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Solving data quality problems is important for data warehouse construction and operation. This paper is 

based on developing a web log warehouse. It proposes a data quality problem methodology for data 

preprocessing within the log warehouse. It provides a hierarchical data warehouse architecture that is 

suitable for resource saving and ad hoc requirements. The data preprocessing is completed using Hadoop 

associated with its sub-projects such as Hive, HBase etc. In this paper we compare a Hadoop setup with a 

Oracle based architecture. 
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1. INTRODUCTION 

As institutions’ data centers, data warehouses store a vast number of historical data 

to fulfill data mining and analysis requirements. According to [Inmon et al. 2010], a 

data warehouse is a subject oriented, integrated, non-volatile and time-variant 

management decision supporting data repository. Raw data might be gathered, 

cleansed and integrated from heterogeneous data resources before be populated into 

data warehouses. This operation of data preparations cannot be ignored in order to 

ensure the data quality. 

Data quality problems usually come first when data need to be analyzed. It 

occupies approximately 80% of the total data engineering effort in practice [Zhang et 

al. 2003]. For example, a large amount of time is spent on how to preprocess 

unformatted or defective data. After this, the processed data would be analyzed, 

mined or utilized to make decisions as input sources. The data preprocessing might 

be the last inspection to handle data quality problems before data is delivered into 

data warehouses. 

The data from RDBMS normally has referential integrity constraints which 

enforce the business rules associated with databases and prevent the entry of invalid 

information into tables [Oracle Help Center 2016]. It also has pre-defined data 

models. Hence, structured data could be easier quality assured. However, 

unstructured data is approximately five times more than structured data [Inmon 

2006]. The structured data is not sufficient for decision-makers or data analysts, if 

they want to get more benefits from data. Web log data is textual data generated by 

web servers, which is classified into the unstructured data [Zicari 2014]. As the 

website archive, web log files store a vast number of interactions between website 

servers and clients. They also include massive outliers, noises and dirty records that 

need to be scrubbed. 

The aim of this paper is investigating data quality problems and preparing data 

for a web log data warehouse. The contribution is proposing a data quality problem 

methodology for data preprocessing within the log warehouse and providing a 

hierarchical data warehouse architecture that is suitable for resource saving and ad 

hoc requirements. In addition, it makes a comparison between the data warehousing 

establishment in the Hadoop environment and Oracle. It does not refer to web log 
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mining operations such as how to identify users, user sessions, path completions, 

patterns etc. The structure of this paper is organized as follows. Section 2 provides 

the related research in this field. Section 3 gives some background of the technologies 

used in this research. Section 4 provides the experimental setup. The detail of the 

data cleansing and classification is described in section 5. Section 6 illustrates the 

hierarchical data warehouse architecture. Section 7 offers the evaluation of this 

approach. The conclusion is demonstrated in section 8. 

 

2. RELATED RESEARCH 

Some research has been done in the field of the web log data preprocessing. For 

example, [Castellano et al. 2007] implemented the LODAP (Log Data Preprocessor) 

in Microsoft ACCESS database. This tool had three modules: the data cleaning, the 

data structuration and the data filtering, in order to remove useless records, identify 

user sessions and the most visited pages respectively. [Kherwa and Nigam 2015] 

provided a milestone of the data preprocessing for the web usage mining. According 

to their paper, the previous research in this field more focused on specific purposes 

such as user and session identifications. However, our paper is mainly to prepare 

data for the web log data warehouse which can fulfill the most of the business 

requirements.  

There is some work has been done in the field of the web log data warehouse 

implementation. [Özcan et al. 2011] used Hadoop to prepare data then delivered the 

processed data into BD2 which is a database server. [Thusoo et al. 2010] built a data 

warehouse architecture by using Scribe, Hadoop and Hive at Facebook. In contrast to 

previous works, we focus on the data preparation and a novel data warehouse 

structure using Hadoop, HBase, Hive etc. due to data quality and resource saving 

considerations. 

In terms of the partitioned data warehouse, [Bellatreche et al. 2000] split the 

dimension tables then separated the fact table into several fragments based on the 

dimensional fragmentation schemas. There were some fragmentation selection 

algorithms mentioned by [Thenmozhi and Vivekanandan 2014] to form the 

fragments, which include the Hill Climbing, Genetic Algorithm, GAHC (the 

combination of the Hill Climbing and Genetic Algorithm algorithms) and GATS 

(Genetic Algorithm with Tabu Search). If business requirements are clearly 

identified before establishment of the data warehouse, we may not need to populate 

all data into the data warehouse and split them. It may save time and avoid data 

migrations.  

 

3. BACKGROUND 

3.1 Data Warehouse Architecture 

In terms of the data warehouse architecture, the traditional and well referenced 

three-layered data architecture is used as an underpinning concept in our research. 

