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Abstract 

The spatial QRS-T angle (SA) has been identified as a 
marker for changes in the ventricular depolarization and 
repolarization sequence. The determination of the SA 
requires vectorcardiographic (VCG) data. However, 
VCG data is seldom recorded in monitoring applications. 
This is mainly due to the fact that the number and 
location of the electrodes required for recording the 
Frank VCG complicate the recording of VCG data in 
monitoring applications. Alternatively, reduced lead 
systems (RLS) allow for the derivation of the Frank VCG 
from a reduced number of electrocardiographic (ECG) 
leads. Derived Frank VCGs provide a practical means for 
the determination of the SA in monitoring applications. 
One widely studied RLS that is used in clinical practice is 
based upon Mason-Likar leads I, II, V2 and V5 (MLRL). 
The aim of this research was two-fold. First, to develop a 
linear ECG lead transformation matrix that allows for the 
derivation of the Frank VCG from the MLRL system. 
Second, to assess the accuracy of the MLRL derived SA 
(MSA). We used ECG data recorded from 545 subjects 
for the development of the linear ECG lead 
transformation matrix. The accuracy of the MSA was 
assessed by analyzing the differences between the MSA 
and the SA using the ECG data of 181 subjects. The 
differences between the MSA and the SA were quantified 
as systematic error (mean difference) and random error 
(span of Bland-Altman 95% limits of agreement). The 
systematic error between the MSA and the SA was found 
to be 9.38° [95% confidence interval: 7.03° to 11.74°]. 
The random error was quantified as 62.97° [95% 
confidence interval: 56.55° to 70.95°]. 

1. Introduction
The spatial QRS-T angle (SA) measures the 

relationship between ventricular depolarization and 
repolarization.  Changes in the depolarization sequence as 
well as changes in the action potential duration are 

reflected in the SA [1].  Narrow SA angles indicate a 
normal relationship between ventricular depolarization 
and repolarization [2].  A widening of the SA is an 
indication of an abnormal relationship between 
ventricular depolarization and repolarization [2].  The 
properties of the SA have previously been demonstrated 
to have clinical value in different applications [3, 4].  
While the SA has shown to be of clinical value the 
determination of the SA has proven to be difficult in 
continuous bedside and ambulatory monitoring 
applications.  This is due to the fact that the determination 
of the SA requires vectorcardiographic (VCG) data that 
cannot be easily obtained in monitoring applications.  
Such VCG data is typically determined by recording the 
Frank VCG [5] or through derivation from recorded 12-
lead ECG data [6].  However, the number and the 
location of the electrodes that are required for recording 
the Frank VCG or the 12-lead ECG are not practical in 
monitoring applications.  Derived VCGs that are obtained 
using monitoring compatible reduced lead systems 
(RLSs) have the potential of providing a practical means 
for the determination of the SA in monitoring 
applications.  These RLSs generate the derived VCGs by 
applying a linear ECG lead transformation matrix to a 
reduced number of recorded ECG leads.  One widely 
studied RLS that is used in clinical practice is based upon 
Mason-Likar (ML) [7] leads I, II, V2 and V5 and 
subsequently refereed to as MLRL system [8].  However, 
a linear ECG lead transformation matrix that allows for 
the derivation of the Frank VCG from the MLRL system 
has not previously been reported in the literature.   

The aim of this research is two-fold. First, to develop a 
linear ECG lead transformation matrix that allows for the 
derivation of the Frank VCG from the MLRL system. 
Second, to quantify the errors made when using the 
MLRL derived SA (MSA) as a substitute for the SA. 

2. Material and methods

2.1. Study population 
We base our research on a study population of 726 
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subjects.  The study population is composed of normal 
subjects, subjects with myocardial infarction (MI) and 
subjects with left ventricular hypertrophy (LVH).  One 
body surface potential map (BSPM) was recorded for 
each of the 726 subjects in the study population.  The 
study population was randomly partitioned into a training 
dataset (𝐷𝑇𝑟𝑎𝑖𝑛) and a test dataset (𝐷𝑇𝑒𝑠𝑡).  Table 1 
details the composition of 𝐷𝑇𝑟𝑎𝑖𝑛 and 𝐷𝑇𝑒𝑠𝑡. 

Table 1.  Composition of train data (𝐷𝑇𝑟𝑎𝑖𝑛) and test 
data (𝐷𝑇𝑒𝑠𝑡). 

