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Abstract 

High-Capacity Multicarrier Electro-Optical Transceivers based on 

Analogue Signal Processing.  

Fernando A. Gutiérrez 

 

Currently, the proliferation of services and applications based on the cloud 

and the Internet are translating into increasing demand for capacity in data networks. 

Optical Communications is the only technical field that can address this issue by 

providing higher performance electro-optical transceivers with enhanced spectral 

efficiency, power consumption and latency. Many research and implementation 

efforts are focusing on multicarrier solutions, often referred to as subcarrier 

multiplexing (SCM), as they are more tolerant to dispersion and allow a higher 

modulation order per subchannel. 

 

 In recent years, the most widespread trend has developed SCM subsystems 

based on digital signal processing (DSP). They can achieve high spectral efficiencies 

with complicated algorithms, but also present an important drawback: intensive DSP 

brings about unwanted high-power consumption and high latency. An alternative 

consists of developing SCM systems based on analogue signal processing (ASP) as it 

potentially achieves lower power consumptions and lower latencies.  

 

 Several advances on the state of the art of ASP based SCM systems are 

provided in this thesis. Firstly, the implementation of broadband SCM systems based 

on optical IQ modulators is thoroughly analysed. These optical modulators achieve 

simultaneously two important features: direct colourless generation of optical single 

side band signals (OSSB) and partial optical carrier suppression. These features 

translate into higher tolerance to dispersion and better sensitivities in the receiver. 

Secondly, the colourless generation of OSSB signals is leveraged to develop SCM 

systems consisting of several tightly allocated optical channels. This implementation 

gives rise to low-cost spectrally-efficient wavelength division multiplexing (WDM) 

configurations. Thirdly, the main weakness of ASP based SCM systems is overcome. 

These systems have typically consisted of separated subchannels. It is demonstrated 

that orthogonally overlapping broadband subchannels can be modulated and 

demodulated without requiring DSP. The concept is proven in real-time all-analogue 

SCM and WDM/SCM implementations.  
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Introduction 

Optical communications overcame the limited data rates of electrical systems 

and made possible the development of the Internet. Currently, all high-capacity 

networks employ optical systems regardless of their reach and purpose. The devices 

that carry out the interface between the electrical and optical domains are called 

electro-optical transceivers. These key components can adopt a number of forms and 

characteristics depending on the network where they are deployed. The signals, 

modulations, and processing techniques that they employ, must be carefully selected 

to meet the requirements of a given subsystem.   

The search for solutions based on all-optical signal processing is an active 

research topic, and some promising techniques like coherent WDM or all-optical 

OFDM have been demonstrated. However, they rely on complicated 

implementations with optical components and, consequently, remain as important 

research topics but still impractical for real deployment. Instead, commercial and 

practical applications support optical signal generation and detection with electrical 

signal processing, which can be accomplished with more mature and reliable 

components. Potentially, the next revolution in the area will rely on the introduction 

of low-cost optical modulators based on silicon photonics and its combination with 

mature electronic circuits and processing. 

The transmission of multicarrier electrical signals in optical communication 

links presents several advantages. Firstly, the baseband data rates are lower, reducing 

the complexity of the electronic circuits in the electrical interfaces. Secondly, due to 

the narrower subchannels, the overall electro-optical solution is more tolerant to fibre 

dispersion. Finally, higher modulation orders can be applied in every subchannel 

increasing the spectral efficiency. The transmission of a multicarrier frequency 

division multiplexing (FDM) signal in an optical link is referred to as subcarrier 

multiplexing (SCM). Multiple SCM signals at different optical carriers can also be 

combined in a wavelength division multiplexing (WDM) optical signal. 

SCM can be implemented with digital signal processing (DSP) and with 

analogue signal processing (ASP). While DSP based techniques provide unique 

possibilities, their higher power consumption and latency make them prohibitive in 

some subsystems. Apart from that, when very high-speed processing is required, 
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analogue to digital converters (ADC) and digital to analogue converters (DAC) are 

unavoidably expensive. For that reason, research on ASP based systems is necessary 

in order to exploit the possibilities of low power consumption and low latency 

processing. Moreover, the development and generalization of monolithic microwave 

integrated circuit (MMIC) technology currently provides low-cost integrated circuits 

at microwave frequencies, which reduces drastically the cost of high-speed ASP.  

This thesis focuses on ASP based SCM broadband electro-optical 

transceivers, as they present low cost, high tolerance to dispersion, and real 

possibilities of spreading the range of applications where they are deployed. All the 

experiments were conducted emphasizing the feasibility of the proposed solutions. 

Modern current research often relies on offline processing. It assumes that the 

desired components can be potentially implemented and can then perform all the 

processing at the desired speeds. In contrast, this thesis shows experiments running 

in real-time and, more importantly, relying largely on off-the-shelf components. 

 

Main Contributions 

Several key advances in the state of the art were accomplished and are 

presented in this document: 

 

 A real-time all-analogue SCM electro-optical transceiver, consisting of five 

broadband subchannels and largely based on MMIC technology, was physically 

implemented. The setup was employed to experimentally demonstrate all the key 

contributions studied in the thesis. 

 

 The theory of direct detection SCM links transmitting optical single side band 

(OSSB) signals is extended for the particular case of optical IQ modulators 

(OIQM). Unlike other optical modulators, OIQMs achieve simultaneously OSSB 

generation and partial optical carrier suppression. The complicated trade-off 

between the nonlinearities generated by the modulator at different bias points and 

the sensitivity of the system is thoroughly analysed. For any frequency plan, the 

developed mathematical model can predict the optimum bias point and the best 

achievable sensitivities for every subchannel. The mathematical model is 

supported by experimental measurements.  
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 A WDM/SCM scheme based on OSSB signals is presented. It is shown that a cost 

and spectrally efficient implementation, consisting of tightly allocated optical 

channels, is possible with a state of the art OIQM without requiring optical filters 

in the transmitter. A penalty can occur due to the imperfectly suppressed sideband 

of the adjacent optical channel.      

 

 The main weakness of traditional all-analogue SCM systems is the spectral 

efficiency. This thesis theoretically and experimentally demonstrates that this 

weakness can be overcome by transmitting orthogonally overlapping broadband 

subchannels. The pulse shaping and demodulation of the broadband baseband 

signals is accomplished with microwave filters. Mathematical and simulation 

strategies are provided to predict the behaviour and obtain appropriate microwave 

orthogonality filters. The technique is referred to as orthogonal subcarrier 

multiplexing (OSCM) and, due to the multiplexing of orthogonal subchannels, can 

potentially double the spectral efficiency of traditional all-analogue SCM links.  

 

  A novel technique that achieves subcarrier synchronization employing a lower 

number of components than previous solutions is demonstrated. The concept can 

be applied to SCM and OSCM links in which the subcarriers are located at 

harmonics of the data rate.  

 

 Experimental real-time WDM/OSCM links are presented. Due to the orthogonal 

subchannels, they achieve substantially higher spectral efficiencies than previous 

solutions. The experiments make use of optical frequency combs (OFC), based on 

gain switched lasers (GSL) and mode-locked lasers (MLL), which allow a tighter 

allocation of optical channels and also enhance the cost efficiency of the 

implementation. High capacities of up to 400 Gbit/s are obtained.  

 

Thesis Structure 

The thesis is structured as follows: 
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 Chapter 1 provides a general review of optical communications developing on the 

main concepts that will be employed in the rest of the document. The main 

focuses are electro-optical transceivers and the key properties that arise due to the 

different implementation options. 

 

 Chapter 2 discusses SCM from the basics and details the implementation of an all-

analogue SCM electro-optical transceiver based on an OIQM and off-the-shelf 

components. The key electrical components, namely the microwave off-the-shelf 

IQ mixers, are characterised.  

 

 Chapter 3 develops a theoretical and experimental analysis of the trade-off 

between carrier suppression and nonlinearities induced by optical IQ modulators 

in direct-detection subcarrier multiplexing systems. The trade-off is obtained by 

examining the influence of the bias conditions of the modulator on the transmitted 

OSSB signal.  

 

 Chapter 4 discusses the implementation of a cost and spectrally efficient 

WDM/SCM link based on a state-of-the-art OIQM. Tightly allocated OSSB 

channels are multiplexed without employing optical filters in the transmitter and 

the penalty associated with the imperfectly suppressed sideband of the adjacent 

channel is measured. 

 

 Chapter 5 discusses theoretically and experimentally the development of 

microwave OSCM links consisting of orthogonally overlapping subchannels and 

based on filter bank multicarrier (FBMC) theory. The implementation of 

microwave FBMC schemes employing custom and standard filters is analysed. 

Apart from that, a novel technique for the synchronization of receiver subcarriers 

in SCM systems is provided.    

 

 Chapter 6 shows experimental implementations that emulate WDM/OSCM links 

where the optical carriers are obtained with different types of OFCs, namely GSLs 

and MLLs.  
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 Chapter 7 provides a brief summary of conclusions which can be drawn from the 

results presented in this thesis. The potential for future work in the areas discussed 

throughout the thesis is also outlined.  

 

 Appendix A shows the schematics of a printed circuit board that was developed to 

distribute the local oscillators necessary in the SCM experiments. 

 

 Appendix B presents the mathematical developments that were used to obtain the 

frequency components in the electric field and the associated photocurrent at the 

output of the OIQM.  

 

 Appendix C outlines the mathematics used to demonstrate a simplified technique 

to achieve the orthogonal phase alignment in a microwave FBMC transmission 

system. 

 

 Appendix D lists the publications arising from this work. 
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Chapter 1 

1 Optical Communications  

 Communication is an essential element in our social, cultural and technical 

evolution. Especially over recent decades, human habits and technology have 

influenced each other, but always relying on a growing exchange of information. 

Optical communications have enabled this development and have become the only 

mature technology that can satisfy the demand of capacity in wired communication 

links. 

 This chapter provides an introduction to optical communications following a 

high-to-low level perspective. Firstly, the relevance of optical communications is 

addressed comparing with other technologies and in terms of overall capacity. 

Secondly, the most widespread topologies in optical networks are presented. Finally, 

the most common physical devices that make optical networks feasible are described, 

explaining more deeply the elements and concepts over which the following chapters 

will build up new technical advances.     

1.1 Relevance of Optical Communications        

 This section shows that the introduction of optical devices marked an 

inflexion point in the performance of communication links. The trends in the 

capacity of optical networks are also illustrated. 

1.1.1 Bit Rate – Distance Product   

 The Bit Rate – Distance product is a figure of merit of any digital 

communication link. It is equal to B∙L where B is the bit rate and L is the repeater 

spacing. Figure 1.1 illustrates the evolution of this value in deployed links along the 

period extending from 1850 to 2000 [1]. It can be observed that the value increased 

exponentially through the introduction of emerging technologies. During the last 

decades, optical devices have made possible the latest revolutions in the field. 

 In the 1950s it was theoretically known that the B∙L product could be 

increased by several orders of magnitude employing optical waves as carriers [1]. 

However, suitable sources of lightwaves and a transmission medium were not 
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available. In 1960, the demonstration of the first functional laser [2] solved the first 

problem, and, in 1966, optical fibre was proposed as the best choice for guiding light 

[3]. Those were the first steps that led to the development of modern optical 

communications. The subsequent breakthroughs proved the feasibility of optical 

systems. In 1970, semiconductor lasers operating continuously at room temperature 

were demonstrated [4]. Simultaneously, fibre losses were reduced below 20 dB/km at 

wavelengths ≈1µm [5]. The first commercial optical links were finally available in 

1980 [6], and transmitted 45 Mbit/s at 0.8 µm with a repeater spacing of up to 10 km. 

The next efforts focused on transmitting at wavelengths ≈1.3 µm, where optical fibre 

presented losses below 1 dB/km and minimum dispersion. In 1981, such systems 

were able to transmit 2 Gbit/s over 44 km [7] and, in 1987, similar schemes became 

commercially available [1]. The subsequent steps attempted to use wavelengths 

around 1.55 µm, where fibre losses are lower, namely 0.2 dB/km [8]. The 

introduction of these systems was delayed because fibre dispersion at 1.55 µm was 

higher. Two compatible solutions were proposed: dispersion shifted fibres and lasers 

capable of emitting only one longitudinal mode. In 1985, laboratory experiments 

showed rates of up to 4 Gbit/s over 100 km of fibre [9], but this technology did not 

become commercially available until 1990 [1].  

 The next revolution occurred during the 1990s with the advent of optical 

amplifiers, as it can be observed in Figure 1.1. These devices avoid the necessity of 

electronic repeaters. In 1991, an experiment demonstrated the transmission of 5 

Gbit/s over 14.300 km [10]. By 1995, these systems became commercially available 

 
Figure 1.1 Increase of the Bit Rate - Distance product from 1850 to 2000 [1]. 
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and were implemented in transoceanic links [11]. Simultaneously, a technique 

defined as Wavelength Division Multiplexing (WDM) substantially multiplied the 

achievable capacity. WDM consists of transmitting a number of optical channels in 

the same optical fibre, each one carried by a different wavelength. Combining these 

breakthroughs, optical amplifiers and WDM, the B∙L products increased drastically. 

In 2001, 300 optical channels operating individually at 11.6 Gbit/s were transmitted 

over 7380 km [12], resulting in a B∙L product of more than 25000 (Tb/s)∙km.  

 During the last 15 years, efforts have been focused on the implementation of 

spectrally efficient modulation formats that can increase the data rate per optical 

channel. Firstly, traditional modulation schemes were employed using multilevel 

configurations [13]. Later, more sophisticated modulations, like Orthogonal 

Frequency Division Multiplexing (OFDM), were proposed [14, 15]. Finally, coherent 

systems were implemented to reach longer transmission distances. Coherent 

transmission modulates the phase of the optical carrier reducing the average power of 

the signal [1]. Lower sensitivities and longer transmission distances are achieved at 

the expense of requiring complex and expensive receivers [16]. Coherent schemes 

were well known since the 1980s [16], but they have only become a requisite to 

increase the B∙L product in the last decade, as it can be observed in Figure 1.2, taken 

from [17]. Figure 1.2 shows the evolution of the B∙L product obtained in optical 

communication experiments since 1983 [17], classifying them according to the 

implemented technique:  single wavelength, single wavelength with Optical Time 

Division Multiplexing (OTDM), WDM, OFDM and coherent detection. As an 

 
Figure 1.2. Evolution of B∙L product in optical communication links [17]. 
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example, in 2009, a WDM coherent OFDM experiment achieved a B∙L product of    

≈85000 (Tb/s)∙km [18]. Currently, the B∙L product can be increased beyond           

10
6
 (Tbit/s)∙km by using multicore fibres [19].  

1.1.2 Worldwide Data Traffic 

 The introduction of the Internet and its growth during the last decades [20] 

brought about the necessity of implementing high speed data networks [21]. To 

satisfy the ever-increasing demand of capacity, multidisciplinary advances were 

required in many technical fields like materials, electronics and communications. 

However, as explained in section 1.1.1, lightwave transmission was and continues to 

be the only technology that can satisfy the demand of data traffic.  

 An estimation and forecast of the worldwide Internet Protocol (IP) data traffic 

since 1990 is illustrated in Figure 1.3, taken from the Cisco´s Virtual Networking 

Index [22]. During the 1990s Internet access popularised and IP data traffic at least 

doubled every year. More recently, modern and demanding services, like on-demand 

High Definition Television (HDTV), are increasing its popularity. World habits are 

changing towards a situation in which every device can potentially be connected to 

the Internet [23]. Consequently, the most recent forecasts claim that the increase of 

IP data traffic per year is around 23% [22]. Although this trend is less pronounced 

than in the past, some studies have concluded that, currently, the increment of data 

traffic tends to exceed the capacity of fibre communication systems [24]. While 

optical communications technology matures, it becomes more difficult to increase 

the B∙L product, in line with [17] and Figure 1.2. 

 It can be concluded that the telecommunications industry is facing important 

 
Figure 1.3 Global internet traffic growth for period 1990-2018 [22]. 
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and significant challenges. Research and development of optical technologies is of 

vital importance to find functional solutions. It should be noted that data traffic must 

be processed at several stages giving rise to different types of optical networks, as it 

will be seen in the next section. At every level, the optimal optical transceivers are in 

reality determined by different parameters like cost, power consumption and/or 

latency. For example, in an expensive transoceanic link, the priority is to increase the 

B∙L product at practically any cost. On the contrary, in a high performance data 

centre where multiple interfaces are necessary, low power consumption and latency 

are essential.          

1.2 Optical Networks 

This section provides a basic classification of optical networks. The overall 

network is a complicated system that ensures robust communications between 

exchange information nodes. This high-level system can be divided into typical 

subnetworks that meet specific geographical and functional requirements: the core 

network, Metropolitan Area Networks (MAN), access networks and Local Area 

Networks (LAN). This division is illustrated in Figure 1.4 and each subnetwork is 

briefly described below.          

1.2.1 Core Network 

The core network is the backbone of the global optical communications 

 

Figure 1.4 Global network topology including core, metropolitan and access 

networks. 
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system. It interconnects areas separated by hundreds or thousands of kilometres and, 

consequently, its longer subsystems are also referred to as long-haul links. It consists 

of both terrestrial and submarine links that transport aggregated data from MANs 

located in different cities, countries or continents. This is made possible by 

combining a number of technologies: distributed optical amplification [25], advanced 

modulation formats [13], Dispersion Compensating Fibres (DCF) [26], Forward 

Error Correction (FEC) codes [27] and coherent detection [16, 17].     

Legacy core networks [28] employ a Time Division Multiplexing (TDM) 

scheme, known as Synchronous Digital Hierarchy (SDH) or Synchronous Optical 

Networking (SONET), to carry voice and data services such as IP or Asynchronous 

Transfer Mode (ATM). In WDM core networks, every wavelength carries an 

SDH/SONET service at typical rates of 2.5 or 10 Gbit/s. Modern core networks are 

transitioning towards a new protocol, Optical Transport Networks (OTN) defined in 

the International Telecommunication Union (ITU) standard G.709 [29]. OTN accepts 

a wide variety of client services like IP, Ethernet, ATM or legacy SDH/SONET, and 

provides transport and management over WDM networks exploiting its multi 

wavelength capabilities [28]. Data rates up to 40 Git/s and 100 Gbit/s per wavelength 

are supported [29].  An example of commercially available equipment with 10 Tbit/s 

capacity (i.e. 100 wavelengths and 100 (Gbit/s)/wavelength) can be found in [30]. 

1.2.2 Metropolitan Area Networks 

MANs provide the connection between Central Offices (CO) in a metropolitan 

area. COs are the locations where telecommunication operators and Internet Service 

Providers (ISP) connect their overall network infrastructure to the access networks 

that serve their subscribers and clients. COs are typically separated by less than     

100 kms, which reduces the cost of the deployed technology in comparison with long 

haul links.           

Typical MANs present a ring topology that is served with SDH/SONET in the 

physical layer [28], similarly to core networks. Due to the recent growth of video 

services and data centres, it is estimated that metro traffic will increase two times 

faster than core traffic by 2017 [31]. Until recently, a single wavelength 

configuration was sufficient. The traffic growth was absorbed increasing the data rate 

up to the SDH/SONET 10 Gbit/s configuration, once it became affordable for MANs 

[28]. The transition towards WDM MANs is now in progress [32], using existing 
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commercially available equipment that can multiplex 10 Gbit/s services in each 

wavelength [33].      

1.2.3 Access Networks 

 Access networks connect the final customers with a CO in the MAN, usually 

implementing links of less than 20 kms. Apart from voice and data services for 

residences and business, access networks also include Cable Television (CATV) 

systems and Radio Access Networks (RAN). The bitrates involved in access 

networks are not very high, but they present important technical challenges due to 

the non-uniform distribution of users.  

1.2.3.1 Legacy Networks 

 Currently, the most common access networks employed for voice and data 

are based on the legacy Plain Old Telephone Service (POTS). They use a pair of 

twisted copper wires and were originally designed for transmitting voice. However, a 

technique called Asymmetric Digital Subscriber Line (ADSL), based on the 

transmission of multiple subchannels, maximise the potential of these wires reaching 

potentially 24 Mbit/s in the downlink and 3.3 Mbit/s in the uplink [34]. In contrast, 

CATV systems required coaxial cables even in the initial implementations, as they 

multiplexed a number of 8 MHz analogue video channels in the same cable. The 

main drawback of this method is that it requires amplifiers or regenerators every few 

hundred meters. For that reason, Hybrid Fibre-Coaxial (HFC) systems were adopted 

[35]. They transmit the broadband signal from the CO over fibre and a node close to 

the end users performs the opto-electrical conversion. Finally, the signal is 

distributed to the customers with coaxial cable in a point to multipoint configuration. 

These networks have evolved to also offer voice and data services. The standard that 

rules this technology is the Data Over Cable Service Interface Specification 

(DOCSIS). The most recent developments employ OFDM to achieve 10 Gbit/s in the 

downlink and 1 Gbit/s in the uplink [36, 37]. These bitrates are shared and, normally, 

the highest end user rates are limited to < 1 Gbit/s in the downlink.    

1.2.3.2 Passive Optical Networks     

 The deployment of optical access networks purely based on optical fibre, 

normally defined as Fibre To The Home (FTTH) solutions in residences, is not 

widespread. Substituting the installed electrical links based on copper by point to 

point optical links would be very expensive for network operators. Instead, most 
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efforts are focused on a cost-efficient tree-like point to multipoint solution defined as 

Passive Optical Network (PON).  

 An illustrative diagram of a PON is shown in Figure 1.5, in a TDM 

implementation. The Optical Line Terminal (OLT) is the unit or the equipment 

located at a CO or a remote node that controls and manages the connection with the 

end users, referred to as Optical Network Units (ONU). Only the OLT and the ONUs 

require active equipment which reduces the cost. For the downlink, the data for all 

the users is generated and introduced in a single fibre by the OLT. At some point 

close to the customers, a passive splitter produces multiple replicas of the 

multiplexed signal and each one is transmitted to a different ONU. When the ONU 

receives the signal, it decodes the information that was allocated for it. For the 

uplink, each ONU transmits information and the passive device combines and 

multiplexes all the incoming signals in a single one that is then received in the OLT.  

 First generation gigabit PONs [38], often called G-PONs, multiplex the data 

in time (TDM), typically reaching shared rates of 2.5 and 1.25 Gbit/s in the 

downstream and the upstream respectively, which translate into 80/40 Mbit/s 
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Figure 1.5 TDM point to multipoint optical link in PON. 
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connections for the end users. The next generation, called 10 Gigabit Passive Optical 

Network (XG-PON), achieves shared rates of 10/2.5 Gbit/s [39]. Recently, and after 

the proliferation of vendor-specific PONs based on WDM access [40], a new 

standard that employs TDM, WDM and sophisticated optical components was 

defined [41]. It is called Next Generation Passive Optical Networks 2 (NG-PON2) 

and can provide connections of up to 10 Gbit/s to final subscribers. The general 

topologies for data (de)/multiplexing in typical applications are explained in detail in 

section 1.4.2.2.     

1.2.3.3 Radio over Fibre    

 Optical fibres are also employed in access networks to link COs with 

antennas in radio applications. In general, the term Radio over Fibre (RoF) applies to 

the cases in which the optical link facilitates the centralisation of several wireless 

services in one location (the CO) [42]. Theoretically, the high bandwidth of the 

optical fibre allows the simultaneous transmission of all the conceivable radio bands, 

even Terahertz applications [43], in the same fibre. 

 Ideally, an analogue radio signal would be transmitted over fibre from the CO 

and the base station would be a simple system consisting of a receiver plus an 

antenna [44]. Commercial applications based on such analogue RoF concepts have 

been deployed for cellular communications [45]. Currently, most research efforts are 

focused on such a configuration using the free 60 GHz band for future mobile 

generations [46], 5G or Internet of Things (IoT). Moreover, an alternative technique 

called digital RoF [46] is also being implemented and deployed. A functional 

example of a digital RoF system is the Common Public Radio Interface (CPRI) [47, 

48]. It supports most of the current mobile networks standards and employs the 

following terminology: Radio Equipment Control (REC) in the CO and Radio 

Equipment (RE) in the antenna. For the downlink, the REC generates the samples of 

the modulating signal and transmits a bitstream that contains the values of those 

samples over fibre. The RE uses the samples to perform the digital to analogue 

conversion, and then it modulates the reconstructed waveform onto the Radio 

Frequency (RF) carrier that is finally emitted. For the uplink, the RE demodulates the 

received RF signal. Then it samples the obtained waveform and transmits a bitstream 

with the values of the samples over fibre. At the other end, the REC receives and 

processes the samples [48].   
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1.2.4 Data Centres                

The networks that handle the traffic of data in customer and business premises 

are called Local Area Networks (LAN) and meet the “Ethernet” standard from the 

Institute of Electrical and Electronics Engineers (IEEE) 802.3 [49]. LANs are 

composed of multiple users (typically computers) that are interconnected through 

hubs, switches, point to point links and/or a shared medium [50]. The standard has 

evolved constantly during more than 30 years and several optical links with different 

combinations of bit rates, fibres and distances are supported [51]. In general, the 

technology for these optical systems has to be cheap and appropriate for large scale 

markets.  

Data centres and high performance computing systems can be seen as 

particular LANs optimised for a continuous exchange of data provided 

simultaneously by multiple devices (typically servers).  The generalisation of Internet 

applications accessed by thousands or millions of users has translated into the 

proliferation of high-capacity high-performance data centres. The common data 

centre structure consists of racks of servers that are connected with top-of-the-rack 

switches by links shorter than a few meters. Switches situated at different layers 

route the traffic towards metro or core networks [52]. Several optical interfaces and 

standards defined by different institutions are typically employed for the connections 

between switches: Ethernet [49], Infiniband [53] and FibreChannel [54]. In the 

optical communications industry, multisource agreements define mechanical slots 

plus the mechanics of their associated pluggable electro-optical transceivers to allow 

interoperability between manufacturers. For this particular application, the 

transceivers are usually designed to be compatible with the three previous standards. 

Due to the constant growth of traffic in data centres, there is a continuous definition 

of smaller transceivers in order to increase the spatial density of data interfaces in 

switches. According to some industrial sources, the transceiver that will become 

predominant is the Quad Small Form-factor Pluggable (QSFP) [55, 56]. This 

transceiver integrates four lasers to implement four parallel optical channels at        

25 Gbit/s, reaching an overall rate of 100 Gbit/s and supporting 100 Gigabit Ethernet 

(100GbE), IEEE 802.3bm [49]. There are different variants supported: directly 

modulated lasers to reach 100 m or with integrated silicon photonics modulators to 

reach 2 km [56].     
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1.3 Optical Components 

 This section describes the typical optical components that can be found in 

optical communications schemes. The main concepts and ideas that will be employed 

in the following chapters are emphasised and explained more deeply.   

1.3.1 Laser 

 The term laser is used as a noun, but it was originally an acronym for “light 

amplification by stimulated emission of radiation”. A laser is a fundamental part in 

any optical transmitter, as it is the generator of the optical carrier. In optical 

communications, the spectral location of a carrier is often stated in wavelengths 

(typically nm) instead of frequencies. 

1.3.1.1 Physics of the Laser 

 This section briefly describes the physical principles that explain the 

operation of optical sources [1]. The energy of an electron depends on the position of 

its orbit with respect to the nucleus. Higher energies are required for orbits farther 

from the nucleus. If the electron is in an inner orbit with a low energy E1, it can 

absorb the energy from a source of light (photon) and move to the orbit with higher 

energy E2. This process, called absorption, is illustrated in Figure 1.6(a). The energy 

provided by the photon is equal to ΔE=E2-E1=hν, where h is the Planck´s constant 

and ν is the frequency of the incident light.  

 The opposite process, called emission, also occurs. An electron in an external 

orbit E2 tends to return to the internal orbit E1 emitting a photon with energy ΔE, as it 

can be seen in Figure 1.6(b). When this phenomenon occurs randomly it is called 

spontaneous emission. If multiple photons are generated in this way, they present 

different and random phases and directions producing incoherent light, as in a Light 

Emitting Diode (LED). Although all the photons have the same frequency, the sum 

of multiple tones with arbitrary phases translates into a random modulation that 

significantly spread the spectrum. As a consequence, the performance of LEDs in 

communications is greatly limited. An example of a commercial LED spectrum is 

shown in Figure 1.6.  

