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Abstract

We investigate a utility maximization problem in the presence of asset price bubbles. At random

times, the investor receives warnings that a bubble has formed in the market which may lead to a

crash in the risky asset. We propose a regime switching model for the warnings and we make no

assumptions about the distribution of the timing and the size of the crashes. Instead, we assume

that the investor takes a worst-case perspective towards their impacts, i.e. the investor maximizes

her expected utility under the worst-case crash scenario. We characterize the value function by a

system of Hamilton-Jacobi-Bellman equations and derive a coupled system of ordinary differential

equations for the optimal strategies. Numerical examples are provided.
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1 Introduction

We study a utility maximization problem in the presence of asset price bubbles which may lead to crashes
in the risky asset. The investor is assumed to take a worst-case perspective towards the impact of such
crashes. We assume that the investor receives a warning about a potential bubble at random times and
the bubble leads to a crash in the risky asset if it bursts. While we assume a probabilistic structure
for the arrival times of the warnings, we make no assumption about the distribution of the potential
crash. Instead we assume that the investor optimizes her performance functional in the worst-case crash
scenario. This leads to a stochastic differential game of the form

sup
π

inf
ϑ

E[U(Xπ,ϑ(T ))], (1.1)

i.e. for each trading strategy π the investor tries to identify the worst-case crash scenario ϑ in the sense
that expected utility of terminal wealth XT is minimized and then maximizes the terminal utility in the
worst-case scenario.

Note that the optimization problem is the same as in Korn and Wilmott [22], however, observe that
the crucial difference is that we allow for a random number of crashes (where Korn and Wilmott [22]
assume to know an upper bound on the total number of crashes). This leads to optimal portfolio
strategies where the crash risk has not only a short-term impact (as in Korn and Wilmott [22]) but also
a long-term impact (see Belak et al. [4]).

In a previous paper of Belak et al. [4], the warnings occur at the jump times of an independent
Poisson process, i.e. the times at which warnings occur are exponentially distributed. In addition, it is
assumed that the maximum crash size is fixed a priori and does not change with time. In the present
paper we extend the model in Belak et al. [4] to allow for changing maximum crash sizes and changing
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Göteborg, Sweden (email: sorenc@chalmers.se).

‡School of Mathematical Sciences, Dublin City University, Dublin 9, Ireland (email: olaf.menkens@dcu.ie).

1



market coefficients by proposing a regime switching model. That is, we assume that the market is in
one of d+ 1 states, where in the first state no bubble is present and hence the investor does not have to
fear a crash. In the other states, we assume that there is a potential bubble and each state is allowed
to have different market coefficients and different maximum crash sizes. The setup of this model also
allows to consider more general distributions for the arrival times of the warnings. In particular, it covers
phase-type distributions and, hence, we can approximate any arbitrary distribution on [0,∞).

Our model may also be seen as an extension of the model considered in Bäuerle and Rieder [3] (see
also Sotomayor and Cadenillas [30] and Escobar et al. [12] for more general regime-switching models)
which allows for crashes in some of the regimes.

In the absence of crash threats, Bäuerle and Rieder [3] show that the optimal wealth fractions in a
Markov modulated regime switching portfolio framework are regime-dependent and of the same form as
in the classical Merton model, i.e., the parameters (drift and volatility) defining the optimal strategy
depend on the regime in place. More precisely, in the case of logarithmic and power utility the optimal
strategy is

πi
M :=

αi

(1− p)σ2
i

, (1.2)

where αi and σi denote the excess return and volatility of the stock in state i ∈ {0, . . . , d} =: E and where
p denotes the risk-aversion coefficient of the investor (see Equation (2.11) below for details). Moreover,
in the case of power utility the value function VRS is given by

VRS(t, x, i) =
1

p
xpfi(t), (1.3)

where the family (fi)i∈E solves the coupled system of ordinary differential equations

∂

∂t
fi(t) = −

1

2

p

1− p

α2
i

σ2
i

fi(t)−
d
∑

j=0

qi,jfj(t), fi(T ) = 1, (1.4)

and where Q = (qi,j)i,j∈E denotes the transition rate matrix of the underlying Markov chain. Similarly,
in the case of logarithmic utility, the value function can be written as

VRS(t, x, i) = log(x) + fi(t), (1.5)

where the family (fi)i∈E solves

∂

∂t
fi(t) = −

1

2

α2
i

σ2
i

−
d
∑

j=0

qi,jfj(t), fi(T ) = 0. (1.6)

A model closely related to our model was recently introduced in Capponi and Figueroa-López [8]. In
this article, the authors consider a regime-switching model similar to Bäuerle and Rieder [3] but with
an additional defaultable bond. The problem is solved by a stochastic control approach for logarithmic
and power utility. Capponi et al. [9] extend the results to unobservable regimes, see also Nagai and
Runggaldier [26] for the case without a defaultable bond. While in our paper we will not allow for
defaults, we note that by formally setting the crash size to be equal to 100% we are able to model the
situation in which the risky asset may default, but is immediately replaced by a new equivalent asset.1

The existence, formation, and modeling of financial bubbles has been studied extensively over the
last decades. From a microeconomic view, the formation of bubbles has been studied e.g. in Tirole [31],
Scheinkman and Xiong [28], and Abreu and Brunnermeier [1]. There is also a growing literature on
bubbles from a pricing point of view, see e.g. Loewenstein and Willard [23, 24], Cox and Hobson [10],
Jarrow et al. [18, 19], Heston et al. [13], Jarrow and Protter [16, 17], Jarrow et al. [15], and Biagini et
al. [6]. In these papers, a price bubble is typically modeled as a local martingale that sits on top of the
fundamental value of the asset. In our setting, the main concern for the investor is not the presence
of the bubble itself, but the potential burst which may lead to significant losses due to price drops.
Nevertheless, we allow the drift and volatility of the risk-bearing asset to differ in the various warning

1Alternatively, one can think of a default as the case where the asset drops only by β with β < 1 and 1 − β being the
expected recovery rate. Of course, the asset is delisted but might still be traded over the counter.
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states i = 0, . . . , d, i.e. the price rally associated with a bubble may be different in each state. The birth
and the burst of a bubble is modeled similar to the approach in Jarrow et al. [19] in the sense that the
bubble appears and disappears at a random time. However, the focus of our paper is not so much on
the formation and detection of a bubble as in the above mentioned papers, but to develop an investment
strategy such that this strategy protects the investor if a bubble bursts, that is, a crash occurs.

The worst-case modeling approach towards the impact of market crashes was initiated in Hua and
Wilmott [14] in a discrete-time option pricing model. Korn and Wilmott [22] pioneered the worst-case
modeling approach in a continuous-time portfolio optimization context in which the investor aims to
maximize the expected logarithmic utility of terminal wealth. The results of Korn and Wilmott [22]
have been extended in several directions: Korn and Menkens [20] and Korn and Steffensen [21] ex-
tend the original model to more general utility functions (by means of an indifference principle and
a Hamilton-Jacobi-Bellman (HJB)-system approach, respectively), Seifried [29] considers more general
price dynamics and solves the problem by means of a martingale approach and Belak et al. [5] introduce
transaction costs. Menkens [25] points out that the worst case approach is an alternative interpretation
of Wald’s maximin approach and investigates what happens if the probability of a crash is known. Fi-
nally, Desmettre et al. [11] consider worst-case optimal consumption over an infinite time horizon. All
above-mentioned papers assume that the maximum number of crashes is known to the investor. To be
more precise, the investor starts in a situation in which at most n crashes may occur in between the
initial time and the investment horizon. Once the first crash has been observed, there are at most n− 1
crashes left, and so on. In contrast, our model allows for a possibly unbounded number of crashes and
the maximum number of crashes is unknown since the crash warnings arrive at random times.

In contrast to the existing worst-case models with a deterministic maximum number of crashes, the
optimal strategies in our models exhibit some previously unobserved features. To be more precise, we
show the following:

(1) In general, the optimal strategies do not converge to the Merton fraction as the investment horizon
tends to infinity. This shows that a random number of total crashes introduces an additional long-
term effect on the optimal strategies (see also Belak et al. [4]).

(2) While the investor is always indifferent between an immediate crash and no crash at all in the model
considered in Belak et al. [4], this is not necessarily true in our regime-switching model. As is known
from Korn and Menkens [20] and Seifried [29], this effect can also occur in the classical worst-case
models if the market coefficients change after a crash. In our model however this effect can occur
already if the market coefficients are independent of the state as soon as we allow for changing crash
sizes.

(3) Finally, the optimal strategies may not necessarily be monotonically decreasing in time. For example,
in the numerical investigations at the end of this paper, we construct a (in some sense degenerate)
example in which the optimal strategies are oscillating over time.

This paper is organized as follows. We introduce the regime switching bubble model in Section 2,
in which the market is divided into a finite number of regimes. Each regime corresponds to a potential
bubble, where the bubble can be different for the different regimes. Thus, this may lead to a crash of a
different maximum size in the different regimes. In Section 3, we derive a coupled system of Hamilton-
Jacobi-Bellman equations and present a verification theorem. We then apply the verification theorem
in Section 4 to solve the power utility case and derive the optimal strategies. We conclude in Section 5
with numerical examples.

