

Abstract

This paper augments the Bag-of-Word scheme in several respects: we incorporate

a category label into the clustering process, build classifier-tailored codebooks, and

weight codewords according to their probability to occur. A size-adaptive feature

clustering algorithm is also proposed as an alternative to k-means. Experiments on

the PASCAL VOC 2007 challenge validate the approach for classical hard-

assignment as well as VLAD encoding.

1 Introduction

Many scientists claim that we are currently experiencing the golden age of comput-

er vision. The introduction of machine learning techniques has played a major role in

this ongoing evolution, facilitating the field to constantly break new ground.

Among all the discoveries contributing to this surge in progress, Bag-of Words

(BoW) [15] [14] is one of the most renowned across computer vision and multimedia

applications. The idea is to represent a large feature set with a much smaller visual

codebook of vector-quantized features, called codewords. The analysed visual entities

(i.e. image, video, object…) are then described with a distribution of their codewords.

This technique has proved to increase classifier robustness due to its capacity to

summarize information and has inspired many encoding techniques, either expressing

feature descriptors as combinations of visual codewords [8] [28] or recording the

difference between the features and the visual codeword [11] [6] [13].

However, little attention has been directed to the proper adjustment of this tech-

nique to computer vision tasks. Indeed, codebooks are built independently of classifi-

er needs. Thus the resulting codewords do not necessarily discriminate the semantic

classes that the user ultimately wants to distinguish. This should not be surprising

given that the approach only focuses on feature value information.

We have identified 3 distinct sub-problems to this issue:

1- The construction of a visual codebook is unable to take categories into account.

Indeed, the information provided by the codewords might overlap or describe the

categories in an imbalanced way. As a result, there is no guarantee that the provided

codebook will best suit the training needs of the corresponding classifier.

Vector Quantization Enhancement for Computer

Vision Tasks

Remi Trichet
remi.trichet@gmail.com

Noel E. O’Connor
noel.oconnor@dcu.ie

Insight Centre for Data Analytics

Dublin City University, Glasnevin, Ireland

2- Codewords are assumed to be equiprobable. An erroneous assumption that leads to

biased histogram representation.

3- Codebooks are not tailored to classifier purposes. Typically, when faced with an n-

category classification task, n one-against-all classifiers are modelled to address the

problem. Quantized histograms fed to these classifiers stem from a unique codebook

with equal coverage of these n categories (and, eventually, negative examples). For

best performance, half of the data fed to the one-against-all classifier should refer to

that particular category of interest.

In this work, we intend to overcome the first drawback directly during the cluster-

ing process via the integration of prior knowledge. More specifically, during the train-

ing phase, we label features with their corresponding visual entity category, and uti-

lize constrained clustering [3] to produce clusters including more features belonging

to the same category. A modified version of the k-means algorithm [4], and a size-

adaptive agglomerative clustering [2], harnessing the purity metric to assess a clus-

ter’s discriminative power, are introduced. We include the probability of a codeword

to occur for an enhanced histogram representation as an answer to the second prob-

lem. Finally, we tackle the third problem with category-tailored codebooks that fur-

ther enhance classifiers’ performance.

Our method has the following advantages:

1. It provides, for each category, a specific codebook that enhances classifier per-

formance.

2. It provides, for each codebook, a set of codewords that enhances classifier perfor-

mance.

3. The only annotations needed are the entity category label.

4. We would like to emphasize the genericity of this work: all these modifications

can be applied to any task that uses BoW and learns classifiers.

The remainder of this paper is organized as follows. After reviewing the related lit-

erature, section 2 details the aforementioned BoW improvements, namely maximizing

intra-cluster category similarity, size-adaptive clustering, and accounting for the prob-

ability of a codeword to occur during histogram generation. Section 3 covers experi-

ments; section 4 concludes this paper.

1.1 Related work

Two types of approaches can be associated with codebook generation: encoding

techniques and semantically-oriented codebook construction.

