
A Complexity Theory viewpoint on the Software
Development Process and Situational Context
Paul Clarke

School of Computing
Dublin City University, Ireland

Lero - Irish Software Research Centre
+353-1-700-7021

Paul.M.Clarke@.dcu.ie

Rory V. O’Connor
School of Computing

Dublin City University, Ireland
Lero - Irish Software Research Centre

+353-1-700-5643

Rory.OConnor@dcu.ie

Brian Leavy
DCU Business School

Dublin City University, Ireland
+353-1-700-5387

Brian.Leavy@dcu.ie

ABSTRACT

The research literature informs us that a software development

process should be appropriate to its software development context

but there is an absence of explicit guidance on how to achieve the

harmonization of a development process with the corresponding

situational context. Whilst this notion of harmonization may be

intuitively appealing, in this paper we argue that interaction

between a software development process and its situational context

is an instance of a complex system. In Complexity Theory, complex

systems consist of multiple agents that interact in a multitude of

diverse ways, with system outcomes being non-deterministic.

Complex systems are therefore noted to be difficult to control, such

as is the case with many software development endeavors. If the

interaction of software processes with situational contexts is

representative of a complex system, then we should not be surprised

that the task of software development has proven so resistant to

attempts to produce generalized software processes. We should

also seek to ameliorate the software development challenge through

the adoption of techniques recommended for use in managing

complex systems, not as a replacement for the many software

process approaches presently in use, but as complement that can aid

the task of process definition and evolution.

CCS Concepts

• Software and its engineering ➝ Software creation and

management ➝ Software development process management ➝

Software development methods.

Keywords

Software Development Process; Software Development Context;

Complexity Theory; Software Process Optimization.

1. INTRODUCTION
Many in the software engineering field have suggested that no

single software development process is perfectly suited to all

software development settings [1]. This being the case, some

amount of process adaptation, sometimes referred to as process

tailoring [2], is required in order to render a process suitable to its

environment. The environment has various factors that affect the

software development process and for the purpose of this work, we

refer to this collection of factors as the situational context. Given

the inevitability of change in situational contexts, process

adaptation should not be considered as a discrete, once off event.

Rather, adaptation is a continuous and complex activity, as it is not

just the situational context that changes, but process innovations

also emerge and interact with the situational context with the result

that the challenge is unremitting and multidimensional. Indeed, it

has been observed that when the richness of the software process is

aligned with the devilish detail that exists in the situational context,

the task of harmonizing a process with a context is in fact vast and

beyond our ability to completely control [3]. Daunting though that

observation me be, we simply cannot escape the reality that the

software process is a continuous rather than a static concern [4] and

so we should seek to identify techniques that can improve our

understanding of interactions between software processes and their

situational contexts.

Many different approaches to software development have been

proposed, each claiming to offer something special or unique or

new that represents an improvement to its antecedents, and in many

cases new software process approaches (or at least many of those

that gain acceptance across the community) do represent the

potential for advancement (though it would seem that not all new

offerings impart genuine newness, perhaps just new labels for pre-

existing process concepts [5]). The very existence of many software

development approaches suggests that a relatively high level of

complexity may exist in software development. Indeed the very

nature of software development, often creating something new

based on a mere concept that requires reification in executable

code, is characterized by a degree of uncertainty [6] that itself

resonates with the central theme of a complex system (sometimes

referred to as a complex adaptive system [7]). It also resonates with

one of the central principles of effective complex adaptive systems,

the law of requisite variety. Perhaps therefore, it should not come

as a surprise to discover that the process used to produce software

(and its interaction with its situation context) is also characterized

by complexity and variety.

Prior to elaborating on the substantive details of this paper, it is

worth briefly clarifying what the authors intend by the term

software development process (or software process for short). Our

preference is to adopt a simple and long-established definition

which states that the software process is “the sequence of steps

required to develop or maintain software” [8]. And although more

recent software process innovations have not always identified

themselves as a process, for example many approaches aligned

with the Agile Manifesto [9] refer to themselves as methods or

methodologies [10], [11], they remain congruent with our preferred

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

ICSSP’16, May 14-15, 2016, Austin, TX, USA

© 2016 ACM. ISBN 978-1-4503-4188-2/16/05…$15.00

http://dx.doi.org/10.1145/2904354.2904369

mailto:Permissions@acm.org

definition – in that they represent a sequence of steps required to

develop or maintain software. We therefore adopt the term software

process in a very general sense, while also acknowledging that

there are potentially varying views on this matter across the

community.