2 The Market Model

We let (Ω,F ,P) be a complete probability space which supports a standard Brownian motion W =
(W (t))t≥0 and an independent time-homogeneous continuous-time Markov chain Z = (Z(t))t≥0 with
state space E := {0, . . . , d} for some d ≥ 1. We denote by Q = (qi,j)0≤i,j≤d the transition rate matrix of
Z such that

qi,j ≥ 0 for all i, j ∈ E with i 6= j (2.1)
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and we set

λi := −qi,i :=

d
∑

j=0
j 6=i

qi,j for all i ∈ E. (2.2)

We assume moreover that the state 0 cannot be reached from any other state, i.e. qi,0 = 0 for all i ∈ E.
We denote the augmented filtration generated by W and Z by F = (F(t))t≥0.

Let us now fix some investment horizon T > 0 as well as some initial time t ∈ [0, T ). For simplicity,
we assume that the bond price P 0 = (P 0(u))u∈[t,T ] is given as

dP 0(u) = 0, u ∈ [t, T ], P 0(t) = 1. (2.3)

Note that the assumption of a constant bond price is without loss of generality, since we can always
measure all asset prices in the market in units of the bond. We denote by Zt,i = (Zt,i(u))u≥t the
process (Z(u))u≥t conditioned on Z(t) = i. We assume that in the absence of crashes the stock price
P 1 = (P 1(u))u∈[t,T ] has state-dependent excess return and volatility, i.e.

dP 1(u) = αjP
1(u)du+ σjP

1(u)dW (u), on {Z(u) = j}, u ∈ [t, T ], (2.4)

where αj , σj > 0 for all j ∈ E and where we set P 1(t) = 1.
To each state i ∈ E we associate a maximum crash size βi ∈ [0, 1). We assume that β0 = 0 (i.e. no

crash in state 0) and assume without loss of generality that the maximum crash sizes are ordered:

0 = β0 ≤ β1 ≤ . . . ≤ βd > 0. (2.5)

Moreover, we set imin = min{i ∈ E : βi > 0}. We denote the jump times of the Markov chain Zt,i

by (Tk)k∈N and set T0 = t. The crash times are now given by a sequence (τk)k∈N0
of F-stopping times

taking values in [Tk, T ] ∪ {∞} and we assume that a crash occurs only if Zt,i(τk−) ≥ imin and

Tk ≤ τk < Tk+1. (2.6)

The sequence (τk)k∈N0
now acts as an impulse control strategy for Zt,i and P 1 as follows: Whenever

τk < Tk+1 and Zt,i(τk−) ≥ imin, the Markov chain Zt,i is sent to the state 0 at time τk and the asset
crashes in the following sense:

P 1(τk) = (1− βj)P1(τk−) on {Zt,i(τk−) = j ≥ imin}. (2.7)

We write ϑ = (τk)k∈N0
and denote the corresponding controlled Markov chain by Zϑ

t,i. Moreover, we
denote by T (t, i) the set of all sequences of crash times as defined above.

We interpret this market model as follows: Whenever Zϑ
t,i is in state j < imin, then the market is in

a safe regime in the sense that no crash can occur. As soon as Zϑ
t,i jumps into a state k ≥ imin a bubble

forms in the market which may (or may not) burst at the unknown time τk, leading to a crash in the
risky asset and bringing the market back into the crash-free state 0. Since we will allow the investor to
observe the process Zϑ

t,i, we can interpret the jump times Tk (which are not caused by ϑ) of Zϑ
t,i as the

times at which warnings are issued to the investor that a bubble has formed in the market.
The investor specifies a strategy π = (π0, . . . , πd) = (π0(u), . . . , πd(u))u∈[t,T ] where πi denotes the

fraction of wealth invested in the stock when the market is in state i. We assume that each πi is adapted,
right-continuous, and bounded. Given a crash scenario ϑ = (τk)k∈N0

∈ T (t, i) and a trading strategy

π = (π0, . . . , πd), the investor’s wealth process X = Xπ,ϑ
t,x,i = (Xπ,ϑ

t,x,i(u))u∈[t,T ] is given by X(t) = x at
initial time,

dX(u) = αjπ
j(u)X(u)du+ σjπ

j(u)X(u)dW (u), u ∈ [t, T ], (2.8)

on {Zϑ
t,i(u) = j} ∩ {u 6= τk},

X(τk) =

{

X(τk−) if Zϑ
t,i(τk−) = j < imin

(1− πj(τk)βj)X(τk−) if Zϑ
t,i(τk−) = j ≥ imin

}

(2.9)

on {τk < Tk+1} ∩ {τk ≤ T}, and X(τk) = X(τk−) on {τk ≥ Tk+1} ∩ {τk ≤ T}. We denote by A(t, x) the

set of all trading strategies which lead to a strictly positive wealth process Xπ,ϑ
t,x,i for every ϑ ∈ T (t, i).
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The worst-case optimization problem is given by

V(t, x, i) := sup
π∈A(t,x)

inf
ϑ∈T (t,i)

E

[

Up

(

Xπ,ϑ
t,x,i(T )

)]

, (2.10)

where the utility function Up : (0,∞) → R is given by

Up(x) :=

{ 1
px

p if p < 1, p 6= 0

log(x) if p = 0

}

. (2.11)

Remark 2.1. The optimization problem (2.10) is to be understood as follows: At any fixed time t, the
investor commits to a trading strategy π ∈ A(t, x) and only after the investor’s decision does the market
decide on the crash strategy ϑ ∈ T (t, i). This prohibits the investor to set her risky fraction equal to zero
at the moment a crash occurs, i.e. she cannot prevent being negatively affected by a crash. In particular,
switching the supremum and the infimum in (2.10) leads to a different value.

At first sight it seems contradictory that τ is a stopping time. However, this implies only that the
market is going to tell the investor how it is going to act on any portfolio strategy of the investor. With
this knowledge, the investor chooses a portfolio strategy, which in turn leads to the reaction of the market
already announced to the investor. If τ is the optimal crash scenario of the market, then the investor
cannot benefit from knowing the reaction of the market beforehand. ⋄

Remark 2.2. Note that the case d = 1 corresponds to the situation considered in Belak et al. [4] if
the market coefficients αi and σi are independent of the state i. One can immediately generalize the
situation by considering the case

0 = β0 = ... = βd−1, βd = β > 0, (2.12)

and the state d is absorbing for Z. Then the time

S = inf{t ≥ 0 : Z(t) = d} (2.13)

for Z started in 0 is of phase-type, see Asmussen [2, III.4]. Since the distributions of phase-type are dense
in all probability distributions on [0,∞) (with respect to convergence in distribution) we can approximate
arbitrary waiting-time distributions between a crash and the next warning. ⋄

Remark 2.3. Due to the monotonicity of the utility function Up, we can assume without loss of generality
that T (t, i) contains only those crash strategies ϑ = (τk)k∈N0

for which

X(τk) ≤ X(τk−) (2.14)

for every k ∈ N0. ⋄

3 The Verification Theorem

In this section, we provide a coupled system of Hamilton-Jacobi-Bellman equations which is inspired by
the system of HJBs introduced in Korn and Steffensen [21]. We then present a verification theorem which
shows that under some technical assumptions any classical solution of the system of HJBs coincides with
the value function. In Section 4, we solve the system of HJBs and derive a coupled system of ordinary
differential equations for the optimal strategies.

We fix K > 0 and let AK(t, x) be the subset of all π = (π0, . . . , πd) ∈ A(t, x) such that each πi takes
values in K := [−K,K]. We assume K to be large enough such that πi

M := αi/(1 − p)σ2
i < K and

K > 1/βi for all i ∈ E. We denote by

VK(t, x, i) := sup
π∈AK(t,x)

inf
ϑ∈T (t,i)

E

[

Up

(

Xπ,ϑ
t,x,i(T )

)]

(3.1)

the value function which is restricted to admissible strategies taking values in K. This restriction of the
set of admissible strategies allows us to prove the following growth estimate.
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Lemma 3.1. Let π ∈ AK(t, x) and ϑ ∈ T (t, i). Then there exists a constant C > 0 such that

E

[

sup
u∈[t,T ]

|Xπ,ϑ
t,x,i(u)|

2
]

≤ C(1 + |x|2). (3.2)

Proof. Denote by ϑ̂ ∈ T (t, i) the no-crash scenario. Then the result for ϑ̂ is classical and follows e.g.
from Pham [27, Theorem 1.3.15]. For an arbitrary ϑ ∈ T (t, i), we note that

E

[

sup
u∈[t,T ]

|Xπ,ϑ
t,x,i(u)|

2
]

≤ E

[

sup
u∈[t,T ]

|Xπ,ϑ̂
t,x,i(u)|

2
]

(3.3)

since the wealth decreases at the moment a crash happens (see Remark 2.3).

Assume for now that V(·1, ·2, i) ∈ C1,2([0, T )× (0,∞)) for all i ∈ E. For each (t, x) ∈ [0, T )× (0,∞),
we can define

K′
i(t, x) :=

{

π ∈ K : Lπ
i V(t, x, i) +

d
∑

j=0

qi,jV(t, x, j) ≥ 0

}

, (3.4)

K′′
i (t, x) :=

{

π ∈ K : V(t, x, i) ≤ V(t, (1− πβi)x, 0)

}

, (3.5)

where the operator Lπ
i is given by

Lπ
i :=

∂

∂t
+ αiπx

∂

∂x
+

1

2
σ2
i π

2x2 ∂2

∂x2
for i ∈ E. (3.6)

In any state i < imin the investor does not have to fear the consequences of a possible crash so that
she is essentially in the same situation as an investor in a regime switching model without crashes as
considered in Bäuerle and Rieder [3]. It is therefore reasonable to expect that the value function in this
state solves

0 = sup
π∈K

{

Lπ
i V(t, x, i) +

d
∑

j=0

qi,jV(t, x, j)

}

. (3.7)

On the other hand, if i ≥ imin the investor has to take the possibility of a crash into account and
hence (up to the possibility of switching to a different state) we are in a situation similar to Korn and
Steffensen [21]. Therefore, we expect that the value function in this state solves

0 = min

{

sup
π∈K′′

i
(t,x)

{

Lπ
i V(t, x, i) +

d
∑

j=0

qi,jV(t, x, j)

}

, sup
π∈K′

i
(t,x)

{

V(t, (1− πβi)x, 0)− V(t, x, i)

}

}

. (3.8)

This idea is formalized in the following verification theorem. The proof of the theorem can be found in
Appendix (A).