Encoding methods precursors [9] [10] typically perform local descriptor hard quan-

tization and describe the media of interest with a distribution of codewords. The soft

assignment variant [8] represents each feature descriptor as a weighted combination

of its n nearest codewords. Locally-constrained linear coding [27] (LLC) performs

sparse coding [28] to code each point according to the k nearest neighbours. A recent-

ly breakthrough records the difference between features and codewords. Given a pre-

defined vocabulary of size K in a feature space of D dimensions, Vector of Linearly

Aggregated Descriptors (VLAD) [11] encodes features first order differences to each

visual word, called residuals. These residuals are stacked together to form a KD-value

vector for each descriptor. Many improvements exist such as the use of tensors

(VLAT) [7], intra-normalization [30], or second order statistics and supervised label-

ling [34]. Similarly, Fisher vector (FV) [5] captures the average first and second order

differences between the descriptors and GMM centres. A combination of VLAD and

FV encodings [12], as well as the introduction of non-linear additive kernels and PCA

normalization [6], further improve results. Super vector coding (SV) [13] represents

descriptors with first order differences, and adds a cluster mass parameter. See [1] for

a review on feature encoding methods.

Approaches building a semantically meaningful codebook often filter unreliable

codewords by looking for co-occurring patterns. More specifically, [25] learn what

they call co-location and co-activation. Context-constrained linear coding [26] (CLC)

is a variation of LLC [27] that incorporates spatio-temporal context within the dis-

tance utilized to compare feature points. [24] build up the co-occurrence codebook on

a video segmentation layout. Finally, [29] proposed contextual clustering, using fea-

ture co-occurrences to disambiguate the output of multi-view clustering. Despite the

success of these approaches, the necessary pairing of codewords reduces their dis-

criminative power and neighbourhood definitions are often arbitrary.

Alternate ways to extract a codebook in a semantic manner encompass diffusion

maps [21], semantic aware distance metric [22], meaningful word pair counts [23],

spatial pyramid matching kernel [10], or consensus clustering to minimize the disa-

greement between several clustering outputs [20]. These methods typically rely on

cluster shape, density, or even repartition and thus are not tailored for category dis-

crimination.

To address this, several semi-supervised approaches make use of the category la-

bels prior knowledge to refine the codebook construction. [16] utilize extremely ran-

domized clustering forest, [17] mutual information, and [19] [18] a unified vocabu-

lary. But all these methods consider weighting or selecting codewords after they have

been generated, therefore down-bounding the technique efficiency with the codebook

discriminative power.

2 Encoding enhancement.

This section covers our various encoding enhancements. After justifying the need

for similar clusters, we present two clustering algorithms using feature point purity.

Then, we introduce category-tailored codebooks and incorporate the probability of a

codeword to occur.

2.1 Maximizing intra-cluster category similarity

A key requirement for any classification task to perform well is that histogram dis-

tributions are expected to be significantly different from one category to another.

Hence, the idea is to have each bin characterizing as few categories as possible. At the

clustering level, this idea translates to maximising the intra-cluster category similari-

ty. In other words, having clusters that encompass feature points extracted from in-

stances of the same category, to the extent possible. Figure 1 illustrates the principle.

Figure 1: Toy example demonstrating the impact of Maximizing intra-cluster category similari-

ty. Each ellipse depicts one of the 7 clusters. Each colour represents one of the 5 categories.

Top: Traditional codebook generation. Bottom: Codebook generation maximizing intra-cluster

category similarity. Clusters better cover the categories, therefore leading to increased code-

word discriminative power. Best viewed in colour.

Typically, a category label is associated to each training instance. We further extend

this labelling process to the features extracted from a particular instance.

Consequently, each feature bears the category label of the instance to which it be-

longs. Let C = {C0…Ck} the set of k clusters, and L = {l0, …, ln} the set of n catego-

ries. Intra-cluster category similarity of a cluster pi is assessed thanks to the purity

evaluation measure:

𝑝𝑢𝑟𝑖𝑡𝑦(𝐶𝑖 , 𝐿) = 𝑚𝑎𝑥𝑗(|𝐶𝑖 ∩ 𝑙𝑗|) |𝐶𝑖|⁄ (1)

, with |.| depicting the cardinality. Due to noise, extreme data variability, and outliers,

optimal purity is rarely achievable. However, we will show through experiments that

a codebook discriminative power is correlated to its global purity.

2.2 Purity k-means.

This subsection extends the k-means algorithm [4] to incorporate feature point puri-

ty. The method is inspired from constrained clustering [3]. Constrained clustering is a

type of semi-supervised clustering incorporating prior knowledge into algorithm by

imposing grouping constraints.

