

Paper 21, ICIQ 2016, Ciudad Real (Spain), June 22-23, 2016

 Data Quality for Web Log Data Using a Hadoop Environment

QISHAN YANG, Insight Centre for Data Analytics, School of Computing, Dublin

City University, Dublin, Ireland (qishan.yang@insight-centre.org)

MARKUS HELFERT, Insight Centre for Data Analytics, School of Computing,

Dublin City University, Dublin, Ireland (markus.helfert@dcu.ie)

• Information systems➝ Data management system • Computing methodologies➝ Distributed computing

methodologies

Solving data quality problems is important for data warehouse construction and operation. This paper is

based on developing a web log warehouse. It proposes a data quality problem methodology for data

preprocessing within the log warehouse. It provides a hierarchical data warehouse architecture that is

suitable for resource saving and ad hoc requirements. The data preprocessing is completed using Hadoop

associated with its sub-projects such as Hive, HBase etc. In this paper we compare a Hadoop setup with a

Oracle based architecture.

Additional Key Words and Phrases: Data Quality, Data Preprocessing, Data Warehouse, Web Log, Hadoop,

Hive, HBase, Oracle

1. INTRODUCTION

As institutions’ data centers, data warehouses store a vast number of historical data

to fulfill data mining and analysis requirements. According to [Inmon et al. 2010], a

data warehouse is a subject oriented, integrated, non-volatile and time-variant

management decision supporting data repository. Raw data might be gathered,

cleansed and integrated from heterogeneous data resources before be populated into

data warehouses. This operation of data preparations cannot be ignored in order to

ensure the data quality.

Data quality problems usually come first when data need to be analyzed. It

occupies approximately 80% of the total data engineering effort in practice [Zhang et

al. 2003]. For example, a large amount of time is spent on how to preprocess

unformatted or defective data. After this, the processed data would be analyzed,

mined or utilized to make decisions as input sources. The data preprocessing might

be the last inspection to handle data quality problems before data is delivered into

data warehouses.

The data from RDBMS normally has referential integrity constraints which

enforce the business rules associated with databases and prevent the entry of invalid

information into tables [Oracle Help Center 2016]. It also has pre-defined data

models. Hence, structured data could be easier quality assured. However,

unstructured data is approximately five times more than structured data [Inmon

2006]. The structured data is not sufficient for decision-makers or data analysts, if

they want to get more benefits from data. Web log data is textual data generated by

web servers, which is classified into the unstructured data [Zicari 2014]. As the

website archive, web log files store a vast number of interactions between website

servers and clients. They also include massive outliers, noises and dirty records that

need to be scrubbed.

The aim of this paper is investigating data quality problems and preparing data

for a web log data warehouse. The contribution is proposing a data quality problem

methodology for data preprocessing within the log warehouse and providing a

hierarchical data warehouse architecture that is suitable for resource saving and ad

hoc requirements. In addition, it makes a comparison between the data warehousing

establishment in the Hadoop environment and Oracle. It does not refer to web log

21

https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Data_model

Paper 21:2 Qishan Yang & Markus Helfert

Paper 21, ICIQ 2016, Ciudad Real (Spain), June 22-23, 2016

mining operations such as how to identify users, user sessions, path completions,

patterns etc. The structure of this paper is organized as follows. Section 2 provides

the related research in this field. Section 3 gives some background of the technologies

used in this research. Section 4 provides the experimental setup. The detail of the

data cleansing and classification is described in section 5. Section 6 illustrates the

hierarchical data warehouse architecture. Section 7 offers the evaluation of this

approach. The conclusion is demonstrated in section 8.

2. RELATED RESEARCH

Some research has been done in the field of the web log data preprocessing. For

example, [Castellano et al. 2007] implemented the LODAP (Log Data Preprocessor)

in Microsoft ACCESS database. This tool had three modules: the data cleaning, the

data structuration and the data filtering, in order to remove useless records, identify

user sessions and the most visited pages respectively. [Kherwa and Nigam 2015]

provided a milestone of the data preprocessing for the web usage mining. According

to their paper, the previous research in this field more focused on specific purposes

such as user and session identifications. However, our paper is mainly to prepare

data for the web log data warehouse which can fulfill the most of the business

requirements.