In Section 2, we examine the level of complexity that exists in

software processes, while section 3 reports on earlier work

analyzing situational contexts. In section 4, the nature of complex

systems is discussed further, and their relationship to software

development is examined. Finally, a conclusion is presented in

Section 5.

2. SOFTWARE PROCESS COMPLEXITY
Software development is undoubtedly a complex undertaking

[12] that is beset with some difficult challenges. We know this

because although many solutions to the software development

process have been proposed [13], still the majority of software

projects fall short of being completely successful though

thankfully, success rates are reported to be improving over time

[14]. Such is the variety of different software development

approaches that is it not possible to offer a full critique herein, nor

is that necessary as the objective is merely to discuss the general

complexity surrounding software development processes rather

than analyzing their specific composition. The explicit complexity

in various software development lifecycle models (which are

abstract representations of the process [15]) can vary, an

observation that is especially evident if we view lifecycle models

as being dichotomous, composed of traditional and agile software

development lifecycle models.

Figure 1. ISO/IEC 12207 Overview

Traditional models can be considered to comprise of long-

established techniques such as the waterfall model [16] and the V-

model [17], while quality management systems (QMS) (such as

ISO 9001 [18]) and capability maturity frameworks (CMF) (such

as CMMI [19]) are also dating from the era of traditional software

process approaches. Of interest from a complexity theory

perspective, large software process initiatives such as a CMF or a

QMS carry with them relatively large and detailed process

descriptions, offering evidence in support of the claim that a

complete model of a complex process must necessarily be complex

[20].

Taking ISO-33000 [21] as an example, the underlying software

process lifecycle definition (ISO/IEC 12207 [15]) is presented as a

hierarchy of processes, activities and task, with the lowest

hierarchical level containing in excess of 400 individual tasks (refer

to Figure 1). Broadly similar levels of process detail are to be found

in CMMI, which must be applied to Level 3 in order to be eligible

for various government contracts. One of the reasons that certain

government departments may insist on CMMI Level 3 may be

because the complex solution provided by CMMI has been shown

to be effective in producing improved product quality and process

predictability [22]; indicating that a complex solution can reduce

the uncertainty associated with a complex system.

While CMFs have been shown to improve the consistency and

predictability of software development, they may not be suited to

all companies - and especially smaller companies - perhaps because

they are costly or difficult to implement [23]. In contrast to

traditional software development approaches, agile software

development (based on the Agile Manifesto [9]) promotes the role

of informal process implementation via self-organization and

empowered teams that prefer interaction and discussion as a

mechanism to address complexity rather than large, formal or

bureaucratic process implementation. Therefore, although

traditional and agile software development approaches are quite

different in nature, they both tackle the complexity challenge (albeit

it in different ways). And in the case of agile software development,

there has been a noted application of some of the concepts from

complexity theory in their design [24].

So we find that software development is complex irrespective of

how the challenge is addressed, and the authors suggest that there

may an underappreciation of this complexity in certain quarters that

in itself may be impacting on the success or otherwise of software

projects (and although success rates for projects have improved

over time, there remains much room for further improvement [14]).

To exemplify this view, all we need to do is reflect on the scenario

where the non-software savvy executive pushes for deliverables

which a software team must reify. Of course, it may be

unreasonable to expect that those without detailed software

development knowledge should fully appreciate the complexity

involved (indeed, such is the gravity of the complexity problem that

persons already equipped with detailed software development

knowledge may themselves be unable to foresee the ramifications

of their actions). The main point to emphasize here is that from the

perspective of the arguments we present in this paper, the evidence

overwhelmingly indicates that software development, governed by

its software process, is inherently complex.

3. SITUATIONAL COMPLEXITY
While a great deal of material exists to demonstrate the

complexity of software development processes, it appears that less

attention has been focused on the area of software development

situational contexts. This, the authors view to be somewhat

surprising given the acknowledged importance of context in

software process decisions [25]. Up until recently, and although it

is noted that “the organization’s processes operate in a business

context that should be understood” [19] and that a “life cycle

model… [should be] appropriate for the project's scope, magnitude,

complexity, changing needs and opportunities” [15] , contributions

to the software process context space may be lacking the level of

detail that might be expected with a complex phenomenon.