Theorem 3.2. Let V : [0, T ] × (0,∞) × E → R and assume that we have V (·1, ·2, i) ∈ C1,2([0, T ) ×
(0,∞)) ∩ C([0, T ]× (0,∞)) for each i ∈ E.

1. Assume that the function V (·1, ·2, i) satisfies (3.7) with terminal condition V (T, x, i) = Up(x)
for each i = 0, . . . , imin − 1 and the function V (·1, ·2, i) satisfies (3.8) with terminal condition

V (T, x, i) = Up(x) for each i = imin, . . . , d.

2. Assume that V satisfies a quadratic growth condition in x, i.e. there exists a constant C > 0
independent of t and i such that

|V (t, x, i)| ≤ C
(

1 + |x|2
)

. (3.9)

3. Moreover, suppose that there exists a measurable function π̂i : [0, T ) × (0,∞) → K for each i =
0, . . . , imin − 1, such that

π̂i(t, x) = argmax
π∈K

{

Lπ
i V (t, x, i) +

d
∑

j=0

qi,jV (t, x, j)

}

(3.10)
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and that, for each i = imin, . . . , d, there exists a measurable function π̂i : [0, T )× (0,∞) → K such

that

π̂i(t, x) = arg max
π∈K′′

i
(t,x)

{

Lπ
i V (t, x, i) +

d
∑

j=0

qi,jV (t, x, j)

}

. (3.11)

Write π̂ = (π̂1, . . . , π̂d) and suppose additionally that, for each (t, x, i) ∈ [0, T )× (0,∞)×E and for

every ϑ ∈ T (t, i), the SDE (2.8)-(2.9) admits a solution X∗,ϑ = Xπ∗,ϑ
t,x,i under the trading strategy

π∗ := (π̂(u,X∗(u−)))u∈[t,T ] with π∗(T ) = 0. Finally, assume that π∗ ∈ AK(t, x).

4. Given any (t, x, i) ∈ [0, T )× (0,∞)×E and π ∈ AK(t, x), we suppose that we can iteratively define

a crash strategy ϑ∗(π) = (τ∗k )k∈N0
∈ T (t, i) through

τ∗k := ∞ (3.12)

on {Tk ≤ T} ∩ {Z
ϑ∗(π)
t,x,i (Tk) < imin} and

τ∗k := inf
{

u ∈ [Tk, Tk+1) ∩ [t, T ] : V (u,X(u−), j) ≥ V (u, (1− πj(u)βj)X(u−), 0)
}

(3.13)

on {Tk ≤ T} ∩ {Z
ϑ∗(π)
t,x,i (Tk) = j ≥ imin}.

Then V (t, x, i) = VK(t, x, i), the strategy π∗ is optimal, and the corresponding optimal crash strategy is

ϑ∗(π∗).

Theorem 3.2 is tailor-made for the case p ∈ (0, 1). For p ≤ 0 the corresponding V does not satisfy
the quadratic growth condition used in steps 3 and 5 of the proof. We will return to this problem in
Appendix B after solving the system of HJBs since it is easier to verify optimality if we have a specific
candidate at hand.

4 Derivation of the Optimal Strategies

Let us now apply Theorem 3.2 to find the value function and determine the optimal strategies. We start
with the power utility case p < 1, p 6= 0.

4.1 Solution of the Coupled System of HJBs for Power Utility

We expect that V takes the form

V (t, x, i) =
1

p
xpfi(t), i ∈ E. (4.1)

Moreover, we assume that fi is strictly positive on [0, T ] for every i ∈ E. Note that we must have
fi(T ) = 1 for all i ∈ E. Our first aim is to solve

0 = sup
π∈K

{

Lπ
i V (t, x, i) +

d
∑

j=0

qi,jV (t, x, j)

}

(4.2)

for i < imin in order to find V (t, x, i) and πi,∗. Using (4.1), this equation simplifies to

0 = sup
π∈K





1

p

∂

∂t
fi(t) +

(

αiπ −
1

2
(1− p)σ2

i π
2
)

fi(t) +
1

p

d
∑

j=0

qi,jfj(t)



 . (4.3)

Formally optimizing with respect to π gives the candidate optimal strategy

πi,∗(t) =
αi

(1− p)σ2
i

= πi
M , (4.4)
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which is indeed the maximum if fi(t) > 0 for all t ∈ [0, T ]. Plugging the candidate optimal strategy πi,∗

back into the HJB yields the following ODE for fi:

∂

∂t
fi(t) = −

1

2
p

α2
i

(1− p)σ2
i

fi(t)−
d
∑

j=0

qi,jfj(t). (4.5)

Let us consider the case i ≥ imin such that βi > 0. We have to solve

0 = min

{

sup
π∈K′′

i
(t,x)

{

Lπ
i V (t, x, i) +

d
∑

j=0

qi,jV (t, x, j)

}

, sup
π∈K′

i
(t,x)

{

V (t, (1− πβi)x, 0)− V (t, x, i)

}

}

. (4.6)

With this and (4.1), we see that the first operator satisfies

0 ≤ sup
π∈K̃′′

i
(t)

{

1

p

∂

∂t
fi(t) +

(

αiπ −
1

2
(1− p)σ2

i π
2
)

fi(t) +
1

p

d
∑

j=0

qi,jfj(t)

}

, (4.7)

where

K̃′′
i (t) :=

{

π ∈ K :
1

p
(1− πβi)

pf0(t)−
1

p
fi(t) ≥ 0

}

. (4.8)

Similarly, the second operator satisfies

0 ≤ sup
π∈K̃′

i
(t)

{

1

p
(1− πβi)

pf0(t)−
1

p
fi(t)

}

, (4.9)

where

K̃′
i(t) :=

{

π ∈ K :
1

p

∂

∂t
fi(t) +

(

αiπ −
1

2
(1− p)σ2

i π
2
)

fi(t) +
1

p

d
∑

j=0

qi,jfj(t) ≥ 0

}

. (4.10)

Let us first consider (4.9). Since f0 is assumed to be strictly positive and since (1 − πβi)
p/p is a

decreasing function of π, the supremum in (4.9) is attained for the smallest value of π which satisfies the
constraint in K̃′

i(t), i.e.

1

p

∂

∂t
fi(t) +

(

αiπ −
1

2
(1− p)σ2

i π
2
)

fi(t) +
1

p

d
∑

j=0

qi,jfj(t) ≥ 0. (4.11)

Notice that the left-hand side of (4.11) is a quadratic and concave function of π tending to −∞ as
|π| → ∞. We must therefore have that the supremum in (4.9) is attained for the smallest value of π
which satisfies the constraint (4.11) with equality. If the right-hand side of (4.9) is equal to zero we
therefore have that πi,∗ and fi are determined by

fi(t) = (1− πi,∗(t)βi)
pf0(t), (4.12)

∂

∂t
fi(t) = −p

(

αiπ
i,∗(t)−

1

2
(1− p)σ2

i [π
i,∗(t)]2

)

fi(t)−
d
∑

j=0

qi,jfj(t). (4.13)

If the supremum in (4.9) is strictly positive then the complementarity of the two equations in the
HJB shows that

0 = sup
π∈K̃′′

i
(t)

{

1

p

∂

∂t
fi(t) +

(

αiπ −
1

2
(1− p)σ2

i π
2
)

fi(t) +
1

p

d
∑

j=0

qi,jfj(t)

}

. (4.14)

Optimizing this equation formally with respect to π yields

πi,∗(t) =
αi

(1− p)σ2
i

= πi
M . (4.15)
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If πi
M ∈ K̃′′

i (t) then it is indeed a maximizer of (4.14). Otherwise, we have

1

p
(1− πi

Mβi)
pf0(t) <

1

p
fi(t). (4.16)

Since the left-hand side of this equation is decreasing as a function of π and since αiπ − 1
2 (1− p)σ2

i π
2 is

an increasing function of π on (−∞, πi
M ), it follows that if πi

M 6∈ K̃′′
i (t) then the supremum in (4.14) is

attained for πi,∗(t) < πi
M , which satisfies

1

p
(1− πi,∗(t)βi)

pf0(t) =
1

p
fi(t). (4.17)

Therefore, we have argued that [0, T ) can be decomposed into the set Ii on which πi,∗ and fi are
determined by

fi(t) = (1− πi,∗(t)βi)
pf0(t), (4.18)

∂

∂t
fi(t) = −p

(

αiπ
i,∗(t)−

1

2
(1− p)σ2

i [π
i,∗(t)]2

)

fi(t)−
d
∑

j=0

qi,jfj(t), (4.19)

and the set Ni on which πi,∗ and fi are determined by

πi,∗(t) = πi
M , (4.20)

∂

∂t
fi(t) = −p

(

αiπ
i,∗(t)−

1

2
(1− p)σ2

i [π
i,∗(t)]2

)

fi(t)−
d
∑

j=0

qi,jfj(t). (4.21)

Moreover, note that we have πi,∗ < πi
M on Ii and by solving

fi(t) = (1− πi,∗(t)βi)
pf0(t) (4.22)

for πi,∗ we can rewrite the differential equation for fi as

∂

∂t
fi(t) = −p

αi

βi

(

1−

[

fi(t)

f0(t)

]1/p
)

fi(t) +
1

2
p(1− p)

σ2
i

β2
i

(

1−

[

fi(t)

f0(t)

]1/p
)2

fi(t)−
d
∑

j=0

qi,jfj(t). (4.23)

The two differential equations for fi on Ii and Ni can hence by combined to

∂

∂t
fi(t) = −pαi min

{

1

βi

(

1−

[

fi(t)

f0(t)

]1/p
)

, πi
M

}

fi(t) (4.24)

+
1

2
p(1− p)σ2

i

[

min

{

1

βi

(

1−

[

fi(t)

f0(t)

]1/p
)

, πi
M

}]2

fi(t)−
d
∑

j=0

qi,jfj(t).

