
Exploring the impact of situational context – A case study
of a software development process for a microservices

architecture
Rory V. O’Connor
School of Computing

Dublin City University, Ireland
Lero - Irish Software Research Centre

+353-1-700-5643

Rory.OConnor@dcu.ie

Peter Elger
NearForm Ltd.

Suite 420 Mountain View
CA 94040, USA

+1-916-235-6459

Peter.Elger@nearform.com

Paul M. Clarke
School of Computing

Dublin City University, Ireland
Lero - Irish Software Research Centre

+353-1-700-7021

Paul.M.Clarke@dcu.ie

ABSTRACT

Over the decades, a variety of software development processes

have been proposed, each with their own advantages and

disadvantages. It is however widely accepted that there is no

single process that is perfectly suited to all settings, thus a

software process should be molded to the needs of its situational

context. In previous work, we have consolidated a substantial

body of related research into an initial reference framework of the

situational factors affecting the software development process.

Practitioners can consult this framework in order to profile their

context, a step necessary for effective software process decision

making. In this paper, we report on the findings from a case study

involving process discovery in a small but successful and growing

software development firm. In this organization, which has a

focus on continuous software evolution and delivery, we also

applied the situational factors reference framework, finding that

context is a complex and key informant for software process

decisions. Studies of this type highlight the role of situational

context in software process definition and evolution, and they

raise awareness not just of the importance of situational context,

but also of the complexity surrounding software process contexts,

a complexity which may not be fully appreciated in all software

development settings.

CCS Concepts

• Software and its engineering ➝ Software creation and

management ➝ Software development process management

➝ Software development methods.

Keywords

Software Development Process; Software Development Context;

Agile; Lean; Process Selection.

1. INTRODUCTION
Given the proliferation of software development models, methods

and standards that have been proposed over the years, it is not

surprising to discover that there has also been much debate

regarding the effectiveness of various software development

approaches. It is generally accepted that no single software

development process is perfectly suited to all software

development settings [1] and no setting is unchanging [2].

Therefore some amount of process adaption and situational

tailoring [3] is required in order to render a process suitable to a

given situational context. As has been noted in the literature a

software process is a continuous rather than a static concern [4]

and so we should seek to identify techniques that can improve our

understanding of interactions between software processes and

their situational contexts [5]. Accordingly an optimal software

development process can be regarded as being dependent on the

situational characteristics of individual software development

settings. Such characteristics include the nature of the

application(s) under development, team size, requirements

volatility and personnel experience

In certain quarters of the present software development business

environment, continually changing situational contexts are fueling

the customer demand for rapid evolution of software products.

Now more than even in the history of the software production

business, software development organizations are under enormous

pressure to evolve software intensive systems through the release

of valuable software in increasingly shorter time durations.

Whereas at one stage software releases would occur one or two

times per year, now given current competitive market

opportunities this has been reduced to weekly, daily and even

hourly time periods. Organizations therefore need to innovate and

release software in faster parallel cycles of days or even hours,

and this has involved the adoption of certain new practices in

industry. In this paper, we present the results from a case study in

one such organization, where a continuous software evolution and

delivery model has been implemented and evolved to meet the

demands of the situational context. This study shows that

situational context, whilst being a complex concept, is a key

informant for software process selection and design.

This paper is organized as follows: Section 2 outlines the

situational factors framework; Section 3 presents an overview of

the company studied, including its software development process;

Section 4 examines the role of situational context; and finally,

Section 5 presents a discussion and conclusion.

2. SITUATIONAL FACTORS
The importance of context in software process decisions has been

acknowledged for some time [6]. Whilst the literature has noted

that “the organization’s processes operate in a business context

that should be understood” [7] and that a “life cycle model…

[should be] appropriate for the project's scope, magnitude,

complexity, changing needs and opportunities” [8], contributions

SAMPLE: Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage

and that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ICCSP’16, May 14-16, 2016, Austin, TX, USA.
Copyright 2016 ACM 1-58113-000-0/00/0010 …$15.00.