 In contrast, lasers are based on stimulated emission. If one electron occupies 

the excited level E2 and one photon with energy ΔE enters in the atom, the electron 

will come back to the level E1 but releasing a new photon that is in phase and has the 
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same direction as the incident one, as illustrated in Figure 1.6(c). When multiple 

photons are generated in this way, a coherent source of light with a narrow spectral 

range is produced, as it is also shown in Figure 1.6 for a commercial device. A laser 

is formed of a material whose electrons are continuously excited, by an outside 

source of light or by an electric field, to occupy higher energy levels in a process 

known as population inversion. A structure based on mirrors with different 

reflectivity ensures that multiple photons are travelling repeatedly through the 

medium, generating more stimulated coherent photons in a chain reaction [1].  

 Light is an electromagnetic field [57] and lasers are the sources of carriers at 

optical frequencies. The lasers employed in communications are typically based on 

semiconductors [58]. Similarly to an electrical oscillator, the spectrum of a laser is 

not a perfect delta corresponding to a pure tone. As undesired spontaneous emission 

also occurs inside a laser, random small fields with arbitrary phases are continuously 

added to the coherent tone. This effect perturbs the amplitude and the phase of the 

output generating Relative Intensity Noise (RIN) [1] and phase noise [59] 

respectively. RIN is usually measured in dBc/Hz and phase noise in terms of spectral 

 

Figure 1.6 Fundamental processes occurring between the energy states of an atom: 

(a) absorption, (b) spontaneous emission and (c) stimulated emission. Associated 

spectra for two commercial light sources.  
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linewidth (Hz). Obviously, both effects can have an impact on the performance of 

optical communication systems [60].    

1.3.1.2 Direct Modulation 

 Semiconductor lasers can be seen as laser diodes whose output amplitude and 

power depends on the driving current. Neglecting RIN and phase noise, the electric 

field at the output of a monochromatic laser can be written as: 

 

      cosp cE t E t t  (1.1) 

  

where Ep(t) is the peak amplitude and ωc is the frequency of the optical carrier. The 

term Ep(t) is a function of time reflecting the fact that the amplitude depends on the 

current that drives the laser diode. Note that Ep(t) can only vary at the rate of an 

electrical signal and, as a consequence, the frequency of change is several orders of 

magnitude lower than the optical frequency ωc. Thus, at the output of the laser, the 

average power P (also called intensity) with respect to the optical frequencies is:   

 

        
 

 
 2 2

2 2 2cos 1 cos 2 .
2 2

p p

p c c

E t E t
P t E t E t t t       (1.2) 

 

 It can be readily seen that an optical communication link can be established 

by modulating the power or intensity of the carrier with the information to be 

transmitted. From the point of view of the signal this process is called Intensity 

Modulation (IM). From the point of view of the device it is also called direct 

modulation, in contrast with external modulation which will be explained below. As 

illustrated in Figure 1.7, the transfer function of a laser diode presents an 

approximately linear area in which the output power P is proportional to the driving 

current i(t). This area begins for a current above a given threshold ith, so that the laser 

must be biased with a higher current ib that produces a DC power Pb to ensure linear 

operation. Mathematically, assuming a proportionality factor m: 
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 Performance of direct modulation is limited by several concepts. Firstly, the 

RIN degrades the Signal to Noise Ratio (SNR) of the power signal at the output of 

the laser [1]. Secondly, different optical powers produce a frequency deviation in the 

output wavelength in a phenomenon known as chirp. Consequently, directly 

modulated lasers present a broadening in the output spectrum that translates into 

impairments in the received signals due to fibre dispersion [61]. Thirdly, the 

bandwidth of the modulation is limited [1] so that broadband lasers are difficult and 

costly to build [62]. Finally, it is not possible to perform direct modulation of the 

electric field and the phase of the laser. Phase modulation is required for coherent 

systems and also to produce Optical Single Side Band (OSSB) signals. While the 

RIN and linewidth are inherent properties of the laser that cannot be avoided, 

external modulation can be employed to overcome the rest of the limitations, as 

explained in section 1.3.2.    

1.3.1.3 Classification of Communication Lasers  

 Three spectral regions are usually employed in optical communications. The 

first window corresponds to the range of 800-900 nm. The first optical links used 

these wavelengths because early fibre presented minimum losses in that region. 

Although the losses in that area are high in current fibre, these wavelengths are still 

used for short distances due to the low cost of lasers and detectors. The second band 

of interest is around 1310 nm. This band is attractive because there is zero dispersion 

fibre available, although sources and detectors are more costly. Finally, the last band 

of interest is around 1550 nm as fibre losses are the lowest there. Although fibre 

dispersion is not zero, it can be compensated electronically [63] or optically [26] to 

achieve longer transmission distances.  

i (mA)

P (mW)

ith ib

Pb

t

t

i(t)

P(t)

P

ib + i(t)

 

Figure 1.7 Typical transfer function of a laser diode. 
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 According to the internal structure, several types of monochromatic 

semiconductor lasers are typically employed in communications [1]: Distributed 

Feedback Lasers (DFB), External Cavity Lasers (ECL), and less costly Vertical 

Cavity Surface Emitting Lasers (VCSEL). Their typical parameters are shown in 

Table 1-1.   

1.3.2 Optical Modulators 

This section introduces the most common optical modulators that are widely 

employed in optical communications. Optical modulators use electrical signals to 

modify the physical characteristics of materials in such a way that the propagation 

conditions of light change. The basic mathematical principles of the electro-optic 

Mach-Zehnder Modulators (MZM) are emphasized, as they will be employed in the 

next chapters.     

1.3.2.1 Electro-absorption Modulators 

Electro-Absorption Modulators (EAM) are based on the Franz–Keldysh 

effect [64]. An electric field can be applied to a semiconductor modifying the 

bandgap energy between two bands ΔE. If the incoming lightwave presents photons 

with a lower energy (hν < ΔE), the semiconductor will be transparent. If the 

incoming energy is higher than the bandgap (hν > ΔE), absorption will occur as in 

Figure 1.6(a). With this approach, an electrical signal can be employed to modulate 

the power of the output lightwave.  

EAMs can be integrated in the same package with a laser, in a structure 

known as Externally Modulated Laser (EML). EMLs achieve low voltage operation, 

high bandwidth and reduced chirp [65]. The main disadvantage of EAMs is that they 

cannot perform phase modulation. This limitation impedes not only the use of EAMs 

in coherent systems, but also the direct generation of OSSB signals. 

1.3.2.2 Electro-optic Mach-Zehnder Modulators         

 The electro-optic effect, also known as Pockels effect, consists of a linear 

variation in the refractive index of crystals induced by an electric field [64]. A 

change in the refractive index translates into a change in the propagation speed of 

Table 1-1 Typical parameters of lasers commonly employed in communications. 

Type RIN (dBc/Hz) 3dB Linewidth 

DFB < -140 < 10 MHz 

ECL < -140 < 1000 KHz 

VCSEL > -130 < 100 MHz 
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light in the material. A single waveguide in which the speed of light varies according 

to an electric signal achieves optical phase modulation [66]. Furthermore, this 

concept is also employed along with Mach-Zehnder interferometers [67] to obtain 

phase and amplitude modulation of light dependent on an electrical signal [68]. The 

principle of operation of a MZM can be observed in Figure 1.8. The power of an 

incident lightwave splits into two equal signals that propagate through waveguides 

under the effect of a varying electric field. The associated modification of the 

refractive index produces a relative phase shift between the two lightwaves. When 

they recombine, any level of interference, from destructive to perfectly constructive, 

is possible and depends on the applied electrical signal. Figure 1.8 shows a push-pull 

MZM where the two waveguides suffer opposite phase shifts, +ϕ and -ϕ. This 

structure is preferred because it can halve the required voltage to obtain any value of 

relative phase shift [69]. Different configurations of optical modulators exist, but in 

general they all can be reduced to a combination of phase modulators and/or MZMs. 

 The transfer function of an ideal MZM will be derived mathematically. The 

optical incoming signal is a lightwave generated by a laser  cosi cE t . Initially, it is 

divided into two equal power carriers E1(t)and E2(t) with a 3dB splitting ratio with 

respect to the original:  

 

      1 2 cos .
2

i
c

E
E t E t t   (1.4) 

      

The carriers propagate in two different waveguides that suffer an opposite relative 

phase shift. A figure of merit of any MZM is the half-wave voltage Vπ, and it 

 

Figure 1.8 Push-pull Mach-Zehnder modulator. 
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determines the required voltage to generate an overall relative phase shift equal to π 

radians. Thus, the phase shift that is produced in any arm of the MZM due to a 

voltage V is:    

 

 .
2

V

V





  (1.5) 

 

Consequently, once both lightwaves are combined again, the electric field at the 

output of the MZM can be written as: 
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Note that each carrier presents an additional 3 dB loss due to the power combiner 

loss (otherwise there would be more power at the output of the MZM than at the 

input). Applying the equality         1cos cos cos cos
2

A B A B A B    , the 

previous equation can be rewritten as: 
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The peak amplitude of the electric field is also expressed as Ep(V), and depends on V. 

Note that Ep(V) also carries phase information, as it can be positive or negative. The 

associated power is equal to the average power for the optical frequencies. Similarly 

to the procedure presented in eq. (1.2):  
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 The transfer function of the MZM, for Po(V) and Ep(V), is illustrated in Figure 

1.9 normalising Ei=1. It is clear that a MZM is a nonlinear device, although this 

impairment can be overcome employing the appropriate level in the driving electrical 
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signals, as shown below. The applied voltage V can be composed of two elements: a 

DC component Vb, that defines the bias of the device, plus an AC signal s(t) with the 

information to transmit: 

 

 ( ).bV V s t   (1.9) 

 

The bias point establishes the initial level from which Po(V) and Ep(V) will vary 

according to the modulating signal s(t), similar to Figure 1.7. From the point of view 

of the output power, there are three types of important bias points that repeat 

periodically: peak, null and quadrature (Q). These points can be found at Vb/Vπ=2n, 

Vb/Vπ=2n+1, and Vb/Vπ=n+0.5 respectively, with n being any integer number.  

 The best bias point depends on the physical parameter that will carry the 

information and will be detected in the receiver. For intensity modulation, the most 

linear point is quadrature. This can be observed visually in Figure 1.9, and can also 

be justified mathematically expanding eq. (1.8) with the V provided in eq. (1.9). 

Considering quadrature at Vb/Vπ=1.5, a modulating signal s(t) with a peak amplitude 

very small in comparison with Vπ, and applying sin(x)≈x for small values of x, an 

approximately linear modulation can be achieved:   

 

 
Figure 1.9 Transfer function of a MZM. 
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Without applying any approximation, the higher the amplitude of s(t), the higher the 

intermodulation products at the output [70]. Note that in this case, the transmitted 

power belongs mostly to the optical carrier instead of the information signal. 

Information can also be transmitted in the phase and/or the amplitude of the electrical 

field Eo(t). In that case, the optimum bias point is null, as it can be deduced from 

Figure 1.9. Again, a mathematical justification can be provided expanding Ep(V) in 

eq. (1.7) with eq. (1.9). Considering null at Vb/Vπ=3 and a peak amplitude of s(t) very 

small in comparison with Vπ, the signed peak of the electric field is: 
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Note that in this case there is no power lost in the transmission of the optical carrier. 

As it will be shown, that benefit is achieved at the expense of requiring a much more 

complicated receiver. 

 To summarise, MZMs can achieve phase and intensity modulation of optical 

carriers. As it will be demonstrated they can generate OSSB signals directly. 

Moreover, they present higher modulation bandwidths than conventional lasers [45] 

and can operate free of phase and frequency chirp [71]. The main disadvantage is the 

nonlinear behaviour, although it can be balanced with a proper analysis on the 

optimum configuration according to the desired modulating signals.  

1.3.3 Optical Fibre 

 Optical fibres are waveguides typically made of glass (silica). The guiding of 

light inside the core of the fibre is achieved by employing a higher refractive index 

than in the cladding [1]. The advantages of optical fibre over traditional copper wire 

are evident: broader bandwidth, lower attenuation and immunity to electromagnetic 

interference as the optical fibre is electrically nonconductive. This section briefly 

reviews three important parameters in optical fibres: attenuation, dispersion and 

nonlinear behaviour. 



1. Optical Communications 

20 

1.3.3.1 Attenuation 

 The typical losses of silica fibre are illustrated in Figure 1.10 [72]. The lowest 

theoretical limits are given by Rayleigh scattering and material absorption. Rayleigh 

scattering is produced by microscopic fluctuations in the refractive index, which are 

a consequence of the fabrication process [1]. Material absorption is due to the silica 

itself and to extrinsic impurities as water [1]. Typically, in the bands of interest, 

losses range from a few dB/km at 800 nm to ≈0.2 dB/km at 1550 nm.  

1.3.3.2 Dispersion 

 The diameter of the fibre core determines the number of electromagnetic 

modes that can propagate through the fibre. Original fibres allowed the propagation 

of many modes and are called Multi-Mode Fibres (MMF), in opposition to later 

fibres that allowed only one and are called Single Mode Fibres (SMF) or Standard 

Single Mode Fibres (SSMF) [1, 73].  

 In both cases dispersion is an important impairment that limits the 

transmission distance. It can be seen as a temporal broadening that any transmitted 

pulse or signal suffers while propagating through the fibre. In MMFs, it is a 

consequence of every mode travelling at a different speed and the effect is called 

modal dispersion [1]. In SMFs, there is only one mode and dispersion, although 

lower, still occurs as a consequence of material dispersion and waveguide dispersion 

 

Figure 1.10 Typical attenuation in silica fibre and theoretical limits [72]. 
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[1, 74]. Any modulated carrier expands its spectrum in a range of frequencies and 

each frequency propagates with a different refractive index, giving rise to material 

dispersion. Simultaneously, the energy distribution of the mode while it propagates 

through the core and the cladding also depends on the wavelength, producing 

waveguide dispersion. The sum of these sources of dispersion is written as D and 

called group velocity dispersion or chromatic dispersion. The dispersion D in SSMFs 

along with the two individual sources is illustrated in Figure 1.11(a). Typical values 

are ≈0 (ps/nm)/km at 1300 nm and ≈17 (ps/nm)/km at 1550 nm. Different types of 

modified SMFs that compensate or shift the curve of dispersion [1, 73] are 

commercially available and shown in Figure 1.11(b). For a pulse transmission of 

distance L, at a wavelength λ, with a bandwidth Δλ, over SMF with dispersion D(λ), 

the extent of the pulse temporal broadening is:  

 

 .T L D     (1.12) 

 

 Another source of dispersion is Polarization Mode Dispersion (PMD). A light 

mode travels at a state of polarization that can be divided into two orthogonal 

components. Besides, optical fibres present a phenomenon known as birefringence. 

Due to the differences in the shape of the core and non-uniform stress, there is a 

continuous power exchange between the two polarization components and light 

acquires and arbitrary varying state of polarization. Both polarization components 

present a different refractive index resulting in a time broadening of the transmitted 

pulses known as PMD [1]. For high rates and long transmission distances, PMD 

 

Figure 1.11 (a) Components and chromatic dispersion in SSMF. (b) Chromatic 

dispersion curves in several types of fibres.  
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becomes significant if D is low or has been removed or compensated [75, 76]. 

Typical modern fibre PMD values are Dp < 0.1 ps/(km
0.5

) [1].  

 To overcome dispersion, one option is to divide the available bandwidth into 

several subchannels. As each subchannel is narrower in frequency and transports 

lower bandwidth baseband signals, it is also more tolerant to dispersion. This concept 

explains the importance of multicarrier techniques and will be emphasized in the 

next chapter.   

1.3.3.3 Nonlinear Behaviour 

 Intensity inside the core of an optical fibre can be high, especially when 

multiple WDM channels are transmitted. Due to the Kerr nonlinearity, intensity 

variations produce a change in the refractive index of the fibre, inducing signal 

distortions for long transmission distances [77].   

 This phenomenon can be subdivided into several effects. The intensity 

variations of one channel modify the refractive index producing a self-induced phase 

variation that is called Self-Phase Modulation (SPM). Similarly, the phase variations 

associated with the intensity changes of a different channel are called Cross-Phase 

Modulation (XPM). Moreover, this nonlinear behaviour also produces electrical 

fields at frequencies that are a combination of up to three other frequencies, an effect 

known as Four-Wave Mixing (FWM) [1, 77]. SPM and XPM translate mainly into 

pulse broadening and jitter while FWM produces amplitude distortion [13]. Note that 

optical noise can also have an important contribution on the overall intensity, 

especially in systems where many optical amplifiers are employed. As a 

consequence, more SPM and XPM induced nonlinear phase noise occurs [13].  

 The effects of nonlinearities depend on many factors like the type of fibre, 

channel and subchannel spacing, and the modulation format. Typically, in long reach 

WDM systems, nonlinearities between different WDM channels (inter-channel) have 

a higher impact at lower data rates. With higher data rates per WDM channel            

(> 10 Gbit/s), the nonlinearities produced inside every channel (intra-channel) are 

dominant [13].    

1.3.4 Optical Amplifiers 

 Optical amplifiers allow the deployment of long distance fibre links without 

inserting opto-electronic repeaters. The span between amplifiers depends on every 

particular system and it is usually in the range of several tens of kilometres. A 
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classification of the optical amplifiers can be made according to their position in the 

system: after the transmitter they are called booster amplifiers, between fibre spans 

they are referred to as in-line amplifiers and, finally, when positioned just before the 

opto-electronic receiver the employed term is pre-amplifier. The dominant optical 

amplifiers in optical networks are: Semiconductor Optical Amplifiers (SOA), 

Erbium-Doped Fibre Amplifiers (EDFA) and Raman amplifiers. 

 SOAs have a structure that is similar to a laser but without the cavity. 

Population inversion in the medium is achieved by electrical pumping. When the 

optical signal passes through the semiconductor, amplification is produced by 

stimulated emission (see section 1.3.1.1) [78]. SOAs can be integrated with lasers, 

modulators and detectors in the same chip, giving rise to size efficient and 

economical solutions. Consequently, they are often employed as booster amplifiers 

or as pre-amplifiers. The main disadvantages with respect to the other technologies 

are lower gain and saturation power and higher Noise Figure (NF). Other drawbacks 

that make them impractical to act as in-line amplifiers are polarization sensitivity, 

inter-channel crosstalk and high coupling losses [1]. 

 EDFAs, a particular type of rare-earth doped fibre amplifier [79], are 

dominantly used in current optical links. These fibre amplifiers are composed of fibre 

doped with a rare-earth element in which population inversion is achieved with a 

coupled optical pumping signal, typically at wavelengths lower than the desired 

signal. The doped fibre is positioned between isolators that avoid the pumping signal 

from propagating outside the amplifier. While the desired signal propagates through 

the doped fibre, it is amplified by stimulated emission [80]. EDFAs can have low NF 

to act as a pre-amplifiers, but maximum output power is low. In-line and booster 

EDFAs feature high gain and high saturation power, but at the expense of a higher 

NF. Low NF EDFAs are typically pumped at 980 nm while boosters are pumped at 

1480 nm [81]. EDFAs also present a number of disadvantages: bulky configuration, 

impossible to integrate and high cost. Finally, due to the optical pumping, EDFAs 

consume more power than SOAs.  

 Raman amplifiers are a particular type of distributed amplifiers. These are 

fibre amplifiers in which the amplification occurs during the transmission over the 

fibre. SSMFs are suitable for the application of this technique, although certain 

dopants increase Raman gain. Raman amplification results from the effect of 

stimulated Raman scattering. The signal is transmitted along a co-propagating or 
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counter-propagating pumping lightwave located at a higher frequency. Population 

inversion is achieved allowing stimulated emission at the wavelength of the desired 

signal. Raman amplifiers have important advantages as in-line amplifiers: the 

transmission medium amplifies the signal, they exhibit wide gain bandwidth, gain 

spectrum can be tailored with the pump frequency, and NF can be lower than in 

EDFAs. On the other hand they require high power pump signals, often exceeding 

safety limits [25].       

1.3.5 Optical Receivers 

 The role of an optical receiver is to convert the optical signal back into an 

electrical form, recovering the data that was transmitted through the communication 

system. This section reviews the physics of typical communications photodetectors 

and discusses the classification of optical links according to the detection technique.   

1.3.5.1 Physics of Photodiodes 

 A photodetector based on semiconductors, a p-n photodiode, can be seen as a 

reverse biased diode with a middle depletion region free of charged carriers. When 

photons arrive to the depletion region, absorption occurs (see Figure 1.6(a)) and 

creates electron-hole pairs. Consequently, a reverse current that is proportional to the 

incident optical power is generated. The parameter that determines the ratio between 

the induced photocurrent and the incoming optical power is called responsivity, R. 

The depletion region can be increased by inserting a layer of lightly doped 

semiconductor material, in a configuration that is called a pin photodiode and 

features a higher R. Other common devices are Avalanche Photo-Diodes (APD). 

They present a structure in which an accelerated electron can potentially produce 

new electron-hole pairs multiplying the photo-detection effect, the R and the 

sensitivity of the device. The main disadvantage is the higher NF [1].  

 Often, photodetectors are integrated with Trans-Impedance Amplifiers (TIA), 

a current to voltage converter with an internal amplifier [82]. These structures are 

usually identified as photo-receivers and achieve a higher equivalent R.        

1.3.5.2 Direct Detection 

 As it has been explained in sections 1.3.1.2 and 1.3.2.2, information can be 

modulated onto the average power or intensity of a lightwave. In the receiver, the 

modulating signal can be recovered with a photo-detector. The photocurrent I 
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induced in a photo-detector of responsivity R by an incoming optical signal of 

average power P(t) is:  

 

      2 .I t RP t R E t   (1.13) 

 

This technique is defined as Intensity Modulation / Direct Detection (IM/DD). 

1.3.5.3 Coherent Detection 

 By the use of MZMs and phase modulators, complex information can also be 

modulated onto the amplitude and the phase of a lightwave electric field. A simple 

photo-detector is not enough to recover the data in these schemes, as average power 

is independent of the phase of the optical carrier. These applications require more 

complicated receivers called coherent detectors [83]. This section shows the basic 

mathematical principle of a coherent receiver. A comparison of IM/DD and coherent 

systems will be provided in section 1.4.3. 

 A simple amplitude-phase modulation of an optical carrier was shown in 

section 1.3.2.2. From eqs. (1.7) and (1.11), neglecting proportionality constants and 

nonlinear effects, a MZM can be used to modulate a signed AC information signal 

s(t) onto an optical carrier with arbitrary initial phase φc as:  

 

      cos .s c cE t s t t    (1.14) 

   

Note that s(t) does not contain a DC term and, consequently, the spectrum of Es(t) is 

free of a pure tone at ωc. That is the main advantage of coherent systems, there is not 

power wasted in the transmitted signal and a better sensitivity is obtained in the 

receiver. On the other hand, as s(t) can take positive and negative values, it cannot be 

recovered with a single square-law direct detection photo-detector.  

 The simplest ideal coherent receiver can be observed in Figure 1.12(a) and 

consists of a local laser, a combiner and two balanced photo-detectors. The incoming 

signal is combined with a laser Local Oscillator (LO) at a frequency ωLO. For 

simplicity, unit amplitude and arbitrary initial phase φLO are employed:  

 

    cos .LO LO LOE t t    (1.15) 
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The combination is performed with a 3 dB loss 180º optical coupler [83] such that: 
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 (1.16) 

 

The detected photocurrents in the photo-diodes, I1(t) and I2(t), are calculated as the 

average optical powers. The terms at frequencies 2ωc, 2ωLO and (ωc+ωLO) disappear 

in the output because their average optical power is zero. For simplicity, considering 

a responsivity R equal to one: 
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As two detectors in a balanced configuration are used, the final photocurrent Io(t) is: 

 

           1 2 cos .o c LO c LOI t I t I t s t t          (1.18) 

 

Es(t) 

ELO(t) 

I1(t) 

I2(t) 

Io(t) 

E1(t) 

E2(t) 

II(t) 

IQ(t) 

Es(t) 

π/2

ELO(t) 

(a) (b)
 

 Figure 1.12 Balanced coherent detector (a) and 90º optical hybrid (b). 
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When different ωc and ωLO are employed, the detection is called heterodyne and 

further electronic down conversion is required. When ωc and ωLO  are the same, 

detection is homodyne [80, 83]. In theory, s(t) can be recovered perfectly: 

 

    .
c LO

c LO

oI t s t 
 




  (1.19) 

 

In practice, complicated post processing is required due to major difficulties. Firstly, 

as there is not a transmitted pilot tone at ωc, the frequency locking of ωLO is difficult. 

Secondly, phase noise is also present and independent in the optical carrier and the 

local oscillator, φc(t) ≠ φLO(t). Optical Phase Locked Loops (OPLL) have been 

investigated since the 1980s [84], but even with state-of-the-art technology they are 

not practical for deployment due to frequency drifts and instabilities of 

semiconductors lasers [83]. Instead, lasers with low linewidth plus high-speed digital 

signal processing are employed to perform phase and frequency tracking [83].   

 In the previous example, the electrical signal s(t) was modulated onto the in-

phase component of the optical carrier. Note that s(t) could be both a baseband signal 

or a multicarrier signal with in-phase and quadrature components. Optical In-phase 

Quadrature (IQ) modulators also exist. In this case the I and Q signals are recovered 

with a more sophisticated coherent receiver called a 90º optical hybrid, shown in 

Figure 1.12(b) [83]. The principle of operation and the difficulties are the same that 

have already been explained  [83].  

1.3.6 Other components  

The available bandwidth in an optical fibre is huge; more than 4 THz only in 

the C band (1530-1565 nm). However, it is not possible to modulate any optical 

carrier with such a broadband electrical signal directly. WDM maximizes the spectral 

efficiency of the system by transmitting several optical carriers through the same 

fibre. In the transmitter it is necessary to couple a number of optical subchannels, 

while the receiver must separate the optical subchannels before photo detection.  

WDM systems need optical couplers and filters to perform these tasks [85]. 

Arrayed Waveguide Gratings (AWG) split and recombine optical signals in such a 

way that can multiplex and demultiplex subchannels located at multiple wavelengths 
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[85]. Devices that can remove and incorporate particular subchannels in WDM 

signals, called add-drop multiplexers, are also important for flexible networking [28].   

1.4 Electro-Optical Transceivers 

 Inside the network nodes, the electro-optical transceivers are the devices that 

perform the electrical and optical generation and reception of the information signals 

that travel through fibre. This section shows the blocks of a generic electro-optical 

transceiver, the spectra and multiplexing techniques in single carrier and multicarrier 

systems, and, finally, a comparison between IM/DD and coherent electro-optical 

transceivers.     

 Information can be analogue or digital. Analogue information can adopt 

infinite values inside its margins. In contrast, digital information can always be 

reduced to binary data: ‘1’s and ‘0’s. In any real communication link, the signals that 

travel through the transmission medium are always analogue, irrespective of whether 

the information that they contain is analogue or digital. When analogue information 

is employed, all the impairments accumulated in the transmission chain are present in 

the received signal. In contrast, digital links present an important advantage: the 

information that was transmitted is perfectly recovered if it is possible to discern the 

‘1’s and ‘0’s in the receiver, despite the accumulated impairments. For compatibility 

with the powerful capabilities of digital processors and computers, practically all the 

information that is exchanged through optical fibre, is digital. An exception would be 

a legacy HFC CATV system that still transmits analogue video signals, although they 

tend to be substituted by digital video standards. This document focuses on digital 

electro-optical transceivers suitable for optical links that transmit digital data.  

1.4.1 Block diagram 

1.4.1.1 Basic modulation 

 The blocks that form the simplest digital electro-optical transmitters and 

receivers in a digital optical link are illustrated in Figure 1.13. A sequence of digital 

data b[n] inside an electrical digital processor is converted into an analogue signal 

si(t) that carries the digital data. This signal is modulated onto an optical carrier using 

an electro-optical converter (E/O), which can be composed of a laser or a laser plus 

an external modulator. The light is an electromagnetic wave, so that the signal at the 

input of the optical fibre can be represented by an electrical field Ei(t), which is a 
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function of si(t). After propagation, the electrical field at the other extreme is Eo(t) 

and includes the impairments associated with the transmission. An opto-electronic 

converter (O/E), based on photo-detection, obtains so(t) from Eo(t). Consequently, 

so(t) is an impaired version of si(t). Provided the impairments do not prevent the 

comparator from discerning the two digital levels correctly, b[n] is recovered free of 

errors.  