We are left with showing that we can solve this system of differential equations for (fi)i∈E and that
fi(t) > 0 for all (t, i) ∈ [0, T ]×E. It then follows that V is indeed a solution of the system of HJBs and
that πi,∗ is the candidate optimal strategy. For the proof of the following lemma we refer to Appendix A.

Lemma 4.1. The system of ODEs given by (4.5) for i = 0, . . . , imin−1 and by (4.24) for i = imin, . . . , d
with terminal condition fi(T ) = 1 for all i ∈ E possesses a unique solution on [0, T ]. Moreover, this

solution is strictly positive.

The next step is to check if the candidate optimal strategy π∗ = (π0,∗, . . . , πd,∗) is admissible. For
every i ∈ E with i ≥ imin, we can write

πi,∗(t) = min{πi
M , πi,ind(t)}, (4.25)

where πi,ind is given by
fi(t) = (1− πi,ind(t)βi)

pf0(t). (4.26)
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Taking the logarithm and then the derivative with respect to t, we arrive at the following differential
equation for πi,ind:

∂

∂t
πi,ind(t) =

1

βi
(1− πi,ind(t)βi)

[

1

pf0(t)

∂

∂t
f0(t)−

1

pfi(t)

∂

∂t
fi(t)

]

, (4.27)

πi,ind(T ) = 0. (4.28)

Using the ODE for f0 in (4.5), the ODE for fi in Ii given by (4.19), and using (4.26) shows that

∂

∂t
πi,ind(t) =

1

βi
(1− πi,ind(t)βi)

[

Ψi −Ψ0 −
1

2
(1− p)σ2

i

(

πi,ind(t)− πi
M

)2
(4.29)

+
1

p

d
∑

j=0

qi,j
fj(t)

f0(t)
(1− πi,ind(t)βi)

−p

−
1

p

d
∑

j=0
j 6=i

q0,j
fj(t)

f0(t)
− q0,i

1

p
(1− πi,ind(t)βi)

p

]

,

where we denote by

Ψi :=
1

2

α2
i

(1− p)σ2
i

(4.30)

the utility growth potential in regime i ∈ E. We now show that the strategy πi,ind is admissible for each
i ∈ E with i ≥ imin and hence so is π∗. The proof of this statement can be found in Appendix A.

Lemma 4.2. There exists a unique solution of the differential equation

∂

∂t
y = F (t, y), y(T ) = 0, (t, y) ∈ [0, T ]× (−∞, 1/βi), (4.31)

where

F (t, y) =
1

βi
(1− yβi)

[

Ψi −Ψ0 −
1

2
(1− p)σ2

i

(

y − πi
M

)2
+

1

p

d
∑

j=0

qi,j
fj(t)

f0(t)
(1− yβi)

−p (4.32)

−
1

p

d
∑

j=0
j 6=i

q0,j
fj(t)

f0(t)
− q0,i

1

p
(1− yβi)

p

]

.

It follows that π∗ is an admissible strategy which leads to a strictly positive wealth process in every
crash scenario. Moreover, the function V (t, x, i) obviously satisfies a quadratic growth condition in x
uniformly in (t, i) as long as p ∈ (0, 1). Finally, given any trading strategy π = (π0, . . . , πd) ∈ AK(t, x)
the corresponding optimal crash time ϑ∗(π) is obviously well-defined since it is just the first time at
which πi exceeds πi,ind. It follows that V = VK and that π∗ is optimal. Moreover, since the optimal
strategy π∗ attains its values in the interior of K it is immediately clear that π∗ is also optimal in the
class of all bounded trading strategies A(t, x) and hence V = V.

4.2 Solution of the System of HJBs for Logarithmic Utility

Let us now turn to the case p = 0. We guess that the value function takes the form

V (t, x, i) = log(x) + fi(t), i ∈ E (4.33)

for some functions fi with fi(T ) = 0. We can then proceed as in the power utility case to show that the
candidate optimal strategy for i < imin is given by

πi,∗(t) =
αi

σ2
i

= πi
M (4.34)
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and that fi solves

∂

∂t
fi(t) = −

1

2

α2
i

σ2
i

−
d
∑

j=0

qi,jfj(t). (4.35)

For i ≥ imin, the interval [0, T ] decomposes into a set Ii on which πi,∗ and fi are determined by

fi(t) = log(1− πi,∗(t)βi) + f0(t), (4.36)

∂

∂t
fi(t) = −αiπ

i,∗(t) +
1

2
σ2
i [π

i,∗(t)]2 −
d
∑

j=0

qi,jfj(t), (4.37)

and a set Ni on which πi,∗ and fi are determined by

πi,∗(t) = πi
M , (4.38)

∂

∂t
fi(t) = −αiπ

i,∗(t) +
1

2
σ2
i [π

i,∗(t)]2 −
d
∑

j=0

qi,jfj(t). (4.39)

The existence of (fi)i∈E can be proved in a very similar fashion to Lemma 4.1. The candidate optimal
strategy is given by

πi,∗ = min{πi
M , πi,ind(t)}, (4.40)

where πi,ind solves

∂

∂t
πi,ind(t) =

1

βi
(1− πi,ind(t)βi)

[

Ψi −Ψ0 −
1

2
σ2
i

(

πi,ind(t)− πi
M

)2
+

d
∑

j=0
j 6=i

(qi,j − q0,j)fj(t) (4.41)

+(qi,i − q0,i)
[

f0(t) + log(1− πi,ind(t)βi)
]

]

with terminal condition πi,ind(T ) = 0. The admissibility of π∗ and πi,ind follows by very similar arguments
as in Lemma 4.2.

Remark 4.3. Assume that d = 1 and that the excess return and the volatility of the stock are state-
independent. Then the differential equation for π1,ind simplifies to

∂

∂t
π1,ind(t) =

1

β1
(1− π1,ind(t)β1)

[

−
1

2
σ2
1

(

π1,ind(t)− π0,∗(t)
)2

− λ0 log(1− π1,ind(t)β1)

]

, (4.42)

which is exactly the candidate optimal strategy derived in Belak et al. [4, Equation (3)]. ⋄

5 Numerical Results

We conclude this paper with numerical examples. We consider two cases: power utility with five bubble
states and phase-type distributed arrival times of warnings.

5.1 Power Utility with Five Bubble States

We assume that

α0 = . . . = αd = α = 0.096 and σ0 = . . . = σd = σ = 0.4, (5.1)

and let T = 25 and λ = 1/T . We furthermore choose d = 5, p = 0.1, and let the generator matrix of Z
and the crash sizes βi be given by

Q =

















−λ λ 0 0 0 0
0 −λ λ 0 0 0
0 0 −λ λ 0 0
0 0 0 −λ λ 0
0 0 0 0 −λ λ
0 0 0 0 0 0

















,













β1

β2

β3

β4

β5













=













0.1
0.3
0.5
0.7
0.9













. (5.2)
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Figure 1: Optimal strategies with increasing maximum crash sizes. Given are the optimal portfolio
strategies for power utility (with p = 0.1) with five different bubble states where the maximum possible
crash size increases with each state. Observe that the optimal strategy in the first bubble state, that is
π1,∗, is initially (that is for the years 0 to 3 or so) capped at the Merton fraction π0,∗ if the investment
horizon is very long (in this example 25 years).

So, in particular, the process Z can only jump from state i to state i+1 and the last state is absorbing.
The numerical approximations of the optimal strategies can be found in Figure 1. As can be seen, the

optimal strategies are decreasing for an increasing maximum crash size but still display similar qualitative
features as the optimal strategy obtained in the simplified model considered in Belak et al. [4]. Note
however that the optimal strategy in state 1 is equal to the Merton fraction πi

M for small t (approximately
t < 2.75), i.e. for small t we are inside the set N1. In contrast to the simplified model and the models
considered in Korn and Menkens [20] and Seifried [29] this is a new feature. As Korn and Menkens [20]
show, the optimal strategy in the presence of crashes is always smaller than the Merton fraction and only
if one considers changing market coefficients after a crash it may be optimal for the investor to follow
the Merton strategy despite the presence of a crash threat. In our model this phenomenon can already
occur without considering state-dependent market coefficients. Note that this phenomenon can only be
observed if d > 1. That is, this cannot be observed in the model of Belak et al. [4].