A number of contributions have proposed various factors of the

situation (or environment) that characterize the context of software

development projects and of these contributions, it is earlier

research from the authors of this work [26] that offers the most

comprehensive list of situational factors presently published, owing

to the fact that it is an accumulation of the factors evident in earlier

contributions, including from areas such as software project risks,

software cost estimation, software process tailoring, and assessing

the degree of desirable process agility using the Boehm and Turner

model.

Figure 2. Situational Factors Affecting the Software Process

The situational factors framework [26] incorporates 44 individual

factors affecting software development projects, which are further

broken out into 170 sub-factors (refer to Figure 2). And although at

this point in time the situational factors framework [26] may lack

consensual validation, the number of distinct factors identified in

the model serve to demonstrate that the software development

situational context is a complex consideration. Furthermore, the

trend has been towards the identification of increasingly larger

reference frameworks for situational factors affecting software

development, therefore it could be the case that as time progresses,

even greater numbers of factors will be reported.

The evidence presented up to this point demonstrates that both the

software process and its situational context are complex, and

therefore we should expect their interaction to be of a complex

nature. Concerns related to complex interactions in systems is the

general focus of complex systems as described in complexity

theory.

4. SOFTWARE DEVELOPMENT AS A

COMPLEX SYSTEM
Although the primary interest of the authors lies in the

software development field wherein established definitions of the

term system already exist, other domains adopt the term system in

different ways. In complexity theory [27], the term system

identifies an object studied in some particular field, and such an

object may be abstract or concrete, elementary or composite, linear

or nonlinear, simple or complicated [28]. Complex systems can be

considered to be highly composite, formed from large numbers of

mutually interacting subunits whose interactions result in rich,

collective behavior that feeds back into the behavior of the

individual parts [28]. As such, a complex system is not constituted

merely by the sum of its components, but also by the intricate

relationships between these components [27]. Since they are

continually changing, sometimes gradually and other times

abruptly, complex systems may also be referred to as being

dynamic [29].

This interpretation of the complex system concept can probably be

considered analogous to terms already in use in describing the

interaction between a software process and its context, such as

ambidexterity [30] and reflexivity [31], which both refer to the

phenomenon whereby software process subunits (sometimes

referred to as process activities and tasks [15], other times as

practices [32]) interact with various situational context subunits

(sometimes referred to as factors [26]). Since a large number of

software process and situational context subunits have been shown

to exist, and seeing as their interactions are noted to be complex

[12], it would appear that there may be benefits to examining

complex systems research for utility in software development

process management.

A further concept again, an amethodical system [33], has also been

applied in the description of this type of interaction between a

software process and its situational context, and in earlier related

work the authors have accumulated some initial evidence from a

longitudinal study that suggests that the capability to adapt a

software process with respect to changing contexts is positively

correlated with business success outcomes as viewed through the

lens of an amethodical system [1]. Therefore, there is already an

implicit awareness of complexity concepts in certain existing

descriptions of the nature of the software process and its

relationship with its situational context.

First proposed by the physical sciences and mathematics fields

[29], the conceptual origins of complexity theory may be found in

various domains including, philosophy of the organism [34] and

neural networks [35]. Complexity theory is also closely related to

the more general systems theory, especially with respect to viewing

systems as a holistic set of interconnected elements [36]. And while

advocates of complexity theory see it as a means of simplifying

seemingly complex and dynamic systems [37], [38], there is

however no single identifiable complexity theory. Rather, a number

of theories concerned with complex systems gather under the

general banner of complexity research [22], with a focus on

examining how large numbers of elements or agents interact and

give rise to high orders of complexity at a system level, with change

being a central theme under consideration [29]. Change in complex

systems is often non-linear, meaning that the effect is not

proportionate to the cause [29].

It has been suggested that complexity theory consists of three

distinct divisions: Algorithmic, Deterministic and Aggregate

complexity [37] (indeed, in [37], Manson provides a review of

complexity theory which the authors recommend to the novice

reader and which is in effect summarized herein). Algorithmic

complexity refers to the difficulty associated with describing

system characteristics, with deterministic complexity focusing on

the role of two or three key variables in creating largely stable

systems such as in chaos theory and catastrophe theory [37].

Aggregate complexity attempts to access the holism resulting from

the interaction of individual elements that work together to produce

the apparently fluid harmony that characterizes complex systems,

and is therefore centrally concerned with the relationships between

the constituent parts that comprise a complex system [37].