Our algorithm is dubbed purity-k-means. It takes as input a set of feature points X =

{xj | j=1,…,N} and a desired numbered of clusters k. X should equally represent the n

Figure 2: Toy example demonstrating the impact of category-tailored codebooks. Each ellipse

depicts one the 7 clusters. Each colour represents one of the 5 categories. Top: single codebook

generation. Only one codeword/cluster represents the red category, leading to a discrepancy in

the case of a one-versus-all classifier. Bottom: Codebook tailored for the red category (feature

points are different). More codewords/clusters are dedicated to the red category, leading to

increased discriminative power. Best viewed in colour.

categories for best results. The only difference with k-means concerns the way

cluster centres are updated. In order to maximize cluster purities, only features from

the majority category are considered during this step. The algorithm is the following:

1. Randomly initialize the cluster centres Ci, i = 1,…,k

2. Assign feature vectors the same way as for typical k-means:

C𝑖 = {x𝑗|d(x𝑗, μ(C𝑖)) ≤ d(x𝑗, μ(C𝑢)) ∀ u ≠ i, j = 1, . . . , N} (2)

3. Update cluster centres.

𝐴𝑖 = 𝐶𝑖 ∩ 𝑙 𝑎𝑟𝑔𝑚𝑎𝑥𝑗(|𝐶𝑖∩𝑙𝑗|) 𝜇(𝐶𝑖) =
1

|𝐶𝑖|
∑ 𝑥𝑗

𝑥𝑗∈𝐴𝑖

 (3)

4. Repeat step 2 and 3 until convergence.

2.3 Category-tailored codebooks generation.

Most applications that aim to discriminate n categories actually build n one-versus-

all classifiers and eventually combine the classifier confidence values. For improved

accuracy, it is then possible to further extend purity-based clustering by creating one

codebook per category. Indeed, while constructing a one-versus-all classifier, feature

points can be labelled as previously. In this case however, possible labels are “the

category of interest” or “all other categories”. Similarly, the set of feature points

should equally represent the two categories. Therefore, the method builds up a range

of n codebooks, each one of them specifically tailored for the classification of one

particular type of instance. As a consequence, approximately the same number of

codewords characterizes the category of interest and the remaining categories, leading

to increased discriminative power. Figure 2 illustrates the principle.

2.4 Size-adaptive clustering

However, even with these extensions, k-means clustering [4], despite its ad-

vantages, still has one major drawback: Each cluster approximately covers the same

portion of the feature space. Consequently, too many clusters are associated to regions

with homogeneous feature labels and these arbitrary shaped clusters do not necessari-

ly fit the configuration of feature groups in mixed label areas.

For better fit to the data, the cluster size should be driven by the data. More clusters

would be dedicated to conflicting areas of the feature space, while fewer and bigger

clusters would be associated to areas of high purity.

Hence, we present a clustering algorithm that frees clustering from the arbitrary

cluster size, and better fits the data. This algorithm was designed bearing in mind 3

criteria:

1-The algorithm should maximize cluster purity.

2-Cluster size should adjust to the data.

3-New features falling into the cluster area should be easily associated to it.

This last criterion is paramount to keep further codeword encoding tractable. Either

clusters should be compact enough to be approximated to k-means clusters, either an

existing distance metric should be able to test the feature point association to arbitrari-

ly shaped clusters. Figure 3 depicts the idea.

We employed agglomerative clustering [2] for this purpose, as it naturally fits the

first two criteria. Agglomerative clustering is a hierarchical clustering algorithm that

first initializes every data point as a cluster. The two closest clusters are then iterative-

ly fused until a stopping criterion is met. The fusion distance typically considers the

two closest points of each cluster for better fit to the data configuration. As this algo-

rithm is renowned for creating clusters of complex shape, we modified the cluster

distance assessment to enforce cluster compactness. More specifically, we use cen-

troid-linkage, the centroid being defined by:

𝜇(𝐶𝑖) =
1

|𝐶𝑖|
∑ 𝑥𝑗

𝑥𝑗∈𝐶𝑖

 (4)

Also, to discourage extreme discrepancy between cluster sizes, we weight the distance

between clusters according to the size of the smallest one:

Figure 3: Toy example showing the need of size-adaptive clusters. Each ellipse depicts one the

7 clusters. Each colour represents one of the 2 categories. Top: k-means clustering creating

clusters of similar radius. Bottom: Size-adaptive clustering. More clusters are dedicated to

conflicting areas of the feature space, while fewer and bigger clusters are associated to high

purity areas. Best viewed in colour.

