
Efficient Hardware Architecture for

Scalar Multiplications on Elliptic

Curves over Prime Field

Khalid Javeed

BEng, MEng

A Disertation submitted in fulfilment of the requirements for the

award of Doctor of Philosophy (Ph.D.)

DUBLIN CITY UNIVERSITY

SCHOOL OF ELECTRONIC ENGINEERING

Supervisors: Dr. Xiaojun Wang and Dr. Mike Scott

September 2016

Declaration

I hereby certify that this material, which I now submit for assessment on the pro-

gramme of study leading to the award of Ph.D is entirely my own work, that I have

exercised reasonable care to ensure that the work is original, and does not to the best

of my knowledge breach any law of copyright, and has not been taken from the work

of others save and to the extent that such work has been cited and acknowledged

within the text of my work.

Signed: —————————————————-

Candidate ID No: —————————————————-

Date:—————————————————-

i

Acknowledgement

I would like to express my sincere gratitude to my supervisor Dr. Xiaojun Wang

for his continuous support in technical and non-technical matters related to my Ph.D

studies, research work and thesis writing. I am also very thankful to Dr. Mike Scott

for helping in understanding elliptic curve cryptography.

I thank my all fellow lab mates for their help and support. Due to their company,

my stay at Dublin City University was comfortable and enjoyable.

Last but not the least, I would like to pay my humble but full of emotion gratitude

to my parents without their prayers and assistance this would not have been possible.

I would also like to thank my entire family for providing me courage which I required

most of the time during this work. Lastly, I am very thankful to my loving wife, my

lovely daughter Meerab and son Abdul Hadi for their love, support and patience.

ii

Contents

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Thesis Motivation . 1

1.2 Thesis Aim . 3

1.3 Thesis Contributions . 5

1.4 Thesis Organization . 8

2 Background 9

2.1 Symmetric-Key Cryptography . 9

2.2 Public-Key Cryptography . 10

2.3 Cryptographic Key Sizes . 12

2.4 Finite Field . 14

2.4.1 Groups . 14

2.4.2 Rings . 14

2.4.3 Finite Fields . 15

2.4.4 Prime Field Arithmetic . 16

2.5 Introduction to Elliptic Curves . 17

2.5.1 Elliptic Curve Scalar Multiplication 17

2.5.2 Elliptic Curve Group Operations 18

2.5.3 Order of an Elliptic Curve . 19

2.5.4 EC Crypto Schemes Implementation Hierarchy 20

2.5.5 Diffie-Hellman Key Exchange . 20

2.5.6 Standard Projective Coordinates 23

iii

2.5.7 Jacobian Projective Coordinates 24

2.6 Side Channel Attacks . 25

2.7 Related Work . 25

2.7.1 Hardware Architectures for EC Scalar Multiplication 26

2.7.1.1 EC Scalar Multipliers over Standard Prime Fields . . . 27

2.7.1.2 EC Scalar Multipliers over General Prime Field 28

2.8 FPGA Architecture . 30

2.8.1 FPGA Implementation Design Flow 32

2.9 Conclusion . 34

3 Hardware Architectures for Finite Field Arithmetic 35

3.1 Background and Related Work . 36

3.2 Modular Addition/Subtraction . 39

3.2.1 Modular Addition . 39

3.2.2 Modular Subtraction . 40

3.3 Modular Inversion/Division . 41

3.3.1 Implementation Results . 44

3.4 Modular Multiplication . 45

3.5 Radix-4 BE Interleaved Multiplication . 47

3.5.1 Hardware Architecture . 50

3.6 Radix-8 BE Interleaved Multiplication . 52

3.6.1 Hardware Architecure . 54

3.6.1.1 Phase A . 54

3.6.1.2 Phase B . 55

3.7 Implementation and Results . 57

3.8 Conclusion . 60

4 High Performance Parallel Modular Multipliers 61

4.1 Introduction . 62

4.2 Motivation . 63

4.2.1 Montgomery Powering Ladder . 64

4.3 Radix-4 Parallel Interleaved Multiplier (R4PIM) 65

4.3.1 Hardware Architecture . 66

4.3.2 Phase A . 66

4.3.3 Phase B . 68

4.4 Radix-4 Booth Encoded Parallel Interleaved Multiplier (R4BPIM) . . . 70

4.4.1 Hardware Architecture . 71

4.4.2 Phase A . 71

iv

4.4.3 Phase B . 71

4.5 Radix-8 Booth Encoded Parallel Interleaved Multiplier (R8BPIM) . . . 73

4.5.1 Hardware Architecture . 74

4.6 Platform Independent Performance Analysis 78

4.6.1 Resource Requirements . 78

4.6.2 Critical Path and Latency . 79

4.7 Implementation Results . 80

4.7.1 Area Results . 81

4.7.2 Execution Time Results . 82

4.8 Performance Evaluation and Analysis . 83

4.9 Throughput and Area-Delay Product . 87

4.10 Conclusion . 89

5 EC Scalar Multiplier Architectures 90

5.1 Introduction And Related Work . 91

5.2 Elliptic curve scalar multiplication . 92

5.2.1 EC Point Operations Using Affine Coordinates 94

5.3 EC Scalar Multiplier Architecture in Affine Coordinates 95

5.3.1 Latency . 98

5.3.2 Using double-and-add (DA) method 98

5.3.3 Using double-and-always-add (DAA) method 98

5.4 Implementation Results . 98

5.5 EC Point Operations Using Projective Coordinates 99

5.6 EC Scalar Multiplier Architecture in Projective Coordinates 101

5.6.1 Arithmetic Unit . 101

5.6.2 Scheduling of PD and PA Operations 103

5.6.3 Overall Execution . 109

5.6.4 Final Conversion . 110

5.6.5 Latecny . 110

5.7 Implementation and Results . 111

5.7.1 Performance Evaluation . 115

5.8 Conclusion . 118

6 Conclusion and Future Work 120

6.1 Conclusion . 120

6.2 Future Work . 122

v

A Appendix 124

A.1 Implementation results of EC scalar multiplier using modular multipli-
ers presented in Chapter 4 . 124

Bibliography 129

vi

List of Acronyms

AES Advanced Encryption Standards

Add Addition

ASIC Application Specific Integrated Circuit

ATB Area-Time product per bit

AU Arithmetic Unit

BE Booth Encoding

CLB Configurable Logic Block

DA Double-and-Add

DAA Double-and-always-add

DES Digital Encryption Standards

DLP Discrete Logarithm Problem

Div Division

DPA Differential Power Analysis

EC Elliptic curve

ECC Elliptic curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

ECDLP Elliptic Curve Discrete Logarithm Problem

FPGA Field Programmable Gate Array

Freq Frequency

IM Interleaved Modular Multiplication

vii

Inv Inversion

LUT Look-Up-Table

MM Modular Multiplication

MMM Montgomery Modular Multiplication

MPL Montgomery Powering Ladder

MR Montgomery Reduction

Mul Multiplication

NAF Non-Adjacent Form

NIST National Institute of Standards and Technology

PA Point Addition

PAU Parallel Arithmetic Unit

PKC Public Key Cryptography

PD Point Doubling

PKI Public Key Infrastructure

RSA Rivest Shamir Adleman

R2IM Radix-2 Interleaved Modular Multiplication

R2PIM Radix-2 Parallel Interleaved Modular Multiplication

R4BIM Radix-4 Booth Encoded Interleaved Modular Multiplication

R8BIM Radix-8 Booth Encoded Interleaved Modular Multiplication

R4PIM Radix-4 Parallel Interleaved Modular Multiplication

R4BPIM Radix-4 Booth Encoded Parallel Interleaved Modular Multiplication

R8PIM Radix-8 Parallel Interleaved Modular Multiplication

R8BIM Radix-8 Booth Encoded Parallel Interleaved Modular Multiplication

SPA Simple Power Analysis

viii

Sub Subtraction

TPAR Timing and Power Attacks Resistance

ix

List of Figures

1.1 Performance evaluation metrics . 4

2.1 Symmetric-Key encryption/decryption . 10

2.2 Public-Key encryption/decryption . 11

2.3 EC group operations . 18

2.4 Diffie-Hellman key exchange scheme . 21

2.5 EC based Diffie-Hellman key exchange scheme 22

2.6 EC scalar multiplication in projective coordinates 23

2.7 A Generic FPGA Architecture . 30

2.8 Design steps of FPGA implementation . 32

3.1 Modular addition architecture . 40

3.2 Modular subtraction architecture . 41

3.3 Modular addition/subtraction architecture 41

3.4 Overall steps in EEA algorithm . 44

3.5 FIL and SIL internal architecture . 44

3.6 OL internal architecture . 44

3.7 Modular doubling architecture . 46

3.8 Radix-4 Booth encoding . 48

x

3.9 R4BIM multiplier architecture . 51

3.10 Radix-8 Booth encoding . 52

3.11 R8BIM multiplier architecture . 55

3.12 Area comparisons of IM multipliers . 57

3.13 Computation time of different IM multipliers 59

4.1 R4PIM multiplier hardware architecture 67

4.2 Internal architecture of first processing element 67

4.3 R4BPIM multiplier hardware architecture 72

4.4 R8BPIM multiplier hardware architecture 77

4.5 Resource requirements of IM multipliers 79

4.6 Area comparison of parallel IM multipliers 82

4.7 Time comparison of higher-radix parallel IM multipliers 82

4.8 Time comparison of different IM multipliers 84

4.9 Area comparison of different IM multipliers 86

4.10 Performance evaluation of IM multipliers 87

4.11 Comparison of IM multipliers . 89

5.1 EC scalar multiplier architecture using affine coordinates 96

5.2 Arithmetic units for parallel execution of PD and PA operations 97

5.3 Proposed arithmetic unit (AU) . 102

5.4 Data dependency graph of PD operation using three multipliers 105

5.5 Data dependency graph of PA operation using three multipliers 106

5.6 Data dependency graph of concurrent PA and PD operations using four

multipliers . 108

5.7 EC scalar multiplier architecture . 109

xi

List of Tables

2.1 NIST Gudielines for Key Sizes 2012 . 12

2.2 ECRYPT II Recommended key sizes 2012 13

2.3 Implementation Hierarchy of ECC Based Crypto Schemes 20

2.4 NIST Recomended Primes . 27

2.5 Virtex-6 FPGA CLB Internal Resources . 31

3.1 Modular inversion/division implementation on Virtex-6 45

3.2 Radix-4 Booth encoding . 48

3.3 Radix-8 Booth encoding . 54

3.4 Area comparison of IM multipliers implementation on Virtex-6 57

3.5 Performance of IM multipliers on Virtex-6 for different field sizes 59

4.1 Operation sequence of modular multiplication on R4PIM multiplier . . 69

4.2 Operation sequence of modular multiplication on R4BPIM multiplier . 73

4.3 Operation sequence of modular multiplication on R8BPIM architecture 76

4.4 Resource requirements analysis of IM multipliers 78

4.5 Latency analysis of IM multipliers . 79

4.6 Area results of Virtex-6 FPGA implementation of Parallel IM multipliers 81

4.7 Timing results of Higher-radix Parallel IM multipliers on Virtex-6 FPGA 83

xii

4.8 Virtex-6 FPGA implementation results of different IM multipliers . . . 85

4.9 Throughput and area-delay product of different IM multipliers 88

5.1 EC point operations using affine coordinates 95

5.2 Scheduling of PD operation in affine coordinates 97

5.3 Scheduling of PA operation in affine coordinates 97

5.4 Implementation of EC scalar multiplier using affine coordinates 99

5.5 EC PD operation in standard projective coordinates 100

5.6 EC PA operation in standard projective coordinates 101

5.7 Field operations on AU unit . 102

5.8 Scheduling of PD operation using three multipliers in projective coor-

dinates . 103

5.9 Scheduling of PA using three multipliers in projective coordinates . . . 104

5.10 Scheduling of parallel PD PA operations using four multipliers 107

5.11 No of Clock cycles of EC scalar multiplication in projective coordinates 110

5.12 Latency of EC scalar multiplication in projective coordinates 111

5.13 Implementation results of EC scalar multiplier in projective coordinates 112

5.14 Comparison of FPGA implemented EC scalar multipliers 114

A.1 Number of clock cycles required for EC scalar multiplication in projec-

tive coordinates . 125

A.2 Cycle count of EC scalar multiplication using DA algorithm and three

multipliers in projective coordinates . 126

A.3 Cycle count of EC scalar multiplication using DA algorithm and four

multipliers in projective coordinates . 127

A.4 Implementation of DAA algorithm using four multipliers in projective

coordinates . 128

xiii

List of Algorithms

1 Modular addition . 39

2 Modular subtraction . 40

3 Modular Inversion/Division . 43

4 Basic Serial radix-2 Interleaved Multiplication (R2IM) 46

5 Radix-4 BE Interleaved Multiplication (R4BIM) 49

6 Radix-8 BE Interleaved Multiplication (R8BIM) 53

7 The Montgomery Powering Ladder for exponentiation 64

8 Radix-4 Parallel IM Multiplication (R4PIM) 65

9 Radix-4 BE Parallel IM Multiplication (R4BPIM) 70

10 Radix-8 BE Parallel IM Multiplication (R8BPIM) 74

11 Double-and-add (DA) method for EC point multiplication 92

12 Double-and-always-add (DAA) for EC point multiplication 92

xiv

Efficient Hardware Architecture for Scalar
Multiplications on Elliptic Curves over Prime Field

Khalid Javeed

Abstract

Suitable cryptographic protocols are required to meet the growing demands for data
security in many different systems, ranging from large servers to small hand-held de-
vices. Many constraints such as computation time, silicon area, power consumption,
and security level must be considered by the designers of hardware accelerators of the
cryptogrpahic protocols.

Elliptic curve cryptography (ECC) proposed by Koblitz and Miller, has been widely
accepted. It is now considered as one of the best Public-Key Cryptography (PKC) al-
gorithms and provides higher security strength per bit than RSA, with considerably
smaller key sizes. For example, a 256-bit ECC can provide the same security strength
as 3072-bit RSA. Due to its much smaller key sizes, ECC based crypto-systems are bet-
ter in terms of bandwidth utilization, power consumption, and implementation cost
as compared to the traditional RSA based crypto-systems. However, PKC algorithms,
especially ECC are relatively expensive as compared to their symmetric-key counter-
parts in terms of computation time. It is an open area of research to reduce their
computation cost, so that they could be used for secure communication in commercial
internet based applications. Efficient implementation of elliptic curve cryptography
over several new platforms have been explored in the last few decades.

This work presents efficient design strategies to perform elliptic curve scalar mul-
tiplication, the fundamental operation in all ECC based crypto-systems. Finite field
arithmetic is the bottleneck in the computation of the EC scalar multiplication op-
eration. Especially, finite field multiplication is the most time-critical operation in
projective coordinates, a technique which eliminates modular inversion/division from
elliptic curve group operations.

Two efficient design strategies to perform finite field multiplication are presented.
The first design strategy proposes modifications to the interleaved modular multipli-
cation algorithm using radix-4, radix-8 and Booth encoding techniques to reduce the
required number of clock cycles to perform a finite field multiplication. However,
higher-radix techniques incur longer critical path delay so performance is limited.

Subsequently, parallel optimization techniques are incorporated in the modified
interleaved modular multiplication algorithms which enable concurrent execution of
the critical operations. So the higher-radix parallel modular multipliers are optimized
in terms of required number of clock cycles and critical path delays. It is observed
that using Booth encoding in the parallel modular multipliers can reduce resource
requirements with a slight degradation in the speed performance.

Based on the presented finite field multipliers, low latency flexible architectures to
perform elliptic curve point multiplication over general prime field GF(p) is developed.
On a system level, standard double-and-add and double-and-always-add techniques

xv

are adopted. The implementation results show that the presented elliptic curve scalar
multiplier architectures in this work are good trade-offs between performance and
flexibility. The presented designs support general prime field so these can be used in
many ECC applications.

xvi

Publications

This work is based on the following contributions.

• Khalid Javeed and Xiaojun Wang "FPGA Based High Speed SPA Resistant Ellip-

tic Curve Scalar Multiplier Architecture", International Journal of Reconfigurable

Computing, Volume 2016 (2016), Article ID 6371403, 10 pages, http://dx.doi.o-

rg/10.1155/2016/6371403

• Khalid Javeed and Xiaojun Wang "Design and performance analysis of Modular

Multipliers on FPGA Platform." International Conference on Cloud Computing

and Security (ICCCS 2016), Nanjing, China.

• Khalid Javeed, Xiaojun Wang "Speed and Area Optimized Higher Radix Modular

Multipliers "Cryptology ePrint Archive, Report 2016/053, 2016.

• Khalid Javeed, Xiaojun Wang, and Mike Scott "Serial and Parallel Modular Mul-

tipliers over FPGA Platform " in IEEE international Conference on Field Pro-

grammable Logic and Applications (FPL 2015), London, United Kingdom.

• Khalid Javeed and Xiaojun Wang "Radix-4 and radix-8 Booth encoded inter-

leaved modular multipliers over general prime field" in IEEE international Con-

ference on Field Programmable Logic and Applications (FPL 2014), Munich,

Germany.

• Khalid Javeed and Xiaojun Wang "Efficient Montgomery Multiplier for ECC and

Pairing based Cryptography " in IEEE International Symposium on Communi-

cation Systems, Networks & Digital Signal Processing (CSNDSP 2014), Manch-

ester, United Kingdom.

xvii

Chapter 1

Introduction

1.1 Thesis Motivation

Cryptography is the study and design of methods to protect secret information over

an insecure channel against adversaries. Cryptographic protocols are imperative to

protect files and other information due to the rapid growth of security requirements on

the Internet being used as a channel for communication and business in today’s society.

Billions of people are using the Internet as a tool for communication, e-commerce,

internet banking, storage and retrieval of sensitive data from cloud servers, wireless

sensors networks, mobile commerce, and many others.

Successful deployment of a data communication network depends largely on the

network’s ability to counter against different unwanted attackers (users), that is, how

secure the network system is in the presence of many fraudulent users. Therefore,

Suitable cryptographic schemes are essential to meet the growing demands for data

security in many different systems, ranging from large servers to small hand-held de-

vices. Many constraints such as computation time, area consumption, flexibility, and

security must be considered by network system designers.

Different systems have different computing powers, resource limitations, and se-

curity requirements. For example, a server needs to complete a large number of tasks

1

1.1. THESIS MOTIVATION

in a short duration of time, whereas, a more compact design is required to meet se-

curity demands in hand-held devices such as smartphones and smartcards because of

their resource limitations.

On the other hand cryptanalysis, a reverse operation of cryptography, is the study

of methods to break cryptographic systems either by solving the underlying mathe-

matical problem or by exploiting the algorithmic and implementation weaknesses of

the crypto-system . With the rapid advancement in technology, cryptanalysis has also

flourished. Many new efficient cryptanalysis algorithms and procedures have been

figured out to attack cryptographic systems either to reveal sensitive data, to alter

sensitive data, or to hack a system to perform a task for which it is not designed for.

Thus, security of a system can be compromised at any time. Therefore, the underly-

ing implementation platform must be flexible to adopt new algorithms and security

parameters regularly to avoid any security breach.

Dedicated hardware architectures are essential to meet the speed requirements of

many real-time applications. Dedicated hardware processors have many advantages

over the general purpose processor (GPP). For example, implementation of a crypto

scheme on dedicated hardware yields higher performance and lower power consump-

tion results compared to an implementation of the crypto scheme on a GPP. Therefore,

in many applications the most computationally intensive tasks are performed on ded-

icated hardware to boost the overall performance of the systems. However, an im-

plementation on GPP is more flexible than dedicated hardware. Field programmable

gate array (FPGA) is a hardware platform that can offer the performance of a dedi-

cated hardware as well as the flexibility of a GPP.

FPGA is a hardware platform which provides the flexibility for users to replace a

current design with a new one in-house. FPGA has established itself as a suitable plat-

form for implementation of security algorithms. This is due to its short design cycle

time, low cost and re-usability which make it a more attractive choice compared to

application specific integrated circuits (ASICs). It should be pointed out FPGA offers

flexibility at the cost of lower performance and higher power consumption compared

to ASIC. Therefore for applications demanding a balance of performance and flexi-

bility, FPGA implementation is recommended. ASIC implementation is preferable in

applications where high performance is the only major requirement.

2

1.2. THESIS AIM

1.2 Thesis Aim

Many security protocols are designed using Elliptic Curve Cryptography (ECC), RSA

and Pairing-based Cryptography. All these are popular types of public key cryptog-

raphy (PKC) also known as asymmetric cryptography which is discussed in detail in

chapter 2.

The complex and elegant mathematics of elliptic curves have attracted many re-

searchers which led to the proposal of ECC by Miller [1] and Koblitz [2] in 1985. It

provides relatively high security strength per bit resulting in a reduced bit length com-

pared to RSA [3]. The reduced bit length means elliptic curve cryptosystems require

smaller key sizes for a certain security level as compared to the traditional cryptosys-

tems like RSA. For example, to achieve a 128-bit Advanced Encryption Standard (AES)

security level, the US National Institute of Standards and Technology (NIST) recom-

mends ECC key sizes of 256 bits. To achieve the same security level with RSA would

require key sizes of 3072 bits, which is almost twelve times more than the correspond-

ing ECC key sizes.

As a consequence, this significant reduction in key sizes has led to several new

power and memory efficient implementations of ECC schemes in a variety of resource

constrained environments such as wireless sensor nodes, smartphones, smartcards

and many other hand-held devices and the Internet of Things (IOT).

All elliptic curve (EC) cryptographic schemes depend on a scalar multiplication

operation, denoted as Q = dP, where a point P on a suitably chosen elliptic curve is

multiplied with a scalar d to obtain another point Q on the same curve. In this scenario

points P, Q are public parameters while the scalar d is a secret used to enable a secure

communication. To find the scalar d knowing points P and Q is believed to be an

intractable problem and widely known as Elliptic Curve Discrete Logarithm Problem

(ECDLP), which is the basis of all ECC based schemes.

The overall performance of any ECC scheme depends on the efficient computation

of the elliptic curve scalar multiplication operation, which is the most computationally

intensive operation. Implementation of EC scalar multiplication on a general purpose

processor can not meet performance demands of many time critical real time appli-

cations. Hence, there is a need for high speed, flexible, and reconfigurable hardware

3

1.2. THESIS AIM

accelerators to reduce the computation time of EC scalar multiplication. The imple-

mentation of the EC scalar multiplication must be cost effective both in terms of time

and space requirements.

The main objective of this research work is to design efficient hardware architec-

tures to compute the EC scalar multiplication operation. The scalar multiplication dP

is achieved through a series of EC group operations i.e., EC point addition and EC

point doubling. These group operations further rely on finite field arithmetic primi-

tives, i.e., addition, subtraction, multiplication, and inversion/division. Among these

filed operations, multiplication and inversion/division are very critical components

and their efficient implementation can significantly speed up EC scalar multiplica-

tion. One common optimization technique is to eliminate inversion/division opera-

tions from EC group operations at the cost of extra modular multiplication operations.

Hence, an optimized modular multiplier is very critical in a high performance design

of EC scalar multiplier. Therefore, this research work focuses on the design of flexible

and low latency modular multipliers over general prime field. There are several scalar

multiplication algorithms and many different elliptic curves offering different trade-

offs between computational performance and level of security, therefore flexibility is

considered in the proposed designs, which is required in many applications.

PerformancePerformance

Area

Power Speed

Cost

Figure 1.1: Performance evaluation metrics

This research work first explores several hardware design techniques to optimize

the finite field arithmetic primitives especially a modular multiplication operation.

Subsequently, based on these optimized finite field arithmetic primitives and by ex-

ploiting the possible parallelism in EC group operations, the work focuses on the de-

sign of high performance hardware architectures to perform EC scalar multiplication

operation.

4

1.3. THESIS CONTRIBUTIONS

In cryptanalysis, the ECDLP can be bypassed by exploiting several algorithmic and

implementation weaknesses termed as side channel attacks (SCA). For example, if

one can have somehow gain access to a cryptographic device, then he may be able to

reveal the secret scalar d by monitoring timing and power consumption profiles of the

device. Simple and most common SCAs are based on the timing and simple power

analysis. Therefore, this research work also adopted the most common techniques to

resist the timing and simple power analysis attacks.

Figure 1.1 demonstrates that several performance evaluation metrics are interre-

lated, thus enhancing one of these can affect the others. For example, increasing per-

formance by improving speed (reducing computation time) may increase area, power

consumption, and cost requirements, thus, it is very difficult to achieve all design goals

at the same time. Therefore, it is important to evaluate different designs optimized

to achieve different performance metrics. In this work, we are more focused on flexi-

ble and high performance (in terms of computation time) designs without significant

increase in area as compared to other contemporary EC scalar multiplier designs.

1.3 Thesis Contributions

The contribution of this research work is mainly comprised of efficient hardware archi-

tectures for finite field arithmetic primitives including addition, subtraction, multipli-

cation, inversion, and division. Based on these optimized finite field arithmetic primi-

tives, high performance hardware architectures for elliptic curve scalar multiplication

over a general prime field are presented. The presented hardware architectures for

modular addition, modular subtraction, and modular inversion/division operations

are considered as minor contributions while the major contributions of the work are:

• Radix-4 and Radix-8 Booth Encoded Interleaved Modular Multipliers

- The bit serial interleaved multiplication algorithm is modified using radix-

4, radix-8 and Booth encoding techniques. The modified radix-4 and radix-

8 interleaved multipliers can reduce the number of clock cycles required for

one modular multiplication by 50% and 66%, respectively as compared to

the bit serial interleaved multipliers while maintaining a competitive criti-

cal path delay. Through efficient use of optimized carry chains available in

5

1.3. THESIS CONTRIBUTIONS

FPGAs and through exploiting the parallelism among operations, the pro-

posed radix-4 and radix-8 Booth encoded multipliers can compute a 256-bit

modular multiplication in 1.48µs and 1.24µs respectively, which are 26.6%

and 39% improvement over the corresponding bit serial interleaved mul-

tiplier. A thorough comparison of the radix-4 and radix-8 Booth encoded

interleaved multipliers with the bit serial interleaved multipliers shows that

the proposed radix-4 and radix-8 interleaved multipliers are optimized for

a high throughput rate.

• Parallel Radix-4 and Radix-8 Interleaved Modular Multipliers

- This part of the work presents radix-4 and radix-8 parallel interleaved

modular multipliers with their efficient hardware architectures. The in-

troduced parallelism helps to execute the critical operations concurrently

while radix-4 and radix-8 techniques are incorporated to reduce the iter-

ation count which determines the required number of clock cycles. It is

also observed that incorporating Booth encoding logic in the parallel in-

terleaved multipliers can reduce area cost with a slight degradation in the

maximum achievable frequencies. The proposed radix-4 and radix-8 paral-

lel interleaved multipliers are implemented in Verilog HDL and synthesized

targeting virtex-6 FPGA platform using Xilinx ISE 14.1 Design suite. The

radix-4 parallel interleaved multiplier computes a 256-bit modular multi-

plication in 0.78 µs, occupies 1985 slices, at 166 MHz in a cycle count of

bn/2c + 5. The radix-8 parallel interleaved multiplier performs the same

bit length operation in 0.69 µs, occupies 3622 slices, achieves 123.43 MHz

frequency in a cycle count of bn/3c+4. The implementation results further

reveal that incorporating Booth encoding logic in the radix-4 and radix-

8 parallel interleaved multipliers can save 18% FPGA slices without any

significant performance degradation.

• High Performance Elliptic Curve Scalar Multiplier Architectures

This part of the thesis presents efficient hardware architectures to compute EC

scalar multiplication operation in affine and standard projective coordinates. On

the top level the double-and-add (DA) method and the double-and-always-add

(DAA) method for EC scalar multiplication are used. In affine coordinates low

6

1.3. THESIS CONTRIBUTIONS

level field operations required to perform EC group operations are modular addi-

tion, subtraction, multiplication and inversion/division. In the case of projective

coordinates, to compute the EC group operations only modular addition, sub-

traction and multiplication operations are required. Strategies to perform these

low level field operations are presented in Chapters 3 and 4. The design of EC

scalar multiplier architectures making use of the low level field operations are

described below.

- Using the double-and-add (DA) method one can not perform EC group

operations in parallel, as there is very limited scope of parallelism in the

low level field operations in affine coordinates. Therefore an arithmetic

unit in this case incorporates a single modular adder/subtractor, multiplier

and divider units.

On the other hand using the double-and-always-add (DAA) method, EC

group operations can be performed concurrently, so dual instances of the

arithmetic unit are used in the design of a high speed elliptic curve scalar

multiplier architecture in affine coordinates. The proposed architecture for

elliptic curve scalar multiplier in affine coordinates is synthesized target-

ing Virtex-6 FPGA platform for various different field sizes. In the case of a

single arithmetic unit, it computes a 256-bit elliptic curve scalar multipli-

cation in 2.51 ms in 330K clock cycles and consumes 4807 Virtex-6 FPGA

slices. Whereas in the case of two arithmetic units it takes 1.75 ms, 229.37K

clock cycles to compute the same bit length operation and consumes 9213

Virtex-6 FPGA slices. The presented EC scalar multiplier architecture using

two arithmetic units also provides a resistance to timing and simple power

analysis attacks.

- Using standard projective coordinates one can eliminate field inversion/-

division operation in the computation of EC group operations at the cost of

more field multiplications. This part presents a high performance hardware

architecture to compute a EC scalar multiplication operation using projec-

tive coordinates. It shows that using projective coordinates there are many

possibilities of parallelism in the underlying field operations, therefore the

performance of the presented EC scalar multiplier architecture in projective

coordinates is shown by employing a number of parallel multiplier units.

7

1.4. THESIS ORGANIZATION

On the system level again the same algorithms (standard DA and DAA) are

adopted as in the case of affine coordinates. On Virtex-6 FPGA platform

using four parallel multipliers, a 256-bit EC scalar multiplication operation

is completed in 1.46 ms and consume 11.65K slices. The results show that

the proposed EC scalar multiplier designs offer significant improvements

in the computation time with significant reduction in the required number

of clock cycles as compared to the other reported designs. Therefore, the

presented EC scalar multipliers are useful for many ECC based schemes.

1.4 Thesis Organization

The rest of this thesis is organized as follows:

1. Chapter 2 gives a brief introduction to the mathematical background of finite

field and elliptic curve cryptography. It also lists different algorithms and some

of the common optimization techniques to compute EC scalar multiplication op-

erations using layered hierarchical implementations. Finally, the chapter also

gives a basic introduction to FPGA architecture.

2. Chapter 3 first presents hardware architectures for modular addition, subtrac-

tion and inversion/division operations. Then, the radix-4 and radix-8 Booth

encoded interleaved modular multipliers are presented with their hardware ar-

chitectures.

3. Chapter 4 details further optimization of the modular multiplier architectures

presented in Chapter 3. Then, it presents a detailed performance evaluation of

the proposed interleaved modular multipliers compared to related contemporary

designs on the basis of area, speed, throughput and flexibility.

4. Chapter 5 presents high performance elliptic curve scalar multiplier architec-

tures by utilizing the hardware architectures of finite field arithmetic primitives

proposed in Chapters 3 and 4. The performance of the proposed elliptic curve

scalar multipliers are also compared with contemporary designs in the literature.

5. Chapter 6 is devoted to possible future research directions and it also presents

an overall conclusion of the thesis work.

8

Chapter 2

Background

This chapter briefly introduces the background and mathematical tools that are of

prime importance in elliptic curve scalar multiplication. First, some basic concepts

of different cryptographic schemes with their recommended key sizes are introduced.

Then, an introduction to finite field and elliptic curve arithmetic over prime field is

presented. Subsequently, implementation strategies of elliptic curve crypto schemes

at different levels of implementation hierarchy are discussed. Finally, an introduction

to FPGA is given in the last section of this chapter.

All cryptographic encryption/decryption methods, irrespective of their applica-

tions can be categorized into symmetric or asymmetric key algorithms. Symmetric

key algorithms are sometimes called Private-Key cryptography, whereas asymmetric

key algorithms are widely referred to Public-Key cryptography (PKC).

2.1 Symmetric-Key Cryptography

Symmetric or Private-Key algorithms are a class of algorithms which use a single key

for encryption and decryption purposes, therefore the key used for these tasks should

be kept secret and must be communicated securely among the participants prior to

any communication. Encryption/Decryption tasks using symmetric key algorithms

are fairly simple as shown in Figure 2.1, where Alice sends her message (plaintext)

9

2.2. PUBLIC-KEY CRYPTOGRAPHY

after doing encryption with a ke y , which must be available to Bob as well. Bob after

receiving "ciphertext" (encrypted message from Alice) decrypts it with the same ke y

and recovers the original plain text message. Security of these systems depends on

Alice BobEncrypt Decrypt

plaintext

ciphertext

ciphertext plaintext

evasdropper

Key

Figure 2.1: Symmetric-Key encryption/decryption

how securely the ke y is managed and transmitted among users in a communication

network. The private key algorithms are efficient and easy to implement but there are

certain drawbacks as well. The first problem is that each party must have this secret

key before any secure communication between them, in other words the secret ke y

must be securely shared among all parties involved in the communication. The second

problem refers to the key management issues, because a communication in a group of

n parties would require n(n−1)/2 keys, so these keys should be kept secure and must

be changed regularly to avoid any security breaches.