There is some work has been done in the field of the web log data warehouse

implementation. [Özcan et al. 2011] used Hadoop to prepare data then delivered the

processed data into BD2 which is a database server. [Thusoo et al. 2010] built a data

warehouse architecture by using Scribe, Hadoop and Hive at Facebook. In contrast to

previous works, we focus on the data preparation and a novel data warehouse

structure using Hadoop, HBase, Hive etc. due to data quality and resource saving

considerations.

In terms of the partitioned data warehouse, [Bellatreche et al. 2000] split the

dimension tables then separated the fact table into several fragments based on the

dimensional fragmentation schemas. There were some fragmentation selection

algorithms mentioned by [Thenmozhi and Vivekanandan 2014] to form the

fragments, which include the Hill Climbing, Genetic Algorithm, GAHC (the

combination of the Hill Climbing and Genetic Algorithm algorithms) and GATS

(Genetic Algorithm with Tabu Search). If business requirements are clearly

identified before establishment of the data warehouse, we may not need to populate

all data into the data warehouse and split them. It may save time and avoid data

migrations.

3. BACKGROUND

3.1 Data Warehouse Architecture

In terms of the data warehouse architecture, the traditional and well referenced

three-layered data architecture is used as an underpinning concept in our research.

The architecture comprises real-time data, reconciled data and derived data [Devlin

and Cote 1996]. It is depicted as following in Fig 1. In an initial phase, this paper

only focuses on the real-time layer and reconciled layer.

Data Quality for Web Log Data Using a Hadoop Environment Paper 21:3

Paper 21, ICIQ 2016, Ciudad Real (Spain), June 22-23, 2016

Fig. 1. The three-layered data warehouse architecture [Devlin and Cote 1996]

3.2 Oracle

According to [Ariyachandra and Watson 2006], the most popular and frequently used

platform for data warehouses was Oracle which occupies 41 proportions in this field,

followed by Microsoft (19%) and IBM (18%).

3.3 Hadoop

Hadoop is a platform which has the ability to parallel process the distributed large

data in independent computing nodes by using simple programming models. It is a

distributed and highly analytical tool associated with HDFS (Hadoop Distributed

File System) and MapReduce to place and manipulate data. HDFS has the high-

throughput capability to store and retrieve data. Yarn is a job scheduling system to

manage cluster resources in the Hadoop environment. MapReduce is a system to

parallel process large data sets organized by Yarn [Hadoop 2016]. A number of the

international companies such as Apple, eBay, LinkedIn, Yahoo and Facebook have

been using this framework or similar platforms [Holmes 2012].

3.4 Hive

Hive provides the data warehousing functions to query and manage enterprise-sized

datasets in distributed file systems. It has a mechanism to operate the data

warehouse by using a SQL-like language called HiveQL rather than users write

MapReduce programs. Meanwhile, it also offers map/reduce to extend ad hoc

functions by plugging in customized mappers and reducers if the HiveQL cannot

fulfill the requirements [Hive 2016].

3.5 HBase

HBase is a NoSQL database system to organize large datasets and can manage very

large tables with billions of rows millions of columns. It is an open-source, distributed,

non-relational database based on the Google's Bigtable. This database can be

seamlessly set up in Hadoop environments and fully leverage the mechanisms of

MapReduce, HDFS, Yarn etc. [HBase 2016].

3.6 Flume

Flume provides a distributed service for efficiently extracting and delivering large

amounts of log data from sources to destinations. It is a highly-available and fault-

tolerant tool associated with mechanisms such as failover and recovery. This

extraction software also has some features to collaboratively work with other tools in

Hadoop environments [Flume 2016].

Paper 21:4 Qishan Yang & Markus Helfert

Paper 21, ICIQ 2016, Ciudad Real (Spain), June 22-23, 2016

4. EXPERIMENTAL SETUP

In our experiment, data sets have been divided into different classifications before

populating them into the multi-level data warehouse. It did not depend on the

dimension tables to split fact tables. The dimension tables in this research were not

split, because the small size of data has been stored in them. Besides, this data

warehousing architecture not only contains fact tables and dimension tables but also

is composed of plain files as the standby data sets for special requests. If ad hoc

requirements need to be fulfilled, these data resources are populated into their

related fact tables.