𝑊𝑠𝑖𝑧𝑒 = √
𝑘

𝑁
𝑚𝑖𝑛(|𝐶𝑖|, |𝐶𝑗|) (5)

, where k is the desired number of clusters and N the feature points crdinality. Finally,

we approximate the future purity of clusters to be fused Ci and Cj, named purity(Ci,

Cj, L), as the respective proportion of their majority label within the other cluster.

More formally:

𝑝𝑢𝑟𝑖𝑡𝑦(𝐶𝑖, 𝐶𝑗 , 𝐿) =
|𝐶𝑖 ∩ 𝑙 𝑎𝑟𝑔𝑚𝑎𝑥𝑢(|𝐶𝑗∩𝑙𝑢|)|

2|𝐶𝑖|
+

|𝐶𝑗 ∩ 𝑙 𝑎𝑟𝑔𝑚𝑎𝑥𝑣(|𝐶𝑖∩𝑙𝑣|)|

2|𝐶𝑗|
 (6)

Therefore, the similarity between 2 clusters Ci and Cj is a balance between their ex-

pected purity and their size-weighted distance:

𝑆(𝐶𝑖 , 𝐶𝑗) = (1 + 𝑊𝑝(1 − 𝑝𝑢𝑟𝑖𝑡𝑦(𝐶𝑖 , 𝐶𝑗 , 𝐿))) × 𝑑 (𝜇(𝐶𝑖), 𝜇(𝐶𝑗)) × 𝑊𝑠𝑖𝑧𝑒 (7)

, with d(.) a metric and Wp the weight assigned to purity. This parameter controls the

purity of the clusters over their compactness. A high value will favour purity at the

cost of eccentric cluster forms, and vice versa. We empirically set Wp to 0.5 for all our

experiments, leading to a trade-off between these two factors.

As agglomerative clustering can be computationally expensive, we used dynamic

programing to speed up its execution. More specifically, candidates for fusion are

based on the (pre-computed) nn nearest neighbours of each feature point, the fusion

list is only re-sorted if one of the updated similarities is lower than the current lowest

one, and pruned from identical consecutive instances.

We deal with the variance in cluster sizes by computing the space coverage 𝜎(𝐶𝑖)

of each cluster Ci with a centroid µ(Ci) as follows:

𝜎2(𝐶𝑖) = 𝑚𝑎𝑥𝑥𝑗∈𝐶𝑖
(𝑑 (𝑥𝑗 , 𝜇(𝐶𝑖))) (8)

This differs from FV [5] priors or SV [13] posteriors as we aim to emphasise the cov-

erage of the cluster. It is further utilized during feature encoding to weight the dis-

tance from a point to a cluster centroid:

C𝑖 = {x𝑗 |

d(x𝑗 , μ(C𝑖))

σ(C𝑖)
≤

d(x𝑗 , μ(C𝑢))

σ(C𝑢)

∀ u ≠ i; j = 1, . . . , N

} (9)

The average purity loss caused by this approximation, with the aforementioned pa-

rameter setting, is 11% for a single codebook, 6% for category tailored ones.

2.5 Probability of a codeword to occur

Histogram construction is based on the underlying assumption that every single

codeword is equiprobable. Consequently, each codeword occurrence increments the

corresponding histogram bin by the same value. However, a simple experiment over

4000 k-means clusters determined from 1 million dense SIFT features on the

PASCAL VOC 2007 dataset [31] invalidates this assumption: feature cardinality can

vary by 113% from cluster to cluster. This factor increases to 800% when the same

experiment is performed with the size-adaptive clustering described in section 2.4.