In this paper, we propose that the software process complex system

be considered as an aggregate complexity concern wherein

elements of the process interact with elements of the environment,

a proposition which itself may be divergent from certain viewpoints

concerning aggregate complexity that would appear to largely

identify the environment as external to the complex system per se

[37] (even if the complex system can influence the environment and

vice-versa). This particular observation may ultimately represent an

academic difference that has little impact on the potential benefits

from applying the general concept of aggregate complexity to better

understanding the interaction between a software process and its

context. Furthermore, there have been earlier calls in the

information systems (IS) domain to consider complexity theory as

a frame of reference for IS design and evolution concerns [39],

which are aligned with the general philosophy of agile software

development in that there is an emphasis on enabling the evolution

of a software product or system [24].

Although complex systems are necessarily complex and

challenging to apply, it has been observed that software-based

solutions – which are very much within our purview - are well

suited to tackling complex systems, especially in the areas of

modelling and simulation [37], [40]. It is also the case that previous

work has examined the prospect of using modelling techniques to

help software process design, for example in the 1990s there was

some interest in software process modelling [41] (including work

at the Software Engineering Institute [20]). However, earlier efforts

at process modelling appear to not have been sustained and the

authors of this paper have not identified much newly published

material in this space in recent years. Perhaps it is the case that more

recent information on the scope, complexity and content of

software development contexts, coupled with the contemporary era

of big data and data analytics, could reinvigorate efforts in this

space, and as a community we could start to benefit from the

theoretical benefits that modelling aggregate complexity may offer.

Among the benefits associated with complex systems concepts is

the observation that firms that exhibit certain behaviors associated

with complexity theory would appear to be deriving a competitive

advantage. For example, comparisons of successful and less

successful companies have shown that increased levels of success

are witnessed where organizations maintain sufficient structure so

as to avoid chaos, while at the same welcoming a degree adaptation

and improvisation within projects [42]. Successful firms are also

known to experiment with so-called low cost probes into the future

[42], an example of which is new product speculation. Furthermore,

successful companies seem more capable of linking the present

with the future through process transition [42]. These types of

examples may hold a particularly strong resonance for the software

development domain, where the pace of change can be high.

While many are familiar with the seminal contribution by Charles

Darwin to the theory of evolution, some may not be aware that

although he observed and documented what appeared to be a

system of evolution through adaptation, he did not attempt to

suggest the precise mechanisms which underpin this adaptation

[43], [44] (one suspects because it presented as being the result of

complex interactions in systems that are not easily accessible to our

perception). Therefore, important and established as the complex

systems concept may be, including contemporary recognition of the

role of adaptation in firing the engines of change [45], it is the case

that what is intuitively appealing and accessible from a theoretical

perspective remains elusive in the applied sense. And so, we in the

software development field can perhaps draw some solace from the

fact that our difficulties in managing software processes and by

extension software projects, themselves an instance of a complex

system, are echoed throughout both time and (seemingly) unrelated

disciplines. And we certainly should not be surprised to discover

that the ostensibly simple proposition that a software process

should be appropriate to its context is in practice revealed as being

layered in complexity.

5. CONCLUSION
In this paper, we have demonstrated that both software

processes and the context within which they operate are complex

considerations. We have further examined the area of complexity

theory, finding that there are strong parallels between the challenge

of harmonizing a software process with its context and the core

challenges associated with complex systems as described in

complexity theory. The complex system challenge is one that can

be tackled through software-based modelling, which can help to

evaluate the strengths of inter-relationships between entities.

Complex systems have not gone unnoticed in the software field,

with modelling having previously been adopted to support software

processes [27], while more recently, the agile software

development movement [13] has harnessed the power of self-

organization which is a noted property of effective complex

adaptive systems and a technique for addressing complexity as it

arises in such systems. The development of a software-based model

that can be trained with data from the practice of software

development is an example of one possible technique that could be

adopted in the examination of the benefits of aggregate complexity.

While the proposition that a software development process should

be appropriate to its context is not likely to meet with much

opposition, the discussion presented herein demonstrates that the

application of this proposition is fraught with complexity. So great

is this complexity that the challenge of harmonizing a software

development process with its context may be underappreciated in

some quarters, perhaps also by some software development

professionals. However, many who have grappled with the

challenges associated with software development will have a sense

for the complexity involved and over the decades, many of the

approaches proposed for software development have incorporated

provisions to make their processes more resilient to the vicissitudes

of the outside world. The effect of this paper has been to explicitly

identify the resonance between complexity theory and the software

development process. Approaches to tackling complex adaptive

systems might be beneficial for software development processes.

