accumulator,

tf.idf is added to the accumulator. Finally, if the tf.idf score is less than kadd this

information is ignored and the next posting is processed. The documents that are

skipped are considered unimportant as if a large enough number of documents are

found with high similarity to the query, then those documents with small partial

similarities are unlikely to have a major impact on the outcome of the final ranking.

However if each of the postings lists are sorted in decreasing order of dt,d, then

there is no need to keep processing more postings once tf.idf < kadd, as all postings

below this point will have the same or lower tf.idf . Figure 3.7 illustrates how this

frequency sorted index processes an example query.

Using this type of index it has been shown that the CPU time and disk traffic can

be reduced to approximately one third of the original. Persin (1994) also showed how

a net reduction could be achieved in the index size, even though the conventional

d-gap compression approach used in document-ordered indexes (described in Witten

et al. (1999)), could no longer be utilised. However, it must also be noted that these

experiments were carried out using queries ranging in length from 35 to 130 terms,

which would allow greater gains to be achieved using this approach, rather than the

much shorter queries that a user would typically use in interactive web searching.
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Figure 3.7: Query processing with a frequency sorted index

3.2.3.2 Impact sorted

Impact-ordered indexes presented by Anh et al. (2001) and Anh and Moffat (2002a,b),

are a form of inverted index that is ordered by quantised weights (or impacts). This

provides the facility to only decode the postings with the highest impact, thereby

reducing the query time, while at the same time improving the retrieval effectiveness.

Moffat and Zobel (1994) proposed filtering documents based on the idf compo-

nent of the tf.idf term weighting scheme, while Persin (1994) and Persin et al. (1996)

sorted documents based on the term frequency, thus allowing filtering based on the

tf.idf . Anh and Moffat suggest sorting using a normalised tf.idf term weighting

scheme, or based on the impact of a term in a document, similar to Buckley and

Lewit (1985). This is known as the term impact.

The obvious drawback to using this impact value for sorting posting’s entries

is that it is a floating point number, and so would be unsuitable for compression.

However, following on from Moffat et al. (1994), they make use of quantisation,

where each impact value is approximated by a b-bit integer. The size of the b value
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effects both the size of the index as well as retrieval effectiveness. A low b value

does not approximate the impact value well (and so degrades retrieval effectiveness),

although it does help the compressibility of the index. On the other hand, a large b

value will approximate the impact value much better, but in doing so will increase

the size of the index.

Anh and Moffat later produced a “document-centric impact” (Anh and Moffat,

2004), which calculates the impact of the term within the document which it is

contained (rather than a global impact that had previously been applied). The

rationale for this is to give all the documents an equal spread of high impact terms

and low impact ones.

An impact sorted index is then created by sorting the posting lists by their

quantised impact value, with groups of postings having the same impact value being

blocked together.

Anh and Moffat experimented with various early termination schemes, such as

the quit and continue schemes introduced by Moffat and Zobel (1994). Also the

use of the quantised components of their tf.idf similarity measure allow for faster

and more memory efficient calculation of similarity scores. However in Anh et al.

(2001), their term impact sorted index did not perform as well (on a per postings

processed basis), when compared to a term frequency sorted index (as in Persin et al.

(1996)) when low numbers of postings had been processed. That is to say, that for

the same number of postings processed, the term frequency sorted index performed

more effectively in terms of precision at 10, even though more information and

computational effort would have gone into the calculation of the impact, compared

to taking the raw term frequency. This may be explained by longer documents

being penalised more severely than shorter documents, due to the normalisation of

the tf.idf factors by the document length in the generation of the impact score. The

effect of this over penalisation of shorter documents, due to the normalisation of

the term frequency is addressed by Ferguson et al. (2005c), in which an increase

in terms of precision at 10, is gained over term frequency sorted indexes on a per
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postings processed basis.

3.2.3.3 Access ordered

A further form of sorted index (introduced by Garcia et al. (2004)), is an Access

Ordered Index, in which they order the postings lists based on previous queries.

Founded on the idea, that even with a large number of different queries the same

documents are ranked highly, the postings are ordered so that the documents re-

turned by the IR system for the most queries are towards the top of the lists and the

less retrieved documents are stored towards the bottom. Again, using this approach

not all postings need to be decoded, as the most accessed postings will be evaluated

first, and so effective retrieval can be performed using much less resources than in a

conventional approach.

In order to generate the access counts, Garcia et al. (2004) firstly processed 1.9

million web queries from an Excite search engine log, on a collection of 1.6 million

documents. For each of these queries they generated a ranked list of documents,

using the Okapi BM25 formulation (as discussed in Chapter 2). For every time a

document occurred within the top 1000 of this ranked list for a query, its access

count was incremented. Following the execution of these queries each document

has an associated access count, and so allowing each postings list to be sorted in

descending order, based on the document’s access count.

Again taking our previous example of a postings list in the form <d, fd,t>:

<15,4><17,1><104,2><112,19><142,8><157,2><204,3><248,4><304,1>

and extending this to the form <ad, d, fd,t>, where ad corresponds to the access count

score for that document gives us:

<3,15,4><12,17,1><0,104,2><2,112,19><1,142,8><1,157,2><2,204,3><1,248,4><5,304,1>.

With this extra information, the postings can now be ordered by the access count

values (rather than the document numbers). However this ad value is not actually

stored in the index, and is instead held in an in-memory mapping table. The postings
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are thus ordered by the ad values, with the ad values themselves not being stored.

This appears as follows:

<17,1><304,1><15,4><204,3><112,19><248,4><157,2><142,8><104,2>

Garcia et al. (2004) experimented with various query pruning techniques, again

including the quit and continue strategies from Moffat and Zobel (1994). They

also introduced a number of other strategies to take advantage of the access ordered

index, in order to limit the number of postings being processed. The most successful

of these was their MAXPOST scheme, in which a maximum number of postings

are processed from each of the postings lists for each of the terms in the query.

Interestingly this is the same scheme developed independently by (Blott et al., 2004;

Ferguson et al., 2005b,c), although referred to as top subset retrieval. Garcia et al.

also introduced an extension to this MAXPOST procedure, by which the posting

lists can be pruned past the point of this MAXPOST (similar to Carmel et al.

(2001b)), the postings lists can then be rearranged to the conventional document

number ordered index (which is more suitable for compression). This results in a

substantial reduction in the size of the index. However the drawback of this access

pruned index is that the system is effectively limited to using this fixed MAXPOST

size. Query processing using an access sorted index is shown in figure 3.8.

3.2.4 Index pruning

Another area of work relating to reducing the search space is index pruning, where

pruning methods are used to remove the least important postings from the index.

Pruning methods include stopword removal and static index pruning, both of which

are explained below.

3.2.4.1 Stopword removal

An important issue when indexing a text collection is deciding what words are

important, in order to represent the information contained within the documents.
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Figure 3.8: Query processing with an access sorted index

Much of the work, from an automatic text analysis point of view, is based upon work

done by Luhn (1958). Here he proposes, “that the frequency of word occurrence

in an article furnished a useful measurement of word significance”. His assumption

that the importance of a term is contained in the frequency of its occurrence is

represented by the idf components in the calculation of the Vector-Space and Okapi

BM25 formulae.

Good keywords are not the most frequent, or the least frequent, but rather those

that occur a moderate number of times. This seems intuitive, as very frequently

occurring terms, that occur in most documents do not offer much discrimination

to any document that they occur in, and on the opposite end of the spectrum, ex-

tremely rarely occurring terms, particularly in large collections can often correspond

to misspellings.

This curve demonstrates Zipf’s Law (Zipf, 1932), which states that:

frequency(f)× rank(r) = constant (3.1)
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Figure 3.9 shows two cut-off points, the lower being the point at which words

become too rare as to be useful, and the upper cut-off being the point at which

words become too common to be of benefit to the retrieval process. Since these

frequently occurring words do not offer much in terms of discrimination between

documents they are often removed from the index. These are known as stopwords,

and since these are the most frequently occurring terms, their elimination can result

in a significant reduction in index size, up to 40%, or more, according to Baeza-Yates

and Ribeiro-Neto (1999). Common stopwords for a general English text collection

should include prepositions and conjunctions, such as: “a, and, the, is, of”, etc. The

omission of these terms can have a positive effect on both the size of the index, as

well as the time required to process a query (particularly with long, natural language

queries). However it is also worth noting that the elimination of these stopwords

from the index, can have a detrimental effect on retrieval performance. For example,

a query that contains only stopwords, such as, “to be or not to be” will not return

any documents if all these terms have been removed from the index. Figure 3.10

shows how this might affect the processing of the query, “tourism in italy”, where
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“in” is eliminated due being a stopword.
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Figure 3.10: Query processing with stopword removal employed

3.2.4.2 Static Index Pruning

The aim behind static index pruning is to effectively reduce the size of the inverted

index, in such a way that retrieval performance is not affected, or at least limited,

and can essentially be viewed as a type of lossy compression. The main way in which

this is done is to identify the postings that are unlikely to affect the accuracy of the

system.

Based on the fact that a scoring function assigns a score to each document for

a query, so that the highest scores are the most relevant, Carmel et al. (2001b)

proposed two methods for static index pruning.

• Uniform Pruning: Their uniform pruning method removes all postings en-

tries from the index whose score falls below a threshold, although for low

scoring terms this may result in a large number, or all of their postings being

removed.

• Term-based Pruning: A more advanced pruning method is their term-based

approach, which assigns different thresholds for each term. This approach
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guarantees that each term will have some representative postings. They try

to execute the pruning in such a way that the top k documents returned to

the user remain the same (or as unchanged as possible). They supply their

algorithm with the variables k and ε, that control the level of pruning as

follows:

For each postings list the top k postings of each list remain, as calculated by

the scoring model used. The rest of postings are pruned if they fall below the

threshold of of τt, where τt is:

τt = ε ∗ zt (3.2)

where zt is the score of the zth best entry in the postings list. Fundamentally,

this means that the top k postings are kept, and then the rest are pruned,

based on a percentage of the lowest score of the top k postings.

Based on experiments by Carmel et al. (2001b) it was found that the term-based

approach performed best, however in Carmel et al. (2001a) they found that the

uniform-based approach performed better in terms of similarity with the top 10

results of an unpruned index.

Stopword removal may also be though of as static index pruning, where the whole

posting lists of certain terms, i.e. the stopwords, are removed from the index. As

stopwords are perceived to be the least informative of the terms in the index, along

with terms falling beyond the upper cut-off of Figure 3.9 from Luhn (1958), these

terms occur so infrequently and rather than being of high value are actually more

likely to correspond to misspellings. Similarly the postings lists of these terms may

also be removed from the index, without any significant performance degradation.
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3.3 Summary

As we have outlined in this chapter, there are various ways in which the search space

may be reduced while providing the user with a list of the most relevant documents

to their query (as defined by a certain retrieval strategy). Some of these, such as

the frequency sorted (Persin, 1994; Persin et al., 1996), and access-ordered (Garcia

et al., 2004) approaches utilise query-independent measures in order to sort the

postings lists. However, these approaches usually utilise a single measure, derived

by the distribution of terms within the documents. We wish to investigate the

usefulness of various query-independent sources of evidence, both static and term-

dependent measures to sort postings lists by. As described in chapter 2, there are

certain linkage analysis techniques, such as PageRank, which are incorporated with

term-based scores at query time in order to promote higher quality documents. We

investigate the use of the PageRank measure, as well as other means of identifying

quality documents, and incorporate these into the index ordering process.

Chapter 4 describes the importance of the use of quality measures in information

retrieval, and shows how these may be useful for filtering documents in the search

process, which we investigate through the use of a sorted index.
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Chapter 4

Query-Independent Sorting

In this chapter we discuss the use of search quality and its application in IR, we

introduce various query-independent measures that may be used to promote the

more important documents in the collection, which allow less important documents

to be filtered without adversely affecting the retrieval accuracy. We also explain how

a sorted inverted index is created using these query-independent sources of evidence.

Quality information is constantly referred to as information that will satisfy the

needs of the user. According to Strong et al. (1997), high quality data is that which

is fit for use by the data consumers. Good quality data would therefore meet the

requirements of its intended use, therefore it is relative, and dependant on the needs

and knowledge of the user. Although this notion of quality information is relative

to the user, as well as their information need, we still believe that there may be an

inherent level of quality (or lack of quality) within all documents that will correspond

to their likelihood of being relevant to a user. By measuring this level of quality

within all documents we can then come up with a query-independent measure of

quality that can be used to sort the postings in the inverted index. By sorting

the postings based on this quality likelihood measure we provide a mechanism for

limiting the number of documents that are evaluated during the retrieval process,

while at the same time aiming to provide at least the same accuracy of results as a

conventional index (processing all postings).
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4.1 Search Quality

“Now it’s a question of integrity - can we really trust our informa-

tion?”, Kevin Mitnick (2004)

Information retrieval systems were originally developed to manage and retrieve

information in libraries, and not only would the information within the libraries

have been carefully selected, but document quality would also be inferred from the

reviewing process used by the publishers. Therefore all the information would tend

to be of a high quality, and so retrieval approaches based purely on term distribution

statistics were sufficient. However this is not the case with large collections of web

documents such as the World Wide Web, where no reviewing process is needed in

order to publish a document. Not only that, but as many of the queries issued to

web search engines may have hundreds of thousands of returned documents (which

may vary greatly in terms of quality), it seems intuitive that the use of information

regarding the quality of documents should be of benefit in a ranking process in order

to promote higher quality results.

In an effort to have their web documents ranked more highly by search engines,

some malicious users may create what is known as spam documents. For commercial

web sites in particular, an increase in search engine referrals translates into an

increase in revenue. Since 80% of web searchers view no more than the top 10 to 20

results (Jansen and Spink, 2003), it is advantageous for a successful commercial web

site to achieve a high ranking for user searches. Not surprisingly many operators

make use of Search Engine Optimisation (SEO) techniques in order to gain a higher

ranking. Some of these techniques use legitimate means, such as improving the

quality of the content, whereas others use unethical approaches in order to achieve

a higher ranking, this is known as web spam. With the first generation of search

engines using document content alone to rank documents, this involved interfering

with the frequency of which certain words appear, as well as introducing new words

to the document, in a process known as keyword-stuffing. This would result in a
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better ranking using term-based ranking algorithms such as the vector-space model,

as well as the Okapi BM25 algorithm (discussed in Chapter 2). As search engines

began to incorporate linkage analysis techniques in order to identify popular pages

(based on the linkage structure of the web), SEO techniques were also developed

in order to artificially boost the popularity of a page. These work by creating non-

relevant pages and linking these to the target document, in a process known as

link-stuffing. Given that the amount of spam on the web is estimated at 13.8% for

English-language pages (Ntoulas et al., 2006), the identification of such pages can

save a large amount of search engine resources (in terms of indexing and retrieval),

as well as improving the quality of the results produced by the system.

The fact that many documents are not returned in response to users’ queries was

illustrated by Garcia et al. (2004), when they ran 1.9 million queries on a collection

of around 1.6 million documents (from the WT10g Web Track collection, (Hawking,

2001), which would most likely contain no spam content). They concluded from

their experiments that document accesses are highly skewed, and that there is a

correlation between the access count and the likelihood of being relevant to a query.

We suggest that this would become even more pronounced as the size of the collection

increased, also taking into account the presence of spam documents that are present

in the Web and were not present in this test collection.

Without the search system taking into account the quality of documents, it

is necessary for Web users to make these judgments of quality and authority for

themselves on results returned from a Web search engine. In order to reduce the

cognitive load of this process for users, and to present users with quality information,

we suggest to firstly investigate how to measure this concept of quality in information

retrieval. Being able to identify quality documents then allows us to reduce the

search effort of the IR system, by only searching higher quality documents, yet

aiming to return the same level of retrieval effectiveness for the user.
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4.1.1 Measuring Quality of Information

The notions of quality and authority have been discussed under various forms, by

a number of relevance criteria studies; “goodness” (Cool et al., 1993), “perceived

quality” (Park, 1993), “actual quality”, “expected quality” (Wang and White, 1999)

and “authority” (Cool et al., 1993; Wang and White, 1999; Cooke, 2001), although

any assessment of quality is dependent upon the needs of the individual seeking the

information, as well as on the nature of the source being evaluated.

While the quality of a web site is a matter of human judgement, there are major

factors influencing the notion of quality. The following subsections outline various

factors that can be considered in a query-independent manner in order to determine

the quality of a document.

A lot of work has recently focused on the use of link analysis algorithms to identify

high quality documents, with Page et al. (1998), Kleinberg (1999), Chakrabati et al.

(1999), Bharat and Henzinger (1998) and Lempel and Moran (2001), all using the

linkage structure of web documents. The aim of such linkage analysis measures as

PageRank (Page et al., 1998) is to “measure the relative importance of web pages”,

or in other words their relative quality.

There are however other methods that can be used to identify quality documents,

these use other static features of documents, such as the URL length, document

length, number of in-links, number of visitations, etc. We propose that these may

be used as single measures of the quality of a document, and that these can then

be combined with multiple measures of quality, in order to produce a better overall

measure of quality for each document in the collection.

Zhu and Gauch (2000a) identify and investigate six quality metrics to incorporate

into the retrieval process:

• Currency : how recently a document was last modified (using document time

stamps).

• Availability : how many links leaving a document were available (calculated as
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the number of broken links from a page divided by the total number of links).

• Information-to-noise: a measurement of how much text in the document was

noise (such as HTML tags or whitespace) as opposed to how much was useful

content.

• Authority : a score sourced from Yahoo! Internet Life reviews and ZDNet

ratings in 1999. According to these reviews each site was assigned an authority

score. Sites not reviewed were assigned an authority score of zero.

• Popularity : how many documents link to the site (in-degree).

• Cohesiveness : how closely related the elements of a web page are. This was

determined by classifying elements using a vector space model into a 4385

node ontology and measuring the distance between competing classifications.

A small distance between classifications indicates that the document was co-

hesive. A large distance indicates the opposite.

Zhu and Gauch (2000a) evaluated performance using a small corpus, with 40

queries taken from a query log file. They observed some improvement in mean

precision, based on all the quality metrics (although not all improvements were sig-

nificant). The smallest individual improvements were for Popularity and Authority

(both non-significant). The improvements obtained through the use of all other

metrics were significant. The largest individual improvement was observed for the

Information-to-noise ratio. Using all quality metrics, apart from Popularity and

Authority, resulted in a (significant) 24% increase in performance over the baseline

document ranking.

Amento et al. (2000) evaluated a number of link and content-based algorithms,

using a dataset of web documents rated for quality by human topic experts. They

found that “three link-based metrics and a simple content metric do a very good job

of identifying high quality items.” However, surprisingly they found that indegree

performed at least as well as the more advanced HITS and PageRank algorithms,
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as well as a simple count of the pages on a site proving to be as successful as any

link-based methods.