1.4.1.2 Advanced modulation formats 

To increase the spectral efficiency and the capacity of digital optical links, 

more sophisticated modulation schemes are required. Consequently, the modulating 

electrical signal si(t) needs to be a more complicated mathematical function of 

several digital sequences. Depending on the method employed for the electrical 

processing, the transceivers can be classified into two groups: based on Digital 

Signal Processing (DSP) and based on Analogue Signal Processing (ASP). In many 

occasions, DSP plus ASP is performed in the transmitter and ASP plus DSP is 

performed in the receiver but, for simplicity, this analysis focuses on pure ASP or 

DSP implementations.  
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Figure 1.13 Basic digital optical link. 
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Figure 1.14 DSP based digital optical link.  
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 The DSP based implementation is illustrated in Figure 1.14. N baseband 

sequences of bits are defined as bk[n], where k and n are integers that represent the 

number of the sequence and the position of the bit in the sequence respectively. DSP 

consists basically of delays, sums and multiplications involving bk[n], which produce 

a final sequence si[n]. A Digital to Analogue Converter (DAC) is required to obtain 

the analogue signal si(t), from si[n], that will be transmitted in the electrical field 

Ei(t). The electrical receiver performs the opposite conversion. so(t) is the impaired 

version of si(t) obtained from Eo(t). An Analogue to Digital Converter (ADC) 

produces the samples so[n] that will be processed with DSP in order to recover the 

transmitted baseband data bk[n].          

 An ASP based system, illustrated in Figure 1.15, presents the following 

differences. The digital sequences bk[n] are sourced from an analogue interface that 

generates the equivalent analogue and temporal versions bi,k(t). The processing to 

generate the modulating signal si(t) is performed with analogue devices. In a high 

frequency system these devices would be filters, phase shifters, combiners and 

mixers. In the receiver, impaired analogue versions of the digital signals bo,k(t) are 

obtained from so(t) using ASP. Finally, N interfaces recover the original binary 

sequences bk[n].   

 The presented examples have been simplified with the use of only one signal 

s(t). Note that in some occasions two signals, sI(t) and sQ(t), can be required to 

perform an IQ modulation of the optical carrier. However, the main concepts and 

ideas discussed earlier remain unaltered. 
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Figure 1.15 ASP based digital optical link. 

 



1. Optical Communications 

31 

 Complicated mathematical functions can be implemented electronically with 

DSP or ASP. However, in practice, DSP and ASP configurations translate into major 

differences in the parameters that measure the performance of an electro-optical 

transceiver. DSP is powerful for compensating channel impairments and increasing 

the spectral efficiency, but power consumption increases linearly with the processing 

frequency [86], and latency is also high when complicated mathematical functions 

are implemented. On the other hand, for high capacity systems ASP requires 

broadband linear devices and is less flexible, but two major advantages are obtained: 

power consumption can be reduced to the amplification stages, and the latency is 

low. For most applications these two advantages are very important; low power 

consumption reduces the fixed operational cost of installed equipment, and low 

latency provides a high quality of service to the final customers. Potentially, ASP is 

much more power efficient than DSP [87]. For example, in the field of “machine 

learning”, values of up to 1 TOPS/W (10
12

 operations per watt) have been achieved 

with ASP [88]. In contrast, modern supercomputers and highly-efficient DSP 

computing platforms present performances in the order of tens of GFLOPS/W (10
9
 

floating-point operations per watt) [89, 90]. The previous examples implement 

massive parallel processing in a fully integrated only-analogue or only-digital 

solution and, as a consequence, the performance values are not directly applicable to 

communication schemes.  

1.4.2 Single Carrier and Multicarrier Modulations    

 This section shows the different spectra that are obtained in digital electro-

optical transceivers based on single carrier and multicarrier techniques. Then, for the 

purpose of multiuser applications, the associated (de)multiplexing schemes are 

discussed. 

1.4.2.1 Spectra 

 All the schemes presented in section 1.4.1 are based on an information 

electrical signal s(t) that consists of digital data and is modulated onto an optical 

carrier forming an optical signal Es(t). Several combinations arise depending on the 

nature of s(t) and the modulation to the optical domain. The shapes of the spectra of 

all the possibilities that will be described are illustrated in Figure 1.16. 
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 Firstly, the case of s(t) as a baseband digital AC signal is considered. Thus, 

s(t) can be a multilevel signal following a Pulse Amplitude Modulated (PAM) 

scheme. In its simplest case it would have two levels (PAM2). This signal can be 

modulated onto the power of an optical carrier creating an IM/DD scheme [91]. 

Another possibility is to employ two baseband digital signals, sI(t) and sQ(t), to 

modulate the phase and the amplitude of the optical carrier with an IQ modulation 

[83, 92, 93]. Consequently with the phase modulation, a coherent detector is 

necessary. For both cases, considering standard Non Return to Zero (NRZ) pulses, 

the electrical spectra |S(f)| and the optical spectra |E(λ)| are illustrated in Figure 1.16. 

These spectra feature a sinc shape, sinc(x) = sin(x)/x, and only the main lobes are 

plotted in the figure. Note a symbol rate of B Gbaud is assumed. The only difference 
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Figure 1.16 Spectra shapes of single carrier and multicarrier implementations. 
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in the spectra is the presence of the pilot optical tone at ωc for the IM/DD case while 

it does not appear for the coherent scheme. In practice, some coherent systems also 

transmit a low power pilot tone to ease the phase recovery in the receiver [94]. 

 Secondly, s(t) can also be an AC multicarrier Frequency Division 

Multiplexing (FDM) digital signal. When FDM is employed in the electrical domain, 

the resultant optical technique is referred to as Subcarrier Multiplexing (SCM). 

Regardless of whether s(t) presents IQ electrical subchannels or not, it can be 

modulated either in the power or in the amplitude-phase of an optical carrier 

generating an IM/DD [95-98] or a coherent [95, 99, 100] system respectively. Again, 

the only difference in the resultant spectra is the presence of the optical carrier for the 

IM/DD case. By default, Optical Double Side Band (ODSB) spectra are generated 

[101, 102], but OSSB is usually preferred and can be obtained by either optically 

filtering of one sideband [101, 102] or directly with more advanced configurations of 

signals and optical modulators [103] (discussed in the subsequent chapter). The 

spectra illustrated in Figure 1.16 reflect OSSB signals. Apart from the presented 

cases, there are two particular implementations of SCM that achieve higher spectral 

efficiency: OFDM, which transmits orthogonally overlapping subchannels [14, 15], 

and Nyquist SCM, which employs original baseband pulses that occupy a narrower 

spectrum [104].     

 Finally, a number of optical carriers can be modulated with any of the options 

described above, creating a WDM [12] or a WDM/SCM [105] signal. The associated 

spectra are also illustrated in Figure 1.16. There are also two particular 

implementations of WDM systems that increase the spectral efficiency by directly 

generating orthogonal optical WDM subchannels: All-optical OFDM [106] and 

Coherent WDM [107]. These implementations will be discussed in chapter 5.   

 All the described implementations can be combined with one technique that 

doubles the spectral efficiency, Polarization Division Multiplexing (PDM). Inside the 

fibre, the optical signal travels in a state of polarization or orientation of the electric 

field. It is possible to transmit two electrical fields in two SOPs orthogonal to each 

other. This technique is costly, but recently has been introduced in commercially 

available 100 (Gbit/s)/λ long-haul coherent transceivers [108]. The spectrum of the 

signal transmitted in every polarization would be equivalent to the ones presented in 

this section.   
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1.4.2.2 (De)/multiplexing 

 All the presented techniques can be applied to point to point links providing 

different advantages and disadvantages. Single carrier optics is simple but has low 

tolerance to dispersion and requires high-speed baseband signals. SCM reduces the 

rate of the baseband signals and is robust against dispersion, but requires more 

electronic components or processing blocks in the transmitter and the receiver. 

WDM multiplies the data rate of the link, but at the expense of costly and 

complicated transceivers. In all the combinations, the difference between IM/DD and 

coherent detection translates into a trade-off between shorter reach with lower cost 

and longer reach with higher cost. 

 For point to multipoint links, access to the medium can be provided with 

different methods employing single carrier and multicarrier optics. As mentioned in 

section 1.2.3.2, PONs are a real modern application where these techniques are 

implemented. Hence, the following examples will be particularised for PONs.  

 The most straightforward (de)/multiplexing approach is Time Division 

Multiplexing (TDM), as illustrated in Figure 1.5. In the downlink, the OLT transmits 

a baseband signal divided in different time slots that carry information for different 

users. The signal arrives to all the ONUs, and each one reads the data which was 

allocated for it. In the uplink the opposite procedure happens. The ONUs transmit 

baseband data in their associated time slots, and all the signals are multiplexed in the 

passive combiner before reaching the OLT. Although this technique is apparently 

simple, there are important challenges for the electronics in the uplink. As every 

ONU can be at a different length from the passive splitter/combiner, accurate 

synchronization and time guard intervals must be provided to avoid packet collisions. 

Apart from that, when the multiplexed signal arrives at the ONU, each part of the 

incoming signal can have a different amplitude so that gain equalization is also 

required [40, 109].    

 In standard TDM, data is allocated in time in the electrical domain before 

electrical-to-optical conversion. As a consequence, the electrical bandwidth is shared 

and electronic circuits limit the overall performance and the achievable data rate. 

Optical Time Division Multiplexing (OTDM) is a method that overcomes this 

electric limitation. An optical short pulse is generated periodically. Then, the optical 

pulse is replicated in several lines with a splitter and every optical pulse is modulated 

with different electrical signals. This parallelization allows for the maximization of 
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the electronic data rate in every subchannel. After the modulation, all the pulses 

suffer a different optical delay that avoids collisions after recombination. This 

method can achieve very high data rates but has important synchronization 

challenges and requires complicated receivers [1]. Currently, OTDM is an active 

research topic [110] but is not implemented in commercially available systems.       

 WDM and SCM can also be employed for the (de)/multiplexing of data as 

shown in Figure 1.17 for a WDM-PON and in Figure 1.18 for a SCM-PON. In this 

case a spectral optical bandwidth or subchannel is allocated for every ONU. For the 

downstream, the OLT modulates the data for every ONU at a different subchannel. 

The multiplex is then replicated in the splitter and every ONU filters and 

demodulates the data that is allocated in its associated spectrum. For the uplink, each 

ONU modulates its data in its frequency band and the combiner multiplexes all the 

optical frequencies in the same signal that travels to the OLT. This technique 

establishes independent channels between the OLT and the ONUs. Schematically, 

the application of both WDM and SCM looks similar although the optical and 

electronic implementation is substantially different. WDM assigns a different 
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wavelength to every subchannel while SCM employs a different subcarrier for every 

subchannel. Thus, SCM simplifies the optical scheme and avoids the tunable optical 

filters and AWGs that are necessary for WDM access. However, SCM also presents 

drawbacks. The main one arises because the N independent optical signals that are 

multiplexed in the uplink are photo-detected simultaneously. As a consequence, the 

photodetector at the OLT produces increased electrical noise due to the optical 

beating of the components coming from N independent lasers [40, 111]. Finally, it 

should be remarked that SCM and WDM can be combined in the same PON 

obtaining a higher number of subchannels with finer granularity [112].  

1.4.3 Optical Modulation and Detection   

 The most relevant figures of merit of digital electro-optical transceivers can 

be reduced to: data rate, reach or sensitivity, power consumption, latency and cost. 

All these features are intimately related to the method employed for the modulation 

and the detection of the optical signal. This section summarizes the main properties 

of IM/DD and coherent techniques and discusses their implications in electro-optical 

transceivers.    
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1.4.3.1 Intensity Modulation / Direct Detection 

 An AC signal s(t) can be modulated onto the power of an optical carrier 

directly with lasers (section 1.3.1.2) or with external modulators (section 1.3.2).  

Considering φc(t) is the phase noise in a laser with frequency ωc, the transmitted 

electrical field can be written in the form: 
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Pb represents the bias power of the electro-optical converter. E(t) can be seen as an 

envelope signal a(t) (with DC and AC components) that multiplies the optical carrier, 

as it is shown in Figure 1.19. Note that even in high-speed systems, a(t) varies much 

more slowly (GHz) than ωc (hundreds of THz), so that the relation of cycles shown 

in the picture is only illustrative. A photodetector obtains the average power of the 

electrical field for the optical frequencies and, for a responsivity R, the detected 

photocurrent is: 
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b b
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I t R E t R P s t R P s t

  
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 s(t) is recovered and several statements can be made for this technique. The 

information is transmitted in the envelope of the electric field and, as consequence, 

a(t) cannot change its sign without incurring distortion. Apart from that, power is 

wasted in the transmission of an unmodulated optical carrier. In contrast, the 

 

Figure 1.19 Example of the electrical field in a IM/DD system. 
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presence of this pilot tone eases the demodulation: as the instant phase of the carrier 

is transmitted, the square law detector obtains the squared envelope independently of 

the phase noise φc(t).  Hence, lower cost lasers with higher linewidths can be used in 

IM/DD systems.      

1.4.3.2 Phase Modulation / Coherent Detection 

 The phase and the amplitude of an optical carrier can be modulated with 

phase modulators or with MZMs (see section 1.3.2.2). The simplest phase 

modulation scheme, Binary Phase Shift Keying (BPSK), will be employed as an 

example. A BPSK modulated optical carrier at a frequency ωc and with a phase noise 

φc(t) can be represented in two ways: 
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In the first representation, the transmitted AC signal s(t) can take two values (+1,-1) 

that in the second representation transform into (0,π) for θs(t). An illustrative 

example of a possible electrical field for this modulation is presented in Figure 1.20. 

From section 1.3.5.3, a balanced coherent photodetector is required to recover the 

data. Using an LO laser at ωLO with a phase noise φLO(t), the detected photocurrent 

depends on several factors apart from the transmitted phase θs(t): 

 

           , , , .s c LO c LOI t f t t t       (1.23) 

 

 

Figure 1.20 Example of the electrical field in a coherent system. 
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 Several statements can also be made for this technique. The transmitted signal 

does not waste any power in an unmodulated carrier, which translates into lower 

sensitivity in the receiver or longer reach. As a pilot tone with the phase of the 

original laser is not transmitted, this phase has to be estimated in the receiver. 

Expensive lasers with low phase and frequency noise are necessary to guarantee that 

this estimation is possible. In any case, high-speed signal processing, typically DSP, 

is required for the phase estimation and correction, translating into higher power 

consumption and latency. 

1.5 Conclusions and Scope 

 Optical communications surpassed the limited data rates of electrical systems 

and made possible the development of the Internet. Currently, all high-capacity 

networks employ optical systems regardless of their reach and purpose.  

 The devices that carry out the interface between the electrical and optical 

domains are called electro-optical transceivers. These key components can adopt a 

number of forms and characteristics depending on the network where they are 

deployed. The signals, modulations, and processing techniques that they employ, 

must be carefully selected to meet the requirements of a given subsystem.   

 Communications industry decisions are fundamentally cost driven. 

Consequently, IM/DD solutions based on low cost lasers and photodetectors are 

preferred and widely employed in short range systems, while the use of more 

expensive MZMs with direct or coherent detection is reserved at the moment for long 

distances.  

 New advances suggest that the current trends can be potentially modified. 

Namely, the advances in silicon optical modulators guarantee the development and 

future proliferation of low-cost high-performance optical modulators [113]. Some 

promising optical techniques like coherent WDM or all-optical OFDM rely on 

complicated implementations with immature optical components and, consequently, 

remain as important research topics but impractical for real deployment. Unlike 

them, the presence of low-cost optical MZMs and its combination with mature 

electronic circuits and processing, advance a revolution in real and practical 

solutions. 

 In this foreseen scenario, some techniques can be identified as candidates to 

offer unique solutions. Namely, IM/DD SCM systems can prove to be relevant for 
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several applications. SCM had been previously discouraged for low-cost low-range 

electro-optical transceivers due to the typical higher bandwidth that was required, 

usually not compatible with low-cost lasers. For these systems, once lower cost 

MZMs are a reality, SCM can improve the tolerance to dispersion increasing the 

overall bitrate with respect to single carrier solutions. Moreover, for medium 

distances, like access or metro networks, IM/DD SCM has always been a 

competitive solution that now can be emphasized with lower cost optical modulators.       

 The aforementioned solutions rely mostly on electronic signal processing, 

like the vast majority of electro-optical transceivers deployed in practical 

applications. While DSP based techniques provide unique possibilities, their higher 

power consumption and latency make them prohibitive in some subsystems. Apart 

from that, when very high-speed processing is required, ADCs and DACs are 

unavoidably expensive. For that reason, research on ASP based systems is necessary 

in order to exploit the possibilities of low power consumption and low latency 

processing. Moreover, the development of Monolithic Microwave Integrated Circuit 

(MMIC) technology [114] currently provides low-cost integrated circuits at 

microwave frequencies, which reduces drastically the cost of high-speed ASP.  

 This thesis focuses on ASP based IM/DD SCM broadband electro-optical 

transceivers, as they present low cost, high tolerance to dispersion, and real 

possibilities of spreading the range of applications where they are deployed. Several 

key advances in the state of the art are presented. Firstly, OSSB implementations 

based on optical IQ modulators are analysed in detail to obtain the best trade-off 

between nonlinearities and maximum reach. Secondly, it is proved that OFDM 

modulation, a popular technique in DSP solutions, can also be applied to broadband 

ASP systems increasing substantially the spectral efficiency. Finally, the application 

of the developed techniques in spectrally efficient WDM/SCM systems with tightly 

allocated OSSB channels is presented. A low-cost approach that does not require an 

optical filter for every WDM channel in the transmitter is employed.  

 All the experiments were conducted emphasizing the feasibility of the 

proposed solutions. Modern current research often relies on offline processing. It 

assumes that the desired components can be potentially implemented and perform all 

the processing at the desired speeds. In contrast, this thesis shows experiments 

running in real-time and, more importantly, relying largely on off-the-shelf 

components.                  
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Chapter 2 

2 Subcarrier Multiplexing 

The term subcarrier multiplexing (SCM) refers to a technique usually 

employed in electro-optical transceivers. It consists of the generation of a 

multicarrier electrical signal that is modulated onto an optical carrier. In the receiver, 

after photo-detection, every subchannel must be demodulated independently with 

electrical processing. This chapter discusses general concepts of SCM: applications, 

electrical and optical processing, and tolerance to impairments. The context and the 

main focus of this thesis are emphasized, along with several concepts that are 

identified as key ideas to advance in the state of the art. Finally, the experimental 

testbed that was developed implementing these ideas is thoroughly described. This 

setup represents the starting point that gave rise to the measurements and 

experiments that will be described in the following chapters.    

2.1 Range of Applications  

 This section briefly reviews the applications where SCM has been 

implemented with both industrial products and research approaches. According to the 

main focus of this thesis, a particular implementation based on optical modulators is 

identified as the established state of the art. Several ideas and concepts will be 

discussed to upgrade the functionality of that implementation.  

2.1.1 SCM in Optical Networks 

The applications where SCM is typically implemented are described from a 

network perspective. In practice, the following classification is not rigid, as the 

concepts behind different network topologies and technologies can be easily 

combined.  In other words, any of the experiments presented in this thesis could be 

easily implemented in most of the following applications with minor modifications.  

2.1.1.1 Analogue Cable Television (CATV) 

 One of the first applications of SCM consisted of the transmission of multiple 

analogue TV channels. In this case, SCM represents a perfect solution as every 

subcarrier transmits a different channel. Purely optical FTTH [1] and hybrid 
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fibre/coax HFC [2] systems were employed. Although the direct modulation of lasers 

was preferred to achieve low cost solutions [1], external optical modulators were also 

developed and optimised for this application [3]. Analogue video transmission can 

still be found in legacy access networks, but these solutions are tending to disappear 

due to the global analogue TV switch-off.   

2.1.1.2 Digital Passive Optical Networks (PON)   

 As with CATV systems, the transmission of voice, video and data services to 

the final users in access networks can be provided with purely optical FTTH 

solutions or with HFC systems, but typically employing a point-to-multipoint PON 

configuration (see section 1.2.3.2). 

 Due to the point-to-multipoint nature of this implementation, SCM is well 

suited to accomplish the functions of the network. Each subcarrier/subchannel can be 

seen as one service, or the data for a particular user or group of users. SCM-PON 

networks have been reported using directly modulated lasers [4], lasers integrated 

with electro-absorption modulators (referred to as EMLs) [5] and, finally, MZM 

electro-optical modulators [6].  

2.1.1.3 Local Area Networks (LAN) 

 SCM is also well-suited for low range networks like LANs and data centres 

as it can combine a number of lower bandwidth subchannels while obtaining a high 

overall data rate [7]. As an example, efforts have been made to design integrated 

circuits capable of reaching 100 Gbit/s SCM optical channels for LANs [8].  

2.1.1.4 Radio over Fibre (RoF) 

 Similarly to the transmission of RF analogue TV channels, SCM is a perfect 

solution for the transmission of RF signals for wireless applications. A number of 

services can be transmitted over fibre, using the corresponding subcarrier 

frequencies, before and after feeding and reception in the antenna.   

 Many configurations and subcarriers have been employed using directly 

modulated lasers, EMLs and MZMs [9]. Currently, transmission at 60 GHz is 

receiving growing attention in the research community for its possibilities in IoT 

applications [10]. In practice, mobile operators are deploying digital RoF systems 

based on protocols like the CPRI, which transmits the digital samples of the RF 

signal instead of the analogue signal [10, 11]. In this case, the system is reduced to a 

standard digital point to point link and, again, SCM is an interesting alternative 
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because it improves the tolerance to dispersion reaching longer transmission 

distances.  

2.1.1.5 Metro/Core Networks 

 Given a fixed bandwidth in a point-to-point link, SCM is an interesting 

solution as increasing the number of subcarriers reduces the bandwidth per 

subchannel and improves the tolerance to chromatic dispersion and fibre 

nonlinearities. For metro and core networks, many SCM experiments have proven 

the reliability of the technique in links of up to a few hundreds of kms using Direct 

Detection (DD) [12-14]. Furthermore, SCM has also proven to be powerful for 

mitigating fibre nonlinearities in coherent long-haul systems [15].    

2.1.2 Main Focus 

 The main focus of this thesis was described in section 1.5, but the key ideas 

are reviewed here to identify the state of the art over which this document builds up 

new functionalities and advances.  

2.1.2.1 Definition 

 The high-level context of this thesis is the design of broadband SCM electro-

optical transceivers that transmit digital data. Research on this topic is motivated by 

the following reasons. Firstly, electrical processing is preferred over all-optical 

processing due to the maturity and reliability of the electrical components with 

respect to the optical counterparts. In fact, industrial implementations follow the 

same principle and there is little evidence that this tendency will be reversed. 

Secondly, as long as higher speed electrical signals are required, there are more 

difficulties and impairments in the electrical circuits and fibre dispersion 

compensation becomes more difficult. SCM solves these problems by transmitting a 

number of subchannels with lower speed baseband signals. Although SCM requires 

more electrical components than single carrier solutions, low cost can still be 

guaranteed due to the current capabilities of integration of both digital and analogue 

components. 

 Once SCM has been selected, the possible implementations must be analysed 

in more detail. One key feature is the electrical processing and two options are 

viable, DSP and ASP. High speed DSP is more flexible and can be easily 

implemented in integrated semiconductor chips, but it translates into high power 

consumption and latency. Moreover, the necessity of costly high-speed DACs and 
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ADCs is unavoidable. In contrast, high-speed ASP potentially achieves lower power 

consumption and latency and can also make use of low cost integrated microwave 

circuits. With ASP, higher-speed processing can be achieved at practically no extra 

cost as DACs and ADCs are not required. The main disadvantage of ASP is its lack 

of flexibility in the sense that analogue reconfigurable equivalents of Central 

Processing Units (CPU) and Field Programmable Gate Arrays (FPGA) do not exist. 

Although this fact promotes and encourages the research in DSP applications, ASP is 

still a fundamental option that needs to be considered as an alternative for any 

solution. When any standard is defined for electro-optical transceivers, it is common 

that digital data rates are fixed or present a static maximum without the need for a 

dynamic reconfigurable implementation. ASP can be easily implemented for those 

cases and the disadvantage in the flexibility no longer exists. 

 Another key issue is the electro-optical conversion. The current necessity for 

high speed modulation of the optical carriers implies serious difficulties to the direct 

modulation of standard laser sources. For that reason, EML lasers that integrate 

electro absorption modulators are receiving a growing interest. However, they 

present the important limitation of not being able to generate OSSB signals, which 

are important to enhance the tolerance to chromatic dispersion and to allow a tight 

allocation of WDM optical channels. The evolution of silicon photonics will translate 

into the commercial availability of low cost optical modulators, possibly integrating 

both lasers and MZMs. This is the natural tendency for the following years and will 

give rise to inexpensive optical devices that can achieve broadband low cost 

SCM/OSSB electro-optical transceivers. 

 In summary, this thesis focuses on broadband SCM digital electro-optical 

transceivers based largely on ASP and capable of a colourless generation of OSSB 

signals by employing optical modulators. DD is preferred to guarantee the potential 

low cost of the proposed solutions. Finally, experiments are performed relying 

largely on off-the-shelf components and with real-time implementations that ensure 

the feasibility of the proposed ideas. Although the subsequent experiments and 

discussions will mostly focus on point-to-point links, the techniques presented in this 

thesis can be easily extended to point-to-multipoint topologies.             

2.1.2.2 State of the Art      

 With the defined focus, the initial state of the art is found in [12] and is 

illustrated in Figure 2.1. Four 2.5 Gbaud BPSK electrical subchannels were 
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transmitted in a SCM/OSSB configuration employing only analogue/microwave 

components, providing an overall real-time data rate of 10 Gbit/s. The high-

frequency electrical modulation and demodulation of the subchannels were 

performed with microwave mixers. The baseband signals at the input and output of 

the mixers were processed with microwave Low Pass Filters (LPF). The Local 

Oscillators (LO) that fed the mixers, usually referred to as subcarrier frequencies, 

were located at 3.6, 8.3, 13 and 18 GHz. The electrical subchannels were combined 

in the transmitter and replicated in the receiver using a microwave power 

combiner/splitter. The Hilbert Transform (HT) of the multiplexed FDM electrical 

signal at the transmitter was generated with a microwave 90º hybrid combiner and 

was required to achieve OSSB modulation. The OSSB signal was generated with a 

Dual-Drive MZM (DD-MZM) and optical carrier suppression was applied with an 

optical circuit at the output of the optical modulator. More details about carrier 

suppression and the generation of OSSB signals are provided below. EDFAs were 

used in the optical transmitter, and also in the receiver configuring a “pre-amplified 

optical receiver”. DD was performed employing a single photo-detector. 

 SCM is a vast topic where many experiments, more recent than [12], have 

been reported. However, the previous configuration has been selected as it is the one 

that most closely address the particular target of this work. Focusing on DD systems, 

higher modulation orders can be achieved. For instance, SCM/QPSK has been 

reported in [16], where direct modulation of a laser was performed obtaining ODSB, 

and in [17, 18], where only one electrical subchannel was transmitted. Moreover, 

SCM/16-QAM solutions have always been based on off-line DSP [19-21].     

 A testbed was designed and built to advance in the state of the art of real-time 

broadband SCM/OSSB optical links based on ASP. This testbed will be described in 

section 2.5. New features can be found with respect to the experiment described 

above [12]. Off-the-shelf mixers based on monolithic microwave integrated circuit 
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Figure 2.1 SCM/OSSB link with 4 BPSK subchannels based on a DD-MZM and ASP. 
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(MMIC) technology [22] were employed, proving the immediate feasibility and low 

cost of the proposed electrical solution. Standard mixers were substituted by IQ 

mixers, which can achieve a higher modulation order. An Optical IQ Modulator 

(OIQM) was employed instead of the DD-MZM as it presents the advantage of 

generating OSSB signals with carrier suppression without requiring additional 

components (see section 2.3). The use of OIQMs in broadband SCM/OSSB systems 

in thoroughly analysed in Chapter 3.     

2.2 Electrical Processing 

 This section explains the electrical processing that is found in SCM systems. 