Normal MI LVH Total 
𝐷𝑇𝑟𝑎𝑖𝑛 172 199 174 545 
𝐷𝑇𝑒𝑠𝑡 57 66 58 181 

Notes. Normal, Subjects with no abnormalities in their 
ECGs; MI, Subjects with myocardial infarction; LVH, Subjects 
with left ventricular hypertrophy. 

2.2. BSPM data 

The BSPM data used in this research contains 
electrocardiographic data of 120 leads.  One 
representative QRST complex was calculated for each of 
the 120 BSPM leads.  Three of the 120 leads were 
recorded from electrodes placed on the right and left wrist 
and the left ankle (VR, VL and VF respectively).  The 
remaining 117 leads were recorded from thoracic 
electrodes (81 anterior and 36 posterior recording sites). 
A comprehensive description of the BSPM data and the 
recording procedure can be found in [9, 10].  A number of 
electrocardiographic leads that were required to conduct 
our research were associated with electrode locations that 
fell between the locations of the 117 thoracic electrodes. 
The electrocardiographic data of such leads was obtained 
using a previously described two-step interpolation 
procedure [11].  First, the 117 lead BSPMs were 
transformed into 352 lead BSPMs.  This was performed 
using a Laplacian 3D interpolation method [12].  The 
location of the 352 thoracic leads corresponded to the 
nodes in the Dalhousie torso [13].  Second, any required 
thoracic leads that were located between the 352 thoracic 
leads were obtained using linear interpolation [14].   

2.3. Generation of the Frank VCG 

The potentials at the A, C, E, F, H, I and M electrode 
locations of the Frank lead system [5], were extracted 
from the BSPMs.  The potentials at the Frank electrode 
locations were used to derive the Frank VCG using (1).  

𝑽𝑪𝑮𝑭𝒓𝒂𝒏𝒌 =
𝑿
𝒀
𝒁

= 𝑨𝑭𝒓𝒂𝒏𝒌 ∙
𝝋𝑨
⋮
𝝋𝑴

. (1) 

Where 𝝋𝑨, 𝝋𝑪, 𝝋𝑬, 𝝋𝑭, 𝝋𝑯, 𝝋𝑰, and  𝝋𝑴 are 1×𝑁 
vectors that contain 𝑁 sample values of potentials at the 
Frank electrode locations A to M respectively, 𝑨𝑭𝒓𝒂𝒏𝒌 is a 
3×7 matrix of published coefficients [15] that allow for a 

derivation of the Frank VCG using the potentials 𝝋𝑨 to 
𝝋𝑴, and 𝑽𝑪𝑮𝑭𝒓𝒂𝒏𝒌 is a 3×𝑁 matrix containing 𝑁 sample 
values of the Frank VCG, the 1×𝑁 vectors 𝑿, 𝒀 and 𝒁 
contain 𝑁 sample values of the three Frank leads X, Y 
and Z respectively. 

2.4. Derivation of the linear ECG lead 
transformation matrix 

The linear ECG lead transformation matrix 𝐴!"#!, 
which allows for the derivation of the Frank VCG from 
the MLRL system, was derived as follows. First, the 
Frank VCG leads X, Y and Z of all subjects in 𝐷𝑡𝑟𝑎𝑖𝑛 
were concatenated to create the 3×𝑁 matrix 𝑉𝐶𝐺!"#$%.  
Second, the leads I, II, V2 and V5 of all subjects in 
𝐷𝑡𝑟𝑎𝑖𝑛, were concatenated to create the 4×𝑁 matrix 
𝑬𝑪𝑮𝑴𝑳𝑹𝑳.  Third, 𝐴!"#" was calculated using least-
squares multivariate linear regression as detailed in (2a) 
and (2b). 

𝑨𝑴𝑳𝑹𝑳 =
= 𝑽𝑪𝑮𝑭𝒓𝒂𝒏𝒌 𝑬𝑪𝑮𝑴𝑳𝑹𝑳 𝑻 𝑬𝑪𝑮𝑴𝑳𝑹𝑳 𝑬𝑪𝑮𝑴𝑳𝑹𝑳 𝑻 !!. (2a)

With  

𝑬𝑪𝑮𝑴𝑳𝑹𝑳 =
𝐼
𝐼𝐼
𝑉2
𝑉5

. (2b) 

Where ∙ 𝑻   and ∙ !𝟏denote the transpose and the 
inverse of a matrix respectively, 𝑨𝑴𝑳𝑹𝑳 refers to a 3×4 
matrix of transformation coefficients, 𝑽𝑪𝑮𝑭𝒓𝒂𝒏𝒌 is as 
defined in (1), 𝑬𝑪𝑮𝑴𝑳𝑹𝑳 is a 4×𝑁 matrix of 𝑁 sample 
values and 𝑰, 𝑰𝑰, 𝑽𝟐 and 𝑽𝟓 are 1×𝑁 vectors that contain 
𝑁 sample values of the MLRL leads I, II, V2 and V5 
respectively. 