Having identified whatever quality metrics for use, there is then the issue of how

to integrate these into the IR system, which we look at now

4.1.2 Incorporating quality metrics into ranking

Taking linkage based measures of quality such as PageRank and HITS into account,

there has been a considerable amount of work concentrated on the improvement

of the these measures in terms of accuracy, stability and efficiency (Bharat and

Henzinger, 1998; Haveliwala, 2003, 2002; Richardson and Domingos, 2002; Ng et al.,

2001; Lempel and Moran, 2001), although there has been relatively little work done

on how to effectively combine this with term-based (baseline) results at query time.

This is not something that is addressed in the original PageRank publications (Brin

and Page, 1998; Page et al., 1998). While investigating the effectiveness of using

link and content-based measures to identify high-quality documents, Amento et al.

(2000) also do not discuss how they combine these content and link measures. One

suggested way in which to combine these link-based scores with a baseline score is

to add the baseline scores with a normalised link-based score (e.g. PageRank), as

suggested by Richardson and Domingos (2002).

The main advantage of incorporating measures of quality into the retrieval pro-

cess is to provide the user with relatively high quality results in response to their

query. This may address the situation where the user has to search through large

amounts of low quality documents, while higher quality documents may lie lower

down in the result list. It seems that the type of query that should profit most from

the incorporation of these additional features, are queries that are broad in nature.

These by their very nature should return a large number of results, particularly

when dealing with a large collection such as the World Wide Web, where document

quality may vary considerably. On the contrary, a narrow query, which is quite

concise in its nature should return a much lower number of documents (which also

59



may vary in quality), however as there may be relatively few relevant documents,

and if the query is quite concise it would be better to take more influence from the

content score. We may then choose to regulate the influence that we assign to a

quality-based score depending on the type of query that is submitted. Kleinberg

(1999) highlighted this, suggesting that there are two types of queries: broad and

narrow. The narrow queries suffer from the scarcity problem, in that there may be

very few documents containing the required information. Broad queries suffer from

the abundance problem, and so the number of documents returned is too great to

expect a human to process. He suggests that these broad queries are best suited for

the incorporation of authoritative ranking.

Having introduced the concept of using quality measures in an IR system, the

following section discusses in more detail some of the query-independent evidence

that can be used to measure the quality of information (for various user information

needs).

4.2 Quality Measurement Using Query-Independent

Evidence

Most of the work carried out in IR ranking has focused on improving the results re-

turned to the user through query-dependent means, such as the vector-space model,

BM25, etc. (see section 2.1.3). However it is also important to have a good query-

independent ranking algorithm. This provides a query-independent measure of im-

portance for each of the documents in the collection, which is important for a number

of reasons, including providing a means by which to identify high quality documents.

PageRank (as mentioned in section 2.2.4.1) is one of the prominent static measures

for ranking documents in an IR system. Despite the success of the Google search en-

gine (Google Inc., 2006), which claims to incorporate PageRank into their ranking,

there has been little independent evidence to verify the benefits of its inclusion in

the ranking process. Within the TREC experiments, PageRank has not performed
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as well as expected (Hawking and Craswell, 2005), where simple measures such as

the indegree of a page were found to be at least as effective for the task of home-

page finding (Upstill et al., 2003), and it was also found that features such as the

number of pages on a site were as effective as PageRank for identifying high quality

documents (Amento et al., 2000).

An IR System may use a variety of different static measures to help improve its

performance, and much of the benefits of the inclusion of certain static measures

can be seen for example in the homepage finding task in TREC. Here, such static

measures as URL depth, as well as the number of incoming links of a page have been

shown to aid performance. The advantage of these measures for a homepage finding

task seems intuitive, as the relevant documents for this task (i.e. homepages) will

mostly come from the root of the URL, and so URL depth should act as a good

discriminator between relevant and non-relevant documents. Also the number of

incoming links tend to be larger for homepages, mainly because more people tend to

link to the homepage of an organisation, as it provides a good entry point for their

site. However this may not be the case for an ad hoc search task, where relevant

information may be found at different locations on a web site (other than at the

root), and so selecting static features that give such a high level of discrimination

between relevant and non-relevant documents is more difficult.

There are however certain static features that may be useful in identifying doc-

uments that are likely to be returned in response to a user’s query. Depending

on the query-dependent retrieval mechanism used, there are a number of features

used in the calculation of a similarity score between a document and a query, for

example the document length, the within-document term frequency, and the inverse

document frequency (idf ) (giving a measure of importance for a term within a col-

lection). Based on a query-dependent method for identifying documents, if we can

identify the documents that are most likely to be relevant to any given query with a

certain degree of confidence, then we can use this as a means to promote documents

that are likely to be relevant. These features may not directly correspond to the
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relevance of a document, but should correspond to the likelihood that a document

is returned by a search engine.

If for instance we use a BM25 formula to calculate a list of candidate results in

response to a user’s query, then documents which have a high BM25 score (taking

all their terms into account) are more likely to appear in this list than those with

a low overall score. We can therefore assign a static score to each document in the

collection, based on their total BM25 score for all the terms within that document.

This should correlate with the probability of that document occurring within the

result list in response to a query, and this is essentially what Garcia et al. (2004)

found.

The effectiveness of incorporating certain static measures into the IR process,

may also be limited by the overall quality of the collection itself. This would seem

natural, as query-independent measures that promote high quality documents can

no longer provide much discrimination (among a set of documents), where the large

majority of the documents are of high quality. Therefore, we would suggest that

most gain can be achieved by incorporating these static measures on a collection

which contains a considerable amount of low quality documents. We believe that

the Web (which is estimated to contain 13.8% spam documents for the English-

speaking documents (Ntoulas et al., 2006)) would be suitable for the incorporation

of these measures, provided of course that these spam, or low quality documents

can be identified with an acceptable level of confidence.

In this section we describe various query-indepepent methods that may be used

to identify these more important documents.

4.2.1 Linkage Analysis

Two well known measures of the popularity of a document, based on the hyperlink

structure between documents are:

• Indegree: the indegree of a document is a count of the number of documents
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that link to it. Founded on the assumption that a link between two documents

carries an implicit vote for another document, this is a simple (and direct)

measure of popularity for a document.

• PageRank: as discussed in Chapter 2, PageRank is a more advanced method

to calculate the popularity of a document, based on the linkage structure

between documents.

Both these measures provide a query-independent measure of popularity for a doc-

ument, based on analysis of the linkage structure connecting documents. These

popularity measures do not directly model the likelihood of relevance: the most

popular document in the web is not necessarily the document that is most likely to

answer a user’s information need, although there may be some inherent information

contained within these measures of quality that may correlate with relevance.

These measures follow a power-law distribution: A power law relationship be-

tween two scalar quantities x and y is one where the relationship can be written

as

y = axk (4.1)

where a (the constant of proportionality) and k (the exponent of the power law) are

constants, which can be seen as a straight line on a log-log graph. This shows that

highly popular documents occur extremely rarely, while unpopular document occur

the most frequently, this is illustrated in Figure 4.1 and Figure 4.2.

This distribution of document scores shows that a large portion of the documents

have quite low scores, while there are a small number of documents with very high

scores. In order to try and reduce the dominiating effect of these few very high

scoring documents (when combining with other sources), these scores are quite often

normalised in some way, by taking the log of their original score for example.
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Figure 4.1: Distribution of indegree scores from the GOV2 collection
on a log-log scale (scores normalised between 0 and 1)

Figure 4.2: Distribution of PageRank scores from the GOV2 collec-
tion on a log-log scale (scores normalised between 0 and
1)

4.2.2 Access Counts

As described in Chapter 2, Garcia et al. (2004) proposed a measure known as access

counts, as a means of determining the likelihood that a document would be returned

in response to a query. These access count scores were generated for each document

by the number of times it had previously occurred in a result list (in response to a
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large number of user queries). We would also promote the use of this measure as

a means to sort an inverted index by. Although we would suggest to combine this

measure with others, in order to provide a richer representation of the documents in

the collection, and then use this combined measure as a means to sort the inverted

index by.

4.2.3 Information-to-noise ratio

The information-to-noise ratio is computed as the total length of the number of terms

in the document after preprocessing, divided by the total length of the document

(Zhu and Gauch, 2000b). It is believed that a document with a lower information-

to-noise ratio score is generally of lower quality than a document with a higher score.

This may (for example) be a result of a small number of words in a document that

contains a table, as well as other HTML markup, and consequently this document

would not contain much information for a user.

4.2.4 Document Cohesiveness

Document cohesiveness measures how closely related the information within a doc-

ument is. Information may become incoherent with the incorporation of irrelevant

details, which may lead to confusion for the reader. Although incoherence may oc-

cur naturally within a document, a high level of incoherence may indicate that a

document is not of particularly high quality, and a user may find it difficult to find

the information they are seeking surrounded by unrelated information.

4.2.5 Spam

Not all web document authors are truthful about the content of their web pages,

some insert false content in order to gain increased exposure on the web. An author

may manipulate the content of the document, for example by inserting a hidden

dictionary of words in the text, so that the document would become relevant for
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more keyword searches. This is known as Search Engine Persuasion (Marchiori,

1997). They may also manipulate the hyperlink structure of the web by linking to

many other spam documents, in order to increase their ratings for measures such as

PageRank (Page et al., 1998). All this means that although these documents may

appear highly relevant using standard IR approaches, they are in fact (generally)

highly irrelevant to users.

These spam documents are unlikely to be relevant for most users’ information

seeking needs. Therefore a static spam feature, which can give a certain score to

each document, based on the prospect of each document being spam, should be of

use in order to promote non-spam documents, as well as decrease the influence of

spam documents. Provided the collection itself contains a sufficient level of spam

documents, then a static feature that can identify these should be useful in aiding

an IR system in not returning these to a user.

4.2.6 Click-Through Data

For a typical user query issued to a web search engine there may be thousands of

results returned to the user, however the user may only be interested in one, or a

very small number of these. As “users do not click on links at random, but make

a (somewhat) informed choice” (Joachims, 2002), and although these clicked-on

documents may not provide a perfect annotation of relevance (between a query and

a document) they do provide useful information that may be used in order to improve

the results presented to a user. A click-through is recorded when a document in the

result list (returned by an IR system) is clicked on by a user. This click indicates

that the user in making an informed decision to click on this document, and so one

simple query-independent way of assigning document importance is to assign a score

to each document based on the number of click-throughs they have accumulated.
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4.2.7 Visitation Count

The visitation count of a document is the count of the number of times that a

document is visited. This differs from PageRank and other linkage-based measures

(which calculate popularity based on the linkage structure between documents).

The visitation count is the actual number of visitations that a document receives.

This is also different from click-through data, as a click-through is only registered

when the document is accessed through the result list returned by an IR system.

A visitation count corresponds to the total number of times that a document is

viewed, and not necessarily coming as a result of a search request. This is quite

a valuable source of information regarding the popularity of documents, however

is also quite difficult to obtain. Visitation counts can generally only be obtained

from internet providers, proxy servers, web browsers or operating systems, and due

to the potential sensitive nature of this type of private information it is generally

kept confidential. Richardson et al. (2006) used this type of information, combined

with other features, in order to get improvements over PageRank; they were able to

acquire this data from the MSN toolbar, which recorded the documents that were

requested by users.

4.2.8 Document Structure and Layout

One other important aspect of document importance (that is often overlooked from

a IR point of view) is the structure and layout of a page, and how this relates to

the quality of a document. We may consider documents that follow a certain text

layout (possibly accompanied by relevant images) to be a higher quality document

than one with the same content in a less well organised fashion. Hill and Scharff

(1997) discuss the readability of web sites with different foreground/background

combinations; this may also be thought of as a quality metric. We may also consider

the ease of navigation within a web document, as well as any other aspects that allow

for the easy of access and processing of information from a user perspective.
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If we can identify these traits in documents, these may be used in a query-

independent manner to improve the quality of the search results. If for instance the

user enters a sufficiently broad query (which is likely to have many relevant docu-

ments), why not provide that user with a high quality, aesthetically pleasing, and

easy to navigate document. In other words, if the system is confident in fulfilling

the user’s information need, then it may also consider providing them with a docu-

ment that presents this information in the best possible manner, in order to further

reduce the cognitive load on the user. Therefore the system will not only have the

difficulty in deciding how to define these measures, and how they are applied, but

also how these should be integrated into the search process, in such a way as to not

degrade its retrieval performance.

4.2.9 HTML Correctness

There may be a certain level of detail contained within the HTML structure of a web

document, that may provide an insight into the level of quality of that document,

in a query-independent way. Perhaps if a document is compatible with the HTML

specifications (The World Wide Web Consortium, 2007), this gives an indication

of a higher quality document. Alternatively, if a document contains errors, such as

wrongly named tags, this could perhaps indicate that the document is of low quality.

Also the inclusion of broken, or dead links, that no longer point to a valid target,

may also indicate that little or no care has been taken with the upkeep of the

document, and so implying a lower level of quality than a document which links to

active documents on the web.

Possibly, if more care is taken with the creation of the HTML, then there may

also be care taken with the contents of the document. This may indicate that the

source is reputable, and should be treated as such by the IR system.
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4.2.10 Document Currency

Document currency deals with how current, or up-to-date a document is. In its

simplest form this can take into account the date each document was last updated.

Depending on the information need this can be something that may be of benefit in

providing the user with more suitable information. For instance, if a user is seeking

information on a very recent news topic, then a document which was last modified

today would tend to be more likely to be useful than a document last modified two

years ago. Therefore, depending on the search task the user is involved in, we may

want to weight this measure differently. A more advanced approach could track the

actual changes made, rather than basing the currency purely on the modification

date (as the changes may be such that the main content may not have significantly

changed).

4.2.11 URL Information

Some important information can be extracted from the URL of a web document.

The hierarchal structure that is inherent in the URL is often ignored, even though

this is quite important and is often viewed as being closely related to the link

structure of the web (Eiron and McCurley, 2004; Xue et al., 2005). Due to this

hierarchal structure that is used to organise documents, the documents on the root of

directories can be seen as being more general (in terms of content) than those found

at the lower levels. Similar to the Web’s linkage structure, there is a certain amount

of latent human judgement that can be extracted from the URL of a document.

One simple query-independent measure, derived from a web document, is its

URL depth. Consider the URLs:

“www.nasa.gov/index.html”

and

“www.nasa.gov/multimedia/imagegallery/index.html”
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We may view the former (with a URL depth of 1) as being more authoritative (within

the overall context of the Web) than the latter (with a depth of 3). Although the

second document may indeed be more relevant for a more concise query concerned

with images and multimedia content from NASA, the first page should be considered

more authoritative. For this reason we may use this to assign an importance measure

to each document, derived from their depth within the URL. Another variation on

this would be to use the length of the URL in characters, rather than dealing with

the URL depth, based on the number of “/”’s.

4.2.12 Term-Specific Sorting

Unlike other query-independent measures, which are also static and constant for all

terms in the collection, there are other measures with are again query-independent,

however each document may have a different value (or score), depending on the

term. For instance, a simple measure of significance for a document, on a term by

term basis is the number of times that term occurs in the document.

Term Frequency

A simple measure to judge the significance of a document (for a specific term), is

the number of times that the particular term occurs within each document. As

explained in Chapter 3, Persin (1994) and Persin et al. (1996) used this measure to

sort the postings for each term.

BM25

A more complex way to measure the importance of a document (on a term by term

basis) is to use a term weighting approach, such as BM25. As discussed in Chapter

2, for an adhoc retrieval and ignoring any repetition of terms in the query (as is the

case for the vast majority of web queries) this function can be written as:
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BM25(q, d) =
∑
tεq

log

(
N − dfi + 0.5

dfi + 0.5

)
× (k1 + 1)tfi

k1((1− b) + b dl
avdl

) + tfi

(4.2)

where dfi is the number of documents in the collection that contain the term i, and

k1 , k3 and b are parameters. This calculates a similarity score between a query

and a document. With this formulation the scores for all query terms are summed

to give a final score, however to calculate a weight or score on a single term i, for

a document i, without considering any query terms that may be used, we may use

the following formula:

BM25(q, d) = log

(
N − dfi + 0.5

dfi + 0.5

)
× (k1 + 1)tfi

k1((1− b) + b dl
avdl

) + tfi

(4.3)

When applied to each document (in each term’s postings list separately) it provides

a pre-calculated BM25 ranking for each posting list. For a single term query this

will provide the same ranking of documents as that generated by BM25 at query

time. The only missing element from calculating a full query-dependent score (for

multi-term queries) is the summation of each query term’s scores. This of course is

something that can only be done at query execution time, as the query terms are

unknown. Therefore it is as close as we can get to a query-dependent estimation of

the query-dependent BM25 score.

Also, if we are only concerned with calculating a score, that is only to be used as

a means by which to sort postings, and this is done on a term by term basis, there

is then no need to include any global term information, such as dfi (the number

of documents in the collection that contain the term i). This leaves the simplified

calculation of:

BM25(d, i) =
(k1 + 1)tfi

k1((1− b) + b dl
avdl

) + tfi

(4.4)

which can give a relative measure of importance, for each document, in each postings
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list.

4.3 Sorting Inverted Index Using Query-Independent

Evidence

Similar to the approaches described in Chapter 3, we advocate the use of a sorted

index. All these types of sorted index use (to some extent) a term weighting based

measure of query-independent evidence, which is likely to be related to the way in

which the retrieval method being used performs:

• Term frequency sorted: sorts the postings lists based on the within-document

term frequency of each posting, which is a very simplistic term weighting

method.

• Impact sorted: sorts the postings lists based on an impact value, which is a

term weighting based value.

• Access count sorting: the access counts themselves are a direct result of the

retrieval process used by the search engine to generate the access counts, and

so would be most likely to work optimally if the same retrieval process is

employed on the access count sorted index, as was employed to generate those

access counts.

What we wish to investigate is, the usefulness of different query-independent

measures for sorting an inverted index. We then want to combine different query-

independent measures together in order to provide a richer representation of each of

the documents and hopefully a better indication of their query-independent quality.

If we are able to produce a measure that is successful at indicating a documents

query-independent quality we believe that this should provide us with a useful means

by which to sort an inverted index, so that as we choose to process less postings

for each query it should be the lower-quality documents that are eliminated and so
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any loss in retrieval effectiveness will be minimised. Our goal is then to produce

the sorting which can minimise the drop-off in retrieval accuracy as we process less

postings in order to retrieve documents in response to a user’s query. In this way

we hope to maximise both the system’s efficiency as well as its effectiveness.

4.3.1 Index Creation Process

To create a sorted index based on the discussed query-independent measures, the

approach is fundamentally the same, whether sorting based on the static query-

independent measures (such as PageRank), or using a term-specific sorting. The only

difference is the stage (during indexing) at which the sorting measure is generated:

• Static measure: when using a static measure (where each of the documents

in the collection have just one single value, which does not change), these

scores are generated once (at a separate stage to indexing). These scores are

then fed into the indexer (at indexing time), allowing each postings list to be

sorted using a particular static measure. This process is illustrated in Figure

4.3.

• Term specific measure: when creating a sorted index using term specific

weights, these weights are calculated on a term-by-term basis during the in-

dexing process, as detailed in Figure 4.4 (for a more detailed view consult

Figure 4.5).