The architecture comprises real-time data, reconciled data and derived data [Devlin 

and Cote 1996]. It is depicted as following in Fig 1. In an initial phase, this paper 

only focuses on the real-time layer and reconciled layer. 
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Fig. 1. The three-layered data warehouse architecture [Devlin and Cote 1996] 

 

3.2 Oracle 

According to [Ariyachandra and Watson 2006], the most popular and frequently used 

platform for data warehouses was Oracle which occupies 41 proportions in this field, 

followed by Microsoft (19%) and IBM (18%). 

3.3 Hadoop 

Hadoop is a platform which has the ability to parallel process the distributed large 

data in independent computing nodes by using simple programming models. It is a 

distributed and highly analytical tool associated with HDFS (Hadoop Distributed 

File System) and MapReduce to place and manipulate data. HDFS has the high-

throughput capability to store and retrieve data. Yarn is a job scheduling system to 

manage cluster resources in the Hadoop environment. MapReduce is a system to 

parallel process large data sets organized by Yarn [Hadoop 2016]. A number of the 

international companies such as Apple, eBay, LinkedIn, Yahoo and Facebook have 

been using this framework or similar platforms [Holmes 2012]. 

3.4 Hive 

Hive provides the data warehousing functions to query and manage enterprise-sized 

datasets in distributed file systems. It has a mechanism to operate the data 

warehouse by using a SQL-like language called HiveQL rather than users write 

MapReduce programs. Meanwhile, it also offers map/reduce to extend ad hoc 

functions by plugging in customized mappers and reducers if the HiveQL cannot 

fulfill the requirements [Hive 2016]. 

3.5 HBase 

HBase is a NoSQL database system to organize large datasets and can manage very 

large tables with billions of rows millions of columns. It is an open-source, distributed, 

non-relational database based on the Google's Bigtable. This database can be 

seamlessly set up in Hadoop environments and fully leverage the mechanisms of 

MapReduce, HDFS, Yarn etc. [HBase 2016]. 

3.6 Flume 

Flume provides a distributed service for efficiently extracting and delivering large 

amounts of log data from sources to destinations. It is a highly-available and fault- 

tolerant tool associated with mechanisms such as failover and recovery. This 

extraction software also has some features to collaboratively work with other tools in 

Hadoop environments [Flume 2016]. 
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4. EXPERIMENTAL SETUP 

In our experiment, data sets have been divided into different classifications before 

populating them into the multi-level data warehouse. It did not depend on the 

dimension tables to split fact tables. The dimension tables in this research were not 

split, because the small size of data has been stored in them. Besides, this data 

warehousing architecture not only contains fact tables and dimension tables but also 

is composed of plain files as the standby data sets for special requests.  If ad hoc 

requirements need to be fulfilled, these data resources are populated into their 

related fact tables. 

 

The aim of this experiment was preprocessing data and evaluating the data 

warehousing establishment and loading in a Hadoop environment and Oracle. The 

Hadoop environment was built on a physical machine (Intel Core i7 CPU 3.60GHz) 

associated with nine Linux virtual machines. Three of them were set up as data 

resources. The rest of them were used to build the Hadoop platform. Its configuration 

information is presented in table I. 

 
Table I. The Hadoop Platform Configuration 

Node Name Operation System Processor Memory Software 

Node1 Centos 7 X86_64 1 1GB JDK 1.7, Hadoop, HBase, Hive 

Node2 Centos 7 X86_64 1 1GB JDK 1.7, Hadoop, HBase 

Node3 Centos 7 X86_64 1 1GB JDK 1.7, Hadoop, HBase 

Node4 Centos 7 X86_64 1 2GB JDK 1.7, Hadoop, HBase, Zookeeper 

Node5 Centos 7 X86_64 1 2GB JDK 1.7, Hadoop, HBase, Zookeeper 

Node6 Centos 7 X86_64 1 2GB JDK 1.7, Hadoop, HBase, Zookeeper 

 

The Hadoop (version 2.7.1) was deployed based on HDFS High Availability. The 

Yarn was running in Node1. The tow NameNodes were configured in Node2 and 

Node3. The testing data were placed in DateNodes (Node4, Node5 and Node6). The 

comparative trial was built on Oracle Database 12c in the same physical machine. 

The programming language used in both of platforms was Java based on JDK 1.7. 

 

5. DATA CLEANSING AND CLASSIFICATION 

We cleansed and classified the original data in the Hadoop environment in this 

experiment. The main reasons are given as follows. The parallel computation of 

Hadoop could be utilized to enhance the speed of the operations. The result would be 

stored in HDFS, which would be manipulated by MapReduce or Hive directly. The 

outline and the whole data flow from data sources to manipulation areas are 

presented in Fig. 2. which also includes the data flow of the data warehousing 

construction and loading. 

