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What is a Chemo/Bio-Sensor? 

‘a device, consisting of a transducer and a chemo/bio-sensitive 
film/membrane, that generates a signal related to the 
concentration of  particular target analyte in a given sample’ 

Signal out Transducer surface 

Conducting cable/track 

Chemo/Bio-sensing involves selective BINDING & TRANSDUCTION on the 
device surface; this also implies the target analyte MUST meet the device 

surface (LOCATION & MOVEMENT). It provides a signal observable in the 
macroscopic world (COMMUNICATION) 

Chemo/bio-sensitive 
film 
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‘Insight Centre for Data Analytics’ 
•  Biggest single research investment ever by Science Foundation Ireland  

•  Biggest coordinated research programme in the history of the state  

•  Focused on ‘big data’ 



Keynote Article: August 2004, Analytical Chemistry (ACS) 

Dermot Diamond, Anal. Chem., 76 (2004) 278A-286A 
(Ron Ambrosio & Alex Morrow, IBM TJ Watson) 



Scalability depends fundamentally 
of the availability of affordable 
Chem/Bio-sensing devices that can 
function autonomously for years in 
inaccessible/remote locations? 
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History: Calixarenes, 1983/5 

+ è 

Neutral Carrier Based Ion-Selective Electrodes, D.Diamond, Anal. Chem. Symp. Ser., 25 (1986) 155. 
A sodium Ion-Selective Electrode based on Methyl p-t-Butyl Calix[4]aryl Acetate as the Ionophore, D.Diamond, G.Svehla, E.Seward,and 
M.A.McKervey, Anal. Chim. Acta., 204 (1988) 223-231.  
Sodium Selective Polymeric Membrane Electrodes based on Calix[4]arene Ionophores, A.Cadogan, D.Diamond, M.R.Smyth, M.Deasy, 
M.A.McKervey and S.J.Harris, Analyst 114 (1989) 1551. 



Blood Analysis; Implantible Sensors 

Anal. Chem., 64 (1992) 1721-1728.
Ligand (and variations of) used in many 
clinical analysers for blood Na+ profiling 

1985: Catheter Electrodes for 
intensive care – function for 24 hrs 
 
Dr. David Band, St Thomas’s 
Hospital London 

In 1985, the use model for reliable  
in-vivo continuous monitoring with 

an implantable chemical sensor was 
restricted to a day or two 



Abbott Freestyle ‘Libre’ 
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•  ‘Small fibre’ used to access 
interstitial fluid 

•   Data downloaded at least 
once every 8 hr via 1s 
contactless scan (1-4 cm) 

•  Waterproof to 1 metre 
•  Replace every 2 weeks 
 



ACS Nano Cover and Editorial 
‘Grand Plans for Nano’, (9) 12 December 2015 



What about the environment – water 
quality monitoring! 
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Remote (Continuous) Sensing Challenges:  
Platform and Deployment Hierarchies 

Physical Transducers –low cost, reliable, 
low power demand, long life-time 

Thermistors (temperature), movement, location, 
power,, light level, conductivity, flow, sound/audio, 
!! 

Chemical Sensors – more complicated, 
need regular calibration, more costly to 
implement 

Electrochemical, Optical, ..  For metal ions, pH, 
organics! 

Biosensors – the most challenging, very 
difficult to work with, die quickly, single 
shot (disposable) mode dominant use 
model 

Due to the delicate nature of biomaterials 
enzymes, antibodies!.  

 Gas/Air Sensing – easiest to realise 

Reliable sensors available, relatively low 
cost 

Integrate into platforms, develop IT 
infrastructure, GIS tools, Cloud Computing 
 

 On-land Water/ Monitoring 

More accessible locations 

Target concentrations tend to be higher 

Infrastructure available 
 

 Marine Water 

Challenging conditions 

Remote locations & Limited infrastructure 

Concentrations tend to be lower and tighter 
in range 

Increasing difficulty &
 cost 

Increasing scalability 



Change in Electrode Function 
over Time 
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Day 0: y = 28.739x + 51.806 
R" = 0.99981 

Day 4: y = 28.029x + 48.261 
R" = 0.99705 

Day 8: y = 27.076x + 40.137 
R" = 0.99892 
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Conventional PVC-membrane based ISEs 

See Electrochimica Acta 73 (2012) 93–97 



Biofilm Formation on Sensors 

•  Electrodes exposed to local river water (Tolka) 
•  ‘Slime test’ shows biofilm formation happens 

almost immediately and grows rapidly 
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New electrode 



Control of membrane interfacial 
exchange & binding processes 
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Remote, autonomous chemical sensing is a tricky business! 



What is the core issue?? 
•  Simple, bare chem/biosensors do not function 

reliably EXCEPT as single shot or short-term 
use devices – regular recalibration required (if 
they manage to keep functioning) 

•  Sensor surfaces change as soon as they are 
exposed to the real world – biofouling, 
interferents, leaching of components!. 

•  Current systems work for days (after decades of 
research)  

•  Implants must work for 10 years!  
•  Environmental Sensors are far too expensive 
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Direct Sensing vs. Reagent 
Based LOAC/ufluidics 

sensor 

sample 

molecular interactions 

signal 

outside world 

sample, 
standards 

reagents 

Reaction manifold 

detector 

waste 

source 

sample 

blank 
BL BL 

s 

t 

Direct Sensing LOAC Analyser 
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Microfluidics, to date, has been largely 
focused on the development of science 
and technology, and on scientific 
papers, rather than on the 
solution of problems 

Editorial ‘Solving Problems’, George Whitesides, 
Lab Chip 10 (2010) 2317-2318 



Scalability	->	
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Achieving Scale-up 
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Massively	scaled	
deployments	of	

the	future	

1.  Evolutionary 
development, cost 

driven down, reliable, 
improved scalability 

2.  Revolutionary breakthroughs 
in materials science; hidden 
complexity, biomimetic platforms, 
all fluid handling integrated on 
chip, indefinitely self-sustaining 

Current	plaForms	

!>20,000 
!>2,000 

!<200 

!<20 

!<2 



Lets Make a Start: Extend Period of Use 
via Multiple short-use Sensors!.? 