The indexing system firstly processes the documents, so that the term informa-

tion from all documents are extracted from all documents, as shown in stage 1 in

Figure 4.5. This information is eventually stored in the form of postings lists for

each term and so as a first step towards this we extract all terms, as well as other

information associated with that term that is needed for the final inverted index,

including the document where it occurred, the number of times it occurred within

the document, as well as possibly positional information (if it is required for the

retrieval being provided by the system.) This information is stored in temporary
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files, that are then sorted (as in stage 2) so that all information for each term can

be easily grouped together (as in stage 3).

At this stage a conventional inverted index can be constructed by taking the

information associated with each of the terms separately and creating postings lists

that are ordered by the document identifiers. However we can also choose to sort

each of the postings lists based on the same static document weights (instead of the

document identifier), or we can calculate term weightings for each term separately

and sort based on these (as shown in stage 4 of Figure 4.4).

This inverted index, which is sorted using a particular query-independent mea-

sure appears similar to a conventional inverted index, except that the postings within

the postings lists are sorted in descending order of the query-independent measure

that we have chosen.

Again taking our previous example of a conventional postings list (from Chapter

2 in the form <d, fd,t>:

<15,4><17,1><104,2><112,19><142,8><157,2><204,3><248,4><304,1>

and look at how this is changed if it is ordered by an example query-independent

measure such as PageRank. Giving the documents in the postings list the following

PageRank scores (shown in the form: document identifier (score)): 15 (0.01), 17

(0.3), 104 (0.02), 112 (0.03) 142 (0.08), 157 (0.05), 204 (0.1), 248 (0.07), 304 (0.06).

If we order the postings list based on these scores it becomes:

<17,1><204,3><142,8><248,4><304,1><157,2><112,19>)<104,2><15,4>

The query-independent scores that are used to sort the index are not stored in

the index, they are only used for the sorting process. This sorted index approach

has the disadvantage that it does not allow the d-gaps between the document IDs

to be stored (instead of their actual IDs), as the postings are not necessarily in

order of their document IDs, although with this type of index the most important

postings (as defined by the sorting measure, e.g. PageRank) are at the top of each

postings list. Then, provided that the measure we use to sort the index produces a

good indicator of the documents’ importance, then we can choose to only process a
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limited number of these postings from the top of each query terms’ postings list. The

more accurate the measure used to sort the index is at predicting the likely relevance

of a document, the less the drop in performance will be, even as we process only a

small number of postings from each postings list.
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4.4 Summary

In this Chapter we outlined the main objectives of this thesis, to investigate the

usefulness of using various different query-independent measure in order to effec-

tively sort the postings lists within an inverted index – in such a way as to promote

the high quality documents in the collection, so that if we choose to process less

postings at query-time, then less of a drop in query-effectiveness will be incurred.

We discussed the use of quality in information retrieval and suggested a number

of different query-independent measure that may be useful to identifying, and pro-

moting high quality documents. We also discussed in detail the way in which these

sorted indexes are created.

In the following Chapter we investigate how to combine query-independent mea-

sures together in order to provide an improved single measure from several differ-

ent measures. Then in Chapter 6 we anlayse the effectiveness of different query-

independent measures (as well as the combined measures) in sorting the postings

lists.
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Chapter 5

Combining Sources of Evidence

“The whole is greater than the sum of the parts”, Aristotle (informally attributed)

Data fusion is concerned with the combination of different sources of evidence.

Data fusion has been applied in various different domains (L. Valet, 2000), in our case

the data we are concerned with fusing is the different sources of retrieval evidence.

This combination may take results from multiple search engines (as is the case

for meta-search engines), or from within a single search engine architecture, where

there may be ranked results generated from multiple representations of the same

document, such as document text, titles, anchor text or linkage structure. Each of

these may produce a quite different ranking of documents, and as with combining

any sources of information, the goal is to gather all these sources together and use

them to produce a more accurate final result. A basic overview of this process is

illustrated in Figure 5.1.

Part of the gain achieved by using fusion in retrieval, is due to the increased recall

resulting from different documents being returned by using: different document

representations (Croft and Harper, 1979b; Das-Gupta and Katzer, 1983), different

weighting schemes (Lee, 1995), as well as different search systems (Harman, 1993;

Voorhees and Harman, 2000). Although having introduced more documents from

different sources it is then the function of the fusion process to identify the documents

which are most likely to be relevant. The main difficulty when fusing multiple sources
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of evidence together (in retrieval) is in choosing how these sources are to be combined

together in order to produce the best results.

In this chapter we examine different methods that have been applied to data

fusion for information retrieval. We also show how these can then be applied to

combining query-independent sources of evidence, such as those discussed in Chapter

4.

5.1 Score and Rank Based Fusion

“There are two main classes of meta-search fusion algorithms: ones that use scores

from systems and ones that do not” (Ogilvie and Callan, 2003). In this section we

outline some of the most popular methods for combining retrieval rankings, based

on the individual sources’ scores and ranks.

5.1.1 Similarity Merge

Fox and Shaw (1995) proposed a number of fusion methods based on the unweighted

min, max or sum of each document’s normalised score and later Lee (1997) consid-

ered the case where the rank has been used in place of the score. The two most

successful of the proposed methods of combination introduced by Fox and Shaw

(1995) are CombSUM and CombMNZ, which calculate a combined score for a doc-

ument d, from a number different data sources:

CombSUM :

Score(d) =
n∑

i=0

Scorei(d) (5.1)

where n is the number of data sources that are to be combined.

CombMNZ :

Score(d) = (
n∑

i=0

Scorei(d))× k (5.2)

where k is the number of times where Scorei(d) > 0
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These basic forms of combination have been used extensively in IR for the

purposes of combining various forms of information. These types of combination

are generally used to combine only the top n documents (and their corresponding

scores) from the different results sets that are being combined. For this reason the

CombMNZ method may penalise documents that do not occur in one or more of the

result lists. However, for the purpose of generating a combined static score, where

all documents in the collection have a score, then this approach will produce equiv-

alent results to CombSUM (as all documents in the collection have a corresponding

score and so none are penalised). For this reason we consider only the CombSUM

method in our experiments in Chapter 6

5.1.2 Score Normalisation

When combining different sources together using scores as a means to determine the

most effective source, this may be prone to error. For instance, suppose we wish to

combine two ranked lists, one whose scores are in the range 0 to 0.8 and the other

whose scores are in the range 10 to 20,000, as shown in Figure 5.2. Clearly using an

approach such as CombSUM (shown in equation (5.1) above) the second source will

dominate the resulting combination, solely because of its higher scores. If the scores

of these two non-homogenous sources are generated using different approaches then

the difference in these two score ranges may be as a result of this, and may not be

an indication of the superior source. It is because of this that the sources being

combined should be normalised in some way, in order to provide a “level playing

ground” for all of the sources.

One such way to normalise the scores is to use the min-max approach, which

shifts the minimum score to 0 and scales the maximum to 1; the new scores {s′i} are

calculated from the original scores {si} as follows:

s′i =
si −min{si}

max{si} −min{si}
(5.3)
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Figure 5.2: Unnormalised scores from non-homogeneous sources

This would have the effect of leaving all scores within the range 0 to 1 and so allowing

a more meaningful combination between certain sources. Figure 5.3 shows the effect

of this normalisation on the same two sources.

Figure 5.3: Min-Max normalisation on two non-homogeneous
sources

Although in general this min-max approach is one of the most popular nor-

malisation methods, there are a number of alternatives, and Montague and Aslam

(2001) provides a more comprehensive study of the use of score normalisation for

metaseach.
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5.1.3 Linear Combination

As an alternative to approaches such as CombSUM, where each of the sources re-

ceives equal importance, Bartell et al. (1994) and Vogt and Cottrell (1999) propose

the use of weights, in order to promote more “expert” sources. These weights can

be generated from an initial training phase, so that an optimal combination may be

achieved using this training data. We refer to this as Linear Combination, and this

is calculated as follows:

Linear Combination:

Score(d) =
n∑

i=0

Scorei(d)× wi (5.4)

where wi is the weight associated with the data source i.

5.1.4 Rank Fusion

In addition to the methods previously described, there also exist various methods

for combining ranked lists based on the documents’ rank positions within each of

the lists. These methods assume that the scores of the systems are not directly

comparable, and so use the ranks instead.

Among the most straightforward of these rank-based combination approaches

is the reciprocal rank approach. Using this approach, the score of a document i is

calculated from a number of ranked lists (j = 1 . . . n) as follows:

Score(di) =
1∑

j rank(dij)
(5.5)

A simple extension of this approach is to weight the sources being combined

(similar to linear combination using scores), based on an initial training phase that

may generate suitable weights. This approach (which we refer to as weighted rank

(wrank)) generates a combined score from the ranks of all the sources, taking each

source’s weight into account:
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Score(di) =
1∑

j(rank(dij)/wj)
(5.6)

where wj is the weight associated with source j.

One advantage of using ranked-based combination is that score normalisation (as

discussed previously) is no longer required (as the sources are combined based on the

ranks), making ranked lists more comparable. However one potential disadvantage

of a rank-based combination approach is that the scores themselves hold information

that may potentially be of use for combining the sources of data more effectively.

5.2 Dempster-Shafer combination

Dempster-Shafer’s Theory of Evidence is a formal framework for the combination of

independent sources of evidence. The theory was originally proposed by Dempster

(1968) and extended by Shafer (1976). Its main appeal is its explicit representa-

tion of ignorance in the combination of evidence, which is expressed by Dempster’s

combination rule and in this way extending the classical probability theory. In

this section we outline Dempster-Shafer’s Theory of Evidence and its application in

combining query-independent measures of importance.

The frame of discernment Θ represents the set of all possible elements {θ1, θ2

... θn} in which we are interested in. The power set of Θ (denoted 2Θ) contains

all possible propositions. Each of these propositions is assigned a probability mass

function (denoted m) where

∑
A⊆Θ

m(A) = 1 (5.7)

Here A is any element of 2Θ and m(A) is the amount of the total belief committed

exactly to A.

If A ⊆ Θ and m(A) > 0, then A is called a focal point. The function m(A)

measures the amount of belief that is exactly committed to A, not the total belief
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that is committed to A. Each mass m(A) supports any proposition B that is implied

by A. Therefore the belief that a proposition A is true is gained by adding all

the masses m(B) allocated to propositions B that imply A. This degree of belief is

defined as follows:

Bel(A) =
∑
B⊆A

m(B) (5.8)

The uncommitted belief m(Θ) is a measure of the probability mass that remains

unassigned. This is the measure that is used to model “ignorance” or conversely

the “confidence” in the evidence, this is said to be its uncertainty, and is defined as

follows:

m(Θ) = 1−
∑
A⊂Θ

m(A) (5.9)

Two bodies of evidence within the same frame of discernment (provided they

are independent) can be combined using Dempster’s Combination Rule. If m1, m2

are the two probability mass functions of the two bodies of evidence defined in the

frame of discernment Θ, that we wish to combine, the probability mass function m

defines a new body of evidence in the same frame of discernment Θ:

m(A) = m1 ⊕m2(A) =

∑
B∩C=A m1(B) ∗m2(C)

1−
∑

B∩C=∅ m1(B) ∗m2(C)
A, B, C ⊆ Θ (5.10)

This returns a measure of agreement between the two bodies of evidence.

5.2.1 Applying Dempster-Shafer to Query-Independent Sim-

ilarity Measures

Here we wish to apply the Dempster-Shafer’s Theory of Evidence to combine various

query-independent measures of retrieval, and we outline how it is applied specifically

to this area, as well as computational savings that can be made in its calculation.
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The measures of importance that we are dealing with are defined for each

document in the collection, therefore the frame of discernment Θ is defined as

{d1, d2...dn}, where d represents each of the documents in the collection. We must

normalise each of the query-independent measures, so that they fulfill the probability

mass function, as defined by equation 5.7. For this we must also know the uncer-

tainty value m(Θ) associated with each measure so that the measure is normalised

to 1 - m(Θ), to satisfy equation 5.9. For example if we wish to combine the two

query-independent measures, access counts (mac(d)) and URL length (mul(d)), we

may choose the m(Θ) values for each source, based on their individual performances.

If for instance this gives us uncertainty values of mac(Θ) = 0.4 and mul(Θ) = 0.6, we

then normalise the mac(d) values to sum to 0.6 and normalise the mul(d) measures

to sum to 0.4

To then combine these measures mac(d) and mul(d) we use Dempster’s Combina-

tion Rule, as defined in equation 5.10. It is possible to simplify this equation, as this

currently takes account of all elements in the set 2Θ. However, as we have non-zero

basic probability assignments for only the singleton subsets of Θ, i.e. each of the

documents {d1, d2...dn}, as well as the uncertainty in the body of evidence m(Θ),

we can reduce the complexity in the combination, similar to Jose et al. (1998) and

Plachouras and Ounis (2002). The modified equation 5.10 can be re-written as:

mac,ul({d}) =
mac({di}) ∗mul({di}) + mac({di}) ∗mul(Θ) + mac(Θ) ∗mul({di})

1−
∑

B∩C=∅ m1(B) ∗m2(C)

(5.11)

Since the denominator in equation 5.12 is a normalising factor and is indepen-

dent of {di} (Jose, 1998), we follow the lead of Plachouras and Ounis (2002) and

Y. Alp Aslandogan (2000), by simplifying this formula to:

mac,ul(d) ∝ mac(d) ∗mul(d) + mac(d) ∗mul(Θ) + mac(Θ) ∗mul(d) (5.12)
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This produces a single (combined score) for each document in the collection. This

by itself can now be treated as a new query-independent source of evidence.

5.3 Support Vector Machines

Support Vector Machines (SVMs) are a set of machine learning algorithms that have

been used in the areas of classification and regression. SVMs were first suggested

by Vapnik in the 1960s for classification, and were formally introduced by Boser

et al. (1992), and since then SVMs have have been applied in a wide range of areas

including: hand-written character recognition (Cortes and Vapnik, 1995; Scholkopf

et al., 1996); face recognition (Osuna et al., 1997); and text categorisation (Joachims,

1998). In this section we describe the basic operations of SVMs and suggest how

they may be utilised in order to combine query-independent sources – for a more

detailed analysis of SVMs we suggest Vapnik (1995), Vapnik (1998) and Cortes and

Vapnik (1995).

Focusing on the use of SVMs for two-class classification, here the SVM learns by

example to assign labels, e.g. either positive (+1), or negative (-1) to data. In order

to do this the SVM is firstly given a set of l training examples in the form (xi, yi),

where i = 1, 2, . . ., l, each xi is a p-dimensional real vector (list of p numbers), and

y ∈ 1,−1. The task for the SVM is to learn the mapping from x → y; choosing from

the set of all possible hypotheses, the one that minimises the risk of error in the

classification of a new (unseen) example, minimising this error will lead to better

generalisation.

5.3.1 Separating Hyperplane

The human eye is very good at pattern recognition; we can quickly identify two

distinct classes in Figure 5.4. In this case it is easy to draw a separating line between

the two classes of training data. When labelling new data, the classification process

simply decides which side of the separating line that the new point goes on, and
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then it is labelled into that class. In the case of Figure 5.4, where the data is

represented in two dimensions, the data may be separated using a line, however in

higher dimensional space a hyperplane is required to separate the data.

Figure 5.4: Two separate classes of data

5.3.2 Maximum-Margin Hyperplane

Considering again the problem of drawing a separating line between the two sets of

data in Figure 5.4, as illustrated in Figure 5.5 there may be an infinite number of

different separating lines drawn between the two sets of data.

Figure 5.5: Multiple separating lines

However, what the SVM aims to find is the optimal separating hyperplane (H)
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between classes, by focussing on the training cases that are placed at the edge of the

class descriptors; these training cases are referred to as support vectors. A simple

example is shown in Figure 5.6, where the SVM attempts to maximise the margin

between two different sets of data that are linearly separable in a two-dimenstional

space. Although there are a infinite number of lines that can be drawn between

the two set of data, the SVM attempts to find two parallel lines H1 and H2 (i.e.

the dotted lines in Figure 5.6), each of which borders one set of data, such that

the distance between the two lines is maximised. The boundary between these two

classes are defined by vectors that lie on, or near the two parallel lines, these are

known as support vectors. The line that lies between the two lines H1 and H2 forms

the classification boundary, and is known as the optimal hyperplane (H). By selecting

this hyperplane it maximises its ability to predict the correct classification of unseen

examples.

optimal 
margin

optimal 
hyperplaine

(H)

support
vectors

H2

H1

Figure 5.6: SVM separating sets of data

The optimal hyperplane is described by the following:
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w · x + b = 0 (5.13)

where w and b are parameters of the hyperplane. The parallel hyperplanes H1 and

H2 that lie on the decision boundary are defined by:

w · x + b ≥ 0 for yi = 1 (5.14)

w · x + b ≤ 0 for yi = −1 (5.15)

These can be combined into the following inequality:

yi(w · x + b)− 1 ≥ 0 for all i (5.16)

The optimal hyperplane (H) can be found by minimising the following:

1

2
‖w‖2 (5.17)

subject to:

yi(w.x + b) ≥ 1, i = 1, ..., l. (5.18)

5.3.3 Soft Margin

Ideally the SVM should separate the groups of feature vectors completely into non-

overlapping classes, however, in certain cases this may not be possible, or it may

result in a model that does not generalise well to new data – which is referred to as

overfitting.

Intuitively we would like the SVM to be able to handle certain atypical cases in

the training data and to allow them to fall on the “wrong side” of the hyperplane.

The SVM allows this by adding a soft margin. Although it may be beneficial to

allow a certain amount of misclassification to occur, we do not want the SVM to
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misclassified
examples

Figure 5.7: Misclassified examples

allow too many misclassifications – in order to handle this the SVM employes the

slack variables ξi (which measures the amount of misclassification), as well as a cost

parameter C (which dictates the level of flexibility that is allowed during separation).

Depending on the value chosen for C, a certain level of errors may be acceptable

to allow a more generalised model: increasing the C values increases the penalty

for misclassified training examples. Figure 5.7 shows an example where four points

have been misclassified to allow a more general separation of the two classes.

With the incorporation of this C parameter and the slack variables ξi, the SVM’s

training phase involves the minimisation of the following:

‖w‖2 + C

l∑
i=1

ξi (5.19)

subject to:

yi(w.x + b) ≥ 1− ξi, i = 1, ..., l. (5.20)

where ξi ≥ 0. This can then be solved using the Lagrange multipliers.
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5.3.4 Kernel Functions

In general, a kernel function maps data from a low-dimensional space to a higher

dimensional space, if the correct kernel function is chosen, this mapping may allow

separation to occur. There exists a large number of different kernel functions, how-

ever, in practice there are only a small number that are widely used for a variety of

different types of data, the most popular of these being:

• polynomial

• radial basis function (RBF)

• sigmoid

For our experiments in Chapter 6 we make use of the RBF kernel, which maps

training samples non-linearly into a higher dimensional space, so that the SVM can

handle cases were the classes are not linearly separable (we also use the linear kernel

for comparison purposes). In general the RBF kernel is a popular kernel function as

it behaves like the sigmoid kernel for certain parameters (Hsu and Lin, 2002; Keerthi

and Lin, 2003), also the polynomial requires more parameters than the RBF kernel

(and so requiring more tuning).