This biased cluster cardinality skews codeword occurrences, and therefore the entire

histogram. For a fair distribution, the probability p(Ci) of a codeword to occur within

the database should be accounted while building up the histogram. We denote p(Ci) of

a codeword Ci, i = 1,…,n, as:

𝑝(𝐶𝑖) = |𝐶𝑖| 𝑁⁄ (10)

, with |.| the cardinality of a cluster, k the codebook size, and N the total number of

feature points used for clustering. Assuming all clusters to be equiprobable, 𝑝(𝐶𝑖) =
1/k ∀i . Thus we simply increment a histogram codeword bin as follows:

ℎ𝑖 = ℎ𝑖 + √𝑘 𝑝(𝐶𝑖)⁄ (11)

Note that in the case of equiprobable clusters, this comes down to the traditional in-

crement of hi by 1.

Density

correction
NO NO YES YES YES NO YES NO NO NO NO

Size (num-

bers) of

codebooks

4000
(×1)

4000
(×1)

4000
(×1)

4000
(×20)

4000
(×20)

4000
(×1)

4000
(×20)

1024
(×1)

256
(×1)

256
(×1)

256
(×20)

Clustering KM PKM PKM PKM PAC KM PAC KM GMM KM PAC

Encoding
BoW-

hard [1]

BoW-

hard

BoW-

hard

BoW-

hard

BoW-

hard

BoW-

soft [1]

BoW-

soft
SV [1] FV [1]

VLAD

[34]
VLAD

Aeroplane 68.65% 74.59% 75.78% 76.96% 76.13% 69.82% 75.96% 74.32% 78.97% 75.90% 79.97%

Bicycle 57.04% 61.51% 60.08% 61.45% 63.32% 59.20% 63.24% 63.79% 67.43% 65.80% 67.53%

Bird 39.86% 46.04% 44.82% 46.41% 47.61% 41.97% 47.94% 47.02% 51.94% 51.10% 50.01%

Boat 64.59% 66.50% 68.08% 67.45% 67.21% 64.85% 67.31% 69.44% 70.92% 73.60% 74.95%

Bottle 21.96% 22.61% 25.00% 24.23% 24.40% 23.90% 25.48% 29.06% 30.79% 28.90% 27.64%

Bus 58.79% 54.46% 53.66% 57.74% 55.97% 59.02% 55.92% 66.46% 72.18% 63.60% 65.74%

Car 73.89% 76.61% 77.66% 77.81% 79.69% 74.98% 80.12% 77.31% 79.94% 80.30% 81.27%

Cat 53.77% 52.18% 53.24% 55.19% 53.02% 54.63% 53.05% 60.18% 61.35% 59.30% 60.57%

Chair 52.40% 45.61% 44.97% 46.57% 47.54% 52.49% 47.63% 50.19% 55.98% 52.10% 52.41%

Cow 38.57% 35.31% 36.45% 36.79% 37.30% 40.48% 36.74% 46.46% 49.61% 44.00% 45.24%

DiningTable 49.20% 51.31% 52.45% 54.06% 51.04% 50.53% 51.81% 51.86% 58.40% 50.50% 54.43%

Dog 36.85% 41.13% 42.72% 42.52% 43.92% 37.98% 43.68% 44.07% 44.77% 42.90% 42.33%

Horse 75.59% 77.23% 77.77% 76.65% 78.16% 76.03% 78.44% 77.85% 78.84% 78.80% 77.31%

Motorbike 61.59% 60.41% 61.65% 61.79% 64.50% 63.73% 64.46% 67.12% 70.81% 62.40% 65.29%

Person 81.63% 83.62% 83.91% 83.79% 84.31% 82.47% 84.60% 83.07% 84.96% 85.00% 85.94%

Potted Plant 20.47% 21.16% 21.34% 24.66% 24.05% 22.31% 24.52% 27.56% 31.72% 26.10% 28.35%

Sheep 40.05% 41.95% 40.09% 40.61% 42.93% 43.08% 42.61% 48.50% 51.00% 46.10% 47.56%

Sofa 50.92% 42.17% 46.03% 45.43% 49.32% 50.96% 50.58% 51.10% 56.41% 49.60% 49.17%

Train 73.39% 75.75% 76.03% 76.26% 76.66% 73.97% 76.36% 75.50% 80.24% 76.30% 79.02%

TV Monitor 49.21% 49.04% 49.31% 48.38% 52.26% 49.68% 51.22% 52.26% 57.46% 52.80% 55.02%

mAP 53.42% 53.96% 54.55% 55.24% 55.97% 54.60% 56.08% 58.16% 61.69% 58.26% 59.49%

Avg Purity 30.90% 35.20% 35.20% 65.20% 71.90% 30.90% 71.90% N. A. N. A. N. A. 64.30%

Table 1: Results on the PASCAL VOC 2007 challenge. Baselines are in red, our runs in black.