REFERENCES

[1] P. Clarke, R. O'Connor, B. Leavy and M. Yilmaz. "Exploring

the Relationship between Software Process Adaptive Capability

and Organisational Performance," IEEE Transactions on Software
Engineering, vol. 41, no. 12, pp. 1169-1183, 2015.

[2] G. Coleman and R. O'Connor. "Investigating software process

in practice: A grounded theory perspective," Journal of Systems

and Software, vol. 81, no. 5, pp. 772-784, 2008.

[3] T. Dyba. "Contextualizing Empirical Evidence," IEEE

Software, vol. 30, no. 1, pp. 81-83, 2013.

[4] B. Curtis. "Three problems overcome with behavioral models

of the software development process," 11th International
Conference on Software Engineering, pp. 398-399, 1989.

[5] N. Abbas, A. M. Gravell and G. B. Wills. "Historical roots of

agile methods: Where did “Agile thinking” come from?" Agile

Processes in Software Engineering and Extreme Programming, pp.

94-103, 2008.

[6] F. P. Brooks. "No Silver Bullet Essence and Accidents of
Software Engineering," Computer, vol. 20, no. 4, pp. 10-19, 1987.

[7] K. B. Boal and P. L. Schultz. "Storytelling, time, and evolution:

The role of strategic leadership in complex adaptive systems," The

Leadership Quarterly, vol. 18, no. 4, pp. 411-428, 2007.

[8] W. S. Humphrey, A Discipline for Software Engineering.
Reading, Massachusetts, USA: Addison-Wesley, 1995.

[9] M. Fowler and J. Highsmith, "The Agile Manifesto," Software
Development, pp. 28-32, 2001.

[10] M. Lindvall, V. Basili, B. Boehm, P. Costa, K. Dangle, F.

Shull, R. Tesoriero, L. Williams and M. Zelkowitz. "Empirical

findings in agile methods," Extreme Programming and Agile

Methods — XP/Agile Universe 2002, pp. 197-207, 2002.

[11] J. A. Highsmith, Agile Software Development Ecosystems.

Boston: Addison-Wesley, 2002.

[12] A. Fuggetta. "Software process: A roadmap," Proceedings of

the Conference on the Future of Software Engineering, pp. 25-34,

2000.

[13] R. Pressman, Software Engineering a Practitioner’s
Approach. Boston, MA: McGraw-Hill, 2005.

[14] The Standish Group International, Inc., Chaos Manifesto 2013
- Think Big, Act Small. Boston, MA: The Standish Group, 2013.

[15] ISO/IEC, ISO/IEC 12207-2008 - Systems and Software

Engineering – Software Life Cycle Processes. Geneva,
Switzerland: ISO, 2008.

[16] W. Royce, "Managing the development of large software

systems: Concepts and techniques," Western Electric show and
Convention Technical Papers, 1970.

[17] P. Rook. "Controlling software projects," Software
Engineering Journal, vol. 1, no. 1, pp. 7-16, 1986.

[18] ISO, ISO 9001:2000 - Quality Management Systems -

Requirements. Geneva, Switzerland: ISO, 2000.

[19] SEI, CMMI for Development, Version 1.3. CMU/SEI-2006-

TR-008. Pittsburgh, PA, USA: Software Engineering Institute,
2010.

[20] W. S. Humphrey and M. I. Kellner, Software Process

Modeling: Principles of Entity Process Models. Technical Report

CMU/SEI-89-TR-002, ESD-89-TR-002. Pittsburgh, PA: Software

Engineering Institute, 1989.

[21] ISO / IEC, ISO/IEC 33000 Series on Information Technology

- Process Assessment. Geneva, Switzerland: ISO, 2015.

[22] D. E. Harter and S. A. Slaughter. "Quality Improvement and

Infrastructure Activity Costs in Software Development: A

Longitudinal Analysis," Management Science, vol. 49, no. 6, pp.
784-800, 2003.

[23] M. Staples, M. Niazi, R. Jeffery, A. Abrahams, P. Byatt and

R. Murphy. "An exploratory study of why organizations do not

adopt CMMI," Journal of Systems and Software, vol. 80, no. 6, pp.
883-895, 2007.

