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ABSTRACT
The term Visual Lifelogging is used to describe the process of track-
ing personal activities by using wearable cameras. A typical exam-
ple of wearable cameras is Microsoft’s SenseCam that can capture
vast personal archives per day. A significant challenge is to organ-
ise and analyse such large volumes of lifelogging data. State-of-
the-art techniques use supervised machine learning techniques to
search and retrieve useful information, which requires prior knowl-
edge about the data. We argue that these so-called rule-based and
concept-based techniques may not offer the best solution for analysing
large and unstructured collections of visual lifelogs. Treating lifel-
ogs as time series data, we study in this paper how motifs tech-
niques can be used to identify repeating events. We apply the Mini-
mum Description Length (MDL) method to extract multi-dimensional
motifs in time series data. Our initial results suggest that mo-
tifs analysis provides a useful probe for identification and inter-
pretation of visual lifelog features, such as frequent activities and
events.
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•Information systems→ Data analytics; Data management sys-
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Keywords
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1. INTRODUCTION
As wearable technology has become significantly cheaper, people
increasingly rely on such devices to record profiles of individual
behaviour by capturing and monitoring personal activities. This
activity is often referred to as lifelogging, i.e., the process of auto-
matically, passively and digitally recording aspects of our life expe-
rience. Considering the heterogeneous nature of the data created, as
well as its appearance in form of constant data streams, lifelogging
shares features that are usually attributed to big data. A special case
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of lifelogging is visual lifelogging, where lifeloggers wear cameras
mounted on the head [14, 26] or chest [3, 35], that capture personal
activities through the medium of images or video. Despite its rela-
tive novelty, visual lifelogging is gaining popularity due to projects
such as the Microsoft SenseCam [13]. The SenseCam is a small,
lightweight wearable device that automatically captures a wearer’s
every moments as a series of images and sensor readings. Nor-
mally, the SenseCam captures an image at the rate of one every 30
seconds and collects about 4,000 images in a typical day. However,
since the SenseCam generates a very large amount of data for a sin-
gle day, a significant challenge is to manage, organise and analyze
the large lifelogging data set in order to automatically categorise a
wearer’s characteristics.

To date, various aspects of lifelogging have been studied, such as
the development of sensors, efficient capture and storage of data,
processing and annotating the data to identify events [8], improved
search and retrieval of information [41], assessment of user expe-
rience, design of user interfaces for applications of memory aids
[13], diet monitoring [33], or analysis of activities of daily living
(ADL) [27].

Given the relative success of these efforts, the research challenge
has now shifted from broader aspects of data management to that
of retrieving refined and relevant information from the vast quanti-
ties of captured data [10, 2, 24]. Current applications address this
by employing automatic classifiers for segmenting a whole day’s
recording into events and searching the historical record [7], or by
building ontology-based multi-concept classifiers and searching for
specific events [40]. More recent research suggests use of statisti-
cal mapping from low-level visual features to semantic concepts of
personal lifelogs [41]. It is important to note that these approaches
are based on training classifiers from a set of annotated ground truth
images. Although supervised methods can lead to more accurate
outcome in terms of detecting known patterns, they require prior
knowledge from a domain expert to be fed into the system. In addi-
tion, the result for the classifier depend heavily on the quality and
quantity of the training data, i.e. are biased to detection of activi-
ties that are defined and known to the domain expert a priori. Given
that visual lifelogs usually consist of large and often unstructured
collections of multimedia information, such a ‘concept-based’ and
‘rule-based method’ for analysing lifelogging data is not suitable
for all use-cases. Ideally, an algorithm should be able to detect un-
known phenomena occurring at different frequencies in such data.
In our previous works, we introduced and evaluated the use of so-
phisticated time series analysis methods for management of large
lifelogging data sets [20, 21, 19]. The results of this evaluation
suggest that strong correlations do exist in these time series, with



recognisable cycles representing specific events.

