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Abstract

We consider electron heating in the sheath regions of capacitive discharges excited by a combi-

nation of two frequencies, one much higher than the other. There is a common supposition that

in such discharges the higher frequency is the dominant source of electron heating. In this letter,

we discuss closed analytic expressions quantifying the Ohmic and collisionless electron heating in a

dual frequency discharge. In both cases, we show that the lower frequency parameters strongly in-

fluence the heating effect. Moreover, this influence is parametrically different, so that the dominant

heating mechanism may be changed by varying the low frequency current density.
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Dual frequency capacitive discharges are a topic of intense interest because of their adop-

tion as a processing tool by the semiconductor industry. The compelling practical advantage

of these discharges is that they permit a degree of independent control of two critical process

parameters, namely the flux and energy of ions impacting on the surface being processed

[1]. Such control is impossible in a single frequency discharge. This background makes an

enquiry into the physics of dual frequency discharges desirable, with the aim of establishing

simple models based on an understanding of the dominant physical effects. These are not

a trivial superposition of the effects of the two frequencies acting separately, as has already

been shown [2–6]. In this Letter we discuss the relative importance of two important electron

heating mechanisms, Ohmic heating and collisionless or stochastic heating. We consider a

discharge excited by two frequency components, with angular frequencies, ωl,h and current

density amplitudes J̃l,h, where the subscripts l and h denote the lower and higher frequen-

cies. We recently developed a compact expression for the collisionless heating component in

this case [6] (see [7] for a different perspective on this issue), showing that there is a strong

dependence of the collisionless heating power on both the low and high frequency current

densities, contrary to a simple expectation that power coupling to electrons is independent

of the low frequency parameters because the low-frequency current density is comparatively

small [1]. Below, we develop a similarly compact expression for the Ohmic heating compo-

nent. We go on to discuss the dependence of this result on the low frequency parameters,

and the relative importance of the Ohmic and collisionless heating components.

The discharge can be divided into two regions—the bulk, where the plasma is quasi-

neutral at all times, and the sheaths, where positive space charge is present for part of each

low frequency period. In a low pressure discharge, electron heating occurs predominantly

in sheath regions, and collisionless heating is in any event essentially absent from the bulk.

Moreover, the calculation of Ohmic heating in the bulk is straightforward [8]. We therefore

shall not discuss heating in the bulk. Our discussion of the sheath is simplified by the

assumption that, at any given time, an electron sheath edge can be defined as a point, with

a position denoted by s(t), where quasi-neutral plasma ends and space-charge sheath begins.

The path described by s(t) in dual frequency discharges is complex [2], but bounded between

the electrode and another point that we define as the ion sheath edge, which is the origin

for s(t). We will consider heating effects occurring in the region between the electron and

ion sheath edges. This calculation is complicated, because we must deal in effect with a
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moving boundary problem. In [6] we showed that the time-averaged collisionless heating in

this region can be expressed as:

S̄stoch = 2Qb

[
δ2
l F0(α, β, Heff) + δ2

hF1(α, β, Heff)
]

(1)

where F0 and F1 are functions approximated by F0 ≈ 36Heff/(55 + Heff) and F1 ≈ 1.1F0,

α = ωh/ωl, β = J̃h/J̃l, H2
eff = H2

l +H2
h, Hh,l = J̃2

h,l/πTbω
2
h,ln0, Tb is the effective bulk electron

temperature in joules, n0 is the plasma density at the ion sheath edge, δl,h = J̃l,h/en0v̄b and

Qb = 1
4
n0v̄bTb is the electron heat flux incident on the sheath, with v̄b =

√
8Tb/πme. We

note that H2
eff = H2

l [1 + (β/α)4] ≈ H2
l in most cases. This result shows that the collisionless

heating power is a strong function of the low frequency parameters ωl and J̃l, because these

parameters control the spatial structure of the sheath [2, 6, 9].

We now turn to the calculation of the Ohmic heating component. In general, the instan-

taneous Ohmic heating power per unit volume dissipated in a plasma with density n and

electron collision frequency νe is

Pohmic =
meνeJ

2(t)

ne2
(2)

where J is the current density, and we have assumed that any ionic contribution to the

heating effect is negligible. The Ohmic power dissipation per unit area within the sheath is

now found by integrating from the ion sheath edge to the electron sheath edge at s(t):

Sohmic(t) =
meνeJ

2(t)

e2

∫ s(t)

0

dx

n(x)
(3)

= J2(t)
meνe

e2

∫ φ(t)