The aim of this experiment was preprocessing data and evaluating the data

warehousing establishment and loading in a Hadoop environment and Oracle. The

Hadoop environment was built on a physical machine (Intel Core i7 CPU 3.60GHz)

associated with nine Linux virtual machines. Three of them were set up as data

resources. The rest of them were used to build the Hadoop platform. Its configuration

information is presented in table I.

Table I. The Hadoop Platform Configuration

Node Name Operation System Processor Memory Software

Node1 Centos 7 X86_64 1 1GB JDK 1.7, Hadoop, HBase, Hive

Node2 Centos 7 X86_64 1 1GB JDK 1.7, Hadoop, HBase

Node3 Centos 7 X86_64 1 1GB JDK 1.7, Hadoop, HBase

Node4 Centos 7 X86_64 1 2GB JDK 1.7, Hadoop, HBase, Zookeeper

Node5 Centos 7 X86_64 1 2GB JDK 1.7, Hadoop, HBase, Zookeeper

Node6 Centos 7 X86_64 1 2GB JDK 1.7, Hadoop, HBase, Zookeeper

The Hadoop (version 2.7.1) was deployed based on HDFS High Availability. The

Yarn was running in Node1. The tow NameNodes were configured in Node2 and

Node3. The testing data were placed in DateNodes (Node4, Node5 and Node6). The

comparative trial was built on Oracle Database 12c in the same physical machine.

The programming language used in both of platforms was Java based on JDK 1.7.

5. DATA CLEANSING AND CLASSIFICATION

We cleansed and classified the original data in the Hadoop environment in this

experiment. The main reasons are given as follows. The parallel computation of

Hadoop could be utilized to enhance the speed of the operations. The result would be

stored in HDFS, which would be manipulated by MapReduce or Hive directly. The

outline and the whole data flow from data sources to manipulation areas are

presented in Fig. 2. which also includes the data flow of the data warehousing

construction and loading.

Fig. 2. The outline and data flow

Data Quality for Web Log Data Using a Hadoop Environment Paper 21:5

Paper 21, ICIQ 2016, Ciudad Real (Spain), June 22-23, 2016

5.1 Data Extraction

Data extraction is a part of the ETL processing. In this system, Flume was set up to

fetch and deliver web log files from severs to HDFS. It did not cleanse and format

data. It collected log data from physically independent servers into HDFS. The

procedure is described as following. The Linux shell script was run every midnight

automatically to create a folder in HDFS, which was named the date of yesterday.

Flume extracted yesterday’s log files then sent them into this folder.

5.2 Mapper

After the data had already put into the folder, the MapReduce was invoked to process

log documents. In the map function, the log records were manipulated and classified.

Figure 3 illustrates the detailed program flow diagram in the map function.

Fig. 3. The program flow in the map function

At the start of the experiment, a certain number of Mappers were initialized

based on how many the blocks did the log files have. Then these Mappers would read

records in related blocks. After this, each record would be examined by two regular

expressions. The first regular expression was to check invalid interactions (e.g.

status > 299) between clients and servers, if it returned true then checking the data

transmission, if their data was not equal to “0” or “-” then setting these records’ key

to 1 and output them otherwise ending this processing. The job of the second one was

to identify the effective records such as querying assistant resources (js files, css files,

pictures etc.), and if returned true, then assigned 2 to their key and output them. If

all regular expressions returned false, these records were turned out to be valuable

entries, then set their keys to 3 and output them.

5.3 Reducer

After the Mappers, each record had a key in the scope of 1, 2 or 3. Reducers did not

need to handle the complicated workflow as Mappers did. The main task of them was

distinguishing key of each record and classifying them. After all reducers finished

Paper 21:6 Qishan Yang & Markus Helfert

Paper 21, ICIQ 2016, Ciudad Real (Spain), June 22-23, 2016

their jobs, the classified records had been loaded into three different files. The

program flow in the reduce function is presented in Fig 3 as following.