Symmetric-Key cryptographic algorithms are further classified into block and stream

ciphers. Block cipher algorithms operate on blocks of input data and produce the cor-

responding output blocks, where as in stream cipher very small chunks (can be a single

bit) of input data are fed into the algorithm to obtain the corresponding small chunks

of output data. Digital Encryption Standard (DES) [4] and Advanced Encryption Stan-

dard (AES) [5], [6] are the well known block ciphers schemes, whereas RC4 [7] is an

example of stream ciphers.

2.2 Public-Key Cryptography

Whitfield Diffie and Martin Hellman introduced Public-Key cryptography (PKC) in

1970 [8]. After its inception PKC has solved many problems and enabled the creation

of many new interesting protocols considered to be impossible with Symmetric-Key

cryptography [9]. PKC algorithms use a pair of keys (public key, private key) for en-

cryption and decryption tasks. A user, Bob, generates his key pair (pbkey, sbkey), pbkey

10

2.2. PUBLIC-KEY CRYPTOGRAPHY

Alice BobEncrypt Decrypt

plaintext

ciphertext

ciphertext plaintext

evasdropper

pakey, sakey pbkey, sbkey

pbkey sbkey

Figure 2.2: Public-Key encryption/decryption

is his public key while sbkey is his private key. He publishes the pbkey and securely

stores his sbkey. If Alice wants to send a message to Bob, she needs to encrypt the

message with Bob’s public key, i.e, pbkey. Bob on receiving the ciphertext decrypts it

with his private key (sbkey) to recover the message as shown in Figure 2.2.

The pair of keys are related in such a way that from the knowledge of one to infer

the other is a mathematically intractable problem. Ideally to generate a public key

from a private key is based on a one way function. The one way function, as its name

suggests, is easy to compute in one direction and is completely infeasible to reverse

the operation. Different PKC schemes can be constructed based on different one way

functions.

Ronald Rivest, Adi Shamir, and Len Adleman in 1978, proposed a very popular

crypto-system which is widely known as RSA [3]. Since its appearance, RSA has been

adopted and used widely in many applications and communication networks. Theo-

retically, the security of RSA crypto-system is based on the mathematical problem (one

way function) of integer factorization. RSA has been a dominant Public key system

for many years, but with the rapid increasing of the number of resource constrained

devices connected to the Internet, a more compact public-key system is required. In

1985 Victor Miller [1] and Neal Koblitz [2] proposed elliptic curve cryptography (ECC)

which requires much smaller key sizes as compared to RSA and is discussed in the next

section.

Cryptography is the fundamental tool to secure sensitive data. However, efficient

implementations of cryptographic algorithms are required to meet speed requirements

in high-speed networks. The high processing rate enables cryptographic algorithms to

fully utilize the available network bandwidth. The implementation must also be flex-

ible and upgradeable in the field to the rapid changes in algorithms and standards.

Therefore, FPGA as an underlying implementation platform provides software-like

11

2.3. CRYPTOGRAPHIC KEY SIZES

Table 2.1: NIST Gudielines for Key Sizes 2012 [10,11]

Date Minimum
Strength

Symmetric
Algorithms
(AES)

RSA ECC ECC : AES RSA: ECC

2010 80 2-key
triple-DES

1024 160 2:1 6.4:1

2011-230 112 3-key
triple-DES

2048 224 2:1 9.14:1

>2030 128 AES-128 3072 256 2:1 12:1
>>2030 192 AES-192 7680 384 2:1 20:1
>>>2030 256 AES-256 15360 512 2:1 30:1

flexibility and hardware-like performance. FPGA based security protocols can be de-

ployed in many critical embedded systems such as wireless networks, electronic bank-

ing, electronic commerce, government online service and Virtual Private Networks

(VPNs).

Mostly PK algorithms such as RSA and ECC are deployed in hybrid schemes, where

they are used to design different protocols e.g. key exchange, digital signature, etc.,

while normal encryption/decryption tasks are achieved using symmetric key algo-

rithms such as AES and DES due to their simplicity. However, PK algorithms can

be used for encryption/decryption. This work sees ECC based cryptographic schemes

being deployed in a hybrid scenario.

2.3 Cryptographic Key Sizes

To ensure cryptographic schemes are secure against different attacks, different recom-

mendations have been made and updated with time to overcome known weaknesses

of the cryptographic systems [12]. In symmetric key cryptography the key sizes di-

rectly determines the level of security. Nowadays AES is considered to be a benchmark

among symmetric schemes, while RSA is considered as a benchmark in asymmetric

schemes.

Table 2.1 and Table 2.2 demonstrate two recommendations by the US National

Institute of Standards and Technology (NIST) and ECRYPT II, respectively [13]. The

NIST [10] recommendations in Table 2.1 suggest that 112-bit symmetric key sizes are

enough for up-to 2030 after that 128-bit symmetric key sizes are recommended. As in

symmetric key algorithms key sizes directly determine the level of security, therefore

12

2.3. CRYPTOGRAPHIC KEY SIZES

Table 2.2: ECRYPT II Recommended key sizes 2012 [14]

Date Symmetric
Algorithms

RSA ECC Hash ECC : AES RSA: ECC

Protection
upto 2015

80 1024 160 160 2:1 6.4:1

Short-term
Protection
(2015-2020)

96 1176 192 192 2:1 6.13:1

Medium-term
protection
(2015-2030)

112 2432 224 124 2:1 10.9:1

Long-term
protection
(2015-2040)

128 3248 256 256 2:1 12.69:1

Foreseeable
future

256 15424 512 512 2:1 30.1:1

AES-128 would be required to provide a minimum security after 2030. Similar con-

clusions can be drawn from ECRYPT II recommendations given in Table 2.2, where

short-term, medium-term, and long-term key sizes recommendations are listed.

As mentioned before for asymmetric schemes RSA is considered as a benchmark.

In both Tables 2.1 and 2.2, it is recommended that to achieve 128-bit AES security

level, RSA needs to have more than three thousand bits, more precisely 3072 [10]

(NIST recommendation) and 3248 [14] (ECRYPT II recommendation). It is also rec-

ommended that to achieve the same 128-bit AES security level, the required key sizes

in ECC is only 256-bit which is 12 times smaller than RSA key sizes. This difference

in required key sizes is even bigger at higher security level, 20 times smaller ECC

key sizes than the corresponding RSA at 192-bit AES security level. For 256-bit AES

security level, ECC key sizes are 30 times smaller than RSA.

It is worth noticing that the ECC key sizes are only twice the symmetric key sizes

while these are much smaller than the traditional asymmetric schemes such as RSA.

Smaller key sizes translate into lower implementation cost, higher performance, lower

power consumption, lower bandwidth requirements, and many other benefits. There-

fore, ECC will play a very important role in secure communications in resource con-

strained devices in the near feature.

13

2.4. FINITE FIELD

2.4 Finite Field

Finite field is the fundamental of cryptography, coding theory, and many other areas

of mathematics and computer science. This section describes some basic definitions

and then arithmetic operations in a finite field are discussed [15].

2.4.1 Groups

A Group concept is extensively used in modern cryptography. A Group G consists of

set of elements and an operator ∗. When the operator is applied on the elements of

G, it satisfies the following properties:

• The group is closed with respect to operator ∗, i.e., ∀a, b ∈ G, a ∗ b = c ∈ G.

• Associative law : a ∗ (b ∗ c) = (a ∗ b) ∗ c,∀(a, b, c) ∈ G.

• Identity law : a ∗ 1= 1 ∗ a = a,∀a ∈ G.

• Inverse law : a ∗ a−1 = a−1 ∗ a = 1,∀a ∈ G.

• Commutative law : a ∗ b = b ∗ a,∀a ∈ G

2.4.2 Rings

A ring R is an algebraic structure, in which elements can be added and multiplied

while satisfying the following properties:

• Commutativity : ∀a, b ∈ R, a+ b = b+ a ∈ R

• Associativity : ∀a, b, c ∈ R, (a+b)+c = a+(b+c) ∈ R ; (a×b)×c = a×(b×c) ∈ R

• Distributivity : ∀a, b, c ∈ R, a× (b+ c) = (a× b) + (a× c)

• Additive identity : An element 0 in R such that a+ 0= a ∀a ∈ R.

• Multiplicative identity : An element 1 in R such that a× 1= a ∀a ∈ R.

• Additive inverse : An element a1 in R such that a+ a1 = 0 ∀a ∈ R.

14

2.4. FINITE FIELD

Examples of rings are integer numbers, the rational numbers, the complex numbers

and the real numbers. A number in a ring is said to have a multiplicative inverse if

there is a unique element b ∈ R such that a× b = b× a = 1. Then the element b is a

multiplicative inverse of a.

2.4.3 Finite Fields

A field is a commutative ring that has multiplicative inverse for all non-zero elements.

A field is a set equipped with arithmetic operations such as addition, subtraction,

multiplication and division, while satisfying commutative, associative and distributive

properties.

A finite field also called a Galois field is a field which has a finite number of ele-

ments. The number of elements in the field is called the order of the field. The order

of a finite field is always the power of a prime p i.e. q = pm, where m is any positive

integer and q is the order of field. The prime p is called the characteristic of a field.

If the order q of the field is equal to prime p then the field is called a prime field. A

more formal definition of finite field and its properties are given below.

A finite field consists of a set F together with two operations i.e, addition (denoted

by +) and multiplication (denoted by ×), such that it satisfies the following arithmetic

properties:

1. ∀a, b ∈ F , a+ b ∈ F and a× b ∈ F

2. ∀a, b ∈ F , a+ b = b+ a and a× b = b× a

3. ∀a, b, c ∈ F , a× (b+ c) = (a× b) + (a× c)

4. ∀a, b, c ∈ F , (a+ b) + c = a+ (b+ c) and (a× b)× c = a× (b× c)

5. ∃0, 1 ∈ F , (a + 0) = (0+ a) = a, (a × 1) = (1× a) = a. Then, 0, 1 are additive

and multiplicative identities of the group respectively.

6. ∀a ∈ F,∃(−a) ∈ F such that (a+−a) = (−a+ a) = 0

7. ∀a ∈ F,∃a−1 ∈ F such that a × a−1 = a−1 × a = 1. Then, a−1 is called a multi-

plicative inverse of a.

15

2.4. FINITE FIELD

As an algebraic structure every field is a commutative ring with an additional prop-

erty of a multiplicative inverse for non zero elements, however, every ring may not be

a field. The smallest set of finite fields are defined on characteristics 2 and 3 and are

denoted as F2 (GF(2)) and F3 (GF(3)). In this work, finite fields defined over a large

prime characteristic p are used and described as GF(p) or Fp. The number of elements

in a finite field is called its order.

This research work is focused on elliptic curve cryptography over prime fields.

In this case Fp or GF(p) consists of all integers {0,1, 2,, p − 1}, where arithmetic

operations are performed on integers modulo p.

2.4.4 Prime Field Arithmetic

This section describes the arithmetic operations over prime field Fp. There are differ-

ent strategies to compute these operations efficiently [16], [15]. Efficient techniques

to compute finite field arithmetic operations are described in Chapter 3. However, a

general description of these operations is described here as follows:

• Fp Addition: Given a, b ∈ Fp, compute (a + b) and (a + b − p). Output =

(a+ b− p) if (a+ b) ¾ p, else output= (a+ b).

• Fp Subtraction: Given a, b ∈ Fp, compute (a − b) and a − b + p. Output =

(a− b+ p) if (a− b) < 0, else output= (a− b).

• Fp Multiplication: Given a, b ∈ Fp, compute z=(a× b) mod p, where z is the

remainder of dividing (a× b) by p.

• Fp Inversion: For a given non zero element a ∈ Fp, a multiplicative inverse

exists, if and only if a and p are relatively prime i.e, gcd(a, p) = 1, then compute

z = a−1 mod p, where z is a unique integer in Fp such that (a× z) mod p = 1

• Fp Squaring: For a given a ∈ Fp, compute z=(a2 mod p), which is Fp multipli-

cation of an operand to itself.

16

2.5. INTRODUCTION TO ELLIPTIC CURVES

2.5 Introduction to Elliptic Curves

This work considers an elliptic curve E, defined over prime field GF(p), where p is

a large prime characteristic number, then E is defined as a set of points (x , y), with

elements in GF(p) and the curve equation in short Weierstrass form [15,16] is repre-

sented as

E : y2 = x3 + ax + b (2.1)

Where, a, b, x , and y ∈ GF(p) and 4a3 + 27b2 6= 0 (modulo p). The set of all points

(x , y) that satisfy (2.1), plus the point at ∞ (infinity) make an abelian group. The

number of points on the curve is called the order of the curve. EC point addition and

EC point doubling operations over such groups are used to construct many elliptic

curve crypto-systems.

2.5.1 Elliptic Curve Scalar Multiplication

The main operation in all EC cryptographic schemes is the multiplication of a point on

an elliptic curve with a scalar (an integer). It is also known as point multiplication

and is given as

Q = dP (2.2)

Where d is a scalar value, P, Q are points on a same elliptic curve. The operation

dP = P + P + P ++ P
︸ ︷︷ ︸

d times

can be achieved by d − 1 repeated point additions. All ECC based protocols need to

compute this dP, hence it is the central operation in all ECC schemes. It is a one

way function where a forward computation i.e, dP is easy, but to calculate d from the

given Q and P is computationally hard. It is called the elliptic curve discrete logarithm

problem (ECDLP). Thus, mathematically, the security of elliptic curve cryptosystems

depends on the hardness of ECDLP which is defined as

For a given elliptic curve E defined over Fp, a point P ∈ E(Fp) of order r, and a second

point Q ∈ E(Fp), ECDLP is to determine the integer d ∈ [0, r − 1] such that Q = dP

ECDLP is the heart of elliptic curve cryptography. The security of any cryptosys-

tem defined over elliptic curves depends on the hardness of the ECDLP problem. It is

17

2.5. INTRODUCTION TO ELLIPTIC CURVES

P

Q

R=P+Q

x

y

R’

(a) Point addition

P

R= 2P

x

y
R’

(b) Point doubling

Figure 2.3: EC group operations

believed to be stronger and harder than the other problems such as the integer fac-

torization problem, which is the foundation of RSA cryptosystems. As a consequence,

it is expected that the key sizes of a cryptosystem defined over ECC, using a suitable

chosen elliptic curve and underlying field for a given security level are significantly

smaller than those cryptosystem defined over RSA as demonstrated in Tables 2.1 and

2.2.

Given a large d, it is not feasible to compute dP through repeated EC point addition

(PA) operation. Therefore, another special group operation of adding a point to itself

is defined and called EC point doubling (PD). There are many EC scalar multiplication

algorithms discussed in [16] [15], EC PA and PD are the two main basic operations in

all of these algorithms.

2.5.2 Elliptic Curve Group Operations

EC scalar multiplication is computed by a series of EC PD and PA operations. The EC

PA operation is an addition of two distinct EC points P with coordinates (x1, y1) and

Q with coordinates (x2, y2).

The geometrical interpretation of the EC PA operation on EC is shown in Figure

2.3(a), where a line is drawn passing through the two given points P and Q. The line

intersects the curve at a third point R′. The point R′ when reflected along the x-axis

results in a point R, which is the resultant point of the EC PA operation. Let (x3, y3) be

18

2.5. INTRODUCTION TO ELLIPTIC CURVES

the coordinates of R, then the mathematical interpretation of Figure 2.3(a) is given as

x3 = λ
2
PA− x1 − x2 (2.3)

y3 = λPA(x1 − x3)− y1 (2.4)

λPA =
(y2 − y1)
(x2 − x1)

(2.5)

Similarly, in the EC PD operation, a tangent line to the curve is drawn at the given

point P. The tangent line intersects the curve at point R′. The reflection of point R′

along the x-axis is the resultant point of the EC PD operation, i.e., R = 2P, as shown

in Figure 2.3(b). A mathematical translation of this procedure is given as follows:

x3 = λ
2
PD − 2x1 (2.6)

y3 = λPD(x1 − x3)− y1 (2.7)

λPD =
(3x2

1 + a)

2y1
(2.8)

Note that, the only difference in the computation of EC PD and PA operations

are their respective λ values as given in equations (2.5) and (2.8) . It is also worth

mentioning that EC points with two coordinates (x , y) is called affine coordinates

representation.

2.5.3 Order of an Elliptic Curve

All the points in Fp that satisfy the equation (2.1) plus the point at infinity∞ forms

the elliptic curve group and is denoted as E(Fp). Each group is comprised of a finite

number of elements. The total number of points on the curve, including the point∞,

is called the order of the curve. The order of the curve is usually denoted as #E(Fp).

The upper and lower bounds of the order of the curve can be approximated by Hasse’s

theorem described as follows:

Let #E(Fp) be the number of points in E(Fp), then, it is

p+ 1− 2
p

p ≤ #E(Fp)≤ p+ 1+ 2
p

p

19

2.5. INTRODUCTION TO ELLIPTIC CURVES

Table 2.3: Implementation Hierarchy of ECC Based Crypto Schemes

Leyers Operations
4 EC curve crypto schemes (key exchange, digital signature, etc)
3 EC scalar multiplication
2 EC group operations (PA, PD)
1 Finite Field arithmetic primitives

GF(p) addition, subtraction, multiplication, inversion/division

The interval [p+1−2
p

p ≤ #E(Fp)≤ p+1+2
p

p] is known as the Hasse interval

[17, 18] . Since 2
p

p is very small relative to p, therefore #E(Fp) ≈ p. However, the

Schoof algorithm [19] is an efficient way to find the exact number of points on an

elliptic curve. Similarly, the order of a point is described as follows.

For any point P on elliptic curve E over Fp, there is a small positive integer r such

that rP =∞, then r is called the order of point P. The order of any point always exists

and divides the order of the curve #E(Fp).

2.5.4 EC Crypto Schemes Implementation Hierarchy

Typical implementation hierarchy of EC based cryptographic schemes is shown in Ta-

ble 2.3. It is divided into four layers. Top layer consists of ECC based cryptographic

protocols such as key exchange [20], EC digital signature algorithm (ECDSA) [21],

secure shell (SSH) [22], transport layer security (TLS) [23], Bitcoin [24], etc. An

interested reader is referred to [25]. The next layer is the EC scalar multiplication

operation which is comprised of two EC group operations: EC PD and PA operations.

Further down, these EC group operations consist of finite field arithmetic operations

including modular addition, subtraction, multiplication and division. These finite field

primitives are the fundamental arithmetic operations, therefore they have a strong im-

pact on the overall crypto-system performance. The next section describes a simple

key exchange protocol based on ECC to illustrate the operations in elliptic curve cryp-

tography.

2.5.5 Diffie-Hellman Key Exchange

Diffie-Hellman key exchange method provides an ability to transfer keys securely over

an insecure channel without compromising security of the encryption process. In a

20

2.5. INTRODUCTION TO ELLIPTIC CURVES

Common Parameters

G, g, p

Alice, A BOB, B

A = gx mod p B = gy mod p

A1 = Bx mod p B1 = Ay mod p

A1= B1 = gxy

Figure 2.4: Diffie-Hellman key exchange scheme

finite field, the Diffie-Hellman key exchange methods involves several steps show in

Figure 2.4 and described as follows.

• First Alice and Bob has to agree on common parameters (G, g, p), where G is

group with generator g and a prime p.

• Alice computes A= g x mod p, for a random chosen x ∈ [1, p − 1] and sends A

to Bob.

• Bob computes B = g y mod p, for a random chosen y ∈ [1, p − 1] and sends B

to Alice.

• Alice computes A1= Bx mod p.

• Bob computes B1= Ay mod p.

Since A1 and B1 are equal i.e., g x y mod p, Alice and Bob successfully shared a secret

which they can use as an encryption key in the further subsequent communication. An

eavesdropper only have A, B, g, p, to find x while knowing g and g x mod p he has to

21

2.5. INTRODUCTION TO ELLIPTIC CURVES

Common Parameters

(P, r, h, a, b, p)

Alice, A BOB, B

A = d*P B = e*P

A1 = d*B B1 = e*A

A1= B1 = edP

EC scalar multiplication

Figure 2.5: EC based Diffie-Hellman key exchange scheme

solve the discrete logarithm problem (DLP), which is not feasible to solve for enough

large values of p in a polynomial time.

An elliptic curve version of the Diffie-Hellman key exchange method is known as

Elliptic Curve Diffie-Hellman (ECDH) key exchange. It is shown in Figure 2.5 and the

steps involved in the ECDH is given as follows.

• First Alice and Bob has to agree on common parameters (P, r, h, a, b, p), where

point P is a group generator of order r, h is a cofactor, a and b are elliptic curve

constants and p is a large prime.

• Alice computes A= dP, for a randomly chosen d ∈ [1, r−1] and sends A to Bob.

• Bob computes B = eP, for a randomly chosen e ∈ [1, r−1] and sends B to Alice.

• Alice computes A1= dB.

• Bob computes B1= eA.

22

2.5. INTRODUCTION TO ELLIPTIC CURVES

Since A1 and B1 are the same i.e., dB = d(eP) = dA= e(dP), both parties agreed on

the common secret using the ECDH method. Note that the operations dP, eP, dB, eA are

commonly known as an EC scalar multiplication or EC point multiplication. Therefore,

it is the fundamental operation in all the protocols based on ECC.

EC version of the DH key exchange protocol is further extended and standardized

in [26, 27]. An interested reader is referred to [25] for ECC protocols, deployment,

and security.

2.5.6 Standard Projective Coordinates

EC points represented in affine coordinates (x , y) require a modular inversion opera-

tion to compute both EC PD and EC PA operations, see equations 2.5 and 2.8. It is the

most expensive operation in terms of computation time and resource requirements.

In order to speed up the EC group operations, one common optimization is to repre-

sent points on an EC in such a way so that inversion free EC PD and PA operations

can be computed. Different projective coordinate systems have been explored. These

projective coordinate systems have the advantage of eliminating modular inversion

from the group operations at the cost of increased number of modular multiplication

operations. Typically at the end, one or two inversions are required to re-map from

projective to affine coordinates. An overall implementation flow of the EC scalar mul-

tiplication operation in projective coordinates is shown in Figure 2.6.

One such coordinate system is called standard projective coordinates. In the stan-

dard projective space setting, a point is represented using three coordinates (X , Y, Z).

An affine point P(x , y) corresponds to the point P(X Z−1, Y Z−1, Z), where Z 6= 0 in

the standard projective coordinates.

Conversions from affine-to-projective and projective-to-affine spaces are required,

however these occur only once during the scalar multiplication operation. An input

Affine-Projective EC Scalar Muliplication

d

Projective-Affine
P(x , y) P(X , Y, Z) Q(X , Y, Z) Q(x , y)

Figure 2.6: EC scalar multiplication in projective coordinates

23

2.5. INTRODUCTION TO ELLIPTIC CURVES

point for EC scalar multiplication operation is in affine coordinates (x , y) and its pro-

jective representation is (X Z−1, Y Z−1, Z), therefore affine-to-projective conversion is

required which is achieved by setting Z = 1 to avoid the conversion cost. Hence,

affine-to-projective transformation becomes a trivial process given as

(x , y) 7−→ (X , Y, 1) (2.9)

More precisely, given point in affine space (x , y), its standard projective space rep-

resentation is derived by setting the Z coordinate equal to one, then the other X , Y

coordinates are given as

(x , y) 7−→ (X , Y, 1), X = x , Y = y, Z = 1

At the end of the EC scalar multiplication operation, the projective-to-affine conversion

is required which is achieved as follows:

x = X Z−1, y = Y Z−1 (2.10)

This conversion costs two multiplications and a single inversion.

2.5.7 Jacobian Projective Coordinates

The other commonly used coordinates system is Jacobian projective coordinates, where

an affine point P(x , y) is represented as P(X Z−2, X Z−3, Z). Similarly, affine-to-Jacobian

transformation is trivial by setting the Z coordinate equal to one.

(x , y) 7−→ (X , Y, 1) (2.11)

At the end of scalar multiplication, conversion back to affine space is done as

x = X Z−2, y = Y Z−3 (2.12)

The cost of this conversion is four multiplications and one inversion. A more detailed

analysis of EC point operations in standard projective coordinates is presented in Chap-

ter 5 with complete EC scalar multiplier architectures. Further details of the Jacobian

24

2.6. SIDE CHANNEL ATTACKS

projective coordinates can be found in [28], [29], [16].

2.6 Side Channel Attacks

Algebraic attacks are not the only solution to deduce sensitive information of the cryp-

tosystem. There are many methods to retrieve sensitive information from the physical

implementation of a cryptographic device by monitoring some side channel informa-

tion which are called side channel attacks (SCA) [30].

Theoretically, the security of elliptic curve cryptographic systems relies on the hard-

ness of the ECDLP problem. However, ECDLP can be bypassed by exploiting several

algorithmic and implementation weaknesses. For example, if somehow an adversary

gets access to a cryptographic device, then the adversary may be able to reveal the

secret by observing timing and power consumption information. Timing and simple

power analysis (SPA) are the most common and simple side-channel attacks [31].

There are even more sophisticated attacks based on fault injection or differential

power analysis [32]. Fan et al. in [33, 34] surveyed most of the side-channel attacks

and their countermeasures.

Power analysis side channel attacks are grouped into simple power analysis (SPA)

and differential power analysis (DPA) [32]. SPA monitors a single instance of power

consumption of a device and tries to deduce the secret information. On the other

hand DPA gathers power data of several instances of the device and then statistically

analyses the data to reveal the secret information.

To employ any side channel attack, an attacker needs a physical access to a cryp-

tographic device; therefore countermeasures against these attacks are very important

in cryptosystems implemented on smart cards. However, this work targets the FPGA

as an implementation platform therefore it only considers algorithmic level counter-

measures against timing and simple power analysis attacks.

2.7 Related Work

This section reviews the literature of available hardware accelerators for point mul-

tiplication on elliptic curves. It outlines some of the proposed designs to establish a

25

2.7. RELATED WORK

basic understanding of the state-of-the art research in this domain.

2.7.1 Hardware Architectures for EC Scalar Multiplication

As implementation of point multiplication on elliptic curves can be decomposed into

several layers, therefore, the overall performance and efficiency could be significantly

improved by optimization at different layers, independently. The fundamental or base

layer of an EC cryptosystem implementation is the finite field arithmetic operations.

There are different design approaches to optimize these field operations which is dis-

cussed in chapter 3. Optimized field operations can boost the overall performance of

EC point multiplication which is based on EC PA and PD operations which are in turn

based on these field operations.

Crypto-systems based on ECC are designed using either elliptic curves defined over

the binary extension field GF(2m) or curves defined over a prime field GF(p). The

nature of operations in these fields are quite different from each other. In a binary

extension field, elements are described using polynomials and reduction is done using

an irreducible polynomial. On the other hand, elements in a prime field are inte-

gers and arithmetic operations are done using integer operations modulo a prime p.

Therefore, binary field arithmetic imposes completely different design challenges as

compared to that in prime field [35]. Typically, field operations over GF(2m) are very

much hardware friendly due to carry free arithmetic. Therefore, design challenges,

implementation cost, and performance of ECC processors over binary and prime fields

are not comparable, their comparison is misleading and even not possible because of

their different underlying field representations. However, due to recent advancements

in methods for attacking discrete logarithms, there are some concerns regarding binary

curves security. Modern cryptographers tend to avoid binary curves and would like

to use prime curves for long-term security. Performance comparison of ECC hardware

implementation using binary and prime fields is presented in [36].

This work focuses on point multiplication on elliptic curves over prime field, there-

fore, the main point of discussion throughout this work is hardware implementations

and analysis of ECC over prime field. For references, some of the ECC processor de-

signs over GF(2m) are reported in [37, 38, 39, 40, 41, 42, 43]. Review of high speed

ECC processors over GF(2m) is reported in [44], [45].

26

2.7. RELATED WORK

Table 2.4: NIST Recomended Primes

|p| size Numerical value AES equivalent security level
p192 2192 − 264 − 1 96
p224 2224 − 296 + 1 112
p256 2256 − 2224 + 2192 + 296 − 1 128
p384 2384 − 2128 + 296 + 232 − 1 192
p521 2521 − 1 256

Several prime field hardware accelerators for elliptic curve scalar multiplication

have been proposed during the last fifteen years. These designs can be classified into

two categories: designs over standard and designs over general prime fields.

2.7.1.1 EC Scalar Multipliers over Standard Prime Fields

Modular multiplication is the most time critical component in the construction of ellip-

tic curve point multiplication in projective coordinates. One of the optimization tech-

niques is by choosing a prime modulus p of special structure (very close to a power

of 2) called pseudo-Mersenne primes, which can reduce the computational complex-

ity of the reduction stage in a modular multiplication operation. In this regard NIST

recommends five prime fields [16] for different levels of security given in Table 2.4.

The prime P224 supports a security level of AES-112 bits and P256 supports a se-

curity level upto AES-128 bits which is more than enough in current scenario. Mod-

ular multiplication based on each one of the NIST recommended primes is usually

fast. However, as the prime modulus is of a special form which results in a fast

and rigid dedicated hardware architecture. This dedicated hardware is not flexi-

ble to work for any other prime values except for that which it is designed for. A

straight forward implementation of any NIST recommended prime is also not scal-

able, which means a design for P224 is not able to work for the P192. Designs reported

in [46], [47], [48], [49], [50], [51] are based on NIST recommended elliptic curves

over prime fields. Virtex-4 implementation of [46] completes a 256-bit EC scalar mul-

tiplication in 6.1 ms at 43 MHz clock frequency, occupies 20.1K slices and 32 DSPs

blocks (16 × 16 embedded multipliers). Alrimeih et al. in [47] extended the same

design to increase performance and side channel attacks resistivity. Its implementa-

tion on Virtex-6 computes a 192-bit EC scalar multiplication in 0.3 ms and 3.91 ms for

512-bit multiplication. It occupies 33K LUTs, 289 DSPs blocks (18× 18 multipliers),

27

2.7. RELATED WORK

and 128 RAMB36 (36K random access memory). In [48], two high speed ECC proces-

sors are proposed: one design is for NIST prime p224 while the other is for the NIST

prime p256. The designs are implemented on Virtex-4 FPGA and utilized embedded

16 × 16-bit multipliers in DSP blocks and built-in RAM. A similar design optimized

for NIST prime p256 is reported in [52]. Moreover, it is worth noticing that designs

in [48], [52] are only optimized for a single NIST recommended prime, whereas [47]

is the only available design that supports all NIST primes.

The designs in [50], [49] are efficient residue number system (RNS) implementa-

tions of elliptic curve point multiplication over prime field. The designs are structured

on a new finite field multipliers, which is designed using Montgomery and RNS tech-

niques. Arithmetic in RNS domain enables carry free computation and hence results

in lower computation time. However, arithmetic using RNS domain requires binary-

to-residual and residual-to-bianry transformations besides the original operation. The

designs exploited NIST primes special structure (not flexible). Moreover, [50] is very

vulnerable to timing and simple power analysis attacks while [49] provides resistivity

to the mentioned attacks. Bernstein et al. in [53] presents that there are many con-

cerns regarding NIST chosen primes and ECs, therefore it is worth to target general

prime field for ECC applications to provide the user more flexibility and security.

2.7.1.2 EC Scalar Multipliers over General Prime Field

Several general prime field ECC processors are also available in the literature. These

designs can be classified according to their adopted coordinates systems and reduc-

tion techniques. Another optimization technique is to use different number systems to

compute a modular multiplication operation as fast as possible for example, the Mont-

gomery number system [54] and the Residue number systems (RNS) [16]. These are

useful where the conversion cost before and after an operation does not dominate the

overall cost of the operation.

Designs reported in [51, 55, 56, 57] are built using EC points representation in

affine coordinates. Ghosh et al. in [56], proposed an elliptic curve scalar multiplier

architecture over general prime field resilient to timing and power analysis attacks.

The design performed point addition and doubling operations using affine coordi-

nates (x , y), which also requires modular inversion/division operations in addition

to the field addition, subtraction, and multiplication. Its arithmetic unit consisted of

28

2.7. RELATED WORK

two modular addition, two modular subtraction, two modular multiplication, and two

modular division units. The Virtex-4 FPGA implementation of the design computes a

256-bit EC scalar multiplication in 7.7 ms, cycle count of 330K, runs at a maximum

clock frequency of 43 MHz, and occupies 20.1K slices. The design is also resilient

against timing and SPA attacks.