The electrical (de)modulation is detailed and important implementation concepts are 

discussed.   

2.2.1 Modulation and Demodulation 

 Broadband SCM systems employ microwave FDM signals in the electrical 

domain. The generation of N subchannels is achieved by modulating N subcarriers 

located at fn (n=1,2..N) with baseband digital signals. Mathematically, the baseband 

streams that modulate the I and the Q components of the n
th

 subcarrier are denoted as 

bIn(t) and bQn(t) respectively. The temporal signal of the n
th

 subchannel sn(t) is: 

 

      cos(2 ) sin(2 ), 1,2,.. .n In n Qn ns t b t f t b t f t n N     (2.1) 

 

This is the general expression for a Quadrature Amplitude Modulation (QAM). The 

modulation order and the bitrate of every subchannel is determined by bIn(t) and 

bQn(t). In the simplest case, bIn(t) is a PAM2 signal (digital signal with 2 possible 

levels or symbols) and bQn(t)=0, such that a BPSK subchannel is obtained (two 

possible symbols). If both bIn(t) and bQn(t) are PAMM signals (M symbols), a QAM 

modulation is obtained (M
2 

symbols). For a rate of B bauds (symbols/s) in each 

baseband stream, the bit rate is R=Blog2M bit/s per stream and 2R per subchannel. 

The high-frequency content of bIn(t) and bQn(t) is usually removed with a LPF, 

limiting its bandwidth to B Hz, and the bandwidth of the RF signal sn(t) to 2B Hz. 

 Once all the subchannels are combined, the resultant FDM signal is: 
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The baseband streams bIn(t) and bQn(t) can be demodulated multiplying sn(t) with the 

subcarrier components and applying LPFs to eliminate the components at 2fn: 
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The same concept can be applied by multiplying the overall signal s(t) with the 

subcarrier frequencies (equivalent to Figure 2.1). After the multiplication, extra terms 

from the adjacent subchannels will be present at adjacent frequencies, but, again, 

they can be reduced or eliminated with the LPFs. Mathematically: 
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 (2.5) 

2.2.2 Implementation  

 From a practical perspective there are several important concepts to discuss. 

They are all illustrated in Figure 2.2 with a back to back FDM/BPSK example.  

 Firstly, it should be noted that the signals bIn(t) and bQn(t), and, consequently, 

sn(t) and s(t), should be AC signals. Any DC component would translate into a 

change in the bias point of the laser or the optical modulator, as it can be concluded 

from eqs. (1.3) and (1.9). Apart from that, filtering bIn(t) and bQn(t) softens the 

steepness in their transitions, but also reduces the bandwidth allowing a closer 

frequency allocation of subchannels. 
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 Secondly, the implementation of the FDM (de)modulation can be based on 

DSP or ASP. In the DSP case the filters and the (de)modulation are performed with 

digital multiplications of samples. The ADC and DAC need to present a processing 

rate higher than the highest frequencies of the overall signal s(t). In the analogue 

case, the LPFs are typically implemented with microwave lumped components. The 

multiplications are approximated with nonlinear devices, referred to as mixers [23]. 

To modulate, the baseband or Intermediate Frequency (IF) signal is mixed with the 

Local Oscillator (LO) to get an RF output. Demodulation consists of the opposite 

process, the RF signal is mixed with the LO recovering the baseband or the IF data. 

Every mixer needs to present good amplitude and group delay performance inside 

the bandwidth of the RF and IF signals. A detailed explanation of the IQ mixers 

employed in this work is provided in section 2.5.1.  

 Finally, in the presented example the subcarriers in the receiver are phase and 

frequency locked to the incoming subchannels sn(t). Often, this synchronization is 

achieved by employing the same LOs in the transmitter and the receiver and by using 

phase shifters to perform the fine phase adjustment [16]. For more practical 

applications, automatic synchronization is required and Phase Locked Loops (PLL) 

must be employed [17]. A more detailed discussion on this topic will be provided in 

Chapter 5.      

t
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Figure 2.2 Ideal back-to-back FDM/BPSK scheme consisting of N subcarriers. 
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2.3 Optical Processing 

 Two main optical processes are involved in the generation of SCM signals: 

optical carrier suppression and OSSB modulation. Both are described below. 

2.3.1 Carrier Suppression 

 The context of this discussion is the optimisation of DD systems, where the 

optical carrier is necessary to perform the mixing with the desired signal in the 

photo-detector. Thus, in this document, the terminology “carrier suppression” 

implies “partial” carrier suppression, in contrast with coherent systems where full 

carrier suppression is often desired [24]. 

2.3.1.1 Relevance 

 Optical carrier suppression is important because it can achieve lower 

sensitivities in DD systems. The sensitivity is defined as the minimum average 

optical power Pavg at the input of the optical receiver that is required to meet a level 

of performance. The average power of an optical signal is equal to the sum of the 

power of all its frequency components. Considering a photodetector with 

responsivity equal to 1, the Pavg of an optical signal would be the average or DC 

value of the detected photo-current. 

 The following analysis is carried out with an OSSB signal for simplicity, but 

the same conclusions would be obtained employing ODSB. The electric field of an 

SCM/OSSB signal generated with N subcarriers of equal power located at electrical 

frequencies Ωn rad/s (n=1, 2…N) can be expressed as: 

 

         
1

cos cos ,
N

c c c s n c n n

n

E t E t E b t t    


      (2.6) 

 

where Ec is the amplitude of the optical carrier, Es is the amplitude of the subcarriers, 

θc and θn are arbitrary phases, bn(t) represents AC binary sequences with amplitude 1 

and ζ is the power suppression factor, as explained below. When MZMs are 

employed, there is a constant relation Es =mEc determined by the level of the 

electrical signal that drives the MZM and its Vπ [12]. Besides, the condition Es<<Ec 

occurs, as the modulating signal is small to reduce the nonlinearities caused by the 

modulator. With these conditions, the associated photocurrent I(t) and Pavg are:  



2. Subcarrier Multiplexing 

56 

 

      2 2

1

cos .
2

N

c c n n n c

n

I t E mE b t t


  


      (2.7) 

 2.
2

avg DC cP I E


   (2.8) 

 

It becomes clear that the term ζ, in the range 0≤ζ≤1, determines the power 

suppression of the optical carrier. I(t) can be rewritten as: 
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N

avg n n n c

n

m
I t P b t t  

 

 
      

 
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The previous equation shows that, for a given value of Pavg, higher signal values are 

obtained when higher levels of carrier suppression (lower ζ) are applied. This 

procedure present limits, which are explained in the following subsection.  

 The relevance of carrier suppression can be stated from different perspectives. 

Firstly, the optical carrier represents the main percentage of the power of the signal 

but does not contain any information. Consequently, when the carrier is partially 

suppressed, the same information can be potentially transmitted with a lower average 

power. Secondly, optical amplifiers saturate with a determined output power. If the 

optical carrier is partially suppressed, higher power will be obtained in the desired 

signal at the output of the amplifier. Finally, in the receiver, a lower average power is 

necessary to receive the required level of the desired signal, which translates into a 

better (lower) sensitivity.     

2.3.1.2 Implementation and Impairments 

 Carrier suppression consists of reducing the amplitude of the optical carrier 

with respect to the level of the subchannels. There are two methods to implement 

carrier suppression. The first one employs an optical filter to reduce the amplitude of 

the optical carrier after the modulation [12]. Sometimes the same filter is used to 

produce both carrier suppression and OSSB generation from a ODSB signal [25]. 

The other alternative relies on biasing the optical modulator closer to the null point, 

technique often referred to as low biasing of the MZM [26, 27]. Both techniques 

have consequences in the photo-detected signal, as explained below.  
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  When carrier suppression is implemented by filtering a modulated optical 

signal, increased Intermodulation Products (IMP) will be produced in the received 

photo-current [28]. The effects of partial carrier suppression in the temporal and 

spectral shapes of the electric field are illustrated in an example in Figure 2.3. When 

the level of the optical carrier is reduced, the average value of the temporal signal 

also reduces, but the shape of the envelope remains. However, the squared envelope 

obtained by photo-detection would be distorted with respect to the original and 

desired one (note that the shape of the function y=x
2
 around two different DC values 

xo1 and xo2 changes). As a consequence, the optimum sensitivity is the result of a 

trade-off between the carrier suppression and the induced nonlinearities [28]. When 

the level of the carrier suppression is very high, a phenomenon known as clipping 

occurs. It is the result of the envelope attempting to cross the zero value, such that 

the associated distortion is more severe, as it can also be seen in Figure 2.3.  

 When biasing a MZM, from Figure 1.9 it is evident that the closer to the null 

point the bias is, the lower the optical carrier results and the more nonlinear the 

 

Figure 2.3 Temporal and spectral examples of carrier suppression and clipping. 
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transfer function of the intensity becomes. As a consequence, the best sensitivity in 

the receiver is achieved as a trade-off between the carrier suppression and the 

nonlinearities introduced by the optical modulator [26]. The carrier suppression 

depends only on the bias point, but the nonlinearities depend on both the bias point 

and the amplitude of the electrical signal driving the MZM, the Optical Modulation 

Index (OMI) [29]. Biasing closer to the null increases second order IMPs while 

higher OMIs translate into higher third-order IMPs [29]. These concepts will be 

explained in more detail and particularised for optical IQ modulators in Chapter 3. 

2.3.2 Single Side Band  

 When an FDM signal is used to modulate a laser directly or with a MZM, as 

explained in sections 1.3.1 and 1.3.2, an ODSB spectrum is generated. Filters can be 

used to remove one sideband generating an OSSB signal [25], but that method 

requires optical components with an accurate transfer function. For that reason, an 

OSSB generation produced with optical modulators and lacking external components 

 

Figure 2.4 Examples of FDM and associated SCM/ODSB and SCM/OSSB spectra. 
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can be described as colourless. Figure 2.4 shows an FDM electrical spectrum with its 

associated SCM/ODSB and SCM/OSSB optical spectra. OSSB can be achieved 

suppressing either of the two sidebands. The Sideband Suppression Ratio (SSR) 

determines the quality of the OSSB generation. Imperfect SSR is a consequence of 

non-ideal behaviour of optical filters and optical modulators.   

 This section firstly emphasizes the relevance of SCM/OSSB signals. The 

theory of SSB modulation is then developed to prove that two optical modulators, 

DD-MZMs and OIQMs, achieve a colourless OSSB generation. It will also be shown 

that only OIQMs can provide OSSB and carrier suppression simultaneously.   

2.3.2.1 Relevance 

 SCM/OSSB signals are relevant for two important reasons. Firstly, an 

additional spectral bandwidth is gained due to the suppressed sideband. This 

bandwidth can be occupied by another optical channel achieving WDM 

configurations with improved spectral efficiency. Secondly, SCM/ODSB signals 

experience an impairment known as dispersive fading. Its associated spectrum 

presents two sidebands, one on each side of the optical carrier frequency. When such 

a signal propagates over fibre, complementary frequencies (ωc+Ω, ωc-Ω) experience 

a relative phase shift induced by dispersion. During the photo-detection in the 

receiver, the complimentary frequencies are combined and, depending on the 

induced phase shift, the combination can be constructive or destructive. In contrast, 

due to the presence of only one sideband per subcarrier, SCM/OSSB does not present 

dispersive fading achieving longer transmission distances [30].  

 For an electrical subcarrier of frequency fs transmitted on an optical carrier λc 

in an ODSB configuration, the photocurrent recovered after propagation in a fibre of 

length L and dispersion D is: 
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A subcarrier of 10 GHz propagating on SSMF (λc=1550nm, D=17ps/(nm∙km)) would 

present a first fading null at ≈37 km. Eq. (2.10) can be calculated studying the 

propagation over fibre of the temporal tones [31, 32], the complex envelope [33], or 

with Fourier analysis [34]. If the same subcarrier is transmitted in an OSSB 
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configuration, dispersion translates only into a phase shift whose sign depends on 

which sideband is suppressed [34]:   
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2.3.2.2 Colourless Generation 

 Any component or subcarrier of a signal located at a frequency Ωs can 

modulate a higher frequency carrier at ωc generating a SSB spectrum. This procedure 

is illustrated for a single tone in Figure 2.5 showing all the involved spectra.  First of 

all, to generate the SSB version of a signal it is necessary to obtain its Hilbert 

Transform (HT) pair, which is the original signal with all its frequency components 

shifted 90 degrees. The original signal plus the HT pair are employed to perform an 

amplitude modulation (AM) of two carriers located at the same frequency but with a 

relative phase shift of 90 degrees. The resultant high frequency signals are then 

combined, obtaining upper side band (USB) or lower side band (LSB) depending on 

the sign of the combination. In the depicted example it can be concluded that the 

following is a SSB signal: 
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π/2 
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Sin(ωct)
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Figure 2.5 Single side band generation. 
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 ( ) (1 cos( ))cos( ) (1 sin( ))sin( ).SSB s c s cx t t t t t        (2.12) 

 

 The previous procedure can be generalized for any AC signal s(t). 

Considering HT[s(t)]=ŝ(t), the resultant SSB signal would be: 

 

        ( ) 1 cos 1 sin( ).SSB c cs t s t t s t t      (2.13) 

 

 The colourless generation of a SCM/OSSB signal is equivalent to the 

procedure described above. The FDM signals s(t) and ŝ(t) consist of electrical 

frequency components (Ω) that must modulate a higher frequency optical carrier 

(ωc). Note that the analysis has been carried out maintaining the unmodulated carrier 

at ωc in the resultant signal, as required for DD systems. Next, it is proved that DD-

MZMs and OIQMs produce colourless OSSB modulation. 

2.3.2.3 Dual-Drive MZM 

 A DD-MZM is shown in Figure 2.6. It presents a structure similar to a 

standard MZM. The key difference is that each arm of the MZM can be driven by a 

different signal. It will be shown that this device can produce colourless OSSB 

modulation. 

 Two electrical FDM signals, s(t) and its HT ŝ(t), must be the result of the 

electrical processing. The electrodes of the DD-MZM can be driven such that 

V1(t)=Vb+s(t) and V2(t)=ŝ(t). The DC voltage Vb is selected to bias the device at 

quadrature by introducing a phase shift equal to –π/2 rad. Being Ei∙cos(ωct) the 

electric field at the input of a device with half-wave voltage Vπ, the output signal is:    
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Figure 2.6 Dual-Drive MZM. 
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Applying the equalities cos(u+v)=cos(u)cos(v)-sin(u)sin(v), sin(x)=cos(x–π/2),          

-cos(x)=sin(x–π/2), cos(-x)=cos(x) and sin(-x)=-sin(x); and after some 

manipulations, the previous equation becomes: 
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 (2.15) 

 

If the peak amplitude of s(t) and ŝ(t) is very small in comparison with Vπ, and 

considering cos(x)≈1 and sin(x)≈x for small values of x, the final result is: 
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 (2.16) 

 

Comparing with eq. (2.13), it is evident that Eo(t) is an OSSB signal. It is also clear 

that DD-MZMs cannot generate OSSB and carrier suppression simultaneously, so 

that external optical filters would be necessary. The higher the peak amplitudes of 

s(t) and ŝ(t) are, the higher the nonlinearities in the output. For this particular case, a 

simple analysis of the nonlinear distortion can be found in [12]. More comprehensive 

analysis providing the distortion in the final photocurrent are provided in [35] and 

also in [28] including carrier suppression. 

2.3.2.4 Optical IQ Modulator 

 An OIQM is illustrated in Figure 2.7. It is composed of two parallel MZMs, 

labelled MZMI and MZMQ, plus a third one, labelled MZMO, which combines the 

two electrical fields coming from the parallel ones with the required phase 

difference. A mathematical analysis equivalent to the previous subsection will be 

developed.  

 The original FDM signal and its HT, s(t) and ŝ(t), drive the MZMI and MZMQ 

respectively. Both parallel MZMs will be biased at the same point such that      

VI(t)=-Vb+s(t) and VQ(t)=-Vb+ŝ(t). Without losing generality, the electric field is 
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cos( 4)i cE t    at the input of the OIQM, and ( 2) cos( 4)i cE t    at the 

input of the parallel MZMs (assuming equal 3dB power splitting). From eq. (1.7), the 

output of these MZMs considering a half-wave voltage Vπ is: 
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 (2.17) 

 

The function of the MZMO is to provide a relative 90 degrees phase shift to the 

outputs of MZMI and MZMQ (ϕo=+π/4, -ϕo=-π/4) and, consequently, is biased at 

quadrature. With that condition, the electric field at the output of the OIQM can be 

written as: 
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Using cos(u-v)=cos(u)cos(v)+sin(u)sin(v), the previous equation can be rewritten as: 
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Figure 2.7 Optical IQ Modulator. 
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If the peak amplitude of s(t) and ŝ(t) is small in comparison with Vπ, and applying 

cos(x)=1 and sin(x)=x for small values of x: 
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 (2.20) 

 

 Comparing the expression with eq. (2.13) it is clear that Eo(t) is indeed an 

OSSB signal. Unlike the DD-MZM, the OIQM achieves OSSB and carrier 

suppression simultaneously as the bias voltage Vb changes the amplitude relation 

between the desired signal and the optical carrier. If the parallel MZMs are biased at 

quadrature (Vb/Vπ=n+0.5), both the optical carrier and the signal are present at the 

output. However, it they are biased at null (Vb/Vπ=2n+1), the optical carrier is totally 

suppressed while the signal is still present. With higher peak values of s(t) and ŝ(t), 

the approximation realized is less accurate and more nonlinear distortion appears. 

Observing the transfer function of a MZM (see Figure 1.9) it is also clear that, for 

DD systems, the closer to null the bias point is, the higher the nonlinearities are in 

the detected photocurrent. It can be concluded that as long as the bias point moves 

from quadrature to null, the carrier suppression improves and the nonlinear distortion 

worsens, generating a trade-off in the sensitivity of the system. This trade-off will be 

thoroughly analysed in Chapter 3.   

2.4 Tolerance to Impairments 

 This section analyses the tolerance to impairments in SCM systems. Firstly, 

the distortion introduced by fibre transmission is explained. Secondly, the 

performance of the system is studied as a function of the sources of noise.  
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2.4.1 Fibre Distortion 

2.4.1.1 Chromatic Dispersion 

 SCM divides a given optical bandwidth into a number of narrower bands 

occupied by optical subchannels. Intuitively, it can be deduced that SCM is more 

tolerant to chromatic dispersion than single channel or TDM solutions. On the one 

hand, every subchannel presents a narrower bandwidth and, additionally, the 

baseband signals are slower and more robust against impairments. This section 

mathematically quantifies this enhanced tolerance. 

 Due to chromatic dispersion, and from eq. (1.12), the temporal pulse 

broadening of an electrical digital signal of baseband bandwidth Δf, after propagation 

over a SMF fibre of length L and chromatic dispersion D at a centre wavelength λc is: 
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Where the following approximation has been done as the optical frequencies (fc+Δf 

and fc-Δf) are much higher than electrical frequencies (Δf): 
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Note that the optical bandwidth is two times the baseband electrical bandwidth. The 

maximum allowed temporal broadening of a pulse can be defined as a proportion of 

the bit (or symbol) time ɛ, such that ɛ=1 means a pulse broadening equal to one bit 

(or symbol) time Tb. Considering transmission of NRZ square pulses where the 

bandwidth Δf is given by the first lobe of the associated sinc spectra: 
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 The spectral comparison between the single channel and the SCM case is 

illustrated in Figure 2.8. A single channel optical spectrum for a PAM2 NRZ digital 

signal of B Gbit/s can be observed on the left, occupying a bandwidth of 2B GHz. 

The complementary SCM/OSSB spectrum is shown on the right. To present the same 
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spectral efficiency, the modulation order of the N SCM subchannels must be BPSK 

with a symbol rate B/N. To calculate the limits of every subchannel, eq. (2.23) can be 

extended using Δf=B/N where N=1 represents the single channel case and N>1 is 

valid for SCM with N subcarriers: 
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 It can be concluded that in SCM systems, the tolerance to dispersion is 

increased by N
2
 compared to conventional single channel transmission. Some 

standards have defined ɛ=0.306 to obtain maximum power penalties of 1 dB due to 

dispersion [36]. For a 10 Gbit/s transmission at λc 1550 nm and over SSMF with 

D=17 ps/(nm∙km), the single channel case would be limited by L<11.2 km while four 

SCM subchannels would achieve a distance 16 times longer with the same penalty. 

With higher modulation orders like PAM4 in the baseband, ɛ would be lower due to 

the reduced tolerance to intersymbol interference.        

2.4.1.2 Polarization Mode Dispersion 

 The propagation of an SCM/OSSB signal over fibre is also affected by PMD. 

The penalty can be quantified by temporal analysis. For simplicity, the transmission 

of an optical carrier at ωc plus one subcarrier at ωc+Ω is considered. Equal power 

transfer between two orthogonal states of polarization (X and Y) is assumed. The Y 

axis is usually referred to as the fast axis. If there is a delay τ due to the propagation 

in the slow X axis, the received electric fields can be written as: 

 

Figure 2.8 Single channel and SCM/OSSB spectra with the same optical bandwidth. 
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In the receiver there are two contributions in the photo-current. Neglecting the DC 

components: 
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It can be concluded that PMD translates into a fading of the subchannel. The same 

result can be obtained with frequency domain analysis [12]. As an example, for a 

subcarrier at Ω=10 GHz, a power penalty of 1 dB in the receiver corresponds with 

τ≈15 ps. For SSMF, PMD is <0.5 ps/km
0.5

 and, consequently, such a penalty would 

be the result of a transmission over at least 900 km. Thus, PMD is meaningful for 

SCM/OSSB signals only in long-haul systems.  

2.4.1.3 Nonlinearities 

 SCM transmission over long distances, in configurations with a number of 

fibre spans and optical amplifiers, is also distorted by the nonlinear Kerr effect. As 

explained in section 1.3.3.3, this nonlinearity is the result of changes in the refractive 

index of the fibre due to variations in the optical intensity. Assuming a fixed power 

in the optical channel, SPM depends on the optical power per subchannel so that 

SPM decreases with a higher number of subcarriers N. Similarly, for a given 

bandwidth, a higher value of N translates into lower XPM, but the higher number of 

intermodulation products makes FWM dominant [12]. The experiments conducted 

for this thesis consisted of one fibre span and were mostly focused on short distance 

links. Consequently, Kerr nonlinear fibre effects could be largely neglected.   

 Another relevant impairment is chromatic dispersion induced nonlinearity. In 

an ideal DD configuration, the optical carrier is modulated in such a way that the 

desired FDM signal would be perfectly recovered squaring the envelope of the 

electrical field. The last statement means that the envelope of the electrical field 

includes desired and undesired frequency components that, after photo-detection, 
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give rise to the desired FDM signal at the same time that the undesired terms cancel 

out. Due to chromatic dispersion, all the frequency components in the electrical field 

suffer different delays. This walk-off between components means that the 

cancelation of undesired terms is not perfect any more, which translates into 

unwanted nonlinear terms in the photo-detected signal. Consequently, as the optical 

modulator is a source of nonlinearities itself, transmission over fibre enhances its 

nonlinear performance. These effects have been thoroughly studied for SCM/OSSB 

transmission based on DD-MZMs in [28, 35]. Their impact on the system depends on 

the level and the number of subchannels, but they usually begin to be meaningful at 

tens of kms [28, 35].    

2.4.2 Noise 

 Noise is a key impairment for any communication scheme. Accordingly, the 

performance of an optical transmission system largely depends on the accumulated 

noise. The two parameters that are typically employed to measure performance are 

the Carrier to Noise Ratio (CNR) and the Q value, which is related to the Bit Error 

Rate (BER). The theoretical calculation of those terms will be particularised for the 

generic SCM scheme based on a pre-amplified receiver illustrated in Figure 2.9. 

2.4.2.1 Carrier to Noise Ratio 

 From the detected photo-current of the system, the CNR measures the power 

ratio between a subchannel and the accumulated noise in the bandwidth of that 

subchannel. 

  The average photocurrent Iavg is equal to R∙PPD, where R and PPD represent 

the responsivity and the average optical power at the input of the photo-diode 

Optical
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Figure 2.9 SCM scheme with pre-amplified receiver showing the sources of noise. 
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respectively.  The amplitude of one subchannel, Is, depends on the electrical driving 

level of the optical modulator [12] and is proportional to Iavg, such that Is=m∙Iavg. 

Finally, as the subchannel is modulated on a subcarrier, the mean square current is: 
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 Photo-detected noise has its origin in several sources that will be described 

individually. The intensity at the output of a laser presents relative fluctuations, RIN, 

which translate into noise in DD systems. For data with a baseband bandwidth B, (2B 

in the RF spectrum), the associated photo-detected mean square current is [37]: 

 

 2 2 2 .RIN avgI I RIN B    (2.28) 

 

 The next source of noise is given by the Non Linear Distortion (NLD) 

generated by the optical modulator (<I
2

NLD>). This noise is proportional to the 

electrical driving level or m. There is a trade-off as a higher m increases the power of 

the desired signal <Is
2
>, but also translates into higher <I

2
NLD> [29]. This term should 

also include the fibre induced nonlinearities explained in section 2.4.1.3 if they were 

meaningful.  

 The EDFA produces optical noise known as Amplified Spontaneous 

Emission (ASE). It is a consequence of photons that are generated by spontaneous 

emission and amplified inside the EDFA. In the photo-current, there are two 

contributions due to ASE. On the one hand the ASE beats with itself producing 

spontaneous-spontaneous beat noise. On the other hand, the ASE beats with the 

desired signal generating signal-spontaneous beat noise. This second contribution is 

the dominant noise in a pre-amplified receiver and can be expressed as [12]: 

 

  2 22 1ASE INI R P Fh G G B   (2.29) 

 

where F is the noise figure of the EDFA, h is the Planck´s constant, v is the 

frequency of the optical carrier, G is the gain of the EDFA and PIN is the average 

optical power at the input. Note that PPD=G∙ PIN. 
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 The photo-diode itself is also a source of noise. Shot noise is a quantum effect 

related with the discreteness of photons as explained next. A photo-detector presents 

a constant probability of absorption of photons. A probability is in reality a long term 

average but, on the short term, the distribution of absorptions can vary with time. 

This non-uniformity is what produces shot noise and can be quantified as [37]:   

 

  2 2 2shot avg dI q I I B   (2.30) 

 

where q is the elementary charge and Id is the dark current of the photo-diode. Id is a 

consequence of the random generation of electrons and holes within the depletion 

area of the photo-diode. As a result, a constant current is produced even in the 

absence of incoming photons.  

 Finally, the resistive load RL inside the photo-receiver is also a source of 

thermal noise. This noise is a consequence of the thermal agitation of the charged 

carriers within an electrical conductor. The mean square current is [37]: 
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where k is the Boltzmann constant and T is the temperature. In this case, the load 

resistance RL must be taken into account to ensure the result is consistent with the 

units in the previous values (A
2
).   

 Thus, the total CNR can be calculated summing all the contributions of noise 

[38] or as a function of individual CNRs:  
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 1 1 1 1 1 1 1 1 .RIN NLD ASE shot th NLD ASECNR CNR CNR CNR CNR CNR CNR CNR               (2.33) 

 

As reflected in the previous equalities, the noise in pre-amplified receivers is usually 

dominated by the ASE. This is illustrated in Figure 2.10 showing the noise powers 
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obtained in a realistic broadband SCM configuration. The EDFA must ensure a 

constant output power PPD regardless of the input level PIN, so that the gain and the 

ASE are higher for lower values of PIN. In the example, the noise from the EDFA is 

at least 10 dB higher than any other contribution. Apart from ASE, the NLD tends to 

be meaningful as the electrical driving of the modulator is increased as much as 

possible in order to reduce the sensitivity in the receiver. The CNRNLD for a MZM 

can be found in [29], for a DD-MZM in [28, 35], and for an OIQM in Chapter 3.       

