Fluorescent Boronic Acid Derivatives

for Glucose Biosensing

<u>Danielle Bruen</u>, Larisa Florea* and Dermot Diamond

Insight Centre for Data Analytics, National Centre for Sensor

Research, Dublin City University, Dublin 9, Ireland

Centre for

Data Analytics

Introduction

Boronic acids (BA) are well-known for their interactions with diol-containing compounds like saccharides, making these compounds attractive for physiological glucose sensing. Fluorescent moieties are commonly incorporated into a BA derivative's framework to monitor the effect of varied sugar concentrations on the sensor fluorescence in a given environment. In this study, novel carboxylic acid BA derivatives, *m*-COOHBA and *o*-COOHBA, have been synthesized and investigated for glucose sensing in solution. Our goal is to create personal and continuous glucose monitoring devices, whereby diabetics can monitor their ocular-glucose levels noninvasively *via* a functionalised sensing contact lens.

Sensing Mechanism

OH OH
$$PK_a$$
 9 PK_a 9 PK_a

Synthesis

(i) Anhydrous dimethylsulfoxide, N₂, 80 °C for 48h.

Successful synthesis of novel BA sensors were confirmed by ¹H NMR.

Conclusions

A cignificant decrees in fluores

Glucose Sensing

The fluorescence of o-COOHBA and m-COOHBA, when studied in a pH buffer solution at physiological pH 7.4, demonstrated a response to glucose by a decrease in fluorescence intensity on increased glucose concentration. This decrease in fluorescence was observed in the dynamic range of 0-10mM, which corresponds to the ocular glucose concentration range in diabetics ($\sim 500 \mu M - 5 mM$).

Calibration curve for *m*-COOHBA and *o*-COOHBA (0.5 mM), in pH 7.4 phosphate buffer with increasing glucose concentrations.

Emission spectra for *m*-COOHBA and *o*-COOHBA (0.5 mM) in pH 7.4 phosphate buffer; *Excitation wavelength 390 and 380 nm, respectively.*

Glucose response for m-COOHBA and o-COOHBA (0.5 mM) in different pH buffer solutions ranging from pH 5-11. The results confirm that the pH sensing range for the two BA sensors lies between the pKa of the BA (~9) and that of the BA sugar bound form (~6).

A significant decrease in fluorescence of m-COOHBA and o-COOHBA occurred with increasing glucose concentrations at the typical physiological pH 7.4. The sensors showed maximum sensitivity for glucose between 0-10mM, making them ideal for ocular glucose concentration monitoring in diabetics (\sim 500 μ M - 5mM). The dynamic sensing range was also confirmed to be between pH 6-9, by investigating the sensors in various pH buffers in the presence of relevant glucose concentrations.