[55] proposed a compact programmable arithmetic unit (PAU) to perform finite

field arithmetic operations. Then, EC scalar multiplier architecture is presented based

on dual instances of the PAU. EC points are represented in affine coordinates, and

Montgomery powering ladder method [58,59] for EC scalar multiplication is adopted

to perform point doubling and addition operations in parallel. Its implementation

on Virtex-II pro completes a 256-bit EC scalar multiplication in 9.38 ms, achieves a

maximum frequency of 36 MHz, cycle count of 338K, and consumes 12K slices. The

design also provides protection against timing, SPA, and DPA attacks.

The designs reported in [60,61,62,63,64,65,66,67,68,69,70,71,72] are based on

projective coordinates and most of the designs have adopted the Montgomery modu-

lar multiplication technique to perform the modular multiplication operation. A very

recent survey on hardware analysis of ECC processors on binary and prime fields are

reported in [73].

Moreover, there are many elliptic curve representations offering different trade-offs

between computational performance and security [16]. Constructions of new elliptic

curves is also an active area of research; their structures, parameters and security is

discussed in [74]. Another active research domain is to formulate new coordinate

systems with fewer field multiplications to compute EC group operations [28], [29].

Furthermore, the underlying platform also plays an important role in the perfor-

mance of point multiplication on elliptic curves. The same design implemented on a

CMOS customized library would be faster than the corresponding FPGA implementa-

tion. However, the FPGA is reconfigurable which means that an existing design can

be replaced with a new one on the same FPGA. The other important factor to choose

an FPGA as the underlying implementation platform is its lower design cost. In this

thesis FPGA is used for implementing EC scalar multiplication and therefore a brief

introduction to FPGAs is provided below.

29

2.8. FPGA ARCHITECTURE

2.8 FPGA Architecture

Field programmable gate arrays (FPGAs) are semiconductor devices that offer in-

house programmability to users. The design concept of FPGA is directly opposite to

the application specific integrated circuits (ASICs), which are built for particular ap-

plications. FPGA based design is more flexible as compared to ASIC design. However

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB

CLB

CLB

CLB

CLB

I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O

I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

Figure 2.7: A Generic FPGA Architecture [75]

ASIC design yields higher performance and lower power consumption. Therefore, for

applications where flexibility and cost are more important than performance (speed),

FPGA as an implementation platform is more suitable than ASIC.

A generic FPGA architecture is shown in Figure 2.7. It is a programmable matrix

of configurable logic blocks (CLBs). These CLBs can be connected to one another by

available horizontal and vertical wires, which behave as programmable interconnects.

Input/output (I/O) ports of different capacity and speed are located around the edges

to handle I/O signals. Through CLBs, FPGAs can be programmed for different desired

functionalities or applications. The reconfigurability of FPGA makes it the most suit-

able implementation platform for security algorithms, which may need to be updated

from time-to-time to avoid many security breaches.

CLB is the fundamental component of a FPGA to implement combinational and

sequential circuits. Its internal architecture varies for different vendors and families.

Xilinx [76] and Altera [77] are the two well known FPGA vendors that enjoy large

market shares. Virtex-6 is considered as a suitable family of Xilinx FPGA devices to

achieve high level of performance and functionality of any design. It is selected as the

30

2.8. FPGA ARCHITECTURE

Table 2.5: Virtex-6 FPGA CLB Internal Resources [78]

Slices LUTs Flip-Flop Carry Chains DRAM Shift Registers
2 8 16 2 256 bits 128 bits

targeting device to evaluate the performance of the EC scalar multipliers in this work.

Virtex-6 FPGA [79] is build on a high performance logic fabric of a 40nm CMOS

technology. Each CLB in a Virtex-6 FPGA consists of two slices organized in column

with dedicated carry chain. Each slice consists of the following elements

• Four function generators or look-up-tables (LUTs).

• Eight storage elements.

• Wide-function multiplexers.

Table 2.5 demonstrates logic resources in one Virtex-6 FPGA CLB. Each of the func-

tion generators are implemented as six input look-up-table (LUTs). These LUTs can be

used to implement any arbitrary six-input boolean functions. In addition to these con-

figurable blocks, modern FPGAs are also equipped with dedicated blocks to perform

arithmetic operations. For example, in Virtex-6, DSP48E1 slices are also available to

perform signal processing specific tasks. These DSP blocks can be configured to per-

formed a variety of other arithmetic functions. Each DSP48E1 slice is comprised of a

25×18-bit multiplier, an accumulator and an adder. On the other hand Virtex-4 FPGA

DSP48E slice consists of a 16×16-bit multiplier and an accumulator. These available

small multipliers can be utilized to build large integer multipliers to perform large

operand multiplications.

However, a design utilizing these in-built multipliers may not be portable to other

FPGA families because of different internal architecture of DSP slices. It may also be

less flexible as compared to a design that is build using CLBs only. Therefore, DSP

blocks are not used in this research work to add more flexibility and portability in the

presented designs.

In this work all the designs are coded in Verilog HDL. Xilinx ISE 14.1 Design Suite

is used for synthesis, mapping, placement and routing purposes while Xilinx ISE sim-

ulator (ISim) is used for behavioral simulation and initial design verification.

31

2.8. FPGA ARCHITECTURE

Design specification

· Schematic
· VHDL
· Verilog

System level
architecture

Design capturing

Behavioral simulation · ModelSim
· Vsim

Synthesis
Xilinx ISE 14.1 Design
Suite while targeting
Virtex-6 FPGA family

Place & Route
Xilinx ISE 14.1 Design
Suite while targeting
Virtex-6 FPGA family

Program & System test
Xilinx ISE 14.1 Design
Suite while targeting
Virtex-6 FPGA family

Figure 2.8: Design steps of FPGA implementation

2.8.1 FPGA Implementation Design Flow

Figure 2.8 shows the steps usually followed to implement any design on an FPGA

platform. Initially to design any system, a specification is required called design spec-

ification. The design specifications are generally presented as a document describing

a set of functionalities that the final solution will have to provide and a set of con-

straint that it must satisfy. In this context, the system level architecture is the initial

process of deriving a potential and realizable solution from the design specifications

and requirements.

This work first implements a system level architecture of the proposed modular

multipliers and EC scalar multipliers in software using C# as an implementation lan-

guage.

After system level design verification, potential hardware architectures are mod-

elled and designed at Register Transfer Level (RTL) using a Hardware Description

Language (Verilog HDL). Then, RTL design verification consists of acquiring a reason-

able confidence that a circuit will function correctly, under the assumption that no

32

2.8. FPGA ARCHITECTURE

manufacturing fault is present. To validate functionality, the RTL design is run and

tested on Xilinx ISIM and Modelsim simulators. This step is called the behavioral sim-

ulation. After simulation, the proposed architectures are synthesized using Xilinx ISE

Design Suite 14.1 targeting Virtex-6 FPGA to check whether designs are suitable for

the selected device or not. The report generated by the synthesis tool (ISE Design

Suite 14.1) summarizes the initial design implementation results on a selected FPGA

device. The report shows area consumption (LUTs, slices, registers), maximum clock

frequency (critical path delay), etc. All design and logic errors of the proposed archi-

tectures are removed in the synthesis phase. Post place and Route is done for routing

hardware thus optimizing hardware (gates), power and latency. After successful vali-

dation, the RTL design is ready for implementation on the FPGA.

It is not easy to provide fair performance comparisons of a design implemented on

different platforms. However, the analysis presented in [80] shows that an FPGA im-

plementation is approximately 35 times larger and between 3.4 to 4.6 times slower on

average compared to an ASIC implementation. In [81] a performance comparison of

different cryptographic algorithms implemented on different platforms (FPGA, ASIC,

General Purpose Processor) has been presented. The performance comparison shows

that ASIC and FPGA implementations are always faster than the software implemen-

tations. It is reported that FPGA implementation of a cryptographic algorithm is two

times faster than its software implementation.

Implementation results are sensitive to the chosen platform. Comparing ASIC and

FPGA, an FPGA LUT has higher delay as compared to an ASIC gate. Also when mea-

sured in kilo-gates per square micrometre, ASIC gate density is very high as compared

to an FPGA [82]. Results also depend on the synthesis tool used for ASIC and FPGA

implementations. FPGA and ASIC tools might support different synthesis directives

and options related to a design optimization.

Different FPGA families have different slice architectures. For example, Xilinx

Virtex-6 has four LUTs and eight registers. Xilinx Virtex-4 FPGA slice has two LUTs

and two registers. Due to this reason, slice logic utilization for the same design will

be different for different FPGA families. Also since each family of FPGAs has unique

architecture, it will also greatly affect the measured performance [83].

33

2.9. CONCLUSION

2.9 Conclusion

This chapter introduces the background and mathematical tools that are of prime im-

portance in the design of elliptic curve scalar multiplier. Basic concepts of different

cryptographic schemes with their recommended key sizes are introduced first. Then,

finite fields and elliptic curve arithmetic over prime field are presented. Next, different

implementation strategies of EC scalar multiplication at different levels of its imple-

mentation hierarchy are discussed. Finally, FPGA structure is briefly introduced. The

discussion of hardware acceleration of finite field arithmetic operations is presented

in the next chapter.

34

Chapter 3

Hardware Architectures for Finite Field

Arithmetic

Crypto-systems based on public-key cryptography (PKC) [1], [2], [3], [8] are struc-

tured using finite field arithmetic primitives such as modular addition, subtraction,

multiplication, and inversion [45]. Among these primitives, modular multiplication

and inversion/division are the most computational intensive operations. In fact mod-

ular inversion/division are the most tedious and expensive operations as compared

to modular multiplication operation. Therefore, alternative ways have been investi-

gated and designed to perform inversion/division free EC group operations. These

methods are known as projective coordinates as described in Chapter 2. Therefore

using projective coordinates is the most critical field operation is a modular multipli-

cation [16], [15].

This chapter first describes algorithms and design strategies to perform modular

addition, modular subtraction, and modular inversion/division operations. Then, it

presents two novel modular multiplier architectures based on radix-4, radix-8, Booth

encoding and interleaved multiplication techniques. Radix-4, radix-8 and Booth en-

coding techniques are used to optimize the interleaved modular multiplication algo-

rithm. The optimized radix-4 and radix-8 versions of interleaved modular multipli-

cation algorithms result in 50% and 66% reduction in total number of clock cycles

35

3.1. BACKGROUND AND RELATED WORK

required to perform a modular multiplication operation. The proposed multipliers do

not require any operand and result conversion as required in Montgomery method

discussed in the next section. Performance of the presented multiplier architectures is

discussed and analysed for different field sizes.

3.1 Background and Related Work

Finite filed arithmetic operations are the fundamental components to construct any

EC crypto-systems. Among these components field multiplication, field inversion and

field division are more critical than field addition and subtraction due to their inher-

ent computational difficulties. In fact, field inversion/division operations are more

expensive in terms of computation time and resource requirements as compared to

field multiplication both on hardware and software platforms. Projective coordinates

systems enable inversion/division free EC group operations. Thus, the most critical

operation in EC group operation in projective coordinates is finite field multiplication.

Several techniques have been proposed to speed-up finite field multiplication opera-

tion discussed as follows.

The classical method to perform a finite field multiplication of operands a and b

over a prime modulus p is defined in equations (3.1) and (3.2).

R= a× b (3.1)

c = R mod p (3.2)

It is a two-step process: integer multiplication and reduction modulo p. The reduction

modulo p step typically requires a trail division operation which is a very computa-

tional intensive operation, therefore many strategies have been proposed to lower

the computational intensity of the reduction step. Generally these strategies can be

divided into in three main categories [35,84]: designs over standard primes [85], de-

signs based on Montgomery multiplication method [54] and designs over interleaved

multiplication method [86,87].

In order to lower the computational intensity of the reduction step NIST recom-

mended five specialized primes p of size (p192, p224, p256, p384, p512) as given in Table

2.4. These primes have a special structure that are very close to a power of 2 i.e.,

36

3.1. BACKGROUND AND RELATED WORK

2a±2b±2c ±2d ±1, and are called pseudo-Mersenne primes. Modular multiplication

operation over this type of prime can result in higher performance and lower com-

putational cost. However, a design optimized for a particular modulus value results

in a very dedicated architecture, which can not be used for any other prime values,

hence the architecture lacks flexibility. A pipelined modular multiplier design reported

in [88] can support five NIST recommended primes. Its datapath is comprised of 8

pipeline stages with a latency of 80ns for primes of size 192, 224, 256-bits and 200 ns

for 384, 256-bits. It consumes 8340 slices and 259 dedicated DSPs blocks on Virtex-6

FPGA platform, which may not fit into smaller FPGAs, but is suitable for high speed

applications. Designs reported in [48], [52] also exploited special structure of NIST

primes, p224 and p256. These implementations are devoted to p224,p256 and are not

able to provide the flexibility to accommodate other primes, which is one of the main

focuses of this thesis.

Montgomery multiplication method converts the required division operation into

cheaper shift and addition operations. However, to make use of the Montgomery

method operands must be transformed from normal to Montgomery representation

to perform operation in the Montgomery domain, and the result must be transformed

back to the normal domain to yield the final result of a modular multiplication op-

eration. The method is suitable where the conversion overhead is negligible as com-

pared to the main operation cost, for example in exponentiation algorithms. Mont-

gomery multiplication based designs are reported in [89] and [90], in which [90] is

based on radix-4 and [89] incorporates radix-216 techniques. The designs reported

in [57], [60], [63], [69], [71] are based on radix-2 implementation. In [91] several

possible implementation strategies of Montgomery multiplication are discussed on the

basis of performance and implementation cost. Amnor et al in [92] report that radix-2

implementation of interleaved modular multiplication has better area-delay product.

Other interesting hardware implementations of Montgomery modular multiplica-

tion are [89], [93], [94] and [95]. Among these [93] presents interleaved modular

multiplier based on Montgomery and Barrett reduction techniques, [94] presents time

and area efficient modular multiplier. The design in [95] is based on redundant radix-

216 while [89] is based on radix-256.

The designs reported in [96], [97] used built-in FPGA Digital signal Processing

(DSP) blocks to design 256-bit modular multiplier architecture based on Montgomery

37

3.1. BACKGROUND AND RELATED WORK

method.

Interleaved multiplication method was proposed by Blakley [86,87] in 1983. The

method is based on iterative addition and reduction of partial products. Partial prod-

ucts accumulation and intermediate results reduction are integrated in a way to elim-

inate the final division. The idea is to reduce intermediate results below the modulus

value in each iteration so that the final division can be avoided. The algorithm starts

traversing a multiplier from most-significant-bit (MSB) to least-significant-bit (LSB).

Several modifications and hardware architectures have been reported [55], [56], [92],

[93], [98], [99], [100], [101], [102]. In [93] a faster interleaved modular multiplier

based on Montgomery and Barrett reduction techniques is reported. Its 130-nm ASIC

implementation runs at a maximum frequency of 320 MHz and computes one 256-bit

modular multiplication in 0.05 us.

Ghosh et al. in [100] reports a radix-2 parallel interleaved modular multiplier. Its

Virtex-II Pro FPGA implementation consumes 3475 slices with a latency of 3.2 us and

takes n clock cycles to perform an n-bit modular multiplication. The same multiplier

is utilized in [99] in construction of a dual core pairing processor. A robust GF(p)

parallel arithmetic unit for public key cryptography is reported in [103]. The parallel

arithmetic unit can perform modular addition, subtraction, multiplication and inver-

sion/division operations. The arithmetic unit adopted interleaved modular multipli-

cation to perform modular multiplication and extended Euclidean algorithm (EEA) to

perform inversion/division operations.

Similarly in [55] a compact programmable arithmetic unit is based on the same

algorithms (Interleave multiplication and EEA). The required number of adders is

reduced by exploiting hardware sharing techniques, however the unit is not able to

execute field operations in parallel and is not suitable for high performance applica-

tions. The design in [104] is based on pre-computation, carry save addition and sign

estimation techniques. However, it requires carry propagation adder at the final stage.

Montgomery and interleaved multiplication methods are widely used in the de-

sign of finite field multiplier. Performance comparison of these methods are discussed

and analysed in [105]. The proposed higher radix modular multipliers in this thesis

is based on interleaved multiplication method, works directly on numbers in two’s

complement formats and thus do not require any conversion. Performance of these

38

3.2. MODULAR ADDITION/SUBTRACTION

Algorithm 1: Modular addition

Input: a =
∑n−1

i=0 ai · 2i, b =
∑n−1

i=0 bi · 2i, p =
∑n−1

i=0 pi · 2i

Output: a+ b mod p
1 S← a+ b;
2 if S ≥ p then
3 S← S − p;
4 end
5 return S;

modular multipliers is evaluated against bit level implementation of interleaved mul-

tiplication method.

The rest of this chapter explains the adopting techniques in this work to perform

finite field arithmetic primitives.

3.2 Modular Addition/Subtraction

Modular addition (a + b) mod p and modular subtraction (a − b) mod p primitives

involve two n-bit adders cascaded in series [35], [84]. In addition to these adders,

multiplexing logic is also required at different levels to control the datapath. The

critical component is the adder logic due to long carry propagation delay. FPGA in-

built fast carry chains (FCC) can be used to speed up the addition operation. This

work uses high speed adder based on FCC and carry select approach [99]. Modular

addition operation is described in algorithm 1 while modular subtraction is described

in algorithm 2.

3.2.1 Modular Addition

Hardware realization of modular addition (a + b) mod p of two operands a and b is

shown in Figure 3.1. The first n-bit adder performs addition of two input operands

i.e., S1 = a + b. Then, the prime p is subtracted from the result S1 by taking two’s

complement of p i.e., S2 = S1 + (∼ p) + 1 in the second n-bit adder. These partial

results are multiplexed and assigned to the final result S. During the modular addition

operation the input signal cin is set to zero.

39

3.2. MODULAR ADDITION/SUBTRACTION

CIN COUT

COUTCIN

a

p

01

(a + b) mod p

S1 = a + b

S2 = S1+(~p)+1

b

CIN =0

n

n

n
n

n

Figure 3.1: Modular addition architecture

Algorithm 2: Modular subtraction

Input: a =
∑n−1

i=0 ai · 2i, b =
∑n−1

i=0 bi · 2i, p =
∑n−1

i=0 pi · 2i

Output: a− b mod p
1 S← a− b;
2 if S < 0 then
3 S← S + p;
4 end
5 return S;

3.2.2 Modular Subtraction

The architecture in Figure 3.2 performs modular subtraction (a − b) mod p of two

operands a and b, when the input signal cin is set to one i.e., (cin = 1). The first adder

logic performs subtraction (a − b) as (S1 = a + (∼ b) + 1), where (∼ b + 1) is the

two’s complement of b (because cin = 1). Then, the result is added with a prime p by

the second adder and the final result is selected by the carry out signal of first adder

which is indication of an underflow.

Modular addition/subtraction operations can be performed by a same architecture

as shown in Figure 3.3. The select signal (sel) determine the operation to be performed

by the architecture. For example if sel is equal to zero then it outputs s = (a+ b) mod

p otherwise it performs s = (a− b) mod p operation. This architecture takes a single

clock cycle to produce the results of modular addition or subtraction operation.

40

3.3. MODULAR INVERSION/DIVISION

CIN COUT

COUTCIN

a

p

0 1

(a-b) mod p

S1 = a + (~b) + 1

S2 = S1+p

CIN

b

CIN =1

n

n

n n

n

Figure 3.2: Modular subtraction architecture

b
0

1

+

+CIN COUT

COUTCIN

a

0 1

S = (a ± b) mod p

sel

p
1

0

01

n

n

n

n

n

0 1

Figure 3.3: Modular addition/subtraction architecture

3.3 Modular Inversion/Division

Modular inversion of a mod p exists if and only if a and p are relatively prime, i.e.

when the greatest common divisor of a and p is equal to one i.e. gcd(a, p) = 1. Then

the modular inversion of a is given in equation (3.3)

b = a−1 mod p (3.3)

41

3.3. MODULAR INVERSION/DIVISION

[?]In ECC, usually modular inversion is performed by two methods: Fermat’s little

theorem and extended Euclidean algorithm [16]. Fermat’s little theorem dictates that

ap−1 mod p = 1 and therefore dividing both sides by a turns into ap−2 mod p = a−1.

By adopting this method an inverse can be calculated by modular exponentiation

which requires a large number of modular multiplication operations. Modular di-

vision using this method is usually performed by a modular inversion followed by one

modular multiplication operation.

Another method to calculate modular inverse is by knowing the greatest common

divisor of two integers expressed as a linear combination of two. Since a and p are

relatively prime then the following expression may be solved for integers b and t:

ab+ pt = 1 mod p

This linear equation implies that:

ab ≡ 1 mod p

Thus, b is the inverse of a mod p and the values of b and t are derived by an algorithm

known as the extended Euclidean algortihm (EEA). Kaliski in [106] proposes a variant

of EEA which is able to perform Montgomery inverse. This algorithm is useful when

the operands are represented in the Montgomery domain.

The binary version of EEA [16] is widely used due to its simpler shift (division by

2) and subtraction operations and is given in algorithm 3. The algorithm is imple-

mented to compute modular inversion/division operations following the guidelines

and architectural flow reported in [107], [103]. The algorithm consists of one outer

and two inner loops. In the inner loops similar operations are performed on different

intermediate signals. At start variables u, v, a1 and a2 are loaded with an operand a,

a modulus p, one and zero respectively. It is worth mentioning that to compute a

modular division (c/a mod p), the variable a1 must be loaded with c instead of one.

The algorithm can be divided into three smaller parts which are given as follow.

1. First inner loop (FIL)

2. Second Inner loop (SIL)

3. Outer loop (OL)

42

3.3. MODULAR INVERSION/DIVISION

Algorithm 3: Modular Inversion/Division

Input: a =
∑n−1

i=0 ai · 2i, p =
∑n−1

i=0 pi · 2i

Output: b = a−1 mod p
1 u← a, v← p, a1← 1, a2← 0
2 while (u 6= 1 and v 6= 1) do
3 while (u is even) do

// First inner loop //

4 u← u/2
5 if a1 is even then a1← a1/2 else a1← (a1 + p)/2
6 end
7 while (v is even) do

// Second inner loop //

8 v← v/2
9 if a2 is even then a2← a2/2 else a2← (a2 + p)/2

10 end
// Outer loop //

11 if u≥ v then u← u− v, a1← a1 − a2 mod p
12 else v← v − u, a2← a2 − a1 mod p
13 end

// Final step //

14 if u= 1 then
15 b← a1

16 end
17 else
18 b← a2

19 end

These three loops are shown in Figure 3.4, where outputs v, a2, u and a1 are new

values at each iteration of the algorithm. FIL step is comprised of steps 4 and 5, SIL is

comprised of steps 8 and 9, and OL consists of steps 11 and 12.

Internal architectures of FIL and SIL are shown in Figure 3.5. The architectures

perform exactly identical operations on their respective inputs concurrently. Even or

odd signal is determined by the least significant bit indexed with [0]. The value is

even if the least significant bit is zero and odd otherwise.

An internal architecture of the OL unit is shown in Figure 3.6. It is comprised of

two magnitude (-) and two modular subtractors (-) mod p. The condition u ≥ v is

checked by borrow out signal of v−u operation. The total number of iterations in the

algorithm is 2n where n is bit length of modulus p therefore the presented architecture

computes n-bit modular inversion/division operations in 2n clock cycles. For example,

inversion/division in a 256-bit field size are performed in 512 clock cycles.

43

3.3. MODULAR INVERSION/DIVISION

FIL

a1 pu

u a1

(a) FIL

SIL

a2 pv

v a2

(b) SIL

OL

a1 vu

a1

a2

a2

(c) OL

Figure 3.4: Overall steps in EEA algorithm

>> +

>>

p

>>

01

01
u[0]

a1[0]

01
u[0]

a1

a1u

u

(a) FIL

>>

v

+

>>

p

>>

01

01
v[0]

01
v[0]

v

a2

a2

a2[0]

(b) SIL

Figure 3.5: FIL and SIL internal architecture

3.3.1 Implementation Results

The cost of division and inversion using the binary version of EEA is the same, which

is exactly 2n clock cycles. The implementation of modular inversion/division using

the EEA technique on the Virtex-6 FPGA platform is given in Table 3.1.

For a 256-bit field size implementation, it takes 3.52 us, consumes 5363 LUTs and

achieves 149 MHz maximum clock frequency. A drawback of the EEA technique is its

implementation cost as compared to Fermat’s little theorem. Inversion using Fermat’s

little theorem can be accomplished using modular multiplication therefore there is no

u a1v a2p

(-) mod p

0 1

u

0 1

a1

a1a2 p

01

a2

u a1 a2

01

v

v

(-) mod p

Figure 3.6: OL internal architecture

44

3.4. MODULAR MULTIPLICATION

Table 3.1: Modular inversion/division implementation on Virtex-6

Field size (bits) Area (LUTs) Freq (MHz) clock cycles Time (us)

192-bits 3931 173 384 2.2
224-bits 4550 159 448 2.83
256-bits 5363 149 512 3.52

need for dedicated hardware for inversion. However, EEA is mostly adopted where

performance is more critical than implementation cost. The main focus of this work

is on the performance (speed) so EEA is used.

3.4 Modular Multiplication

An interesting algorithm to perform modular multiplication with interleaved reduction

is reported in [86], [87] and is known as Interleaved modular multiplication (IM)

method. Two main advantages of the IM method are: Unlike the Montgomery method

it does not require any operands and result conversions between conventional and

Montgomery domain and still it is able to eliminate the final division step. It reduces

the intermediate results below the modulus in each iteration to eliminate the final

division step. The complete method is given in algorithm 4.

It is based on an iterative addition of partial products (x · yi) to an accumulator

z. In each iteration the contents of accumulator z are single-bit left-shifted and re-

duced modulo p i.e., (2z mod p). In the same iteration the partial product (x · yi) is

conditionally added to the accumulator z depending on the i th bit of a multiplier y as

explained in the algorithm.

The procedure adopted in algorithm 4 is known as double and add algorithm ev-

ident from steps 4 and 6. It starts from the most significant bit (MSB) of multiplier

yn−1 and conditionally adds multiplicand x to the accumulator z depending on yi. At

each iteration intermediate results and partial products are reduced by a modulus p

to keep them in the range (0, p− 1). The main operations are

1. One bit left-shift of z modulo p, this operation is denoted as modular doubling

mentioned in step 4.

45

3.4. MODULAR MULTIPLICATION

Algorithm 4: Basic Serial radix-2 Interleaved Multiplication (R2IM)

Input: x =
∑n−1

i=o x i · 2i, y =
∑n−1

i=o yi · 2i, p =
∑n−1

i=o pi · 2i

Output: z = x × y mod p
1 z← 0;
2 for i from n− 1 downto 0 ; // n is a bit-length of p
3 do
4 z← 2z mod p ; // modular doubling

5 if yi = 1 then
6 z← (z + x) mod p ; // modular addition

7 end
8 end
9 return z

S2 = S1 + (~p) + 1 COUTCIN

z

p

01

(2z) mod p

1

CIN

2z

S1

Figure 3.7: Modular doubling architecture

2. Modular addition of multiplicand x to z as described in step 6.

These two steps constitute the overall data path of the radix-2 implementation of the

IM algorithm (R2IM). In an integer multiplication, doubling (2z) is simply accom-

plished by one bit left-shift operation which is merely a rewiring in hardware (free of

cost), but in case of modular multiplication a reduction by a modulus p is also needed,

therefore it is either shift (2z) or shift-and-reduce (2z − p) operations i.e., a modulus

p is subtracted from the result of 2z if it is greater than or equal to p. Thus in a finite

field its hardware realization consists of one n-bit adder and one 2 : 1 multiplexer as

shown in Figure 3.7. The modular addition step can be realized in hardware by two

n-bit adders and one 2 : 1 multiplexer as shown in Figure 3.1.

Let tadd denote the critical path delay of an n-bit adder and tmux denote the critical

path delay of a 2 : 1 multiplexer. Then the critical path delay of R2IM multiplier

46

3.5. RADIX-4 BE INTERLEAVED MULTIPLICATION

architecture (TR2I M) is given in equation 3.4.

TR2I M = 3tadd + 2tmux (3.4)

It is evident from the equation that hardware realization of the R2IM algorithm has

a critical path delay of three n-bit adders and two 2 : 1 multiplexers. The total num-

ber of iterations in the R2IM algorithm is n, if each of the iterations is executed in a

single clock cycle then the total number of clock cycles required to execute the R2IM

algorithm is exactly n, where n represents the bit length of modulus p.

3.5 Radix-4 BE Interleaved Multiplication

Several modifications have been proposed to optimize the IM method. Ghosh et al.

in [100] proposed an architecture that exploited Montgomery powering ladder tech-

nique [59] to execute modular doubling and modular addition operations in parallel

(R2PIM). However, internal operations are performed bit wise so it also takes n clock

cycles to execute an n-bit modular multiplication operation. Two other novel mod-

ifications of IM algorithm and their optimized hardware architectures are presented

in [98].

There are three basic building blocks of any multiplier design, they are.

• Partial products generation

• Partial products reduction

• Partial products accumulation

There are n partial products in the R2IM and R2PIM multipliers, thus without any

partial products reduction techniques their generation and accumulation take n clock

cycles, therefore these modular multiplier designs takes n clock cycles to perform an

n-bit modular multiplication operation for n-bit operands.

There are several techniques to reduce the total number of partial products and one

such technique is known as Booth encoding (BE) [108], [109], [110], [111]. Com-

bining BE with higher radix methods can reduce the total number of partial products,

which ultimately reduces the total number of iterations in the R2IM algorithm.

47

3.5. RADIX-4 BE INTERLEAVED MULTIPLICATION

Table 3.2: Radix-4 Booth encoding

Yi Yi−1 Yi−2 Encoded value
0 0 0 0
0 0 1 +1
0 1 0 +1
0 1 1 +2
1 0 0 −2
1 0 1 −1
1 1 0 −1
1 1 1 0

xxxxxx 0

0, ± 1, ±2

0, ± 1, ±2

0, ± 1, ±2

xx

0, ± 1, ±2

Figure 3.8: Radix-4 Booth encoding

In a simple radix-4 method two bits of a multiplier are processed at a time either

moving from MSB towards LSB or vice versa. The two-bit pair can possibly be 002,

012, 102, and 112, in integer form these are {0,1, 2,3}. Therefore, using radix-4 the

possible partial products can be 0, x , 2x mod p, and 3x mod p.

By combining radix-4 and BE techniques, the possible partial products can be 0,

x , −x , 2x mod p, and −2x mod p. BE technique shown in Figure 3.8 works on

groups of three bits with an overlapping bit from the previous group and encodes

these groups into one of the possible values in Table 3.2 i.e., {0,±1,±2}. BE is a

sign digit representation where each group or block is encoded as a signed number in

two’s complement format. Sign extension of the multiplier y is also required in the case

where there are less than 3 bits in the left most group. As in ECC, the multiplication

operation is computed over positive numbers. So adding zeros to the left of the MSB

of a multiplier is enough to complete the left most group. As the effective number of

bits processed in each iteration in Radix-4 BE is two, the number of zeros to be added

to the left of the MSB of an n-bit multiplier y is determined as follows:

• If n modulo 2 = 0, then append two zeros to the left of the MSB of multiplier y

• if n modulo 2 = 1, then append a single zero to the left of the MSB of multiplier

y

As the recommended ECC key sizes are all of even number of bits, so two zeros are

48

3.5. RADIX-4 BE INTERLEAVED MULTIPLICATION

Algorithm 5: Radix-4 BE Interleaved Multiplication (R4BIM)

Input: x =
∑n−1

i=0 x i · 2i, y =
∑n−1

i=0 yi · 2i, p =
∑n−1

i=0 pi · 2i

Output: (z = x × y) mod p
1 z← 0
2 R← 2x mod p // Pre-computed value //
3 N ← n+ 2 // append two 0s to left of MSB of y //
4 N ← N + 1 // append a single 0 to right of LSB of y //
5 for (i = N ; i ≥ 2; i = i − 2) do
6 z← 4z mod p
7 switch (y(i:i−2)) do
8 when {000 | 111}=⇒ z← z
9 when {001 | 010 | 101 | 110}=⇒ z← z ± x mod p

10 else =⇒ z← z ± R mod p
11 endsw
12 end
13 return z

inserted to the left of the MSB of a multiplier. One extra zero needs to be added to the

right of the LSB of multiplier y , as the overlapping bit for the first block. Therefore,

an extra iteration is required due to the adding of two zeros to the left of the MSB of

multiplier y .