In the example considered in Figure 1 the market jumps from regimes with lower crash sizes to higher
crash sizes from 0.1 to 0.9. Let us now consider the opposite direction, i.e. the market jumps from the
safe state 0 to the state with crash size 0.9, from there to the state with crash size 0.7 and so on. This
can be modeled by considering the generator matrix

Q =

















−λ 0 0 0 0 λ
0 0 0 0 0 0
0 λ −λ 0 0 0
0 0 λ −λ 0 0
0 0 0 λ −λ 0
0 0 0 0 λ −λ

















, (5.3)

and keeping the remaining parameters as before.
The resulting optimal strategies can be found in Figure 2. First, notice that by looking at time t = 0

the investor is strikingly more conservative since after a crash has occurred the next warning brings the
market right back into the most dangerous state 5 with a maximum crash size of 0.9. Also, note that
in states 1 and 2, the optimal strategies present a previously unobserved pattern — the strategies are
no longer monotone in t but increasing for small values of t and decreasing for larger values of t. The
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Figure 2: Optimal strategies with decreasing maximum crash sizes. Given are the optimal portfolio
strategies for power utility (with p = 0.1) with five different bubble states where the maximum possible
crash size decreases with each state. Observe that the optimal strategy in the first bubble state, that is
π1,∗, increases for the first 20 years before it decreases in the last 5 years as in the Korn and Wilmott
case (compare with the optimal strategy in the Korn and Wilmott case, denote here as π1,∗

KW (t)).

rationale behind this observation is as follows: If a crash occurs at time t << T then the probability
of another warning coming in before terminal time T is quite high (as compared to a crash close to T ).
Hence it is quite likely that the market ends up in the dangerous state 5 again. Thus, in order to avoid
big losses the investor chooses a small risky fraction. On the other hand, if t gets closer to T and a
crash occurs, then the probability of jumping back into state 5 becomes smaller and smaller and hence
the investor has to be less and less concerned with this threat as t approaches T . In states 1 and 2,
this leads to an increase in the optimal strategy. However as t gets even closer to T the losses due to
an immediate crash begin to dominate the threat of jumping back into state 5 and hence the strategies
start to decrease again and converge to 0 as t → T . This also explains why in states 3 to 5 the strategies
are monotone — because the threat of losing utility due to an immediate crash is bigger than the threat
of jumping back into state 5 after this crash.

Observe that the optimal strategy in the case i = 1 in Figure 2 verifies the findings in Belak et al. [4]:
A fixed number of possible crashes has just a short term (meaning close to the investment horizon) impact
while a random (unknown) number of crashes has an additional long term impact. With Figure 2, we
can make this more precise. In the short term the imminent threat of a crash is dominating and the
investor can almost ignore the long term threat of the unknown number of possible crashes (by investing
more in the risky asset in the short term than one would in the long term). On the other hand, the
unknown number of potential crashes has only a long term impact. This becomes clear by comparing the
optimal strategy in state i = 1 with the corresponding optimal strategy π1,∗

KM in Korn and Menkens [20]
with exactly one crash (with β = β1): While the behavior close to maturity of the two strategies is very
similar, the long-term difference between the two strategies is significant.

We investigate the feature of non-monotone optimal strategies again from a different point of view
in the next example where we replace the exponential arrival time distribution of warnings with various
phase-type distributions.

5.2 Phase-Type Distributed Warning Times

We conclude our numerical examples by comparing the optimal strategies which arise for different choices
of the distribution of the arrival times of the crash warnings. As pointed out in Remark 2.2, by an
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appropriate choice of the transition rate matrix Q of the Markov process Z, by making the market
coefficients state-independent, and by setting 0 = β0 = β1 = . . . = βd−1, βd = β = 0.5, the time S
needed to reach state d from state 0 is phase-type distributed. In this section, we consider three different
types of phase-type distributions: exponential, Erlang, and Coxian.

Remark 5.1. Note that this setup is degenerate in the sense that the investor receives warnings whenever
Z jumps to a state i ≥ 0, but since the maximum crash size is equal to zero for i < d she does not have
to fear a crash as long as she is in one of these states. ⋄

For our example, we choose T = 50. In order to normalize the different types of distributions and
make them comparable we choose the parameters of the distributions so that we always have

E[S] = 25, (5.4)

i.e. we expect to see two warnings if we start in state 0 at time t = 0. (Actually, the expectation will be
to see 2d warnings. However, 2d− 2 warnings are artificial/degenerate with no potential interpretation).

To obtain an exponential distribution we need to choose the transition matrix QExp of the Markov
process Z to be

QExp :=

(

q0,0 q0,1
q1,0 q1,1

)

=

(

−2/T 2/T
0 0

)

. (5.5)

We obtain an Erlang distribution by choosing QErl = (qErl
i,j )0≤i,j≤dErl such that

qErl
i,i = −

dErl

25
, qErl

i,i+1 =
dErl

25
, i = 0, . . . , dErl − 1, (5.6)

and 0 = qErl
dErl,0 = . . . = qErl

dErl,dErl . In our example we consider the three cases dErl = 5, dErl = 50, and

dErl = 500.
To obtain the Coxian distribution we need to choose QCox = (qCox

i,j )0≤i,j≤dCox such that

qCox
i,i = −λi, qCox

i,i+1 = piλi, qCox
i,dCox = (1− pi)λi, i = 0, . . . , dCox − 2, (5.7)

qCox
dCox−1,dCox−1 = −qCox

dCox−1,dCox = −λdCox−1 and 0 otherwise. The constants pi, i = 0, . . . , dCox − 2, have

to be chosen such that 0 < pi ≤ 1. For our numerical example, we consider dCox = 2 and

λ0 = 5, λ1 =
1

30
, p0 =

124

150
, (5.8)

such that

QCox =





−5 124
150 · 5 26

150 · 5
0 − 1

30
1
30

0 0 0



 . (5.9)

The resulting probability density functions and cumulative distribution functions are depicted in
Figure 3 and Figure 4. As we can see, the Coxian distribution puts a lot of mass on small values of t, i.e.
the probability of jumping into the warning state after a short amount of time is quite high compared
to the other distributions. The Erlang distribution with dErl = 500 on the other hand has a significant
peak around the mean arrival time E[S] = 25 and puts almost no weight in the tails. Note also that the
Erlang distribution converges to the Dirac measure at E[S] = 25 as dErl → ∞.

The resulting optimal strategies can be found in Figure 5. The Coxian strategy is the most con-
servative for t > 25 which is due to the high mass on the small time values — since it is more likely
to jump back into the crash state shortly after a crash, the investor has to take this into account in
order to be indifferent. The Erlang strategy with five phases (dErl = 5) has a similar behavior as the
strategies for state 1 and 2 in the previous example. That is, the strategy is first increasing and then
decreasing. In the case of dErl = 50 and dErl = 500 phases we can even see an oscillation in the optimal
strategies. The reason for this can be found in the density of the Erlang distribution. As dErl → ∞
the Erlang distribution converges to the Dirac measure at t = 25. That is, the Erlang distribution puts
increasingly more mass around the point t = 25. This means that after a crash at time t there is a very
high probability that the next crash warning will arrive in roughly 25 years and the probability of an

14



0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

Exponential

Erlang (d=5)

Erlang (d=50)

Erlang (d=500)

Coxian

Figure 3: Probability density functions of various phase-type distributions. Depicted are the exponential
density, the Erlang densities for d = 5, 50, and 500, and the Coxian density for d = 2.
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Figure 4: Cumulative distribution functions of various phase-type distributions. Depicted are the expo-
nential cumulative distribution function, the Erlang cumulative distribution functions for d = 5, 50, and
500, and the Coxian cumulative distribution function for d = 2.
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Figure 5: Optimal strategies for phase-type distributed arrival times of warnings. Most important are
the different Erlang cases. The case d = 5 is similar to the optimal strategy in the first state of Figure 2
in that it is increasing for the first 30 years or so and decreasing in the last 20 years or so. However, the
Erlang cases with d = 50 and 500 are even more extreme — the optimal strategies are oscillating with a
period of 25 years.

earlier warning is small. Hence if t is close to T the investor essentially has to prepare for one more
crash — since the likelihood of another warning after a crash is small. However, as T − t increases so
does the probability of another crash warning occurring after a crash at time t. Hence around t = 25
the investor begins to fear that another warning may arrive before the investment horizon — so she has
to be afraid of two more crashes. This explains why the strategy in the dErl = 50 case is increasing for
t ∈ [16.5, 29.5] (approximately). For even smaller values of t, the strategy is again decreasing since the
probability of an additional crash warning remains high. The effect becomes more pronounced as dErl

becomes larger due to the convergence property of the Erlang distribution against the Dirac measure
— the investor becomes increasingly more certain of how long it will take for another warning to arrive
after a crash. Also, note that in the long run all strategies considered in the above example converge to
the same level, since the stationary distribution of the Markov chain dominates the investor’s decisions
for large time horizons.