In this paper, we build on this observation to address the chal-
lenge of refining the analysis of lifelogs by studying time series
motifs. Such motifs are frequently occurring, but often previously
unknown, subsequences of longer time series [22]. Similar anal-
yses feature widely in various medical applications, including ex-
amining data from on-body monitoring sensors [28] and selecting
maximally informative genes [1], protein sequence identification
[30] and others. Time series motifs are used also for finding pat-
terns in sports motion capture data [38] and in video surveillance
applications [12]. Many researchers have studied the extraction of
characteristics features from multi-dimensional time series data. In
Tanaka et al. [38], Principle Component Analysis (PCA) is used to
transform multidimensional time series to one dimensional to de-
tect motifs that are common to all. More recently, Minnen et al.
[29] extended a motif discovery method for single time series to
detection of motifs occurring across several dimensions of a multi
dimensional signal. Visual lifelogs contain records of a wearer’s
activities and events that occur over different time periods. Con-
sequently, we argue that motifs can represent activities of different
length and timing in data resembling attributes of big data. We
explore this idea by analysing high frequency patterns in multi-
dimensional visual lifelogging data.

This paper is organized as follow: In Section 2, we introduce and
describe our method of motifs detection in lifelogging data. Sec-
tion 3 presents an experiment performed to asses the technique and
present results obtained. Conclusions are given in Section 4.

2. METHODS
In prior work [20] we studied the spectral dynamics of SenseCam
images by applying the multi-scaled cross-correlation matrix tech-
nique, for which time series exhibit atypical or non-stationary char-
acteristics, symptomatic of “Distinct Significant Events" in the data.
Our study suggests that we can use such key episodes to identify
boundaries between different daily events. Results to date indicate
that different distinct events or activities can be detected at different
scales through wavelet analysis. Building on this observation, we
aim in this paper to extract the motifs in different wavelet scales us-
ing the Minimum Description Length (MDL) principle. In this sec-
tion, therefore, we first give a review of the Cross-correlation ma-
trix structure and the Maximum Overlap Discrete Wavelet Trans-
form (MODWT). Then, we introduce the Symbolic Aggregate ap-
proXimation (SAX) algorithm for discretization of time series data
into symbolic strings. Finally, we detail our motif extraction algo-
rithm, based on the MDL principle.

2.1 Equal-time cross-correlation matrix and
Maximum Overlap Discrete Wavelet Trans-
form

The behaviour of the largest eigenvalue of a cross-correlation ma-
trix over small windows of time, has been studied for financial
series [37, 15, 34, 6, 18, 32, 31], electroencephalographic (EEG)
recordings [11], magnetoencephalographic (MEG) recordings [39]
and a variety of other multivariate data. Similar techniques are used
here to investigate the dynamics of SenseCam images.

To reduce the size of the calculation further, and thus the amount
of memory used, we first adopt an averaging method to decrease
the image size from 480x640 pixels to 6x8 pixels. Hence the cor-

relation matrix is made up of 48 time series over the total number
of images. The equal-time cross-correlation matrix, between time
series of images, is calculated using a sliding window, where the
number of pixels in one image, N , is smaller than the window size
T . Given pixels Gi(t), i={1,...,N}, of a collection of images, we
normalise Gi within each window in order to standardise the dif-
ferent pixels for the images as follows:

gi(t) =
Gi(t)−Gi(t)

σ(i)

(1)

where σ(i) is the standard deviation ofGi for image numbers i={1,...,N},
and Gi is the time average of Gi over a time window of size T .
Then the equal-time cross-correlation matrix may be expressed in
terms of gi(t)

Cij ≡
〈
gi(t)gj(t)

〉
(2)

The elements of Cij are limited to the domain -1≤Cij≤1,where
Cij=±1 defines perfect positive/negative correlation and Cij=0
corresponds to no correlation. In matrix notation, the correlation
matrix can be expressed as C = 1

T
GGt where t is the transpose of

a matrix and G is an N × T matrix with elements git.

The eigenvalues λi and eigenvectors vi of the correlation matrix C
are found from the eigenvalue equation Cvi = λivi.

The eigenvalues are then ordered by size, such that λ1≤λ2≤...≤λN .
Given that the sum of the diagonal elements of a matrix (the Trace)
remains constant under linear transformation [11],

∑
iλi must al-

ways equal the Trace of the original correlation matrix. Hence, if
some eigenvalues increase then others must decrease, to compen-
sate, and vice versa, (a feature known as Eigenvalue Repulsion [9]).