Modification to the R2IM algorithm based on radix-4 and BE techniques (R4BIM)

is given in algorithm 5. The proposed R4BIM algorithm reduces the total number

of iterations from n to bn/2c+ 1, therefore the number of partial products is halved,

which results in a considerable amount of reduction in multiplication time and the

required number of clock cycles. Algorithm 5 also involves two major operations

given as follows:

• Two-bit left shift mod p operation i.e., 4z mod p as specified in step 6.

• Modular addition or subtraction (add/sub) operation as specified in steps 9 and

10.

Due to processing two bits of multiplier y at a time excluding the overlapping bit the

R4BIM algorithm becomes double-double add or subtract algorithm. In each iteration

step 6 and either of step 8, step 9 or step 10 are executed. The steps 6 and either of

step 9 or 10 constitute an overall data path of the R4BIM algorithm.

In every iteration of the algorithm, the accumulator z is two-bit left shifted and

then reduced modulo p i.e., 4z mod p. Then, partial products b1(0,±x ,±2x) are

49

3.5. RADIX-4 BE INTERLEAVED MULTIPLICATION

modular added or subtracted from the accumulator z depending on the three respec-

tive multiplier bits. Modular addition of z and b1 (z + b1 mod p) is required in the

case of partial products b1 = {x , 2x}, while if partial products b1 = {−x ,−2x}, then

modular subtraction operation is needed i.e., (z − b1) mod p. The two bit left shift

mod p operation is performed as two single bit left shift mod p operations which is

described in the next section. It is worth mentioning that step 2 of the algorithm is

performed by a pre-computation process.

3.5.1 Hardware Architecture

Hardware architecture to execute the R4BIM algorithm is shown in Figure 3.9. The

architecture can be divided into macro and micro blocks. Two modular doubling (2z

mod p) and a single modular Add/Sub blocks are the macro blocks while the BE and

M are considered as a micro blocks. In addition to these blocks the architecture also

contains one shift register SR, two n-bit registers z, R and a control unit which is

not shown in Figure 3.9. The modular doubling blocks are identical, each of them

is responsible for performing a 2z mod p operation. The internal architecture of the

modular doubling block is shown in Figure 3.7, where it is discussed that hardware

realization of 2z mod p operation requires one n-bit adder and one 2:1 multiplexer.

The second modular doubling block in Figure 3.9 performs a single bit left shift mod

p operation on the output of the first modular doubling block and produces the result

of the 4z mod p operation. As this operation is executed as two sequential 2z mod p

operations, so in total it is carried out by two n-bit adders and two multiplexers. Note

that left-shift operation (�) does not cost anything in hardware because it is achieved

by just rewiring.

The macro Add/Sub mod p block performs modular addition or subtraction op-

eration depending on its input carry in signal (cin). Its internal architecture has also

been discussed in section 3.2 (see Figure (3.3)). Its critical path delay is comprised of

two n-bit adders and three 2:1 multiplexers. Partial products b1 can have five possi-

ble values i.e., {0,±1,±2}x . In the implementation these are divided into two parts:

b1 = {0,+1,+2}x and b1 = {−1,−2}x . These two parts are distinguished by the out-

put of block BE (cin), which indicates the Add/Sub block either to perform a modular

addition or subtraction operation. The block BE is based on radix-4 Booth encoding

logic, where yi, yi−1 represent the two current bits and yi−2 represents the overlapping

50

3.5. RADIX-4 BE INTERLEAVED MULTIPLICATION

x

0

R

b1

Add / Sub
mod p

2z mod p

M

cin

p
1

z

BE

……...

SR

2z mod p

yi yi -1 yi -2

1

yi

yi -2

yi -1

Figure 3.9: R4BIM multiplier architecture

bit of the previous block of a 3 bits block of multiplier y . The overall execution flow

of algorithm 5 on the architecture in Figure 3.9 is described below.

• In the first clock cycle register z is loaded with multiplicand x , registers SR, z are

loaded with the multiplier y and 0 receptively. In the next clock cycle, partial

product 2x mod p is pre-computed in the first modular doubling block, which is

then stored in register R. Thus, the pre-computation of 2x mod p is completed

in two clock cycles.

• Then, the register z is two-bit left shifted and are reduced modulo p in the two

modular doubling blocks. Partial products (0,±x ,±2x) are then modular added

or subtracted from the accumulator z in the Add/Sub block. Modular addition

or subtraction is controlled by the BE block. All these operations are performed

in a single clock cycle.

• The SR register left shifts two bits of the multiplier y in each iteration.

• Note that the micro blocks M , BE, and SR perform their respective operations in

parallel with the macro blocks.

The total number of iterations of the algorithm is exactly bn/2c+1. The given hardware

architecture executes each iteration in a single clock cycle, therefore it takes bn/2c+3

clock cycles to perform an n-bit modular multiplication operation. Note that an extra

two clock cycles are consumed for the pre-computation of the 2x mod p operation. It

is also worth mentioning that step 5 of the R4BIM algorithm is controlled by a counter

51

3.6. RADIX-8 BE INTERLEAVED MULTIPLICATION

xxxxxx 0

0, ± 1, ±2 , ±3, ±4

xx

0, ± 1, ±2 , ±3, ±4

x

0, ± 1, ±2 , ±3, ±4

xxx

0, ± 1, ±2 , ±3, ±4

Figure 3.10: Radix-8 Booth encoding

which is decremented twice after each iteration. This counter logic is a part of the

control unit, which is not shown in Figure 3.9.

The critical path delay of the R4BIM is comprised of the two modular doubling

and a single modular add/sub blocks which is given in equation 3.5.

TR4BIM = 4tadd + 5tmux (3.5)

3.6 Radix-8 BE Interleaved Multiplication

The R4BIM algorithm reduces the number of loop iterations from n to bn/2c+ 1. The

iteration count can be further reduced by adopting radix-8 instead of radix-4 method.

The modified IM algorithm based on radix-8 and BE techniques (R8BIM) is given in

algorithm 6. The radix-8 BE technique is given in Table 3.3 and Figure 3.10, where

each quadruple of multiplier y is encoded as {0,±1,±2,±3,±4}with a one bit overlap

from the previous group. Sign extension of multiplier is also required in the case

where there is less than four bits in the left most group. As in ECC positive numbers

are handled so adding zeros to the left of the MSB of multiplier y , it is enough to

complete the left most group. As the effective number of bits processed in radix-8 BE

is three, therefore the number of zeros to be added to the left of the MSB of an n-bit

multiplier y is determined as follows.

• If n modulo 3 = 0, add three zeros.

• If n modulo 3 = 1, add two zeros.

• If n modulo 3 = 2, add a single zero.

52

3.6. RADIX-8 BE INTERLEAVED MULTIPLICATION

Algorithm 6: Radix-8 BE Interleaved Multiplication (R8BIM)

Input: x =
∑n−1

i=0 x i · 2i, y =
∑n−1

i=0 yi · 2i, p =
∑n−1

i=0 pi · 2i

Output: z = x × y mod p
1 z← 0, R1← 2x mod p, R2← 3x mod p, R3← 4x mod p,

N =







n+ 3, if n mod 3= 0 append three 0 to the left of MSB of y

n+ 2, if n mod 3= 1 append two 0 to the left of MSB of y

n+ 1, if n mod 3= 2 append single 0 to the left of MSB of y

2 N ← N + 1, append single 0 to the right of LSB of y
3 for (i = N; i ≥ 3; i = i − 3) do
4 z := 8z mod p
5 switch (y(i:i−3)) do
6 when {0000 | 1111}=⇒ z← z
7 when {0001 | 0010 | 1101 | 1110}=⇒ z← z ± x mod p
8 when {0011 | 0100 | 1011 | 1100}=⇒ z← z ± R1 mod p
9 when {0101 | 0110 | 1001 | 1010}=⇒ z← z ± R2 mod p

10 else =⇒ z← z ± R3 mod p
11 endsw
12 end
13 return z

Finally, one extra zero needs to be added to the left of the LSB of a multiplier y acting as

the overlapping bit for the first block. The generation of ±3,±4 is the major difference

to the R4BIM algorithm.

The R8BIM algorithm takes bn/3c+ 1 iterations to perform an n-bit modular mul-

tiplication operation. It is comprised of several steps which are explained as follows.

• In step 1, 2x mod p, 3x mod p and 4x mod p values are computed only once.

This is done by a pre-computation process which is explained in the next section.

• Step 4 is performed iteratively throughout the loop iterations. It is a three-bit

left shift modulo p value of an accumulator z i.e., 8z mod p.

• In steps 7-10, respective partial products are modular added or subtracted from

the accumulator z i.e., z = z ± { x , R1, R2, R3}. Selection of the respective par-

tial product is based on the current four bits of multiplier y being processed

according to Table 3.3.

Therefore in each iteration of the algorithm first the accumulator z is three bits left

shifted and reduced modulo p. Then in the same iteration the respective partial prod-

53

3.6. RADIX-8 BE INTERLEAVED MULTIPLICATION

Table 3.3: Radix-8 Booth encoding

yi yi−1 yi−2 yi−3 Encoded value
0 0 0 0 0
0 0 0 1 +1
0 0 1 0 +1
0 0 1 1 +2
0 1 0 0 +2
0 1 0 1 +3
0 1 1 0 +3
0 1 1 1 +4
1 0 0 0 −4
1 0 0 1 −3
1 0 1 0 −3
1 0 1 1 −2
1 1 0 0 −2
1 1 0 1 −1
1 1 1 0 −1
1 1 1 1 0

uct is modular added or subtracted from the accumulator. The total number of partial

products using radix-8 and BE techniques is reduced from n to bn/3c+ 1.

3.6.1 Hardware Architecure

A hardware architecture to execute the R8BIM algorithm is shown in Figure 3.11. The

R8BIM architecture is composed of four major blocks: three modular doubling and one

modular Add/Sub. These four major blocks are cascaded in series which means that

each block output is the input to the next block. In addition to these major blocks, the

R8BIM architecture also contains a look-up-table based multiplexer M , a BE block, a

three-bit shift register SR, and four n-bit data registers R1, R2, R3 and z. Execution of

the R8BIM algorithm on the presented architecture can be divided into two phases: A

and B. These are detailed as follows:

3.6.1.1 Phase A

As in the step 1 of the R8BIM method a pre-computation of 2x mod p, 3x mod p

and 4x mod p is needed for a multiplicand x . The pre-computation of these required

values is completed in Phase A and is explained below.

54

3.6. RADIX-8 BE INTERLEAVED MULTIPLICATION

x

0

b1

Add / Sub
mod p

M

cin

p

1

z

……...

SR

yi-1 yi-2 yi-3 yi

R2

R3

R1
BE

yi

Yi-3

2z mod p 2z mod p 2z mod p

Yi-1
Yi-2

Figure 3.11: R8BIM multiplier architecture

• In the first clock cycle register z is loaded with the multiplicand x . In the next

clock cycle, the first and second modular doubling units output 2x mod p, 4x

mod p values receptively. In the same clock cycle these values are stored in

registers R1, R3 respectively.

• In the next clock cycle 3x mod p value is computed in Add/Sub block by setting

its inputs to x , 2x mod p, and cin to zero. Note that zero is set for the output of

block BE which indicates add/sub block to execute a modular addition operation

on its respective inputs. Then the result of Add/Sub block is stored in register

R2 in the next clock cycle.

After four clock cycles registers R1−3 are loaded with their respective values and the

pre-computation process is completed.

3.6.1.2 Phase B

In phase B, the following steps of the algorithm are performed on their respective

hardware units in iterative fashion, which are explained as below.

• Loop iteration is controlled by a counter which is decremented by three after

each iteration.

• Step 4, 8z mod p is performed by three identical modular doubling units cas-

caded in series. The operation is divided into three single bit left shift mod p

55

3.6. RADIX-8 BE INTERLEAVED MULTIPLICATION

operations executed in a serial fashion given in equation 3.6.

8z mod p = 2(2(2z mod p) mod p)) mod p (3.6)

Register z is initially loaded with zero in phase A. In each iteration of phase B the

accumulator is three bits left shifted and reduced modulo p. Then a respective

partial product is modular added to or subtracted from the accumulator.

• Steps 5-11 are executed by the M block and Add/Sub block. Block M is a look-

up-table based multiplexer that selects the appropriate partial products to be

modular added or to subtracted from the accumulator in the Add/Sub block.

• The BE block accepts four consecutive multiplier bits and generates a single bit

control signal (cin) that controls the Add/Sub block to perform either modular

addition or subtraction operation. If it is equal to zero then modular addition is

performed otherwise subtraction is executed.

The controller is based on a counter. It controls the loop execution and also generates

appropriate signals to execute phase A and B. Each iteration of the loop is executed

in a single clock cycle. As the total number of iterations in BE radix-8 IM algorithm

is exactly bn/3c+ 1. Therefore, the proposed architecture performs an n-bit modular

multiplication operation in bn/3c+5, in which the extra four clock cycles are consumed

in the pre-computation process (phase A) of the algorithm.

The critical path delay of BE radix-8 IM is comprised of three modular doubling

and one modular add/sub blocks which is given in equation (3.7).

TR8BIM = 5tadd + 6tmux (3.7)

By comparing equations (3.5) and (3.7), it is evident that in the critical path of R8BIM

multiplier, one extra n-bit adder and one 2:1 multiplexer is required as compared to

R4BIM multiplier (see equation (3.5)), however it reduces the number of clock cycles

from (bn/2c+3) to (bn/3c+5), which is almost 33% lower than the required number

of clock cycles of the R4BIM multiplier . A performance analysis on the basis of com-

putation time, area requirements, operating frequencies and throughput is discussed

in the next section.

56

3.7. IMPLEMENTATION AND RESULTS

Table 3.4: Area comparison of IM multipliers implementation on Virtex-6

Design Field size (p) Slices Look-up-tables (LUTs) Slice registers
R2IM 160-bits 631 1733 531

192-bits 757 2049 627
224-bits 993 2401 723
256-bits 1012 2900 777

R4BIM 160-bits 1186 2911 556
192-bits 1272 3511 652
224-bits 1447 4053 748
256-bits 1550 4606 845

R8BIM 160-bits 1320 3234 562
192-bits 1442 4119 659
224-bits 1547 4549 755
256-bits 1710 5149 851

��

�����

�����

�����

�����

�����

�����

��
�
�
�
��
�
��

�
��
��
��
�
�
��
�

� ���!"��

������# �$����# ������# ������#

R2IM R4BIM R8BIM

Figure 3.12: Area comparisons of IM multipliers

3.7 Implementation and Results

The R4BIM and R8BIM multipliers are coded in Verilog HDL and are synthesized tar-

geting Virtex-6 FPGA. The Xilinx ISE 14.1 design suite is used for synthesis, mapping,

placement, and routing. For behavioral simulation, ModelSim and Xilinx Isim sim-

ulators are used. The proposed modular multipliers are also implemented in C# to

validate the design functionality.

These architectures have inherent programmability features i.e., the modulus value

p can be changed without reconfiguring the FPGA. Table 3.4 lists the area consumption

on Virtex-6 platform for 160, 192, 224 and 256-bit field sizes.

57

3.7. IMPLEMENTATION AND RESULTS

A 256-bit implementation of the R4BIM multiplier occupies 1550 Virtex-6 slices

(4606 LUTs, 845 slice registers), whereas the R8BIM multiplier on the same platform

for the same field size occupies 1710 slices (5149 LUTs, 851 slice registers). Note that

these indicate that the R8BIM multiplier consumes 9.4% more FPGA slices than the

R4BIM multiplier.

Implementation results for the R2IM technique have been reported in [55], [56],

[94], [104]. However, for these implementations different FPGA platforms have been

used, thus, a direct comparison with the proposed designs is not very effective. For a

fair comparison, this work also implemented R2IM algorithm on Virtex-6 FPGA plat-

form as well. Its implementation results are also given in Table 3.4. For a 256-bit

implementation, it occupies 1012 slices (2900 LUTs, 777 slice registers). Its slice

consumption is almost 35%, 41% lower than the corresponding R4BIM and R8BIM

multipliers, respectively. It is evident from Table 3.4 and Figure 3.12 that the pre-

sented higher-radix IM designs consume more FPGA slices, LUTs and slice registers as

compared to bit level implementation (radix-2). However, higher-radix designs result

in reduced multiplication time as discussed below.

A comparison on the basis of multiplication time, throughput (TP) and area×time

per bit (ATB) value is demonstrated in Table 3.5. ATB values in the table is calculated

on the basis of equation (3.8).

AT B =
no. of occupied slices × total time

no. of bits
(3.8)

For a 224-bit implementation the R4BIM architecture computes one modular multipli-

cation operation in 1.29µs at a maximum clock frequency of 89.1 MHz. For a 256-bit

implementation it takes 1.48µs at a maximum clock frequency of 88.5 MHz. Similarly,

a 224-bit R8BIM architecture takes 1.08µs to compute one modular multiplication op-

eration at a maximum frequency of 73.2 MHz, which is almost 17% faster than the

R4BIM design.

A 224-bit implementation of the R2IM multiplier takes 1.74 µs to compute a modu-

lar multiplication operation and achieves 129 MHz maximum frequency. The proposed

R4BIM and R8BIM multiplier are 35% and 61% faster than the corresponding R2IM

multiplier. Figure 3.13 depicts computation time of the presented designs against dif-

ferent field sizes.

58

3.7. IMPLEMENTATION AND RESULTS

Table 3.5: Performance of IM multipliers on Virtex-6 for different field sizes

Design Field size (p) Freq (MHz) Time (µs) TP (Mbps) ATB
R2IM 160-bits 136.8 1.18 135.5 4.65

192-bits 131.6 1.46 131.5 5.77
224-bits 129 1.74 128.7 7.71
256-bits 125 2.03 126 8.02

R4BIM 160-bits 94 0.88 181 6.52
192-bits 91.6 1.08 178 7.15
224-bits 89.1 1.29 173.6 8.33
256-bits 88.5 1.48 172.9 8.96

R8BIM 160-bits 77.1 0.752 213 6.2
192-bits 75.7 0.91 211 6.8
224-bits 73.2 1.08 206 7.5
256-bits 72 1.25 205 8.35

����

�����

�����

�����

�����

���� ���� ���� ���� ���� ���� ���� ����

�	

�
�
�

�
��
�

�
�����
���
�
���

���
������ R4BIM R8BIM

Figure 3.13: Computation time of different IM multipliers

For a 256-bit implementation, the R4BIM and R8BIM multipliers have throughput

of 172.9 and 205 Mbps (Mega bits per second), which is 37% and 63% higher than

the throughput of R2IM multiplier (126 Mbps) respectively.

The number of clock cycles required to perform a multiplication may be considered

as a platform independent parameter. The R4BIM and R8BIM architectures reduce the

required number of clock cycles to perform one multiplication by almost 50% and 66%

respectively. However, inside the presented designs the main operations are executed

in serial fashion which results in the longer critical path delays. Thus, despite the

lower clock cycle count the ATB values are higher than the R2IM multiplier as evident

from the last column of Table 3.5. Therefore, the presented R4BIM and R8BIM designs

59

3.8. CONCLUSION

are suitable for high performance applications at the cost of more logic resources.

3.8 Conclusion

Basic finite field arithmetic operations are the building blocks in the design of elliptic

curve scalar multiplier architecture. In this regard, this chapter first presents algo-

rithms and corresponding architectures for modular addition/subtraction, inversion/-

division operations. Then, two modular multiplier designs based on radix-4, radix-8,

Booth encoding, and interleaved multiplication techniques are presented. The archi-

tectures and implementation results are compared and discussed.

The presented R4BIM and R8BIM multipliers provide 27% and 39% improvement

in a computation time over a corresponding bit level radix-2 IM multiplier. However,

internal critical operations of the presented designs are performed in serial fashion

which limits their performance. In the next chapter these designs are optimized in

terms of critical path delay.

60

Chapter 4

High Performance Parallel Modular

Multipliers

Typical higher-radix based multipliers produce faster results because of their lower

iteration count as compared to a bit-level radix-2 implementation. However, these

techniques deteriorate the critical path delays, which limit the maximum achievable

clock frequencies and speed performance. To obtain maximum performance several

optimization techniques can be explored to reduce the critical path delay in higher-

radix multiplier designs. Parallelization is an optimization technique that reduces the

computation time by reducing the critical path delay.

This Chapter shows that there is a good scope of parallelism in the designs of radix-

4, radix-8 Booth encoded interleaved multipliers presented in Chapter 3. This chapter

first investigates independent operations in the designs and then presents parallel high

performance hardware architectures that facilitate the parallel execution of these in-

dependent operations. Then, the chapter also presents a comprehensive performance

analysis of different parallel and serial higher-radix interleaved multiplier designs.

61

4.1. INTRODUCTION

4.1 Introduction

As discussed in Chapter 3, modular multiplication is the fundamental and computa-

tionally intensive operation in many Public-Key cryptographic processors. Hence, it

has a substantial impact on the overall performance of the associated cryptosystems.

Therefore, its optimization is one of the common strategies to boost the overall per-

formance of the cryptosystem.

Performance of a modular multiplier can be assessed using some quantitative met-

rics. These performance measuring metrics include computation time, resource re-

quirements, power consumption, throughput, etc. As the objective of this research is

to reduce the overall computation time for scalar multiplication on elliptic curves, em-

phasis is on increasing the performance of modular multiplier in terms of computation

time and throughput, while keeping an eye on the resource requirements.

As discussed in chapter 3, modular multiplication over a prime field is either per-

formed by iterative interleaved additions and reduction or absolute reduction follow-

ing an integer multiplication. The absolute reduction step involves division by a large

prime p which is another costly operation. Therefore, this work focuses on the tech-

nique based on repeated interleaved addition and reduction modulo p. Another well

known method for modular multiplication is Montgomery method [54]. This method

requires operand conversion from normal binary form to Montgomery domain and

the result conversion from Montgomery domain back to normal binary form, which

needs extra computations besides the actual modular multiplication operation. The

method adopted here works directly on numbers in two’s complement form and does

not need any operands and result conversions. Higher-radix IM methods presented

in chapter 3 exhibit longer critical path delays as compared to the radix-2 or bit level

implementation of the IM method as indicated in equations (3.4), (3.5) and (3.7).

Critical path of a R2IM multiplier is comprised of three n-bit adders and two mul-

tiplexers, whereas the critical path of a R4BIM multiplier consists of four n-bit adders

and five multiplexers, and in the case of R8BIM it is five n-bit adders and six multiplex-

ers. The longer critical paths decrease maximum achievable frequencies. Therefore,

optimization techniques to shorten the critical path is of utmost importance in higher-

radix based IM multiplier designs. An IM multiplier design with an optimized critical

path is reported in [103], in which the critical path is reduced to two n-bit adders and

62

4.2. MOTIVATION

two 2:1 multiplexers as given in equation (4.1).

TR2PI M = 2tadd + 2tmux (4.1)

Where TR2PI M denotes the critical path delay of the radix-2 parallel interleaved multi-

plier (R2PIM). This bit-level parallel design also requires n clock cycles to perform an

n-bit modular multiplication operation.

This chapter presents parallel modular multipliers with their efficient architectures

based on higher-radix and BE techniques. The parallelism idea is adapted from the

Montgomery powering ladder approach. Due to the introduced parallelism, the de-

signs are able to execute the main operations concurrently. Higher-radix can reduce

the required number of clock cycles for a multiplication operation. In this regard

radix-4 and radix-8 discussed in chapter 3 have been adopted to reduce the itera-

tion count. It is also observed that incorporating BE logic in the radix-4 and radix-8

parallel multipliers helps to reduce the area cost with a slight degradation in the max-

imum achievable clock frequencies. Therefore, the number of required clock cycles

are reduced by using higher-radix techniques and the critical paths are reduced by

introduced parallelism to execute the critical operations concurrently.

Novel higher-radix parallel modular multiplication algorithms and the correspond-

ing hardware architectures are presented in the following sections. Performance com-

parison of these higher-radix parallel multipliers and higher-radix serial multipliers

presented in Chapter 3 are also compared in detail on the basis of computation time,

operating frequency, area consumption and throughput.

4.2 Motivation

There are two ways to speed up a modular multiplication, reducing the required num-

ber of clock cycles or decreasing the critical path delay which in turn increases the

operating frequency. These aspects of any design are interrelated in such a way that

typically it is not possible to optimize both at the same time. Optimization in terms

of reducing the number of clock cycles using higher-radix techniques deteriorates the

critical path delay as shown in the R4BIM and R8BIM multipliers in the previous chap-

ter.

63

4.2. MOTIVATION

The critical operations in these designs are executed in serial fashion and hence,

these designs have long critical paths thus are not able to achieve higher frequencies.

These designs are referred as serial higher-radix IM multipliers. The main operations

in R4BIM algorithm are given below:

1 z← 0;
2 for i = N ; i ≥ 2; i = i − 2 do
3 z← 4z modulo p;
4 z← z ± pp modulo p // pp denotes partial products //
5 end

It processes a two-bit of a multiplier in each iteration, therefore the number of

iterations are reduced to half as compared to a radix-2 implementation. However the

critical path is comprised of steps 3 and 4, which consists of four n-bit adders and

five 2:1 multiplexers i.e., 4add + 5mux . Similarly, in case of the R8BIM multiplier

design the step 4 remains the same while step 3 is replaced by a three-bit left shift

modulo p operation, which is realized using 3add+3mux . Hence, the overall critical

path of the R8BIM multiplier consists of 5add+6mux . Introducing parallelism allows

the execution of steps 3 and 4 of the algorithm concurrently as explained in the next

section.

4.2.1 Montgomery Powering Ladder

Algorithm 7: The Montgomery Powering Ladder for exponentiation [59]
Input: x , y ← [yn−1, yn−2, ..., y0]
Output: x y

1 R0← 1, R1← x
2 for i = n− 1 downto 0 do
3 if (yi = 0) then
4 R1← R0 · R1; R0← (R0)2

5 end
6 else
7 R0← R0 · R1; R1← (R1)2

8 end
9 end

10 return R0

Parallelization of the main operations in higher-radix IM designs is inspired by the

Montgomery powering ladder (ML) technique which is given in algorithm 7. The ML

64

4.3. RADIX-4 PARALLEL INTERLEAVED MULTIPLIER (R4PIM)

Algorithm 8: Radix-4 Parallel IM Multiplication (R4PIM)

Input: x =
∑n−1

i=0 x i · 2i, y =
∑n−1

i=0 yi · 2i, p =
∑n−1

i=0 pi · 2i

Output: z = x × y mod p
1 z← x , R1← x
2 R2← 2x mod p, R3← 3x mod p // Pre-computed values //
3 z← 0
4 for (i = 0; i ≤ N − 2; i← i + 2) do
5 switch (y(i+1:i)) do
6 when 00=⇒ v← 0
7 when 01=⇒ v← R1

8 when 10=⇒ v← R2

9 when 11=⇒ v← R3

10 endsw
// Following operations are executed in parallel //

11 R1← 4R1 modulo p
12 R2← 4R2 modulo p
13 R3← 4R3 modulo p
14 R← z + v modulo p
15 end
16 return z

method was initially proposed to speed-up the square and multiply technique of an

exponentiation. The ML method eliminates conditional branch evaluation and enables

parallel execution of a multiplication and squaring operations as shown in steps 4 and

7 of the algorithm. Both operations are performed at every iteration of the algorithm

irrespective of the exponent bit yi.

At the end of each iteration, internal variables R0, R1 are assigned the results

of multiplication or squaring operations depending on the current exponent bit yi.

Therefore, data dependencies between these operations are completely eliminated.

4.3 Radix-4 Parallel Interleaved Multiplier (R4PIM)

Radix-4 Parallel interleaved multiplication (R4PIM) method is given in algorithm 8.

This method, instead of two-bit left shift mod p of the accumulator contents, shifts the

possible partial products in each iteration starting from LSB to MSB of a multiplier.

The algorithm is comprised of two phases: A and B. In phase A pre-computation of

possible partial products are computed which are 2x mod p and 3x mod p. Notice that

partial products 0, x are available and do not require any pre-computation. In phase

B, several operations in the algorithm are performed independently and iteratively. In

65

4.3. RADIX-4 PARALLEL INTERLEAVED MULTIPLIER (R4PIM)

each iteration all the partial products are two-bit left shifted and are reduced modulo

p which are shown in the steps 11, 12, 13. In step 14, the modular addition of the

accumulator and respective partial product is performed. Note that there is no data

dependency in steps 11, 12, 13 and 14. Therefore, they can be performed concurrently

on their respective hardware units. It is also worth noticing that steps 11, 12 and 13

are exactly identical i.e., 4R1−3 mod p operation whereas step 14 is a modular addition

operation. As these operations can be performed in parallel therefore, any of the steps

11, 12, 13 and 14 constitute an overall critical path of the R4PIM multiplier which is

discussed in the next section.

4.3.1 Hardware Architecture

A hardware architecture to execute algorithm 8 is shown in Figure 4.1. The architec-

ture is comprised of four processing elements (PE1−4) operating in parallel and four

n-bit data registers R1−4 and some multiplexers. The internal architectures of (PE1−3)

units consist of two modular doubling blocks cascaded in series as presented in chap-

ter 3 (Figure 3.9) while PE4 unit is a modular adder described in section 3.2. PE1 has

two outputs i.e. 2x modulo p and 4x modulo p so it is slightly different than PE2 and

PE3 which have only one 4x modulo p output.

The R4PIM algorithm also needs some pre-computed values therefore the whole

process in the algorithm is divided into two phases: phase A and phase B. Phase A deals

with the pre-computation process while phase B carries out the iterative execution of

the algorithm. The functionality of these phases and their execution on the given

architecture in Figure 4.1 are detailed below:

4.3.2 Phase A

For radix-4 technique where two bits of a multiplier are processed at a time, possible

partial products are {0, x , 2x , 3x}, where x is the multiplicand and {2x , 3x} needs to

be pre-computed before start of the multiplication process. Phase A deals with the

computation of {2x , 3x} modulo p operations. To compute these operations registers

z, R1 are loaded with a multiplicand x , then PE1 performs 2x modulo p, which is either

2x or 2x−p and are available after a single clock cycle at output u1 of the unit as shown

in Figure 4.2. Then, it is stored in register R2 by setting the respective select signal. In

66

4.3. RADIX-4 PARALLEL INTERLEAVED MULTIPLIER (R4PIM)

PE3

Sel3

PE4

0

0

0 1 2 3
{bi+1 bi }

v

0 1 2{C0C1 }

p

1

z

R3

0

1PE2

Sel2

R2

0

1PE1

Sel1
u1

R1

0

1

x

x

1 1 1

Figure 4.1: R4PIM multiplier hardware architecture

x

u1 = 2x mod p

2x mod p 2u1 mod p
 u2 = 4x mod p

Figure 4.2: Internal architecture of first processing element

first two clock cycles computation of 2x modulo p operation is completed and stored

in register R2. Then, 3x modulo p operation is performed as (R2 + x) mod p, which is

computed in PE4 unit in a single clock cycle by selecting appropriate operands (R2 and

x) and the result is stored in register z. In the next clock cycle, register R3 is updated

by register z, which is the required result of 3x mod p operation. Therefore, four

clock cycles are consumed in the computation of 2x and 3x mod p operations. PE4

architecture (modular adder) consist of two n-bit adders cascaded in series with some

data-multiplexing circuitry. The first adder performs operand addition s1 = (x + y),

then modulus p is subtracted from the result in the second adder i.e., s2 = (s1 − p),

and finally outputs either s1 or s2. This phase of the algorithm is completed in just four

clock cycles. After these four cycles, now registers R1, R2 and R3 hold operand x , 2x

mod p, and 3x mod p, respectively.

67

4.3. RADIX-4 PARALLEL INTERLEAVED MULTIPLIER (R4PIM)

4.3.3 Phase B

In phase B of the algorithm several operations are executed in parallel on the hardware

architecture as given in Table 4.1. In each iteration four operations specified as R1 =

4R1 mod p, R2 = 4R2 mod p, R3 = 4R3 mod p, and z+v mod p are executed in parallel

on PE1, PE2, PE3 and PE4 units, respectively.

In this execution phase select signals sel1−3 are set to one so that registers R1, R2

and R3 can not be updated with operands x , u1 and z, respectively. PE1, PE2, and PE3

units perform two-bit left shift mod p operations i.e., 4R1, 4R2, and 4R3 in parallel .

Internal architectures of two-bit left shift mod p is presented in chapter 3 Figure 3.9

where it is executed as two single bit left shift mod p operations and each single bit

left mod p operation consists of a single n-bit adder and a multiplexer. Therefore, the

critical paths of PE1, PE2, and PE3 are identical, and is comprised of 2add + 2mux .