A Proofs

Proof of Theorem 3.2. Step 1: Fix (t, x, i) ∈ [0, T )× (0,∞)×E, let θ be any [t, T ]-valued stopping time,

fix π = (π1, . . . , πd) ∈ AK(t, x) and let ϑ = (τk)k∈N0
∈ T (t, i). Write X = Xπ,ϑ

t,x,i and Z = Zϑ
t,i for short.
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Then Itô’s formula shows that, for each k ∈ N0, we have2

V (θ ∧ τk,X(θ ∧ τk), Z(θ ∧ τk))

= V (θ ∧ τk+1−, X(θ ∧ τk+1−), Z(θ ∧ τk+1−)) (A.1)

−
d
∑

j=0

∫ θ∧τk+1−

θ∧τk

[

L
πj(u)
j V (u,X(u), j) +

d
∑

l=0

qj,lV (u,X(u), l)
]

1{Z(u−)=j} du

−
d
∑

j=0

∫ θ∧τk+1−

θ∧τk

σjπ
j(u)X(u)

∂

∂x
V (u,X(u), j)1{Z(u−)=j} dW (u)

−
d
∑

j=0

d
∑

l=0

∫ θ∧τk+1−

θ∧τk

[

V (u,X(u), l)− V (u,X(u), j)
]

1{Z(u−)=j} νk(du, l),

where νk denotes the compensated jump measure of the uncontrolled process Z started in state 0 at time
τk.

Step 2: Consider the strategy π∗ ∈ AK(t, x) together with an arbitrary ϑ ∈ T (t, i). Since π̂j ∈
K′′

j (u, y) for each (u, y, j) ∈ [t, T )× (0,∞)× E with j ≥ imin, this implies that, for any k ∈ N0 and any
j ∈ E with j ≥ imin, we have on {τk ≤ θ} ∩ {Z(τk−) = j}

V (τk, X
∗,ϑ(τk), Z(τk)) = V

(

τk, (1− πj,∗(τk)βj)X
∗,ϑ(τk−), 0

)

(A.2)

≥ V
(

τk, X
∗,ϑ(τk−), Z(τk−)

)

, (A.3)

where we denote X∗,ϑ := Xπ∗,ϑ. Thus, using this in (A.1) and then iteratively applying (A.1) shows
that, for each N ∈ N, we have

V (t, x, i) ≤ V (θ ∧ τN−, X∗,ϑ(θ ∧ τN−), Z(θ ∧ τN−)) (A.4)

−
N
∑

k=0

d
∑

j=0

∫ θ∧τk−

θ∧τk−1

[

L
πj(u)
j V (u,X∗,ϑ(u), j) +

d
∑

l=0

qj,lV (u,X∗,ϑ(u), l)
]

1{Z(u−)=j} du

−
N
∑

k=0

d
∑

j=0

∫ θ∧τk−

θ∧τk−1

σjπ
j(u)X∗,ϑ(u)

∂

∂x
V (u,X∗,ϑ(u), j)1{Z(u−)=j} dW (u)

−
N
∑

k=0

d
∑

j=0

d
∑

l=0

∫ θ∧τk−

θ∧τk−1

[

V (u,X∗,ϑ(u), l)− V (u,X∗,ϑ(u), j)
]

1{Z(u−)=j} νk(du, l),

where we set τ−1 := t. Now, since for j = 0, . . . , imin − 1 the function π̂j is a pointwise maximizer of

sup
π∈K

{

Lπ
j V (t, x, j) +

d
∑

l=0

qj,lV (t, x, l)

}

≥ 0 (A.5)

and since for j = imin, . . . , d the function π̂j is a pointwise maximizer of

sup
π∈K′′

j
(t,x)

{

Lπ
j V (t, x, j) +

d
∑

l=0

qj,lV (t, x, l)

}

≥ 0, (A.6)

we can estimate the first integral in (A.4) to obtain

V (t, x, i) ≤ V (θ ∧ τN−, X∗,ϑ(θ ∧ τN−), Z(θ ∧ τN−)) (A.7)

−
N
∑

k=0

d
∑

j=0

∫ θ∧τk−

θ∧τk−1

σjπ
j(u)X∗,ϑ(u)

∂

∂x
V (u,X∗,ϑ(u), j)1{Z(u−)=j} dW (u)

−
N
∑

k=0

d
∑

j=0

d
∑

l=0

∫ θ∧τk−

θ∧τk−1

[

V (u,X∗,ϑ(u), l)− V (u,X∗,ϑ(u), j)
]

1{Z(u−)=j} νk(du, l).

2To ease the notational burden, we assume that taking the left limit is less binding than taking the minimum of two
stopping times. That is, the expression θ ∧ τk+1− is to be read as (θ ∧ τk+1)−.
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Now send N → ∞ to obtain

V (t, x, i) ≤ V (θ−, X∗,ϑ(θ−), Z(θ−)) (A.8)

−
∞
∑

k=0

d
∑

j=0

∫ θ∧τk−

θ∧τk−1

σjπ
j(u)X∗,ϑ(u)

∂

∂x
V (u,X∗,ϑ(u), j)1{Z(u−)=j} dW (u)

−
∞
∑

k=0

d
∑

j=0

d
∑

l=0

∫ θ∧τk−

θ∧τk−1

[

V (u,X∗,ϑ(u), l)− V (u,X∗,ϑ(u), j)
]

1{Z(u−)=j} νk(du, l)

= V (θ−, X∗,ϑ(θ−), Z(θ−)) (A.9)

−
d
∑

j=0

∫ θ−

t

σjπ
j(u)X∗,ϑ(u)

∂

∂x
V (u,X∗,ϑ(u), j)1{Z(u−)=j} dW (u)

−
d
∑

j=0

d
∑

l=0

∫ θ−

t

[

V (u,X∗,ϑ(u), l)− V (u,X∗,ϑ(u), j)
]

1{Z(u−)=j} ν0(du, l),

where for the last equation we used that νk = νl for all k, l ∈ N0.
Step 3: Note that, for any π ∈ AK(t, x) and ϑ ∈ T (t, i), the last integral in (A.1) is a martingale.

Indeed, by Brémaud [7, Excercise I.E2], we only need to show that

E





∫ T

t

d
∑

j=0

d
∑

l=0

∣

∣

∣V (u,X(u), l)− V (u,X(u), j)
∣

∣

∣ du



 < +∞. (A.10)

By the growth condition on V , we have for each j, l ∈ E

E

[

∫ T

t

∣

∣

∣V (u,X(u), l)− V (u,X(u), j)
∣

∣

∣

]

≤ 2CT

(

1 + E

[

sup
u∈[t,T ]

|X(u)|2

])

, (A.11)

which is finite by Lemma 3.1.
Let n ∈ N and define θn to be the minimum of T and the infimum over all u with u > t such that

d
∑

j=0

∫ u

t

∣

∣

∣
σjπ

j(r)X∗,ϑ(r)
∂

∂x
V (r,X∗,ϑ(r), j)1{Z(r−)=j}

∣

∣

∣

2

dr (A.12)

exceeds n. Now replace θ by θn in (A.9) and take expectations to obtain

V (t, x, i) ≤ E
[

V (θn−, X∗,ϑ(θn−), Z(θn−))
]

. (A.13)

Note that, for each n ∈ N, we have

E
[

|V (θn−, X∗,ϑ(θn−), Z(θn−))|
]

≤ C

(

1 + E

[

sup
u∈[t,T ]

|X∗,ϑ(u)|2
])

< +∞ (A.14)

due to the growth condition on V and by Lemma 3.1. Hence, we can send n → ∞ in (A.13) and use
dominated convergence to obtain

V (t, x, i) ≤ E
[

V (T−, X∗,ϑ(T−), Z(T−))
]

. (A.15)

Since V is continuous, satisfies V (T, x, ·) = Up(x), and since π∗(T ) = 0 it follows that

V (t, x, i) ≤ E
[

Up

(

X∗,ϑ(T )
)]

. (A.16)

Since ϑ was chosen arbitrarily this implies that

V (t, x, i) ≤ inf
ϑ∈T (t,i)

E
[

Up

(

X∗,ϑ(T )
)]

≤ VK(t, x, i). (A.17)
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Step 4: Consider an arbitrary π ∈ AK(t, x) together with the associated crash scenario ϑ∗(π) ∈ T (t, i).
We denote X := Xπ,ϑ∗(π). Now, for each k ∈ N0 and each j = 0, . . . , imin − 1, we have

[

L
π(u)
j V (u,X(u), j) +

d
∑

l=0

qj,lV (u,X(u), l)
]

1{Z(u−)=j} ≤ 0 (A.18)

for all u ∈ [t, T ). Moreover, for each k ∈ N0 and each j = imin, . . . , d, we have

V (u,X(u−), Z(u−)) < V (u, (1− πj(u)βj)X(u−), 0) (A.19)

for each u ∈ [τ∗k , τ
∗
k+1) on {τ∗k+1 ≤ T} ∩ {Z(u−) = j} by the construction of ϑ∗(π). We must now

distinguish two situations: Either we are in case (a) in which

[

L
πj(u)
j V (u,X(u), j) +

d
∑

l=0

qj,lV (u,X(u), l)
]

1{Z(u−)=j} < 0 (A.20)

or we are in case (b) in which

[

L
πj(u)
j V (u,X(u), j) +

d
∑

l=0

qj,lV (u,X(u), l)
]

1{Z(u−)=j} ≥ 0. (A.21)

The latter case implies in particular that πj(u) ∈ K′
j(u,X(u−)) and hence (A.19) shows that

sup
π∈K′

j
(u,X(u−))

[

V (u, (1− πβj)X(u−), 0)− V (u,X(u−), j)
]

> 0. (A.22)

Since V solves the system of HJBs and since j ≥ imin, we therefore have

sup
π∈K′′

j
(u,X(u−))

[

Lπ
j V (u,X(u), j) +

d
∑

l=0

qj,lV (u,X(u), l)
]

= 0. (A.23)