DOI: http://dx.doi.org/10.1145/12345.67890

to the literature in relation to software process context space are

lacking. Software development necessarily occurs in a

development context, which includes a large number of concerns

and factors [9, 10] and it is this contextualization which provides a

better understanding of what works for whom, where, when, and

why [11]. In support of the importance of understanding the

impact of situational factors, authors such as Dyba [12] point out

that it is this dependence on a potentially large number of context

variables in any study that is an important reason for why

software engineering is so hard.

Figure 1. Situational Factors Reference Framework

Despite the frequent references to the importance of situational

context in the literature, it was the apparent lack of a

comprehensive situational factors framework for software

development that led two of the authors to produce and publish an

initial reference framework [5], itself an amalgamation of earlier

contributions, from multiple areas such as risks, estimation, etc.

Table 1. Situational Factors Classification

Classification Description

Personnel Constitution and characteristics of the non-

managerial personnel involved in the software
development efforts.

Requirements Characteristics of the requirements.

Application Characteristics of the application(s) under
development.

Technology Profile of the technology being used for the
software development effort.

Organization Profile of the organization.

Operation Operational considerations and constraints.

Management Constitution and characteristics of the

development management team.

Business Strategic and tactical business considerations.

The framework incorporates 44 individual factors (ref. Figure 1)

which are categorized using 8 classifications (ref. Table 1), and

which are based upon 170 underlying sub-factors. A sample

listing of the sub-factors in the Personnel classification is

presented in Table 2.

Table 2. Personnel Factors & Sub-Factors

Factor Sub-Factor

Turnover Turnover of personnel

Team size (Relative) team size

Culture Team culture/resistance to change

Experience General team experience / diversity/ ability to

understand the human implications of a new

information system/team ability to work with

management/application experience/analyst

experience/programmer experience/tester

experience/experience with development
methodology / platform experience.

Cohesion General cohesion/team members who have not

worked for you/team not having worked together

in the past/team ability to successfully complete

a task/team ability to work with undefined

elements and uncertain objectives /

overdependence on team members / distributed

team/ team geographically distant.

Skill Operational knowledge/team expertise (task) /

team ability to work with undefined elements and
uncertain objectives/training development.

Productivity Team ability to carry out tasks quickly / general
productivity.

Commitment Commitment to project among team members.

Disharmony Interpersonal conflicts.

Changeability Scope creep/continually changing system

requirements/ill-defined project goals / gold
plating/unclear system requirements.

The situational factors reference framework is in the view of its

authors a stepping stone towards greater appreciation of the

complexity of software development settings, and the rigorous

approach employed in its creation from a rich variety of sources

has given rise to a framework that they consider to present a

broadly informed reference for the software development

community [13]. Using the framework, the situational factors

affecting the software process were examined in practice as part

of a case study, details of which are presented in the following

sections.

3. CASE STUDY COMPANY
The case study firm NearForm Ltd., is a software development

company with a presence in the US and Europe and which has

experienced substantial growth through the continual delivery of

high quality software to some of the largest companies in the

world, including blue chip financial institutions. Value is a key

focus in the NearForm lifecycle and it is concerned with an acute

responsiveness to client needs (be they new features or defect

resolutions). The organization works to a regular 5-day iteration

for software development, deploying working software

weekly(sometimes daily) through a standard feature bundle.

While regular iterations can be predictable from the outset,

continual analysis of the value stream ensures that each iteration

may be re-planned in real time, delivering the highest possible

value from organizational capacity (ref. Figure 2).

Whilst it is acknowledged that tooling can affect the design of a

software process [14], the impact of technology on shaping the

process in this case is profound and may even run contrary to the

Agile Manifesto value of ‘Individuals and interactions over

processes and tools’. Within NearForm the continual software

evolution and delivery is made possible through the aggressive

incorporation of contemporary and predominately open source

software tools. While the speedy delivery of innovative features is

a vital enabler of competitive advantage, it is only effective if it is

accompanied by reliable and high quality deployments.

Figure 2. NearForm Process Lifecycle

There are four key technologies driving the process architecture:

(1) Java-script and Node.js which enable extremely rapid code

development by utilizing the same programming language across

the entirety of the system; (2) Alongside a distributed micro-

services architecture, under which the system is broken down into

a set of discreet co-operating processes, typically each service is

of the order of several hundred lines of code only; (3) This

architectural approach is coupled with a continuous deployment

model, layered over the Docker container engine, whereby

individual services (or several services at a time) may be deployed

without perturbing the system as a whole; (4) Finally the company

ensures quality through steps such as code commit hooks via

GitHub (for distributed revision control and source code

management) and the Travis Continuous Integration tool set.