Operation (z + v) of the algorithm is performed by PE4, which has a critical path of

2add+mux , as all these four operations are executed in parallel, therefore the critical

path of the radix-4 parallel modular multiplier is given in equation (4.2).

TR4PIM = 2tadd + 4tmux (4.2)

Note that in Figure 4.1 the critical path is between any of registers R1, R2, R3 and z,

where two data multiplexers (4:1 and 2:1)1 are in the path in addition to PE4 unit.

There are exactly n
2 iterations. In every iteration, all steps in phase B of the algorithm

are executed in a single clock cycle, therefore, this phase is completed in n
2 clock cy-

cles and overall the algorithm takes n
2 + 4 clock cycles to perform an n-bit modular

multiplication operation. For example a 256-bit modular multiplication is performed

in 132 clock cycles. An overall execution of a modular multiplication operation on the

proposed R4PIM multiplier is given in Table 4.1.

14:1 multiplexer has a critical path delay of two 2:1 multiplexers

68

4.3. RADIX-4 PARALLEL INTERLEAVED MULTIPLIER (R4PIM)

Ta
bl

e
4.

1:
O

pe
ra

ti
on

se
qu

en
ce

of
m

od
ul

ar
m

ul
ti

pl
ic

at
io

n
on

R
4P

IM
m

ul
ti

pl
ie

r

#
cy

cl
e

PE
1

PE
2

PE
3

PE
4

1
R

1
=

x
-

-
z
=

x
2

-
R

2
=
(2

x
m

od
p)

-
-

3
-

-
-

z
=
(z
+

R
2
)

m
od

p
4

-
-

R
3
=
(3

x
m

od
p)

z
=

0
5

R
1
=

4R
1

m
od

p
R

2
=

4R
2

m
od

p
R

3
=

4R
3

m
od

p
z
=
(z
+

v)
m

od
p

6
R

1
=

4R
1

m
od

p
R

2
=

4R
2

m
od

p
R

3
=

4R
3

m
od

p
z
=
(z
+

v)
m

od
p

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
bn 2
c+

4
-

-
-

z=
fin

al
va

lu
e

69

4.4. RADIX-4 BOOTH ENCODED PARALLEL INTERLEAVED MULTIPLIER (R4BPIM)

Algorithm 9: Radix-4 BE Parallel IM Multiplication (R4BPIM)

Input: x =
∑n−1

i=0 x i · 2i, y =
∑n−1

i=0 yi · 2i, p =
∑n−1

i=0 pi · 2i

Output: z = x × y mod p
1 z← 0, R1← x
2 R← 2x mod p // Pre-computed value //
3 N ← n+ 2 // append two 0’s to left of MSB of y //
4 N ← N + 1 // append a single 0 to right of LSB of y //
5 for (i = 0; i ≤ N − 2; i← i + 2) do
6 switch (y(i+2:i)) do
7 when 000 | 111=⇒ v← 0
8 when 001 | 010 | 101 | 110=⇒ v← R1

9 else =⇒ v← R2

10 endsw
// Following operations are executed in parallel //

11 R1← 4R1 modulo p
12 R2← 4R2 modulo p
13 z← z ± v modulo p
14 end
15 return z

4.4 Radix-4 Booth Encoded Parallel Interleaved Mul-

tiplier (R4BPIM)

In the design of R4PIM multiplier four processing units (PE1−4) are operated in paral-

lel. As each of PE1−3 is comprised of two n-bit adders and two 2:1 data multiplexers.

PE4 is a modular adder and its hardware realization consists of two n-bit adders and a

single 2:1 multiplexer. Therefore, there are in total of eight n-bit adders. By adopting

BE logic one processing unit can be saved which ultimately saves two n-bit adders and

three 2:1 multiplexers as explained below.

In case of radix-4 Booth encoding, the possible partial products are 0,±x and ±2x

using two’s complement representation subtraction can be implemented using addi-

tion. Therefore, only two partial products +x ,+2x are required. Hence, one process-

ing unit is saved as compared to the R4PIM multiplier design. The processing unit

PE4 (modular addition unit) needs to be replaced with a modular addition/subtrac-

tion unit. Therefore the critical path of radix-4 booth encoded parallel IM (R4BPIM)

multiplier is slightly longer than the R4PIM multiplier.

R4BPIM method is given in algorithm 9. Zeros need to be appended in the case

where there is not enough bits in the MSB block of a multiplier as discussed in Chapter

70

4.4. RADIX-4 BOOTH ENCODED PARALLEL INTERLEAVED MULTIPLIER (R4BPIM)

3. The R4BPIM algorithm scans triplets of a multiplier y from LSB to MSB and instead

of shifting the accumulator it shifts partial products in each iteration. It is comprised

of several independent steps such as 11, 12 and 13.

In steps 11, 12 two-bit left shift modulo p operation is performed on the partial

products as discussed in the previous section while step 13 is a modular addition or

subtraction determined on the output cin signal of BE logic. The BE logic circuit

generates the cin signal on the basis of three respective multiplier bits. The R4BPIM

method given in algorithm 9 also works in two phases, phase A and phase B similar

to the R4PIM algorithm. Now in phase A only 2x mod p value is required to be pre-

computed. These phases are discussed in the following section.

4.4.1 Hardware Architecture

Hardware architectures of the R4BPIM multiplier is shown in Figure 4.3.The presented

architecture consists of three processing elements PE1, PE2 and PE3. In addition to

these main elements there is a BE block, three n-bit data registers R1, R2, z. The

internal architectures of PE1 and PE2 are exactly the same as the PE1−3 units in the

R4PIM multiplier. The PE3 unit is a modular addition/subtraction unit given in Figure

3.3. The execution process of the R4BPIM algorithm on the given architecture in

Figure 4.3 is explained below.

4.4.2 Phase A

Again the phase A deals with the computation of 2x modulo p operation. The registers

R1 is loaded with the multiplicand x , then in the next clock cycle PE1 performs 2x

modulo p which is available at output u1 of the unit. Then, in the same clock cycle it

is stored in register R2 by setting the sel2 signal equal to zero. Therefore step 2 of the

algorithm is completed in two clock cycles.

4.4.3 Phase B

In phase B of the algorithm several operations are executed in parallel on the hardware

architecture as demonstrated in Table 4.2. In each iteration three operations R1 = 4R1

mod p, R2 = 4R2 mod p and z = z ± v mod p are executed in parallel on PE1, PE2

71

4.4. RADIX-4 BOOTH ENCODED PARALLEL INTERLEAVED MULTIPLIER (R4BPIM)

PE3

0

0

0 1 2

v

0 1C0

p z

PE2

Sel2

R2

0

1PE1

Sel1
u1

R1

0

1

x

1 1

Select
cin

{yi+2, yi+1, yi}
{yi+2, yi+1, yi}

Figure 4.3: R4BPIM multiplier hardware architecture

and PE3 units, respectively. In this execution phase select signals sel1 and sel2 are set

to one, which indicates that registers R1 and R2 can not be updated with x and u1

respectively. PE1 and PE2 perform two-bit left shift mod p operations i.e., 4R1 mod p

and 4R2 mod p in parallel. Each of these individual operations are executed as two

single bit left shift mod p operations where each single bit left shift mod p operation

consists of a single n-bit adder and a multiplexer. Therefore, the critical paths of PE1

and PE2 are identical which is comprised of 2add + 2mux .

The operation of z = z + v or z = z − v of the algorithm is performed by PE3

unit, where its critical path consists of 2add + 3mux (see Figure 3.3), as these three

operations are executed in parallel, therefore the critical path of the R4BPIM multiplier

is given in equation (4.3).

TR4BPIM = 2tadd + 7tmux (4.3)

Note that in Figure 4.3 critical path is either between registers R1 and z or R2 and z,

where there is a single (8:1) and a single (2:1) data multiplexers 2 are in the path in

addition to PE3 unit. Their are exactly b n
2c+1 iterations and in every iteration all steps

in phase B of the algorithm are executed in a single clock cycle, therefore, this phase

is completed in b n
2c+1 clock cycles and overall the algorithm takes b n

2c+3 clock cycles

28:1 multiplexer has a critical path delay of three 2:1 multiplexers

72

4.5. RADIX-8 BOOTH ENCODED PARALLEL INTERLEAVED MULTIPLIER (R8BPIM)

Table 4.2: Operation sequence of modular multiplication on R4BPIM multiplier

#cycle PE1 PE2 PE3

1 R1 = x -
2 - R2 = 2x mod p -
3 R1 = 4R1 R2 = 4R2 z = (z ± v)
3 R1 = 4R1 R2 = 4R2 z = (z ± v)
...

...
...

...
...

...
...

...
...

...
...

...
b n

2c+ 3 - - z = final result

to perform an n-bit modular multiplication operation. The pre-computation process

does not incur any additional combinational blocks and it only costs two clock cycles

overhead.

4.5 Radix-8 Booth Encoded Parallel Interleaved Multi-

plier (R8BPIM)

The iteration count in R4BPIM multiplier can be reduced from b n
2c+ 1 to b n

3c+ 1 us-

ing radix-8 and BE techniques as explained in Chapter 3. A radix-8 BE parallel IM

(R8BPIM) multiplier technique is given in algorithm 10. The radix-8 BE technique

is shown in Figure 3.10, where it scans a quadruplet of a multiplier y with a single

bit overlap between adjacent quadruplets. Possible partial products in this case are

{0,±1,±2 ± 3,±4}x . Radix-8 BE technique is discussed in detail in Chapter 3, see

Section 3.6.

The R8BIM algorithm is comprised of five main steps i.e. 13, 14, 15, 16, 17. The

step 17 is a modular add/sub operation. The other steps (13-16) are three-bit left-

shift modulo p operation. There is no data dependency, therefore, all these operations

can be executed in parallel. In the case of R8BPIM, the iteration count is reduced

to bn/3c+ 1, however it requires more design space due to the increased number of

processing units required to execute more operations in parallel which is discussed in

the next section.

73

4.5. RADIX-8 BOOTH ENCODED PARALLEL INTERLEAVED MULTIPLIER (R8BPIM)

Algorithm 10: Radix-8 BE Parallel IM Multiplication (R8BPIM)

Input: x =
∑n−1

i=0 x i · 2i, y =
∑n−1

i=0 yi · 2i, p =
∑n−1

i=0 pi · 2i

Output: z = x × y mod p
1 z← x , R1← x
2 R2← 2x mod p, R3← 3x mod p, R4← 4x mod p // pre-computed values //

3 N =







n+ 3, if n mod 3= 0, append three 0 to the left of MSB of y

n+ 2, if n mod 3= 1, append two 0 to the left of MSB of y

n+ 1, if n mod 3= 2, append single 0 to the left of MSB of y

4 N ← N + 1 // append a single 0 to right of LSB of y //
5 for (i = 0; i ≤ N − 3; i = i + 3) do
6 switch (y(i+3:i)) do
7 when 0000 | 1111=⇒ v← 0
8 when 0001 | 0010 | 1101 | 1110=⇒ v← R1

9 when 0011 | 0100 | 1011 | 1100=⇒ v← R2

10 when 0101 | 0110 | 1001 | 1010=⇒ v← R3

11 else =⇒ v← R4

12 endsw
// Following operations are executed in parallel //

13 R1← 8R1 mod p
14 R2← 8R2 mod p
15 R3← 8R3 mod p
16 R4← 8R4 mod p
17 z← z ± v mod p
18 end
19 return z

4.5.1 Hardware Architecture

The R8BPIM architecture in Figure 4.4 is comprised of four identical three-bit left shift

mod p processing units PE1−4 and the modular add/sub unit named as PE5. In addition

to these it also contains some data registers R1−4, z and a BE logic block.

Here phase A of the algorithm is completed in four clock cycles. In clock cycle

one registers R1, z are loaded with multiplicand x . Then in the next clock cycle, PE1

computes 2x mod p and 4x mod p values which are then stored in registers R2, R4,

respectively. In the third clock cycle 3x mod p value is computed in PE5 for inputs

z, R2 and the result is stored in register z. In clock cycle four this value is loaded

to register R4 and the pre-computation process is completed. Note that this is a very

similar procedure adopted in the pre-computation process of R4PIM multiplier shown

in Figure 4.1. Therefore it is also completed in four clock cycles.

In phase B, PE1−4 units performs three-bit left shift mod p operation i.e., 8x mod

p. The internal architectures of these units are identical as explained in chapter 3

74

4.5. RADIX-8 BOOTH ENCODED PARALLEL INTERLEAVED MULTIPLIER (R8BPIM)

(see section 3.6.1), where it has been shown that 8x mod p operation can be com-

puted by three n-bit adders and three multiplexers cascaded in series. The BE block

as shown in Figure 4.4 now operates on four multiplier bits i.e., yi+3, yi+2, yi+1, yi and

generates a control signal cin for the PE5 unit. As the total number of iterations in the

algorithm is bn/3c+1, therefore the proposed architecture computes an n-bit modular

multiplication operation in bn/3c+ 5 clock cycles.

Operation scheduling of the R8BPIM algorithm on the architecture in Figure 4.4

is given in Table 4.3. It is observed that now the critical path is shifted to PE1−4 units

because each of these unit is comprised of three n-bit adders and three multiplexers,

therefore the critical path of the BE radix-8 IMML multiplier is given in equation (4.4).

TR8BPIM = 3tadd + 4tmux (4.4)

75

4.5. RADIX-8 BOOTH ENCODED PARALLEL INTERLEAVED MULTIPLIER (R8BPIM)

Ta
bl

e
4.

3:
O

pe
ra

ti
on

se
qu

en
ce

of
m

od
ul

ar
m

ul
ti

pl
ic

at
io

n
on

R
8B

PI
M

ar
ch

it
ec

tu
re

#
cy

cl
e

PE
1

PE
2

PE
3

PE
4

PE
5

1
R

1
=

x
-

-
z
=

x
2

-
R

2
=

2
x

m
od

p
-

R
4
=

4
x

m
od

p
3

-
-

-
z
=

z
+

R
2

m
od

p
4

-
R

3
=

3
x

m
od

p
z
=

0
5

R
1
=

4R
1

m
od

p
R

2
=

4R
2

m
od

p
R

3
=

4R
3

m
od

p
R

4
=

4R
4

m
od

p
z
=

z
±

v
m

od
p

6
R

1
=

4R
1

m
od

p
R

2
=

4R
2

m
od

p
R

3
=

4R
3

m
od

p
R

4
=

4R
4

m
od

p
z
=

z
±

v
m

od
p

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

bn 3
c+

5
-

-
-

-
z
=

fin
al

re
su

lt

76

4.5. RADIX-8 BOOTH ENCODED PARALLEL INTERLEAVED MULTIPLIER (R8BPIM)

P
E 3

Se
l 3

P
E 5

0

0 0
1

2
3

v 0
1

2
{C

0
C

1
 }

p
z

R
3

01
P

E 2

Se
l 2

R
2

01
P

E 1

Se
l 1

u
1

R
1

01

x

x

1
1

1

P
E 4

Se
l 4

R
4

01

1

u
2

u
3

4
{

y i
+3

, y
i+

2
, y

i+
1
, y

i }

{
y i

+3
, y

i+
2
, y

i+
1
, y

i }

Se
le

ct

ci
n

Fi
gu

re
4.

4:
R

8B
PI

M
m

ul
ti

pl
ie

r
ha

rd
w

ar
e

ar
ch

it
ec

tu
re

77

4.6. PLATFORM INDEPENDENT PERFORMANCE ANALYSIS

Table 4.4: Resource requirements analysis of IM multipliers

Design Resource requirements

R2IM [86] 3Aadd + 2Amux+ Areg

R2PIM [100] 3Aadd + 5Amux+ 2Areg

R4BIM 4Aadd + 4Amux+ 2Areg

R4PIM 8Aadd + 14Amux+ 5Areg

R4BPIM 6Aadd + 17Amux+ 4Areg

R8BIM 5Aadd + 5Amux+ Areg

R8PIM 23Aadd + 31Amux+ 9Areg

R8BPIM 14Aadd + 28Amux+ 6Areg

4.6 Platform Independent Performance Analysis

This section presents performance analysis of different IM multiplier designs. The

same design on different implementation platforms produces varying results, hence it

is not conclusive to compare designs implemented on different platforms. This sec-

tion demonstrates a platform independent analysis of the IM multiplier designs. The

designs are analysed on the basis of their space complexity (resource requirements),

critical path delay and latency.

4.6.1 Resource Requirements

Table 4.4 and Figure 4.5 demonstrates resource requirements of the IM multiplier

designs, where Aadd , Amux and Areg represent the area of an n-bit adder, an n-bit mul-

tiplexer and an n-bit register respectively. The radix-2 implementation of the IM al-

gorithm (R2IM) requires 3Aadd + 2Amux and a single n-bit register. Similarly, R2PIM

design reported in [100] has an area complexity of 3Aadd + 5Amux and two n-bit regis-

ters. Note that it is obvious from the table that the presented designs are more complex

and therefore have higher area complexities as compared to the Radix-2 designs espe-

cially higher-radix PIM multipliers. This is because of using more resources to execute

operations in parallel. However, among these PIM designs, it is shown that BE logic

helps to reduce the area complexity compared to non BE designs. For example, in the

Table 4.4, it is shown that R4BPIM requires 6Aadd, 17Amux and four n-bit registers. The

same design without BE logic i.e., R4PIM has an area complexity of 8Aadd, 14Amux and

five n-bit registers.

78

4.6. PLATFORM INDEPENDENT PERFORMANCE ANALYSIS

 0

 5

 10

 15

 20

 25

 30

 35

R2
IM

R2
PI

M
R4

BI
M

R8
BI

M
R4

PI
M

R8
PI

M

R4
BP

IM

R8
BP

IM

R
eq

ui
re

d
R
es

ou
rc

es

Designs

adders
mux
reg

Figure 4.5: Resource requirements of IM multipliers

Table 4.5: Latency analysis of IM multipliers

Design Critical Path (Tclk) # clock cycles Latency

R2IM [86] 3tadd + 2tmux n+ 1 (n+ 1)× Tclk

R2PIM [100] 2tadd + 2tmux (n+ 1) (n+ 1)× Tclk

R4BIM 4tadd + 5tmux (bn/2c+ 3) (bn/2c+ 3)× Tclk

R4PIM 2tadd + 4tmux (bn/2c+ 5) (bn/2c+ 5)× Tclk

R4BPIM 2tadd + 7tmux (bn/2c+ 3) (bn/2c+ 3)× Tclk

R8BIM 5tadd + 6tmux (bn/3c+ 5) (bn/3c+ 5)× Tclk

R8PIM 3tadd + 4tmux (bn/3c+ 7) (bn/3c+ 7)× Tclk

R8BPIM 3tadd + 4tmux (bn/3c+ 5) (bn/3c+ 5)× Tclk

‡ Total clock cycles (#clk), clock period (tclk), adder (add), multiplexer
(mux)

A more clear picture can be observed by comparing area complexities of R8PIM3

and R8BPIM designs. R8BPIM requires fewer adders and registers as compared to

R8PIM as demonstrated in Table 4.4.

4.6.2 Critical Path and Latency

Table 4.5 lists critical path delay and latency of the IM multipliers. In the table tadd and

tmux represent time delay of a n-bit adder and a n-bit (2:1) multiplexer. Moreover, a

critical path delay which determines the minimum clock period and is denoted as Tclk.

The design reported in [86] is a serial radix-2 implementation with a critical path delay

of 3tadd + 2tmux and it takes n + 1 clock cycles to perform a modular multiplication

operation.

The design in [100] is based on parallel radix-2 approach with a Tclk delay of

3R8PIM is extension of R4PIM design and it is not presented in this work

79

4.7. IMPLEMENTATION RESULTS

2tadd + 2tmux , which is a saving of one tadd in the minimum clock period Tclk as com-

pared to the serial radix-2 approach and it also takes n+ 1 clock cycles.

The R4BIM and R8BIM multipliers take b n
2c+ 3, b n

3c+ 5 clock cycles respectively,

which is almost 50% and 66% reduction in the number of clock cycles as compared

to the designs reported in [86] and [100]. However these designs exhibit longer crit-

ical paths as shown in Table 4.5. The parallel versions of these multipliers (R4PIM,

R4BPIM, R8PIM, R8BPIM) have critical path delays comparable to the IM bit-level

implementation. It is worth mentioning that the parallel higher-radix IM multipliers

consumes almost the same number of clock cycles to compute a modular multiplica-

tion operation as serial higher-radix multipliers (R4BIM, R8BIM). However, their crit-

ical path delay Tclk delay is half of the serial higher-radix Tclk delay. Therefore, these

designs can provide almost 50% speed-up to a modular multiplication operation as

compared to the design in [98] and [100].

4.7 Implementation Results

This sections presents implementation results and performance evaluation of higher-

radix Booth encoded parallel interleaved multipliers. The multipliers are coded in

Verilog HDL and Xilinx ISE 14.2 Design Suite is used for synthesis, mapping, placement

and routing purposes targeting Virtex-6 FPGA device XCV6LX550. The Xilinx ISIM

simulator is used for behavioral simulation of the designs. A software implementation

of the proposed multipliers is done in C#. The outputs from the simulator tool and the

software are compared to verify the correctness of the designs by applying different

test inputs.

The proposed multipliers in this chapter are also implemented in Addition and

subtraction are performed making use of in-built fast carry chains of the device using

carry select approach [100]. Performance of the designs are compared in two stages.

In the first stage the designs are analysed and compared on the basis of computation

time, FPGA occupied resources, maximum attainable frequency, and the number of

required clock cycles. In the second stage, performance of these parallel designs are

compared against other designs reported in the literature on the basis of area-delay

product, throughput, and (throughput / slice area).

80

4.7. IMPLEMENTATION RESULTS

Table 4.6: Area results of Virtex-6 FPGA implementation of Parallel IM multipliers

Design Platform Field siz (p) Area (slices) LUTsb Slice registers

R4PIM Virtex 6 256 1985 6300 2187
224 1745 5367 1883
192 1519 4641 1625
160 1268 3780 1366

R4BPIM Virtex 6 256 1631 4935 1382
224 1496 4427 1221
192 1395 3846 1057
160 1042 3184 910

R8PIM Virtex 6 256 4428 13880 2756
224 4014 12737 2436
192 3631 10520 2116
160 3191 8821 1795

R8BPIM Virtex 6 256 3622 10284 1952
224 3326 9115 1727
192 2745 7728 1502
160 2306 6334 1276

aLook-up-tables

4.7.1 Area Results

FPGA area consumption of the designs are listed in Table 4.6 for four different field

sizes p (160, 192, 224, 256). The R4PIM design consumes 1985 FPGA slices (including

6300 LUTs and 2187 slice registers) while computing a 256-bit modular multiplication

operation. The R8PIM design for the same bit length consumes 4428 slices (includ-

ing 13880 LUTs, 2756 slice registers), which is almost 2.23 times more than R4PIM

multiplier design.

Similarly, the R4BPIM design consumes 1631 slices (including 4935 LUTs and 1382

slice registers) which is almost 18% fewer FPGA slices as compared to the R4PIM

design. On the other hand, R8BPIM design occupies 3622 FPGA slices (including

10284 LUTs and 1952 slice registers) which is again almost 18% saving in slice area

as compared to the R8PIM design. A graphical view of the area consumption of the

designs is shown in Figure 4.6. Therefore, it is evident from the table that BE logic in

the higher-radix parallel IM multipliers helps to lower their area cost.

81

4.7. IMPLEMENTATION RESULTS

��

�����

�����

�����

�����

�����

��
	
	

��

��
�
�
��
��
��
�
�
��
�

���������

������� ������� ������� �������

R4PIM

R8PIM

R4BPIM

R8BPIM

Figure 4.6: Area comparison of parallel IM multipliers

4.7.2 Execution Time Results

Execution time of a modular multiplication operation by the higher-radix parallel IM

multipliers are listed in Table 4.7. The R4PIM design computes a 256-bit modular mul-

tiplication operation in 0.8 us while running at a maximum frequency of 166 MHz. The

R8PIM design takes 0.74 us to compute the same bit length operation at a maximum

frequency of 124.4 MHz.

����

����

����

����

�����

�����

���� ���� ���� ���� ���� ���� ���� ����

��
	

�
�

�

�
	
�
��
�

�
��
�
��
�

��������������
��

����� ����� R8BPIMR4BPIM

Figure 4.7: Time comparison of higher-radix parallel IM multipliers

The R4BPIM design takes 0.94 us to compute a 256-bit modular multiplication

while running at 137.9 MHz. It is 17.5% slower than the R4PIM design. A similar

conclusion can be drawn by comparing the R8PIM and the R8BPIM designs in the

table. Therefore, it shows that BE logic in higher-radix parallel IM multipliers can de-

crease the design space complexity, with slight degradation in the speed performance

82

4.8. PERFORMANCE EVALUATION AND ANALYSIS

Table 4.7: Timing results of Higher-radix Parallel IM multipliers on Virtex-6 FPGA

Design Field size (p) Frequency (MHz) #Clock cycle Time (us)

R4PIM 256 166 133 0.8
224 167.6 117 0.7
192 168.7 101 0.6
160 173 85 0.5

R4BPIM 256 137.87 131 0.94
224 142.7 115 0.8
192 145.7 99 0.68
160 147 83 0.56

R8PIM 256 124.4 92 0.74
224 127.6 81 0.63
192 132.6 71 0.54
160 136 60 0.44

R8BPIM 256 123.43 90 0.73
224 125.7 79 0.63
192 127 69 0.54
160 128.4 58 0.45

as compared to the non BE higher-radix parallel IM multipliers. A comparison of time

taken by the higher-radix parallel IM multipliers to compute a modular multiplication

operation of different field sizes is shown in Figure 4.7.

4.8 Performance Evaluation and Analysis

Table 4.8 presents performance evaluation of the different IM based modular multi-

pliers. Note that R4BIM and R8BIM designs are presented in Chapter 3 while R2IM

and R2PIM are reported in [103] and [99,100]. The table shows occupied FPGA slices

for different designs against their performance in terms of maximum frequency and

computation time and it also lists synthesis results of the designs against four different

field sizes (160, 192, 224, 256).

The implementation results listed in Table 4.8 for R2IM and R2PIM designs are the

implementation results on Virtex-6 platform. The available implementation results

in the literature for these designs are on different FPGA platforms, therefore, these

have been carefully implemented on the same Virtex-6 platform along with the other

proposed modular multipliers in this work.

From the synthesized results in Table 4.8 it is clear that the presented multipliers

are better in terms of computation time. For example for 256-bit field size, the R4PIM

83

4.8. PERFORMANCE EVALUATION AND ANALYSIS

����

�����

�����

�����

�����

���� ���� ���� ���� ���� ���� ���� ����

�	

�
�
�

�
��
�

�
�����
���
�
���

�����

�����

����

�����

R4BPIM

R8BPIM BR4IM

R8BIM

Figure 4.8: Time comparison of different IM multipliers

is upto 2.6, 1.89 times faster than R2IM and R2PIM designs, respectively. However it

consumes 1.96, 1.66 times more FPGA slices as compared to R2IM and R2PIM designs,

respectively. Similar conclusion can be drawn for the other designs. It is also worth

noticing that the serial IM multipliers (R4BIM, R8BIM) are significantly slower than

the Parallel IM multipliers. This is because the parallel IM multipliers (R4PIM, R8PIM)

introduced parallelism inspired by the Montgomery powering ladder technique to ex-

ecute the internal operations in parallel, while the R4BIM, R8BIM multipliers execute

internal operations in a serial fashion.

Comparison of time required to perform a modular multiplication by different mul-

tipliers is shown in Figure 4.8 and hardware resource utilization is shown in Figure

4.9.

84

4.8. PERFORMANCE EVALUATION AND ANALYSIS

Table 4.8: Virtex-6 FPGA implementation results of different IM multipliers

Design Field size (p) size Area LUTs Slice Freq Time
(slices) registers (MHz) (us)

R2IM 160 631 1733 531 136.8 1.18
192 757 2049 627 131.6 1.46
224 993 2401 723 129 1.74
256 1012 2900 777 125 2.03

R2PIM 160 712 2002 691 191 0.84
192 910 2401 819 184.6 1.04
224 995 2787 947 179.1 1.25
256 1190 3207 1075 174 1.48

R4BIM 160 1186 2911 556 91.6 0.88
192 1272 3511 652 89 1.08
224 1447 4053 748 87.3 1.29
256 1550 4606 845 85.5 1.5

R4PIM 160 1268 3780 1366 173 0.5
192 1519 4641 1625 168.7 0.6
224 1745 5367 1883 167.6 0.7
256 1985 6300 2187 166 0.8

R4BPIM 160 1042 3184 910 147 0.56
192 1395 3846 1057 145.7 0.68
224 1496 4427 1221 142.7 0.8
256 1631 4935 1382 137.87 0.94

R8BIM 160 1320 3234 562 77 0.752
192 1442 4119 659 75.7 0.89
224 1424 4549 755 73.2 1.07
256 1820 5149 851 72 1.24

R8PIM 160 3191 8821 1795 136 0.44
192 3631 10520 2116 132.6 0.54
224 4014 12737 2436 127.6 0.63
256 4428 13880 2756 124.4 0.74

R8BPIM 160 2306 6334 1276 128.4 0.45
192 2745 7728 1502 127 0.54
224 3326 9115 1727 125.7 0.63
256 3622 10284 1952 123.43 0.73

85

4.8. PERFORMANCE EVALUATION AND ANALYSIS

��

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��	
��
�����	����

��
�
�	
�
�
��

�
�
�
��
	�

�
�
�
��
	�

�
�
�
��
	�

�
�
�
��
	�

R
4
P

IM

R
8
P

IM

R
4
B

P
IM

R
4
B

IM
R

8
B

IM

R
2
IM

R
2
P

IM

R
8
B

P
IM

Fi
gu

re
4.

9:
A

re
a

co
m

pa
ri

so
n

of
di

ff
er

en
t

IM
m

ul
ti

pl
ie

rs

86

4.9. THROUGHPUT AND AREA-DELAY PRODUCT

 0

 50

 100

 150

 200

 250

 300

 350

 400

R2
IM

R2
PI

M
R4

BI
M

R4
PI

M

R4
BP

IM
R8

BI
M

R8
PI

M

R8
BP

IM

Pe
rf

or
m

an
ce

 E
va

lu
at

io
n

Designs

ATB X 10
Thr

(thr/slices) X 100

Figure 4.10: Performance evaluation of IM multipliers

4.9 Throughput and Area-Delay Product

The performance of different IM multiplier designs are evaluated basd on throughput

(thr), area-delay product per bit (ATB), and (thr/slices) given in Table 4.9 and Figure

4.10. In the table α factor is a measure of throughput/ slice area, higher α factor indi-

cates that a design is better optimized for throughput and area, while lower ATB value

indicates that a design is better optimized for computation time and area. Therefore,

a design having a low ATB value and high α factor is optimized for a good trade-off

between hardware resources, computation time, and throughput.

R4PIM and R4BPIM designs have low ATB and high α than the other designs listed

in Table 4.9. Moreover, the R4PIM design has a slightly higher ATB value than that

of the R4BPIM design with an almost same α factor. Therefore, these designs are

suitable for those applications where performance and resource consumption are of

equal importance. On the other hand, R8PIM and R8BPIM have high ATB values

with low α factor, which indicates that these designs have higher throughput rate as

compared to the other listed designs. Therefore, these designs are suitable for very

high performance applications.

R4BIM and R8BIM are not using parallelism, hence, they execute the main oper-

ations of IM algorithm in a serial fashion. Although these designs consume almost

the same amount of clock cycles to perform a modular multiplication operation, how-

ever due to the serial nature of the designs they have longer critical path delays as

compared to the R4PIM, R4BPIM, R8PIM and R8BPIM.

87

4.9. THROUGHPUT AND AREA-DELAY PRODUCT

Table 4.9: Throughput and area-delay product of different IM multipliers

Design Field siz (p) 1ATB 2Thr. (bps) α=(Thr / slice area)

R2IM [86] 224-bits 7.71 128.7 M 0.1296
256-bits 8.02 126.1 M 0.1245

R2PIM [100] 224-bits 5.55 179.2 M 0.1801
256-bits 6.92 171.8 M 0.1443

R4BIM 224-bits 8.33 173.6 M 0.1199
256-bits 9.08 171.8 M 0.1108

R4PIM 224-bits 5.45 320 M 0.1833
256-bits 6.2 320 M 0.1612

R4BPIM 224-bits 5.34 280 M 0.1871
256-bits 5.98 272.3 M 0.1669

R8BIM 224-bits 6.80 209.3 M 0.1469
256-bits 8.81 206.4 M 0.1134

R8PIM 224-bits 11.28 356 M 0.0886
256-bits 12.79 346 M 0.0781

R8BPIM 224-bits 9.35 356 M 0.1070
256-bits 10.32 351 M 0.0969

1 Area-delay product per bit (ATB)
2 Throughput (Thr) bits per second (bps)

R4BPIM design has the lowest area-delay product. R8BPIM has the same through-

put but much lower area-delay product as compared to the R8PIM. These comparisons

indicate that introducing BE and parallelism in the IM algorithm result in speed and

area optimized modular multipliers. Figure 4.11 shows comparison of the IM mul-

tipliers, where radix-2 Montgomery multiplier design (R2MM) in [105] computes a

256-bit modular multiplication operation in 1.68 us and consumes 947 slices. It is

clear that R4PIM and R4BPIM are better optimized for speed and resources. R4PIM

design requires more adders and fewer multiplexers as compared to the R4BPIM de-

sign which ultimately results in more FPGA slice consumption. This is because of the

fact that a multiplexer is a simple circuit as compared to an adder and requires few

logic resources.