Since πj(u) ∈ K′′
j (u,X(u−)) by (A.19), we conclude that

[

L
πj(u)
j V (u,X(u), j) +

d
∑

l=0

qj,lV (u,X(u), l)
]

1{Z(u−)=j} = 0 (A.24)

in case (b). Therefore, combining case (a) and case (b) implies that

[

L
πj(u)
j V (u,X(u), j) +

d
∑

l=0

qj,lV (u,X(u), l)
]

1{Z(u−)=j} ≤ 0 (A.25)

on {τ∗k+1 ≤ T}. Thus, using this with (A.18) in (A.1) shows that

V (θ ∧ τ∗k ,X(θ ∧ τ∗k ), Z(θ ∧ τ∗k ))

≥ V (θ ∧ τ∗k+1−, X(θ ∧ τ∗k+1−), Z(θ ∧ τ∗k+1−)) (A.26)

−
d
∑

j=0

∫ θ∧τ∗

k+1

θ∧τ∗

k

σjπ
j(u)X(u)

∂

∂x
V (u,X(u), j)1{Z(u−)=j} dW (u)

−
d
∑

j=0

d
∑

l=0

∫ θ∧τ∗

k+1

θ∧τ∗

k

[

V (u,X(u), l)− V (u,X(u), j)
]

1{Z(u−)=j} νk(du, l)

for each k ∈ N0. Moreover, by the construction of ϑ∗(π), using that the process Z jumps back to state
zero at crash times, that is Z(τ∗k ) = 0 for all k ∈ N0, and the right-continuity of π, we have for every
k ∈ N0 on {τ∗k ≤ θ} ∩ {Z(τ∗k−) = j ≥ imin}:

V (τ∗k , X(τ∗k ), Z(τ∗k )) = V
(

τ∗k , (1− πj(τ∗k )βj)X(τ∗k−), 0
)

≤ V
(

τ∗k , X(τ∗k−), Z(τ∗k−)
)

. (A.27)

19



Using this in (A.26) and applying inductively (A.26) shows therefore that

V (t, x, i) ≥ V (θ−, X(θ−), Z(θ−)) (A.28)

−
d
∑

j=0

∫ θ−

t

σjπ
j(u)X(u)

∂

∂x
V (u,X(u), j)1{Z(u−)=j} dW (u)

−
d
∑

j=0

d
∑

l=0

∫ θ−

t

[

V (u,X(u), l)− V (u,X(u), j)
]

1{Z(u−)=j} ν0(du, l).

Step 5: Define a sequence of stopping times (θn)n∈N as in step 3, but with (π∗, ϑ) replaced by
(π, ϑ∗(π)). Thus, taking expectations in (A.28) shows that

V (t, x, i) ≥ E [V (θn−, X(θn−), Z(θn−))] . (A.29)

Sending n → ∞, we conclude by dominated convergence that

V (t, x, i) ≥ E [V (T−, X(T−), Z(T−))] . (A.30)

Moreover, it follows from the definition of ϑ∗(π) that

E [V (T−, X(T−), Z(T−))] ≥ E [V (T,X(T ), Z(T ))] = E [Up (X(T ))] (A.31)

≥ inf
ϑ∈T (t,i)

E
[

Up

(

Xπ,ϑ(T )
)]

(A.32)

and since π was chosen arbitrarily this implies

V (t, x, i) ≥ VK(t, x, i). (A.33)

Hence, V (t, x, i) = VK(t, x, i) by (A.17). Thus, replacing V by VK on the right-hand side of (A.17) shows
that

VK(t, x, i) ≤ inf
ϑ∈T (t,i)

E
[

Up

(

X∗,ϑ(T )
)]

, (A.34)

which proves the optimality of π∗. The optimality of ϑ∗(π∗) follows similarly by using V (t, x, i) =
VK(t, x, i) and the optimality of π∗ together with (A.29) and (A.32).

Proof of Lemma 4.1. Note that the differential operator (4.5) is globally Lipschitz continuous and the
differential operator (4.24) is locally Lipschitz continuous in fi. Hence, by the theorem of Picard-Lindelöf,
there exists a unique local solution of the system of differential equations. In order to show that there
exists a strictly positive solution on [0, T ] it suffices to show that each fi is strictly positive on [0, T ]
and fi does not explode on [0, T ]. We only consider the case p ∈ (0, 1), the case p < 0 can be handled
similarly.

Let therefore p ∈ (0, 1). Define

gi(y) := αiy −
1

2
(1− p)σ2

i y
2 (A.35)

and note that gi attains its maximum at πi
M . We let

M := max
i∈E

gi(π
i
M ) > 0 and λ̄ := max

i∈E
λi. (A.36)

Now, for any i ∈ E and any t ∈ [0, T ] with fi(t) > 0, we have

∂

∂t
fi(t) = −pgi(π

i,∗(t))fi(t)−
d
∑

j=0

qi,jfj(t) (A.37)

≥ −pMfi(t)− qi,ifi(t)−
d
∑

j=0
j 6=i

qi,jfj(t) (A.38)

≥ −pMfi(t)−max
j∈E

{fj(t)}
d
∑

j=0
j 6=i

qi,j (A.39)

≥ −[pM + λ̄] max
j∈E

{fj(t)}. (A.40)
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Thus, Gronwall’s inequality shows that

fi(t) ≤ fi(T ) +

∫ T

t

(pM + λ̄)max
j∈E

{fj(u)} du (A.41)

for every i ∈ E and therefore

max
j∈E

{fj(t)} ≤ 1 +

∫ T

t

(pM + λ̄)max
j∈E

{fj(u)} du. (A.42)

Applying Gronwall’s inequality again shows that

max
j∈E

{fj(t)} ≤ e(pM+λ̄)(T−t). (A.43)

Furthermore, we have

∂

∂t
fi(t) = −

1

2
p

αi

(1− p)σ2
i

fi(t)−
d
∑

j=0

qi,jfj(t) (A.44)

≤ λ̄fi(t) (A.45)

for each i = 0, . . . , imin − 1 as long as fj(t) > 0 for all j ∈ E.
Let us now assume that there exists t0 ∈ [0, T ) such that

lim
t↓t0

fk(t) = 0 (A.46)

for some k ∈ E and that fj(t) > 0 for all t ∈ (t0, T ] and all j ∈ E (Note that t0 < T is clear from the
terminal condition on fi). It follows from (A.43) and (A.45) that

fj(t) ≤ e(pM+λ̄)(T−t) for all (t, j) ∈ [t0, T ]× E, (A.47)

fj(t) ≥ e−λ̄(T−t) for all (t, j) ∈ [t0, T ]× E with j < imin. (A.48)

This implies in particular that k ≥ imin. Moreover, we have

0 ≤
fk(t)

f0(t)
≤ e(pM+2λ̄)(T−t), t ∈ [t0, T ], (A.49)

and hence
1

βk

(

1− e
1
p
(pM+2λ̄)(T−t)

)

≤
1

βk

(

1−

[

fk(t)

f0(t)

]1/p
)

≤
1

βk
. (A.50)

Define

L :=
1

β

(

1− e
1
p
(pM+2λ̄)T

)

. (A.51)

Since πk,∗(t) ≤ πk
M and since gk is increasing on (−∞, πk

M ) it follows that

gk(L) ≤ gk(π
k,∗(t)), t ∈ [t0, T ]. (A.52)

Therefore,

∂

∂t
fk(t) = −pgk(π

k,∗(t))fk(t)−
d
∑

j=0

qk,jfj(t) ≤ [−pmin{gk(L), 0}+ λ̄]fk(t) (A.53)

for every t ∈ [t0, T ] which shows that

fk(t) ≥ e(−pmin{gk(L),0}+λ̄)(T−t), t ∈ [t0, T ], (A.54)

in contradiction to
lim
t↓t0

fk(t) = 0. (A.55)

Thus, combining this with (A.43) shows that fi > 0 on [0, T ] and fi is non-exploding for each i ∈ E.
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Proof of Lemma 4.2. Since F (t, y) is continuous in t and globally Lipschitz continuous in y on any closed
subinterval of (−∞, 1/βi), it suffices to show that we can find constants −∞ < a < b < 1/βi such that the
solution of the differential equation stays inside the interval [a, b]. We only consider the case 0 < p < 1,
the case p ≤ 0 can be proved similarly.

Step 1: We prove the existence of a constant a such that F (t, y) ≤ 0 whenever y ≤ a. For this, note
that the sign of F only depends on the term

Ψi −Ψ0 −
1

2
(1− p)σ2

i

(

y − πi
M

)2
+

1

p

d
∑

j=0

qi,j
fj(t)

f0(t)
(1− yβi)

−p −
1

p

d
∑

j=0
j 6=i

q0,j
fj(t)

f0(t)
− q0,i

1

p
(1− yβi)

p. (A.56)

Furthermore, note that there exist constants M,M > 0 independent of t ∈ [0, T ] and j ∈ E according
to the proof of Lemma 4.1 such that

M ≤
fj(t)

f0(t)
≤ M. (A.57)

Then

Ψi −Ψ0 −
1

2
(1− p)σ2

i

(

y − πi
M

)2
+

1

p

d
∑

j=0

qi,j
fj(t)

f0(t)
(1− yβi)

−p −
1

p

d
∑

j=0
j 6=i

q0,j
fj(t)

f0(t)
− q0,i

1

p
(1− yβi)

p

≤ Ψi −Ψ0 −
1

2
(1− p)σ2

i

(

y − πi
M

)2
+

1

p

(

λ0 +
d
∑

j=0
j 6=i

qi,jM(1− yβi)
−p

)

, (A.58)

which is less or equal to 0 if and only if

1

p

(

λ0 +
d
∑

j=0
j 6=i

qi,jM(1− yβi)
−p

)

≤ Ψ0 −Ψi +
1

2
(1− p)σ2

i

(

y − πi
M

)2
. (A.59)

Since (1− yβi)
−p → 0 and (y− πi

M )2 → +∞ as y → −∞ we see that there exists a constant a such that
F (t, y) ≤ 0 whenever y ≤ a.