•  If each sensor has a 
functional lifetime of 1 
week!. 

•  And these sensors are very 
reproducible!. 

•  And they are very stable in 
storage (up to several years) 
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Then 50 sensors when used sequentially could provide 
an aggregated in-use lifetime of around 1 year  

But now we need multiple valves integrated into a 
fluidic platform to select each sensor in turn 

Sample, reagent in 

Valves 

Sensors 



Switching 'On-Off'
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Poly(N-isopropylacrylamide) 
•  pNIPAAM exhibits inverse solubility upon heating 
•  This is referred to as the LCST (Lower Critical Solution Temperature) 
•  Typically this temperature lies between 30-35oC, but the exact 

temperature is a function of the (macro)molecular microstructure  
•  Upon reaching the LCST the polymer undergoes a dramatic volume 

change, as the hydrated polymer chains collapse to a globular 
structure, expelling the bound water in the process 

pNIPAAM Hydrophilic Hydrophobic 

Hydrated Polymer Chains Loss of bound water 
-> polymer collapse 

"T 



Self protonating photoresponsive gel 

Now the proton exchange is 
‘internalised’ 
The proton population is essentially 
conserved 

Previously proton source was 
external (acidic soln. required) 
Protons, counter ions & solvent 
diffuse into/out of the gel 

Ziolkowski et al., Soft Matter, 2013, 9, 8754–8760 



ACS applied materials & interfaces, 6 (2014) 7268-7274 
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Chemotactic Systems 
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Published on Web 11/01/2010 (speed ~x4): channels filled with KOH (pH 12.0-12.3 + surfactant; agarose gel soaked in HCl 
(pH 1.2) sets up the pH gradient; droplets of mineral oil or DCM containing 20-60% 2-hexyldecanoic acid + dye.  Droplet 
speed ca. 1-10 mm/s; movement caused by convective flows arising from concentration gradient of HDA at droplet-air 
interface (greater concentration of DA- towards higher pH side); HDA <-> H+ + DA-  
Maze Solving by Chemotactic Droplets; Istvan Lagzi, Siowling Soh, Paul J. Wesson, Kevin P. Browne, and Bartosz A. 
Grzybowski; J. AM. CHEM. SOC. 2010, 132, 1198–1199 
Fuerstman, M. J.; Deschatelets, P.; Kane, R.; Schwartz, A.; Kenis, P. J. A.;Deutch, J. M.; Whitesides, G. M. Langmuir 2003, 
19, 4714. 
 

HDA       H+ + DA- 

HDA 

Hydrophobic Mineral Oil 

Acidic   ✗ Basic ✓ 

In a pH gradient, DA- is preferentially 
transferred to the aqueous phase at 
the more basic side of the drop. 
 



We can do the same with IL Droplets 
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Trihexyl(tetradecyl)phosphonium chloride ([P6,6,6,14][Cl])  droplets with a small amount of 1-
(methylamino)anthraquinone red dye for visualization.  The droplets spontaneously follow the gradient 
of the Cl- ion which is created using a polyacrylamide gel pad soaked in 10-2 M HCl; A small amount of 
NaCl crystals can also be used to drive droplet movement.  

Electronic structure calculations and physicochemical experiments quantify the competitive liquid ion association and probe 
stabilisation effects for nitrobenzospiropyran in phosphonium-based ionic liquids, D. Thompson et al., Physical Chemistry 
Chemical Physics, 2011, 13, 6156-6168.  

= cationic surfactant 

Self-propelled chemotactic ionic liquid droplets, W. Francis, C. Fay, L. Florea, D. Diamond, Chemical Communications, 51 
(2015) 2342-2344. 



2-Photon Polymerisation 
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•  Single photon absorption 
•  2D patterns 

Stereolithography Two-photon polymerisation 

•  Two photon absorption 
•  3D structures 
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2-Photon Polymerisation 

http://www.nanoscribe.de/ 



Near Term Goals (5Years) 

Inside: Implants/In-vivo 

Smart Stents Self-Aware 
Transplant 

Joints 3D Tissue 
Platforms and 

Implants Post-Operative 
IC (days) Medium term 

Convalescence 
(weeks) 

Smart 
Bandages 

Outside: On-Body 

Sensorised 
Contact Lens 

Sensorised 
Splints/

dentures 

On-Skin wearable 
platforms 

patches/watches 

Smart Textiles/
Clothing 

     Devices and Platforms 

     Data and Information; IOT 

MATERIALS  
Physics Chemistry Biology Engineering 

(photonics, electronics, fluidics, 4D materials) 



Time of EXCITING OPPORTUNITY! 
•  New materials with exciting characteristics and 

unsurpassed potential! 
•  Combine with emerging technologies and 

techniques for exquisite control of 3D morphology 
•  And greatly improved methods for characterisation 

of structure and activity 
•  Learn from nature – e.g. more sophisticated 

circulation systems for ‘self-aware’ sensing devices! 
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HAVE FUN! 



Thanks to!..  

•  Members of my research group 

•  NCSR, DCU 

•  Science Foundation Ireland & INSIGHT Centre 

•  Enterprise Ireland 

•  Research Partners – academic and industry 

•  EU Projects: NAPES, CommonSense, Aquawarn, 
MASK-IRSES, OrgBio 
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Thanks for the invite! 