Together, these technologies enable the company to perform well

under a time and materials contract basis, whereby clients are

initially attracted through the rapid delivery of a prototype in 10

days, and thereafter, regular iterations of new working software

are reviewed every 5 days.

3.1 Java-script and Node.js
Once considered a ‘toy’ language by many developers [15], Java-

script now presents as an ideal language for full-stack, enterprise

development [16]. Node.js when coupled with its supporting

package management system – npm - provides a lean and efficient

platform that enables developers to be highly productive. This,

when combined with an effective front-end framework (such as

angular or react) provides a powerful and rapid development

platform enabling the same language to be used in all tiers. The

rapid adoption of node.js is evidenced by Figure 3, which shows

the number of open source modules available for the various

popular open source platforms (Node.js is the top line). As of

January 2016, there are over 225,000 modules available for

node.js with module downloads running in excess of 2.5 billion

per month [17], a very strong indicator that this technology stack

has some significant momentum behind it.

Figure 3 module counts

3.2 Micro-service Architecture
The term micro-service architecture refers to a style of

development under which a system is broken down into a number

of small co-operating components [18]. Typically these

components interact over a direct point-to-point interface (for

example, http). As with all architectural styles, there are pros and

cons to micro-services. Key benefits include: a highly modular

and decoupled system that can be easier to maintain than a

traditional class hierarchy; the ability to deploy services rapidly to

a production system – because services are independent entities,

only the service under question need undergo rigorous testing and

the rest of the system has not been changed; finally, micro-

services are highly cohesive units of code that are easier to reason

about and manage in isolation, this tends to reduce the burden on

developers and if implemented responsibly can lead to simpler

code with less defects.

As a corollary to these benefits, micro-service systems require a

more sophisticated DevOps infrastructure [19], typically requiring

the construction of a service deployment pipeline. Use of cloud

and container technologies enables the construction of such

pipelines and it is this technology enabler that is driving the

adoption of these hyper-agile, lean processes. It is the final piece

in the jigsaw that makes the technology stack so powerful.

3.3 Software Container Technology
Software containers provide a means of encapsulating

functionality within an isolated process space, i.e. a single

operating system level process can attend to just a specific, small

piece of executable code. The concept of software containers

originated in the late seventies with the addition of the chroot

system call to the BSD Unix operating system. This feature was

largely unused until FreeBSD jails were introduced in 2000. This

was followed by Solaris zones in 2004. A more mainstream user-

land implementation in the Linux kernel followed in 2008 with

the advent of LXC-Containers. However the technology first

began to gain wide adoption in 2013 via the Docker project, and it

has resulted in the capability of developers to regularly inject new,

easily digestible features into live systems with less risk than

traditional software development and deployment models.

Container technology may become the mainstream for certain

types of software development, especially with the development

of container management and orchestration systems such as

Kubernetes, Docker Swarm and AWS container services.

Figure 4 micro-service reference architecture

4. APPLYING THE SITUATIONAL

FACTORS REFERENCE FRAMEWORK
Two researchers in association with the Director of Engineering

from NearForm undertook a detailed analysis of the company’s

situational factors, the primary results of which are presented in

Table 3.

Table 3. Situational Factors Identified in Case Study

Factors Identified in Case Study

P
er

so
n

n
el

Cohesion: The company has a geographically distributed

team which whose effectiveness is made possible through

the adoption of tools, especially with respect to

geographically diverse programming as supported by

GitHub;

Culture: The team culture has a low resistance to change,

change is in fact promoted as a highly desirable

characteristic and it is enabled at a technical level through

the various tools and technologies identified in this paper;

Experience, Skill & Productivity: The experience, skill

and productivity of personnel are all at the upper end of

the scale – what are sometimes referred to as premium

people. The staff cohort in the company tend to be of high

to very high core technical competency, with the result

that individuals may operate fluidly and efficiently

without the need for extensive training or up-skilling;

Turnover: Personnel turnover is low (especially with key

technical staff) with the result that continuity of technical

excellence and know-how is high, there is therefore a

reduced need for documented artefacts in relation to

product architecture and process descriptions.