Step 2: Next we show that there exists a constant b < 1/βi independent of t such that F (t, y) ≥ 0
whenever y ≥ b. We have

Ψi −Ψ0 −
1

2
(1− p)σ2

i

(

y − πi
M

)2
+

1

p

d
∑

j=0

qi,j
fj(t)

f0(t)
(1− yβi)

−p −
1

p

d
∑

j=0
j 6=i

q0,j
fj(t)

f0(t)
− q0,i

1

p
(1− yβi)

p

≥
1

p

d
∑

j=1
j 6=i

qi,jM(1− yβi)
−p −

1

p
λi −

1

p

d
∑

j=1
j 6=i

q0,jM − q0,i
1

p
(1− yβi)

p +Ψi −Ψ0 (A.60)

−
1

2
(1− p)σ2

i

(

y − πi
M

)2
,

which is greater or equal than 0 if and only if

1

p

d
∑

j=1
j 6=i

qi,jM(1−yβi)
−p−

1

p
λi−

1

p

d
∑

j=1
j 6=i

q0,jM−q0,i
1

p
(1−yβi)

p ≥ Ψ0−Ψi+
1

2
(1−p)σ2

i

(

y − πi
M

)2
. (A.61)

Now since (1− yβi)
−p approaches +∞ and (1− yβi)

p approaches 0 as y → 1/βi and since (y − πi
M )2 is

bounded in y on [0, 1/βi], we see that there exists a constant b < 1/βi such that F (t, y) ≥ 0 whenever
y ≥ b.
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B Verification for Logarithmic and Negative Power Utility

Let us now verify that the solutions of the coupled system of HJBs constructed in Section 4.1 and
Section 4.2 are indeed the value functions. For p ∈ (0, 1), this is clear by Theorem 3.2. For p ≤ 0, the
function V does not satisfy the quadratic growth condition which was used in step 3 and step 5 of the
proof of Theorem 3.2. However, the explicit nature of our solutions allows us to verify these two steps
also for p ≤ 0.

Theorem B.1. Let p = 0 and let V be the solution of the system of HJBs given in (4.33). Then

V = VK = V.

Proof. Let both π ∈ A(t, x) and ϑ ∈ T (t, i) be arbitrary. We show that the two stochastic integrals
in (A.1) are martingales. With this, we can choose θ = T and conclude as before. Note that

x
∂

∂x
V (t, x, i) = 1 (B.1)

for every i ∈ E and hence the integrand of the Brownian integral is bounded (uniformly in t and i) so
that the integral is indeed a martingale. Moreover, for each i, j ∈ E, we have

|V (t, x, i)− V (t, x, j)| = |fi(t)− fj(t)| (B.2)

which is again bounded (uniformly in t, i and j) and hence the integral with respect to the compensated
jump measure is a martingale as well.

For p < 0, we need to rule out some admissible trading strategies first. Because the pure bond
strategy π ≡ 0 is admissible (and recalling that the interest rate is equal to zero), we may without loss
of generality restrict the set of admissible strategies to those π ∈ AK(t, x) which satisfy

Up(x) ≤ inf
ϑ∈T (t,i)

E

[

Up

(

Xπ,ϑ
t,x,i(T )

)]

. (B.3)

Theorem B.2. Let p < 0 and let V be the solution of the system of HJBs given in (4.1). Then

V = VK = V.

Proof. We simply prove step 3 and step 5 of the proof of Theorem 3.2 without relying on the quadratic
growth condition.

Step 3: Recall that we have for π∗ and any arbitrary ϑ ∈ T (t, i) (according to (A.9))

V (t, x, i) ≤ V (θ−, X∗,ϑ(θ−), Z(θ−)) (B.4)

−
d
∑

j=0

∫ θ−

t

σjπ
j(u)X∗,ϑ(u)

∂

∂x
V (u,X∗,ϑ(u), j)1{Z(u−)=j} dW (u)

−
d
∑

j=0

d
∑

l=0

∫ θ−

t

[

V (u,X∗,ϑ(u), l)− V (u,X∗,ϑ(u), j)
]

1{Z(u−)=j} ν0(du, l)

for any [t, T ]-valued stopping time θ. We have to show that

V (t, x, i) ≤ VK(t, x, i). (B.5)

Using that V (θ−, X∗,ϑ(θ−), Z(θ−)) ≤ 0 in (B.4) shows that the sum of the two stochastic integrals is
a local martingale bounded from above by −V (t, x, i) and thus it is a submartingale. Choosing θ = T
in (B.4) and taking expectations shows furthermore that

V (t, x, i) ≤ E
[

V (T−, X∗,ϑ(T−), Z(T−))
]

. (B.6)

Since V is continuous, satisfies V (T, x, ·) = Up(x), and since π∗(T ) = 0 it follows that

V (t, x, i) ≤ E
[

Up

(

X∗,ϑ(T )
)]

. (B.7)

23



Since ϑ was chosen arbitrarily this implies that

V (t, x, i) ≤ inf
ϑ∈T (t,i)

E
[

Up

(

X∗,ϑ(T )
)]

≤ VK(t, x, i). (B.8)

Step 5: Let π ∈ AK(t, x) and let ϑ∗(π) be the corresponding candidate optimal crash strategy. Recall
that by (A.28) we have

V (t, x, i) ≥ V (θ−, X(θ−), Z(θ−)) (B.9)

−
d
∑

j=0

∫ θ−

t

σjπ
j(u)X(u)

∂

∂x
V (u,X(u), j)1{Z(u−)=j} dW (u)

−
d
∑

j=0

d
∑

l=0

∫ θ−

t

[

V (u,X(u), l)− V (u,X(u), j)
]

1{Z(u−)=j} ν0(du, l)

for any [t, T ]-valued stopping time θ. We have to show that

V (t, x, i) ≥ VK(t, x, i). (B.10)

For every n ∈ N, we define

θn := inf {u ≥ t : |V (u,X(u), Z(u))| ≥ n} ∧ T. (B.11)

Observe that this together with

x
∂

∂x
V (t, x, i) = pV (t, x, i) (B.12)

implies that the stochastic integrals in (B.9) stopped at θn are martingales and, hence, replacing θ by
θn in (B.9) and taking expectations shows that

V (t, x, i) ≥ E [V (θn−, X(θn−), Z(θn−))] . (B.13)

If we can show that

lim
n→∞

E [V (θn−, X(θn−), Z(θn−))] = E [V (T−, X(T−), Z(T−))] (B.14)

then we can conclude as in the proof of Theorem 3.2.
First, let us note that

E
[

V (θn−, X(θn−), Z(θn−))1{θn=T}

]

= E
[

V (T−, X(T−), Z(T−))1{θn=T}

]

(B.15)

and therefore

lim
n→∞

E
[

V (θn−, X(θn−), Z(θn−))1{θn=T}

]

= E [V (T−, X(T−), Z(T−))] (B.16)

by monotone convergence. In order to prove (B.14), it is therefore sufficient to show that

lim
n→∞

E
[

V (θn−, X(θn−), Z(θn−))1{θn<T}

]

= 0. (B.17)

Let us note that (by Lemma 4.1) there exist constants M,M > 0 such that

MUp(x) ≤ V (t, x, i) ≤ MUp(x). (B.18)

Next, it is clear that there exists a constant L > 0 such that

Up(x) ≤ VK(t, x, i) ≤ LUp(x). (B.19)

Indeed, the first inequality follows from (B.3) and the second inequality follows from considering the
no-crash strategy in VK(t, x, i), which implies that VK ≤ VRS , where VRS denotes the value function in

24



the regime switching model without crashes, see (1.3). Therefore, combining (B.18) and (B.19), we can
find a constant C > 0 (independent of x) such that

V (t, x, i) ≥ CVK(t, x, i). (B.20)

Using this, we obtain

0 ≥ lim
n→∞

E

[

V (θn−, Xπ,ϑ∗

t,x,i (θn−), Zϑ∗

t,i (θn−))1{θn<T}

]

(B.21)

≥ lim
n→∞

CE

[

VK(θn−, Xπ,ϑ∗

t,x,i (θn−), Zϑ∗

t,i (θn−))1{θn<T}

]

(B.22)

≥ lim
n→∞

CE

[

inf
ϑ∈T (θn−,Z(θn−))

E

[

Up

(

Xπ,ϑ
θn−,X(θn−),Z(θn−)(T )

)]

1{θn<T}

]

(B.23)

≥ lim
n→∞

CE

[

inf
ϑ∈T (t,i)

E

[

Up

(

Xπ,ϑ
t,x,i(T )

)]

1{θn<T}

]

(B.24)

≥ lim
n→∞

CE
[

Up(x)1{θn<T}

]

(B.25)

= 0.
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[8] A. Capponi and J. E. Figueroa-López, Dynamic portfolio optimization with a defaultable security

and regime-switching, Mathematical Finance 24 (2014), no. 2, 207–249.
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