There are two limiting cases for the distribution of the eigenvalues:
(i) perfect correlation, Ci≈1, when the largest is maximised with
value N , (all others taking value zero). (ii) when each time series
consists of random numbers with average correlation Ci≈0 and
the corresponding eigenvalues are distributed around 1, (where any
deviation is due to spurious random correlations). Between these
two extremes, the eigenvalues at the lower end of the spectrum can
be much smaller than λmax. To study the dynamics of each of the
eigenvalues using a sliding window, we normalise each eigenvalue
in time using

λ̃i(t) =
(λi − λ)

σλ
(3)

where λ and σλ are the mean and standard deviation of the eigen-
values over a particular reference period. This normalisation al-
lows us to visually compare eigenvalues at both ends of the spec-
trum, even if their magnitudes are significantly different. The ref-
erence period used to calculate the mean and standard deviation
of the eigenvalue spectrum can be chosen to be a low volatility
sub-period, (which helps to enhance the visibility of high volatility
periods), or the full time-period studied.

The wavelet transform (WT) is a mathematical tool that can be
applied in many areas such as image analysis [43], meteorology
[5], signal processing [25] and financial time series [4] and is used
to decompose a signal into different time horizons. For example,
wavelets allow us to decompose a signal on a Scale-by-Scale basis,
e.g., in measuring the correlation between equities over different
time scales (values at hourly intervals, two hourly intervals etc.).
This allows characterization of the impact of the different trading



strategies or horizons of traders, on correlations between such eq-
uities. In particular, the discrete wavelet transform (DWT) [42] is
useful in dividing the data series into components of different fre-
quencies, so that each component can be studied separately in order
to investigate the data series in depth. In our case, where we wish
to compare different pixel time series values, we may do so over a
range of time scales.

The Maximum Overlap Discrete Wavelet Transform, (MODWT)
[42], is a linear filter that transforms a series into coefficients related
to variations over a set of scales. Like the DWT it produces a set of
time-dependent wavelet and scaling coefficients with basis vectors
associated with a location t and a unitless scale τj=2j−1 for each
decomposition level j= {1,...,J0}. Unlike the DWT, the MODWT
has a high level of redundancy. However, it is non-orthogonal and
can handle any sample size N , whereas the DWT restricts the sam-
ple size to a multiple of 2j . MODWT retains downsampled1 values
at each level of the decomposition that would be discarded by the
DWT. This reduces the tendency for larger errors at lower frequen-
cies, when calculating frequency dependent variance and correla-
tions, as more data are available.

Decomposing a signal to J levels, using the MODWT, theoretically
involves the application of J pairs of filters. The filtering operation
at the jth level consists of applying a rescaled father wavelet2 to
yield a set of detail coefficients

D̃j,t =

Lj−1∑
l=0

ϕ̃j,lft−l (4)

and a rescaled mother wavelet3 to yield a set of scaling coeffi-
cients

S̃j,t =

Lj−1∑
l=0

φ̃j,lft−l (5)

for all times t = {...,−1, 0, 1, ...}, where f is the function to
be decomposed [36]. The rescaled mother, ϕ̃j,t=

ϕj,t

2j
, and father,

φ̃j,t=
ϕj,t

2j
, wavelets for the jth level are a set of scale-dependent

localised differencing and averaging operators and can be regarded
as rescaled versions of the originals. The jth level equivalent filter
coefficients have a width Lj = (2j − 1)(L − 1) + 1, where L is
the width of the j = 1 base filter. In practice the filters for j > 1
are not explicitly constructed because the detail and scaling coeffi-
cients can be calculated, using an algorithm that involves the j = 1
filters operating recurrently on the jth level scaling coefficients, to
generate the (j + 1)th level scaling and detail coefficients [36].
Each of the sets of coefficients in a wavelet is called a ‘crystal’.