 

 
Fig. 2. The outline and data flow 
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5.1 Data Extraction 

Data extraction is a part of the ETL processing. In this system, Flume was set up to 

fetch and deliver web log files from severs to HDFS. It did not cleanse and format 

data. It collected log data from physically independent servers into HDFS. The 

procedure is described as following. The Linux shell script was run every midnight 

automatically to create a folder in HDFS, which was named the date of yesterday. 

Flume extracted yesterday’s log files then sent them into this folder. 

5.2 Mapper 

After the data had already put into the folder, the MapReduce was invoked to process 

log documents. In the map function, the log records were manipulated and classified. 

Figure 3 illustrates the detailed program flow diagram in the map function.  

 

 
Fig. 3. The program flow in the map function 

 

At the start of the experiment, a certain number of Mappers were initialized 

based on how many the blocks did the log files have. Then these Mappers would read 

records in related blocks. After this, each record would be examined by two regular 

expressions. The first regular expression was to check invalid interactions (e.g. 

status > 299) between clients and servers, if it returned true then checking the data 

transmission, if their data was not equal to “0” or “-” then setting these records’ key 

to 1 and output them otherwise ending this processing. The job of the second one was 

to identify the effective records such as querying assistant resources (js files, css files, 

pictures etc.), and if returned true, then assigned 2 to their key and output them. If 

all regular expressions returned false, these records were turned out to be valuable 

entries, then set their keys to 3 and output them. 

5.3 Reducer 

After the Mappers, each record had a key in the scope of 1, 2 or 3. Reducers did not 

need to handle the complicated workflow as Mappers did. The main task of them was 

distinguishing key of each record and classifying them. After all reducers finished 
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their jobs, the classified records had been loaded into three different files. The 

program flow in the reduce function is presented in Fig 3 as following. 

 

 
Fig. 4. The program flow in the reduce function 

 

6. HIERARCHICAL DATA WAREHOUSE 

Fact tables depend on foreign keys to connect their dimension tables. Hence, when 

inserting business facts into them, it is necessary to visit dimension tables in order to 

acquire foreign keys. Sometime, if dimension tables did not have the related records, 

new entries would be inserted into corresponding dimension tables. It is time-

consuming to load data into fact tables, especially, if the data sets are unstructured. 

The data in fact tables overwhelmingly occupies the largest part of volumes in any 

data mart [Kimball & Ross 2011]. If the raw data is cleansed, classified and 

selectively populated into related fact tables, maybe it is an effective choice to reduce 

the volume of fact tables. The whole processing is described as follows: in the 

beginning, classifying the raw datasets into different weighted levels based on the 

business requirements, after this step, preparing and populating the most valuable 

data set into the data warehouse then second important data etc. Figure 5 presents 

the data flow of this data warehouse architecture. 

 

 
Fig. 5. The hierarchical warehouse data flow 
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If the ad hoc queries are in the to-do-list, the related datasets would either be 

loaded into the fact table or the extended fact table, even be manipulated using other 

approaches (e.g. MapReduce) to archive the goals without loading the data sets into 

the fact tables. This data warehouse architecture would reduce resources 

expenditures and keep fit for the sizes of fact tables. It may also suit for other 

unstructured data sets, because a vast volume of unstructured data may contain a 

great many outliers or unimportant information in some cases, while, sometime, 

these irrelevant records are still useful. For example, if the total data flow of a 

website need to be evaluated, all records even error entries need to be taken into 

account. The hierarchical data warehouse structure can fulfill most of the business 

requirements even ad hoc queries. The example of the architecture is demonstrated 

in figure 6 below. 

 

 
Fig. 6. The hierarchical data warehouse architecture 

 

7. EVALUATION 

7.1 Experiment 

The volume of the data used in this experiment was 1 GB which contained 11882090 

records. For the sake of saving resources and fulfilling the ad hoc requirements, 

almost all records were classified into three categories by Mappers and Reducers: the 

frequently used data (weight = 3), the less frequently used data (weight = 2) and the 

seldom used data (weight = 1). Table II lists the detailed information of datasets and 

the performances of data manipulations in the Hadoop environment and Oracle 

Database. 