R4PIM design is more suitable for high speed applications, therefore it is utilized

in the design of EC scalar multiplier presented in the next chapter.

88

4.10. CONCLUSION

����

����

����

�����

�����

�����

�����

�����

�����

�����

����� ����� ����� ����� �	��� �	��� ����� �����

�

��

��
�
��
�

��
�������
��

R2IM

R2PIM

R4BIM

R8BIM

R4BPIM

R4PIM
R8BPIM R8PIM

R2MM

Figure 4.11: Comparison of IM multipliers

4.10 Conclusion

Higher-radix based multipliers are faster because of their lower iteration count as

compared to the bit-level implementation. However, these techniques deteriorate the

critical path delays, which limit their maximum achievable clock frequencies and de-

sired performance. To obtain a maximum performance optimization techniques can

be explored to reduce the critical path delay in higher-radix multiplier designs. Par-

allelization is one such optimization technique that reduces the computation time by

reducing the critical path delay.

This chapter shows that there is a good scope of parallelism in the design of inter-

leaved multipliers presented in Chapter 3. It first identifies independent operations in

the designs and then presents parallel high performance hardware architectures that

facilitate the parallel execution of these independent operations. The chapter also

presents a comprehensive performance analysis of the parallel and serial higher-radix

interleaved multipliers.

89

Chapter 5

EC Scalar Multiplier Architectures

Public-key cryptography (PKC) has solved many problems that were previously con-

sidered impractical such as key exchange, digital signatures, etc [25]. Most of the PKC

protocols are based on two efficient schemes: RSA [3] and elliptic curve cryptography

(ECC) [1], [2]. Recommendations by different standards [112] indicate that 256-bit

ECC implementation is capable of providing an equivalent security in comparison to

3072-bit RSA. This gap of the required number of bits in ECC and RSA is expected to

increase further in future due to higher security demands. Therefore, due to the much

smaller key sizes for same level of security, the ECC based crypto-systems are better

in terms of bandwidth utilization, power consumption, and implementation cost as

compared to the traditional RSA based crypto-systems.

ECC is particularly useful in resource constrained devices because ECC requires

lower implementation and transmission cost and thus lower power consumption [113].

ECC will find applications in the Internet of thing, where more and more resource con-

strained devices will be connected to the Internet.

This chapter presents efficient EC scalar multiplier architectures using affine and

projective coordinates. On the system level, double-and-add and always-double-add

algorithms are adopted. The presented EC scalar multiplier architectures are designed

using the radix-4 parallel interleaved multiplier presented in Chapter 4.

90

5.1. INTRODUCTION AND RELATED WORK

5.1 Introduction And Related Work

Elliptic curve scalar multiplication is a fundamental and computationally intensive

operation in nearly all ECC based crypto-systems. It is the multiplication of a scalar

(integer) value to a point on an elliptic curve. Mathematically it is denoted as, Q = dP,

where a point P and a scalar d are multiplied together to generate another point Q on

the curve. In this scenario, points P and Q are public parameters, while scalar d is a

secret value that is used in the process of secure encryption.

Mathematically, finding the secret d, while knowing the public parameters P and

Q is known as the elliptic curve discrete logarithm problem (ECDLP). The hardness

of the ECDLP is the basis of the security of all ECC crypto-systems. However, ECDLP

can be bypassed by exploiting several algorithmic and implementation weaknesses

termed as side channel attacks (SCA) [114]. For example, if an adversary somehow

gains access to a cryptographic device, then the adversary may be able to figure out d

by monitoring timing and power consumption profiles of the device. The most simple

and common SCAs are based on timing and simple power analysis [31]. There are also

more sophisticated attacks based on fault injection, differential power analysis [32],

and many others [33], [34]. This work focuses on the efficient implementation of EC

scalar multiplication that provides resistance to only timing and simple power analysis

attacks. These attacks are simple and more common in practice, strategies to fight

against these type of attacks need to be incorporated in any cryptosystem.

Their are different EC representations such as short Weierstrass, Edwards [115],

Twisted Edwards [116], Montgomery [117, 118], etc. Currently most security proto-

cols use EC in short Weierstrass representation. Although EC point multiplication on

the other mentioned curves are faster than on the short Weierstrass representation,

these are not standardised yet. Therefore, the focus of this research is on the efficient

implementation of EC scalar multiplication using short Weierstrass representation.

A number of hardware architectures have been reported to efficiently compute the

EC scalar multiplication operation [46, 47, 51, 55, 56, 57, 61, 62, 63, 64, 65, 67, 68, 69,

71, 103, 119]. Among these, [46], [47], [119] are based on elliptic curves (ECs) and

prime fields recommended by the US National Institute of Standards and Technol-

ogy (NIST) [85], while all other designs support any general prime field GF(p). A

comprehensive overview of EC scalar multiplier hardware architectures can be found

91

5.2. ELLIPTIC CURVE SCALAR MULTIPLICATION

in [44], [73]. Typically, NIST based designs are superior in terms of performance,

however they are less flexible compared to design over general GF(p). All these de-

signs developed EC scalar multiplier architecture using standard EC Weierstrass, EW,

representation. EC scalar multiplier architecture in [43] is developed over binary Ed-

wards curves, which imposes completely different design challenges, whereas [70] is

a hardware implementation over twisted Edwards curves [116]. EC group operations

in EW representation using affine (x , y) coordinates have limited parallelism scope

at low level finite field arithmetic operations, whereas in projective coordinates sev-

eral possible parallelism strategies can be devised based on the available finite field

primitives.

5.2 Elliptic curve scalar multiplication

Algorithm 11: Double-and-add (DA) method for EC point multiplication [16]

Input: An integer d =
∑n−1

i=0 di · 2i and a point P on elliptic curve
Output: dP

1 Q← 0
2 for (i = n− 1; i ≥ 0; i = i − 1) do
3 Q← 2Q // EC Point doubling //
4 if (di = 1) then
5 Q←Q+ P // EC Point addition //
6 end
7 end
8 return Q

Algorithm 12: Double-and-always-add (DAA) for EC point multiplication [16,
56]

Input: An integer d =
∑n−1

i=0 di · 2i and a point P on elliptic curve
Output: d = dP

1 Q0← P, Q1← 0
2 for (i = 0; i ≤ n− 1; i = i + 1) do
3 Q2←Q0 +Q1 // EC Point addition //
4 Q0← 2Q0 // EC Point doubling //
5 Q1←Q(1+di)

6 end
7 return Q1

As EC crypto-systems are mostly based on the EC scalar multiplication operation,

therefore several methods have been proposed to compute this operation [16]. All

92

5.2. ELLIPTIC CURVE SCALAR MULTIPLICATION

of these methods compute the EC scalar multiplication operation as a sequence of EC

point addition (PA) and EC point doubling (PD) operations. Algorithm 11 presents

a left-to-right binary method for EC point multiplication. The algorithm encodes the

scalar (d) in binary format and always performs EC PD operation as shown in step 3,

whereas the EC PA operation is executed if the respective scalar bit is one. The total

number of iterations in the algorithm is exactly equal to the number of required bits

to represent the scalar d. This technique is often known as standard double-and-add

(DA) method for EC scalar multiplication.

Note that in the DA method EC PA is dependent of the respective scalar bit i.e., di.

In other words the number of EC PA operations depends on the Hamming weight of

the scalar d and on an average of any binary number, half of the bits are non-zero.

Therefore, the computational complexity of EC point multiplication using DA method

is n× PD+ n/2× PA, where n is the number of bits of d in binary representation.

It is also worth mentioning that the EC PA and PD operations in the DA method

can not be executed in parallel. The computational complexities of PA and PD op-

erations are different which is discussed in the next section. Therefore, an attacker

can easily distinguish between these two operations by tracing timing and power con-

sumption of the device and ultimately can reveal the bits being processed for the scalar

d. Therefore, this method is vulnerable to most of the side-channel-attacks including

the very simple timing and simple power analysis attacks [31], [32], [120], [121],

[122], [123], [124], [125].

Algorithm 12 shows another method for EC point multiplication, known as double-

and-always-add (DAA) [16,56]. The DAA also works on the binary representation of

the scalar d as well. Note that the PA operation in algorithm 12 is not dependant on

the bit pattern of d, so these operations can be performed in parallel. As the PD and

PA operations can be executed concurrently, therefore the DAA method gives an ex-

tra feature of protection against timing and simple power analysis (SPA) attacks [31].

However, it is not adequate to fight against more sophisticated attacks such as differ-

ential power analysis [32], differential fault analysis [126, 127] and electromagnetic

radiation based attacks [128,129]. Resistance against these attacks are not the focus

of this work.

93

5.2. ELLIPTIC CURVE SCALAR MULTIPLICATION

5.2.1 EC Point Operations Using Affine Coordinates

This work considers an elliptic curve E, defined over prime field GF(p), where p is

a large prime characteristic number. Field elements are represented as integers in

the range [0 → p − 1]. An elliptic curve E over GF(p) in short Weierstrass form is

represented as

E : y2 = x3 + ax + b (5.1)

Where, a, b, x , and y ∈ GF(p) and 4a3 + 27b2 6= 0 (modulo p). The set of all points

(x , y) that satisfy (5.1), plus the point at∞make an abelian group. EC point addition

and EC point doubling operations over such groups are used to construct many elliptic

curve cryptosystems. The EC point addition and EC point doubling operations in affine

coordinates can be represented as follows: let P1 = (x1, y1) and P2 = (x2, y2) are two

points on the elliptic curve. The group operation is the point addition, P3(x3, y3) =

P1(x1, y1) + P2(x2, y2) which is defined by the group law and is given as

x3 = λ
2 − x1 − x2 (5.2)

y3 = λ(x1 − x3)− y1 (5.3)

where

λ=







y2−y1
x2−x1

if P1 6= P2

3x2
1+a

2y1
if P1 = P2

(5.4)

If, P1 = P2 then a special case of adding a point to itself is called the EC point dou-

bling operation. In affine coordinates the EC point addition requires one division (D),

two multiplication (M) and six addition or subtraction (A) operations, whereas the PD

operation can be performed by using one (D) , three (M) and eight (A) operations.

Tables 5.1 depicts the number of field operations (FOP) for EC PD and PA opera-

tions. Therefore, using the DA method for EC scalar multiplication a single iteration

of the algorithm requires 14A+5M+2D underlying field operations.

94

5.3. EC SCALAR MULTIPLIER ARCHITECTURE IN AFFINE COORDINATES

Table 5.1: EC point operations using affine coordinates [16,28,29]

Point addition, (PA) Point doubling, (PD) No of field operations (FOP)
x3 = λ2 − (x1 + x2) x3 = λ2 − (x1 + x1) PA = 6A+2M+1D

Y3 = λ(x1 − x3)− y1 y3 = λ(x1 − x3)− y1

λ= (y2 − y1)/(x2 − x1) λ= (3x2
1 + a)/2y1 PD = 8A+3M+1D

Point addition (PA), Point doubling (PD), Field operation (FOP), modular addition/subtraction (A), modular division
(D)

5.3 EC Scalar Multiplier Architecture in Affine Coordi-

nates

This section presents an architecture to compute the EC scalar multiplication operation

using affine coordinates. It consists of three modular arithmetic units, a modular

adder/subtractor (A/S), a modular multiplier (Mul) and a modular divider (Div). A/S

unit performs either modular addition or subtraction operation at a time in a single

clock cycle, while the Div unit takes 2n clock cycles to compute an n-bit modular

division operation as discussed in Chapter 3. The Mul unit is based on the radix-

4 parallel interleaved multiplier (R4PIM) presented in Chapter 4. Implementation

results making use of other multipliers presented in Chapter 4 are given in appendix

A.

In Chapter 4 it is discussed that the R4PIM multiplier completes an n-bit modular

multiplication operation in bn/2c+5 clock cycle. The EC scalar multiplier performance

results are shown for different field sizes. The architecture in Figure 5.1 also consists of

instruction memory, register file and a control unit. The instruction memory is loaded

with micro-coded instructions, the register file is responsible for storing intermediate

and final results while the control unit generates the necessary control signals to exe-

cute the required operations. The register file consists of two separate sets of registers,

dedicated purpose registers (DPR) and general purpose registers(GPR). The schedul-

ing of finite field operations to perform EC PD and PA operations in affine coordinates

are given in Table 5.2 and 5.3 respectively.

It is worth mentioning using the DA method EC PD and PA operations can not be

executed concurrently. It is also visible from Table 5.2 that scope of parallelism inside

these operations are also very limited, therefore, the EC scalar multiplier architecture

incorporated a single A/S, Mul and Div units as shown in Figure 5.1.

95

5.3. EC SCALAR MULTIPLIER ARCHITECTURE IN AFFINE COORDINATES

 ControllerIFD
Instruction

memory

GPR DPR

1 2 3 5 643 2

.

1

p

Register
File

INPUTsRESULTs

CLK RESET

A/S Mul Div

Figure 5.1: EC scalar multiplier architecture using affine coordinates

Normally, to achieve a better performance of EC point multiplication on dedicated

hardware, multiple copies of modular adder, subtractor, multiplier and divider units

are integrated. These multiple copies can help to execute several operations in parallel

at the expense of extra area and cost. As mentioned before when using the DA method,

EC PD and PA operations can not be computed in parallel. The scope of parallelism

in affine coordinates is also very limited, therefore integration of multiple arithmetic

units can not be fully exploited to achieve a significant performance increase.

However, EC point PA and EC point PD operations can be executed in parallel using

DAA method for EC point multiplication irrespective of the di as shown in algorithm

12. As these EC point operations do not depend on the ith bit of the scalar d, hence,

timing and power consumption of these operations are symmetric and it is not be

possible for an attacker to extract any information regarding secret value d. There-

fore this technique provides a protection against timing and simple power analysis

attacks. To defy timing and simple power analysis attacks, the DAA method computes

a PA operation in every iteration irrespective of the respective scalar bit. Therefore, it

computes 100% more PA operations as compared to the DA method. However, DAA

provides a flexibility to compute EC PD and PA operations concurrently. Therefore,

this work integrates two instances of the arithmetic unit (AU1 and AU2) to execute

EC PD and PA operations as shown in Figure 5.2. Each of these arithmetic units in-

96

5.3. EC SCALAR MULTIPLIER ARCHITECTURE IN AFFINE COORDINATES

Table 5.2: Scheduling of PD operation in affine coordinates

A/S Mul Div
A1 = y1 + y1 M1 = x1 × x1

A2 = x1 + x1

A3 = M1 +M1

A4 = A3 +M1

A5 = A4 + a
D1 = A5 ÷ A1

M2 = D1 × D1

A6(x3) = M2 − A2

A7 = x1 − A6

M3 = A7 × D1

A8(y3) = M3 − y1

Table 5.3: Scheduling of PA operation in affine coordinates

A/S Mul Div
A1 = y2 − y1

A2 = x2 − x1

A3 = x1 + x2 D1 = A1 ÷ A2

M1 = D1 × D1

A4(x3) = M1 − A3

A5 = x1 − A4

M2 = D1 × A5

A6(y3) = M2 − y1

corporates a single unit of A/S, Mul and Div, therefore, in total two A/S, two Mul and

two Div units are integrated in the overall architecture. AU1 is responsible to execute

EC PD operation while AU2 computes EC PA operation according to Table 5.2 and 5.3

respectively. From Table 5.2 and Table 5.3 it is evident that the computational time

of an EC PD operation is more than that of an EC PA operation.Therefore, the overall

computational time of a scalar multiplication is dependent on the time taken by a PD

operation in case of the DAA method given in algorithm 12.

MulA/S

a0 a1 b1b0 b2a2

out0 out1 out2

p

D1 D2

Cin st1 st2

clk

reset

Div MulA/S

a0 a1 b1b0 b2a2

out0 out1 out2

p

D1

D2

Cin st1 st2

clk

reset

Div

AU2
AU1

Figure 5.2: Arithmetic units for parallel execution of PD and PA operations

97

5.4. IMPLEMENTATION RESULTS

5.3.1 Latency

An EC PD operation using the R4PIM multiplier can be completed in (7bn/2c + 24)

clock cycles and an EC PA operation requires (3n+ 19) clock cycles.

5.3.2 Using double-and-add (DA) method

As it has been pointed out that the DA method does not provide the flexibility to com-

pute PD and PA operations in parallel. Therefore, using DA method the computational

complexity of EC scalar multiplication operation is n× PD +n/2× PA. Therefore the

latency of the EC scalar multiplication operation is given below.

TDA = n(7bn/2c+ 24) + n/2(3n+ 19) (5.5)

Equation (5.5) shows the latency of an EC scalar multiplication operation using the

R4PIM multiplier.

5.3.3 Using double-and-always-add (DAA) method

Using the DAA method PD and PA operations can be performed in parallel, therefore

the latency of an EC scalar multiplication operation is n× PD (PD is slower than PA)

using the R4PIM multiplier is given in equation (5.6).

TDAA = n(7bn/2c+ 24) (5.6)

5.4 Implementation Results

The implementation results of the EC scalar multiplier architecture using affine coor-

dinates on Virtex-6 FPGA is given in Table 5.4. It is obvious that the the proposed EC

scalar multiplier architecture based on DA method is slower than the DAA method.

This is because of the parallel execution of the EC PA and PD operations on two arith-

metic units using the DAA method. In the case of DA method these EC group opera-

tions are executed on a single arithmetic unit.

98

5.5. EC POINT OPERATIONS USING PROJECTIVE COORDINATES

Table 5.4: Implementation of EC scalar multiplier using affine coor-
dinates

Field size Area (slices) Freq. (MHz) clock cycles Time (ms)

Using DA method on a single AU unit

192-any 3551 137 191, 904 1.4
224-any 4023 134 258, 384 1.93
256-any 4807 131 336, 256 2.6

Using DAA method on two parallel AU units

192-any 7152 137 133, 632 0.98
224-any 7976 134 180, 992 1.35
256-any 9213 131 235, 520 1.8

Computation time of an EC scalar multiplication of a 256-bit field size using the

DA method with a single arithmetic unit takes 2.6 ms and 336,256 clock cycles. It

occupies 4807 FPGA slices and is able to operate at a maximum clock frequency of 131

MHz. Using the DAA method and two parallel arithmetic units, a 256-bit EC scalar

multiplication operation is completed in 1.8 ms in 235,520 clock cycles. It shows that

the DAA method, due to parallel execution of the PA and PD operations is 1.4 times

faster than the DA method. However, due to utilizing two separate copies of the AU

unit it consumes 9213 slices which is 1.9 times more than the design based on the DA

method. In [56] dual core architecture of the EC scalar multiplier using DAA method

completes the 256-bit operation in 7.7 ms which is almost 4.3 times slower than the

proposed EC scalar multiplier.

5.5 EC Point Operations Using Projective Coordinates

Elliptic curve point representation in affine coordinates requires modular inversion

or division operations to compute both PD and PA operations. It is the most expen-

sive operation in terms of computation time and resource consumption. In order to

speed up these group operations different projective coordinates systems have been

explored. Using projective coordinates has the advantage of eliminating modular in-

version/division from the EC group operations at the cost of more modular multipli-

cation operations. Typically at the end, one or two modular inversions are required to

re-map from projective to affine space as shown in Figure 2.4. In this work standard

projective coordinates are used in an EC scalar multiplier design.

99

5.5. EC POINT OPERATIONS USING PROJECTIVE COORDINATES

Table 5.5: EC PD operation in standard projective coordi-
nates [28], [29]

Point addition, PD No Of field operation(FOP)
w= 3(X1 − Z1)× (X1 + Z1)

s = 2Y1 × Z1

ss = s× s
sss = ss× s
R= Y1 × s 10M+11A
RR= R× R

B = 2× X1 × R
h= w2 − 2B
X3 = h× s

Y3 = w× (b− h)− 2RR
Z3 = sss

Point addition (PA), Point doubling (PD), Field operation (FOP), modular addition/-
subtraction (A),

• In Projective coordinates space an affine point P(x , y) corresponds to the point

P(X Z−1, Y Z−1, Z), where Z 6= 0. If set Z = 1 then it is trivial to map the points

from affine to projective space as shown below.

(x , y) 7−→ (X , Y, 1), X = x , Y = y, Z = 1

• At the end of the EC scalar multiplication operation, conversion from projective

to affine space is performed as follows:

x = X Z−1, y = Y Z−1

An elliptic curve in short Weierstrass form in affine coordinates after transformation

to projective coordinates is given in equation (5.7) [15], [16]

Y 2Z = X 3 + aX Z2 + bZ3 (5.7)

The EC PA and EC PD formulae reported in [28], [29] and are listed in Tables 5.5 and

5.6 respectively. The number of field operations (FOP) required for an EC PD operation

in projective settings is ten modular multiplications (M) plus eleven modular additions

(A) i.e., 10M+11A while for EC PA operation the number of required FOP is 14M+7A.

Therefore, a single iteration of DA and DAA algorithms require twenty four time

critical modular multiplications and relatively cheaper eighteen modular addition op-

100

5.6. EC SCALAR MULTIPLIER ARCHITECTURE IN PROJECTIVE COORDINATES

Table 5.6: EC PA operation in standard projective coordinates
[28], [29]

Point addition, PA No Of field operations (FOP)
Y1Z2 = Y1 × Z2

X1Z2 = X1 × Z2

Z1Z2 = Z1 × Z2

u= Y2 × Z1 − Y1Z2

uu= u× u
v = X2 × Z1 − X1Z2 14M+7A

vv = v × v
vvv = vv × v

R= vv × X1Z2

A= uu× Z1Z2 − vvv − 2R
X3 = v × A

Y3 = u× (R− A)− vvv × Y1Z2

Z3 = vvv × Z1Z2

Point addition (PA), Point doubling (PD), Field operation (FOP), modular addition/subtrac-
tion (A),

erations. The chosen EC point doubling and EC point addition formulae are based

on the assumption that the EC parameter a = −3, which is commonly used in many

standard elliptic curves. For further details see [28], [29].

5.6 EC Scalar Multiplier Architecture in Projective Co-

ordinates

In this section, a high performance architecture to perform the EC scalar multiplication

operation over general prime field is developed. It performs the EC scalar multiplica-

tion operation using standard projective coordinates. To compute EC group operations

i.e., EC PD and EC PA, a high speed arithmetic unit (AU) is developed first and is de-

scribed in the next section.

5.6.1 Arithmetic Unit

When EC points are represented in affine coordinates, the scope of parallelism among

the underlying finite field arithmetic operations is very limited, integration of multiple

arithmetic units does not significantly reduce the computation time of EC scalar mul-

tiplication operation. EC points are represented using standard projective coordinates

101

5.6. EC SCALAR MULTIPLIER ARCHITECTURE IN PROJECTIVE COORDINATES

Mul1 Mul2 Mul3A/S

a0 a1 b1b0 b2a2 a3 b3

out0 out1 out2 out3

p

D1 D2 D3

Cin st1 st2 st3

clk

reset

Figure 5.3: Proposed arithmetic unit (AU)

Table 5.7: Field operations on AU unit

Control signals Field operation Execution unit clock cycles
Cin = 0 out0 = a0 + b0 A/S 1
Cin = 1 out0 = a0 − b0 A/S 1

st1 = 1 out1 = a1 × b1 MUL1 b n
2c+ 5

st2 = 1 out2 = a2 × b2 MUL2 b n
2c+ 5

st3 = 1 out3 = a3 × b3 MUL3 b n
2c+ 5

in this section. It is evident from Tables 5.5 and 5.6 that there is a significant scope

of parallelism which can be exploited to speed up EC scalar multiplication operation,

this is the motivation of integrating parallel dedicated modular multipliers in an AU

unit. Latency of a modular addition/subtraction is only a single clock cycle so only a

single A/S unit is integrated to reduce the area cost. Therefore a single addition or

subtraction instruction can be performed by the AU unit at a time.

The arithmetic unit (AU) shown in Figure 5.3 consists of three dedicated modular

multipliers and a single modular adder/subtracter (A/S) units. The three modular

multiplication units are named as MUL1, MUL2, and MUL3, where each MUL unit is

based on the R4PIM multiplier given in chapter 4 so it performs a modular multipli-

cation instruction in b n
2c + 5 clock cycles, whereas the A/S unit takes a single cycle

to execute a modular addition/subtraction instruction [98]. Therefore, the AU unit is

able to execute four independent modular instructions on their respective execution

units, concurrently. The AU unit receives eight independent operands (a0-a3, b0-b3)

and produces four independent results (out0-out3). Carry in (Cin) signal in the A/S

execution unit behaves as an operation selection signal, which determine whether

modular addition or subtraction is performed. If Cin = 1, then the A/S unit out-

puts out0 = (a0 − b0) modulo p, otherwise out0 = (a0 + b0) modulo p. The MUL1−3

execution units perform multiplication operations when their respective start signals

(st1− st3) are set to one. The done flags (D1−D3) indicate that the output is available

102

5.6. EC SCALAR MULTIPLIER ARCHITECTURE IN PROJECTIVE COORDINATES

Table 5.8: Scheduling of PD operation using three multipliers in projective coordi-
nates

A/S Mul1 Mul2 Mul3
A1 = X1 − Z1 M1 = Y1 × Z1

A2 = X1 + Z1

A3 = A1 + A1

A4 = A1 + A3

M2 = A4 × A2

A5 = M1 +M1

M3 = A5 × A5 M4 = M2 ×M2 M5 = Y1 × A5

Z3← M6 = M3 × A5 M8 = M5 ×M5 M7 = X1 ×M5

A6 = M7 +M7

A7 = A6 + A6

A8 = M4 − A7

A9 = A6 − A8 X3← M9 = A8 × A5

M10 = M2 × A9

A10 = M8 +M8

Y3← A11 = M10 − A10

at the respective output ports (out1-out3), which are set to one after b n
2c+ 5 clock cy-

cles. The instructions with their corresponding execution units and control signals are

shown in Table 5.7, where on the basis of the control signals the respective execution

unit is active and performs the respective operation. The given AU unit takes eight

n-bit input operands produces four n-bit outputs, while the prime modulus p is made

directly available to the four execution units.

5.6.2 Scheduling of PD and PA Operations

The architecture in Figure 5.3 computes EC group operations PD and PA in standard

projective coordinates [28]. These PD and PA operations require a number of modu-

lar additions, subtractions, and multiplications which are listed in Tables 5.5 and 5.6.

Table 5.5 also depicts that a PD computation requires 10M+11A operations, while

14M+7A operations are required to perform a PA operation in Table 5.6. As in the DA

algorithm these point operations can not be performed in parallel, therefore, a single

iteration of the algorithm requires twenty four modular multiplications and eighteen

modular addition/subtraction operations. Scheduling of these modular operations to

perform PD and PA operations are demonstrated in Table 5.8 and 5.9 respectively.

These operation schedules are based on the AU unit that consists of three dedicated

multipliers and a single A/S unit. Table 5.8 depicts that the field operations sequence

103

5.6. EC SCALAR MULTIPLIER ARCHITECTURE IN PROJECTIVE COORDINATES

Table 5.9: Scheduling of PA using three multipliers in projective coordinates

A/S Mul1 Mul2 Mul3
M1 = Y1 × Z2 M2 = X1 × Z2 M3 = Z1 × Z2
M4 = Y2 × Z1 M5 = X2 × Z1

A1 = M4 −M1
A2 = M5 −M2 M6 = A1 × A1

M7 = A2 × A2
M8 = M7 ×M2 M9 = M6 ×M3 M10 = M7 × A2

A3 = M8 +M8 M12 = M10 ×M1
A4 = M9 −M10
A5 = A4 − A3
A6 = M8 − A5 X3← M11 = A2 × A5 Z3← M14 = M10 ×M3

M13 = A1 × A6
Y3← A7 = M13 −M12

for a PD operation in which M1−10 indicate modular multiplications and A1−11 repre-

sent modular addition/subtraction operations. X3, Y3, Z3 are the resultant coordinates

of PD operation of point R(X1, Y1, Z1).

A PA operation requires 14M+7A field operations, which are executed in the se-

quence given in Table 5.9, where X3, Y3, Z3 are the coordinates of the resulting point

of adding points Q(X1, Y1, Z1) and R(X2, Y2, Z2). Note that, these low level field oper-

ations can be scheduled in several ways, however the schedule in the tables require

minimum number of clock cycles when using three parallel modular multipliers. Data

dependency graphs of PD and PA operations using three parallel multipliers are shown

in Figures 5.4 and 5.5 respectively.

The scheduling of the underlying field operations in the DAA algorithm is given in

Table 5.10 and a data dependency graph is shown in Figure 5.6. It is shown that using

four parallel multipliers a single iteration of the DAA algorithm can be completed in

n+35 clock cycles where each MUL1−4 takes bn/2c+5 clock cycles to perform an n-bit

modular multiplication operation using the R4PIM multiplier.

104

5.6. EC SCALAR MULTIPLIER ARCHITECTURE IN PROJECTIVE COORDINATES

X1 Z1 Y1 Z1

Y1

X1

Y3

11

2

2

3

3 4

4

5

5

6

6

7

7

8

8

9 9

10

10

11

X3 Z3

Figure 5.4: Data dependency graph of PD operation using three multipliers

105

5.6. EC SCALAR MULTIPLIER ARCHITECTURE IN PROJECTIVE COORDINATES

X1 Z2Y1 Z2

Y3

1

1

2

7

3 12

X3 Z3

2 4

Y2 Z1

3 5

Z1 Z2 X2 X1

6

8 9 10

4

5

6 11

13

147

Figure 5.5: Data dependency graph of PA operation using three multipliers

106

5.6. EC SCALAR MULTIPLIER ARCHITECTURE IN PROJECTIVE COORDINATES

Ta
bl

e
5.

10
:

Sc
he

du
lin

g
of

pa
ra

lle
lP

D
PA

op
er

at
io

ns
us

in
g

fo
ur

m
ul

ti
pl

ie
rs

A
/S

M
ul

1
M

ul
2

M
ul

3
M

ul
4

A 1
=

X
1
−

Z 1
M

1
=

Y 1
×

Z 2
M

2
=

X
1
×

Z 2
M

3
=

Z 1
×

Z 2
M

4
=

Y 1
×

Z 1
A 2
=

X
1
+

Z 1
A 3
=

A 1
+

A 1
A 4
=

A 3
+

A 1
A 5
=

M
4
+

M
1

M
5
=

A 4
×

A 2
M

6
=

Y 2
×

Z 1
M

7
=

X
2
×

A 1
M

8
=

A 5
×

A 5
A 6
=

M
6
−

M
1

M
9
=

Y 1
×

A 5
Z

d 3
←

M
10
=

M
8
×

A 5
A 7
=

M
7
−

M
2

M
11
=

A 6
×

A 6
M

12
=

A 7
×

A 7
M

13
=

M
9
×

M
9

M
14
=

X
1
×

M
9

M
15
=

M
12
×

A 7
M

16
=

M
5
×

M
5

A 8
=

M
14
+

M
14

M
17
=

M
15
×

M
2

M
18
=

M
11
×

M
3

M
19
=

M
15
×

M
1

A 9
=

A 8
+

A 8
A 1

0
=

M
16
−

A 8
A 1

1
=

M
13
+

A 1
3

X
d 3
←

M
20
=

A 1
0
×

A 5
A 1

2
=

M
13
+

M
13

A 1
3
=

M
17
+

M
17

Z
a 3
←

M
21
=

M
15
×

M
3

A 1
4
=

M
15
+

A 1
3

A 1
5
=

M
18
−

A 1
4

A 1
6
=

M
17
−

A 1
5

X
a 3
←

M
22
=

A 1
5
×

A 7
M

23
=

A 1
1
×

M
5

M
24
=

A 1
6
×

A 6
Y

d 3
←

A 1
7
=

M
23
−

A 1
2

Y
a 3
←

A 1
8
=

M
24
−

M
19

107

5.6. EC SCALAR MULTIPLIER ARCHITECTURE IN PROJECTIVE COORDINATES

X1 Z2Y1 Z2

1
1

1 2
2

3
3

Y1 Z1

2
11

X1 Z1

2

3

4

X1 Z1

4
4

Y1 Z1

Y2 Z1

15
2

6
3

7

X2

4
8

5

Z1

1
9

2
106

Y1

2
12

7

1
13

2

14
3

15
4

16

x1

8
1

17
2

18
3

19

9

10

4
20

11

12

13
1

21

14

15

16 2
22

3
23

4
24

17

18

Y3d Y3a Z3a X3a

X3d

Z3d

Figure 5.6: Data dependency graph of concurrent PA and PD operations using four
multipliers

108

5.6. EC SCALAR MULTIPLIER ARCHITECTURE IN PROJECTIVE COORDINATES

AU

 ControllerIFD
Instruction

memory

GPR DPR

1 2 3 5 6 74 84 3 2

.