2.5. Generation of the MLRL derived 
VCG 

The four ML leads I, II, V2 and V5 were extracted 
from the BSPMs and used to derive the Frank VCG 
through (3). 

𝑽𝑪𝑮𝑴𝑳𝑹𝑳 = 𝑨𝑴𝑳𝑹𝑳 ∙ 𝑬𝑪𝑮𝑴𝑳𝑹𝑳. (3) 

Where 𝑬𝑪𝑮𝑴𝑳𝑹𝑳 is as defined in (2b), 𝑨𝑴𝑳𝑹𝑳 is a 3×4 
matrix of transformation coefficients that allow for the 
derivation of the VCG from the MLRL system and 
𝑽𝑪𝑮𝑴𝑳𝑹𝑳 is a 3×𝑁 matrix containing 𝑁 sample values of 
the three MLRL derived Frank VCG leads X, Y and Z. 

2.6. Determination of the spatial QRS-T 
angle 

The SA and the MSA were calculated as detailed in (4) 
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to (7). 

𝑸𝑹𝑺𝒎𝒅 = !
!!!!"#!"

𝑽𝑪𝑮𝒅(𝑛)!!
!!!"#!" . (4) 

𝑻𝒎𝒅 = !
!!"#!!!

𝑽𝑪𝑮𝒅(𝑛)!!"#
!!!! . (5) 

𝑆𝐴 = 𝑎𝑟𝑐𝑐𝑜𝑠 𝑸𝑹𝑺𝒎𝑭𝒓𝒂𝒏𝒌∙𝑻𝒎𝑭𝒓𝒂𝒏𝒌

𝑸𝑹𝑺𝒎𝑭𝒓𝒂𝒏𝒌 ∙ 𝑻𝒎𝑭𝒓𝒂𝒏𝒌
. (6) 

𝑀𝑆𝐴 = 𝑎𝑟𝑐𝑐𝑜𝑠 𝑸𝑹𝑺𝒎𝑴𝑳𝑹𝑳∙𝑻𝒎𝑴𝑳𝑹𝑳

𝑸𝑹𝑺𝒎𝑴𝑳𝑹𝑳 ∙ 𝑻𝒎𝑴𝑳𝑹𝑳
. (7) 

Where 𝑸𝑹𝑺𝒎𝒅  is the 3×1 mean vector of ventricular 
depolarization, 𝑻𝒎𝒅  denotes the 3×1 mean vector of 
ventricular repolarization, 𝑄𝑅𝑆!" is the sample index of 
the QRS onset, 𝐽! denotes the sample index of the J-point, 
𝑇!"# is the sample index associated with the end of the T 
wave, 𝑽𝑪𝑮! is a 3×𝑁 matrix containing 𝑁 sample values 
of the three VCG leads and 𝑑 ∈ 𝐹𝑟𝑎𝑛𝑘,𝑀𝐿𝑅𝐿  indicates 
whether a parameter is derived using the Frank lead 
system or the MLRL system.   

2.7. Performance assessment 

The performance assessment was conducted using the 
differences between MSA and SA.  These differences 
were calculated as detailed in (8). 

∆𝑺𝑨 = 𝑴𝑺𝑨 − 𝑺𝑨. (8) 
Where 𝑴𝑺𝑨 and 𝑺𝑨 are vectors that contain the MSA 

and the SA values of all subjects in 𝐷𝑇𝑒𝑠𝑡 and ∆𝑺𝑨 is a 
vector that contains the differences between the MSA and 
the SA values of all subjects in 𝐷𝑇𝑒𝑠𝑡. 

First, the distribution of the elements in ∆𝑺𝑨 was 
analysed using a histogram.  Second, the systematic and 
the random error component of the differences between 
MSA and SA were analyzed.  The systematic error was 
quantified as mean [95% confidence intervals (CI)] of the 
elements in ∆𝑺𝑨.  We quantified the random error using 
the span of the Bland-Altman (BA) 95% limits of 
agreement [16] as detailed in (9).   