The wavelet variance ν2f (τj) is defined as the expected value of
D̃2
j,t if we consider only the non-boundary coefficients4. An unbi-

ased estimator of the wavelet variance is formed by removing all
1Downsampling or decimation of the wavelet coefficients retains
half of the number of coefficients that were retained at the previous
scale. Downsampling is applied in the Discrete Wavelet Transform
2Father wavelet, also called scaling function, the scaling function
filters the lowest level of the transform and ensures all the spectrum
is covered.
3Mother wavelet, also called wavelet function, the wavelet function
is in effect a band-pass filter and scaling it for each level halves its
bandwidth.
4The MODWT treats the time-series as if it were periodic using

coefficients that are affected by boundary conditions and is given
by

ν2f (τj) =
1

Mj

N−1∑
t=Lj−1

D̃2
j,l (6)

where Mj = N − Lj + 1 is the number of non-boundary coef-
ficients at the jth level [36]. The wavelet variance decomposes
the variance of a process on a scale-by-scale basis (at increasingly
higher resolutions of the signal) and allows us to explore how a sig-
nal behaves over different time horizons.

The wavelet covariance between functions f(t) and g(t) is simi-
larly defined to be the covariance of the wavelet coefficients at a
given scale. The unbiased estimator of the wavelet covariance at
the jth scale is given by

νfg(τj) =
1

Mj

N−1∑
t=Lj−1

D̃
f(t)
j,l D̃

g(t)
j,l (7)

where all the wavelet coefficients affected by the boundary are re-
moved [36], and Mj = N − Lj + 1.

The MODWT estimate of the wavelet cross-correlation between
functions f(t) and g(t) may be calculated using the wavelet covari-
ance and the square root of the wavelet variance of the functions at
each scale j. The MODWT estimator, of the wavelet correlation is
given by

ρfg(τj) =
νfg(τj)

νf (τj)νg(τj)
(8)

where, at scale j, νfg(τj) is the covariance between f(t) and g(t),
νf (τj) is the variance of f(t) and νg(τj) is the variance of g(t).

2.2 Dimensionality Reduction and Discretiza-
tion

We use a dimensionality reduction algorithm based on Piecewise
Aggregate Approximation (PAA) [22, 17] called Symbolic Aggre-
gate approXimation (SAX) [23]. We apply this technique to trans-
form the largest eigenvalue time series into a sequence of symbols.
For the largest eigenvalue time series λ1 with number of images
n, this time series can be reduced to a string of arbitrary length w,
(where w < n) and the alphabet size of arbitrary length a, (where
a > 2). The largest eigenvalue time series λ1(t) = {x1, ..., xn} of
length n can be represented as a w-dimensional space by a vector
λ̄ = {x̄1, ..., x̄w}:

x̄i =
w

n

w
n
i∑

j=w
n
(i−1)+1

xi (9)

In order to transform the vector of w dimension into a sequence of
“PAA symbols", it is necessary also to determine “breakpoints" that
determine the range of the PAA value for assigning unique PAA
symbols. One approach is to determine the breakpoints that will
produce an equal-sized area under a Normal distribution. Break-
points are a sorted list of numbers B = {β1, ..., βa−1} such that

“circular boundary conditions". There are Lj wavelet and scaling
coefficients that are influenced by the extension, and which are re-
ferred to as the boundary coefficients.
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Figure 1: Example of time series transformation into SAX symbols. In this, with n=112, w=16 and a=4. the time series is mapped to
the PAA symbols bcbbaaaaccbdbbcb.
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Figure 2: Example of “behaviour symbol" assignment for pattern order of PAA symbols. In this, A=bacc, B=ccbc and C=bcdc.

the area under a N (0,1) Standard Normal distribution from βi to
βi+1 = 1/a(β0 and βa are defined as −∞ and ∞, respectively.
Once the breakpoints have been obtained we can discretize a time
series as follows. We first obtain a PAA of the time series. All PAA
coefficients that are below the smallest breakpoint are mapped to
the symbol “a", all coefficients greater than or equal to the smallest
breakpoint and less than the second smallest breakpoint are mapped
to the symbol “b", etc. Fig. 1 illustrates the idea. Finally, a “be-
haviour symbol" is assigned for every subsequence of PAA sym-
bols. An example is given in Fig. 2, for which the analysis window
of Tmin is the minimum length of motif for the time series.