R
eq

u
ir

em
e

n
ts

Changeability: Requirements are subject to frequent,

sudden and significant change, a reality of operating in a

fast moving and highly innovative market. As a result, a

lean/agile approach to software development (such as was

outlined in Section 3) is preferable for this setting.

A
p

p
li

ca
ti

o
n

Quality: Operational product quality requirement is high

and the technology adopted, including Continuous

Integration systems, assist greatly in achieving product

quality targets;

Type: The applications under development and evolution

(though requiring a high level of quality) do not need to

be at the level of safety-critical software, nor are they

directly affected by market regulation. As a result, a lean

process, enabled via the technology and development

stack, is suitable for the needs of this organization.

T
ec

h
n

o
lo

g
y

Emergent: The technology is emergent and innovative

thus there is a high level of adoption of new technologies

and tools to enable process initiatives. Embracing the

rapid supporting technology offerings means that the

process itself is subject to change as a result of technology

strengths and limitations. This too is a feature of the

context that has reduced the desirability of precise and

extensive process descriptions which would continually

need to be revisited as a result of the rapid pace of change.

O
rg

.

Size: Organizational size is small – with the result that

information exchange and communications can occur

efficiently through video conferences or calls or face-to-

face meetings thus enabling more agile/lean software

approaches.

O
p

er
at

io
n

End-Users: Operational end-users of the software are

open to changing requirements and rapidly evolving

software systems. In fact, end-users are in this case

demanding such capability from their software supplier in

pursuit of competitive advantages in a fast moving

market. This fact is key in shaping much of the process

design – which is capable of working to a time and

materials payments model and accommodates rapidly
changing requirements.

M
an

ag
em

en
t Expertise & Accomplishment: Management expertise

and accomplishment is high in key markets and product

technology stacks, meaning that the business can pivot in

harmony with the emerging technology without the risk of

the business and technical strategic directions becoming

discommoded.

B
u

si
n

es
s

Time to Market: The company are in a fast moving

market where the need for rapid delivery is paramount

(smooth, regular and rapid delivery is enabled through the

adoption of a microservices architecture along with

deployment infrastructure such as Docker);

Business Drivers: The company’s business drivers are

leveraged upon vanguard activities in key open source

emerging technologies - technical excellence and high

levels of innovation are key to differentiation and business

development;

Payment Arrangements: Payment terms tend to be time

and materials based which supports the type of near-real

feature elaboration with clients that is made possible by
the micro services architecture.

5. DISCUSSION
There is no one size or style that fits all when it comes to software

development processes. The process form and content is

determined by a complex cocktail of situational circumstances

that may well be unique to each development team, with the

circumstances themselves being in constant flux. The general

domain of situational factors affecting the software development

process may be viewed as being strategically important to the

future of software development. It is the authors’ view that efforts

to reveal the nature of the interrelationship between a process and

its context should be encouraged, even if it is a complex

undertaking that should be approached with care. The case study

reported upon in this paper represents one small step towards a

robust understanding of the interplay between a process and its

context, while also highlighting the continuum that is the software

process concern - since the NearForm process that was discovered

as part of this research and which is described in this paper, a

contemporary real-world effective software process, would barely

have been imaginable to earlier generations of software

developers. And the authors suggest that it is emerging

developments in technology and tooling that are perhaps the

primary reason that the process identified in this paper is even

possible; an observation that may be incongruent with the Agile

Manifesto value of ‘Individuals and interactions over processes

and tools’.

Our case study also serves to demonstrate not just the relationship

between certain situational factors and software process decisions,

it also offers evidence of the complexity of the interplay between

a process and its context. Although our research is still on going

and there are limitations and threats to validity (which cant be

expressed here for space reasons) it is already clear that no less

than 17 individual situational factors are key informants of the

software development process in the case of the company under

examination. These factors touch on every category of situational

context, ranging from basic business factors, to technology

factors, to application and product factors, to organizational

considerations, to requirements characteristics, and also to

operational end-user demands. These are broad concerns, which

must all be satisfied by an appropriate process.

Software process decisions are therefore multi-layered and

complex, perhaps more so than may be appreciated in all quarters.