5.3.5 Applying SVMs to Query-Independent Evidence

As discussed in Chapter 2 the binary independence model, introduced by Robertson

and Sparck Jones (1976), viewed IR as a classification problem. They considered

retrieval in terms of classifying documents into two classes: relevant or irrelevant.

Their approach essentially classified documents into these two classes at query-

time, basing their classification on the query. Adopting this viewpoint of classifying

documents as relevant and irrelevant, however, doing so in a query-independent

manner, we may now utilise SVMs in order to solve this binary classification problem.

Providing suitable training examples for both relevant and irrelevant documents,

we may extract the scores for these documents from suitable query-independent
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features for estimating quality documents (e.g. PageRank and info-to-noise ratio,

as discussed in Chapter 4). The SVM can then use these training examples to

generate a model to can be used to estimate a document’s likelihood to belong to

the class of relevant or irrelevant documents.

If we can provide suitable examples of both relevant and irrelevant documents,

as well as providing suitable query-independent quality estimate scores for each of

these documents the SVM’s classification model should provide us with an effective

way of estimating a document’s likelihood to be relevant or not. In order to carry

out our experiments using SVMs we use the SV M light software package (Joachims,

1999), which is an implementation of the SVM described in Vapnik (1995).

Figure 5.8 illustrates how we generate a prediction of relevance and non-relevance

for each document in the collection, it does this by breaking the process into three

key stages:

1. SVM Training File: firstly we generate typical examples of relevant and

non-relevant documents (further discussed in Chapter 6). With these we build

up a training file for the SVM, which consists of the scores for each of the

query-independent measures for each of the training documents.

2. Classification Model: the SVM learn process then “learns” a model to

classify relevant and non-relevant documents, based on the example documents

and their query-independent scores.

3. Classification Predictions: the classification model is then used by the

SVM classify process, which generates a predictions file, consisting of a likeli-

hood score for each document in the collection belonging to either the relevant

or non-relavant class.

In Chapter 6 we experiment with different ways in which to produce the training

example documents, as well as different models for predicting the classifications.

Once we have this predictions file (as outputted by the SVM classify process) we
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Figure 5.8: Generating SVM predictions from query-independent
features

can easily translate this to a query-independent measure: if we classify the relevant

class of documents as the positive example class and the non-relevant documents as

the negative example class (as outlined previously as the classification labels, y ∈

(1,−1)), then documents with a higher (positive) score are more likely to be relevant

than those with a lower (negative) score (according to the SVM’s model). This

predictions file can then be easily transformed into a query-independent measure

that is the combination of all the features (e.g. PageRank, info-noise-ratio) that

were used in the SVM learn process.
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5.4 Combining query-independent sources of ev-

idence

Having discussed various ways in which query-independent sources may be com-

bined, we now discuss (independently of the actual fusion method chosen) how, as

well as at what stage these sources are combined.

Similar to the creation of the query-independent measures (as discussed in chap-

ter 4), the combination of these measures is also carried out at different stages, de-

pending on the type of query-independent measure. In this section we describe how

this combination process is performed, depending on the type of query-independent

measure: static and term-based.

5.4.1 Static Measures

Much the same way as these static measures are created, which is done once, separate

from the index creation process (demonstrated in chapter 4), the combination of

these static measures is also done once, also in a standalone process separate from

the indexing process. Figure 5.9 demonstrates the separate process that creates the

initial static measures that are to be used in combination.

Each of these static measures contains a single (static) score for each document in

the collection and so their combination also results in a list of static scores associated

with each document in the collection, which in itself can also be though of as another

static measure. A simple example of combining three static measures (PageRank,

URL depth and Info-to-noise ratio) is shown in Figure 5.10, which shows the three

static measures being combined to output a new static measure. This new combined

list of scores can now be treated as a new static measure, and used to sort an inverted

index entry in the same way as any other static measure.

When combining these static scores it is only the type of fusion process used

that changes. For example the fusion may use either the CombSUM, or a Dempster-

Shafer type combination, which will potentially change the actual static scores as-
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Figure 5.9: Static measure creation

signed to the individual documents, however this is all that will differ.

5.4.2 Term-Specific Measures

Again, similar to the creation of these term-specific measures, which are generated

on a term by term basis at the time of indexing, likewise the combination with these

measures is also done at this stage. Although it is possible to combine different

term-specific measures together, the combination that we wish to investigate is the

combination of term-based measures with static query-independent measures.

Figure 5.11 shows how term-specific fusion occurs within the context of the

indexing process. Here during the indexing process the term-specfic weightings are

calculated on a per term basis, and each term has associated weights (or scores) for

each of the documents that that term occurs in. These scores are combined with a

chosen static measure and combined in the term-specific fusion process to produce a

combined list of scores associated with the document that the term occurs in. These
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combined scores are then fed back to the indexer, which sorts the posting list for

that term using these scores, and the same process is followed for all terms.

5.5 Summary

In this chapter we have discussed various methods that may be used to combine the

query-independent measures that we introduced in Chapter 4, the aim of which is

to produce a combination of a number of query-independent sources that is in itself

a more confident measure than any of the individual measures on their own.

The following chapter presents experiments, carried out in order to investigate

the usefulness of different query-independent measures, as well as investigating the

gain achieved (if any) from the combination of sources.
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Chapter 6

Experiments

“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you

are. If it doesn’t agree with experiment, it’s wrong”, Richard Feynman (1918-1988)

6.1 Introduction

In the previous chapters we introduced the area of information retrieval, then more

specifically discussed the idea of sorting the inverted index using query-independent

measures. In order to evaluate the usefulness of this idea, in this chapter we ex-

periment with the use of a sorted index with various types of sortings, and see how

these have an affect on the performance of the system.

We then combine these measures together in an effort to increase the overall

retrieval performance.

6.2 Overview of Experiments

First of all we describe the experimental setup that we used to carry out our exper-

iments, including the search engine, the document collection and queries used. The

main experiments are then presented in the same chronological order in which they

were conducted:
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• In section 6.4 we experiment with different forms of early termination, and

investigate their effect on query execution.

• In section 6.5 we compare the effectiveness of different query-independent mea-

sures, both static and term-based.

• Section 6.6 examines how to evaluate the effectiveness of these different sorted

indexes.

• Section 6.7 demonstrates the effect of combining different query-independent

measures using a number of combination methods described in Chapter 5.

• Section 6.8 examines the trade-offs that are made by eliminating postings with

this sorted index approach.

• Section 6.9 investigates the impact that a sorted index has on the effectiveness

of the system, as well as the efficiency.

Finally we summarise our results and our main experimental findings in section

6.10.

6.3 Experimental Setup

6.3.1 F́ısréal Search Engine

Our experiments are carried out using the F́ısréal search engine (Blott et al., 2004;

Ferguson et al., 2005b), which we developed in order to index and retrieve the

documents from the SPIRIT collection (a collection of almost 95 million documents

from the general Web) (Jones et al., 2002).

All experiments were carried out using a single search engine architecture, in

order to alleviate any additional factors that might come into play while using a

distributed architecture – this was done in order to isolate the effects of using a

sorted inverted index.
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The indexing and retrieval processing was carried out a Pentium 4, 2.6GHz PC

with 1.5GB of RAM.

6.3.2 Test Collection and Queries

The experiments within this thesis are carried out on the GOV2 test collection,

as described in section 2.3, using the queries from the TREC terabyte track from

2004, 2005 and 2006. We use this test collection as, at over 25 million documents,

it is the largest document collection available within the TREC framework that

provides relevance judgements over a number of ad hoc type queries. At this size,

the collection presents a realistically sized collection, and provides a reasonable

challenge to a single search engine machine when processing user queries, so that

processing less postings per query may be of benefit. For smaller TREC collections

such as Wt10g and Wt2g this may not be so beneficial, as the number of documents

to be processed for each term would be relatively small anyway. Also as the size

of these collections increases, particularly with crawls from the Web, so does the

lack of quality of those documents. So although this collection may not contain the

large amounts of low quality and spam documents that are to be found throughout

the Web, the collection does naturally contain some lower quality documents, and

if identified as low quality by our proposed sorting measures, these documents may

be suppressed towards the bottom of their respective postings lists, allowing them

to be filtered.

6.3.3 Baseline Sorting

In order to compare various sorting metrics, we provide a baseline measure to sort

the postings within each postings list in the inverted index: this provides a yardstick

to compare other sorting measures against. For this baseline measure we use the

BM25 formula to sort the postings (as described in section 4.3). We have chosen

this as it represents the current state-of-the-art in information retrieval in providing
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a probability of relevance between documents and query terms. Therefore it should

provide a high performing baseline measure to compare results against. The actual

formula used is:

bm25(q, d) =
∑
tεq

log

(
N − dfi + 0.5

dfi + 0.5

)
× (k1 + 1)tfi

k1((1− b) + b dl
avdl

) + tfi

(6.1)

where dfi is the number of documents in the collection that contain the term i and

k1 , k3 and b are tuned to 1.2, 1000 and 0.25 respectively. This formula is used to

sort both the postings in the index, as well as the documents at retrieval time.

In addition to the use of BM25 as a means to compare sorting metrics to, we also

provide a random sorting to give a clearer indication of each measure’s performance,

not only to the upper bounded measure, but also show how it performs relative

to a random sorting. This random sorting is generated by assigning each of the

documents in the collection, with a unique and randomly generated number. By

taking these to be the scores associated with each of the documents, the postings

can then be sorted using this random measure, in an identical way to the generation

of the other query-independent sorted indexes (as discussed in section 4.3).

6.4 Early Termination Experiments

Firstly we investigate approaches that allow the early termination of the search

process. We carry out this as our premier experiment, as it aims to provide a

method that can be used in order to reduce the number of postings that need to

be processed for a given query, while at the same time providing the most effective

tradeoff with retrieval efficacy. This will equip us with a means by which to allow

postings to be eliminated in a uniform manner using various different types of sorted

indices in later experiments, and allow those to be evaluated in a consistent manner

that will promote the differences among these contrasting sorting metrics and so

allow us to evaluate these more effectively.
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To illustrate how these different approaches work we use the example postings

lists as shown in Figure 6.1, which shows three different postings lists consisting of

document identifiers and their corresponding within document term frequency.

A

5        12
1          7
3          8

...

...

...

...

...
8          1         

B

6          6
9          7
2          6

...

...
1          1         

C

3         15
1         10          
9           8

...

...

...
15         1         

Term A Term B Term C

200 
postings

110 
postings 170 

postings

Example 
postings 

lists holding
doc id and 

within
document 
frequency

Figure 6.1: Sample postings lists

6.4.1 Maximum postings size cut-off

This approach processes a maximum number of postings from each query term’s

postings list. It has the benefit that a larger percentage of rarely occurring terms

are processed, which have a major impact on ranking, due to their high inverse

document frequency (idf) score. At the same time only a small percentage of all

the postings for a commonly occurring term may be processed, and this may also

be beneficial, as frequently occurring terms contribute less to the overall document

ranking, due to their lower idf score. We originally referred to this as the top subset

size approach in (Ferguson et al., 2005a; Blott et al., 2004; Ferguson et al., 2005c)

and we have found that this is also the same approach that is utilised by Garcia et al.

(2004), although referred to as maxpost. This process is illustrated in Figure 6.2,

which shows that a specified maximum number of postings is selected, regardless of

the size of the list.
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B

6          6
...
...
...
...

1          1         

A

5        12
...
...
...
...
...
...
...
...
...

8          1

C

3         15
...
...
...
...
...
...

15         1         

Term A Term B Term C

200 
postings

110 
postings

170 
postings

maximum no,
of postings 

= 100.
 

Take top 100
postings from

each list

100 postings
processed

100 postings
processed

100 postings
processed

Figure 6.2: Eliminating postings using a maximum posting size

6.4.2 Percentage Size Cut-off

Where the previous approach specifics a maximum size, this percentage-based tech-

nique selects the number of postings to process from each postings list by taking a

percentage of the total number of documents that that term occurs in. For instance

if a term a occurs in 10,000 different documents, with a 10% cut-off, this term would

have the first 1,000 postings from its postings list processed. Therefore the actual

number of postings that are processed is dependent on the total number of postings

for that term. This process is demonstrated in Figure 6.3, here we can see that

unlike the fixed size based approach, the number of postings processed is influenced

by the size of each list.

6.4.3 Score Based Cut-off

An alternative method of choosing a cut-off point for posting selection it to choose

the cut-off point based on the score that it has been sorted by. For instance if the

postings have been sorted using BM25, using a cut-off of 0.2, then any posting that

does not contribute a score of at least 0.2 is not considered for further evaluation.

Using this approach, when the first posting that falls below this threshold is found
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6          6
...
...
...
...

1          1         

A

5        12
...
...
...
...
...
...
...
...
...

8          1

C

3         15
...
...
...
...
...

15         1         

Term A Term B Term C

200 
postings

110 
postings

170 
postings

Percentage
cutoff of 

60%
 

Take top 60%
of all postings
for each list

120 postings
processed

72 postings
processed

102 postings
processed

Figure 6.3: Eliminating postings using a percentage based approach

then the rest of the postings within that posting list can also be eliminated, as the

postings should contribute the same or less (as the postings have been sorted in

descending order). Although it must be noted that when using this approach we

may need to calculate different threshold scores for indexes that are sorted based in

different measures.

If we use the BM25 formula, as shown in equation 6.1, which incorporates the

inverse document frequency element, therefore similar to the fixed size based ap-

proach the shorter lists should be given higher weighting, as they produce higher

BM25 scores, and because of this they will have a greater percentage of their post-

ings processed. Figure 6.4 gives a graphical representation of this score-based cut-off

scheme.

6.4.4 Cut-off Comparisons

In order to compare these different query-time cut-off strategies we measure the

overall number of postings that they process and then compare this with the re-

trieval effectiveness in terms of mean average precision (MAP) and precision at 10

documents (P10), so that we can see the trade-off that is being made between the
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6          6
...
...
...
...

1          1         

A

5        12
...
...
...
...
...
...
...
...
...

8          1

C

3         15
...
...
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...
...

15         1         

Term A Term B Term C

200 
postings

110 
postings

170 
postings

Score
cutoff of 

0.6
 

Process
list until 

scores falls 
below 0.6

no. of  postings
processed
dependent
on scores

for each list

Figure 6.4: Eliminating postings based on their score

number of postings that are processed and query effectiveness. For this we ran 100

ad hoc queries from the TREC 2004 and 2005 terabyte track (topics 701-800) using

the different cut-off strategies. Figures 6.5 and 6.6 compare the the performance of

these methods based on their MAP and P10 scores respectively.

Figure 6.5: Comparisons of different cut-off methods (MAP)

These results show that the maximum postings size approach works best for both

P10 and MAP (particularly for MAP). The score-based cut-off approach performs

ahead of the percentage-based approach for MAP, however the reverse is the case

for P10. For this reason we proceed with this maximum postings size approach to
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Figure 6.6: Comparisons of different cut-off methods (P10)

compare different query-independent methods of sorting the inverted index (in the

following section).

6.5 Query-Independent Sorting

In this section we shall present different query-independent sorting measures that

have been introduced in Chapter 4. Here we show how these measures perform

individually, as a means of sorting these postings lists.

Firstly we present the performance of both the BM25 sorted index, as well as

an inverted index whose postings are sorted in a random order. These will allow

for more meaningful comparisons for the other sorted indexes that we will evaluate.

For these as well as the other sorted indexes we present the performance of each of

the indexes in terms of MAP and P10 as we increase the maximum postings size.

As we have chosen to use the maximum postings size cut-off approach (described in

section 6.4), we present the performance figures as we increase the maximum number

of postings processed for each query-term, from 10,000 up to the point where all

postings are processed for all query-terms. The exact maximum number of postings

at the different intervals are as follows: 10,000, 50,000, 100,000, 200,000, 300,000,

400,000 and then finally with all postings being processed. We feel this effectively

allows a sorting measure to show its performance as the number of postings are
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increasing, and so allowing for comparison of different sorted indexes based on their

performance versus the number of postings that the require to process.

We evaluate the efficacy of BM25 as well as the other query-independent mea-

sures in this section using the topics 701-850 from the TREC terabyte ad hoc search

task. Firstly, Figures 6.7 and 6.8 show the performance of the baseline BM25 sorting,

and as with the other measures we will also include the performance of a random

sorting, in order to show the relative performance of these and other methods of

sorting.

Figure 6.7: MAP performance of BM25 sorting

From Figures 6.7 and 6.8 we can see that the BM25 sorting offers much better

performance at the different cut-off points when compared to a random means of

sorting (as would be expected). Secondly we can see that high P10 scores can be

achieved having only processed relatively few of all postings. Figure 6.9 shows the

percentage of all postings that are being processed at each cut-off point. Looking

at the cut-off point of 200,000 postings, Figure 6.9 shows that less than 14% of all

postings are evaluated, comparing this with the MAP performance, as shown in

Figure 6.7, where at a cut-off point of 200,000, this results in only a 0.0238 drop

off in MAP performance. Comparing this with the P10 performance at the same
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Figure 6.8: P10 performance of BM25 sorting

cut-off point, this results in an even smaller degradation in performance of 0.0135

– we would consider this to be a very small drop in performance, when considering

that less than 14% of the available postings for the query terms were evaluated.

Figure 6.9: Percentage of postings processed at each cut-off point
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As there is a significant saving in terms of the number of postings being evaluated,

we must look at the trade-off being made in terms of the retrieval accuracy and

decide if this trade-off is worthwhile. For web search in particular, users are most

often only concerned with looking at the top 5-10 documents returned and want

results returned quickly, we would therefore suggest that for a general web user they

would prefer to receive prompter results from a search engine, and would be willing

to accept a small degradation of 0.0135 in P10 for example. We do realise this this

of course may not be suitable for all types of applications, such as a search where

very high recall is of critical importance. This could obviously become an issue with

this approach as there may be a large number of documents may not be considered

during retrieval.

In the following sections we sort the inverted index based on various different

query-independent measures and investigate their usefulness in allowing effective

promotion of relevant documents and an effort to further decrease the trade-off

that needs to be made between the number of postings that are processed and the

accuracy of the results.

6.5.1 Term-Specfic Sorting

As discussed in section 4.3 these term-specific methods of sorting postings lists

provide scores for documents on a term-by-term basis, rather than providing a single

static score for each document. The BM25 sorting, as previously discussed, is an

example of a term-specific means of sorting these posting lists. In order to compare

the performance of this against other term-specific method we choose firstly to look

at the performance of an index sorted based on the within document term frequency

(TF ), this is the number of times that the term occurs within a document. This

was the type of index proposed by Persin (1994) and Persin et al. (1996). The

performance of this measure is shown in Figures 6.10 and 6.11.

