

Contactless Conductivity Sensor for Wearable Sweat Monitoring

Jennifer Deignan, Larisa Florea, Shirley Coyle and Dermot Diamond

Background: Sweat as a diagnostic tool

Hydration

DC

• Disease (CF)

Health Problems with Cystic Fibrosis

https://en.wikipedia.org/wiki/Cystic_fibrosis

NUI Galway

Sampling
Sample
Sample
Analysis
mechanism
handling

OÉ Gaillimh

NUI Galway

S. M. Shirreffs and R. J. Maughan, Journal of Applied Physiology January 1, 1997 vol. 82 no. 1 336-34

DC

PharmChek Sweat collection patch. https://www.premierintegrity.com/Images/testing_sweatpatch_445 .jpg

Temporary tattoos

- + Inexpensive
- + Unobtrusive
- + Disposable

DC

- Fully Wearable?
- Real time?

Jia, Wenzhao, et al. "Electrochemical tattoo biosensors for realtime noninvasive lactate monitoring in human perspiration." *Analytical chemistry*, (2013).

Perry, T. S. (2015, May 29). A Temporary Tattoo That Senses Through Your Skin. Retrieved July 19, 2015, from <u>http://spectrum.ieee.org/biomedical/devices/a-temporary-tattoo-that-senses-through-your-skin</u>

OÉ Gaillimh

NUI Galway

2

Watches and Wristbands

+ Fully integrated device

- Use time?

Gao, Wei, et al. "Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis." Nature 529.7587 (2016): 509-514.

DCI

Glennon, Tom, et al. "'SWEATCH': A Wearable Platform for Harvesting and Analysing Sweat Sodium Content." Electroanalysis (2016).

OÉ Gaillimh NUI Galway

Experimental set-up

- Capacitively coupled contactless conductivity (C⁴D)
- No biofouling of sensor

10mm x 6mm x 0.75mm

6

DCI

OÉ Gaillimh NUI Galway

DC

Voltage vs. time using 10, 30, 60, 90 and 130 mM NaCl at a flow rate of 20µL/min. Each measurement was taken in triplicate 5 min tests and averaged. A PDMS microchannel with a surface area over the electrodes of 0.183 mm² was used.

OÉ Gaillimh

NUI Galway

Maximize surface area of the channel with respect to the electrode

PMMA channel design

Injection of varying NaCl concentrations

Au microelectrode voltage vs. time graph using 10 mM NaCl as the eluent and injecting 100μ L of (A)130 mM NaCl and (B) 30, 60, 90 and 130 mM NaCl at a flow rate of 20μ L/min. A PMMA microchannel with a surface area over the electrodes of 0.36 mm² was used.

OÉ Gaillimh

NUI Galway

DC

- New PMMA channel designs
 - Minimizing fluidic volume
 - Maximizing surface area

OÉ Gaillimh

NUI Galway

- Varying flow rates
- Integration into onbody platform

DC

Glennon, T; O'Quigley, C; McCaul, M; Coyle, S.; Matzeu, G; and Coleman, S; and Ben Azouz, A; Beirne, S; Wallace, G; and White, P; O'Mahoney, N; Diamond, D. (2016) *'SWEATCH'* - *A platform for real-time monitoring of sweat electrolyte composition*. In: ACES2016 Symposium, 10-12 Feb. 2016, Deakin Jniversity, Melbourne, Australia.

Acknowledgements

Prof. Dermot Diamond

Dr. Larisa Florea

Dr. Shirley Coyle

Dr. Mercedes Vazquez

Conor O'Quigley

Funding bodies:

Science foundation Ireland under the Insight initiative grant SFI/12/RC/2289