KM: k-means; PKM: Purity-kmeans; PAC: purity agglomerative clustering GMM: Gaussian

mixture model.

3 Experiments

Our experiments are designed to compare results with the reference survey on feature

encoding [1]. This paper comprehensively reviews existing encoding techniques on

the PASCAL VOC 2007 object recognition dataset [31]. This dataset contains about

10000 images split into train, validation, and test sets, and labelled with 20 object

classes. A one-vs-all SVM classifier is learned and evaluated independently for each

category. The performance is measured as mean Average Precision (mAP) across all

classes.

We compared our encoding methods with typical hard-[10], and soft-coding [8], as

well as Fisher coding [5]. Each contribution is validated independently on the former;

only the best run is provided for the latter.

We reproduced the same experimental conditions as in [1]. Dense SIFT (PHOW)

features [33] are extracted with the publicly available VLFeat toolbox [32] for all

runs. A pre-processing step reduces the feature dimensionality to 80 for all residual

based methods. Moreover, VLAD encoding is also whitened to comply with the setup

in [34]. The codebook size is 4000 for hard- and soft-coding, 1024 for SV, and 256

for Fisher and VLAD vectors. Hellinger’s kernel is employed with Fisher encoding, a

linear kernel for VLAD and SV, X
2
 distance with all other encoding methods. VLAD

histograms undergo power and intra-normalization, all others are L
2
-normalized. See

[1] and [34] for details. Results are presented in table 1.

Our first 4 runs (in black font) independently test the various improvements pre-

sented throughout this paper, demonstrating their gradual improvement over the tradi-

tional BoW scheme. Clearly, cluster purity is also correlated to discriminative power.

Our last 2 runs compare the full system with state-of the art encoding methods. The

method boosts hard-coded BoW encoding by 2.55%, 1.48% for its soft-coding ver-

sion and 1.26% for the VLAD encoding. The soft coding experiment does not provide

as much performance gain as its hard coding counterpart. This is sensible as soft-

coding can be harmful in the case of neighbouring purity clusters with different domi-

nant labels. As for the VLAD encoding, the reduced codebook cardinality explains its

small improvement.

4 Conclusion

In this paper, we have enhanced the BoW scheme in several ways: maximizing in-

tra-cluster category similarity, accounting for the probability of a codeword to occur

and proposing a size-adaptive clustering algorithm.

As the cluster purity associated to each codeword offers a natural way to perform

feature selection, we envision investigating this direction.

5 Acknowledgement

This publication has emanated from research conducted with the financial support

of Science Foundation Ireland (SFI) under grant number SFI/12/RC/2289.

6 References

[1] K. Chatfield, V. Lempitsky, A. Vedaldi, A. Zisserman, The devil is in the details: an eval-

uation of recent feature encoding methods, BMVC, 2011.

[2] L. Kaufman, P.-J. Rousseeuw, Finding Groups in Data: an Introduction to Cluster Analy-

sis, John Wiley & Sons, 1990

[3] K. Wagstaff, C. Cardie, S. Rogers, S. Schrödl, Constrained K-means Clustering with

Background Knowledge, ICML, 2001.

[4] J. Hartigan and M. Wang, A K-means clustering algorithm, Applied Statistics, 28:100–

108, 1979.

http://www.robots.ox.ac.uk/~vgg/publications/2011/Chatfield11/chatfield11.pdf
http://www.robots.ox.ac.uk/~vgg/publications/2011/Chatfield11/chatfield11.pdf

[5] F. Perronnin, C. Dance, Fisher kenrels on visual vocabularies for image categorizaton.

CVPR, 2006.

[6] F. Perronnin, J. Sánchez, T. Mensink, Improving the fisher kernel for large-scale, image

classification, ECCV, 2010.

[7] R. Negrel, D. Picard, P.H. Gosselin, Compact tensor based image representation for simi-

larity search, ICIP, 2012.

[8] J. Philbin, O. Chum, M. Isard, J. Sivic, A. Zisserman, Lost in quantization: Improving

particular object retrieval in large scale image databases, CVPR, 2008.