From Figure 6.10 we can see that BM25 outperforms the TF means of sorting,

this should be expected, as the BM25 formula considers more information in calcu-
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Figure 6.10: MAP performance of TF sorting

Figure 6.11: P10 performance of TF sorting

lating it’s measure. However with P10 (as shown in Figure 6.11) the difference is less

evident, and overall their performance is quite similar. Overall, for such a simple

measure TF provides a relatively effective means of sorting an inverted index.

Although with this type of sorting we would expect that long documents would

have an unfair advantage in being promoted towards the top of the postings lists as
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longer documents obviously have a greater probability of having terms with higher

(within document) term frequencies. However a simple normalisation of the TF

(NTF), such as dividing by the document length (shown in equation 6.2) degrades

the performance, as can be seen in Figures 6.12 and 6.13, as this perhaps is liable

to penalise long documents too severely and is obviously not as effective as the

normalisation employed by the BM25 algorithm, which saturates the influence of

the term frequency element, as well as controlling the influence of the document

length by the use of its b parameter.

NTF = TF/docLength (6.2)

Figure 6.12: MAP performance of NTF sorting

6.5.2 Global BM25 Scores

Although the previous BM25 sorting is carried out on a term by term basis, we

can however provide a static BM25 scoring of all the documents in the collection.

These scores are calculated in a similar way to which the term-specific scores are

generated, however we also keep track of the scores accumulated by each document

and increment their score after each term is processed. For this we use the BM25

113



Figure 6.13: P10 performance of NTF sorting

formula, as in equation 6.1, which takes into account the relative importance of

each of the terms, unlike the scores calculated on a single term basis (where it is

unnecessary), as it is only being used to order documents specific to that term, and

so its global importance is not of any consequence.

Figure 6.14: MAP performance of global BM25 sorting

As can be seen from Figures 6.14 and 6.15, this global BM25 sorting does not

perform as well as the term-specific BM25 sorting, this is not surprising as the
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Figure 6.15: P10 performance of global BM25 sorting

ordering of each of the postings lists is done based on static scores that are the same

for all terms and we would suggest that a single static feature would find it difficult

to improve upon a similar term-specific ordering. Nevertheless these global BM25

scores provide us with useful baseline for static scores that we will make use of for

further experiments.

One of the reasons for the underachievement of this global BM25 measure we

believe may be due to its upweighting of infrequently occurring terms in the collec-

tion – due to the idf component of the BM25 formula. The idf component gives a

higher weight to terms that occur less frequently within a collection, this is certainly

beneficial when we do not want to give high weights to very frequently occurring

documents, however this does give abnormally high weights to very infrequently oc-

curring terms within a collection (which are more likely correspond to misspellings,

rather than a meaningful term). As we discussed previously (in Chapter 3) and

shown in Figure 3.9 the most important terms are those that occur a moderate

number of times, and as shown in Figure 3.9, there are two thresholds, where the

collection frequency of a term becomes: too frequent and too infrequent to be useful.

Usually the case where the terms occur too frequently are taken into account with
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the removal of a certain list of “stopwords” (as we have done with our search sys-

tem). However, identifying a pre-defined list of infrequently occurring terms that are

to be removed is somewhat more difficult to generate (in a collection-independent

manner at least). In order to investigate the effect of this on the generation of our

global BM25 measure, we no longer considered terms that did not occur more than

a specified number of times within the collection. Varying this threshold would then

give give us a clearer indication of the effect of including of infrequent terms on the

generation of a static BM25 measure.

We firstly choose to increase this threshold (t) from frequency 0 (original global

BM25 measure), then 20, 50 and finally 100 (here a term must occur at least t times

in order to be included). Figures 6.16 and 6.17 show the performance of these new

global BM25 measures, in terms of MAP and P10 respectively. Examining these

results at a reasonable cut-off point of 200,000 documents per postings list, we can

see that there is a minor improvement between the original measure and the result

where only terms with a global collection frequency of over 50 are considered: with

an increase in MAP of 0.5% and an increase of 0.8% in P10.

Figure 6.16: MAP performance of global BM25 sorting with term
frequency threshold

Leading on from this approach where we eliminate the contribution of the rarest
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Figure 6.17: P10 performance of global BM25 sorting with term fre-
quency threshold

terms in the collection from contributing to the generation of the global BM25

measure, we considered at what point would it be considered reasonable to impose

this threshold. so that unimportant terms are not considered and yet important rare

terms are still considered. If we consider the terms that the users are searching for as

the most important terms in the collection, we may then use these terms to impose

a similar threshold as before. In order to do this we used a large query log (of 2.4

million queries) from the Excite search engine from December 1999. We used this

query log by gathering all the terms contained within the query log, then generated

two alternative global BM25 measures based on the term statistics of these queries.

• global BM25 Query Log Terms (QLT): with this approach we generate

the global BM25 scores by only including terms that have been issued in the

query log. This is a similar approach to the previous approach of using a

threshold – except that rather than the threshold being imposed based on the

global term frequency, it is imposed base on the occurrence of the term in the

query log.

• global BM25 Query Log Term Frequency (QLTF): as an alternative
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to this approach we decided to also take into account the frequency that the

term occurs in the query log. Having removed the most commonly occurring

terms in the query logs (i.e. stopwords) we then consider the frequency that

each term occurs within the query log when calculating the term importance

(i.e. idf component of the BM25 calculation).

The performance of these two measures are shown in Figures 6.18 and 6.19.

Again if we examine these results at a cut-off point of 200,000 documents per postings

list (as above), we can see that there is a quite significant improvement between the

original measure and the QLT approach: with an increase in MAP of 5.9% and an

increase of 2% in P10.

Figure 6.18: MAP performance of global BM25 sortings using query
log threshold

6.5.3 Linkage Analysis

As discussed in section 4.2, linkage analysis provides certain query-independent mea-

sures of document popularity, based on the hyperlink linkage structure between doc-

ments. For these experiments we have chosen to use both the indegree and PageR-

ank measures as a means of evaluating the effectiveness of these linkage analysis
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Figure 6.19: P10 performance of global BM25 sortings using query
log threshold

approaches in order to effectively sort an inverted index.

For the indegree measure we have simply taken a count of the number of doc-

uments that link to a document as its indegree score. The PageRank scores used

were calculated over 50 iterations of the PageRank algorithm (which is consistent

with the number of iterations that was found by Page et al. (1998) to be sufficient

for convergence to occur on this size of collection). Figures 6.20 and 6.21 show the

relative performances of these two measures in terms of MAP and P10.

These figures show that indegree performs below that of random sorting, while

the PageRank sorting performs above both measures for MAP and P10. This clearly

shows the advantage of using PageRank over the simpler linkage measure of indegree

to filter documents by.

As mentioned in section 4.2, measures such as PageRank and indegree display a

power-law distribution, and so their scores are often normalised in order to combine

these measure more effectively. However in the case of producing a means by which

to sort an inverted index, normalising by taking the log of the score for example has

no effect on the global ordering of the documents (only the values change) and so

performs the same as using the raw score to sort the index.
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Figure 6.20: MAP performance of linkage analysis sorting

Figure 6.21: P10 performance of linkage analysis sorting

As it is only the ordering of the documents that we want to maintain, it may

also be possible to perform fewer iterations of the PageRank calculation, which can

be quite time consuming to generate. Consequently we compare how the PageRank

sorting differs when calculated over a fewer number of iterations; Figures 6.22 and

6.23 show the performance of PageRank after 1, 5, 10 and 50 iterations.

Surprisingly it is only the PageRank after 1 iteration that suffers most notice-
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Figure 6.22: MAP performance of PageRank sorting after varying
the number of iterations performed

Figure 6.23: P10 performance of PageRank sorting after varying the
number of iterations performed

ably, the others, and in particlular the PageRank after 10 iterations performs very

similarly to the PageRank after 50 iterations, which takes much longer to generate.

Although we have shown that time savings may be made with the reduction of the

number of iterations in order to produce a PageRank suitable for the ordering of

documents in the inverted index, throughout the thesis we will continue to work
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with the PageRank scores as calculated after 50 iterations, for the sake of clarity.

6.5.4 Access Counts

In this section we experiment with the use of access counts, as discussed in section

4.2 as a means to sort the postings by. Garcia et al. (2004) generated a set of

access counts by running 1.9 million queries from an Excite search engine query log,

and incrementing a document’s access count each time that document was returned

within the top 1,000 documents returned in response these queries.

Similarly to Garcia et al. (2004), we provide a baseline access count measure that

has been generated from a different Excite query log of 2.4 million queries (from

December 1999), again incrementing the access count of any document returned

within the top 1,000 documents for each of the queries. Figures 6.24 and 6.25

show the performance of this access count measure – which performs relatively

well, particularly for precision at 10 documents, considering it is a static query-

independent measure.

Figure 6.24: MAP performance of access count sorting

In addition to the default access count measure proposed by Garcia et al. (2004),

we would also like to investigate how well this access count approach performs given
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Figure 6.25: P10 performance of access count sorting

less queries, i.e. how many training queries are required in order to provide a

consistent performance? For this we created different sets of access counts that were

generated by using different numbers of queries; these access counts were generated

after 250,000, 1 million, as well as our original 2.4 million queries (note: these

smaller query log “subsets” were selected in chronological order from the start of

the original query log). Using these we can then compare the performance of this

access count approach having different numbers of training queries to evaluate how

much this effects performance. Figures 6.26 and 6.27 show the effect this has on the

performance in terms of MAP and P10.

These figures show that there is little or no gain made by issuing larger number

of queries (of this same type of general web queries at least). There is no significant

difference in performance after issuing at least 250,000 queries, which translates to

a large saving in the time taken to run this training phase to generate the access

count scores.

The other aspect of this access count approach that we wanted to investigate

was the choice of the 1,000 boundary for incrementing the access counts for each

query. For the typical user query, all of the top 1,000 documents returned by a

123



Figure 6.26: MAP performance of access count sorting, with differ-
ent numbers of training queries

Figure 6.27: P10 performance of access count sorting, with different
numbers of training queries

search engine are unlikely to be relevant to the user’s query, therefore, perhaps a

more conservative number of the top ranked documents should have their access

counts incremented in response to the training queries. In order to investigate this

further we chose to increment the access count of each document as they occurred

within a higher cut-off point than the original 1,000 point in the result list. Figures
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6.28 and 6.29 show the performance of these access count measures, as generated at

cut-off points of the top 50, 100, 500, as well as the original 1,000, for comparison.

Figure 6.28: MAP performance of access count sorting, with differ-
ent access count thresholds

Figure 6.29: P10 performance of access count sorting, with different
access count thresholds

These figures show that the access count threshold of 1,000 documents is not

necessarily the best for producing the most accurate results: in particular for the

P10 measure, the lower access count threshold values perform better. This is not

125



necessarily surprising as the access count approach is essentially marking as relevant

all documents within the chosen threshold of the returned result list as being relevant

for the particular query. This would most likely mark many documents that are

not relevant as being relevant, and the larger the threshold the more likely that

more non-relevant documents are marked as relevant. Therefore choosing a smaller

threshold value should result in the less non-relevant documents being marked as

relevant, however, if less documents are being marked for each query this will also

mean that a large number of documents will not receive any access counts and it is

worth noting that this has an adverse effect on the recall of the system, as is shown

in Figure 6.30.

Having experimented with the way in which these access count values may be

effected (and improved upon) for the remainder of our experiments we proceed with

using the original access count measure generated using the default threshold of

1,000 documents (as proposed by Garcia et al. (2004)) and generated using the full

query-log of 2,400,000 queries.

Figure 6.30: Recall performance of access count sorting, with differ-
ent access count thresholds
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6.5.5 URL Information

As outlined in Chapter 4 there is a certain amount of implicit information contained

with the URL of a web document. We may view documents with shorter URLs

to be more general in terms of content than documents with a longer URL, and

so more likely to be relevant to more users’ information needs. For this reason we

highlighted two simple ways that may be used to estimate this importance: URL

depth and URL length.

Note that as for these measures it is the documents with a lower score we wish to

promote, we therefore use the inverse of these values – sorting the postings lists in

descending order of these inverse values. Figures 6.31 and 6.32 show the performance

figures for both URL length and depth compared with the the BM25 and randomly

sorted indexes.

Figure 6.31: MAP performance of URL length and depth

From these figures we can see that for MAP the two measures are quite com-

parable, however, for P10 the URL length measure performs better (with the URL

depth measure falling below random performance on average).
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Figure 6.32: P10 performance of URL length and depth

6.5.6 Information-to-noise ratio

As discussed in Chapter 4, it is believed that a document with a lower information-to-

noise ratio score is generally of lower quality than a document with a higher score.

It therefore seems like an ideal candidate to sort the postings within an inverted

index in order to promote more high quality documents. Again to investigate this

we sorted an inverted index using this measure, and again we compare the results

against the BM25 and random sortings for MAP and P10 in Figures 6.33 and 6.34

respectively.

These figures show that the infomation-to-noise ratio performs relatively well for

both MAP and P10 measures. In fact for P10 at a maximum number of 200,000

postings processed per query-term there is only a drop-off of 2.6% (which is quite

good for a static measure) compared with the BM25 measure which generates term-

specific scores.

6.5.7 HTML Correctness

In order to investigate how useful the correctness of a document’s HTML is at

indicating the quality of that document, we firstly processed each document – looking
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Figure 6.33: MAP performance of information-to-noise ratio

Figure 6.34: P10 performance of information-to-noise ratio

for compliance with the HTML specifications as defined by the World Wide Web

Consortium (W3C). This process generated two lists, the number of errors and the

number of warnings for each document in the collection: here an error corresponds

to a serious error such as a tag being defined in the document that is not in the W3C

specifications, whereas a warning corresponds to something less severe such as no

closing tag for a specific element. Using these two lists we sorted the inverted index
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using the inverse of these two measures, the results of which are shown in Figures

6.35 and 6.36.

Figure 6.35: MAP performance of HTML error no. and warning
number.

Figure 6.36: P10 performance of HTML error no. and warning num-
ber.

These figures show that the number of warnings within a document provides a

more effective way to sort an inverted index. This may be due to the fact that a large

number of documents contain no errors (over 22 million documents), so because of
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this there is nothing to discriminate among this large number of documents. Also

many documents may not contain warnings, however the number of documents that

contain no warnings is much less than that those with no errors (350,000 documents)

and so this allows more discrimination to be made between high and low quality

documents, as more documents have at least one warning.

On considering this further, its seems intuitive that on ranking a document in

order of the number of mistakes in the HTML a more accurate way to estimate a

document’s quality would be to also consider the amount of HTML that is present

in the document: if a document contains a large amount of HTML markup and

contains 3 mistakes then this should be ranked higher than a short document that

contains only a small amount of HTML markup and yet also contains 3 mistakes.

In order to take this into consideration we calculate the amount of HTML markup

that the document contains and divide the length of this into the number of errors

or warnings that that document contains. Using this approach gives us two more

measures: error rate and warning rate (Figures 6.37 and 6.38 show the performance

of these two measures). Surprisingly these two modified measures perform noticeably

worse than the original measures. We had originally anticipating that incorporating

more information into the calculation would aid in its performance, however this

was not the case.

6.5.8 Document Length

In calculating the likelihood that a document is relevant to a query, the length of

the document is quite often going to have an impact on this (taking for example

ranking methods such as BM25), although the fact that one document is longer than

another is not necessarily an indication that one is of higher quality than another.

However, if a document contains more information than another it is more likely to

be returned as relevant, purely on the basis that there are more words contained in

the document. Although we do not expect this to perform relatively highly we wish

to also use the document length as an additional measure so that we may see if it
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Figure 6.37: MAP performance of HTML error rate. and warning
rate.

Figure 6.38: P10 performance of HTML error rate. and warning
rate.

may be be combined effectively with any of the other measures in order to improve

the system performance. Figures 6.39 and 6.40 show the effectiveness of using the

document length to sort the inverted index. Interestingly for both MAP and P10

the document length proves to be clearly better than the random sorting measure,

and so provides some encouragement that it might be useful for combining with

some other measures.
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Figure 6.39: MAP performance of document length.

Figure 6.40: P10 performance of document length.

6.5.9 Comparing Standalone Measures

For the purposes of comparison, here we present the average (averaged from each of

the cut-off points 10,000, 50,000, 100,000, 200,000, 300,000, 400,000 and all postings)

MAP and P10 scores for all individual measures in Tables 6.1 and 6.2 respectively.

Here we can clearly see that the term-specfic sortings all perform better than any

of the static measures.
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Measure Average MAP
BM25 (term-specific) 0.2739
TF (term-specific) 0.2643
NTF (term-specific) 0.2578
Access counts 0.2239
Global BM25 (QLT) 0.2088
Global BM25 (QLTF) 0.2051
URL length 0.2031
Info-to-noise ratio 0.2031
URL depth 0.2004
Global BM25 0.2001
Document length 0.1973
PageRank 0.1972
Warning no. 0.1938
Random 0.1854
Indegree 0.1805
Warning rate 0.1786
Error rate 0.1734
Error no. 0.1733

Table 6.1: Comparison of measure using average MAP

6.6 Index Creation and Evaluation

If we consider that in order to produce an evaluation of a measure, using MAP and

P10 we firstly produce a complete sorted inverted index and then run a set of queries

through the search system – these are then evaluated using the query relevance

judgements (QRELs) provided by TREC. This process is quite time consuming,

due, in the most part to the creation of the inverted index, which incidentally also

takes up a considerable amount of disk-space. This may be acceptable in evaluating

a limited number of query-independent measure, such as those that were shown in

the previous section, however when we are to experiment with the combination of

these measures, using various different approaches, we shall produce a large number

of variants that will need to be evaluated, and this simply is not feasible using the

current approach. Therefore we would ideally need to evaluate each new measure

without the need for the creation of an addition index.

Firstly we began to look at the current method of evaluating new measures:

134



Measure Average P10
BM25 (term-specific) 0.5500
TF (term-specific) 0.5479
NTF (term-specific) 0.5310
Global BM25 (QLT) 0.5022
Access counts 0.5002
Info-to-noise ratio 0.4785
PageRank 0.4781
Global BM25 (QLTF) 0.4779
Global BM25 0.4757
Document length 0.4700
URL length 0.4687
Warning no. 0.4609
Random 0.4532
URL depth 0.4479
Warning rate 0.4205
Indegree 0.4159
Error rate 0.3360
Error no. 0.3357

Table 6.2: Comparison of measure using average P10

although this is the strategy used by Garcia et al. (2004), Ferguson et al. (2005c) and

Ferguson et al. (2005a) in order to evaluate novel ways of sorting the inverted index,

we began to question if this was the best way to evaluate a new measure. Using this

approach a new inverted index is created that is sorted using the new measure, the

search engine then uses its conventional search algorithm (such as BM25) to rank

the documents in response to a query, while the effectiveness of the sorting can be

evaluated by limiting the number of postings that are examined in order to produce

the ranked list and comparing this with the query performance in terms of MAP

and P10 for example. The problem that we see with this approach is that although

the index is sorted by a given measure (X), this sorting is then re-sorted by BM25

at query-time, in order to produce the ranked set of results. The sorting of the

measure X therefore becomes more and more diluted as the maximum number of

postings being evaluated for each term is increased. Also, if for example the sorting

produced by X is effective at promoting highly relevant documents, however, if these

documents are ranked lowly by BM25, then these will be pushed down its ranked
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list and so not allow for a proper evaluation of the sorting produced by X.