2.3 Estimating Extracted Motif Candidate Based
on MDL Principle

Several theoretical information theory principles from literature are
relevant to the current analysis, including AIC (Akaike’s Informa-
tion Criterion), BIC (Bayesian Information Criterion) and MDL
(Minimum Description Length) principles. The AIC estimates the
best model based on “prediction capability”, while BIC estimates
the best model based on bayesian principles. Our approach is fo-
cused however, on finding frequent patterns, rather than prediction,
for the time series. The MDL principle states that the best model to
describe a set of data is that which minimises the description length
of the entire data set. The underlying concept is the selection of the
best model to compresses the data. Table 1 summarises the princi-
pal notation used in this sub-section.

As stated, we apply the SAX algorithm for transforming time series
into behavior symbol sequences as BSS in Fig. 3 (a) for example.
We can extract the pattern FPV from BSS. However, we found
that from position 25 to 29 of the BSS, all sequence elements are
‘A’, so we can transform/compress these ‘A’ by noting BS length of
5 (as Fig. 3 (b)). This new sequence is the “modified BSS". There
are three costs to define in calculating the MDL. The ‘data encod-

Table 1: A summarisation of the notation used in this sub-
section
BS Behavior Symbol
BSS Behavior Symbol Sequences
TSS Time-Series Subsequence
Tmin Analysis window
C̃ A symbol representation of a time series
SC Subsequence
DL Description Length

ing cost’ is the lower bound of description length that is required
to encode each segment. The ‘parameter encoding cost’ is the de-
scription length that is required to describe the order of BS in each
segment. Finally, the ‘segmentation cost’ is required to describe
the location of all segments. We summarise these costs in Table 2.

In calculating the data encoding cost of the i-th segment, we calcu-
late the length of the i-th segment ti. For example, in Table 2, the
length of the first segment is t1=9, the length of the second segment
is t2=3 and so on. In addition, we assume that the j-th BS has a
length lij . A data encoding cost for the j-th BS in the ith segment
is calculated then as:

−lij log2
lij
ti

(10)

For example, in Table 2, the first BS of the second segment of the
Modified BSS, Fig. 3 (a), is ‘F’, and the data encoding cost of ‘F’is
−1log2

1
3

. By calculating the data encoding cost of all unique BSS
in the i-th segment, we obtain the data encoding cost of the whole
segment as: ∑

j

−lij log2
lij
ti

(11)

Using the following equation, we then calculate the data encoding



Table 2: Example of MDL calculation

Segment Length Data encoding
cost

Parameter encod-
ing cost

s1 9 AX1 : −1log2
1
9

log29
s2 3 FX1 : −1log2

1
3

log23
...

s3 39 TX1 : −1log2
1
39

...
AX5 : −5log2

5
39

log239
...

... ... ... ...
s7 29 SX1 : −1log2

1
29

log229

Sum 98 DL1(C̃|“FPV") DL2(C̃|“FPV")

costDL1(C̃|SC) of C̃ that is segmented by the pattern SC:

DL1(C̃|SC) =

m∑
i

∑
j

−lij log2
lij
ti

(12)

We calculate the complementary parameter encoding cost of each
segment as log2ti.

For example, in Table 2, the parameter encoding cost of the first
segment is log29, the second segment is log23 and so on. Thus, we
calculate DL2(C̃|SC) of C̃ as:

DL2(C̃|SC) =

m∑
i

log2ti (13)

Next, we calculate the segmentation cost DL3(C̃|SC) as:

DL3(C̃|SC) = mlog2(

m∑
i

ti) (14)

Again, for example, in Table 2, the length of C̃ is 98, so the seg-
mentation cost is 7log298.

Finally, based on this table, we obtain the description length of C̃
that is segmented by the pattern SC as follows:

MDL(C̃|SC) = DL1(C̃|SC) +DL2(C̃|SC) +DL3(C̃|SC)
(15)

We use Eq. (15) as the MDL estimation function for the MDL pat-
tern detection algorithm.