[24] K. Schwaber, "SCRUM development process," in Business

Object Design and Implementation, , J. Sutherland, C. Casanave, J.

Miller, P. Patel and G. Hollowell, Eds. . London: Springer, pp. 117-

134, 1997.

[25] P. Feiler and W. Humphrey, Software Process Development

and Enactment: Concepts and Definitions. CMU/SEI-92-TR-004.

Pittsburgh, Pennsylvania, USA: Software Engineering Institute,
Carnegie Mellon University, 1992.

[26] P. Clarke and R. V. O'Connor. "The situational factors that

affect the software development process: Towards a

comprehensive reference framework," Journal of Information and
Software Technology, vol. 54, no. 5, pp. 433-447, 2012.

[27] P. Cilliers, Complexity and Postmodernism - Understanding
Complex Systems. London, UK: Routledge Ltd., 1998.

[28] D. Rickles, P. Hawe and A. Shiell, "A simple guide to chaos

and complexity," Journal of Epidemiology and Community Health,
vol. 61, no. 11, pp. 933-937, 2007.

[29] D. Larsen-Freeman, Chaos/Complexity Theory for Second

Language Acquisition, in: The Encyclopedia of Applied
Linguistics. Hoboken, NJ: Blackwell Publishing Ltd, 2012.

[30] N. P. Napier, L. Mathiassen and D. Robey, "Building

contextual ambidexterity in a software company to improve firm-

level coordination ," European Journal of Information Systems,
vol. 20, no. 6, pp. 674-690, 2011.

[31] R. V. O'Connor and P. Clarke. "Software process reflexivity

and business performance: Initial results from an empirical study,"

Proceedings of the 2015 International Conference on Software and
System Process, pp. 142-146, 2015.

[32] K. Schwaber, Agile Project Management with Scrum. WP

Publishers & Distributors Pvt Limited, 2004.

[33] D. Truex, R. Baskerville and J. Travis. "Amethodical systems

development: the deferred meaning of systems development

methods," Accounting, Management and Information
Technologies, vol. 10, no. 1, pp. 53-79, 2000.

[34] A. N. Whitehead, Science and the Modern World. New York:
McMillan, 1925.

[35] W. S. McCulloch and W. Pitts. "A logical calculus of the ideas

immanent in nervous activity," Bull. Math. Biophys., vol. 5, no. 4,
pp. 115-133, 1943.

[36] L. von Bertalanffy, General Systems Theory and Psychiatry.
University of Michigan, MI: Little, Brown & Co., 1969.

[37] S. M. Manson. "Simplifying complexity: a review of
complexity theory," Geoforum, vol. 32, no. 3, pp. 405-414, 2001.

[38] P. Anderson. "Perspective: Complexity Theory and

Organization Science," Organization Science, vol. 10, no. 3, pp.
216-232, 1999.

[39] H. Benbya and B. McKelvey. "Toward a complexity theory of

information systems development," Information Technology &
People, vol. 19, no. 1, pp. 12-34, 2006.

[40] N. Thrift. "The Place of Complexity," Theory, Culture &
Society, vol. 16, no. 3, pp. 31-69, 1999.

[41] M. I. Kellner, R. J. Madachy and D. M. Raffo. "Software

process simulation modeling: Why? What? How?" J. Syst.
Software, vol. 46, no. 2–3, pp. 91-105, 1999.

[42] S. L. Brown and K. M. Eisenhardt. "The Art of Continuous

Change: Linking Complexity Theory and Time-Paced Evolution in

Relentlessly Shifting Organizations," Adm. Sci. Q., vol. 42, no. 1,
pp. 1-34, 1997.

[43] D. Zohary, "Unconscious selection and the evolution of

domesticated Plants ," Economic Botany, vol. 58, no. 1, pp. 5-10,
2004.

[44] C. Coulston Gillispie, "Lamarck and Darwin in the history of

science," American Scientist, vol. 46, no. 4, pp. 388-409, 1958.

[45] H. Fineberg, "Are we ready for neo-evolution?"

http://www.ted.com/talks/harvey_fineberg_are_we_ready_for_ne
o_evolution.html. 2012.

http://www.ted.com/talks/harvey_fineberg_are_we_ready_for_neo_evolution.html
http://www.ted.com/talks/harvey_fineberg_are_we_ready_for_neo_evolution.html