Our alternative approach suggests that the system looks only for the known rel-

evant documents for particular queries in the postings lists of the query terms and

evaluate how highly X ranks those documents. Using this approach eliminates the

diluting of the sorting produced by X when combined with an additional sorting

algorithm at query-time. We call this evaluation Index Precision (IP), as it calcu-

lates a precision score by analysing the postings lists of the inverted index. This is

similar to the way in which traditional precision is calculated for a list of results,

except that now the sorting is calculated on the ranked postings instead. This score

is calculated over each query-term’s postings list as follows:

IP =
n∑

r=1

nrfr

r
(6.3)

where n is the number of postings associated with the term being processed, r is

the current position (or rank) in the postings list and nrfr is the number of relevant

documents that have been found up to the current rank r. To get the average IP

score for a query we divide by the number of postings lists that were evaluated for

the query. This process is illustrated in greater detail in Figure 6.41.

In addition to the benefit of providing a precision score directly correlating to

how highly a sorting measure ranks relevant documents it also dramatically reduces

the time required to evaluate a new sorting measure X. This reduction is achieved

as we can evaluate this without the need for creating a new inverted index. This

can be done by utilising a current inverted index, then at query-time re-ranking the

postings list that is being processed by X – so that it can be processed as X would

rank the postings. This process is shown in Figure 6.42.

Now examining the average IP scores for the same measures as before, in Table

6.3 we can see that again the BM25 measure comes out on top, but now it is more

evident that there is a large difference between the term-specfic scores (in particular

BM25 and TF) and the static measures. This is not necessarily surprising, since
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Figure 6.41: Calculating Index Precision (IP).

these term-specific sorting measures use a different sorting depending on the term,

however it does illustrate the importance of the incorporation of the TF component

in this term-specific way, as this alone proves to be a highly effective sorting measure.

This process of re-sorting an existing inverted index in order to evaluate a new

measure now provides us with a means to quickly evaluate a new measure which is

essential in order to experiment with combining different sorting measures.

Firstly in order to combine these measures we decided to eliminate a certain

number of measures – as there are some measures that are variants on others and

we choose to combine the stronger of these measures (based on the IP scores), for

these reason we choose to eliminate the following:

• Global BM25 – due to the inclusion of the higher performing global BM25

(QLTF).
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Figure 6.42: Re-sorting postings list.

• Global BM25 (QLT) – due to the inclusion of the higher performing global

BM25 (QLTF).

• URL Depth – due to the inclusion of the higher performing URL length.

• Warning rate – due to the inclusion of the higher performing warning number.

• Error rate – due to the inclusion of the higher performing error number.

In our initial combination experiments we concentrate on combining only the

static measures, so that we may gain a more effective static measure that may be

combined with the term-specific scores. This leaves us with the following measures

to combine:

• Access counts

• Document length
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Measure Average IP Scores
BM25 0.04349
TF 0.04000
NTF 0.02078
Access counts 0.00916
URL length 0.00879
Global BM25 (QLTF) 0.00877
URL depth 0.00853
Info-to-noise ratio 0.00824
Indegree 0.00815
PageRank 0.00786
Global BM25 (QLT) 0.00779
Warning no. 0.00774
Error no. 0.00749
Error rate 0.00749
Random 0.00744
Document length 0.00744
Warning rate 0.00717
Global BM25 0.00670

Table 6.3: Comparison of measure using average IP score

• Error number

• Global BM25 (QLTF)

• Indegree

• Information-to-noise ratio

• PageRank

• URL length

• Warning number

For our initial experiments we deal with combining these measures using all ap-

proaches except for the SVM combination which is significantly different from the

others and so we describe it separately – for the other methods we use the same

combination strategies and so we discuss these approaches together. We experi-
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ment with these combination approaches in subsection 6.7.1 and experiment with

combining using SVMs in subsection 6.7.2.

6.7 Combination

In Chapter 5 we discussed different ways in which we could combine various query-

independent measures together, in the hope of producing a more effective single

measure. To summarise from Chapter 5, the main approaches that we discussed for

combining these sources are:

• Rank and Score-based Combination

– Score-based Combination

∗ Similarity Merge (specifically CombSUM)

∗ Linear Combination

– Rank-based Fusion

∗ Rank Fusion

∗ Weighted Rank Fusion

• Dempster-Shafer Combination

• Support Vector Machine Combination

In this section we will evaluate the usefulness of each of these methods, to com-

bine our query-independent measures.

6.7.1 Combination Strategies

In principle we would like to combine all our query-independent measures together

in every possible way, with all possible weights, however, due to the computational

cost of doing this, as well as re-sorting the inverted index in order to evaluate each

of these, alternatively we chose to consider a number of alternative combination
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strategies. These were designed to get the maximum gain from the combination of

the single measures, while at the same time limiting the number of combinations

that needed to be evaluated – due to the computational demands involved in the

evaluation process.

6.7.1.1 Leave-One-Out Strategy

This initial strategy attempts to identify the weakest measures that are being com-

bined using the different combination strategies and then eliminates these measures

from combination in order to find the measures that produce the most effective

combination.

This involves an iterative process where we firstly combine all measures together

using a given combination approach (such as CombSUM), then after each iteration

we eliminate any measure(s), whose inclusion degrades the overall performance.

The way we evaluate which measure(s) degrade the overall performance is to run all

permutations in which we leave out each of the measures in turn. For example if we

are combining the measure x, y, and z, we would firstly combine all three (xyz ) and

evaluate its effectiveness, then in the first iteration we would evaluate xy, xz and

yz, from these would would then see which measures degrade the performance of

the xyz combination, and then eliminate these from the next iteration. The process

then stops if there is only one measure left or if none of the measures degrades the

performance.

In order to test the effectiveness of this strategy (at each iteration) we run these

combinations on a set of 100 queries (topics 701-800) from the TREC terabyte ad

hoc task, and then evaluate their effectiveness (based on their average IP score)

on a different set of 50 queries (topics 801-850), also from the same task. For any

of the methods that require weights for their combination (such as the weighted

rank approach) we generate weights for each individual measure based on their own

performance on the same set of topics (using their IP score), then scaling the weights

so that they sum to 1.
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Figure 6.43 shows the performance of the the different methods of combination

using this leave-one-out strategy. In this figure it can be seen that the Dempster-

Shafer methods provides the best overall performance in terms of average IP score.

Figure 6.43: Combining using leave one out strategy.

As described in Chapter 4 certain measures have a power-law distribution, mean-

ing that a small number of documents have very high scores, while the majority of

the documents have a very low score. A commonly used approach for normalis-

ing these distributions is to take the mathematical log of their scores. Figure 6.44

shows the performance where we use the log values for indegree, PageRank and

access counts (while the other measures remain the same). This figure shows that

using these log values helps to improve the performance for the CombSUM as well

as the linear combination methods, however, this deteriorates the performance of

the Dempster-Shafer combination method.

Overall the Dempster-Shafer method (without using the log values) outperforms

the rest of the combination methods.
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Figure 6.44: Combining using leave-one-out strategy (log).

6.7.1.2 Pair-wise Combination

Ideally we would like to exhaustively combine all measures together (which for cer-

tain methods require weights, and so this would also involve combining each of these

with a number of different weights) – needless to say this would be extremely com-

putationally expensive, especially if we consider the effort involved in re-sorting the

inverted index in order to evaluate each combination.

If we are combining two source of information, one of which performs well, and

the other which performs poorly, in general the lower performing measure will de-

grade the overall performance. For this reason we believe that for most cases, com-

bining the lower performing measures such as error no. with access counts for

example would not result in a more effective combined measure. This was also one

of the reasons why we choose to firstly combine the lower performing static measures

together and then combine the best of these with the term-specific measures. There-

fore in another attempt to combine these measure we choose to do so by combining

143



them in a pair-wise fashion, from lowest performing to highest performing (as shown

in Table 6.4). In this way we hope to gradually increase the performance of the com-

bined measures and so providing a more effective measure to combine with the most

effective single measures. So as an alternative to the leave-one-out approach, which

entirely eliminates a measure if it degrades the combination, this approach hopes

to combine the measures in such a way that more measures can contribute without

degrading the overall performance. Although in general we combine from lowest to

highest we choose to group similar measures together: warning no. and error no.;

indegree and PageRank ; global BM25 (QLTF) and access counts.

Measure Average IP Scores
Access counts 0.01183
Global BM25 (QLTF) 0.01109
URL length 0.01058
Info-to-noise ratio 0.01040
Warning no. 0.00987
Document length 0.00980
Indegree 0.00978
Error no. 0.00942
PageRank 0.00890

Table 6.4: Comparison of measure using average IP score (topics
701-800)

Figure 6.45 shows the combination steps (from 1 to 8) that are involved. Note

that when combining two measure together using a method that uses weights (such

as linear combination) we combine the two measures together using a range of

weights from 0 to 1 (in increments of 0.1) so that the sum of the two weights

sums to 1 – using this approach there are 11 combinations performed in all at each

step, and the highest performing combination is retained for the next step). For

example, if combining the two measures x and y using linear combination (which

requires weights for each source), we give varying amounts of weight to each input

in order to evaluate the optimum weights for this combination, so the 11 different

combinations that this produces is shown (with their appropriate weights) in Table

6.5.
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Combination no. Weight x Weight y
1 0 1
2 0.1 0.9
3 0.2 0.8
4 0.3 0.7
5 0.4 0.6
6 0.5 0.5
7 0.6 0.4
8 0.7 0.3
9 0.8 0.2
10 0.9 0.1
11 1 0

Table 6.5: Weights used for pair-wise combinations.

Based on our experiments with the leave-one-out strategy, we decided to drop the

CombSUM and Rank methods, as not only did these methods perform poorly, but

they are essentially special cases of the Linear Combination and WRank methods

respectively (where appropriate weights have been chosen). Therefore, for these

experiments we concentrate on the methods Linear Combination, Dempster-Shafer

and WRank. Again we run the experiments on the same TREC topics as before

(701-800).

Figure 6.46 shows the results of applying this pair-wise strategy. Firstly the

WRank approach is unable to gain an improvement from the combination of any of

the measures, and so continues with the strongest of the two measures at each com-

bination step, we can therefore use this as a baseline to see how much improvement

that each of the other approaches can achieve. We can see from Figure 6.46 that at

each of the combination steps both the linear combination and the Dempster-Shafer

methods are quite comparable – with the Dempster-Shafer approach again proving

to be the most effective. Overall we can see that with the final outcome there is

little to distinguish between the different types of combinations (Linear Combina-

tion, Dempster-Shafer, WRank), this is essentially down to their inability to improve

upon the highest performing individual measure (only Dempster-Shafer gaining an

improvement over the highest performing single measures).
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Figure 6.45: Pair-wise combination strategy.

6.7.2 SVM Combination

As discussed in Chapter 5, we may also use SVMs to combine sources of evidence.

Here we shall combine the same measures as used with the other methods of com-

bination – to allow meaningful comparisons to be made between the combination

methods.

As we discussed in Chapter 5, we wish to essentially use the SVM to classify

the documents into relevant and non-relevant sets. One of the major difficulties

to overcome when using this approach is how to generate representative sets of

relevant and non-relevant documents, in order to generate an effective SVM model

to classify the documents in the collection. For this we must choose a source of
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Figure 6.46: Pair-wise combination results.

representative high quality documents, as well as a source of low quality documents

from the collection. Figure 6.47, then shows that from these two sources we then

take two different sets of documents that are used to build the SVM’s training and

testing files.

The issue of representative high quality documents can be solved by using the

known-relevant documents associated with a set of TREC topics, using this we

generated a set of positive training examples from the TREC topics (701-750) and

a different set of positive testing examples from a different set of TREC topics (751-

800). The problem of generating a set of negative (i.e. low quality) documents

seems a more difficult prospect. As a first attempt we could attempt to use the

documents that are in returned by TREC for each topic marked as non-relevant.

However, we would not necessarily consider these to be representative low quality

documents as these are only included in the query relevance judgements as these

documents were returned by at least one group’s system in response to a particular

topic. So although these documents are not relevant for the specified topic they

should not be considered as the least likely to be relevant (of all documents) to any
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Figure 6.47: Generating SVM training and testing files.

topic. One possible way of generating more representative negative examples would

be to look again at the access count measure – however, now we are looking for the

the documents with the least number of access counts. There are actually a large

number of documents that do not receive any access count for the 2.4 million queries

that we used and so from these we randomly generate two different lists (negative

training and negative testing) from this set of documents with no access counts.

As an alternative to these negative examples we also generated negative training

and negative testing sets in a similar way, from the lowest scoring documents in the

global BM25 (QLTF) measure – which are the lowest scoring documents according

to this global BM25 measure. In order to assess the effectiveness of these negative

examples we also generated alternative negative sets for training and testing using

a random selection of documents from the entire collection. Note that all these

negative example sets are the same size as the positive example sets to give an

equal distribution of positive and negative documents – in order to prevent the class

imbalance problem (Probost, 2000). This leaves us with four alternative training and
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testing sets, where the positive examples are the same but the negative documents

differ:

• Positive + Negative QRELs (PN)

• Positive + Access counts (PAC)

• Positive + Global BM25 QLTF (PBM)

• Positive + Random (PR)

We firstly generate an SVM model by assessing the models effectiveness in cor-

rectly classifying documents in the testing set.

6.7.2.1 Classification Training

The conventional approach for training an SVM for the task of classification is to

generate an SVM model using the training set of positive and negative example

documents, then use this model to classify the documents in the testing sets. Based

on the accuracy of the model at classifing the documents in the testing set we can

assess the accuracy of the model (for classification purposes) and tune the SVM’s

parameters accordingly. Using SV M light (Joachims, 1999) with a linear kernel al-

lows us two parameters to tune: c which controls how strictly to enforce correct

classification when generating the model; j which controls by how much positive

training examples outweigh negative training examples. Figure 6.48 shows the re-

sults of using our different approaches for generating the training and testing sets

and shows how accurately the SVM can predict which class (positive or negative)

to put the documents from the testing sets into.

The parameter values for these models are as follows:

• PN: c=1, j=1.

• PAC: c=4096, j=1.

• PBM: c=8192, j=4.
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Figure 6.48: SVM Classification Accuracy.

• PR: c=2048, j=1.

As Figure 6.48 shows, the SVM which used the global BM25 (QLTF) measure

to generate the negative examples provided the best classification, followed by the

Access counts, followed by the random documents and finally the negative QRELs.

These results are not surprising, particularly if we consider what the SVM is trying

to do – separate the positive examples from the negative examples. It seems intuitive

for example that there should be very little to separate between the positive examples

and those marked as non-relevant in the QRELs and so this is the case, as the SVM

finds it difficult to separate these. This is in contrast with both the access counts and

the global BM25 (QLTF) documents, where the SVM can find a clear separation,

as is highlighted with a high level of classification accuracy.

Using each of these SVM models we can then classify all the documents in the

collection (as described in Chapter 5), which gives us a likelihood score for each

document that they should belong to the positive or negative class. We then use

these scores as a new query-independent measure, which we can use to re-sort an

index and evaluate their IP scores.
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In order to evaluate these we then calculated the average IP scores for each of

these over the same topics that we used in the testing phase for the SVMs (topics

751-800). These average IP scores are displayed in Figure 6.49, and in order to make

these figures more meaningful Table 6.6 displays the the average IP scores for all

the measures.

Figure 6.49: IP Scores trained using classification accuracy.

Measure Average IP Scores
Access counts 0.01874
Global BM25 (QLTF) 0.01725
URL length 0.01719
Info-to-noise ratio 0.01705
PageRank 0.01698
Indegree 0.01678
Warning no. 0.01666
Error no. 0.01589
Random 0.01570
Document length 0.01564

Table 6.6: Comparison of measures using average IP score (topics
751-800)

As we can see from these average IP scores in Figure 6.49, despite the high
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performance of PBM and PAC in classifying their corresponding testing examples,

this does not translate into high performance in terms of sorting an inverted index.

These results may not be due to the poor performance of the SVMs themselves,

but rather to our over-training for the task of classification. If we take for example

the access counts SVM with a c value of 4096, we can see that this is highly tuned so

that it imposes a high penalty for misclassified documents – this may work well in

this case where the training and testing documents are composed from similar types

of documents, however, ultimately we wish to classify all documents for the task

of effectively sorting an index, and not for classifying similar types of documents.

In order to gain more effective SVM models we should then turn our attention

from tuning based on the classification performance, to tuning based on the sorting

performance, and in order to measure this (sorting performance) we shall use the

IP measure.

6.7.2.2 IP Training

This is similar to the previous experiment in that we shall use the same SVM

training files, however, now instead of running the SVM classification process on the

appropriate testing set we classify all the documents in the collection and generate

a query-independent measure. We then evaluate the effectiveness of this measure

by re-sorting the inverted index using this measure and calculate an average IP

score over a set of topics. This is obviously a much more computationally expensive

process, as we generate several query-independent measures for each approach (PAC,

PBM and PR) in order to tune the SVM’s parameters, however, we believe that this

will give us a more effective sorting measure, as it is tuned for our specific task.

When we tune the SVM parameters using this approach, this gives the following

values:

• PAC: c=16, j=1.

• PBM: c=16, j=1.
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Figure 6.50: Training SVM using IP scores with a linear kernel.

• PR: c=128, j=1.

As can be seen from Figure 6.50, the performance of the different approaches

differ somewhat from the previous approach of tuning parameters based on the clas-

sification accuracy. In particular the PR approach performs quite well in comparison

to both the PBM and the PAC approaches.

At this stage we can see that unlike when tuning the PBM and PAC measures

using the classification task, where we achieve near perfect classification accuracy,

here there is room for improvement. We now choose to introduce the RBF kernel

into the SVM, so that the input vectors may be mapped into a higher dimensional

space – where separation between positive and negative examples may be more

successful. For this we used the same training and testing files for each approach as

before (PAC, PBM and PR) and tuned the parameters c, j and g using the IP score

as before. Figure 6.51 shows a comparison between the three approaches using the

linear kernel (as before) and now using a RBF kernel.
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Figure 6.51: Training SVM using IP scores with a RBF kernel.

The parameter values for these models are as follows:

• PAC: c=0.001, j=2.

• PBM: c=0.001, j=1.

• PR: c=0.5, j=8.

It is clear to see from Figure 6.51 that the RBF kernel improves the results

significantly over using the linear kernel. Again the PR approach performs the best,

followed by PAC and then PBM.