RandomError  = 2 ∙ 1.96 ∙ 𝑠𝑡𝑑(∆𝑺𝑨). (9) 

Where 𝑠𝑡𝑑(∙) denotes the standard deviation and ∆𝑺𝑨 
is as defined in (8). 

Third, a Breusch-Pagan (BP) test [17] was conducted 
to assess whether the variance of the differences between 
MSA and SA is dependent upon the SA value.  Forth, the 
strength of the linear relationship between MSA and SA 
was quantified using the sample Pearson correlation 
coefficient.   

3. Results

Using multivariate linear regression on the training 
data the coefficients of the linear ECG lead 
transformation matrix were found to be: 

𝑨𝑴𝑳𝑹𝑳 =
        𝟎.𝟓𝟗𝟓𝟑 −𝟎.𝟑𝟏𝟑𝟒       𝟎.𝟐𝟑𝟓𝟓
        𝟎.𝟎𝟒𝟑𝟏       𝟎.𝟔𝟓𝟑𝟔 −𝟎.𝟎𝟐𝟖𝟎
  −𝟎.𝟎𝟐𝟖𝟒       𝟎.𝟎𝟔𝟖𝟎 −𝟎.𝟓𝟎𝟗𝟓
          𝟎.𝟒𝟏𝟓𝟕       𝟎.𝟎𝟐𝟗𝟔 −𝟎.𝟐𝟒𝟐𝟖

𝑻  

. 

Where ∙ 𝑻   denotes the transpose of the matrix. 

The distributional character of the elements in ∆𝑺𝑨 is 
depicted in the histogram in Figure 1. 

 

Figure 1. Histogram of the elements in ∆𝑺𝑨 and 
maximum likelihood normal distribution fit of the ∆𝑺𝑨 
values. 

It can be seen from Figure 1 that the histogram of the 
elements in ∆𝑺𝑨 is well described by a maximum 
likelihood normal distribution fit.  The analysis of the 
elements in ∆𝑺𝑨 found a systematic error of 9.38° [95% 
CI: 7.03°; 11.74°] and a random error of 62.97° [95% CI: 
56.55°; 70.95°].  Both systematic and random error can 
be seen in the BA plot that is depicted in Figure 2. 

Figure 2. Bland-Altman plot of the differences 
between MSA and SA over the average angle between 
MSA and SA. 

The distribution of the elements in ∆𝑺𝑨, that is 
depicted in Figure 2, suggests a constant magnitude of the 
error variance across the codomain 0° ≤ 𝑆𝐴 ≤ 180°  of 
the SA.  The linear dependence of the error variance 
(variance of the difference MSA-SA) from the SA value 
was formally assessed using the BP test.  No evidence p = 
0.82 for a linear relationship between the error variance 
and the SA value was found based upon the BP test.  This 
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finding and the distribution of the ∆𝑺𝑨 values in Figure 2 
indicate that the magnitude of the random error can be 
considered constant across the entire codomain of the SA. 
The strength of the relationship between the SA and the 
MSA was quantified to be 0.928 [95% CI: 0.905; 0.950] 
using the sample Pearson correlation coefficient. 

4. Discussion and Conclusion

This paper reported on the design of the linear ECG 
lead transformation matrix 𝑨𝑴𝑳𝑹𝑳 that allows for the 
derivation of the MSA using the MLRL system.  

Our findings indicate a strong linear relationship 
between the MSA and the SA.  Nevertheless, the 
utilization of the MSA as a substitute for the SA is 
associated with both a systematic error and a random 
error, with the random error as the dominating error 
component.  The magnitude of the random error 
component was not found to dependent upon the SA 
value.  The combination of the herein developed linear 
ECG lead transformation matrix together with the MLRL 
system provides a monitoring compatible approach for 
the determination of the MSA as an estimate of the SA.   

Another promising application area of the herein 
developed ECG lead transformation matrix is in the 
assessment of cardiac safety of drugs.  This is because the 
developed ECG lead transformation matrix can, in 
addition to the estimation of the SA, also be used for the 
estimation of the VCG parameters J-Tpeak, Tpeak-Tend 
and T-wave loop amplitude.  These parameters were 
previously shown to aid in the differentiation of multi-ion 
channel drug block [18], which has important 
implications for drug safety. 
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