1

Division

p

p

Register
File

INPUTsRESULTs

CLK RESET

Figure 5.7: EC scalar multiplier architecture

5.6.3 Overall Execution

The overall architecture of the proposed EC scalar multiplier using projective coordi-

nates is given in Figure 5.7. In addition to the AU unit, it also contains a register file,

instruction fetch and decode unit (IFD), instruction memory, and a controller. In order

to configure the AU unit to perform the respective operations, instructions are loaded

in the instruction memory. The controller generates a request to the IFD unit. Then,

the IFD unit fetches and decodes an instruction and generates appropriate signals to

configure the AU unit for smooth execution of the instruction.

As the instruction data dependencies and data hazards are known in advance,

therefore these microcoded instructions can be scheduled in a manner to get maximum

utilization of MUL1, MUL2, and MUL3 execution units of the AU based on the schedules

demonstrated in the Tables 5.8, 5.9, 5.10.

The AU unit performs four instructions in parallel, therefore it accesses eight in-

dependent input operands in parallel and produces four independent results. The

register file stores input points coordinates, modulus p, intermediate results, and the

coordinates of the resultant point. A very simple read and write mechanism for the

register file is adopted, where each data access (read/write) is based on hard-coded

control signals for the inputs and results multiplexing blocks, which are generated and

109

5.6. EC SCALAR MULTIPLIER ARCHITECTURE IN PROJECTIVE COORDINATES

Table 5.11: No of Clock cycles of EC scalar multiplication in projective coordinates

Method No of Mul PD PA EC scalar multiplication

DA
2 (5n/2+ 32) (7n/2+ 38) [n(5n/2+ 32) + n/2(7n/2+ 38)] + 4n
3 (2n+ 27) (3n+ 37) [n(2n+ 27) + n/2(3n+ 37)] + 4n
4 (2n+ 27) (2n+ 28) [n(2n+ 27) + n/2(2n+ 28)] + 4n

DAA
2 6n+ 61 [n(6n+ 61)] + 4n
3 4n+ 43 [n(4n+ 43)] + 4n
4 3n+ 35 [n(3n+ 35)] + 4n

managed by the controller and this avoids additional software development cost. It is

also worth mentioning that read and write to specific registers are completed in the

same clock cycle, which avoids unnecessary delay. The register file is grouped into

general purpose (GPR) and dedicated purpose registers (DPR). The GPR is updated

with intermediate results, while DPR holds the input operands in every iteration of

the DA and DAA algorithms.

5.6.4 Final Conversion

At the end of an EC scalar multiplication, the resultant coordinates (X , Y, Z) in stan-

dard projective coordinates need to be converted back to affine coordinates (x , y).

This conversion is done as x = X/Z , y = Y /Z , which requires two modular division

instructions. These modular division instructions are executed on the dedicated divi-

sion units (presented in chapter 3) based on extended Euclidean algorithm [16] in 4n

clock cycles (2n for each).

5.6.5 Latecny

Latencies of a single iteration of DA and DAA algorithms using multiple parallel multi-

pliers are given in Table 5.11. The table shows that using four parallel multipliers a sin-

gle iteration of DAA algorithm is completed in (3n+35) clock cycles. In total, there are

n iterations therefore EC scalar multiplication operation is completed in n(3n+35)+4n

clock cycles. The table also shows that using DAA algorithm, using four multipliers

the latency of a EC scalar multiplication operation is [n(2n+27)+n/2(2n+28)]+4n

110

5.7. IMPLEMENTATION AND RESULTS

Table 5.12: Latency of EC scalar multiplication in projective coordinates

Method Mul n
Clock cycles

Freq (MHz) Time (ms)
PD PA EC Scalar Multiplication

DA

2
192 512 710 167, 232 154 1.08
224 592 822 225, 568 150 1.5
256 672 934 276, 096 146 2.01

3
192 411 613 138, 528 152 0.91
224 475 709 185, 808 147 1.26
256 539 805 242, 048 143 1.69

4
192 410 412 119, 232 151 0.79
224 475 486 160, 832 145 1.10
256 539 540 208, 128 141 1.47

Parallel PA and PD operations

DAA

2
192 1213 233, 664 154 1.51
224 1405 315, 616 150 2.1
256 1597 409, 856 146 2.8

3
192 811 156, 480 152 1.03
224 939 211, 232 147 1.44
256 1067 274, 176 143 1.92

4
192 611 118, 080 149 0.78
224 707 159, 264 145 1.09
256 803 206, 592 141 1.46

clock cycles. Note that extra 4n clock cycles in Table 5.11 are consumed in the final

conversion i.e., from projective to affine coordinates.

5.7 Implementation and Results

The EC scalar multiplier architectures are coded in Verilog (HDL). Xilinx ISE 14.1 de-

sign suite is used for synthesis, mapping, placement, and routing purposes and Xilinx

ISim simulator is used for simulation purposes. The R4PIM modular multiplier de-

scribed and implemented in chapter 4 is used. The EC points are represented in stan-

dard projective coordinates and the EC group operations are computed over standard

form of an EC. Tables 5.12 depicts latencies of EC PA , PD and scalar multiplication

operation against different field sizes when computed using DA and DAA methods by

incorporating different number of parallel multiplier units.

During synthesis Xilinx Virtex-6 device is selected as the target implementation

platform. The available fast carry chains of Xilinx FPGA are utilized to perform ad-

dition and subtraction operations. On the top level, the EC scalar multiplier is based

111

5.7. IMPLEMENTATION AND RESULTS

Table 5.13: Implementation results of EC scalar multiplier
in projective coordinates

Method Multipliers n Area (slices) ATB TP (ops)

DA

2
192 5251 29.5 925.9
224 6048 40.5 666.6
256 7089 55.6 497.5

3
192 6952 32.9 1098.9
224 8108 45.6 793.6
256 9372 61.8 591.7

4
192 8731 35.9 1265.8
224 10, 115 49.6 909
256 11, 655 66.9 680.3

DAA

2
192 5432 42.7 666.6
224 6341 59.4 476.2
256 7235 79.1 357.1

3
192 7113 38.15 970.8
224 8341 53.6 694.4
256 9588 71.9 520.8

4
192 8897 36.14 1282
224 10, 291 50.07 917.4
256 11, 791 67.24 684.9

(Area × Time)/bits (ATB), Throughput (TP), EC scalar multi-
plication operations per second (ops)

on the DA and DAA algorithms. The DAA technique offers inherent protection against

timing and simple power analysis attacks. The presented designs are programmable

for various field sizes of p ≤ 256-bit.

It is obvious that incorporating more multiplier units reduces the computation time

of an EC scalar multiplication operation at the cost of more hardware resources. Note

that in the case of using four parallel multiplier units computation time of an EC

scalar multiplication operation using DA and DAA methods are comparable. Table

5.12 shows that a 256-bit EC scalar multiplication operation using DA method is com-

pleted in 208,128 clock cycles using four multipliers. The same bit length EC scalar

multiplication operation with the same multipliers using DAA method is completed in

206,592 clock cycles.

Tables 5.12 and 5.13 show that the DA method with three multipliers on Virtex-6

platform, a 256-bit EC scalar multiplication is completed in 1.69 ms in a cycle count

of 242K. It consumes 9372 slices and runs at a maximum frequency of 143 MHz with

a throughput of almost 592 operations per second (ops). Similarly, it is depicted that

when using four multipliers the same bit length operation is completed in 1.47 ms,

112

5.7. IMPLEMENTATION AND RESULTS

consumes 11.65K slices and achieves a throughput of 680 ops. Which is 15% faster as

compared to the case of using three multipliers. However due to the integration of an

extra multiplier unit it consumes 20% more FPGA slices. Note that in the DA method

PA and PD operations are easily distinguishable because PA operation is dependent

on the bit value of the scalar d. Thus, the scalar d can be potentially revealed by

measuring timing or power consumption of the cryptographic device. Therefore DA

method is very susceptible to these side channel attacks.

Tables 5.12 and 5.13 also demonstrate an implementation of scalar multiplication

using DAA method on Virtex-6 FPGA platform. In the DAA method PD and PA opera-

tions can be performed in an indistinguishable manner irrespective of the bit value of

the scalar d. A 256-bit EC scalar multiplication operation using four multipliers is com-

pleted in 1.46 ms, consumes 11.79K slices and attains a maximum frequency of 141

MHz with a throughput of 684.9 ops. Using DAA method for EC scalar multiplication

can protect the scalar d against timing and simple power analysis attacks.

It is obvious that incorporating more parallel multipliers will increase area con-

sumption and reduce the computation time of a EC scalar multiplication operation.

Area-delay product per bit (ATB) for a number of parallel multipliers is also given in

Table 5.13. ATB is higher for more multipliers with increased throughput rate. There-

fore, a choice of the number of multipliers depends on an application requirements.

If the application demands a very high speed design then four multipliers is the most

suitable option.

113

5.7. IMPLEMENTATION AND RESULTS

Ta
bl

e
5.

14
:

C
om

pa
ri

so
n

of
FP

G
A

im
pl

em
en

te
d

EC
sc

al
ar

m
ul

ti
pl

ie
rs

R
ef

.
Pl

at
fo

rm
A

lg
or

it
hm

|p
|(

bi
ts

)
A

re
a

Fr
eq

.
(M

H
z)

cy
cl

e
co

un
t

Ti
m

e
(m

s)
TP
(o

ps
)

T
PA

R
D

PR
T

hi
s

w
or

k
Vi

rt
ex

-6
D

A
a

19
2-

an
y

6.
95

K
Sl

ic
es

15
2

13
8.

5K
0.

91
1.

1K
×

×
22

4-
an

y
8.

1K
Sl

ic
es

14
7

18
5.

8K
1.

26
79

4
×

×
25

6-
an

y
9.

37
K

Sl
ic

es
14

3
24

2.
04

K
1.

69
59

2
×

×
D

A
b

19
2-

an
y

8.
73

K
Sl

ic
es

15
1

11
9.

2K
0.

79
1.

4K
×

×
22

4-
an

y
10

.1
1K

Sl
ic

es
14

5
16

0.
8K

1.
10

90
9

×
×

25
6-

an
y

11
.6

5K
Sl

ic
es

14
1

19
0K

1.
47

68
0

×
×

D
A

A
b

19
2-

an
y

8.
9K

Sl
ic

es
14

9
11

8K
0.

78
1.

28
K

p
×

22
4-

an
y

10
.3

K
Sl

ic
es

14
5

15
9.

3K
1.

09
91

7
p

×
25

6-
an

y
11

.8
K

Sl
ic

es
14

1
20

6.
5K

1.
46

68
4.

9
p

×
[5

5]
Vi

rt
ex

-I
I

pr
o

D
A

A
19

2-
an

y
09

.0
K

sl
ic

es
43

19
2K

4.
47

22
3.

7
p

p

22
4-

an
y

10
.4

K
sl

ic
es

40
26

0K
6.

50
15

3.
8

p
p

25
6-

an
y

12
.0

K
sl

ic
es

36
33

8K
9.

38
10

6
p

p

[5
5]

Vi
rt

ex
-4

D
A

A
19

2-
an

y
-

61
19

2K
3.

15
31

7
p

p

22
4-

an
y

-
58

26
0K

4.
49

22
3

p
p

25
6-

an
y

-
54

33
8K

6.
26

15
8

p
p

[5
6]

Vi
rt

ex
-4

D
A

A
19

2-
an

y
14

.9
K

sl
ic

es
53

18
6K

3.
5

28
6

p
×

22
4-

an
y

17
.3

K
sl

ic
es

47
25

3K
5.

4
18

5
p

×
25

6-
an

y
20

.1
K

sl
ic

es
43

33
0K

7.
7

13
0

p
×

[4
6]

Vi
rt

ex
-4

D
A

19
2-

N
IS

T
20

.8
K

sl
ic

es
+

32
D

SP
s

60
4.

8
20

8
×

×
22

4-
N

IS
T

20
.8

K
sl

ic
es
+

32
D

SP
s

60
-

5.
8

17
2.

4
×

×
25

6-
N

IS
T

20
.8

K
sl

ic
es
+

32
D

SP
s

43
6.

9
14

5
×

×
[7

1]
Vi

rt
ex

-5
19

2-
an

y
6.

1K
LU

Ts
96

.6
-

2.
05

48
7.

8
×

×
25

6-
an

y
7.

8K
LU

Ts
81

.7
4.

04
24

7.
5

×
×

[4
7]

Vi
rt

ex
-6

D
A

A
19

2-
N

IS
T

33
K

LU
Ts
+

28
9

D
SP

s
10

0
-

0.
30

-3
.9

1
25

5-
1.

02
K

p
p

[6
0]

Vi
rt

ex
-I

I
pr

o
D

A
19

2-
an

y
15

.8
K

sl
ic

es
+

25
6

D
SP

s
40

15
1.

4K
3.

86
25

9
×

×
[6

3]
Vi

rt
ex

-I
I

pr
o

N
A

F
19

2-
an

y
40

.3
K

sl
ic

es
94

.7
11

8.
1K

1.
25

80
0

×
×

25
6-

an
y

41
.6

K
sl

ic
es

94
.7

25
2K

2.
66

37
6

×
×

O
u

r
Vi

rt
ex

-4
D

A
A

b
19

2-
an

y
27

.3
K

sl
ic

es
71

11
7.

8K
1.

66
60

2
p

×
22

4-
an

y
33

.1
K

sl
ic

es
67

15
9.

3K
2.

37
42

2
p

×
25

6-
an

y
37

.9
K

sl
ic

es
63

20
6.

5K
3.

27
30

6
p

×

Th
ro

ug
hp

ut
(T

P)
,o

pe
ra

ti
on

sp
er

se
co

nd
(o

ps
),

Ti
m

in
g

an
d

si
m

pl
e

po
w

er
an

al
ys

is
re

si
st

an
ce

(T
PA

R
),

D
if

fe
re

nt
ia

lp
ow

er
an

al
ys

is
re

si
st

an
ce

(D
PR

)
D

ou
bl

e-
an

d-
ad

d
(D

A
A

),
A

lw
ay

s
do

ub
le

-a
nd

-a
dd

(A
D

A
),

N
on

-a
dj

ac
en

t-
fo

rm
(N

A
F)

,T
hr

ee
m

ul
ti

pl
ie

rs
(a

),
Fo

ur
m

ul
ti

pl
ie

rs
(b

).

114

5.7. IMPLEMENTATION AND RESULTS

5.7.1 Performance Evaluation

FPGA implementation of several other related designs are listed in Table 5.14. These

listed designs differ in different aspects: underlying implementation platform, chosen

prime number characteristics, underlying elliptic curve representation, points rep-

resentation, and the ability to countering different side channel attacks. A braod

overview the proposed design against other designs in different performance metrics

are listed in Table 5.14.

Designs reported in [46], [47] are based on NIST recommended elliptic curves over

prime fields, where a prime modulus p is of special form (close to a power of 2) called

pseudo-Mersenne Prime. Modular multiplications over this form of prime are much

faster due to simpler reduction steps which can be achieved by a few addition and sub-

traction operations instead of division as required in the case of a general prime field.

Therefore, typically implementations of NIST recommended curves are faster than the

implementations of general curves. However, these designs are not compatible to any

other prime numbers. Hence, NIST based EC scalar multiplier designs are not flexible

to support any prime numbers of the chosen bit sizes. Moreover, scalability of these

designs is also a major problem. For example, it is not easy to extend a 192-bit EC

scalar multiplier over NIST curves to a multiplier over 224-bit NIST curves.

Virtex-4 implementation of [46] completes a 256-bit EC scalar multiplication in

6.1ms at 43 MHz clock frequency, occupies 20.1K slices and 32 DSPs blocks (16× 16

embedded multipliers). At the top level DA algorithm is used for EC scalar multipli-

cation operation. It is 2.2 times slower than the proposed design, and it also lacks

the ability to resist timing and simple power analysis attacks. [47] extends the design

in [46] to increase performance and side channel attacks resistivity. Its implementa-

tion on a Virtex-6 computes an EC scalar multiplication between 0.3ms to 3.91ms for

192 to 512-bits prime modulus p. It occupies 11.2K slices (33K LUTs), 289 DSPs blocks

(18× 18 multipliers), and 128 RAMB36 (36K random access memory). On the same

platform it consumes the same amount of FPGA slices as compared to our design, note

that it does not include the logic utilization of 289 DSPs and the 128 RAM36 blocks,

moreover its flexibility is only limited to the NIST recommend curves.

Designs in [60], [63] and [71] support general prime field, with p ≤ 256-bits,

however these designs are either based on double-and-add (DA) or non-adjacent-form

115

5.7. IMPLEMENTATION AND RESULTS

(NAF) techniques to perform EC scalar multiplication. Using the DA method, an n-

bit EC scalar multiplication takes (n) PD + d n
2e PA, whereas using NAF, it costs (n)

PD + d n
3e PA which is almost 33% decrease in PA operations as compared to the DA

method. However, as data dependencies and computational complexities of PD and

PA are different therefore, these methods are very susceptible to side channel attacks

(even vulnerable against timing and simple power analysis (SPA) attacks). The design

presented in this thesis is superior to these in terms of resistivity to timing and SPA

attacks.

In [56], propose an elliptic curve scalar multiplier architecture over general prime

field resilient to timing and power analysis attacks. The design performs PD and PA

operations using affine coordinates (x , y) which also require modular inversion/divi-

sion operations in addition to the field addition, subtraction, and multiplication. Its

arithmetic unit employs two modular addition, two modular subtraction, two modular

multiplication, and two modular division units. The Virtex-4 FPGA implementation of

the design computes a 256-bit EC scalar multiplication in 7.7 ms, cycle count of 330K,

runs at a maximum clock frequency of 43 MHz, and occupies 20.1K slices. The design

presented in this thesis (DAA using four R4PIM multipliers) on the same platform is

2.25 times faster and consumes only 1.8 times more Virtex-4 FPGA slices. The increase

in slice area is mainly due to the parallel multiplier units, whereas [56] employs se-

rial radix-2 multiplier. The design in [56] also requires 1.92 times more clock cycles

to compute a single EC scalar multiplication operation as compared to the presented

design.

The design reported in [55] proposes a compact programmable arithmetic unit

(PAU) to perform finite field arithmetic operations. Then, an EC scalar multiplier

architecture is presented based on dual instances of the PAU. EC points are represented

in affine coordinates, and Montgomery laddering method for EC scalar multiplication

is adopted to perform PD and PA operations in parallel. Its implementation on Virtex-

2 pro completes a 256-bit EC scalar multiplication in 9.38 ms, achieves maximum

frequency of 36 MHz, cycle count of 338K, and consumes 12K slices. In [55] (Table

XIV) only timing results of its implementation on Virtex-4 are also given, which show

that, it completes a 256-bit EC scalar multiplication in 6.26 ms, which is 2.23 times

slower, and its cycle count is 1.97 times higher as compared to the presented design

on the same Virtex-4 platform.

116

5.7. IMPLEMENTATION AND RESULTS

As in Table 5.4 implementation results of the EC scalar multiplier in affine coordi-

nates are presented. Using DA method, a 256-bit EC scalar multiplication is completed

in 2.6 ms and consumes 4807 Virtex-6 FPGA slices in 336,256 clock cycles. On the

other hand, Table 5.14 shows the same bit length operation on the same FPGA de-

vice using projective coordinates is completed in 1.69 ms and consumes 9370 Virtex-6

FPGA slices in 242,004 clock cycles, which is almost 1.54 times faster than the affine

coordinates implementation. However, due to integration of multiple copies of the

R4PIM multipliers in projective coordinates, its area consumption is 1.94 times of the

implementation in affine coordinates. Similar conclusions can be made for the DAA

method in affine and projective coordinates. Therefore, projective coordinates offers

better performance which relies only on the performance of a finite field multiplier. In

the case of affine coordinates, optimization of a finite field multiplier and a divider is

important to boost the overall performance.

Most of the available high-speed EC scalar multiplier designs on FPGA platforms

extensively use dedicated built-in blocks such as digital signal processing (DSP) and

embedded multipliers. This research work does not use these embedded blocks except

look-up-tables and the fast carry chains (FCC) of the FPGA is used to reduce the long

carry propagation delay in an adder circuit. Hence, presented designs in this work are

more portable to other FPGA devices and ASIC technologies.

All of the designs in Table 5.14 are based on standard elliptic curve representa-

tion (Weierstrass). The number of Underlying field operations to compute PD and PA

operations are more than the some other forms of ECs. Recent advances in EC cryptog-

raphy is to perform scalar multiplication on new forms of EC other than the Weierstrass

form. Examples of these are Edwards curves [115], Twisted Edwards curves [116],

Montgomery curves [117, 118]. These curves require fewer field multiplications to

compute PD and PA operations as compared to the curves in Weierstrass form [29].

Therefore computation time of scalar multiplication on these curves are lower than

the standard Weierstrass form. Some of these curves have unified formula for PD and

PA [116], thus they may have inherent resistance for different side channel attacks.

Hardware analysis of these curves are reported in [43,70,130]. Despite their numer-

ous advantages these curves are not standardized yet. Presented designs for low level

field operations and EC scalar multiplication in this work supports general prime field

which means that these designs are flexible to work for any prime number p. There-

117

5.8. CONCLUSION

fore, the presented architectures for finite field arithmetic in this work can be utilized

to construct elliptic curve cryptographic processors over several new forms of elliptic

curves [74].

It is worth mentioning that most of the designs in Table 5.14 including the archi-

tectures presented in this thesis are not capable of resisting differential power analysis

attacks [32]. DPA tries to reveal the secret by monitoring several power traces and find

patterns by applying some statistical methods.

5.8 Conclusion

This chapter introduces novel hardware architectures to compute the EC point mul-

tiplication operation over general prime field. Two EC scalar multiplication algo-

rithms, double-and-add and double-and-always-add are implemented. The chapter

first presents hardware architectures for EC scalar multiplication algorithms by using

affine coordinates representation of the EC points. As in affine coordinates the scope of

parallelism in the underlying field operations is very limited therefore multiple copies

of an arithmetic unit can not accelerate the respective operations. The division oper-

ation required to compute EC PA and PD operations in affine coordinates also limits

the performance of an EC scalar multiplier in affine coordinates.

This chapter also presents an EC scalar multiplier architecture using projective

coordinates. In projective coordinates EC PD and PA operations are inversion/division

free, and there are also opportunities to exploit parallelism in the computation of EC

PD and PA operations. A number of modular multipliers are used in the design of the

arithmetic unit to exploit the available parallelism.

The presented architectures are synthesised targeting Xilinx Virtex-6 FPGA plat-

form. Using the DA algorithm and employing three multipliers, a 256-bit EC scalar

multiplication can be computed in 1.69 ms in a cycle count of 242K. When four mul-

tipliers are employed the computation time for the same operation is reduced to 1.47

ms with a cycle count of 208.1K. Similarly, using the DAA algorithm and employing

four multipliers, computation time for a 256-bit EC scalar multiplication operation is

1.46 ms in a cycle count of 206.59K.

118

5.8. CONCLUSION

The synthesis results confirm that the EC scalar multiplier presented in this thesis

is a good trade-offs of performance and flexibility. The other major advantage of the

proposed designs using DAA method is the ability to counter side channel attacks based

on timing and simple power consumption analysis of the cryptographic device.

119

Chapter 6

Conclusion and Future Work

6.1 Conclusion

The contribution of this research work is mainly comprises of efficient hardware ar-

chitectures for finite arithmetic operations including addition, subtraction, multiplica-

tion, and division. Based on these optimized arithmetic primitives, high performance

hardware architectures for elliptic curve scalar multiplication operation are proposed.

Chapter 2 discusses essential background knowledge of elliptic curve cryptogra-

phy (ECC) which establishes that an elliptic curve (EC) scalar multiplication is the

fundamental operation in the construction of ECC based crypto-systems. In this re-

gards, common optimization techniques and available hardware implementations of

EC scalar multiplication are analysed.

In Chapter 3, strategies to perform addition, subtraction, multiplication and divi-

sion in a finite field of prime characteristics are discussed. Hardware architectures

to execute these basic finite field operations are also presented. For finite field in-

version/division, the extended Euclidean algorithm is adopted while the interleaved

modular multiplication algorithm is used to perform a finite field multiplication. Fi-

nite field multiplication is a core operation in all public key based cryptosystems. The

performance of these cryptosystems can be significantly enhanced by incorporating an

optimized finite field multiplier. Therefore, this chapter also presents modifications to

120

6.1. CONCLUSION

the interleaved modular multiplication algorithm based on radix-4, radix-8 and Booth

encoding techniques. Subsequently, efficient finite field multiplier architectures are

presented based on the modified interleaved modular multiplication algorithms.

In Chapter 4, the finite field multipliers presented in Chapter 3 are further op-

timized by introducing parallelism to perform critical operations concurrently. Due

to the introduced parallelism, the parallel finite field multipliers have shorter critical

path delays and are able to achieve higher operating clock frequencies. Then, the per-

formance of these parallel multipliers are evaluated on the basis of computation time,

resource consumption, throughput and operating frequency.

Chapter 5 presents hardware architectures to execute EC scalar multiplications.

The underlying finite field operations to perform an EC scalar multiplication operation

in affine coordinates are modular addition, subtraction, multiplication, and division.

Therefore, the arithmetic unit in an EC scalar multiplier design is comprised of mod-

ular addder/subtractor, modular multiplier and modular divider units. On the system

level the standard double-and-add (DA) and double-and-always-add (DAA) methods

are adopted to perform an EC scalar multiplication operation. In the DA algorithm

point addition and point doubling operations can not be performed concurrently. On

the other hand the DAA algorithm provides a flexibility to execute these point addition

and doubling operations in parallel. Therefore, in the implementation of the EC scalar

multiplier using the DAA algorithm, two arithmetic units are incorporated to execute

point addition and doubling operations concurrently.

As the computational complexity of a modular division operation is more than a

modular multiplication, the standard projective coordinates are used to remove this

division operation from the computation of EC group operations. At the end of an

EC scalar multiplication operation in projective coordinates, two division operations

are needed to convert the result back to affine coordinates. This work uses the stan-

dard projective coordinate system to perform these point operations. In projective

coordinates, there are many opportunities to execute the underlying field operations

in parallel. Therefore, the EC scalar multiplier using standard projective coordinates

employs different numbers of parallel multipliers. A performance evaluation is pre-

sented based on computation time, resource consumption and throughput. Using the

DA method, performance is evaluated by employing three and four parallel multipli-

ers and for the DAA method, performance is shown for the architectures using four

121

6.2. FUTURE WORK

modular multipliers. Finally, comparison with state-of-the-art designs in the literature

is presented which shows that the architectures proposed in this work are good trade-

offs between performance and flexibility. The presented designs provide the flexibility

for the user to select a prime number and the EC parameters. Therefore, the user can

update these parameters to avoid any security breach.

Implementation results of EC scalar multipliers based on the other modular mul-

tipliers presented in Chapter 4 are given in Appendix A.

6.2 Future Work

There are several possible extensions of the work presented in this thesis. Some of

these are highlighted below.

• In this thesis, the fast carry chains (FCC) of FPGA are used to reduce long carry

propagation delay in adders. An important extension of the work presented in

this thesis is to design a high-speed adder circuit incorporating different fast

addition techniques such as carry save addition, redundant signed digit addi-

tion etc. Then analyse the performance of modular multipliers and EC scalar

multipliers based on the high-speed adder.

• Resource requirements of high-radix parallel modular multipliers presented in

Chapter 4 are significantly higher than their radix-2 counterparts. One possible

future direction is to eliminate redundant operations to optimize the resource

consumption of higher-radix parallel modular multipliers.

• The general side-channel attack is based on timing and is known as the timing

attack. The EC scalar multiplier design in this work is resilient to this attack by

using the DAA method to compute the EC scalar multiplication operation. Side-

channel attack based on power consumption has been categorized into simple

power analysis (SPA) and differential power analysis (DPA). SPA uses a single

trace of power consumption and the DAA method is resistant to this type of at-

tacks. On the other hand DPA uses statistical analysis of several power traces and

the DAA method is not resistant to the DPA attacks. Randomization techniques

are recommended to defeat DPA [131]. Therefore, one possible future direction

is to add resistance to DPA attacks in the presented architectures in this work.

122

6.2. FUTURE WORK

• Several new forms of EC curves have been proposed such as Edwards, twisted

Edwards, Montgomery, etc. These curves require fewer number of underlying

arithmetic operations and are considered more secure against different side-

channel attacks as compared to the curves presented in the other Weierstrass

form. Thus, point multiplication operations over these curves are faster than

the Weierstrass form. As the presented modular multipliers work for any general

prime number, therefore, a possible future extension is to design an EC scalar

multiplier to perform point multiplication operations over these new forms of

EC curves.

• Modern FPGAs are equipped with different high speed components such as dig-

ital signal processing (DSP) blocks, block RAMs (BRAM) depending on vendors

and device type, a DSP block integrates an integer multiplier of different sizes.

For example, the Virtex-6 DSP block incorporates a 25×18-bit multiplier. A pos-

sible future extension of the work is to use these built-in FPGA components in

the design of point multiplier over standard and the new forms of ECs.

123

Appendix A

Appendix

A.1 Implementation results of EC scalar multiplier us-

ing modular multipliers presented in Chapter 4

124

A.1. IMPLEMENTATION RESULTS OF EC SCALAR MULTIPLIER USING MODULAR
MULTIPLIERS PRESENTED IN CHAPTER 4

Table A.1: Number of clock cycles required for EC scalar
multiplication in projective coordinates

Latency (Tn) EC scalar Multiplier

R4BIM (bn/2c+ 3)

DAa [n(2n+ 16) + bn/2c(3n+ 16)] + 4n
DAb [n(2n+ 13) + bn/2c(3n/2+ 14)] + 4n

DAAb n(3n+ 35) + 4n

R8BIM (bn/3c+ 5)

DAa [n(4n/3+ 29) + bn/2c(2n+ 33)] + 4n
DAb [n(4n/3+ 23) + bn/2c(5n/3+ 27)] + 4n

DAAb n(2n+ 38) + 4n

R8PIM (bn/3c+ 7)

DAa [n(4n/3+ 37) + bn/2c(2n+ 41)] + 4n
DAb n(4n+ 31) + bn/2c(5n/3+ 37) + 4n

DAAb n(2n+ 55) + 4n

R4BPIM (bn/2c+ 3)

DAa [n(2n+ 16) + bn/2c(3n+ 16)] + 4n
DAb [n(2n+ 13) + bn/2c(3n/2+ 14)] + 4n

DAAb n(3n+ 24) + 4n

R8BPIM (bn/3c+ 5)

DAa [n(4n/3+ 29) + bn/2c(2n+ 33)] + 4n
DAb n(4n/3+ 25) + bn/2c(5n/3+ 27) + 4n

DAAb n(2n+ 40) + 4n
∗ Double-and-Add (DA)
∗ Double-and-always-add (DAA)
∗ Three parallel multipliers (a)
∗ Four parallel multipliers (b)

125

A.1. IMPLEMENTATION RESULTS OF EC SCALAR MULTIPLIER USING MODULAR
MULTIPLIERS PRESENTED IN CHAPTER 4

Table A.2: Cycle count of EC scalar multiplication using DA algorithm
and three multipliers in projective coordinates

Field size Point doubling Point addition EC scalar multiplication
R4BIM

192-any 400 592 133, 632
224-any 464 688 180, 992
256-any 528 784 235, 520

R8BIM

192-any 285 417 94, 752
224-any 328 481 127, 344
256-any 371 545 164, 736

R8PIM

192-any 293 425 97, 056
224-any 336 489 130, 032
256-any 371 553 167, 808

R4BPIM

192-any 400 592 133, 632
224-any 464 688 180, 992
256-any 528 784 235, 520

R8BPIM

192-any 285 417 94, 752
224-any 328 481 127, 344
256-any 371 545 164, 736
EC scalar multiplication (ECSM)

126

A.1. IMPLEMENTATION RESULTS OF EC SCALAR MULTIPLIER USING MODULAR
MULTIPLIERS PRESENTED IN CHAPTER 4

Table A.3: Cycle count of EC scalar multiplication using DA algorithm
and four multipliers in projective coordinates

Field size Point doubling Point addition EC scalar multiplication
R4BIM

192-any 397 302 105, 216
224-any 461 350 142, 464
256-any 525 398 185, 344

R8BIM

192-any 279 347 86, 880
224-any 322 401 117, 040
256-any 365 454 151, 552

R8PIM

192-any 287 357 89, 376
224-any 330 411 119, 952
256-any 373 464 154, 880

R4BPIM

192-any 397 302 105, 216
224-any 461 350 142, 464
256-any 525 398 185, 344

R8BPIM

192-any 279 347 86, 880
224-any 322 401 117, 040
256-any 365 454 151, 552
EC scalar multiplication (ECSM)

127

A.1. IMPLEMENTATION RESULTS OF EC SCALAR MULTIPLIER USING MODULAR
MULTIPLIERS PRESENTED IN CHAPTER 4

Table A.4: Implementation of DAA algorithm using four multipliers in projec-
tive coordinates

Field size Area Freq. (MHz) cycle count Time (ms) TP

R4BIM

192-any 7,853 slices 77 115, 712 1.51 662
224-any 8,718 slices 73 156, 352 2.14 467
256-any 9,505 slices 68 203, 264 2.98 335

R8BIM

192-any 8,569 slices 63 84, 068, 888 1.29 775
224-any 9,426 slices 58 109, 312 1.88 531
256-any 10,585 slices 53 141, 312 2.66 375

R8PIM

192-any 15,565 slices 118 84, 672 0.71 1408
224-any 17,454 slices 112 113, 120 1 1000
256-any 19,361 slices 107 145, 664 1.36 735

R4BPIM

192-any 8,381 slices 131 115, 712 0.88 1136
224-any 8,914 slices 127 156, 352 1.23 813
256-any 10,131 slices 122 203, 264 1.66 602

R8BPIM

192-any 13,781 slices 115 81, 792 0.71 1408
224-any 16,234 slices 110 109, 760 0.99 1000
256-any 17,793 slices 105 141, 824 1.35 735
Throughput (TP), operations per second (ops)

128

Bibliography

[1] V. S. Miller, “Use of elliptic curves in cryptography,” in Advances in Cryptology–

CRYPTO85 Proceedings. Springer, 1986, pp. 417–426.