Analysis: it may seem unusual at first that the PR approach performs the best,

as the others measures (PAC and PBM) should have more accurate negative example

documents in their training and testing files. This can be seen from the results of the

classification experiments where the PBM (using a linear kernel) was able to classify

the testing documents with an accuracy of 99.98% and with the PAC approach

not far behind with 95.01%, whereas the PR approach achieved only an accuracy

of 79.52%. This demonstrates to us that perhaps our chosen documents as the
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negative examples for PAC and PBM may have been extremely negative examples

and that is why it was so easy to accurately classify their training examples into their

correct positive and negative classes. On the other hand, because we choose random

documents to represent the negative examples for the PR approach, although it was

more difficult to classify these documents into their correct classes, this approach

produced the best way to sort the index by.

If we imagine a 2D plane (such as that shown in Figure 6.52), on which lies

a collection of documents, at the top lies the high quality documents, and at the

bottom lies the low quality documents. If we then attempt to identify a set of

Positive (P) and a set Negative (N) examples from this collection – doing so in such

a way as we did with the PAC and the PBM approaches we would expect something

similar to that shown in Figure 6.53 where the positive and negative examples are

towards the two extremes of the plane. This would allow for an easy separation

of the two sets, and so allow for high classification accuracy, as we experienced in

our experiments with the PAC and PBM approaches. However, as the two classes

are so clearly separated it becomes difficult for the SVM to classify documents that

are in the middle of the plane. As we explained in Chapter 5 the SVM separation

concentrates on the support vectors that lie close to the separating plane between

the two classes (positive and negative), and as the two classes are so far apart there

are less support vectors for the SVM to deal with. We believe that with a selection of

negative examples that are slightly higher in quality that although its classification

accuracy would decrease, its ability to accurately sort an inverted index would be

increased. We believe that this is the most likely explanation for the difference

between the PAC and PBM approaches – PBM is more accurate at classification,

suggesting that the two classes are further apart than those chosen by the PAC

approach, and the PAC approach is more effective when tuned using the IP scores.

If instead we choose the negative examples using a random approach, as in our

PR approach we would end up with a situation similar to that shown in Figure

6.54. With this situation the two sets are much closer together and with a much
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Figure 6.52: High and low quality documents.

greater chance of misclassified documents. This would obviously make the task of

accurately classifying examples difficult, and this was shown to be the case. Also

the reason that the PR approach performed the best may also be explained by the

fact that the SVM can take into account that the negative examples may not be

highly accurate, by giving higher weight to the positive examples – this is controlled

by the j parameter, and for the PR approach the optimal value for this was 8 which

suggests that these random negative examples were not given as much weight as the

positive examples.

Although we believe that this PR approach has a distinct disadvantage, in that

it is tuned very specifically to a certain set of positive and negative examples and for

the (randomly selected) negative examples this is probably an untrue reflection of a

correct selection of more accurate negative examples. When we evaluate the average

IP scores on a set of unseen topics (801-850) we can now see that the performance

of the PR approach degrades significantly in comparison to both the PAC and PBM

approaches.
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Figure 6.53: High and low quality documents with positive (P) and
negative (N) examples.

Figure 6.55 shows what we believe to be a truer reflection of the performance of

the different approaches, where they are evaluating a set of unseen topics (801-850).

Now the performance of the PR approaches drops off as we expected, as we believe

that it was overly tuned on a unrealistic set of negative examples, whereas the PAC

and PBM approaches remain more stable.

6.7.3 Combination Analysis

We now take a look at the different types of combinations that we have experimented

with and see how they compare. For this we evaluate the main approaches on a set

of unseen topics (801-850), so that no approach has an unfair advantage.

• Leave-one-out strategy: from this strategy the only method that produced

a score that was above the highest individual measures was the Dempster-

Shafer method – this is the only methods that we will use from this strategy

(referred to as LDS).
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Figure 6.54: High and low quality documents with positive (P) and
random negative (N) examples.

• Pair-wise combination: from this strategy the only method that produced a

score above the highest individual measures was the Dempster-Shafer method

– this is the only methods that we will use from this strategy (referred to as

PDS).

• SVM Combination: From this we shall use the PAC measure, generated

using the RBF kernel.

Figure 6.56 shows the results of the average IP scores of these three different

methods. It is clear that the PAC approach is the highest performing measure,

followed by PDS and then LDS. In fact the PAC method scores higher than any

of the individual measures on this unseen set of topics (as can be seen from table

6.7) and is statistically significant from the highest single measure (URL length) –

statistical significance of 0.03 using a paired t-test.
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Figure 6.55: IP scores with a RBF kernel on an unseen set of topics.

Measure Average IP Scores
URL length 0.00676
Indegree 0.00633
Global BM25 (QLTF) 0.00564
Access counts 0.00540
Info-to-noise ratio 0.00534
Random 0.00498
Error no. 0.00493
Warning no. 0.00482
PageRank 0.00460
Document length 0.00396

Table 6.7: Comparison of measures using average IP score (topics
801-850)

6.7.4 PageRank Re-visited

In Chapter 4 we discussed the use of the PageRank measure in order to calculate

a popularity measure for the documents within a document collection, based on

the linkage structure between the documents. As we mentioned previously, the

calculation of PageRank is often described a “random surfer” on the Web, that
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Figure 6.56: Comparison between the different combination meth-
ods.

browses from page to page, then at certain points becoming bored and jumping to

an alternative page. In the typical calculation of PageRank this “random jumping”

is done at random and all the documents in the collection have an equal chance

of being selected. However the PageRank calculation does allow for this random

jumping to be somewhat less random, and in fact we can change this so that rather

than being random at all, the jumping is done to our own preferences. In this way

a personalised PageRank may be calculated. Although rather than generating a

personalised PageRank for any particular user’s perference, we wish to personalise

the PageRank calculation, so that is prefers to jump to higher quality documents

(as estimated by our previous experiments).

For this we generate a preference vector which gives a preference score to each

document in the collection, and as our previous experiments suggest that our SVM

PAC methods produces the best results, we use this to generate our preferences. In

order to do this we use the same PAC method that is tuned using the IP scores on

the topics 750-800 we generate these preferences. Figure 6.57 shows the performance

of this personalised PageRank, compared with the default PageRank calculation.
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Figure 6.57: Personalised PageRank performance.

This shows that modifying the preferences of the “random surfer” so that it now

prefers to jump to the documents ranked highly by the PAC measure, increases the

performance of the default PageRank measure.

Also as defined within the calculation of PageRank is the damping factor, which

assigns the probability that the random surfer will follow a link from the current

page, this again allows us another means by which to modify the surfing behaviour

of this random surfer. Our default calculation of PageRank, as well as our additional

calculation with the preference vector both use a damping factor of 0.85 – i.e. there

is a 85% probability of the surfer following a link on the current page. Next we

decrease the value that we assign this damping factor (and so increase the probability

that the surfer jumps to our preference vector). Figure 6.58 shows the performance

of more personalised PageRanks with damping factors of 0.85, 0.25, 0.1 and 0.1.

This shows that decreasing the damping factor (and so increasing the likelihood of

jumping to our preference documents) increases the performance, however, this does

not perform as highly as using the PAC measure on its own.
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Figure 6.58: Changing damping factor of personalised PageRank.

6.7.5 Combining Static and Term-specific Scores

In our previous experiments we have concentrated on combining static query-independent

measures together in order to produce a single more effective measure. Having done

this we can still see that when comparing the best of our static measures (PAC, PDS,

and LDS) with the best of our term-specific measure (BM25), as shown in Figure

6.59, the term-specific measure clearly outperforms the static measures. This is not

very surprising, as we would expect that a term-specific measure would perform

much better than a static measure alone, however, there does seem to be quite a

large gap between the two types of scores (term-specific and static). In this section

we will combine these two types of scores, in an attempt to provide a more effective

overall measure.

6.7.5.1 Combining at Index Creation Time

In Chapter 4 we described the process for combining a term-specific measure with

a static measure. This is essentially the same as combining two static measure

together, except that because the term-specific measure generates different scores
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Figure 6.59: Comparing static and term-specific measures.

for documents based on the term being processed, the combination must also occur

as each term is processed during the index creation process.

In order to combine these measures, like combining the static measure, we can

choose from a number of combination methods such as combSUM and linear combi-

nation, however, due to the success of the Dempster-Shafer method in combining the

static measures we choose to use only this method to combine the term-specfic and

static measures. We do this not only because of its prior success, but also as a new

inverted index must be created for each different combination that we investigate,

and as this is a very time consuming process (as well as consuming a large amount

of hard disk space) we feel we must only persist with the most likely approach to

produce a superior performing combination.

We combined each of the static measures PAC, PDS and LDS with BM25 for

each postings list in the inverted index using the Dempster-Shafer approach, where

we varied the weights given to each measure from 0.1 to 0.9 (in increments of 0.1),

in a similar way as we did in the pair-wise combination strategy (in section 6.7.1).

This resulted in a the creation of 9 different indexes for each of the static measures
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that we combined with BM25 (27 in all for the 3 measures we used). For each of

these we calculated the average IP scores for the topics 801-850 and selected the

highest performing index for each of the static measures that was being combined,

these results are shown in Figure 6.60.

Figure 6.60: Combining static and term-specific measures.

Table 6.8 shows the optimal weights (between the static measures and BM25)

that were used to produce the results in Figure 6.60. This shows that overall the

PAC measure contributed the most to the combination, with a weight of 0.7, while

BM25 only contributed 0.3, while the other measures contributed much less to their

optimal combinations.

Measure 1 Weight 1 Measure 2 Weight 2
BM25 0.3 PAC 0.7
BM25 0.8 PDS 0.2
BM25 0.9 LDS 0.1

Table 6.8: Optimal weights used in the combinations

As shown in Figure 6.60, the combination of the static measures all gain an

increase in performance over BM25 alone, however, only the combination of BM25
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with PAC and PDS measures provide results that are statistically significant from

that of BM25 (as shown in Table 6.9) using a paired t-test (with the BM25 and

PAC combination being the only combination that is highly significantly different

from BM25). This can probably be attributed to the amount of weight that was

given to the PAC measure in the combination, when compared to the others (PDS

and LDS), however, as more weight was given to these measure they degraded the

performance of the index (in terms of average IP).

Measure Probability of not being significant
PAC + BM25 0.0028
PDS + BM25 0.0243
LDS + BM25 0.1450

Table 6.9: Measuring statistical difference between combinations
and BM25

Having managed to produce a method that can outperform the BM25 measure,

using the average IP, next we now revert back to using more conventional measures

such as MAP and P10 to see if the use of the IP measure that we adopted will also

perform well with these other measures. Ultimately we wanted to produce a measure

that would perform well in terms of measures such as MAP and P!0, having adopted

the IP measure as a means to evaluate the effectiveness of the sorting within the

postings lists in the inverted index.

6.7.5.2 Conventional IR Evaluation

For this we wish to evaluate our inverted index created using our optimal combina-

tion of BM25 with the PAC measure, and evaluate this using MAP and P10. This

requires us to revert back to our previous approach of ranking the documents using

BM25, while limiting the number of postings that are evaluated for each query-

term, using the maximum postings size cut-off approach. For this experiment we

will use the following cut-off sizes: 10,000, 50,000, 100,000, and 200,000, 300,000

and 400,000. As we discussed previously we feel that at the cut-off point of 200,000
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(postings per query-term) is a reasonable cut-off point that eliminates a large num-

ber of postings from being processed, while generally allowing enough to obtain a

satisfactory level of accuracy. Figure 6.61 shows that by selecting the 200,000 cut-off

point the system processes less than 15% of all the postings for each of the query-

terms. This will save our system from examining a large number of postings, which

will lead to a faster query-time as well as reducing the necessary system resources,

such as memory and CPU clock cycles. The goal is then to limit the trade-off be-

tween system accuracy and processing more postings that is made, as we process

only a small number (e.g. 15%) of the overall postings for each query term.

Figure 6.61: Percentage of postings processed at each cut-off point
on topics 801-850

Figures 6.62 and 6.63 show the performance of the index created by combining

BM25 with the PAC measure, when compared with the standalone BM25 measure.

Here we can see that although the combined index does prove to be more effective,

both for MAP and P10 at the 200,000 cut-off point, overall there is little to separate

between the two indexes (particularly at the earlier cut-off points). For MAP the

two indexes perform quite similarly, while for P10 the BM25 index performs above

the combined index at certain earlier cut-off points.

However we notice that there may be an unfair bias towards BM25 with this
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Figure 6.62: Evaluating BM25 + PAC index using MAP.

Figure 6.63: Evaluating BM25 + PAC index using P10.

evaluation: in a similar way to the way in which we believed that the standalone

static measures were perhaps being unfairly evaluated at retrieval time, by the use

of the BM25 measure in retrieval. This is because in the creation of the index we
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have re-ranked the postings using a combination of the BM25 and PAC measures,

now at retrieval we ranking documents only BM25 and so we are diluting the effect

of the PAC measure, as we increase the size of the cut-off. In order to fully evaluate

the contribution of the both measures at retrieval time we believe that the measures

must also be combined at retrieval time.

6.7.5.3 Combining at Retrieval Time

In order to combine the same static measure (PAC) with the BM25 scores at re-

trieval, this done is the a very similar way as to the way it was done at the index

creation stage. Although at the index creation stage the BM25 scores were calcu-

lated in isolation for each term, at retrieval time BM25 combines the scores for each

of the query terms. So rather than combining after each term’s scores are calculated,

the combination is carried out after all the BM25 calculations have been made. Here

(again) we use the Dempster-Shafer method for combination, and again we use a

number of weights for each of the elements being combined: choosing two weights so

that they sum to 1, starting at 0 and incrementing by 0.05 (giving 20 combinations

in all). In choosing an optimal combination from these we can choose to make a

trade-off between the performance of MAP and P!0, in this case we choose in favour

of the P10 performance: we do this because of the nature of our type of retrieval,

we are trying to speed up the query-time while presenting the best top 10 results

that we can, as for a Web search scenario, most users do not look at the results past

this point. Figures 6.64 and 6.65 present the MAP and P10 performance figures

for the previous approach, where the combination occurred only in the index (index

combination) and now where the combination is done at both the index and retrieval

stages (full combination).

Here we can see that although there is relatively little change between the scores

for MAP, for P10 there is a clear improvement, and yet another gain is made over

the standalone BM25 index: for our 200,000 cut-off point there is a 8% increase

in P10 (the difference between the P10 values is also statistically significant with a
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Figure 6.64: Evaluating BM25 + PAC at both the index and re-
trieval stages.

value of 0.014). We feel that this shows a truer reflection of the benefit that can be

obtained from combining our static measure with BM25 .

6.8 Examining Performance Trade-offs

We now consider the performance of the conventional IR system, where all postings

are examined and then ranked using BM25, compared with a sorted index created

using our discussed approach, which combines the SVM PAC measure with BM25 at

both index creation and retrieval time. Tables 6.10 and 6.11 present the performance

figures for MAP and P10 respectively for the convention index (ranking using BM25)

and our sorted index using the 200,000 posting cut-off point (which amounts to 15%

of the total postings for all query-terms).

This equates to a 6.9% loss in MAP, however, accomplishes an increase of 6.1%

in the P10 performance – even though the system is processing much less postings.

Again we feel that the trade-off in MAP is acceptable for a search system whose

users are primarily concerned with the accuracy of top 10 results, as well as the
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Figure 6.65: Evaluating BM25 + PAC at both the index and re-
trieval stages.

Index Type MAP Score
Conventional Index 0.3044
Sorted Index (only processing 15%) 0.2817

Table 6.10: Examining the trade-off in MAP between a conventional
index and a (“pruned”) sorted index.

responsiveness of the search system, and we believe that our approach provides an

ideal candidate for this. Also a certain drop in MAP performance is to be expected

as we are processing much less documents and inevitably a small number of relevant

documents will be missed, and so this drop in MAP is most likely due to a drop-off

in recall. For a Web search scenario, where the typical user does not look past the

top ten results this drop in recall will not be noticed.

As we are primarily interesting in judging the effectiveness of our P10 perfor-

mance for our fully combined sorted index, we look to compare this with the results

of another search system. For this we look to the results produced from the publicly

available Zettair search engine which was used by the RMIT group in the TREC

terabyte conference Garcia et al. (2006). Their zetabm run from their TREC 2006
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Index Type P10 Score
Conventional Index 0.56
Sorted Index (only processing 15%) 0.594

Table 6.11: Examining the trade-off in P10 between a conventional
index and a (“pruned”) sorted index.

submission (details in Garcia et al. (2006)), uses the Okapi BM25 ranking and so we

assume that this should be comparable with our own baseline BM25 performance.

Figure 6.66 compares our own baseline (using BM25 ranking, as shown in Table

6.11), as well as our sorted index at the 200,000 cut-off point, with the Zettair

(zetabm) run – as we can see from this our baseline run achieves an improvement of

12.45% over the zetabm score, while our sorted index (at 200,000 cut-off) gains an

increase of 19.28%.

Figure 6.66: Comparing performance with a different search system
(P10).

This gives a more objective view of the performance of the system, and shows

that our system’s BM25 ranking provides a relatively strong baseline. Overall this

shows us that our sorted index approach allows us to effectively eliminating large

portions of the inverted index without degrading the system accuracy and in fact
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improve upon a standard Okapi BM25 ranking which evaluates all postings.

6.9 Impact of the Sorted Index

In order to investigate the impact that the sorted index has on improving the systems

performance, we decided to combine our best static measure (PAC) with our baseline

BM25 search (which processes all the postings) at retrieval, so that we could see if

that the system can achieve the same effectiveness (in terms of P10), even though

it will be much less efficient (as it will process all the postings for each query-term).

This will show us if the use of a sorted index contributes to the effectiveness of the

system as well as to its efficiency.

For this we combined the BM25 scores with our PAC measure using the Dempster-

Shafer approach (in the same way as we combined our sorted index’s results with

PAC previously). Again we selected the top performing combination, using a number

of weights for each combination source and Figure 6.67 shows the P10 performance

for the baseline BM25 ranking (using all postings), as well this same baseline com-

bined with our PAC measure at retrieval time, and this is compared with our fully

combined sorted index (using PAC and BM25).

This shows that even though the incorporation of the static measure improves

the results over using BM25 alone, it is still not able to achieve the same level of

performance as the sorted index which uses the same measure. This highlights the

usefulness of the sorted index, as a conventional index is unable to achieve the same

gains by incorporating the same static measure at retrieval time.

We believe that this is because the sorted index is able to filter out the lower

quality documents that a term-weighting ranking function such as BM25 does not

account for and so by choosing to process less postings (using the sorted index)

the postings that are not selected are less likely to be relevant and so the retrieval

accuracy is improved along with the efficiency of the search.
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Figure 6.67: Impact of using a sorted index (P10).

6.10 Summary

Firstly in this chapter we evaluated a number of early-termination schemes that

allow for a number of postings to be eliminated from each of the postings list. From

this we found that the maximum postings size approach allowed to us the best

trade-off between the number of postings processed and retrieval accuracy.