2.4.2.2 Q value 

 The quality of a digital communication system can be measured with the 

BER. The higher the noise in the received signal is, the more difficult it is to discern 

bits giving rise to higher BER. Thus, the quality of the system can also be determined 

by the relation between signal and noise levels. The Q value performs such 

comparison by a Gaussian approximation of the noise. For a received signal in which 

I0 and I1 represent the amplitude of the associated photo-currents for ‘0’ and ‘1’, both 

cases under the influence of noise current with mean square value σ
2
, the Q value is 

defined as [39]: 
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2
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


  (2.34) 

 

 
Figure 2.10 Noise power (<Ii

2
>∙RL) in a pre-amplified SCM system with parameters: 

R=0.7, PPD=3 dBm, B=1.35 GHz, RIN=-155 dB/Hz, F=5 dB, λ=1550nm, Id=100nA, 

T=300ºK, RL=50 ohm. 
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 From the previous subsection, the amplitude of the received photocurrent for 

one subchannel is denoted Is. Therefore, the photo-current for ‘1’ and ‘0’ in a BPSK 

subchannel at the electrical subcarrier Ω would be: 
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And the associated Q value: 
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In a QPSK subchannel there are four possible combinations: 
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With the previous equations, it becomes clear that for a received subchannel 

amplitude of Is, the associated baseband ‘1’ and ‘0’ amplitudes for the in-phase and 

quadrature components are / 2sI and / 2sI . Therefore: 
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 Under a Gaussian approximation, the individual contributions of noise 

calculated in the previous subsection become <Ii
2
>= σi

2
, and assuming that all the 

sources of noise are uncorrelated, the total mean square current becomes 2 2.i

i

   

 Finally, the relation between the Q factor and the BER is given by [39]: 
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2.5 Experimental SCM Scheme 

This section details the experimental SCM link that was designed and built to 

accomplish the developments presented in this work. The section is organised as 

follows. Firstly, the performance of the key microwave components, namely the IQ 

mixers, is discussed. Secondly, the full electrical configuration is described. Finally, 

the electro-optical scheme is presented showing initial results. This setup is the base 

scheme for the measurements and more advanced configurations demonstrated in the 

upcoming chapters.    

2.5.1 MMIC IQ Mixers 

With the focus on ASP, microwave mixers become the key electrical 

components. These devices perform the modulation/demodulation of the 

subcarriers/subchannels and are the equivalent of multipliers in DSP systems. 

Previous SCM schemes have mostly used discrete non-integrated microwave mixers 

[12] and IQ mixers [16-18, 40]. Integrated MMIC mixers were firstly proposed as an 

option to transmit a control channel along with baseband information [41]. This 

section presents a setup that employs MMIC IQ mixers for the design of an SCM 

link consisting on five QPSK subchannels.  

An IQ mixer is a passive device composed of two standard mixers. Figure 

2.11 illustrates the schematic of a generic MMIC IQ mixer commercially available 

from “Hittite Microwave”. These devices can act as modulators or demodulators of 
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QAM subchannels. When performing a modulation, the IF1 and IF2 pins are the 

baseband I and Q inputs while the RF pin is an output. The signals flow in the 

opposite direction in the case of a demodulation. In both cases an incoming LO is 

passed through a hybrid coupler to create two LOs with a relative phase shift equal to 

90 degrees. Each of these LOs feeds a different mixer allowing the IQ 

(de)modulation. Sometimes these devices present amplifiers in the RF path, 

becoming unidirectional, and are then referred to as IQ transmitters (Figure 2.12(a)) 

or IQ receivers (Figure 2.12(b)). For simplicity, during the following chapters, the 

term IQ mixer will be employed regardless of the presence or absence of additional 

amplifiers.  

2.5.1.1 Frequency Plan 

The MMIC IQ mixers were selected to implement the desired FDM signal. 

Baseband streams with a rate of 1.35 and 2.7 Gbaud were employed during the 

experiments. For several reasons that will be explained during the following 

chapters, the subchannels were located at harmonics of the data rate. Namely, five 

subchannels located at 2.7k GHz (2≤k≤6) were employed. This frequency plan 

represents a realistic trade-off that gives rise to a feasible industrial implementation. 

A low number of subchannels would translate into a high baseband data rate, and a 

more demanding requirement of performance from the IQ mixers. In contrast, a high 

number of subchannels would translate into too many components. 

 
Figure 2.11: Typical schematic of an integrated IQ mixer from Hittite Microwave. 
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Commercially available inexpensive MMIC IQ mixers from Hittite 

Microwave were used. With the wide range of frequencies required (≈2-20 GHz), 

Hittite Microwave was the only provider covering approximately the bandwidth of 

every subchannel with different MMIC IQ mixers. IQ transmitters and IQ receivers 

were developed combining MMIC IQ mixers and MMIC amplifiers. For every 

subchannel, the same model of IQ mixer was employed in both the transmitter and 

the receiver. Table 2-1 shows the part numbers of all the devices employed, 

including IQ mixers and amplifiers. It also compares the bandwidth requirement of 

every subchannel, for a baseband rate of 2.7 Gbaud, with the bandwidth specified by 

the manufacturer for the IQ mixer. The amplifiers are designed to present good 

performance with broadband signals, so that the IQ mixers are the main source of 

impairments. The next subsection discusses the suitability of the IQ mixers showing 

measurements that assess their performance when dealing with broadband signals.    

2.5.1.2 Amplitude Response and Group Delay 

MMIC mixers are designed for different applications like point to point and 

point to multipoint radio communications, test equipment, satellite communications 

and military use. In general, in all those applications, the bandwidth of baseband data 

is quite low when compared with the traditional rates of high-speed optical 

(a) (b)
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RF
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Amplifier
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Figure 2.12 (a) IQ Transmitter (IQ_TX) and (b) IQ Receiver (IQ_RX) 

 

Table 2-1 Bandwidth requirement and IQ mixer specification for every subchannel. 

Reference of components employed in the IQ transmitters and IQ receivers. 

Band 
LO 

(GHz) 

Bandwidth 

(GHz) 

IQ mixer 

Reference 

IQ mixer 

Specs. (GHz) 

RF Amplifier 

Reference 

LO Amplifier 

Reference 

1 5.4  2.7-8.1 HMC620 3-7 HMC464 HMC407 

2 8.1 5.4-10.8 HMC520 6-10 HMC451 HMC441 

3 10.8 8.1-13.5 HMC521 8.5-13.5 HMC451 HMC441 

4 13.5 10.8-16.2 HMC522 11-16 HMC451 HMC441 

5 16.2 13.5-18.9 HMC523 15-23 HMC451 HMC441 
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communications. The ratio between the carrier frequency and the modulation 

bandwidth of traditional radio links can be in the range of 100 – 1000. However, in 

optical systems like the one presented in this work, this ratio is much lower, in the 

range of 2 – 6. Consequently, although these mixers can have a wide range of radio 

frequencies at which they can work, they are not optimized for broadband data 

communications. This is a known issue that has been pointed out in other 

independent works in the field [42]. This subsection shows measurements of 

performance in terms of amplitude response and group delay for the selected family 

of MMIC IQ mixers.    

The evaluation was carried out with the scheme presented in Figure 2.13. An 

IQ transmitter and an IQ receiver were cascaded to modulate and demodulate a 

subchannel with an IF tone coming from the network analyser. An attenuator was 

introduced at the output of the IQ transmitter to ensure the RF amplifier of the IQ 

receiver worked in the linear region. Extra LPFs were used at the output of the IQ 

receiver to suppress the LO leakage and the components that can appear at twice the 

electrical subcarrier frequency. The effect of the LPF in the measured bandwidth was 

calibrated out with the network analyser. A synthesizer generated the LO which was 

split to feed the modulator and the demodulator. The LO of the later was phase 

shifted to ensure phase locking to the input signal. For every subchannel, the 

frequency of the LO and the employed IQ mixers were the ones defined in Table 2-1. 

The described configuration characterizes the combined behaviour of one IQ 

transmitter and one IQ receiver in the complete process of modulation-demodulation. 

Ideally, perfectly flat amplitude and group delay responses are desired in the 

measured S-parameter S21(f) for all the baseband frequencies (≤ 2.7 GHz).      
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Figure 2.13 Setup for IQ mixer characterization with network analyser. 
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The characterization is depicted showing the normalised amplitude response 

(Figure 2.14) and the group delay response (Figure 2.15) measured for the five 

subchannels. The best performance is obtained in subchannel 3, where there is an 

almost perfect match between the desired and the specified bandwidth. Equivalently, 

the worst performance occurs at subchannel 5, as the bandwidth requirement presents 

a bandwidth of 1.5 GHz out of the specification of the mixers. Focusing now on the 

second frequency band, a transmission of 2 Gbaud would present a practically 

perfect match within the specification of the mixers (6-10 GHz). However, in such 

transmission there would be an amplitude ripple of around 1.5 dB and a group delay 

ripple of around 160 ps, not negligible for a bit period of 500 ps, which would 

translate into considerable inter symbol interference. These results confirm that these 

devices are not optimized for the transmission of broadband data and, as a 

consequence, it can be difficult to achieve high modulation orders. This concept is 

discussed with experimental results in the next subsection.     

 

Figure 2.14 Overall amplitude response measured for the five subchannels. 
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2.5.1.3 High Modulation Order 

Broadband SCM transmission with 16-QAM subchannels has always relied 

on DSP [19-21]. The MMIC IQ mixers were evaluated to verify if their 

specifications could be stretched to obtain reliable 16 QAM transmission with the 

highest required data rates (≈2.7 Gbaud). The setup employed in these experiments is 

illustrated in Figure 2.16. The outputs of a digital data generator were filtered with 

LPFs to limit the sinc spectrum of the generated square signals to the first lobe of the 

 

Figure 2.15 Overall group delay response measured for the five subchannels. 
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Figure 2.16 Setup for IQ mixer characterization with digital sampling scope. 
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sinc. These digital signals were fed to the baseband inputs of the IQ transmitter. Its 

output was attenuated to adapt its power to the input of the IQ receiver. The outputs 

of the demodulator were filtered with LPFs to remove high frequency components 

and any leakage coming from the LO. The LOs had the same origin so that frequency 

locking was guaranteed and phase locking was achieved with a variable phase shifter 

in the receiver. A digital scope was used to visualize the eye diagrams of the received 

signals.  

The behaviour of any mixer depends on the data rate, the modulation order 

and the length of the digital pattern, as longer sequences will have more spectral 

content that will be affected by group delay ripple more severely. The results 

obtained with the devices of the second subchannel will be analysed. As these IQ 

mixers present an overall 3 dB loss at 2.4 GHz, a baseband data rate of 2.5 Gbit/s 

was attempted, with a 16-QAM modulation at a subcarrier frequency of 8.1 GHz. 

The 16-QAM subchannel was achieved transmitting the PAM4 baseband signals that 

can be observed in Figure 2.17(a).  Using data locked to the LO and a short pattern 

(127 bits), the received eye diagram was really poor for both the I and Q components 

as it can be observed in Figure 2.17(b). This result confirms that amplitude distortion 

and a group delay ripple comparable with the bit period severely penalises the 

performance at high modulation orders. Note that additional impairments would be 

added due to an optical transmission. 

 

 

 

Figure 2.17 Transmitted (a) and received (b) I and Q data for a 2.5 Gbaud 16 QAM 

modulation and demodulation performed with the IQ mixer HMC520 at 8.1 GHz. 
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More experiments were conducted with several combinations of mixers, not 

only MMIC, working as modulators and demodulators.  In a few cases, ensuring the 

RF signal was within the limits of the bandwidth specification and using short 

patterns, it was possible to achieve good quality with 16-QAM subchannels at rates 

around 1.25 Gbaud. However, for the design of an SCM link consisting of several 

subchannels, it is difficult to find off-the-shelf devices with a perfect frequency range 

match and with amplitude and group delay characteristics that can give rise to 

reliable performance at 16-QAM. For that reason the experiments performed in this 

work were conducted with QPSK modulation. Accordingly, some eye diagrams 

obtained with QPSK subchannels will be shown below. In general, the QPSK 

modulation is not a limitation in the sense that the relevance of the ideas and studies 

developed in this document do not depend on the overall transmission rate. 16-QAM 

subchannels could be made a reality even at higher rates with a custom IC [8].   

2.5.2 Electrical implementation 

This section details the electrical circuitry and schematics that were designed 

and implemented for the experiments. The IQ transmitters and receivers have been 

specified in Table 2-1. The remaining electrical components are defined in Table 2-2. 

2.5.2.1 Baseband Data Generation 

The use of five QPSK subchannels implies ten digital baseband signals. 

Ideally, pulse pattern generators with ultra-low output jitter should be used. 

However, due to the high number of signals required, an FPGA with integrated multi 

Table 2-2 Electrical components employed in the experiments 

Description Provider Model Specifications Other 

FPGA Xilinx 
Virtex-6 

XC6VLX240T 

Transceivers 

≤6.6 Gbit/s 

Evaluation Board 

ML623 

LPF Minicircuits SBLP-933+ 
3 dB BW 

933 MHz 
For 1.35 Gbaud 

LPF BT&D FLPA2 
3 dB BW       

2 GHz 
For 2.7 Gbaud 

Splitter/ 

Combiner 
Sigatek SP10605 2-18 GHz 6 Way Wilkinson 

Broadband 

Amplifier 
Minicircuits ZVA213+ 0.8-21 GHz  

90º Hybrid 

Coupler 

Marki 

Microwave 
QH-0226 2-26.5 GHz  

SRD Herotek GCA2700 2.7-21.6 GHz 
Comb Generator 

Input 2.7 GHz 
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gigabit electrical transceivers was employed [43]. The generation of the baseband 

signals with a real integrated circuit also reinforces the feasibility of the proposed 

ideas for practical systems. Output data was uncorrelated due to different track 

lengths in the Printed Circuit Board (PCB) and different cable lengths. The outputs 

of the transceivers were square, differential, and had a DC offset. The schematic 

shown in Figure 2.18 converted the signals to single-ended and AC coupled, and 

reduced the spectrum to the first lobe of the sinc associated with the square pulse. 

For the later task, a Bessel LPF with a 3 dB cut-off frequency at 75% of the data rate 

is usually employed [44]. Accordingly, different LPFs were used for the different 

rates as specified in Table 2-2.     

2.5.2.2 RF Transmitter 

The RF transmitter consisted of five QPSK electrical subchannels, as it can be 

observed in Figure 2.19. With binary streams of 1.35 Gbit/s, the rate per QPSK 

subchannel was 2.7 Gbit/s and the overall data rate was 13.5 Gbit/s. The subcarriers 

were located at multiples of 2.7 GHz ensuring that there was no guard band between 

electrical subchannels. The IQ transmitters specified in Table 2-1 were employed. 

The outputs of the mixers were attenuated equalizing the power level per subchannel. 

Then, all the subchannels were combined in a single signal using a 6 way Wilkinson 

power combiner. The resultant broadband signal was amplified and, finally, a 90º 

hybrid coupler obtained the HT pair with a relative phase shift of 90 degrees required 

to perform a SSB modulation. The minimum attenuation at the output of every IQ 

transmitter was 3 dB. Apart from equalization, the attenuation reduces the effects of 

impedance mismatches. Similarly, the attenuation between the wideband components 

compensates mismatches and adjusts the power that will drive the optical modulator.  
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Figure 2.18: Baseband signal generation and conditioning: from DC coupled 

differential to AC coupled single-ended. 
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Due to the imperfect behaviour of IQ mixers, low power replicas of the 

subchannels can be created at harmonics of the subcarrier frequencies. This 

unwanted nonlinearity is a potential source of cross-talk once the subchannels are 

combined. The undesired replicas can be eliminated using a Bandpass Filter (BPF) at 

the output of every mixer. For this application each of the BPFs should present a 

different passband with a constant group delay. This solution was also implemented 

with custom BPFs, but the mismatches and imperfections introduced by the filters 

translated into a penalty with respect to the original case. For that reason, the 

experiment was conducted without BPFs as illustrated in Figure 2.19. As will be 

shown below, good performance with clearly open eye diagrams was achieved with 

the QPSK subchannels.  

2.5.2.3 RF Receiver 

The RF receiver performed the equivalent demodulation, as can be seen in 

Figure 2.20. The received broadband signal was amplified and split. The wideband 

amplifier and the power combiner were the same model used in the RF transmitter. 

Attenuators were employed to reduce the effects of the distortion associated with the 
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Figure 2.19 RF Transmitter illustrating spectra for 1.35 Gbaud QPSK subchannels. 
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impedance mismatches. The LOs were phase and frequency locked to the incoming 

subchannels with the scheme explained in the next subsection. The outputs of the IQ 

mixers were filtered to suppress the high frequency components and any possible 

leakage coming from the LOs. To accomplish that task, the LPF reported in Table 

2-2 was cascaded with an additional Bessel LPF of higher cut-off frequency, 

achieving higher high-frequency attenuation without affecting the desired portion of 

the spectrum. In the experiments, the performance of the received baseband digital 

signals was evaluated with a Bit Error Rate Tester (BERT). 

2.5.2.4 LO Generation and Distribution 

The use of subcarriers located at harmonics of the data rate allowed a 

simplified generation of the LOs. An electrical comb or Step Recovery Diode (SRD) 

was fed with a 2.7 GHz tone coming from a synthesizer. The 10 MHz output 

reference of the synthesizer was also used to lock the FPGA clocks, ensuring data 

and LOs were frequency locked. The outputs of the electrical comb were filtered 

with a microwave quintplexer that presented one input and five outputs, obtaining 

every LO in a separated line. Each LO was handled with a custom design PCB that 

split, amplified and phase shifted them, allowing a variable management of phases 
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Figure 2.20 RF Receiver. 
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and amplitudes of the LOs for both the RF transmitter and RF receiver. A block 

diagram of that scheme is illustrated in Figure 2.21.  The detailed schematics of the 

PCB with all the components can be found in Appendix A.  

With the described setup, frequency locking at the receiver is guaranteed, as 

the employed LO has exactly the same origin as the transmitter. For the phase 

locking, variable phase shifters are employed and can be easily adjusted manually. 

This is the approach that is traditionally used to avoid synchronization circuitry [12, 

16]. In a practical real system the phase locking would be achieved with a phase 

locked loop (PLL) [17] or with a carrier recovery circuit [40]. A novel 

synchronization scheme will be demonstrated in Chapter 5.   

2.5.3 Electro-Optical Scheme 

Combined with the previous RF transmitter and receiver, the optical link was 

established using the components defined in Table 2-3. The global setup is illustrated 

in Figure 2.22 simplifying the electronic circuitry. For versatility, full C band tunable 

ECL lasers were employed. For the optical modulation, a thin film polymer OIQM 

was selected owing to its high BW, low Vπ and good bias point stability [45]. For the 

optical detection, a photo-receiver with the same bandwidth as the optical modulator, 

20 GHz, was employed. EDFAs were used in both the transmitter and the receiver. 

The transmitter EDFA amplified the output of the OIQM and established the power 
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Figure 2.21 LO generation and distribution. 
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launched into the fibre. In the receiver end, the EDFA acted as a pre-amplifier that 

provided a constant power to the photodetector regardless of the incoming optical 

power. Optical filters with a bandpass bandwidth of 2 nm were used at the output of 

every EDFA to remove ASE. A Variable Optical Attenuator (VOA) was introduced 

to emulate fibre losses changing the average optical power at the input of the pre-

amplified receiver.  

Examples of electrical and optical spectra are illustrated in Figure 2.23 for 

1.35 Gbaud QPSK subchannels. The FDM electrical spectrum is obtained at the 

output of the wideband amplifier in the transmitter. It can be seen that there is no 

guard band between subchannels. The illustrated SCM/OSSB optical spectrum is 

obtained at the output of the transmitter EDFA. In this case the OIQM is biased at 

quadrature and the optical carrier, necessary to perform direct detection, is present in 

the output.  

Table 2-3 Optical components employed in the experiments 

Description Provider Model Specifications Other 

Laser ID Photonics CBDX4-2-C-H01 ECL C Band Tunable 

OIQM Gigoptix LX-8220 
BW 20 GHz 

Vπ = 2.5 V 
 

Photo-

Receiver 

Discovery 

Semiconductor 
DSC-R401HG 

BW 20 GHz 

R = 0.7 A/W 
 

EDFA IPG EAD-50-C-30 NF=5dB TX 

EDFA Alnair LNA-100 NF=4dB RX 

VOA Eigen Light 410   

 

Laser

OIQM
EDFA BPF EDFA BPF

Optical

Fibre

VOA
Photo-

RX

IQ Mixer

f1

IQ Mixer

f5

90º

IQ Mixer

f1

IQ Mixer

f5  

Figure 2.22 SCM/OSSB scheme consisting of 5 QPSK subcarriers and one OIQM. 
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Examples of received eye diagrams for the I and Q components of the five 

subchannels are illustrated in Figure 2.24. These particular results were obtained with 

a transmitted optical power of 5 dBm in a back to back configuration. The input level 

of the receiver EDFA was -10 dBm and the power at the input of the photodetector 

was 3 dBm. The length of the baseband Pseudo Random Binary Sequences (PRBS) 

was 2
15

-1 bits. Different amplitudes were a consequence of the different conversion 

gains of the IQ receivers in each frequency band. Despite this asymmetry, open eye 

diagrams with BER<10
-9

 were obtained in all the cases. These results prove that 

broadband SCM/OSSB electro-optical transceivers based on MMIC technology are 

feasible. The next chapters will show measurements of performance in different 

situations and configurations. 

2.6 Conclusions 

SCM divides the available bandwidth into narrower subchannels obtaining 

high-speed transmission with relevant advantages: increased tolerance to dispersion 

and baseband signals with reduced bit rate.  

Best SCM performance is achieved when it is combined with two techniques: 

OSSB and carrier suppression. OSSB avoids dispersive fading and allows a closer 

allocation of WDM channels. Carrier suppression potentially achieves better 

sensitivities in the receiver. SCM/OSSB and carrier suppression can only be 

achieved simultaneously with OIQMs.  

 

Figure 2.23 Examples of (a) electrical spectrum at the output of the RF amplifier in the 

transmitter and (b) OSSB optical spectrum at the output of the transmitter EDFA. 
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From an electronic perspective, ASP is preferred to ensure low power 

consumption and low latency, but a practical industrial implementation would only 

be possible employing MMIC technology. 

An SCM/OSSB electro-optical transceiver consisting of an OIQM and relying 

on off-the-shelf MMIC technology has been presented. The key electrical 

components, IQ mixers, have been characterized. Initial results have shown five 

QPSK subchannels at a symbol rate of 1.35 Gbaud, achieving an overall data rate of 

13.5 Gbit/s. This setup is the base for the rest of studies that will be developed in the 

subsequent chapters.        

 

Figure 2.24 (a)-(e) Examples of eye diagrams for the five 1.35 Gbaud subchannels 
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Chapter 3 

3 SCM based on Optical IQ Modulators  

This chapter develops a theoretical analysis of the trade-off between carrier 

suppression and nonlinearities induced by optical IQ modulators in direct-detection 

subcarrier multiplexing systems. The trade-off is obtained by examining the 

influence of the bias conditions of the modulator on the transmitted optical single 

side band signal. The frequency components in the electric field and the associated 

photocurrent at the output of the IQ modulator are derived mathematically. For any 

frequency plan, the optimum bias point can be identified by calculating the 

sensitivity gain for every subchannel. A setup composed of subcarriers located at 

multiples of the data rate ensures that the effects of intermodulation distortion are 

studied in the most suitable conditions. Experimental tests with up to five QPSK 

electrical subchannels are performed to verify the mathematical model and validate 

the predicted gains in sensitivity. Note that due to the extension of the required 

mathematical analysis, they are developed in Appendix B.  

3.1 Introduction 

This section briefly reviews the relevance of SCM and emphasizes its 

implementation with optical IQ modulators (OIQM). The key concepts in the 

generation of OSSB and Carrier Suppression (CS) are reviewed and, finally, the 

content of the chapter is summarized. 

3.1.1 Application 

SCM relies on the excellent stability and low phase noise of microwave 

oscillators to generate one or more digitally modulated RF signals that are then 

intensity modulated onto an optical wavelength before transmission over fibre. SCM 

can be combined with WDM to increase the flexibility of the network. Analogue and 

digital SCM approaches have been used in many applications, including cable 

television (CATV) [1], radio over fibre [2] (also focusing on the increasingly 

important digital radio over fibre solutions [3]), broadband point to point links [4], 

access networks [5] and 100 Gbit/s local area networks [6]. In such a system it is 
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desired to guarantee the following features: OSSB to increase the spectral efficiency 

and eliminate dispersive fading [7], low inter channel distortion, and an appropriate 

level of the optical carrier to optimize the sensitivity at the receiver. The 

interrelations of these concepts have been explained in section 2.3. 

3.1.2 Suitability of Optical IQ Modulators 

Focusing on optical modulators, there are three possibilities to generate 

SCM/OSSB signals with partial CS, as illustrated in Figure 3.1. If a standard MZM is 

employed for the electro-optic conversion, an optical double side band signal is 

obtained, and an optical filter is required to suppress the undesired sideband and 

produce OSSB. The most linear performance of this system is achieved by biasing 

the device at quadrature. As the level of the electrical driving, referred to as optical 

modulation index (OMI), must be small to minimize nonlinear distortion (NLD), the 

Carrier to Signal Power Ratio (CSPR) is high and significant energy is wasted in the 

optical carrier. Consequently, the power efficiency of the transmission and the 

sensitivity in the receiver can be improved by applying CS. A direct method to 

achieve CS involves biasing the device at a point different to quadrature         

(Figure 3.1(a)), although NLD will increase presenting a trade-off with the sensitivity 

of the link [8]. It is also possible to use the same optical filter to remove one 

sideband and apply partial CS [9].  

A conventional approach to generate SCM/OSSB without optical filters 

employs a DD-MZM whose RF ports are driven by signals with a relative phase shift 

of 90 degrees [10]. As explained in section 2.3.2.3, in this case the device can only 

MZM

V bias (CS)RF

SSB/CS 

filter

a)

DD-MZM

V biasRF (+90°)

b)

RF 

IQ 

Modulator

RF (+90°)

c)

RF 

V bias (CS)

CS filter

 
Figure 3.1: Three alternatives to generate SCM/OSSB/CS. 
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be biased at quadrature so that the optical carrier cannot be suppressed in the 

modulator. Therefore, a costly optical filter or CS block must be included [4] to 

increase power efficiency (Figure 3.1(b)). For this technique, different studies have 

presented comprehensive mathematical analysis of the NLD [11] and its trade-off 

with CS and the sensitivity of the link [12].  

An OIQM is a relevant device because it can generate OSSB and partial CS 

without requiring additional components. This idea has been mathematically proved 

in section 2.3.2.4., where it has been shown that the CSPR can be modified by 

adjusting the bias levels (Figure 3.1(c)). A theoretical and experimental 

demonstration of this concept was also provided in [13]. However, no detailed 

investigation of NLD was carried out. As NLD increases while CSPR is reduced, a 

deeper analysis is required. 

3.1.3 Content 

 It can be concluded that SCM and OIQMs are technologies that can be 

combined to achieve specific system requirements such as colourless OSSB 

transmitters, received signals free of dispersive fading and, finally, partial optical CS. 

While the bias point of the modulators moves from quadrature to null, the CSPR 

improves and the NLD worsens, generating a trade-off with the sensitivity of the 

system.  

 This chapter studies analytically and experimentally the NLD and the CSPR 

that are generated simultaneously by an OIQM as a function of the bias point. The 

analysis developed by [13] is largely extended to obtain accurate CSPR and NLD for 

any number of RF subchannels. An optimum bias point is identified, optimizing the 

trade-off between NLD and CSPR in the presence of optical noise, where overall 

system performance is maximized. The analysis and results presented can be used to 

achieve efficient transmission in any multicarrier SCM link, analogue or digital, 

without the need for a CS block.  

 Experimental results were obtained employing the 13.5 Gbit/s SCM/OSSB 

system presented in section 2.5. It was designed with subcarriers located at multiples 

of the data rate so that the distortion due to in-band intermodulation products falls in 

the centre of other subchannels. Measurements show CSPR and NLD, their impact 

on the performance of channels and real gains in sensitivity. The experimental results 

show good agreement with theory.    
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3.2 Theory 

A generic SCM/OSSB scheme based on OIQMs is shown in Figure 3.2. In one 

optical wavelength, N QPSK electrical subchannels are multiplexed and transmitted. 

In this section, the main frequency components at the output of the OIQM will be 

derived. CSPR and NLD will be generalized for any frequency plan. The analytical 

study is based on continuous waves instead of real data as this approach has been 

widely used and its validity proven [14], producing good agreement with 

experimental data using independently modulated subcarriers. 