0

dφ′

n(φ′)

dx

dφ′ (4)

where φ = ωlt is the independent variable of the Lieberman [9] and Robiche [2] sheath

models. These expressions hold for any sheath model. If we assume that the sheath structure

is adequately described by the analytical dual frequency sheath model of [2], then we have

closed, albeit complex, expressions for dx/dφ and n(φ). The problem of calculating the

time-averaged Ohmic heating thus becomes a double quadrature that can be written:

S̄ohmic =
32

π
Qbδ

3
l

(
νe

ωl

)
F2(α, β, Hl). (5)

The integrations entailed in the function F2 can be carried out formally, but the resulting

expressions are not useful [2]. A compact and convenient approximation can however be
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obtained by considering the limit α � 1, in which case the high frequency terms can

be substituted by constants. This is possible because the low-frequency current can be

considered nearly constant over a period of the high-frequency current. The remaining

integrations can then be carried out without further approximation to find:

F2 ≈ A2 =
[
1

2

(
1 + β2

)
+

1

π

(
512

675
+

32

27
β2

)
Hl +

(
14912

165375
+

1336

3375
β2

)
H2

l

]
. (6)

Fig. 1 shows that this approximation is good when β/α � 1, rather independently of the

value of Hl. Since this condition is required for the sheath model to be valid [2], eq. 6 is

likely to be useful whenever the sheath model is useful. We note that the condition β/α� 1

can be expressed less precisely but perhaps more helpfully as Ṽh � Ṽl, which will hold for

most conditions of practical interest.

This result shows that Ohmic heating, like collisionless heating, is enhanced by the combi-

nation of two frequencies. The physical mechanism of the enhancement is similar—when the

lower frequency is applied, the spatial structure of the sheath region is modified, the max-

imum sheath width is increased and the ion density near the boundary is greatly reduced.

When the sheath is collapsed, and these regions are populated by electrons, the higher fre-

quency current is conducted through a much more tenuous plasma than would be the case

if the lower frequency was absent. As eq. 2 suggests, the Ohmic heating effect is thereby

considerably enhanced. In fact, as inspection of eqs. 1 and 6 indicates, Ohmic heating is

more effectively enhanced than collisionless heating by the influence of the low-frequency

current. Indeed, fig. 2 shows that the dominant heating mode can be changed by application

of the low-frequency current. In this example, we have taken νe/ωl = 30, corresponding to

a discharge in argon at a pressure of approximately 100 mTorr, with n0 = 5 × 1015 m−3,

T =30000 K, ωl/2π = 2 MHz, ωh/2π = 27 MHz, and J̃h = 36 A m−2. These conditions

are typical for contemporary experiments. In fig. 3 we show the ratio of the collisionless

and Ohmic heating powers for a range of values of νe/ωl spanning any likely experiments.

These results show that dual-frequency discharges may in principle be dominated by either

collisionless heating or Ohmic heating, but that typical experiments are likely to be in a

mixed regime tending to Ohmically dominated.

In summary, we have presented simple and useful expressions for the collisionless and

Ohmic heating powers in dual-frequency discharges. These results will be of value in simple

models of this type of discharge. Our expressions show that both the collisionless and
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Ohmic heating mechanisms are strongly influenced by the low frequency current density

under typical experimental conditions, contrary to elementary ideas about dual-frequency

discharge operation. This influence is exerted by modification of the spatial structure of

the sheath: In particular, the relatively large voltage associated with the lower frequency

greatly affects the ion density in the sheath region. Our results also controvert the generally

accepted view that capacitive discharges used for semi-conductor processing are dominantly

heated by collisionless processes. In dual-frequency discharges, Ohmic processes can be of

comparable or greater significance.
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FIG. 1: The approximation given by eqn. 6 compared with numerical evaluation of the integral in

eqn. 5, for various parameters. Solid line, Hl = 1, α = 100; Long dashed line, Hl = 0, α = 10;

Short dashed line, Hl = 11, α = 20
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FIG. 2: The collisionless, Ohmic and total heating powers, shown as a function of the low frequency

current density. Solid line—total; long dashed line—Ohmic; short dashed line—collisionless. The

conditions are ωl/2π = 2 MHz, ωh/2π = 26 MHz, J̃h = 36 A m−2, n0 = 5×1015 m−3, Tb = 30000 K,

and νe/ωl = 30
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FIG. 3: The ratio of the collisionless and Ohmic heating powers for various electron collision

frequencies, corresponding approximately to conditions in argon at pressures of 10 (solid line), 100

(long dashed line) and 1000 mTorr (short dashed line), corresponding to νe/ωl = 3, 30, 300.
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