Fig. 4. The program flow in the reduce function

6. HIERARCHICAL DATA WAREHOUSE

Fact tables depend on foreign keys to connect their dimension tables. Hence, when

inserting business facts into them, it is necessary to visit dimension tables in order to

acquire foreign keys. Sometime, if dimension tables did not have the related records,

new entries would be inserted into corresponding dimension tables. It is time-

consuming to load data into fact tables, especially, if the data sets are unstructured.

The data in fact tables overwhelmingly occupies the largest part of volumes in any

data mart [Kimball & Ross 2011]. If the raw data is cleansed, classified and

selectively populated into related fact tables, maybe it is an effective choice to reduce

the volume of fact tables. The whole processing is described as follows: in the

beginning, classifying the raw datasets into different weighted levels based on the

business requirements, after this step, preparing and populating the most valuable

data set into the data warehouse then second important data etc. Figure 5 presents

the data flow of this data warehouse architecture.

Fig. 5. The hierarchical warehouse data flow

Data Quality for Web Log Data Using a Hadoop Environment Paper 21:7

Paper 21, ICIQ 2016, Ciudad Real (Spain), June 22-23, 2016

If the ad hoc queries are in the to-do-list, the related datasets would either be

loaded into the fact table or the extended fact table, even be manipulated using other

approaches (e.g. MapReduce) to archive the goals without loading the data sets into

the fact tables. This data warehouse architecture would reduce resources

expenditures and keep fit for the sizes of fact tables. It may also suit for other

unstructured data sets, because a vast volume of unstructured data may contain a

great many outliers or unimportant information in some cases, while, sometime,

these irrelevant records are still useful. For example, if the total data flow of a

website need to be evaluated, all records even error entries need to be taken into

account. The hierarchical data warehouse structure can fulfill most of the business

requirements even ad hoc queries. The example of the architecture is demonstrated

in figure 6 below.

Fig. 6. The hierarchical data warehouse architecture

7. EVALUATION

7.1 Experiment

The volume of the data used in this experiment was 1 GB which contained 11882090

records. For the sake of saving resources and fulfilling the ad hoc requirements,

almost all records were classified into three categories by Mappers and Reducers: the

frequently used data (weight = 3), the less frequently used data (weight = 2) and the

seldom used data (weight = 1). Table II lists the detailed information of datasets and

the performances of data manipulations in the Hadoop environment and Oracle

Database.

Table II. Data sets and performances in two platforms

Data Set Size (MB) Data Query (MB) Hadoop (Mins) Oracle (Mins)

Frequently Used 86.20 8,139.39 97.27 54.59

Less Frequently Used 816.00 75,957.32 Do not Need to Load 20.12

Seldom Used 121.80 24.81 Do not Need to Load 3.71

Total 1024.00 84,121.52 97.27 78.42

Paper 21:8 Qishan Yang & Markus Helfert

Paper 21, ICIQ 2016, Ciudad Real (Spain), June 22-23, 2016

The fourth column showed the data formatting using MapReduce and HBase in

the Hadoop platform. The main jobs of HBase in the Hadoop environment were

helping MapReduce to generate LogId, PathId, DomainId etc. and forming dimension

tables. If new record came, it would be checked whether related information had

already stored in the dimension tables or not. In the Oracle column, it provided

three-leveled datasets formatting and populating into Oracle Database. As can be

seen from this table, the frequently used data set size was only 86.2 MB out of 1024

MB (around 8.4180%). Less frequently used data set occupies the most volume of the

raw log files 816.00 MB (79.6875%), followed by the seldom used data 121.80 MB

(approximately 11.8945%).

In the Hadoop environment, it took 97.27 minutes to format the frequently used

dataset and generate surrogate keys for LogId, PathId, DomainId etc. by checking

HBase, then output them into files stored in HDFS. However, in Oracle database, it

spent 54.59 minutes to do the same things and insert fact records into the fact table.