3.2.1 Definitions 

Initially, some basic concepts that will be employed through this chapter are 

reviewed. They cover the mathematical definitions for MZMs and the theoretical 

concepts required for an accurate analysis of NLD.  

3.2.1.1 MZM: Bias Point and Optical Modulation Index 

The bias point of a MZM is determined by the total relative phase shift that is 

applied to the optical wavelength in the modulator arms before recombination. With 

a push-pull configuration a total relative phase shift equal to 2ϕ is obtained by 

producing opposite delays (ϕ and –ϕ) in each arm. Thus the bias point is defined as 

the absolute value of the phase shift ϕ introduced in each arm by the bias voltage Vb:

  

 
2

bV

V





  (3.1) 

 

where Vπ is the half-wave voltage of the MZM. When ϕ=0 the MZM is biased at 
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Figure 3.2: SCM/OSSB system consisting of an optical IQ modulator and N QPSK 

electrical subchannels.  
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peak, when ϕ=π/4 the device is biased at quadrature and finally when ϕ=π/2 the 

modulator is biased at null. More details can be found in section 1.3.2.2. 

 The amplitude of the signal at the RF port of the MZM determines the optical 

modulation index (OMI). The Root Mean Square (rms) OMI of a modulating signal 

composed of one subcarrier of amplitude VAC is given by [11]: 

 

 .
2

ACV
m

V

 
  (3.2) 

 

3.2.1.2 Nonlinear Distortion 

Consider a signal x composed of a sum of tones located at different frequencies 

Ωi. A nonlinear characteristic can be expressed as a Taylor-series expansion where an 

represents the weight associated to the nonlinearity of order n [15]: 
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y a x
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NLD can be divided into two groups: Harmonic Distortion (HD) and Intermodulation 

Distortion (IMD). Both HD and IMD can be further subdivided into different 

contributions that are classified according to the order of the distortion. This order is 

given by the exponent n in eq. (3.3) and represents the number of tones (two or 

more) that must be mixed to generate such distortion. HD is a consequence of cross-

talk produced by harmonic products. Thus, given a tone at a frequency Ωi that is 

affected by a nonlinearity of order n, HDn falls at the frequency nΩi, distorting the 

desired tone located at that frequency. Equivalently, IMD is a consequence of cross-

talk produced by intermodulation products (IMP). Given N (≥2) tones located at 

different frequencies Ωi, (i=1,..,N), an IMP of order n would fall at a frequency 

ΩIMP=k1Ω1±…..±kNΩN where ki are natural numbers that sum to n. Therefore, two or 

more original tones can give rise to any IMP of order n, and the associated distortion 

can be denoted as IMDn.  

 The most significant contributions are usually the distortions of second and 

third order. In this document the following notation is used: HD2 (distortion at 2Ωi), 

HD3 (distortion at 3Ωi), IMD2 (distortion at ΩIMP=Ωi±Ωj), IMD3 (distortion at 

ΩIMP=2Ωi±Ωj) and IMD3B (distortion at ΩIMP=Ωi±Ωj±Ωk, also called triple-beat). 
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These terms show the power of an individual distortion normalized to the power of a 

desired tone. For the application under analysis, different IMDs and HDs will be 

obtained in the electric field and in the associated photocurrent. Mathematically, 

focusing on the electric field, EIMD(Ω) denotes the peak amplitude for an individual 

IMP that falls at ωc+Ω, where a desired tone with peak amplitude EΩ is located. 

Obtaining the time averaged powers, PE_IMD(Ω) and PE_Ω, the individual IMD for the 

electric field is expressed as:  
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Equivalently, focusing now on the photo-current, IIMD(Ω) denotes the peak amplitude 

for an individual IMP that falls at Ω, where a desired tone with peak amplitude IΩ is 

located. Obtaining the time averaged photo-current powers [16, 17], PI_IMD(Ω) and 

PI_Ω, the individual IMD for the photo-current is expressed as: 
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Note that, under a Gaussian approximation, the mean square current of the individual 

distortion is σ
2

IMD(Ω)=PIMD(Ω). Typically, the values of individual IMD are generalized 

for a given nonlinearity, and the power of the distortion can be obtained for any 

value of the desired tone. Substituting and resolving σ
2

IMD(Ω) in the previous equation: 
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A similar analysis can be done with harmonic products and HD.  

 In the previous paragraph, the effects of an individual distortion coming from 

one IMP have been shown. In practice, for a frequency plan composed of several 

subcarriers, every subchannel is interfered by a different number of individual 

intermodulation products of each kind. Focusing on the photo-current, for a given 
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subchannel centred at Ω, NCSO denotes the number of IMPs that fall at Ω generating 

IMD2. Equivalently, NCTB represents the number of IMPs that fall at Ω generating 

IMD3B. For both cases, the associated overall distortion is referred to as Composite 

Second Order (CSO) and Composite Triple Beat (CTB) respectively. From eq. (3.6) 

and assuming uncorrelated sources of Gaussian noise [12]: 
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CSO and CTB are the most limiting distortions in direct detection (DD) systems [11, 

18]. In general NCSO is higher for the lowest frequency subchannels and NCTB is 

higher for the channels in the middle of the frequency plan [18].  

The setup described in the previous chapter (section 2.5) will be employed as a 

reference frequency plan. The general theoretical results will be particularized for 

this case so that theory and experiments can be linked. This plan consists of five 

electrical subcarriers located at the second, third, fourth, fifth and sixth harmonic of a 

Table 3-1 Intermodulation products count for the reference frequency plan. 

Centre 

(GHz) 
NCSO 

Mixing IMD2 

(GHz) 
NCTB 

Mixing IMD3B 

(GHz) 
NIMD3 

Mixing IMD3 

(GHz) 

2.7 

(No data) 
4 

8.1-5.4 

10.8-8.1 

13.5-10.8 

16.2-13.5 

5 

5.4+8.1–10.8 

5.4+13.5–16.2  

5.4+8.1–16.2 

5.4+10.8–13.5 

8.1+10.8–16.2 

3 

2·5.4–8.1 

2·5.4–13.5 

2·8.1–13.5 

5.4 

(Subchannel 1) 
3 

10.8-5.4 

13.5-8.1 

16.2-10.8 

2 
8.1+10.8–13.5 

8.1+13.5–16.2 
3 

2·5.4–16.2 

2·8.1–10.8 

2·10.8–16.2 

8.1 

(Subchannel 2) 
2 

13.5-5.4 

16.2-8.1 
4 

5.4–8.1+10.8 

5.4–13.5+16.2 

5.4–10.8+13.5  

10.8+13.5–16.2 

1 2·10.8–13.5 

10.8 

(Subchannel 3) 
1 16.2-5.4 4 

5.4–8.1+13.5 

5.4–10.8+16.2 

8.1–10.8+13.5  

8.1–13.5+16.2 

2 
2·8.1–5.4 

2·13.5–16.2 

13.5 

(Subchannel 4) 
0 - 4 

5.4–8.1-10.8 

5.4–8.1+16.2 

8.1–10.8+16.2 

10.8–13.5+16.2 

1 2·10.8–8.1 

16.2 

(Subchannel 5) 
0 - 2 

5.4–8.1–13.5 

8.1–10.8–13.5 
0 - 
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fundamental frequency (2.7 GHz in the case of the experimental results). The values 

of NCSO and NCTB are derived in Table 3-1 for every subchannel. The first subcarrier 

is the most affected by CSO (NCSO=3, NCTB=2) while the fourth subcarrier is only 

affected by CTB (NCSO=0, NCTB=4). For completeness, Table 3-1 also shows the 

number of intermodulation products that give rise to IMD3, NIMD3.  

Note that the previous values of NCSO and NCTB are obtained focusing on the 

photo-current. Any IMP at a frequency |Ω| is the result of a combination of 

subcarrier frequencies that can be positive or negative, e.g. ±|Ω|=Ω1-Ω2+Ω3. If the 

sign of all the subcarriers involved in the mixing changes, an IMP at the opposite 

frequency is obtained, e.g. |Ω|=-Ω1+Ω2-Ω3. The negative realization has in reality 

a positive equivalent as cos( ) cos( )t t       . For a signal x composed of a 

sum of tones, when expanding eq. (3.3) it can be easily derived that only one of the 

two potential realizations (+|Ω| or –|Ω|) occurs. For that reason, the calculation of 

NCSO and NCTB in Table 3-1 only considers one of the realizations of every pair of 

potential IMPs. This is compatible with the mathematical derivation of the NLD 

presented in Appendix B. 

3.2.2 Multicarrier Analysis 

As shown in Figure 3.1(c) an OIQM consists of three MZMs: two parallel sub-

MZMs are modulated by electrical data and the third one establishes a phase shift 

between the optical outputs of the two parallel sub-MZMs before recombination. 

Provided that the electrical inputs present a relative phase shift of 90 degrees, OSSB 

is achieved by biasing the third MZM to produce an optical relative phase shift of 90 

degrees, and the two parallel sub-MZMs at the same bias point ϕ. These are 

operating conditions that are employed in the following analysis. 

3.2.2.1 Electric Field  

The study of the CSPR requires the derivation of the mathematical expression 

of the electrical field E at the output of the OIQM. An analysis based on phasors and 

Bessel expansions can be used to obtain all the frequency components of E for any 

number of RF subcarriers N. Due to the length of the mathematical development, it is 

presented in Appendix B. 

 The following results were obtained with the phases configured to produce 

optical lower side band (with respect to the optical carrier frequency) and with equal 

values of OMI per subcarrier m. The frequency of the optical carrier is denoted as ωc. 
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The frequencies and phases of the N subcarriers are written as Ω1, Ω2,….,ΩN and    

θ1, θ2,….,θN respectively. A single expression can be used to calculate the amplitude 

and phase of any fundamental tone, harmonic or intermodulation product Ek1,k2...kN 

whose frequency is (ωc+k1Ω1+k2Ω2+….+kNΩN), where k1,k2,…,kN are arbitrary 

integer numbers reflecting the nature of the signal in question. This contribution in 

the electrical field is given by: 
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 (3.8) 

 

where Jn(m) stands for the nth order Bessel function of the first kind and Ei is the 

amplitude of the optical carrier at the input of the OIQM (an ideal lossless OIQM has 

been considered). To calculate the total contribution at a desired frequency it is 

necessary to add all the components that fall on it. For the reference frequency plan 

studied here, the contribution of the first fundamental tone at (ωc-Ω1) would be        

E-1,0,0,0,0. While the contribution produced by (ωc+Ω3–Ω5), which would fall on    

(ωc-Ω1), would be given by E0,0,1,0,-1. Proceeding in that way, the individual nonlinear 

distortions can be calculated and are shown in Table 3-2.                          

Table 3-2 Normalized NLD power in the electrical field at the output of an optical 

IQ modulator that is configured to generate an optical single side band signal.       

Ωi, Ωj, and Ωk are three arbitrary subcarrier frequencies. 

Distortion type Distortion frequency Formula 

Second harmonic 

(HD2) 
ωc ± 2Ωi [

𝐽2(𝑚)

√2 ∙ 𝐽1(𝑚)
cot 𝜙]

2

 

Third harmonic 

(HD3) 

ωc + 3Ωi [
𝐽3(𝑚)

𝐽1(𝑚)
]

2

 

ωc - 3Ωi 0 

2
nd

 order IM 

(IMD2) 
ωc ± Ωi ± Ωj [

𝐽1(𝑚)

√2 ∙ 𝐽0(𝑚)
cot 𝜙]

2

 

3
rd

 order IM 

(IMD3) 

ωc + Ωi ± 2Ωj [
𝐽2(𝑚)

𝐽0(𝑚)
]

2

 

ωc - Ωi ± 2Ωj 0 

Triple beat 

(IMD3B) 

ωc + Ωi + Ωj + Ωk 

ωc + Ωi - Ωj - Ωk 
[
𝐽1(𝑚)

𝐽0(𝑚)
]

4

 

ωc - Ωi - Ωj - Ωk 

ωc - Ωi + Ωj + Ωk 
0 

                     Most meaningful NLD when m << 1 
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3.2.2.2 Photo-current  

For the DD scheme envisaged here it is necessary to obtain the distortion in the 

detected photocurrent I, which is proportional to the square of the envelope of the 

electrical field and, as demonstrated in Appendix B, is given by: 

 

     
2

1
ˆ1 cos 2 ( ) 2 cos 2 ( ) 2
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 
 (3.9) 

 

where s(t) is equal to the sum of all the subcarriers (normalized with amplitude 1) 

that are applied to one RF port and ŝ(t) is its Hilbert-transformed pair (s(t) shifted 90 

degrees) that is applied to the other RF port. Again, Bessel expansions can be used to 

obtain all the frequency components and deduce the nonlinear distortions. They are 

shown in Table 3-3 and the mathematical demonstration can be found in the 

Appendix B. Due to the nonlinearity of the photodiode, HD2 disappears while certain 

IMD3B appears balancing the combinations of subcarriers that give rise to triple beat.                   

Table 3-3 Normalized NLD power in the associated photocurrent at the output of an 

optical IQ modulator configured to generate an optical single side band signal.       

Ωi, Ωj, and Ωk are three arbitrary subcarrier frequencies. 

Distortion type Distortion frequency Formula 

Second harmonic 

(HD2) 
2Ωi 0 

Third harmonic 

(HD3) 
3Ωi [

𝐽3(2𝑚))

𝐽1(2𝑚)
]

2

 

2
nd

 order IM 

(IMD2) 

+Ωi - Ωj [√2 
𝐽1(2𝑚) 

𝐽0(2𝑚)
cot 2𝜙 ]

2

 

+Ωi + Ωj 0 

3
rd

 order IM 

(IMD3) 
Ωi ± 2Ωj [

𝐽2(2𝑚)

𝐽0(2𝑚)
]

2

 

Triple beat 

(IMD3B) 
Ωi  ± Ωj  ± Ωk [

𝐽1(2𝑚)

𝐽0(2𝑚)
]

4

 

                 Most meaningful NLD when m << 1 
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3.2.3 CSPR as a Function of the Bias Point 

3.2.3.1 Accurate versus Approximated 

In any direct detection SCM system, the CSPR will depend on the number of 

electrical subchannels N and the OMI. From eq. (3.8), CSPR can be calculated 

including all the significant contributions from the fundamental tones and distortions. 

The accurate CSPR was obtained for the reference frequency plan and is shown in 

Figure 3.3 for two different values of m.  

A simplified model, neglecting NLD, can be used to obtain an approximate 

value considering only fundamental tones: 
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where EC is the amplitude of the electric field in the optical carrier and ES is the 

amplitude of the electric field in any fundamental tone. This approximation has been 

employed previously [13] but its accuracy was not analysed.  

 
Figure 3.3: Accurate and approximated CSPR for an SCM/OSSB system composed 

of an optical IQ modulator and five subcarriers for two different values of 

subchannel OMI (m=0.055 and m=0.15). 
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 From Table 3-2 it can be concluded that the main contributions of NLD in the 

electric field E come from HD2 and IMD2. The previous statement can be deduced 

with the following approximations [19]: 
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 (3.11) 

 

HD2 and IMD2 present their maximum at the peak bias point and tend to cancel while 

approaching the null. For that reason the approximated CSPR, which is also shown in 

Figure 3.3, diverges clearly around the peak. However, for the bias points of interest 

in DD systems, between quadrature and null, the approximation is valid, especially 

for low values of m (error less than 0.3 dB from quadrature in this example). 

3.2.3.2 Measurement 

The curves in Figure 3.3 also show the CSPR that is obtained with the most 

significant terms of the photo-current I obtained from eq. (3.9) and its Bessel 

expansion derived in Appendix B. Apart from the area around the null point, CSPR 

can be approximated by measuring it in the detected photocurrent and adding 3 dB. 

As a direct measurement of CSPR from the electric field E is not possible, this 

technique will be used to measure CSPR in the experimental section. 

In certain conditions, this behaviour can be easily justified mathematically. 

Continuing with the same notation and neglecting phases, the associated photo-

current can be written as: 
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In the next subsection (3.2.4) it becomes clear that the NLD in the photocurrent is 

small only far from peak and null. For this region of small NLD, the CSPRI in the 

photo-current is calculated and compared with the approximated CSPR of eq. (3.10):  
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 (3.13) 

 

In the described region, and while the power of the optical carrier is much higher 

than the powers of the fundamental tones, the 3dB relation between CSPRI and the 

desired CSPR becomes apparent. From the results shown in Figure 3.3, which 

include all the significant contributions of NLD in E and I, it can be readily seen that 

this relation can be extended to the region around peak. 

3.2.3.3 Conclusion  

It can be concluded that, as expected, CSPR decreases when the bias point 

moves towards null. Lower bias points achieve higher optical carrier suppression 

while the relative power of the transmitted tones increases. Thus, decreasing the 

CSPR, and neglecting NLD, the subchannels could be received with the same quality 

with a lower received average optical power, thereby improving sensitivity. 

However, as it is explained in the next section, some subchannels can be severely 

impaired due to NLD when the bias point changes. 

3.2.4 NLD as a Function of the Bias Point 

From Table 3-3 it can be confirmed that the most limiting NLD in the detected 

photocurrent I are the second order intermodulation, IMD2, and the triple beat, 

IMD3B. Note that, using eq. (3.11), it can be deduced that IMD3B=4∙IMD3. As 

explained before, IMD2 and IMD3B become CSO and CTB respectively when all the 

intermodulation products are considered. Figure 3.4 shows both individual 

distortions for two values of OMI. Whereas IMD3B depends only on m, IMD2 varies 

with the bias point cancelling at quadrature and worsening sharply if the bias point 

changes. In both cases higher values of m give rise to higher distortions.  

The previous results have illustrated the combined behaviour of CSPR and 

NLD as a function of the bias point. Both terms present a relationship that can be 

manifested in two different ways depending on the nature of the IMD. All the cases 
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can be divided into two groups: systems where the desired tones are only interfered 

by CTB and systems where at least one of the subchannels is interfered by CSO.  

The first case happens when the frequency plan ensures that CSO is not 

interfering (NCSO=0 for all the electrical subcarriers), thus NLD is composed only of 

CTB and is constant irrespective of the bias point. This is achieved when there is a 

guard band between the optical carrier and the first subchannel equal to at least half 

of the total spectrum, as in DD/OFDM [20] or some CATV schemes [21]. Clipping 

can appear in the optical signal but it does not have a detrimental effect because its 

associated distortion translates into CSO and falls in the part of the spectrum where 

no desired subcarriers are present. This particular case is typically simplified and the 

optimum bias point is supposed to produce a CSPR equal to one [22]. However, in 

practice, due to the presence of NLD, the optimum CSPR can be different to one 

[23]. A deeper analysis, like the one presented in the next subsection is required to 

accurately find the optimum CSPR, bias point and OMI.  

The second case happens when there are low frequency subchannels as in 

broadband SCM [4] or in the reference example. In this case there is a trade-off 

between CSPR and NLD: biasing closer to null improves CSPR but at the same time 

CSO increases sharply. A mathematical analysis of the system is required to obtain 

the sensitivity at the receiver as a function of the bias point to find the optimum. 

 
Figure 3.4: Individual NLD (IMD2 and IMD3B) at the detected photocurrent of an 

SCM/OSSB system using an optical IQ modulator for two values of OMI. 
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3.2.5 Optimum Bias Point 

3.2.5.1 Mathematical Expression 

The study was based on an SCM link composed of N subcarriers and with a 

pre-amplified receiver as shown in Figure 3.5. This receiver consists of an EDFA, a 

photo-detector and an RF demodulator. 

The average optical power PIN at the input of the receiver required for a given 

quality factor QF is mathematically derived in the Appendix B: 

 

 
  

2

2 2

2 3

4

1

F e
IN

F CSO CTB B

Q FhvB
P

I Q N IMD N IMD


 

 (3.14) 

 

where F is the noise figure of the EDFA, h is the Planck’s constant, v is the optical 

frequency and Be is the electrical bandwidth of the baseband channels at the receiver. 

Iϕ represents the dependency of the amplitude of the subcarrier on the bias point: 
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As the only sources of noise and distortion considered are amplified 

spontaneous emission (ASE) and NLD, PIN in equation (3.14) represents the 

minimum sensitivity that is theoretically achievable in a QPSK SCM/OSSB link 

implemented with an OIQM and a pre-amplified receiver. According to Figure 2.10, 

these sensitivities must be achievable values with realistic optical components. In 

practice, when electronic devices introduce distortion that is not negligible, the 

obtained sensitivities will be higher.   

Pre-amplified RXRF TX

IQ Modulator
EDFA EDFA

RF 

RX

 
Figure 3.5: SCM/OSSB scheme with a pre-amplified optical receiver. 
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The gains in sensitivity that can be achieved by varying the bias point depend 

on NLD. This distortion is different for every subchannel because it is determined by 

different values of NCSO and NCTB. Therefore, depending on the nature of the link, the 

optimum bias point is given by either the average BER, or the BER of the worst case 

channel. The second condition is the strictest and is used in this analysis. 

3.2.5.2 Discussion and Example 

These results will be particularized for the reference design considering only 

subcarrier 1, as it is the most affected by CSO (NCSO=3 and NCTB=2), and subcarrier 

4, as it is the most interfered of the subchannels affected only by CTB (NCSO=0 and 

NCTB=4).  

Considering quadrature and a low value of m as the initial operating point, 

Figure 3.6 shows the gains in sensitivity (for QF=6, BER=10
-9

) that can be achieved 

by changing the settings for subchannel 1. Moving the bias point towards null, the 

sensitivity improves notably until CSO is comparable to the ASE induced noise 

floor. For a value of m=0.055, there is an optimum bias point (ϕ=1.1 rad), where a 

sensitivity gain of almost 4 dB with respect to quadrature is achieved. This gain is 

very sensitive to changes in ϕ (it is reduced to 3 dB at ϕ=1.175) and m (3.5 dB with 

m=0.06). From that point sensitivity improves while m increases and the bias point 

 
Figure 3.6: Gains in sensitivity for QF=6 with respect to quadrature and m=0.055 for a 

subchannel distorted by NLD (NCSO=3 and NCTB=2) in a five subcarrier QPSK 

SCM/OSSB link consisting on an optical IQ modulator and a pre-amplified receiver 

(F=5dB, v=193.4 THz, Be=2.7 GHz). 
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moves towards quadrature. This effect occurs because CSPR improves with a higher 

OMI and CSO tends to cancel when close to quadrature. A gain in sensitivity of       

8 dB is observed for m=0.15 with respect to m=0.055 at quadrature.  

However, while m increases, the impact of CTB on subchannel 4 also 

increases, as shown in Figure 3.7. For that channel, as CTB is constant regardless of 

the bias point, a gain in sensitivity is always achieved when moving the bias from 

quadrature towards null. For m=0.055, the gain in sensitivity at the optimum bias 

point of subchannel 1, ϕ=1.1 rad, is 6 dB with respect to quadrature. When m 

increases, CSPR reduces and CTB increases, resulting in better sensitivity until the 

level of CTB is comparable with the ASE induced noise floor, as it happens at 

m=0.2. From that value, further increments of m result in a loss in sensitivity. 

3.2.5.3 Practical Conclusions 

The previous analysis can be applied to achieve optimum sensitivity in any 

SCM link using an OIQM. The influence of the bias point can be summarized with 

two effects. Firstly, for a given OMI, it is possible to find a bias point different to 

quadrature and closer to null where overall sensitivity improves. Secondly, as the 

OMI increases, this optimum bias point will be closer to quadrature. In the following 

section a real scheme is used to validate the predicted gains in sensitivity and to show 

the described trends.  

 
Figure 3.7: Gains in sensitivity for QF=6 with respect to quadrature and m=0.055 for 

a subchannel distorted by NLD (NCSO=0 and NCTB=4) in a five subcarrier QPSK 

SCM/OSSB link consisting on an optical IQ modulator and a pre-amplified receiver 

(F=5dB, v=193.4 THz, Be=2.7 GHz). 

 



3. SCM based on Optical IQ Modulators 

108 

In general, the overall link performance is determined by the combined 

behaviour of, among others, the OMI, the bias point, and the performance of the 

optical and RF components in the bands of use. For different system design level 

objectives, different individual parameters may be required. On many occasions OMI 

is maintained small to guarantee low intermodulation distortion but this behaviour 

can cause a loss in sensitivity. This effect can be overcome with an increase in the 

OMI of the signal, but that requires a higher power consumption of the RF 

components. As power consumption is usually a major issue, a lower value of OMI 

can be used accompanied with a bias closer to null to achieve equivalent sensitivity. 

3.3 Experimental Results 

The experimental setup was based on a SCM/OSSB system with five QPSK 

subchannels equivalent to Figure 3.2. The components employed were largely the 

ones detailed in section 2.5, and a brief description will be provided here. The IQ 

mixers were off-the-shelf devices based on MMIC technology. The symbol rate per 

subchannel was 1.35 Gbaud, making an overall data rate of 13.5 Gbit/s for the optical 

channel. An FPGA was used to generate the ten baseband binary signals, each one 

carrying a PRBS of 2
15

-1 bits, which were uncorrelated with different delays. The 

data streams were low pass filtered to reduce the spectrum of the signal to the first 

lobe of a sinc function. Imitating the reference design that has been studied in the 

previous subsections, the electrical LOs were even harmonics of the data rate (from 

5.4 to 16.2 GHz), obtained using an electrical comb and appropriate demultiplexing 

filters. Thus no guard band was introduced between subchannels and the total energy 

of any intermodulation product distorted only one subchannel. No DSP algorithms 

were employed to compensate the impairments of the analogue components. The 

electrical signal was applied to a thin film polymer OIQM [24] with a bandwidth of 

20 GHz and Vπ of 2.5 Volts. The setup was completed in two different 

configurations depending on the parameter to be measured. Both configurations will 

be described in the next sections.  

3.3.1 Experimental OMI 

To make the experimental results comparable with theory, m has to be 

redefined for the case of real data. When a modulated electrical subchannel presents 

an rms voltage of VRMS the experimental rms OMI of the subchannel is: 
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Note that the overall OMI, M, considering N subchannels of the same level is: 
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In some occasions in the following chapters, the OMI will also be provided as 

a percentage with respect to Vπ such that: 
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 (3.18) 

 

The Peak to Average Power Ratio (PAPR) of the final electrical signal will 

depend on the OMI, number of subchannels, and the particular relative phases of the 

subcarriers when they combine. However, theoretically, system performance will be 

determined by the rms power or the rms OMI of the final signal, regardless of the 

individual phases and the PAPR that arises [11]. Obviously it has to be ensured that 

the rest of the components in the system can handle that PAPR value without 

including additional nonlinearities. 

3.3.2 Bias Points 

The system characterization was carried out by biasing the two parallel sub-

MZMs of the OIQM to get equal intensity from them, and then varying these bias 

levels between peak and null. Sixteen levels of intensity were selected. For each bias 

setting of these sub-MZMs, the bias point of the third MZM (that combines the 

optical outputs of the parallel ones) was adjusted to achieve the best sideband 

suppression ratio (SSR). The optical spectrum of one of these realizations is shown 

in Figure 3.8, where an SSR of 20 dB can be observed. 
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3.3.3 Agreement with Model 

The theoretical analysis concluded that CSPR and IMD2 are the two key 

parameters to determine the optimum bias point in an SCM link implemented with an 

OIQM. These parameters were measured experimentally to verify the agreement 

with the model obtained with the employed OIQM. For this particular device the bias 

is established with constant current instead of voltage, thus the measurements will be 

presented as a function of bias current. The tests were performed with the 

configuration shown in Figure 3.9. At the output of the OIQM a variable optical 

attenuator (VOA) was included prior to an EDFA. The gain of the EDFA was 

maintained constant and the VOA attenuation was modified to ensure the same 

optical power at the input of the EDFA for all the bias points that were analysed. 

With this method the measurements at different bias points were taken under the 

same conditions.  