[9] G. Csurka, C. Bray, C. Dance, L. Fan, Visual categorization with bags of keypoints,

ECCV, 2004.

[10] S. Lazebnik, C. Schmid, J. Ponce, Beyond Bags of Features: Spatial Pyramid Matching for

Recognizing Natural Scene Categories, CVPR, 2006.

[11] H. Jegou, M. Douze, C. Schmid, P. Perez, Aggregating local descriptors into a compact

image representation, CVPR, 2010.

[12] J. Delhumeau, P.-H. Gosselin, H. Jégou, P. Pérez, Revisiting the VLAD image representa-

tion, ACM Multimedia, 2013.

[13] X. Zhou, K. Yu, T. Zhang, T. S. Huang, Image classification using super-vector coding of

local image descriptors. ECCV, 2010.

[14] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, C. Bray, Visual categorization with bags

of keypoints, ECCV, 2004.

[15] J. Sivic, A. Zisserman, Video google: A text retrieval approach to object matching in

videos, ICCV, 2003.

[16] F. Moosmann, E. Nowak, and F. Jurie, Randomized clustering forests for image classifica-

tion, PAMI, vol. 30, no. 9, pp. 1632–1646, 2008.

[17] J. Winn, A. Criminisi, and A. Minka, Object categorization by learned universal visual

dictionary, ICCV, 2005.

[18] L. Yang, R. Jin, R. Sukthankar, and F. Jurie, Unifying discriminative visual codebook

generation with classifier training for object category recognition, CVPR, 2008.

[19] D. Larlus and F. Jurie, Latent mixture vocabularies for object categorization, BMVC,

2006.

[20] R. J. López-Sastre, J. Renes-Olalla, P. Gil-Jiménez, S. Maldonado-Bascón, S. Lafuente-

Arroyo, Heterogeneous Visual Codebook Integration via Consensus Clustering for Visual

Categorization. TCSVT, 2013.

[21] J. Liu, Y. Yang, and M. Shah, Learning semantic visual vocabularies using diffusion dis-

tance, CVPR, 2009.

[22] S. Zhang, Q. Tian, G. Hua, W. Zhou, Q. Huang, H. Li, and W. Gao, Modeling spatial and

semantic cues for large-scale near-duplicated image retrieval, CVIU, vol. 115, no. 3, pp.

403–414, 2011.

[23] T. Li, T. Mei, I.-S. Kweon, and X.-S. Hua, Contextual bag-of-words for visual categoriza-

tion, TCSVT, vol. 21, no. 4, pp. 381–392, 2011.

[24] R. Trichet, R. Nevatia, Video Segmentation and Feature Co-occurrences for Activity Clas-

sification, WACV, 2014.

[25] B. Leibe, A. Ettlin, and B. Schiele, Learning semantic object parts for object categoriza-

tion, Image Vision Computing, vol. 26, no. 1, pp. 15–26, 2008.

[26] Z. Zhang, C. Wang, B. Xiao, W. Zhou, and S. Liu, Action recognition using context-

constrained linear coding, IEEE Signal Process. Letter., 19(7), 2012.

[27] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, Locality-constrained linear cod-

ing for image classification, CVPR, 2010.

[28] A. Kovashka and K. Grauman, Learning a hierarchy of discriminative space-time neigh-

borhood features for human action recognition, CVPR, 2010.

[29] H. Wang, J. Yuan, and Y.-P. Tan, Combining feature context and spatial context for im-

age pattern discovery, ICDM, 2011.

[30] R. Arandjelovic and A. Zisserman, All about vlad, CVPR, 2013.

[31] M. Everingham, A. Zisserman, C. Williams, and L. Van Gool, The PASCAL visual Obi-

ect classes challenge 2007 (VOC2007) results. Technical report, Pascal Challenge, 2007.

[32] A. Vedaldi and B. Fulkerson, VLFeat - An open and portable library of computer vision

algorithms, ACM Multimedia, 2010.

[33] M. Krystian, and C. Schmid, A performance evaluation of local descriptors, PAMI, vol27,

no10, p1615-1630, 2005.

[34] X. Peng, L. Wang, Y. Qiao, and Q. Peng, Boosting VLAD with Supervised Dictionary

Learning and High-Order Statistics, ECCV, 2014.