Figure 3: (a) BS sequence obtained from the time-series data.
(b) Modified BS sequence.

3. EXPERIMENTAL EVALUATION
In order to evaluate our technique, we aim to identify motifs in the
‘All I have Seen" dataset [16]. This data was generated by a lifel-
ogger wearing a SenseCam camera that continuously captured an
image every 20 seconds (on average), depicting activities such as
walking, working, cooking, eating, driving, shopping, etc. In or-
der to investigate the wearer’s ‘typical day’ lifestyle, we studied
data recorded on four Wednesdays. Selecting data recorded at the
middle of the week was deliberate, given the likelihood of a more
regular routine. The selected subset consists of 7549 images. De-
scriptive statistics are reported in Table 3.

First, the MODWT of the pixels for each image was calculated
within each window of given size 400 images and the correlation
matrix between pixels at each scale found. The Eigenvalues of
the correlation matrix in each window were determined, and the
Eigenvalue time series were normalised in time. Then, the largest
Eigenvalue for different window sizes was analysed. Finally, the
SAX algorithm was applied to transform the time series to PAA
symbols. The results are illustrated in Fig. 4. The wavelet scales
1-4 correspond to a 1-2 minute period, a 2-4 minute period, a 4-8
minute period and a 8-16 minute period, respectively. The differ-
ent features, found at various scales, suggest that the correlation
matrix captured different major events with different time hori-
zons. The largest Eigenvalue dynamics show that with increased
wavelet scales comes increased smoothing, as expected. This re-
moves some of the high frequency small-scales changes, typically
associated with noise.

Table 3: The Data Set
User Date Week Day Images
1 22-04-2009 Wednesday 1913
1 29-04-2009 Wednesday 1921
1 06-05-2009 Wednesday 2095
1 13-05-2009 Wednesday 1620

Total: 7549

Fig. 5 depicts examples of motifs discovered from different wavelet
scales using the method we introduced in Section 2. As depicted,
different motifs were extracted from different wavelet scales. Since
different wavelet scales represent different time horizons, the mo-
tifs, extracted from different scales, represent different ‘events’ that
the wearer experienced each Wednesday.

Examining the images that are identified by the motifs analysis,
we find that both a1 and a2 describe the combined event of driving
back home in the afternoon, followed by watching TV. b1 combines
activities of eating, and then moving to the living room. b2 corre-
sponds to driving to the shopping mall. Both c1 and c2 are similar
events where the wearer drives to work and then sits or some time
in front of the computer. For d1 the event sequence comprises sit-
ting and watching TV, talking with family and then starting to cook,
while d2 comprises sitting in the shopping mall and then driving to
an outdoor garden with children.

By examining the data set, we determine that most motifs discov-
ered at the same wavelet scale represent similar scenarios. We note
also that most describe the change from a static setting (e.g., sitting
in front of a computer or TV) to a more dynamic activity. Light
change reminds an important feature in identify/distinguishing be-
tween key episodes detected by our technique, in agreement with
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the prior study [21]. Added here is a way of aggregating related or
sequential events in to a recognisable template, which can be used
as potential marker for automatic extraction or comparison of simi-
lar episodes from an extended time series. Use of other information
criteria with wavelet deconvolution may also be of value in future
analysis.

4. CONCLUSIONS
In this paper, we introduced a non-supervised method based on mo-
tifs to identify events in visual lifelogs. The major contributions of
this paper include demonstrating that motifs provide a good way
to organise, structure and interpret vast amount of heterogeneous
streams of visual data. Further, we show that the Minimum De-
scription Length (MDL) can be used to extract such motifs from
multi-dimensional time series Sensecam data. In particular, this
method does not require any prior knowledge of the data. The
motifs discovered provide prototype templates for identification of
similar scenarios at specific time scales e.g. ‘typical’ lifestyle pat-
terns of lifeloggers. Finally, results reported here provide support-
ing evidence in confirmation of the previous work, which indi-
cated that light changes are natural markers for distinguishing key
episodes. As future work, we intend to compare the overall per-
formance of the method with existing supervised event recognition
methods.
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