 
Figure 3.8: Optical spectrum obtained with m=0.055 at a one of the sixteen bias 

points analysed. OSSB with an SSR of 20 dB is achieved. CSPR = 15.7 dB. 
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Figure 3.9: Setup employed in the characterization of the optical modulator. 
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3.3.3.1 Measured IMD2  

To investigate IMD2, a discrete photo-detector with a bandwidth of 20 GHz 

was employed. Its output was connected to a spectrum analyser. In the transmitter 

only the first (5.4 GHz) and the fifth (16.2 GHz) electrical subcarriers were activated 

such that the second order intermodulation product for this frequency plan falls at 

10.8 GHz. Figure 3.10 illustrates the measured and theoretical IMD2 that were 

obtained for a modulation index m=0.15 for the different bias points. A trace from 

the spectrum analyser after the photo receiver is also shown. A good agreement 

between theory and measurements is observed. The discrepancy with the peak of the 

theoretical value is due to the fact that the minimum distortion that could be 

measured was limited by the noise floor. With lower values of OMI this limitation is 

present in more bias points and for that reason those measurements are not shown.  

The previous result confirms that biasing at a point different to quadrature 

translates into a meaningful increase of CSO. In the next sections it will become 

clear that this impairment can be balanced with the associated improvement in CSPR 

that gives rise to a better overall sensitivity. 
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Figure 3.10: Second order intermodulation distortion. Measurements performed 

activating only the first and the fifth subcarriers and measuring the distortion at the 

third one. m=0.15. Insets show the electrical spectrum at one of the measurements. 
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3.3.3.2 Measured CSPR 

For the measurement of the CSPR, the photo-detector of a digital oscilloscope 

module was used. CSPR was obtained for the detected photocurrent as the square of 

the ratio between the DC component and the rms value of the AC signal. Figure 3.3 

showed that a good approximation of the optical CSPR could be obtained by adding 

3 dB to the value obtained with the detected photocurrent (excluding the area around 

null). Figure 3.11 illustrates the accurate theoretical value and the measurements for 

m=0.055 and m=0.15. A good agreement between theory and the experiment is 

observed.  

For the case of lower OMI, the picture also shows the photocurrent at two 

bias points: quadrature (Q in the figure), where IMD2 presented its lowest value, and 

point B, the closest to the optimum that was identified in the theoretical section for 

m=0.055. The improvement in CSPR at point B is 5 dB relative to Q, and the optical 

peak to peak modulation depth approaches unity (roughly from 2/4 to 4/5), making 

this point more suitable for an efficient transmission. 

V (500 uV/div) V (500 uV/div)

t (10 ns/div) t (10 ns/div)

Q

B

 

Figure 3.11: CSPR: theoretical and measured. Five subchannels. m=0.055 and 0.15. 

Photocurrent at two different bias points: quadrature and point B.  
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3.3.4 Channel Performance 

3.3.4.1 Effects of CSPR and NLD 

This section shows how the CSPR and NLD induced by the OIQM influences 

the performance of electrical subchannels in the communications system. The results 

were taken with a setup similar to that shown in Figure 3.5, but simulating the losses 

in the fibre with a VOA so that dispersion effects were removed. The components 

employed presented the parameters used in the generation of Figure 2.10, so that it 

can be concluded that ASE induced noise is dominant over RIN, shot noise and 

thermal noise. Consequently, from the point of view of the optical devices, a good 

agreement with the theoretical model presented in section 3.2.5 was expected. A low 

noise EDFA was used in the transmitter and its gain was fixed to obtain 10 dBm at 

the output. The gain of the EDFA at the receiver was regulated to guarantee the 

sensitivity in the baseband electrical receivers irrespective of the incoming optical 

power. Note that the low noise EDFA was used in the transmitter to ensure the 

dominant ASE was produced by the receiver EDFA, as in the mathematical model.    

3 dB9 dB

CSO effects at subchannel 1

PIN (dBm)
 

Figure 3.12: BER vs. Optical input power at the receiver for the first electrical 

subchannel. Two different bias points, Q and B. Measurements obtained with one or 

five active subcarriers. m=0.055 and 0.15. 

 
 



3. SCM based on Optical IQ Modulators 

114 

The measurements were focused on two subcarriers, subchannel 1 to observe 

the effects of CSO and subchannel 4 to analyse the effects of CTB.  The modulation 

index was m=0.055 and two bias points were studied: Q and B. BER versus received 

optical power at the input of the EDFA, PIN, were obtained in two different 

situations: activating only one electrical subcarrier so that no IMD was produced, and 

with all the subcarriers on and NLD present in the system. 

The performance of the first subchannel can be observed in Figure 3.12. As 

expected, the influence of the intermodulation products is more severe when biasing 

closer to null at point B. At Q, CSO is cancelled, so there is only a minor difference 

in performance when all the channels are active (less than 1 dB). However, when 

biasing at B, the NLD coming from CSO causes a penalty in performance of up to    

5 dB. Despite the higher penalty due to NLD, a sensitivity gain of 3 dB can be 

observed at point B with respect to Q, for a BER=10
-9

, in agreement with the 

theoretical prediction. 

6 dB

CTB effects at subchannel 4

PIN (dBm)
 

Figure 3.13: BER vs. Optical input power at the receiver for the fourth electrical 

subchannel. Two different bias points, Q and B. Measurements obtained with one or 

five active subcarriers. m=0.055 and 0.15. 
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A similar analysis was done for the fourth subchannel and is shown in Figure 

3.13. CTB is independent of the bias point, as has been illustrated in Figure 3.4. Due 

to the low value of CTB for this OMI, the difference that can be observed between 

the single and multicarrier cases is small and, as expected, is similar at both bias 

points. The gain in sensitivity due to the better CSPR at point B is 6 dB with respect 

to Q, as predicted by theory for a BER=10
-7

 (similar to the prediction for BER=10
-9

). 

3.3.4.2 Effects of increased OMI 

According to the theoretical study for OIQM-based SCM systems, the 

behaviour of the sensitivity can be summarized with two trends. For a given OMI, 

there can be an optimum bias point different to quadrature, where the channel most 

affected by CSO determines the gain in sensitivity of the link. This effect has been 

verified experimentally in the previous subsection. The second trend shows that it is 

possible to improve sensitivity by increasing OMI and biasing closer to quadrature, 

but at some point this process will have a detrimental effect for the channels affected 

by CTB. This behaviour is shown in this subsection. 

The effects of CSO on subchannel 1 shown in Figure 3.12 also include the 

performance for the case of increased OMI with m=0.15 biasing at quadrature. The 

higher value of m induces a better CSPR and the bias at quadrature cancels CSO, 

resulting in a gain in sensitivity of 9 dB with respect to the lower OMI, consistent 

with the 8 dB predicted by theory. On the other hand, the behaviour of subchannel 4 

shown in Figure 3.13 includes the same case of increased OMI while biasing at 

quadrature. It can be seen that the increment in CTB associated to the higher OMI 

resulted in a loss of sensitivity with respect to the case of lower OMI for all BER 

below 10
-5

. This penalty occurred with an OMI lower than that expected from the 

theoretical prediction (m=0.20). This is due to the fact that the model considered 

ideal electrical components and IQ mixers. However, in practice, as it has been 

demonstrated in section 2.5.1, these components are designed for lower bandwidth 

signals. As a result, the high rates employed in this experiment can translate into a 

significant eye closure that is equivalent to an increased NLD.  

3.4 Conclusions 

SCM is a reliable multicarrier technique that is employed in multiple schemes, 

usually combined with OSSB to obtain increased tolerance to dispersive fading. The 

mathematical study of SCM has been extended by analysing the OIQM, an ideal 
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choice in the transmitter because, unlike other alternatives, both OSSB and carrier 

suppression can be obtained directly without external components by adjusting the 

bias points. 

When the frequency plan ensures that the subchannels are only affected by 

CTB, CSPR can be modified without adding any additional impairment in the 

subchannels. When at least one of the subchannels is interfered by CSO, a trade-off 

between CSPR and NLD is present. The developed mathematical model can be used 

to determine the optimum bias point and predict the gains in sensitivity that can be 

achieved for every subchannel.    

Experiments have been conducted with a scheme and components that ensure 

subcarriers are located at multiples of the data rate, which makes it ideal for an 

accurate study of the effects of intermodulation distortion. The theoretical predictions 

have been validated measuring CSPR, NLD, and their effect on the performance of 

channels. The sensitivity gains that can be directly achieved with OIQMs prove the 

suitability of this device to improve the power budget of SCM/OSSB links without 

incurring additional costs.     
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Chapter 4 

4 Cost and Spectrally Efficient WDM/SCM 

This section explores experimentally the impairments in performance that are 

generated when multiple SCM/OSSB signals are closely allocated in frequency to 

establish a spectrally efficient WDM link. The performance of cost effective 

WDM/SCM/OSSB implementations, without optical filters in the transmitter, 

presents a strong dependency on the imperfect sideband suppression ratio (SSR) that 

can be directly achieved with the electro-optical modulator. Based on the scheme 

described in chapter 2, a direct detection broadband multichannel SCM link 

composed of a state of the art optical IQ modulator and five QPSK subcarriers per 

optical channel was implemented. Performance measurements showed that a 

suppression ratio of 20 dB obtained directly with the modulator produced a penalty 

of 2 dB in overall performance, due to interference between adjacent optical 

channels. 
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 Figure 4.1 WDM/SCM/OSSB network scheme based on optical IQ modulators 
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4.1 WDM/SCM/OSSB 

4.1.1 Generic Scheme 

 Microwave components present several advantages with respect to their 

optical counterparts like stability, low phase noise and frequency selectivity. SCM 

leverages these properties to generate one or more digitally modulated RF signals 

that are then transmitted on an optical wavelength. Many SCM solutions have been 

developed addressing different applications like cable television (CATV) [1], radio 

over fibre [2], broadband point to point links [3], access networks [4] or local area 

networks [5].  

 In all these applications, multiple optical SCM channels can be potentially 

combined in a WDM scheme increasing the capacity and the flexibility of the 

network [6]. Usually, an OSSB implementation of each optical channel is performed 

(either with dual drive Mach Zehnder modulators (DD-MZM) [7] or with optical IQ 

modulators (OIQM) [8]), as a method to eliminate dispersive fading [9]. A generic 

direct detection WDM/SCM/OSSB network scheme where optical channels can be 

added, removed and interchanged by optical add drop multiplexers is illustrated in 

Figure 4.1. 

4.1.2 Advanced Implementation 

Using the generic scheme as a starting point, increased spectral efficiency is 

possible by ensuring a narrower allocation of optical channels. Such implementation 
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Figure 4.2 Cost and spectrally efficient WDM/SCM/OSSB scheme. Each optical 

channel composed of one subcarrier. Crosstalk due to the imperfect OSSB signals. 
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would only be accompanied with optimum system performance when a high value of 

SSR is ensured at the optical transmitter, as the remnants of the suppressed band will 

interfere with the subcarriers of the neighbouring optical channel.  

In practice, SSR is limited by the imbalances and the extinction ratio of the 

optical modulators [10]. An SSR of 13 dB was achieved directly with a DD-MZM in 

[3]. Larger SSR values, up to 28 dB, have been reported but using additional and 

costly optical filters [11, 12].  

A spectrally efficient WDM/SCM/OSSB transmitter is illustrated in Figure 4.2. 

No additional filters are employed, which translates into a lower cost 

implementation. The performance of the multichannel system, in comparison with a 

single wavelength transmission, is impaired due to the crosstalk associated with the 

imperfect SSR.  

4.1.3 Scope 

 This chapter investigates the viability of the described advanced 

implementation using state of the art discrete optical IQ modulators. The incurred 

penalties in performance generated by the residual bands from the neighbouring 

channel are explored.  

 As it has been explained in Chapter 2, an all-analogue real-time SCM/QPSK 

scheme was designed for the experiments. Higher order modulation formats would 

require demanding signal processing in the receiver [13] with the consequent penalty 

in the power consumption and latency [14]. The presented all-analogue approach can 

offer a good trade-off between spectral efficiency and power consumption while 

using low-cost off-the-shelf microwave components. Simultaneously, moderate-to-

medium transmission distances (tens or even hundreds of km) could be achieved due 

to the combination of SCM and SSB technology [3]. Therefore, the proposed 

multichannel electro-optical transceiver would be suitable in metro/access networks 

or in digital radio over fibre systems [15]. 

4.2 Sideband Suppression Ratio 

 This section shows that the SSR that is directly achievable with MZM based 

optical modulators is equal to the Extinction Ratio (ER). For completeness, this is 

proven for both DD-MZMs and OIQMs. The following analysis is simplified 
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assuming the only impairment in the modulator is the splitting ratio of the electrical 

field at the input γ. In all the cases, lossless optical modulators are considered. 

4.2.1 Extinction Ratio 

 In the defined conditions, from section 1.3.2.2, the electric field at the output 

of a standard MZM can be written as: 
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The peak and null fields will be given by: 
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The ER is given by the power ratio between the peak and the null cases: 
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It can be easily derived that the same ER would be obtained for a DD-MZM and for 

an OIQM in which the only impairment is the splitting ratio at the input γ. 

4.2.2 Dual-Drive MZM 

 In the defined conditions, and from section 2.3.2.3, the electrical field at the 

output of a DD-MZM configured to produce OSSB is given by: 
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Following the mathematical procedure described in section 2.3.2.3, and for low 

amplitude modulating signals, this electric field can be approximated as: 
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Assuming the modulating signal and its HT are composed of a single tone: 
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Using cos(A)cos(B)=0.5(cos(A+B)+cos(A-B)) and sin(A)sin(B)=-0.5(cos(A+B)-cos(A-B)), 

the amplitude of the components of interest Ep located at (ωc+Ω) and (ωc-Ω) can be 

obtained. Substituting m=πVAC/2Vπ: 
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Therefore, the SSR defined as the power ratio between the desired and the rejected 

sidebands, is equal to the extinction ratio:    
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4.2.3 Optical IQ Modulator 

 In the defined conditions, and from section 2.3.2.4, the electrical field at the 

output of an OIQM configured to produce OSSB is given by: 
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Following the mathematical procedure described in section 2.3.2.4, and for low 

amplitude modulating signals, this electric field can be approximated as: 
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 (4.10) 

 

With the same analysis developed above from eqs. (4.6) to (4.8), it can be readily 

seen that the SSR is again equal to the ER, regardless of the bias point Vb.  

 In the experiments, a state-of-the-art OIQM with a specified ER of >20 dB 

was employed. Accordingly, the SSR achieved experimentally was ≈20 dB. As it 

will be shown below, it was possible to verify that the cross-talk associated with the 

imperfect SSR of a neighbouring optical channel implies a penalty in performance 

but does not prevent data transmission.    

4.3 Multichannel Implementation 

 The experiment was performed with the setup presented in Figure 4.3, where 

optical BPFs of 2 nm at the output of every EDFA for ASE suppression have been 

omitted for simplicity. The setup was largely based on the components detailed in 
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 Figure 4.3 Setup to emulate a WDM/SCM/OSSB system consisting of an optical IQ 

modulator and five QPSK subchannels per wavelength. 
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section 2.5. The key parameters will be briefly reviewed and the new concepts will 

be described. 

4.3.1 Electrical Features 

 The RF transmitter consisted of five inexpensive off-the-shelf MMIC IQ 

mixers that were employed to up-convert ten uncorrelated bit streams. The binary 

signals had been previously filtered to reduce their spectrum to approximately the 

first lobe of a sinc function. The performance of the RF IQ mixers was not optimized 

for spectrally dense broadband signals. As the measurements attempted to isolate the 

effects of imperfect SSR, short PRBS of 127 bits were employed. The nominal rate 

of every bit stream was 1.35 Gbit/s making a total rate of 13.5 Gbit/s (2.7 Gbit/s on 

each RF subcarrier). The local oscillators were located at even harmonics of the data 

rate (from 5.4 to 16.2 GHz) such that there was no guard band between electrical 

subchannels. After combining the five subchannels, a 90º hybrid coupler was used to 

generate the HT pair required by the OIQM to achieve OSSB. The RF receiver 

performed the splitting and demodulation of the electrical subchannels. The same 

family of IQ mixers were employed. After applying a LPF to the recovered baseband 

signals, performance was measured with a BERT.  

 

 

 
Figure 4.4 Two optical SCM/OSSB channels separated by 20 GHz. An SSR of more 

than 20 dB can be observed in channel 1. 
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4.3.2 Optical Features 

 From the optical perspective, the equipment employed as a light source 

incorporated two tunable lasers, which were coupled to obtain two wavelengths in 

the same optical fibre. The electro optical conversion was performed with the 

previously described state of the art OIQM [16]. Its properties allow the design of a 

small low-power stable SCM/OSSB transmitter that can achieve a good SSR without 

the need for additional optical filters in the transmitter. The overall rms OMI 

employed in the experiments was 7 % with respect to Vπ, ensuring negligible NLD. 

The average optical power at the output of the transmitter EDFA was 5.5 dBm. A 

tunable filter was used to select one of the optical channels in the receiver. A VOA 

was employed to emulate additional optical fibre losses. The received EDFA was 

employed in constant output power mode, ensuring 3 dBm at the input of the photo-

receiver regardless the incoming average optical power. 

 For a separation between optical carriers of 20 GHz, the optical spectrum at 

the output of the transmitter EDFA is shown in Figure 4.4. Two optical SCM/OSSB 

channels are present and every channel and subchannel is numbered. On the optical 

channel 1 it can be seen that an SSR of more than 20 dB was achieved directly with 

the optical modulator. Simultaneously, that channel was experiencing interference 

from the imperfectly suppressed sideband of the optical channel 2. Despite the fact 

that only one transmitter was used in the experiment, data and interference were 

always uncorrelated regardless of the wavelength separation. This occurred because 

the interfered data and the interference belonged to opposite sidebands and were 

modulated by independent lasers, which translated into an arbitrary phase shift 

between them.  

 A real WDM system would consist of a number of transmitters with 

independent optical modulators. Typically, two different SCM channels would be 

generated in different fibres and then they would be coupled and amplified. The 

quality of the emulation of a real WDM configuration with the presented setup can 

be discussed observing Figure 4.4. The peaks of the imperfectly suppressed band 

were above the noise floor generated by the EDFA. This fact indicates that the 

described simpler implementation is suitable for the purpose of the experiment: 

measure the penalty of performance associated with the imperfect SSR.   
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4.4 Measurements 

4.4.1 Overall Performance Degradation 

 Firstly, the influence of the imperfectly suppressed band on the performance 

of the neighbouring channel was measured. The two optical channels were separated 

by 25 GHz to emulate the ITU grid [17] and to relax the selectivity of the optical 

filter at the receiver. Overall performance was measured for optical channel 1 in two 

different situations: with and without the interference from the second optical 

channel. In the second case, instead of switching off the interfering channel, it was 

moved 100 GHz away so that the gain of the EDFA at the transmitter remained the 

same for both channels. With this method it was ensured that the average optical 

power at the input of the pre-amplified receiver PIN did not change in both situations 

and the measurements with and without interference could be directly compared. For 

the two optical channel transmission system, Figure 4.5 shows the first channel after 

the optical filter in the receiver. The optical carrier of the interfering channel was 

reduced to ≈-40 dBc with respect to the desired optical carrier.  

 

 
Figure 4.5 Optical spectrum after filtering the two channel SCM/OSSB signal in the 

receiver. The optical channels were separated 25 GHz. 
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 Measurements were focused on subchannels 1.1 and 1.4. With the 25 GHz 

channel separation, subchannel 1.1 was not interfered by any unsuppressed residual 

image. Consequently, no penalty in performance was expected in comparison to the 

case where the channel separation was 100 GHz. The expected behaviour was 

confirmed by the measured BER versus PIN curves which are illustrated in Figure 
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Figure 4.6 Performance measured at subchannel 1.1 when the two transmitted 

optical channels are separated 25 and 100 GHz. 
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Figure 4.7 Performance measured at subchannel 1.4 when the two transmitted 

optical channels are separated 25 and 100 GHz. Threshold for a 7% FEC. 
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4.6. In contrast, as it can be observed in Figure 4.7, subchannel 1.4 was interfered by 

the remnants of the suppressed band of the neighbouring channel with a 25 GHz 

channel separation. Considering a hard decision FEC with 7% overhead, the penalty 

due to this interference would be ≈2 dB at the lowest sensitivity. Therefore, there is a 

trade-off as spectral efficiency can only be maximized at the expense of reducing the 

maximum reach of the link in at least 10 km. It should be noted that better overall 

receiver sensitivities would be achieved by applying carrier suppression in the 

transmitter, as shown in Chapter 3. Relative performance differences between 

subchannels 1.1 and 1.4 were a consequence of the different behaviour of the IQ 

mixers in different RF bands. 

4.4.2 System Optimization 

 Another test was performed to study the influence of the frequency position 

of the unwanted sideband with respect to the desired signal. The optical channels 

were initially separated by 27.2 GHz and this separation was increased in frequency 

steps of approximately 300 MHz, changing the relative location of the interference. 

The maximum additional separation was 2.3 GHz, covering practically one sideband 

of an up-converted subchannel. The performance of subchannel 1.4 was measured 

 

 
Figure 4.8 Performance measured at subchannel 1.4 when the interfering optical 

channel is located at different frequencies. Inset shows the optical spectrum of 

subchannels and interference for the case of minimum BER. 
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maintaining a PIN of -12 dBm in all the cases. Figure 4.8 illustrates the obtained BER 

measurements as a percentage with respect to the worst case (BER=9e-8). The 

minimum BER corresponds to the situation in which the maximum peak of the 

interference from subchannels 2.4 and 2.5 coincides with the minimum level of the 

subchannel 1.4, as can also be observed in the inset of Figure 4.8. The maximum 

values of BER are obtained in the two extremes of the picture, when the maximum 

residual interference from subchannels 2.4 or 2.5 coincides approximately with the 

peak of subchannel 1.4.  

4.5 Conclusions 

SCM is used in many applications employing analogue and digital 

implementations. The technique can be combined with WDM to increase the 

flexibility and the capacity of a network. To allocate closer optical channels, 

achieving improved spectral efficiency, OSSB signals are required but the 

performance is limited by the sideband suppression ratio obtained at the electro-optic 

transmitter.  This chapter has presented a WDM/SCM/OSSB link, based on a state of 

the art optical IQ modulator, where the penalty associated with the residual sideband 

from the neighbouring optical channel was studied. A suppression ratio of more than 

20 dB was achieved directly with the optical modulator without requiring additional 

optical filters, and a penalty of less than 2 dB in overall performance of the 

WDM/SCM system was measured due to the associated interference. It can be 

concluded that, despite the imperfect behaviour of optical modulators generating 

OSSB signals, a close allocation of WDM channels is feasible and viable avoiding 

expensive optical filters in the transmitter. Additionally, a fine adjustment of the 

frequency separation between optical channels can also be employed to ensure 

optimum performance in these systems, making the peaks of the residual interference 

coincide with the nulls of the desired subchannels. 

Moreover, the described direct detection WDM/SCM setup is unique in several 

senses. Firstly, the use of MMIC IQ mixers demonstrates that a cost effective 

practical deployment with integrated off-the-shelf analogue components is possible. 

Secondly, the employment of optical IQ modulators allows the implementation of 

colourless OSSB transmitters with partial optical carrier suppression without 

requiring optical filters in the transmitter. Finally, and despite the simplified 

transmitter lacking optical filters, it has been proven that spectral efficiency is not 
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compromised by a closer allocation of optical channels. These properties can 

motivate the application of this solution when flexibility and moderate transmission 

length are required but cost, power consumption, spectral efficiency and the future 

scalability determine the technology selected to be deployed. Metro/access networks 

or digital radio over fibre systems can leverage these features. 
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Chapter 5 

5 Orthogonal Subcarrier Multiplexing 

 This chapter studies the key aspects of an optical link which transmits an 

SCM signal composed of orthogonally overlapping broadband subchannels. The 

work is presented in the context of creating an all-analogue real-time multi-gigabit 

orthogonal frequency division multiplexing (OFDM) electro-optical transceiver for 

short/middle-range high-capacity data networks. Passive microwave filters are used 

to perform the pulse shaping of the bit streams, allowing orthogonal transmission 

without the necessity for digital signal processing (DSP). Accordingly, a cyclic 

prefix that would cause a reduction in the net data rate is not required. An experiment 

consisting of orthogonally spaced 2.7 Gbaud QPSK subchannels demonstrates that 

the spectral efficiency of traditional DSP-less SCM links can be potentially doubled. 

Furthermore, a technique to synchronize the electrical subcarriers employing a lower 

number of components than previous solutions is demonstrated on a 50 km link. 

5.1 Spectrally Efficient Multicarrier Modulation 

The increasing demand for capacity in optical links has motivated the 

development of more spectrally efficient transmission schemes during recent 

decades. Recently, this tendency has been enhanced with the proliferation of data 

centres, which have stimulated a growing research effort in optical interconnects and 

its associated technologies [1]. Multicarrier systems have proved to be relevant 

solutions, as they divide the available transmission bandwidth into narrower-band RF 

and optical subsystems that can be processed independently. This section reviews the 

key multicarrier techniques that have been applied to the design of spectrally-

efficient electro-optical transceivers. These schemes can be implemented relying on 

electrical and/or optical signal processing. Although both options will be described in 

the text, this work focuses on the configurations based on electrical signal processing 

as they are more realistic for practical and stable implementations. For those 

realizations, examples of typical spectra can be found in Figure 5.1. 
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5.1.1 Nyquist Pulse Shape    

5.1.1.1 Ideal Filters for Communications 

For digital modulation at a symbol rate B Gbaud, a simple square shape pulse 

translates into a sinc spectrum that is not limited in bandwidth and whose main lobe 

extends to B Hz. Unavoidably, transmission in a finite bandwidth produces distortion 

in the spectrum and consequently in the received signal pulses [2]. Nyquist pulses 

represent shapes that are not limited in time but whose spectra are confined in a 

certain bandwidth, which allows transmission free from Inter Symbol Interference 

(ISI) [2]. The most employed Nyquist pulse is called Raised Cosine (RC) and, for a 

given symbol period Ts (symbol rate B=1/Ts), its impulse response hRC(t) and transfer 

function HRC(f) are given by the following expressions [3]:          
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Figure 5.1 Typical electrical and optical spectra obtained in multicarrier spectrally-

efficient electro-optical transceivers based on electrical signal processing.  
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As can be observed in Figure 5.2, the roll-off factor β, defined in the range 0≤β≤1, 

determines the bandwidth of the pulse, fBW, such that HRC(f)=0 for f>fBW: 
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Figure 5.2 Impulse response and transfer function of raised cosine pulse. 
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 The RC represents an individual pulse that can be transmitted in a confined 

bandwidth. In a communication system, it is typical to transmit symbols with a given 

shape and filter the received signal to remove the out-of-band interference and noise. 

For such a scheme, the ideal matched filter that is applied in both the transmitter and 

the receiver must meet the following properties: confined bandwidth and ISI 

cancellation in the receiver. It is obvious that an ideal matched filter can be 

calculated as the square-root of the transfer function of a Nyquist pulse. For the RCs, 

the associated Square Root Raised Cosine (SRRC) filters are given by [4]: 
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The SRRC characteristics are illustrated in Figure 5.3. Note that for the RC and 

SRRC pulses, the case β=0 represents a sinc pulse in time with a square spectrum.  

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

0.5

1

1.5
Square Root Raised Cosine Impulse Response

h
S

R
R

C
(t

) 


T
s
 

Normalised time (t/T
s
)

 

 

=0

=0.5

=1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.5

1

Square Root Raised Cosine Transfer Function

H
S

R
R

C
(f

)/
T s

Normalised frequency (fT
s
)

 

 =0

=0.5

=1

 

 
Figure 5.3 Impulse response and transfer function of square root raised cosine pulse. 
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 From the filters described above, it is obvious that the maximum spectral 

efficiency is achieved by making beta small, ideally β=0. This allows transmitting a 

baseband signal with a symbol rate B Gbaud in a bandwidth equal to B/2 Hz. If the 

signal is transmitted in an RF or an optical carrier, the minimum bandwidth is 

obviously double, B Hz.  

5.1.1.2 Nyquist Subcarrier Multiplexing 

In Nyquist SCM, an electrical signal composed of one or several tightly 

allocated subchannels is generated using Nyquist baseband pulses with low beta 

factors. The electrical signal is then modulated onto an optical carrier, transmitted 

through fibre, and received with direct detection [4-6] or, potentially, coherent 

detection [7]. Typical Nyquist SCM/OSSB spectra for the single optical carrier and 

the WDM cases are illustrated in Figure 5.1, where the presence of the optical carrier 

is strictly necessary only for direct detection. Focusing on the electrical signal 

processing, the generation of RCs and SRRCs filters with very low beta factors is not 

easily achievable with microwave filters, as an abrupt roll-off and constant group 

delay are not compatible [8]. Accordingly, Nyquist SCM is implemented with DSP 

[9], with the consequential penalties in power consumption and latency in high-speed 

systems. 