 
Table II. Data sets and performances in two platforms 

Data Set Size (MB) Data Query (MB) Hadoop (Mins) Oracle (Mins) 

Frequently Used 86.20 8,139.39 97.27 54.59 

Less Frequently Used 816.00 75,957.32 Do not Need to Load 20.12 

Seldom Used 121.80 24.81 Do not Need to  Load 3.71 

Total 1024.00 84,121.52 97.27 78.42 
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The fourth column showed the data formatting using MapReduce and HBase in 

the Hadoop platform. The main jobs of HBase in the Hadoop environment were 

helping MapReduce to generate LogId, PathId, DomainId etc. and forming dimension 

tables. If new record came, it would be checked whether related information had 

already stored in the dimension tables or not. In the Oracle column, it provided 

three-leveled datasets formatting and populating into Oracle Database. As can be 

seen from this table, the frequently used data set size was only 86.2 MB out of 1024 

MB (around 8.4180%). Less frequently used data set occupies the most volume of the 

raw log files 816.00 MB (79.6875%), followed by the seldom used data 121.80 MB 

(approximately 11.8945%). 

In the Hadoop environment, it took 97.27 minutes to format the frequently used 

dataset and generate surrogate keys for LogId, PathId, DomainId etc. by checking 

HBase, then output them into files stored in HDFS. However, in Oracle database, it 

spent 54.59 minutes to do the same things and insert fact records into the fact table. 

The Hadoop did not need to spend time to insert the fact table into its related fact 

table, but it needed to form fact records plain files and put them in a folder which the 

fact table (on Hive) had already pointed to it as a data source directory. The web log 

data warehousing schema and its set-up were similar to the schema in [Yang 

and Helfert 2016] which was built in a Hadoop environment, while the schema in 

this experiment had multi-level fact tables. 

In Oracle platform, it took 20.12 and 3.71 minutes to load less frequently used and 

seldom used datasets respectively. These operations were much fast than the 

frequently used set loading. The main reason was these operations did not need to 

visit dimension tables or create surrogate keys. It only needed to format and insert 

records into extended fact tables. Whereas in the context of Hadoop, these operations 

were not necessary, only just delivering these related files into the folders which 

belonged to the tables in Hive. 

The operation in the Hadoop environment did not need to load all levels’ datasets. 

It only strictly formatted frequently used records and wrote them into files then 

pointed out the rest of the levels’ files in HDFS for extended fact tables. However, the 

warehouse in Oracle needed to load all data into the related fact tables in order to 

respond to the ad hoc queries. The disadvantage of the Hive based data warehouse in 

Hadoop was that it needed extra helpers (MapReduce) to analyze data such as 

counting the total data flow of the website. However, the warehouse in Oracle did not 

need any assistant to handle this kind of ad hoc queries. 

7.2 Generality of the Approach 

In order to find out the threshold and generalize this approach, the frequently used 

data has been divided into several groups. To be more specific, it has been split into 5 

groups by using part of the frequently used data which occupied 1%, 3%, 5%, 7% and 

8.4% of the original data set. Rest of the data was acted as the infrequently data. For 

example, if the frequently used data had 1%, then the infrequently used data 

occupied 99%. Then these partitioned data sets would be manipulated even loaded 

into related tables (e.g. loading data into the fact tables in Oracle). The diagram 7 

illustrates the time taken including processing the frequently and infrequently used 

data in each group. 
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Fig. 7. The performances in Hadoop and Oracle platforms with different data sets 

As can be seen, when the frequently used data set was less than around 5%, the 

Hadoop environment was faster than the environment of Oracle in this circumstance. 

The main reason was that the frequently data needed to be formatted and 

infrequently used data needed to be loaded in Oracle. However, the Hadoop 

environment did not need to do this job, only formatting data because of the 

character of Hive. However, when the frequently used data set increased above 5%, 

Oracle spent less time to load data. Because the Hadoop environment required more 

time to manipulate frequently data set than Oracle needed. 

In this experiment, it can be seen that when the frequently used data set was 

greater than 5%, Oracle was faster than the Hadoop environment. However, it might 

be not proper to say Oracle had higher performance than the Hadoop environment 

had in all situations. We only tested the performances in this particular case and set-

up. There were other capabilities may also need to be considered. For example, it did 

not test the flexibility. If the hardware needs to be upgraded, the Hadoop 

environment is much easier to make this happen compared with the Oracle. 

 

8. CONCLUSIONS 

Data quality problem solving is the indispensable task for the data warehouse 

building and the data mining. It is time-consuming to preprocess data and guarantee 

data quality. This paper brings forward a methodology to prepare data for the data 

warehouse and a hierarchical data warehouse architecture to enhance the data 

manipulation and fulfill ad hoc requirements. This architecture could be extended to 

other unstructured data preparations and warehousing constructions. 

There were still some eliminations existing in the experiment and novel 

warehousing architecture. The raw data classification policy should be known by 

analyzing business requirements before the manipulation of data. The raw data set 

was not sufficient for further testing the capabilities of this system. In addition, the 

Hadoop environment was set up on virtual machines which shared the sources of the 

host computer. In the following work, the Hadoop environment would be moved to 

physically independent computers. At the same time, more raw data would be used to 

test the throughput, flexibility and performance of this architecture in the context of 

big data. 
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