The Hadoop did not need to spend time to insert the fact table into its related fact

table, but it needed to form fact records plain files and put them in a folder which the

fact table (on Hive) had already pointed to it as a data source directory. The web log

data warehousing schema and its set-up were similar to the schema in [Yang

and Helfert 2016] which was built in a Hadoop environment, while the schema in

this experiment had multi-level fact tables.

In Oracle platform, it took 20.12 and 3.71 minutes to load less frequently used and

seldom used datasets respectively. These operations were much fast than the

frequently used set loading. The main reason was these operations did not need to

visit dimension tables or create surrogate keys. It only needed to format and insert

records into extended fact tables. Whereas in the context of Hadoop, these operations

were not necessary, only just delivering these related files into the folders which

belonged to the tables in Hive.

The operation in the Hadoop environment did not need to load all levels’ datasets.

It only strictly formatted frequently used records and wrote them into files then

pointed out the rest of the levels’ files in HDFS for extended fact tables. However, the

warehouse in Oracle needed to load all data into the related fact tables in order to

respond to the ad hoc queries. The disadvantage of the Hive based data warehouse in

Hadoop was that it needed extra helpers (MapReduce) to analyze data such as

counting the total data flow of the website. However, the warehouse in Oracle did not

need any assistant to handle this kind of ad hoc queries.

7.2 Generality of the Approach

In order to find out the threshold and generalize this approach, the frequently used

data has been divided into several groups. To be more specific, it has been split into 5

groups by using part of the frequently used data which occupied 1%, 3%, 5%, 7% and

8.4% of the original data set. Rest of the data was acted as the infrequently data. For

example, if the frequently used data had 1%, then the infrequently used data

occupied 99%. Then these partitioned data sets would be manipulated even loaded

into related tables (e.g. loading data into the fact tables in Oracle). The diagram 7

illustrates the time taken including processing the frequently and infrequently used

data in each group.

Data Quality for Web Log Data Using a Hadoop Environment Paper 21:9

Paper 21, ICIQ 2016, Ciudad Real (Spain), June 22-23, 2016

Fig. 7. The performances in Hadoop and Oracle platforms with different data sets

As can be seen, when the frequently used data set was less than around 5%, the

Hadoop environment was faster than the environment of Oracle in this circumstance.

The main reason was that the frequently data needed to be formatted and

infrequently used data needed to be loaded in Oracle. However, the Hadoop

environment did not need to do this job, only formatting data because of the

character of Hive. However, when the frequently used data set increased above 5%,

Oracle spent less time to load data. Because the Hadoop environment required more

time to manipulate frequently data set than Oracle needed.

In this experiment, it can be seen that when the frequently used data set was

greater than 5%, Oracle was faster than the Hadoop environment. However, it might

be not proper to say Oracle had higher performance than the Hadoop environment

had in all situations. We only tested the performances in this particular case and set-

up. There were other capabilities may also need to be considered. For example, it did

not test the flexibility. If the hardware needs to be upgraded, the Hadoop

environment is much easier to make this happen compared with the Oracle.

8. CONCLUSIONS

Data quality problem solving is the indispensable task for the data warehouse

building and the data mining. It is time-consuming to preprocess data and guarantee

data quality. This paper brings forward a methodology to prepare data for the data

warehouse and a hierarchical data warehouse architecture to enhance the data

manipulation and fulfill ad hoc requirements. This architecture could be extended to

other unstructured data preparations and warehousing constructions.

There were still some eliminations existing in the experiment and novel

warehousing architecture. The raw data classification policy should be known by

analyzing business requirements before the manipulation of data. The raw data set

was not sufficient for further testing the capabilities of this system. In addition, the

Hadoop environment was set up on virtual machines which shared the sources of the

host computer. In the following work, the Hadoop environment would be moved to

physically independent computers. At the same time, more raw data would be used to

test the throughput, flexibility and performance of this architecture in the context of

big data.

0

1000

2000

3000

4000

5000

6000

7000

1.00% 3.00% 5.00% 7.00% 8.40%

Hadoop

Oracle

Paper 21:10 Qishan Yang & Markus Helfert

Paper 21, ICIQ 2016, Ciudad Real (Spain), June 22-23, 2016

ACKNOWLEDGMENTS

This publication was supported by Science Foundation Ireland grant SFI/12/RC/2289 to Insight- Centre for

Data Analytics (www.insight-centre.org).