And this complex and fluid software process decision chain which

interacts with its context may account for the absence of a

generalised software process approach that is perfectly suited to

all settings – quite simply because the vast diversity of software

development contexts beguiles and undermines attempts to

develop a universally applicable process model.

6. REFERENCES
[1] P. Clarke, R. O'Connor, B. Leavy and M. Yilmaz. "Exploring

the Relationship between Software Process Adaptive

Capability and Organisational Performance," IEEE

Transactions on Software Engineering, vol. 41, no. 12, pp.
1169-1183, 2015.

[2] R. V. O'Connor and P. Clarke. "Software process reflexivity

and business performance: Initial results from an empirical

study," Proceedings of the 2015 International Conference on
Software and System Process, pp. 142-146, 2015.

[3] G. Coleman and R. O'Connor. "Investigating software process

in practice: A grounded theory perspective," Journal of
Systems and Software, vol. 81, no. 5, pp. 772-784, 2008.

[4] B. Curtis. "Three problems overcome with behavioral models

of the software development process," 11th International
Conference on Software Engineering, pp. 398-399, 1989.

[5] P. Clarke and R. V. O'Connor. "The situational factors that

affect the software development process: Towards a

comprehensive reference framework," Journal of Information
and Software Technology, vol. 54, no. 5, pp. 433-447, 2012.

[6] P. Feiler and W. Humphrey, Software Process Development

and Enactment: Concepts and Definitions. CMU/SEI-92-TR-

004. Pittsburgh, Pennsylvania, USA: Software Engineering
Institute, Carnegie Mellon University, 1992

[7] SEI, CMMI for Development, Version 1.3. CMU/SEI-2006-

TR-008. Pittsburgh, PA, USA: Software Engineering
Institute, 2010.

[8] P. Clarke, R.V. O’Connor and M. Yilmaz. "A hierarchy of SPI

activities for software SMEs: results from ISO/IEC 12207-

based SPI assessments." In Software Process Improvement

and Capability Determination, pp. 62-74. Springer Berlin
Heidelberg, 2012.

[9] L. McLeod, and S. G. MacDonell. "Factors that affect

software systems development project outcomes: A survey of

research." ACM Computing Surveys (CSUR) 43, no. 4,

2011.

[10] W. Orlikowski. "CASE tools as organizational change:

Investigating incremental and radical changes in systems
development." MIS quarterly, pp. 309-340, 1993.

[11] T. Dyba. "Contextualizing empirical evidence." Software,
IEEE 30, no. 1, 81-83, 2013.

[12] T Dyba, D. Sjiberg and D. Cruzes, "What works for whom,

where, when, and why? On the role of context in empirical

software engineering," in Empirical Software Engineering

and Measurement (ESEM), 2012 ACM-IEEE International
Symposium on , vol., no., pp.19-28, 20-21 Sept. 2012.

[13] P. Clarke and R. V. O’Connor. "Changing Situational

Contexts Present a Constant Challenge to Software

Developers." In Systems, Software and Services Process

Improvement, pp. 100-111. Springer International
Publishing, 2015.

[14] M. Mora, O. Gelman, R. O’Connor, F. Alvarez, and J.

Macías-Lúevano. "A Conceptual Descriptive-Comparative

Study of Models and Standards of Processes in SE, SwE, and

IT Disciplines Using the Theory of Systems." Emerging

Systems Approaches in Information Technologies: Concepts,

Theories, and Applications: Concepts, Theories, and
Applications, 2009.

[15] H.M. Kienle. "It's about time to take JavaScript (more)

seriously." IEEE Software, 27, no. pp. 60-62, 2010.

[16] A. Nitze. "Evaluation of JavaScript Quality Issues and

Solutions for Enterprise Application Development." In

Software Quality. Software and Systems Quality in

Distributed and Mobile Environments, pp. 108-119. Springer
International Publishing, 2015.

[17] E. DeBill, "Comparison of how many packages are available

across different programming languages", 2016.
http://www.modulecounts.com/.

[18] J. Thones. "Microservices". IEEE Software, 32, no. 1,
pp.116-116, 2015.

[19] L. Bass, I. Weber, and L. Zhu. "DevOps: A Software

Architect's Perspective". Addison-Wesley Professional,

2015.