[2] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of computation, vol. 48,

no. 177, pp. 203–209, 1987.

[3] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures

and Public-Key cryptosystems,” Communications of the ACM, vol. 21, pp. 120–

126, 1978.

[4] NIST, “Data encryption standard (DES), FIPS (46-3),” National Institute of Stan-

dards and Technology, vol. 25, no. 10, pp. 1–22, 1999.

[5] , “Advanced encryption standard (AES), FIPS (197),” National Institute of Stan-

dards and Technology, vol. 197, pp. 441–0311, 2001.

[6] J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced encryption

standard. Springer Science & Business Media, 2013.

[7] B. Schneier, Applied cryptography: protocols, algorithms, and source code in C.

john wiley & sons, 2007.

[8] W. Diffie and M. E. Hellman, “New directions in cryptography,” Information

Theory, IEEE Transactions on, vol. 22, no. 6, pp. 644–654, 1976.

[9] J. Katz and Y. Lindell, Introduction to modern cryptography. CRC Press, 2014.

129

BIBLIOGRAPHY

[10] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “NIST special publication

800-57,” NIST Special Publication, vol. 800, no. 57, pp. 1–142.

[11] ——, “Recommendation for key management-part 1: General (revised,” in

NIST special publication. Citeseer, 2006.

[12] A. K. Lenstra and E. R. Verheul, “Selecting cryptographic key sizes,” Journal of

cryptology, vol. 14, no. 4, pp. 255–293, 2001.

[13] “keylength,” www.keylength.com, accessed: 2015-09-20.

[14] ECRYPT, “ECRYPT II yearly report on algorithms and keysizes (ict-2007-

216676),” European Network of Excellence in Cryptology II, revision 1, Tech.

Rep., 2012.

[15] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren,

Handbook of elliptic and hyperelliptic curve cryptography. CRC press, 2005.

[16] D. Hankerson, S. Vanstone, and A. J. Menezes, Guide to elliptic curve cryptogra-

phy. Springer, 2004.

[17] S. Ghosh, “Design and analysis of pairing based cryptographic hardware for

prime fields,” Ph.D. dissertation, Department of Computer Science and Engi-

neering, Indian Institute OF Technology Kharagpur, 2011.

[18] B. Baldwin, “Hardware design of cryptographic accelerators,” Ph.D. disserta-

tion, Department of Electrical Engineering University College Cork, 2013.

[19] R. Schoof, “Elliptic curves over finite fields and the computation of square roots

mod p,” Mathematics of computation, vol. 44, no. 170, pp. 483–494, 1985.

[20] R. Schroeppel, H. Orman, S. ÓMalley, and O. Spatscheck, Fast key exchange with

elliptic curve systems. Springer, 1995.

[21] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital signature

algorithm (ECDSA),” International Journal of Information Security, vol. 1, no. 1,

pp. 36–63, 2001.

[22] D. Stebila and J. Green, “Elliptic-curve algorithm integration in the secure shell

transport layer,” 2009.

130

www.keylength.com

BIBLIOGRAPHY

[23] S. Blake-Wilson, B. Moeller, V. Gupta, C. Hawk, and N. Bolyard, “Elliptic curve

cryptography (ECC) cipher suites for transport layer security (TLS),” 2006.

[24] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[25] J. W. Bos, J. A. Halderman, N. Heninger, J. Moore, M. Naehrig, and E. Wustrow,

“Elliptic curve cryptography in practice,” in Financial Cryptography and Data

Security. Springer, 2014, pp. 157–175.

[26] Certicom, “Certicom research. Standards for efficient cryptography 1: Elliptic

curve cryptography. Standard SEC1,” 2009, http://www.secg.org/SEC1-Ver-1.

0.pdf.

[27] E. B. Barker, D. Johnson, and M. E. Smid, “Sp 800-56A. Recommendation

for pair-wise key establishment schemes using discrete logarithm cryptog-

raphy (revised),” 2007, http://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.415.8236&rep=rep1&type=pdf.

[28] D. J. Bernstein and T. Lange, “Faster addition and doubling on elliptic curves,”

in Advances in cryptology–ASIACRYPT 2007. Springer, 2007, pp. 29–50.

[29] “Explixit-Formaula-database.” [Online]. Available: https://www.hyperelliptic.

org/EFD/

[30] E. Brier and M. Joye, “Weierstraß elliptic curves and side-channel attacks,” in

International Workshop on Public Key Cryptography. Springer, 2002, pp. 335–

345.

[31] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS,

and other systems,” in Advances in Cryptology–CRYPTO96. Springer, 1996, pp.

104–113.

[32] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction to differential power

analysis,” Journal of Cryptographic Engineering, vol. 1, no. 1, pp. 5–27, 2011.

[33] J. Fan, X. Guo, E. De Mulder, P. Schaumont, B. Preneel, and I. Verbauwhede,

“State-of-the-art of secure ECC implementations: a survey on known side-

channel attacks and countermeasures,” in Hardware-Oriented Security and Trust

(HOST), 2010 IEEE International Symposium on. IEEE, 2010, pp. 76–87.

131

http://www.secg.org/SEC1-Ver-1.0.pdf
http://www.secg.org/SEC1-Ver-1.0.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.415.8236&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.415.8236&rep=rep1&type=pdf
https://www.hyperelliptic.org/EFD/
https://www.hyperelliptic.org/EFD/

BIBLIOGRAPHY

[34] J. Fan and I. Verbauwhede, “An updated survey on secure ECC implementations:

Attacks, countermeasures and cost,” in Cryptography and Security: From Theory

to Applications. Springer, 2012, pp. 265–282.

[35] J.-P. Deschamps, Hardware implementation of finite-field arithmetic. McGraw-

Hill, Inc., 2009.

[36] E. Wenger and M. Hutter, “Exploring the design space of prime field vs. binary

field ECC-hardware implementations,” in Information Security Technology for

Applications. Springer, 2011, pp. 256–271.

[37] M. N. Hassan and M. Benaissa, “Efficient time-area scalable ECC processor us-

ing µ-coding technique,” in Arithmetic of Finite Fields. Springer, 2010, pp.

250–268.

[38] M. Benaissa and W. M. Lim, “Design of flexible GF(2m) elliptic curve cryptog-

raphy processors,” IEEE Transactions on Very Large Scale Integration (VLSI) Sys-

tems, vol. 14, no. 6, pp. 659–662, 2006.

[39] G. D. Sutter, J. Deschamps, and J. L. Imaña, “Efficient elliptic curve point mul-

tiplication using digit-serial binary field operations,” Industrial Electronics, IEEE

Transactions on, vol. 60, no. 1, pp. 217–225, 2013.

[40] S. Antao, R. Chaves, and L. Sousa, “Efficient FPGA elliptic curve cryptographic

processor over GF(2m),” in ICECE Technology, 2008. FPT 2008. International

Conference on. IEEE, 2008, pp. 357–360.

[41] B. Ansari and H. Wu, “Efficient finite field processor for GF(2m) and its vlsi im-

plementation,” in Information Technology, 2007. ITNG’07. Fourth International

Conference on. IEEE, 2007, pp. 1021–1026.

[42] Y. Wang and R. Li, “A unified architecture for supporting operations of AES

and ECC,” in Parallel Architectures, Algorithms and Programming (PAAP), 2011

Fourth International Symposium on. IEEE, 2011, pp. 185–189.

[43] R. Azarderakhsh and A. Reyhani-Masoleh, “Efficient FPGA implementations of

point multiplication on binary Edwards and generalized Hessian curves using

Gaussian normal basis,” Very Large Scale Integration (VLSI) Systems, IEEE Trans-

actions on, vol. 20, no. 8, pp. 1453–1466, Aug 2012.

132

BIBLIOGRAPHY

[44] G. Meurice de Dormale and J.-J. Quisquater, “High-speed hardware implemen-

tations of elliptic curve cryptography: A survey,” Journal of systems architecture,

vol. 53, no. 2, pp. 72–84, 2007.

[45] J. Guajardo, T. Güneysu, S. S. Kumar, C. Paar, and J. Pelzl, “Efficient hardware

implementation of finite fields with applications to cryptography,” Acta Appli-

candae Mathematica, vol. 93, no. 1-3, pp. 75–118, 2006.

[46] K. Ananyi, H. Alrimeih, and D. Rakhmatov, “Flexible hardware processor for

elliptic curve cryptography over NIST prime fields,” Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, vol. 17, no. 8, pp. 1099–1112, Aug 2009.

[47] H. Alrimeih and D. Rakhmatov, “Fast and flexible hardware support for ECC

over multiple standard prime fields,” Very Large Scale Integration (VLSI) Sys-

tems, IEEE Transactions on, vol. 22, no. 12, pp. 2661–2674, Dec 2014.

[48] T. Güneysu and C. Paar, “Ultra high performance ecc over NIST primes on com-

mercial FPGAs,” in Cryptographic Hardware and Embedded Systems–CHES 2008.

Springer, 2008, pp. 62–78.

[49] A. P. Fournaris, N. Klaoudatos, N. Sklavos, and C. Koulamas, “Fault and power

analysis attack resistant RNS based Edwards curve point multiplication,” in

Proceedings of the Second Workshop on Cryptography and Security in Computing

Systems, ser. CS2 ’15. New York, NY, USA: ACM, 2015, pp. 43:43–43:46.

[Online]. Available: http://doi.acm.org/10.1145/2694805.2694814

[50] M. Esmaeildoust, D. Schinianakis, H. Javashi, T. Stouraitis, and K. Navi, “Ef-

ficient RNS implementation of elliptic curve point multiplication over GF(p),”

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 21, no. 8,

pp. 1545–1549, Aug 2013.

[51] H. Marzouqi, M. Al-Qutayri, K. Salah, D. Schinianakis, and T. Stouraitis, “A

high-speed FPGA implementation of an RSD-Based ECC processor,” IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 1, pp. 151–

164, Jan 2016.

[52] M. Varchola, T. Guneysu, and O. Mischke, “MicroECC: A lightweight reconfig-

urable elliptic curve crypto-processor,” in Reconfigurable Computing and FPGAs

(ReConFig), 2011 International Conference on, Nov 2011, pp. 204–210.

133

http://doi.acm.org/10.1145/2694805.2694814

BIBLIOGRAPHY

[53] D. J. Bernstein and T. Lange, “Failures in NIST ECC standards,” 2015, https:

//cr.yp.to/newelliptic/nistecc-20160106.pdf.

[54] P. L. Montgomery, “Modular multiplication without trial division,” Mathematics

of computation, vol. 44, no. 170, pp. 519–521, 1985.

[55] S. Ghosh, D. Mukhopadhyay, and D. Roychowdhury, “Petrel: Power and timing

attack resistant elliptic curve scalar multiplier based on programmable GF(p)

arithmetic unit,” Circuits and Systems I: Regular Papers, IEEE Transactions on,

vol. 58, no. 8, pp. 1798–1812, Aug 2011.

[56] S. Ghosh, M. Alam, D. R. Chowdhury, and I. S. Gupta, “Parallel crypto-devices

for GF(p) elliptic curve multiplication resistant against side channel attacks,”

Computers & Electrical Engineering, vol. 35, no. 2, pp. 329–338, 2009.

[57] G. Chen, G. Bai, and H. Chen, “A high-performance elliptic curve cryptographic

processor for general curves over GF(p) based on a systolic arithmetic unit,”

Circuits and Systems II: Express Briefs, IEEE Transactions on, vol. 54, no. 5, pp.

412–416, May 2007.

[58] P. L. Montgomery, “Speeding the pollard and elliptic curve methods of factor-

ization,” Mathematics of computation, vol. 48, no. 177, pp. 243–264, 1987.

[59] M. Joye and S.-M. Yen, “The Montgomery powering ladder,” in Cryptographic

Hardware and Embedded Systems-CHES 2002. Springer, 2003, pp. 291–302.

[60] C. J. Mcivor, M. Mcloone, and J. V. Mccanny, “Hardware elliptic curve cryp-

tographic processor over GF(p),” IEEE Transactions on Circuits and Systems I:

Regular Papers, vol. 53, no. 9, pp. 1946–1957, Sept 2006.

[61] J.-H. Chen, M.-D. Shieh, and W.-C. Lin, “A high-performance unified-field recon-

figurable cryptographic processor,” Very Large Scale Integration (VLSI) Systems,

IEEE Transactions on, vol. 18, no. 8, pp. 1145–1158, Aug 2010.

[62] S.-C. Chung, J.-W. Lee, H.-C. Chang, and C.-Y. Lee, “A high-performance elliptic

curve cryptographic processor over GF(p) with SPA resistance,” in Circuits and

Systems (ISCAS), 2012 IEEE International Symposium on. IEEE, 2012, pp.

1456–1459.

134

https://cr.yp.to/newelliptic/nistecc-20160106.pdf
https://cr.yp.to/newelliptic/nistecc-20160106.pdf

BIBLIOGRAPHY

[63] J.-Y. Lai and C.-T. Huang, “Elixir: High-throughput cost-effective dual-field pro-

cessors and the design framework for elliptic curve cryptography,” Very Large

Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 16, no. 11, pp. 1567–

1580, Nov 2008.

[64] S. Ors, L. Batina, B. Preneel, and J. Vandewalle, “Hardware implementation

of an elliptic curve processor over GF(p),” in Application-Specific Systems, Ar-

chitectures, and Processors, 2003. Proceedings. IEEE International Conference on,

June 2003, pp. 433–443.

[65] W. Shuhua and Z. Yuefei, “A timing-and-area tradeoff GF(p) elliptic curve pro-

cessor architecture for FPGA,” in Communications, Circuits and Systems, 2005.

Proceedings. 2005 International Conference on, vol. 2, May 2005, pp. –1312.

[66] J. Fan, K. Sakiyama, and I. Verbauwhede, “Elliptic curve cryptography on em-

bedded multicore systems,” Design Automation for Embedded Systems, vol. 12,

no. 3, pp. 231–242, 2008.

[67] E. Öztürk, B. Sunar, and E. Savaş, “Low-power elliptic curve cryptography using

scaled modular arithmetic,” in Cryptographic Hardware and Embedded Systems–

CHES 2004. Springer, 2004, pp. 92–106.

[68] G. Orlando and C. Paar, “A scalable GF(p) elliptic curve processor architec-

ture for programmable hardware,” in Cryptographic Hardware and Embedded

Systems–CHES 2001. Springer, 2001, pp. 348–363.

[69] A. Daly, W. Marnane, T. Kerins, and E. Popovici, “An FPGA implementation

of a GF(p) ALU for encryption processors,” Microprocessors and Microsystems,

vol. 28, no. 5, pp. 253 – 260, 2004.

[70] B. Baldwin, R. Moloney, A. Byrne, G. McGuire, and W. P. Marnane, “A hardware

analysis of twisted Edwards curves for an elliptic curve cryptosystem,” in Re-

configurable Computing: Architectures, Tools and Applications. Springer, 2009,

pp. 355–361.

[71] B. Baldwin, R. R. Goundar, M. Hamilton, and W. P. Marnane, “Co-z ECC scalar

multiplications for hardware, software and hardware–software co-design on

embedded systems,” Journal of Cryptographic Engineering, vol. 2, no. 4, pp.

221–240, 2012.

135

BIBLIOGRAPHY

[72] N. Guillermin, “A high speed coprocessor for elliptic curve scalar multiplica-

tions over Fp,” in Cryptographic Hardware and Embedded Systems, CHES 2010.

Springer, 2010, pp. 48–64.

[73] H. Marzouqi, M. Al-Qutayri, and K. Salah, “Review of elliptic curve

cryptography processor designs,” Microprocessors and Microsystems, vol. 39,

no. 2, pp. 97 – 112, 2015. [Online]. Available: http://www.sciencedirect.

com/science/article/pii/S0141933115000137

[74] D. J. Bernstein and T. Lange, “Safecurves: choosing safe curves for elliptic-curve

cryptography,” Disponıvel em http://safecurves. cr. yp. to/rigid. html, 2013.

[75] S. Brown and J. Rose, “FPGA and CPLD architectures: A tutorial,” IEEE Design

& Test of Computers, no. 2, pp. 42–57, 1996.

[76] “Xilinx,” www.xilinx.com, accessed: 2015-09-20.

[77] “Altera,” https://www.altera.com/, accessed: 2015-09-10.

[78] Xilinx, Virtex-6 family overview, (DS150), August 2015.

[79] Xilinx, Virtex-6 FPGA Configurable Logic Block, (UG364), Feburary 2012.

[80] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 26,

no. 2, pp. 203–215, Feb 2007.

[81] F. Rodríguez-Henríquez, N. A. Saqib, A. D. Pérez, and C. K. Koc, Cryptographic

algorithms on reconfigurable hardware. Springer Science & Business Media,

2007.

[82] P. S. Zuchowski, C. B. Reynolds, R. J. Grupp, S. G. Davis, B. Cremen, and

B. Troxel, “A hybrid ASIC and FPGA architecture,” in Proceedings of the 2002

IEEE/ACM international conference on Computer-aided design. ACM, 2002, pp.

187–194.

[83] A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar, “An FPGA-based performance

evaluation of the AES block cipher candidate algorithm finalists,” IEEE Transac-

tions on Very Large Scale Integration (VLSI) Systems, vol. 9, no. 4, pp. 545–557,

Aug 2001.

136

http://www.sciencedirect.com/science/article/pii/S0141933115000137
http://www.sciencedirect.com/science/article/pii/S0141933115000137
www.xilinx.com
https://www.altera.com/

BIBLIOGRAPHY

[84] F. Rodríguez-Henríquez, N. A. Saqib, A. D. Perez, and C. K. Koc, Cryptographic

algorithms on reconfigurable hardware. Springer Science & Business Media,

2007.

[85] P. FIPS, “186-2. digital signature standard (dss),” National Institute of Standards

and Technology (NIST), 2000.

[86] G. Blakely, “A computer algorithm for calculating the product AB modulo M,”

Computers, IEEE Transactions on, vol. C-32, no. 5, pp. 497–500, May 1983.

[87] K. R. Sloan Jr, “Comments on a computer algorithm for calculating the product

AB modulo M,” IEEE Transactions on Computers, vol. 34, no. 3, pp. 290–292,

1985.

[88] H. Alrimeih and D. Rakhmatov, “Pipelined modular multiplier supporting mul-

tiple standard prime fields,” in Application-specific Systems, Architectures and

Processors (ASAP), 2014 IEEE 25th International Conference on, June 2014, pp.

48–56.

[89] K. Kelley and D. Harris, “Very high radix scalable Montgomery multipliers,” in

System-on-Chip for Real-Time Applications, 2005. Proceedings. Fifth International

Workshop on, July 2005, pp. 400–404.

[90] A. Tenca and L. Tawalbeh, “An efficient and scalable radix-4 modular multi-

plier design using recoding techniques,” in Signals, Systems and Computers,

2004. Conference Record of the Thirty-Seventh Asilomar Conference on, vol. 2,

Nov 2003, pp. 1445–1450 Vol.2.

[91] Ç. K. Koç, T. Acar, and B. S. Kaliski Jr, “Analyzing and comparing Montgomery

multiplication algorithms,” Micro, IEEE, vol. 16, no. 3, pp. 26–33, Jun 1996.

[92] D. Narh Amanor, C. Paar, J. Pelzl, V. Bunimov, and M. Schimmler, “Efficient

hardware architectures for modular multiplication on FPGAs,” in Field Pro-

grammable Logic and Applications, 2005. International Conference on, Aug 2005,

pp. 539–542.

[93] M. Knezevic, F. Vercauteren, and I. Verbauwhede, “Faster interleaved modular

multiplication based on Barrett and Montgomery reduction methods,” Comput-

ers, IEEE Transactions on, vol. 59, no. 12, pp. 1715–1721, Dec 2010.

137

BIBLIOGRAPHY

[94] V. Bunimov and M. Schimmler, “Area and time efficient modular multiplication

of large integers,” in Application-Specific Systems, Architectures, and Processors,

2003. Proceedings. IEEE International Conference on. IEEE, 2003, pp. 400–409.

[95] K. Shigemoto, K. Kawakami, and K. Nakano, “Accelerating Montgomery mod-

ulo multiplication for redundant radix-64k number system on the FPGA using

dual-port block rams,” in Embedded and Ubiquitous Computing, 2008. EUC’08.

IEEE/IFIP International Conference on, vol. 1. IEEE, 2008, pp. 44–51.

[96] K. Javeed and X. Wang, “Efficient Montgomery multiplier for pairing and elliptic

curve based cryptography,” in Communication Systems, Networks & Digital Sig-

nal Processing (CSNDSP), 2014 9th International Symposium on. IEEE, 2014,

pp. 255–260.

[97] A. Mondal, S. Ghosh, A. Das, and D. R. Chowdhury, “Efficient FPGA implemen-

tation of Montgomery multiplier using DSP blocks,” in Progress in VLSI Design

and Test. Springer, 2012, pp. 370–372.

[98] K. Javeed and X. Wang, “Radix-4 and radix-8 Booth encoded interleaved mod-

ular multipliers over general Fp,” in Field Programmable Logic and Applications

(FPL), 2014 24th International Conference on, Sept 2014, pp. 1–6.

[99] S. Ghosh, D. Mukhopadhyay, and D. Roychowdhury, “Secure dual-core cryp-

toprocessor for pairings over Barreto-Naehrig curves on FPGA platform,” Very

Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 21, no. 3, pp.

434–442, March 2013.

[100] S. Ghosh, D. Mukhopadhyay, and D. Chowdhury, “High speed Fp multipliers

and adders on FPGA platform,” in Design and Architectures for Signal and Image

Processing (DASIP), 2010 Conference on, Oct 2010, pp. 21–26.

[101] K. Javeed, X. Wang, and M. Scott, “Serial and parallel interleaved modular

multipliers on FPGA platform,” in Field Programmable Logic and Applications

(FPL), 2015 25th International Conference on, Sept 2015, pp. 1–4.

[102] K. Javeed and X. Wang, “Speed and area optimized parallel higher-radix mod-

ular multipliers,” Cryptology ePrint Archive, Report 2016/053, 2016, http:

//eprint.iacr.org/.

138

http://eprint.iacr.org/
http://eprint.iacr.org/

BIBLIOGRAPHY

[103] S. Ghosh, M. Alam, I. Gupta, and D. Chowdhury, “A robust GF(p) parallel arith-

metic unit for public key cryptography,” in Digital System Design Architectures,

Methods and Tools, 2007. DSD 2007. 10th Euromicro Conference on, Aug 2007,

pp. 109–115.

[104] A. M. AbdelFattah, A. M. B. El-Din, and H. M. Fahmy, “An efficient architecture

for interleaved modular multiplication.”

[105] K. Javeed, D. Irwin, and X. Wang, “Design and performance comparison of

modular multipliers implemented on FPGA platform,” in ICCCS. Springer,

2016, p. in press.

[106] B. S. Kaliski, “The Montgomery inverse and its applications,” IEEE transactions

on computers, no. 8, pp. 1064–1065, 1995.

[107] A. Daly, W. Marnane, T. Kerins, and E. Popovici, “Fast modular division for ap-

plication in ECC on reconfigurable logic,” in Field Programmable Logic and Ap-

plication. Springer, 2003, pp. 786–795.

[108] A. D. Booth, “A signed binary multiplication technique,” The Quarterly Journal

of Mechanics and Applied Mathematics, vol. 4, no. 2, pp. 236–240, 1951.

[109] S. A. Khan, Digital design of signal processing systems A paratical approach. Wi-

ley, 2011.

[110] R. P. Brent and P. Zimmermann, Modern computer arithmetic. Cambridge Uni-

versity Press, 2010, vol. 18.

[111] L. Hars, “Long modular multiplication for cryptographic applications,” in Cryp-

tographic Hardware and Embedded Systems-CHES 2004. Springer, 2004, pp.

45–61.

[112] “IEEE standard specifications for Public-Key cryptography - amendment 1:

Additional techniques,” IEEE Std 1363a-2004 (Amendment to IEEE Std 1363-

2000), pp. 1–167, Sept 2004.

[113] K. Lauter, “The advantages of elliptic curve cryptography for wireless security,”

Wireless Communications, IEEE, vol. 11, no. 1, pp. 62–67, Feb 2004.

139

BIBLIOGRAPHY

[114] F.-X. Standaert, “Introduction to side-channel attacks,” in Secure Integrated Cir-

cuits and Systems. Springer, 2010, pp. 27–42.

[115] H. Edwards, “A normal form for elliptic curves,” Bulletin of the American Math-

ematical Society, vol. 44, no. 3, pp. 393–422, 2007.

[116] D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters, “Twisted Edwards

curves,” in Progress in Cryptology–AFRICACRYPT 2008. Springer, 2008, pp.

389–405.

[117] R. Moloney, G. McGuire, and M. Markowitz, “Elliptic curves in Montgomery

form with b=1 and their low order torsion,” Cryptology ePrint Archive, Report

2009/213, 2009, http://eprint.iacr.org/.

[118] K. Okeya, H. Kurumatani, and K. Sakurai, “Elliptic curves with the Montgomery-

form and their cryptographic applications,” in Public Key Cryptography.

Springer, 2000, pp. 238–257.

[119] T. Güneysu, “Utilizing hard cores of modern FPGA devices for high-performance

cryptography,” Journal of Cryptographic Engineering, vol. 1, no. 1, pp. 37–55,

2011.

[120] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The sorcerer’s

apprentice guide to fault attacks,” Proceedings of the IEEE, vol. 94, no. 2, pp.

370–382, 2006.

[121] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert, “Fault attacks

on RSA with CRT: Concrete results and practical countermeasures,” in Cryp-

tographic hardware and embedded systems–CHES 2002. Springer, 2002, pp.

260–275.

[122] M.-L. Akkar, R. Bevan, P. Dischamp, and D. Moyart, “Power analysis, what is

now possible...” in Advances in Cryptology–ASIACRYPT 2000. Springer, 2000,

pp. 489–502.

[123] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in Cryptographic Hard-

ware and Embedded Systems–CHES 2002. Springer, 2002, pp. 13–28.

140

http://eprint.iacr.org/

BIBLIOGRAPHY

[124] R. Bevan and E. Knudsen, “Ways to enhance differential power analysis,” in

Information Security and Cryptology–ICISC 2002. Springer, 2002, pp. 327–

342.

[125] E. Brier, C. Clavier, and F. Olivier, “Optimal statistical power analysis.” IACR

Cryptology ePrint Archive, vol. 2003, p. 152, 2003.

[126] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of eliminating

errors in cryptographic computations,” Journal of cryptology, vol. 14, no. 2, pp.

101–119, 2001.

[127] E. Biham and A. Shamir, “Differential fault analysis of secret key cryptosys-

tems,” in Advances in Cryptology–CRYPTO97. Springer, 1997, pp. 513–525.

[128] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis: Con-

crete results,” in Cryptographic Hardware and Embedded Systems–CHES 2001.

Springer, 2001, pp. 251–261.

[129] J.-J. Quisquater and D. Samyde, “Electromagnetic analysis (EMA): Measures

and counter-measures for smart cards,” in Smart Card Programming and Secu-

rity. Springer, 2001, pp. 200–210.

[130] P. Sasdrich and T. Güneysu, “Efficient elliptic-curve cryptography using

Curve25519 on reconfigurable devices,” in Reconfigurable Computing: Archi-

tectures, Tools, and Applications. Springer, 2014, pp. 25–36.

[131] J.-S. Coron, “Resistance against differential power analysis for elliptic curve

cryptosystems,” in Cryptographic Hardware and Embedded Systems. Springer,

1999, pp. 292–302.

141

	List of Figures
	List of Tables
	Introduction
	Thesis Motivation
	Thesis Aim
	Thesis Contributions
	Thesis Organization

	 Background
	Symmetric-Key Cryptography
	Public-Key Cryptography
	Cryptographic Key Sizes
	 Finite Field
	Groups
	Rings
	Finite Fields
	Prime Field Arithmetic

	Introduction to Elliptic Curves
	Elliptic Curve Scalar Multiplication
	Elliptic Curve Group Operations
	Order of an Elliptic Curve
	EC Crypto Schemes Implementation Hierarchy
	Diffie-Hellman Key Exchange
	Standard Projective Coordinates
	Jacobian Projective Coordinates

	Side Channel Attacks
	Related Work
	Hardware Architectures for EC Scalar Multiplication
	EC Scalar Multipliers over Standard Prime Fields
	EC Scalar Multipliers over General Prime Field

	FPGA Architecture
	FPGA Implementation Design Flow

	Conclusion

	Hardware Architectures for Finite Field Arithmetic
	Background and Related Work
	Modular Addition/Subtraction
	Modular Addition
	Modular Subtraction

	Modular Inversion/Division
	Implementation Results

	Modular Multiplication
	 Radix-4 BE Interleaved Multiplication
	Hardware Architecture

	Radix-8 BE Interleaved Multiplication
	Hardware Architecure
	Phase A
	Phase B

	Implementation and Results
	Conclusion

	High Performance Parallel Modular Multipliers
	Introduction
	Motivation
	Montgomery Powering Ladder

	Radix-4 Parallel Interleaved Multiplier (R4PIM)
	Hardware Architecture
	Phase A
	Phase B

	 Radix-4 Booth Encoded Parallel Interleaved Multiplier (R4BPIM)
	Hardware Architecture
	Phase A
	Phase B

	Radix-8 Booth Encoded Parallel Interleaved Multiplier (R8BPIM)
	Hardware Architecture

	Platform Independent Performance Analysis
	Resource Requirements
	Critical Path and Latency

	Implementation Results
	Area Results
	Execution Time Results

	Performance Evaluation and Analysis
	Throughput and Area-Delay Product
	Conclusion

	EC Scalar Multiplier Architectures
	Introduction And Related Work
	Elliptic curve scalar multiplication
	EC Point Operations Using Affine Coordinates

	EC Scalar Multiplier Architecture in Affine Coordinates
	Latency
	Using double-and-add (DA) method
	Using double-and-always-add (DAA) method

	Implementation Results
	EC Point Operations Using Projective Coordinates
	EC Scalar Multiplier Architecture in Projective Coordinates
	Arithmetic Unit
	Scheduling of PD and PA Operations
	Overall Execution
	Final Conversion
	Latecny

	Implementation and Results
	Performance Evaluation

	Conclusion

	 Conclusion and Future Work
	Conclusion
	Future Work

	Appendix
	Implementation results of EC scalar multiplier using modular multipliers presented in Chapter 4

	Bibliography