REFERENCES

Inmon, W.H., Strauss, D. and Neushloss, G., 2010. DW 2.0: The architecture for the next generation of

data warehousing: The architecture for the next generation of data warehousing. Morgan Kaufmann.

Zhang, S., Zhang, C. and Yang, Q., 2003. Data preparation for data mining. Applied Artificial

Intelligence, 17(5-6), pp.375-381.

Oracle Help Center. 2016. Database Concepts: 21 Data Integrity. (2016). Retrieved April 9, 2016 from

https://docs.oracle.com/cd/B19306_01/server.102/b14220/data_int.htm

Inmon, B., 2006. DW 2.0; Architecture for the Next Generation of Data Warehousing. Information

Management, 16(4), p.8.

Zicari, R.V., 2014. Big data: Challenges and opportunities. Big data computing, pp.103-128.

Devlin, B. and Cote, L.D., 1996. Data warehouse: from architecture to implementation. Addison-Wesley

Longman Publishing Co., Inc..

Hadoop.2016. Welcome to Apache Hadoop. (2016). Retrieved April 9, 2016 from https://hadoop.apache.org/

Holmes, A., 2012. Hadoop in practice. Manning Publications Co..

Hive. 2016. Apache Hive TM. (2016). Retrieved April 9, 2016 from https://hive.apache.org/

HBase. (2016). Welcome to Apache HBase. (2016). Retrieved April 9, 2016 from https://hbase.apache.org/

Flume. (2016). Welcome to Apache Flume. (2016). Retrieved April 9, 2016 from https://flume.apache.org/

Castellano, G., Fanelli, A.M. and Torsello, M.A., 2007. Log data preparation for mining web usage patterns.

In IADIS International Conference Applied Computing (No. 10000, p. 20000).

Kherwa, P. and Nigam, J., 2015. Data Preprocessing: A Milestone Of Web Usage Mining. International

Journal Of Engineering Science And Innovative Technology (Ijesit) Volume, 4.

Özcan, F., Hoa, D., Beyer, K.S., Balmin, A., Liu, C.J. and Li, Y., 2011, June. Emerging trends in the

enterprise data analytics: connecting Hadoop and DB2 warehouse. In Proceedings of the 2011 ACM

SIGMOD International Conference on Management of data (pp. 1161-1164). ACM.

Thusoo, A., Shao, Z., Anthony, S., Borthakur, D., Jain, N., Sen Sarma, J., Murthy, R. and Liu, H.,

2010, June. Data warehousing and analytics infrastructure at facebook. In Proceedings of the 2010

ACM SIGMOD International Conference on Management of data (pp. 1013-1020). ACM.

Bellatreche, L., Karlapalem, K., Mohania, M. and Schneider, M., 2000. What can partitioning do for your

data warehouses and data marts?. In Database Engineering and Applications Symposium, 2000

International (pp. 437-445). IEEE.

Thenmozhi, M. and Vivekanandan, K., 2014, August. A comparative analysis of fragmentation selection

algorithms for data warehouse partitioning. InAdvances in Engineering and Technology Research

(ICAETR), 2014 International Conference on (pp. 1-5). IEEE.

Ariyachandra, T. and Watson, H.J., 2006. Which data warehouse architecture is most

successful?. Business Intelligence Journal, 11(1), p.4.

Kimball, R. and Ross, M., 2011. The data warehouse toolkit: the complete guide to dimensional modeling.

John Wiley & Sons.

Yang, Q. and Helfert, M., 2016. Revisiting arguments for a three layered data warehousing architecture in

the context of the Hadoop platform. In: The 6th International Conference on Cloud Computing and

Services Science (CLOSER 2016), 23-25 Apr 2016, Roma, Italy. ISBN 978-989-758-182-3

http://www.insight-centre.org/
https://hadoop.apache.org/
https://hive.apache.org/
http://doras.dcu.ie/21209/
http://doras.dcu.ie/21209/