We then experimented with many different query-independent measures for the

task of effectively sorting an inverted index. First of all we evaluated these in a

standalone fashion, as if being used in a search system, and using a BM25 ranking

of the documents and evaluated the performance using MAP and P10. From these

experiments we found that the term-specific measures, such as BM25 and with

document term frequency (TF) were the highest performing

We later re-assessed the way in which we evaluated the performance of these

measures and eventually introduced the IP measure, which we felt was a more direct

measurement of the sorting which the postings lists. Again using this approach we

found that the term-specific measure were the highest performing (with a greater
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increase over the static measures than before). We also found that using this IP

measure gave us significant savings in a number of areas, and made it feasible for

us to evaluate a large number of combinations.

In section 6.7 we experimented with a number of different combination strate-

gies: leave-one-out, pair-wise, as well as combination using support vector machines

(SVMs). Firstly we concentrated on combining the static measures together to find

a number of best performing static measures. From these experiments we found that

the SVMs provided the most effective combination results. Next we experimented

with combining the best performing (combined) static measures with the best term-

specific measure (BM25) in order to improve upon the term-specific scores. We

found that we were also able to increase the term-specific scores by combining these

with our combined static measures. Also in section 6.7 then sorted an inverted in-

dex using our best performing measures (PAC – as indicated by the IP scores) and

then evaluated this using MAP and P10. We found that this could give us a slight

increase in MAP as well as P10, but when we combined our PAC measure with

BM25 at retrieval-time as well, this gave a further increase to performance to P10,

while decreasing MAP slightly.

Having produced what we believed to be an effective sorted index we then took a

look at the trade-offs that were being made by using this sorted index and eliminat-

ing a large number of postings, compared against our own baseline system (where

no postings are eliminated from the query-terms), as well as comparing against a

different search system. Overall we found that by using our sorted index approach

and eliminating postings we could actually gain an increase in P10 over our own

search engine’s baseline BM25 search (which processed all postings), as well as that

of the publically available Zettair search engine (using a similar BM25 ranking on

all postings).

Finally we tried to isolate the impact that the use of the sorted index has on

the effectiveness of system. For this we combined the results of our baseline search

(which processed all postings for each query-term) with our best static measure
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(PAC) at retrieval. This was to see if the static measure was used with a conventional

index and just combined at retrieval time would be as effective as combining it with

a sorted index (even though it would process 85% more postings and would therefore

be much less efficient). Here we found that the the conventional index could not gain

the same level of effectiveness as the sorted index, again highlighting the usefulness

of the sorted index at improving both the system’s effectiveness and efficiency.
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Chapter 7

Conclusions

In this chapter we draw some conclusions from our work, and we then suggest some

extensions and future directions.

7.1 Conclusions

Here we give our conclusions from our main topics of investigation, and then draw

some overall conclusions from our work.

Early Terminiation

Firstly we found that sorting an inverted index by an effective measure (such as

BM25) and choosing to eliminate a large number of postings using various strategies,

and in particular the maximum postings size approach, allowed only a small drop-off

query effectiveness as measured by MAP and P10. This provided us with a means by

which our system could process less than 15% of the total number of postings that

were available of all the query-terms and still provide reasonable results to the end

user – therefore increasing the efficiency, with a minimal decrease in effectiveness.

From our initial experiments we were quite impressed with this level of perfor-

mance and considered this a relatively strong performing baseline. Although our

main goal was then to generate an effective static measure and then determine if
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this could be incorporated with our baseline sorting to further improve upon these

initial results.

Term-Specific Versus Static Measures

Our next area to investigate was the effectiveness of using different query-independent

measures to sort an inverted index. We found that the term-specific measures such

as BM25 far outperformed the static measures. This was not particularly surprising

to us, as these term-specific measures provide a specific sorting for each postings

list which is more accurate than sorting all the postings by the same static sorting.

Our original intention was to combine these static measure together in such a way,

so that they provided a richer representation of the documents and then combine

these with the term-specific measure to improve upon their performance also.

Evaluation

Having re-assessed the way in which we were originally evaluating the effectiveness

of the each sorted index we then proposed the use of an Index Precision (IP) ap-

proach, in order to calculate the effectiveness of using different query-independent

measures to sort an inverted index. Not only did this save us a large amount of

computing time, and hard-disk space, but this also made it feasible to evaluate the

large number of variants of different measures (that would be generated as a result

of our combination experiments).

We also believe that this is a more accurate way of accessing the performance of a

sorted index, compared with the previous approach of analysing the performance of

a BM25 ranking at various cut-off points. This approach also eliminates the diluting

effect that can be caused by assessing the ranking after applying another query-time

ranking such as BM25. This method assesses the position of the documents with

the postings lists themselves and so should produce a more accurate assessment of

the sorting performance, than trying to assess this after an additional ranking has

been applied.
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Combination

We next found that of the combination methods that we experimented with, our

SVM approach produced the best results. Although we found that the way in which

the positive and negative example documents can have a significant effect on the

performance on the classification, because of this we believe that these results could

be further improved with further experimentation into the way representative sets of

positive and negative documents are selected from the collection. Perhaps a manual

intervention in selecting high and low quality documents from a collection (while

time-consuming) would allow an SVM to more accurately classify documents.

In general we found that the combination of different measures, with traditional

combination methods such as linear combination (which required weights) was diffi-

cult and time consuming, while combining based on the documents’ rankings proved

to be quite ineffective for our specific task. Even when combining less than ten

sources together it can be time-consuming to try all possible combinations (for a

weighted combination), while also varying the weights given to each combination.

This would also grow if we were to add additional sources into this combination.

Rather than trying all possible combinations we experimented with two different

combination strategies, which we felt could gain the most from the sources that

we were combining (while remaining computationally feasible within a reasonable

timeframe). Using these combination methods we found that we could only achieve

minor improvements over the highest performing single static measure and overall

these lagged behind the more effective combination generated by the SVM combi-

nation approach.

Our experiments also found our best combined static measures could also be

combined with our best term-based measure (BM25) to provide an increase in ef-

fectiveness in terms of IP. We then wanted to re-evaluate the effectiveness of the

sorted index using the conventional MAP and P10 evaluations, and here we found

that to gain maximum performance from the sorted index our proposed static mea-
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sure should be combined at both indexing-time as well as retrieval-time with our

term-based measure. Using this approach the system was able to gain a significant

increase in P10 performance, even though it was only processing 15% of all available

postings for the terms in the queries (compared with the system when it processed

all postings for each query-term).

Personalising PageRank

We experimented again with the use of PageRank as a means of sorting the inverted

index, this time by specifying the browsing preferences of the random surfer, as well

as modifying the likelihood that this random surfer is to jump to a different page

(by modifying the damping factor). Here we found that by changing the preference

of the random surfer to the same preferences of our best performing static query-

independent measure, that this increased the performance. Also by increasing the

liklihood that the surfer would jump to these “preferred” pages, a further increase

in performance could be observed, however, this performance was still below that of

using the static measure on its own to sort the index.

Hypothesis Re-visited

Our original hypothesis was that if we could provide an effective static measure that

could promote the higher quality documents within the collection, while demoting

the documents of lower quality, then we could use this measure to successfully elimi-

nate a number of documents from consideration at retrieval time, which would allow

for more efficient retrieval, but also for a more effective search – as the documents

that would be eliminated should be unlikely to be relevant.

The way in which we eliminated these documents at retrieval time was with the

use of a sorted index, combined with the use of early termination applied uniformly

to each of the postings lists of the query terms. We found that sorting the postings

lists by an effective term-specific measure such as BM25 allowed only a small drop-

off in effectiveness while only processing a small percentage of the overall postings.
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We then investigated the use of static measures, in order to promote higher quality

documents from the entire collection. We found that by combining these static

measures together and then combining these with BM25 our system could achieve

gains in both effectiveness (in terms of P10 performance), as well as efficiency (in

terms of number of postings processed), over both our own search engine’s BM25

search, as well as that of the Zettair search engine using a similar BM25 ranking

(even though these were processing all available postings for each query-term).

We believe that these results validate our original hypothesis as the use of a term-

weighting approach such as BM25 can only limit the drop-off in system effectiveness,

while with the integration of an successful static measure the system is able to

process less documents, while at the same time improve the accuracy of the results.

The fact that the system can increase either the effectiveness or the efficiency is

not a particularly impressive feat, however, to increase both is much more difficult

to achieve. Our findings from these experiments illustrate to us that it is possible

to gain an increase in both the effectiveness and the efficiency of a search system,

with the incorporation of a sorted index, which is based on the use of an effective

static measure for identifying high quality documents in a query-independent man-

ner. Although we have proved that our current approach provides effective results,

we believe that there is scope for the further refinement of this work, as well as

extensions to this field of research.

7.2 Extensions and Future Work

We believe the research in this thesis allows potential for future work, which we

describe in this section.

Index Pruning

When using a pre-defined cut-off point with a sorted index (with the maximum
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postings size approach for example), this is in effect ignoring the postings that lie

past the specified cut-off point, and therefore the postings past this point may be

pruned, while still retaining the same performance as the sorted index using the

same cut-off point. The essential difference with this approach (compared with the

previously discussed sorted index) is that rather than storing all the postings and

then at query-time choosing a specified cut-off point, the cut-off point is now chosen

at indexing time. The benefit of this approach is that a substantial amount of disk-

space can be saved as a large number of postings are not saved to disk. However,

this does have the disadvantage that the cut-off point is now pre-defined.

A further extension that is allowed by using this pruned index is that the index

can then be re-sorted by the document identifiers so that conventional compression

techniques (discussed in Chapter 2) may be used on the index. This access-pruned

approach was proposed for an access count ordered index by Garcia et al. (2004),

and was shown to have the dual benefits of decreasing storage space, as well as

increasing query throughput.

Dynamic Cut-off Selection

One of the advantages of using a sorted index (without pruning), is that it allows the

cut-off point for termination to be changed. This may be of benefit when answering

potentially difficult queries, where there are few relevant documents, and so using a

larger (or no) cut-off point may be of benefit. This would require us to identify the

potential difficulty of a query and then dynamically choose the number of postings

to process for each query term. One possible way of doing this would be to assume

that the length of the query indicates how vague or specific is – with a query that is

more specific perhaps requiring more postings to be processed in order ensure that

sufficient accuracy is achieved with the returned results. Conversely for a vague

query that may have a large number of relevant documents within the collection, it

may be possible to process less postings for each query-term, and still retain high

accuracy with the top 10 documents.
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Also the facility for the user to specify the amount of information that is to be

processed in response to their query may be useful in certain circumstances. For

example, for certain searches it may be of vital importance that all available docu-

ments are returned (i.e. high recall) and as we have previously discussed the use of

a sorted index with a relatively small cut-off point would not be ideal for this case

and so the user may be willing to wait longer for a search to complete so that higher

recall is achieved.

Different Features

Although we clearly found benefit with the incorporation of our chosen query-

independent measures, we do not claim that this was an exhaustive list of the

best measures that are available. Other query-independent measures, such as click-

through data (which we described in Chapter 4 but did not include in our experi-

ments due to the difficulty in acquiring such data), may be another good candidate

for further investigation. There may be many other indicators of document quality

that we may not have even considered, and the inclusion of many other such mea-

sures may bring about a further increase in performance.

Positive and Negative Examples

In order to combine measures using the SVM approach we selected both positive

and negative example documents (i.e. high and low quality examples) to train

and test the SVM model. We believe that with greater experimentation with the

way in which we select these positive and negative examples we could improve the

performance of this SVM approach.

Perhaps rather than using binary relevance judgments (as currently used by

TREC), where documents are judged as relevant or not, a scaled ranking of rel-

evance might give more discrimination between positive examples. Also manual

intervention might be useful in order to provide more accurate positive and negative

examples.
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Apply on Larger Collections

Although we carried out our experiments on quite a large collection of documents,

we believe that even greater gains could be made on larger collections, such as the

Web, which we believe contains larger amounts of low-quality documents. This may

also gain a benefit from the inclusion of a spam detection measure, which would

demote documents that are likely to contain spam.

Updating the Index

One of the major drawbacks that we see with the use of a sorted index (as currently

implemented) is its ability to add new documents to the index, without the need to

re-sort the index. For the conventional index, which is sorted in order of the docu-

ment identifiers, a new document can be added to the end of the relevant postings

lists, however, when using a sorted index for each of the terms in the new document,

these terms’ postings lists will have to be re-sorted. Perhaps further research into

this area could provide a more effective way of allowing updates to a sorted index.

Experiment with Different Types of Data

Although we applied our specific approach to the domain of text retrieval, we believe

that a similar approach may be applied to different types of data collections.

For instance, in a video retrieval system which deals with the retrieval of large

amounts of video that is continuously captured from different sources, there would

inevitably be large amounts of data in the system that may not be of much relevance

to an end user. Perhaps a system that can identify events that are likely to be of

interest, for example in CCTV footage this may be the appearance of a person,

which would be given a higher weighting than several minutes (or hours) of video

that contain no significant activity and so would be unlikely to be of interest to a

user. In this system the video segments could be stored in such a way that these more

significant events are stored first and potentially allow for more efficient retrieval on
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this type of data, with more effective results.

Due to the development of ubiquitous, wearable, multimedia devices, researchers

have started work on devices that passively capture data, so that people can auto-

matically capture and record their daily lives (Lamming and Flynn, 1994; Gemmell

et al., 2002). This data, which is also known as life logs, can grow extremely quickly

and this causes new problems to the way in which data should be stored and re-

trieved. Some of the research work in this area is concerned with the extraction

of landmark events from this data so that significant events can be found (Blighe

et al., 2006). Perhaps the use of these landmark events could be used to order the

way in which this data is stored so that more significant events are store first (and

searched first) – in a similar way to the way in which we utilise a sorted index for

text retrieval.

Similarly, if information is being continually captured from a wireless sensor net-

work, much of this data may not be significantly different from a lot of data that

has already been captured and so a method for identifying potentially interesting

events may also be useful in this case so that the data may be filtered, in order to

provide more efficient and effective retrieval on this data, for certain retrieval tasks.
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Appendix A

TREC Terabyte Ad-hoc Topics

Table A.1: TREC terabyte topics (701-801).

Topic Number Topic Title

701 U.S. oil industry history

702 Pearl farming

703 U.S. against International Criminal Court

704 Green party political views

705 Iraq foreign debt reduction

706 Controlling type II diabetes

707 Aspirin cancer prevention

708 Decorative slate sources

709 Horse racing jockey weight

710 Prostate cancer treatments

711 Train station security measures

712 Pyramid scheme

713 Chesapeake Bay Maryland clean

Continued on Next Page. . .
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Table A.1 – Continued

Topic Number Topic Title

714 License restrictions older drivers

715 Schizophrenia drugs

716 Spammer arrest sue

717 Gifted talented student programs

718 Controlling acid rain

719 Cruise ship damage sea life

720 Federal welfare reform

721 Census data applications

722 Iran terrorism

723 Executive privilege

724 Iran Contra

725 Low white blood cell count

726 Hubble telescope repairs

727 Church arson

728 whales save endangered

729 Whistle blower department of defense

730 Gastric bypass complications

731 Kurds history

732 U.S. cheese production

733 Airline overbooking

734 Recycling successes

735 Afghan women condition

736 location BSE infections

737 Enron California energy crisis

Continued on Next Page. . .
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Table A.1 – Continued

Topic Number Topic Title

738 Anthrax hoaxes

739 Habitat for Humanity

740 regulate assisted living Maryland

741 Artificial Intelligence

742 hedge funds fraud protection

743 Freighter ship registration

744 Counterfeit ID punishments

745 Doomsday cults

746 Outsource job India

747 Library computer oversight

748 Nuclear reactor types

749 Puerto Rico state

750 John Edwards womens issues

751 Scrabble Players

752 Dam removal

753 bullying prevention programs

754 domestic adoption laws

755 Scottish Highland Games

756 Volcanic Activity

757 Murals

758 Embryonic stem cells

759 civil war battle reenactments

760 american muslim mosques schools

761 Problems of Hmong Immigrants

Continued on Next Page. . .
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Table A.1 – Continued

Topic Number Topic Title

762 History of Physicians in America

763 Hunting deaths

764 Increase mass transit use

765 ephedra ma huang deaths

766 diamond smuggling

767 Pharmacist License requirements

768 Women in state legislatures

769 Kroll Associates Employees

770 Kyrgyzstan-United States relations

771 deformed leopard frogs

772 flag display rules

773 Pennsylvania slot machine gambling

774 Causes of Homelessness

775 Commercial candy makers

776 Magnet schools success

777 hybrid alternative fuel cars

778 golden ratio

779 Javelinas range and description

780 Arable land

781 Squirrel control and protections

782 Orange varieties seasons

783 school mercury poisoning

784 mersenne primes

785 Ivory-billed woodpecker

Continued on Next Page. . .
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Table A.1 – Continued

Topic Number Topic Title

786 Yew trees

787 Sunflower Cultivation

788 Reverse mortgages

789 abandoned mine reclamation

790 women’s rights in Saudi Arabia

791 Gullah geechee language culture

792 Social Security means test

793 Bagpipe Bands

794 pet therapy

795 notable cocker spaniels

796 Blue Grass Music Festival history

797 reintroduction of gray wolves

798 Massachusetts textile mills

799 Animals in Alzheimer’s research

800 Ovarian Cancer Treatment

801 Kudzu Pueraria lobata

802 Volcano eruptions global temperature

803 May Day

804 ban on human cloning

805 Identity Theft Passport

806 Doctors Without Borders

807 Sugar tariff-rate quotas

808 North Korean Counterfeiting

809 wetlands wastewater treatment

Continued on Next Page. . .
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Table A.1 – Continued

Topic Number Topic Title

810 timeshare resales

811 handwriting recognition

812 total knee replacement surgery

813 Atlantic Intracoastal Waterway

814 Johnstown flood

815 Coast Guard rescues

816 USAID assistance to Galapagos

817 sports stadium naming rights

818 Chaco Culture National Park

819 1890 Census

820 imported fire ants

821 Internet work-at-home scams

822 Custer’s Last Stand

823 Continuing care retirement communities

824 Civil Air Patrol

825 National Guard Involvement in Iraq

826 Florida Seminole Indians

827 Hidden Markov Modeling HMM

828 secret shoppers

829 Spanish Civil War support

830 model railroads

831 Dulles Airport security

832 labor union activity

833 Iceland government

Continued on Next Page. . .
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Table A.1 – Continued

Topic Number Topic Title

834 Global positioning system earthquakes

835 Big Dig pork

836 illegal immigrant wages

837 Eskimo History

838 urban suburban coyotes

839 textile dyeing techniques

840 Geysers

841 camel North America

842 David McCullough

843 Pol Pot

844 segmental duplications

845 New Jersey tomato

846 heredity and obesity

847 Portugal World War II

848 radio station call letters

849 Scalable Vector Graphics

850 Mississippi River flood
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