5.1.1.3 Nyquist Wavelength Division Multiplexing 

 Nyquist implementations based on optical signal processing are also possible. 

An optical filter with an ideally square Nyquist transfer function can be used to shape 

the output of an optical modulator [10]. These implementations use high baseband 

symbol rates in comparison with electrically based multicarrier processing and, 

accordingly, are less tolerant to dispersion. Lower symbol rates would require a high 

number of optical modulators. Hence, electrical processing is more realistic for 

practical Nyquist realizations.      

5.1.2 Orthogonal Frequency Division Multiplexing 

The term OFDM implies the transmission of orthogonally overlapping 

subchannels in the frequency domain. While Nyquist SCM relies on transmitting 

long sinc-shaped time pulses featuring confined non-overlapping square spectra, 

OFDM follows the opposite approach. Baseband square symbols are employed 

obtaining a multicarrier spectrum composed of orthogonally overlapping sinc 

functions.  
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5.1.2.1 Fast Fourier Transform 

The most efficient algorithms for the modulation and demodulation of an 

OFDM signal are the Inverse Fast Fourier Transform (IFFT) and the Fast Fourier 

Transform (FFT) respectively. For a realization with N subcarriers, if X[k] are the N 

complex values to be transmitted in one OFDM symbol and x[m] represents the 

associated electrical signal, the IFFT and the FFT perform the following operations 

[11]: 
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5.1.2.2 OFDM Subcarrier Multiplexing  

OFDM is a popular multiplexing technique and is mostly implemented 

relying on DSP. Typically, a high number of narrowband subchannels is employed, 

enhancing the tolerance to dispersion, e.g. 512 subchannels of ≈5 MHz in [12]. For 

high-speed systems the signal x[m] incorporates high frequency components and 

high-performance DACs and ADCs are necessary to perform the electrical 

processing [11]. Note that the signal x[m] is complex. The real and the complex parts 

represent respectively the in-phase and quadrature components that are modulated 

onto the optical carrier. OFDM can be combined with both direct detection (DD-

OFDM) [12] and coherent detection (CO-OFDM) [13]. Typical OFDM/OSSB 

spectra for single optical carrier and WDM cases are illustrated in Figure 5.1. 

Due to transmission over a dispersive medium such as an optical fibre, 

different subchannels reach the receiver with different relative delays. As a 

consequence, the duration of each received OFDM symbol is longer than in the 

original. This effect is illustrated for a simplified case consisting of two subchannels 

in Figure 5.4(a), and translates into an undesired interference due to time overlapping 

between different OFDM symbols. To solve this problem, each OFDM symbol is 

stretched in the transmitter by appending a copy of the last samples at the beginning 

of the symbol, as illustrated in Figure 5.4(b). This appended portion of the symbol is 

referred to as cyclic prefix and, obviously, implies a penalty in the overall bit rate. 

The time duration of the cyclic prefix must be equal to or greater than the maximum 
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delay spread generated by the optical fibre, which is proportional to the fibre length. 

With the cyclic prefix, it is ensured that the FFT window only covers components 

belonging to the same OFDM symbol, as can be observed in Figure 5.4(c).    

5.1.2.3 All-optical OFDM / Coherent WDM 

OFDM based on optical signal processing has also been demonstrated. One 

solution consists of implementing the FFT with optical components [14]. This 

method is known as all-optical OFDM. Another alternative that is equivalent to 

OFDM but avoids the (I)FFT relies on using banks of filters with square impulse 

responses in both the transmitter and the receiver [15]. A variant of this technique, 

referred to as Filtered OFDM in signal processing [15], uses time limited impulse 

responses with smoother transitions than the square pulse. Following this approach, 

optical OFDM is achieved by a careful selection of the combined effect of optical 

and electrical filters [16, 17]. This technique has been demonstrated with direct 

detection and coherent detection [16], and in the second case is usually known as 

Coherent WDM [18]. The main disadvantage of the described solutions is that the 

optical carriers cannot be independent. They must be coherent in the sense that the 

relative phase shifts between them remains constant. While this condition is easily 

achievable with electrical subcarriers, in the optical domain it is difficult to obtain 

and requires stable optical frequency combs [14].     
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Figure 5.4 OFDM symbol transmission in dispersive media: (a) interference due to 

dispersion, (b) cyclic prefix (CP) introduction, (c) operation free of interference.  
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5.1.3 Filter Bank Multicarrier                     

Filter Bank Multicarrier (FBMC) is different to the previous techniques. In 

FBMC, orthogonal subchannels are modulated and demodulated using SRRC or 

other Nyquist pulses and filters (see section 5.1.1.1) in the transmitter and the 

receiver [15]. As a consequence, and unlike OFDM, the associated spectrum is 

composed of overlapping subchannels that individually occupy a confined 

bandwidth.  

FBMC has been mostly implemented in DSP based systems. The most 

efficient algorithms use the (I)FFT plus additional filtering to adapt the shape of the 

spectra [19]. These concepts have been employed in the design of electro-optical 

FBMC transceivers [20, 21]. Examples of spectra for this solution are also illustrated 

in Figure 5.1 for the case β=1. Note that FBMC implemented with SRRC shapes of 

β=0 is equivalent to Nyquist SCM. In FBMC, as subchannels are only overlapped by 

the neighbouring ones, the tolerance to dispersion is higher and the cyclic prefix can 

be avoided [20, 21]. To the best of the knowledge of the author, all-optical FBMC 

implementations have not yet been demonstrated. 

Unlike Nyquist SCM and OFDM, FBMC is well-suited for a broadband 

spectrally-efficient all-analogue electrical implementation. Nyquist SCM requires 

very abrupt filters. In OFDM, the demodulation of a particular subchannel is 

influenced by all the others. FBMC presents a good trade-off as the required 

microwave filters are not as demanding as in Nyquist SCM, and the demodulation of 

a particular subchannel is only influenced by the adjacent ones. In the rest of the text, 

the term Orthogonal Subcarrier Multiplexing (OSCM) will be employed to designate 

broadband electro-optical transceivers consisting of orthogonally overlapping 

subchannels and based on analogue signal processing. A similar concept was first 

simulated in [22]. Section 5.2 will describe the advantages of an OSCM transceiver 

in comparison with a traditional DSP based OFDM scheme. Section 5.3 will detail 

the implementation of FBMC with microwave components as a method to design an 

OSCM transceiver. Section 5.4 will demonstrate an experimental broadband OSCM 

scheme by relying on the excellent stability and low phase noise of microwave 

oscillators, the frequency selectivity of microwave filters, and the good performance 

of inexpensive integrated microwave modulators. Finally, section 5.5 will present a 

novel method to synchronize subcarriers in the receiver, valid for SCM and OSCM, 

which employs a lower number of components than previous solutions. 
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5.2 Motivation 

Research on all-analogue OSCM transceivers is motivated from two different 

perspectives. The main weakness of traditional all-analogue SCM [23] is the spectral 

efficiency. This weakness is overcome with OSCM, while removing the 

disadvantages of DSP. OSCM also allows higher values of subcarrier spacing, with 

relevant properties for optical links. These concepts are described in detail below.  

5.2.1 Electrical Processing 

 Traditional DSP-based OFDM has become the most popular spectrally 

efficient multicarrier technique and, accordingly, it has been proposed for short reach 

optical networks, including in-building networks, access networks, mobile back-

haul/front-haul and data centres [24]. Figure 5.5 illustrates an optical Network 

Interface Card (NIC) comparing two different implementations: DSP-based OFDM 

and OSCM. The interface between a computing system and the NIC is called 

Peripheral Component Interconnect Express (PCI express), which currently supports 

up to 16 digital lines with peak data rates of 8 Gbit/s per line [25].  

OFDM, as shown in Figure 5.5, requires the computation of the (I)FFT. 

Those operations are complicated and integrated circuits need to parallelize the 

incoming data to reduce the rate per line from Gbit/s to Mbit/s in the transmitter [26]. 

Equivalently, the opposite multiplexing, from Mbit/s to Gbit/s, is required in the 

receiver. High-speed DACs and ADCs are necessary to achieve high transmission 

rates. Finally, a data driver and an amplifier are required in the transmitter and the 

receiver before or after the electro-optic and the opto-electronic converters (E/O and 

O/E). The use of narrowband subchannels is an advantage to compensate high values 

of accumulated fibre dispersion in long-haul optical communications systems [12], 

but the implementation of the (I)FFT in short reach systems might be justified only 

when spectral efficiency has to be maximized regardless of any penalty in resource 

demand and additional complexity [27]. Even for low modulation orders, there are 

three limitations in these implementations that cannot be avoided. Firstly, due to the 

multicarrier sinc spectra, a small amount of dispersion between any two subchannels 

impairs all subchannels. As a result, a cyclic prefix that reduces the net rate is 

required for the transmission in any dispersive channel. Secondly, the power 

consumption is high due to the demanding DSP [28] and increases due to the data 

interfaces and the ADCs and DACs [29]. Finally, a high number of subchannels 
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translates into a very high peak to average power ratio, with the corresponding 

penalty in the dynamic range and the power consumption [30]. 

In contrast, OSCM can potentially enable a simpler orthogonal 

implementation with several advantages. Figure 5.5 shows the typical components of 

a broadband SCM system [23]. Baseband data can be directly processed with a LPF 

and then used to modulate an RF subcarrier. All the subchannels are combined and 

multiplexed in a single signal that is amplified and fed to an E/O module. The 

opposite processing takes place in the receiver. The following section shows the 

particular conditions that must be met to employ orthogonal subchannels with this 

analogue implementation, but several advantages can already be deduced. As the 

number of subchannels is lower, so is the PAPR. No DSP, ADC’s, DAC’s, or 

demanding algorithms are required, which emphasizes the low power consumption. 

As only analogue components are used, latency is reduced to a minimum. In OSCM, 

unlike OFDM, the dispersion suffered by one subcarrier only impairs the adjacent 

subchannels, so that the absence of a cyclic prefix maximizes the data rate while the 

penalty in performance is negligible for short transmission distances. Moreover, the 

baseband incoming signals have a data rate that is directly compatible with 
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broadband RF IQ mixers [31], avoiding data rate changes and interfaces. The system 

architecture used here is based largely on amplifiers and IQ mixers, allowing an 

integrated low cost, low power implementation with MMIC technology [32, 33].  

In general, it can be concluded that, depending on their size and their targeted 

market, different subsystems inside optical networks can present totally dissimilar 

requirements of spectral efficiency, power consumption, and latency. A purely 

analogue OSCM system can potentially offer the best trade-off between those key 

parameters in certain real-time applications. 

5.2.2 Subcarrier Spacing 

Long haul coherent communications are limited by fibre nonlinearities [34]. 

Several independent studies have concluded that the optimum subcarrier spacing for 

coherent communications is in the range of 2-10 GHz [35-38], and, obviously, 

increased spectral efficiency would be obtained with orthogonal subchannels. The 

cost of implementing such subcarrier spacing with all-optical processing is 

prohibitive as it would require too many optical modulators. Similarly, achieving that 

subcarrier spacing with DSP is not optimum as the solution would be power hungry 

and costly, requiring very high-speed DACs and ADCs. In contrast, microwave 

components and MMIC technology can perfectly (de)modulate broadband 

subchannels at high frequencies with low cost. It can be concluded that all-analogue 

OSCM is a potential candidate to implement long-haul coherent systems. This work 

demonstrates direct detection OSCM and can be seen as a starting point towards 

coherent OSCM, in line with previous all-analogue coherent SCM implementations 

[39].     

5.3 Microwave FBMC for Electro-Optical Transceivers 

 This section analyses the key concepts involved in the design of a broadband 

OSCM electro-optical transceiver based on FBMC theory. 

5.3.1 Generic Electrical Scheme 

5.3.1.1 Block Diagram 

 According to FBMC theory, orthogonal QAM transmission can be 

accomplished when the following three conditions are met [15, 40]. Firstly, every 

pair of baseband data streams, which will modulate a particular subcarrier, must 
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present a relative time delay equal to half a bit period. Secondly, the delayed and 

non-delayed baseband data streams that form a pair must act as the in-phase and the 

quadrature components alternatively in different subcarriers. Finally, the baseband 

digital data streams at the transmitter must be filtered in order that every bit has the 

shape of a SRRC pulse, and the baseband filter at the receiver must present the 

matched SRRC response. When these conditions are ensured, each received 

baseband signal will present a sampling point in the middle of the bit period that is 

free of Inter Symbol Interference (ISI) and Inter Channel interference (ICI).  

Implementing the described conditions, a back to back FBMC scheme consisting of 

three QPSK subchannels, where the bit period is T and the angular data frequency is 

ωr, can be observed in Figure 5.6(a). The shape of the transmitted spectrum for the 

case of SRRC filters with β=1 is illustrated in Figure 5.6(b). 

5.3.1.2 Component Delays 

The delays that can be found in the transmitter in any real microwave 

implementation are also included in Figure 5.6(a). For the i
th

 frequency band, where i 

is an integer that can present three consecutive values (k-1, k, k+1) and whose 

subcarrier frequency is i∙ωr: the term dAi accounts for any delay of the baseband pair 

prior to the IQ mixing, dBi represents the delay after the mixing and before the 

overall combination of subchannels, and φi is the phase shift in the LO with respect 

to the ideal case. The LOs at the receiver in Figure 5.6(a) are locked to the incoming 

signal, as in any FDM transmission system. Without losing generality, the delays in 

the channel or in the receiver have not been included. 

When all the delays (dAi, dBi, and φi) are zero, as in an ideal case or in a 

completely digital implementation, the received eye diagrams are free of ISI and ICI, 

as can be observed in the simulated results obtained with MATLAB and shown in 

Figure 5.6(c) for the case β=1. Since the central subchannel has more interfering 

neighbours than the others, the phase margin of its associated eye diagram is 

reduced, while still remaining perfectly open at the sampling instant. The number of 

subchannels could be extended to any practical number resulting in equivalent eye 

diagrams for the extreme and intermediate subchannels, presenting an optimum 

sample point free of ISI and ICI. In any practical implementation, different IQ mixers 

and/or PCB tracks can present different values of dAi and dBi. Despite these 

impairments, equivalent perfect system functionality with a sampling instant free of 

ISI and ICI can be achieved by adjusting only the phases of the LOs φi: 
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Figure 5.6 (a) FBMC scheme with 3 orthogonal QPSK subchannels and arbitrary delays 

in every RF band at the transmitter, (b-c) spectrum and received eye diagrams for β=1. 
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The mathematical derivation of eq. (5.8) is presented in the Appendix C. 

5.3.1.3 Practical Implementation 

It can be concluded that, in a real implementation, the phases in the 

transmitter can be aligned by simply inserting appropriate fixed delays in the 

baseband signals (T/2 shift inside each pair) and in the LOs.  In the receiver, the LOs 

have to be locked to the phase of the incoming signal, as in any SCM link (see 

section 2.2). This can be accomplished with pilot tones plus PLLs [41]. As all the 

LOs are harmonically related, the synchronization can be simplified using a single 

pilot tone plus PLLs [42, 43] or, potentially, a single PLL plus an electrical comb.  

In the bench experiments presented in section 5.4 to demonstrate OSCM, 

variable phase shifters were used in the LOs of the transmitter and the receiver to 

obtain maximum flexibility. In contrast, section 5.5 elaborates on the synchronization 

in SCM and OSCM links and proves a novel synchronization technique that requires 

a lower number of components than previous solutions.  

5.3.2 Microwave Orthogonality Filters 

 This section investigates custom and standard microwave filters that can be 

employed to implement a microwave FBMC link. A generic schematic of an all-
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Figure 5.7 Back-to-back microwave FBMC scheme. 
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analogue FBMC system consisting of three QPSK orthogonal subchannels is 

illustrated in Figure 5.7. It includes all the conditions described in the previous 

subsection where the ideal multipliers have been substituted by mixers.  

5.3.2.1 Ideal Conditions 

Any practical data source produces approximately square shapes instead of 

impulses, and the generated square bit sequences with rate r Gbit/s (period T s) yield 

SINCr(f) baseband spectra over frequency, f. The LPF transfer functions are denoted 

by LPFTX(f) in the transmitter and LPFRX(f) in the receiver. For every baseband 

component, the transfer functions of the transmitter, receiver and overall transmitter 

plus receiver are HTX(f), HRX(f), and HTRX(f) respectively. Ignoring the T/2 constant 

delays, these are: 
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Assuming that the LPF filters have constant group delay, ISI and ICI will cancel at 

the middle of the bit period in the received baseband signals when the following 

conditions are met [40]: 
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where RCr,β(f) is the raised cosine spectra of rate r GHz with roll-off factor β. Any 

value of β (0≤β≤1) meets the conditions. As this work is dealing with high 

frequencies and microwave filters, it is important to remark that the ideal 

performance can only be obtained when the return losses of the filters are also ideal 

(S11=0 and S22=0). In practice, the transfer functions, the group delay and the return 

losses are not perfect, and translate into impairments. Three different sets of filters 

are proposed and analysed below.  

5.3.2.2 Pseudo-Ideal Filters    

Both conditions stated in eq. (5.10) are perfectly met when HTX(f) and HRX(f) 

are SRRC filters, with transfer functions represented by SRRCr,β(f) where r is the data 
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rate in GHz and β the roll-off factor. Accordingly, sinc compensated and standard 

SRRC filters are the LPFs required in the transmitter and the receiver respectively: 
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Regardless of the value of β (0≤β≤1), perfect system functionality is obtained 

in FBMC. However, restrictions arise due to limitations in a microwave 

implementation. As shown in eq. (5.3), the frequency response of the associated 

SRRC filter extends from DC to fBW=0.5·r(1+β) GHz. If β was very low, the filter 

 

 
Figure 5.8 Ideal and achieved microwave SRRC filters for a rate of 2.7 Gbit/s where 

β=0.5 with and without sinc compensation: (a) amplitude response and (b) group 

delay compared with an ideal case where it is constant and equal to 1 bit interval. 
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would be very abrupt, making it more difficult to compensate group delay [8]. If β 

was very high, the compensation of the sinc response at the transmitter would be 

more difficult because the sinc function evaluated at r GHz is equal to zero. For this 

work, microwave SRRC2.7,0.5(f) and SRRC2.7,0.5(f)/SINC2.7(f) filters were designed for 

a rate of 2.7 Gbit/s. In practice, during the filter design process, a value of β=0.5 was 

found to be suitable, as it was conducive to physically realizable filters with almost 

perfect frequency response, while the impairments in the group delay did not 

compromise the achievable eye diagrams. The frequency response and the group 

delay of the developed filters is shown and compared with ideal implementations in 

Figure 5.8. Although the theory of controlled group delay filter design has been 

understood for several decades, the ability to manufacture these filters over the 

bandwidth required here (2.7 GHz) has only become possible more recently with 

high quality, low tolerance lumped components and skilful use of Computer Aided 

Design (CAD) environments. For this work, these designs were outsourced to a 

professional filter design company, BSC Filters Ltd. 

The microwave FBMC system of Figure 5.7 was simulated with the software 

“Advance Design System (ADS)” including: the achieved SRRC2.7,0.5(f)/SINC2.7(f) 

filters in the transmitter, the achieved SRRC2.7,0.5(f) filters in the receiver, ideal 

devices for the rest of the components (IQ mixers, power combiners and splitters), 

and binary signals employing square shapes and PRBS of 2
15

-1 bits. The six PRBSs 

were decorrelated by adding different delays at the output of each data source. The 

received eye diagram obtained for one component allocated in the intermediate 

subchannel can be observed in Figure 5.9. The contributions coming from the desired 

 

Figure 5.9 (a) Simulated received eye diagram with the achieved SRRC filters for 

intermediate subchannel and contributions from (b) desired signal and (c) ICI. 
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signal and the ICI are also illustrated. It can be concluded that a good ICI 

cancellation is obtained while the imperfections of the filters, mainly associated with 

the non-flat group delay, translate into ISI. The physical filters were also tested 

experimentally as described in section 5.4.1.   

With β=0.5, these filters constrain the bandwidth of a 2.7 Gbaud baseband 

signal to ≈2 GHz, instead of the typical 2.7 GHz of the main lobe of a sinc function. 

Moreover, after modulating an RF carrier, the resultant bandwidth is ≈4 GHz instead 

of 5.4 GHz. Therefore, this solution employs custom filters, but it relaxes the 

specifications required from the microwave IQ mixers. 

5.3.2.3 Bessel Filters  

As the SRRC filters are difficult to design in the microwave domain, FBMC 

implementations with standard filters are interesting. Typically, microwave wired 

communications links make use of Bessel filters because of the maximally flat group 

delay [44]. The transfer function of a Bessel filter with a 3 dB cut-off frequency of   

fc GHz and order n is denoted as Bfc,n(f). A solution based on off-the-shelf Bessel 

filters was investigated. For a baseband rate, r, of 2.7 Gbit/s, the proposed solution 

consists of using a filter that passes the first lobe of the sinc in the transmitter and 

two cascaded Bessel filters of fourth order with fc located at ≈75% of the data rate, 

B2,4(f),  in the receiver: 
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 Figure 5.10 Normalized responses of transfer functions and comparison with the ideal 

for 2.7 Gbit/s and solutions based on (a) Bessel filters and (b) FIR filters.  
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The previous transfer functions are illustrated in Figure 5.10(a), where they 

are also compared with the conditions stated in eq (5.10).  The overall transfer 

function HTRX(f) is similar to a raised cosine spectrum RC2.7,1(f). In contrast, the 

baseband transfer functions in the transmitter and the receiver are different. It can be 

concluded that good ISI cancelation would be achieved while the main source of 

distortion would be generated by ICI.  

The expected behaviour was confirmed with a simulation performed as 

described in the previous subsection. In the receiver, the model of a commercially 

available absorptive Bessel filter was employed. It matched the B2,4(f) response with 

an error smaller than 1 dB till 3 GHz and its group delay ripple was ≤ 20 ps till      

2.3 GHz. In the transmitter, there are many filters that could be used as the proposed 

solution relies on passing the first lobe of the sinc. For consistency with the 

experimental results presented in section 5.4.1, the simulation made use of the filter 

Minicircuits model VLF-2500. This filter has the 3 dB cut-off frequency at         

3.075 GHz and a group delay ripple of 100 ps till 2 GHz. The received eye diagram 

and the contributions from the desired signal and the ICI for one component of the 

middle subchannel are shown in Figure 5.11. As expected, a good cancellation of ISI 

is obtained and the main impairments are generated by ICI. It should be noted that 

the use of Bessel filters in the transmitter (namely B4,4(f)) was also tested achieving 

similar performance. Although this solution can use standard commercially available 

filters, it occupies more bandwidth than the custom designs and performance is 

limited by ICI. 

 

Figure 5.11(a) Simulated received eye diagrams with the available Bessel filters for 

intermediate subchannel and contributions from (b) desired signal and (c) ICI. 
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5.3.2.4 Finite Impulse Response Filter 

This solution uses a simple transmission-line based Finite Impulse Response 

(FIR) filter in the receiver. This FIR filter can be implemented using only a resistive 

splitter, two transmission lines that differ in length and a resistive combiner, as 

shown in Figure 5.12. The transfer function can be calculated as: 
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Note that the filter presents constant group delay equal to T/4.  

For the LPFTX(f), the same requirement as in the previous case, passing the 

first lobe of the sinc, is employed. Therefore, the baseband transfer functions for this 

solution for the rate of 2.7 Gbit/s are: 
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The normalized transfer functions are illustrated in Figure 5.10(b), where they 

are also compared with the conditions stated in eq. (5.10).  In this case, FBMC is 

potentially achieved with a good cancellation of both ISI and ICI. An important 

disadvantage is that the transfer function of the filter employed in the receiver is 

periodic in frequency, and an additional filter is required in practice to attenuate or 

ideally cancel all the frequencies higher than 2.7 GHz.  
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 Figure 5.12 Simple microwave FIR filter. 
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A simulation was performed in the same conditions explained above. In this 

case the filter Minicircuits model VLF-2500 was again used in the transmitter, and 

also in the receiver cascaded with an ideal implementation of the proposed FIR filter. 

The filter VLF-2500 was employed for consistency with the experiments presented 

in section 5.4.1. The simulated results are illustrated in Figure 5.13 and agree with 

the theoretical prediction. This solution achieves good ISI and ICI cancellation but 

any passive implementation of the FIR filter will introduce a loss of at least 6 dB.   

5.3.3 Optical Link 

 The configuration of the microwave FBMC transmitter and receiver has been 

explained. This section focuses on the implementation of the optical link discussing 

the general scheme, the achievable optical sensitivity in the receiver and the 

tolerance to dispersion.  

5.3.3.1 Generic Electro-Optical Scheme    

The electrical FBMC signal generated in the transmitter must be modulated 

onto an optical carrier. An OSSB modulation is preferred as it increases tolerance to 

 

 Figure 5.13 (a) Simulated received eye diagrams with the available Bessel filters for 

intermediate subchannel and contributions from (b) desired signal and (c) ICI. 
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Figure 5.14 Generic OSCM/OSSB link with a pre-amplified optical receiver. 
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dispersion and allows a WDM implementation with closer optical channels. As 

explained in section 2.3.2, dual-drive Mach-Zehnder modulators (DD-MZM) and 

optical IQ modulators (OIQM) can achieve OSSB directly, without requiring 

additional optical filters. The block diagram of a generic direct detection 

OSCM/OSSB scheme with a pre-amplified optical receiver is illustrated in Figure 

5.14. The optical modulator has two electrical inputs; one needs to be fed with the 

desired microwave signal, and the other with its Hilbert transform (HT) (the original 

signal with all the frequencies shifted 90 degrees). In the microwave domain, the HT 

is obtained with a microwave 90 degrees hybrid coupler. 

5.3.3.2 Optical Sensitivity 

A mathematical model to calculate sensitivities in SCM/OSSB links based on 

OIQMs was presented in Chapter 3. This model is not directly applicable to the case 

of OSCM/OSSB for several reasons. Firstly, due to the overlapping spectra in 

FBMC, an intermodulation product produces cross-talk with up to three subchannels 

instead of one. Second, the received eye diagrams in FBMC present a reduced 

margin with respect to the typical case. Finally, different beta factors could also have 

an impact on the system.  

However, for the cases where optical noise is dominant over nonlinearities, 

the developed model provides an approximation of the theoretical limit for the 

potentially achievable optical sensitivities in OSCM/OSSB. Such a situation 

0 5 10 15

M

20 25 30
-38

-24

-26

-28

-30

-32

-34

-36

-22

-20

-18

%

S
e

n
s
it
iv

it
y

(d
B

m
)

N=3 

N=4

 

 
Figure 5.15 Calculated best achievable sensitivities for OSCM/OSSB links based on 

OIQMs biased at quadrature. Derived from eq. (3.14) with the following 

parameters: QF=2.36, Be=2.7 GHz, F=5 dB, ν=193.4 THz, NCSO=0, NCTB=0. 
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typically occurs when an optical link uses an FEC code with a high BER threshold in 

the receiver, for example a hard decision FEC with a 7% overhead and a BER 

threshold of 3.8∙10
-3

 (Quality factor QF=2.67 from eq. (2.39)) [45]. For that case, 

sensitivities were calculated considering three and four orthogonal QPSK 2.7 Gbaud 

subchannels, as in the experiments that were performed. These sensitivities are 

provided in Figure 5.15 as a function of the total overall OMI with respect to Vπ, M% 

(defined in section 3.3.1).     

5.3.3.3 Tolerance to Dispersion 

 When transmitting over fibre, dispersion can affect the orthogonality that is 

established in the transmitter. The distortion generated in the received signals, due to 

dispersive media in FBMC links, was theoretically analysed in [40], concluding that 

a value of β=0.5 translates into lower distortion than β=1.  When SRRC shapes with 

β=0.5 are used, the distortion per km, γ, measured as a percentage of the absolute 

value of the desired received signal is [40]: 

 

 
2

1.1 100 (% / )
D
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T

     (5.15) 

 

where D is the dispersion of the channel in (s/Hz)/km. The dispersion of SSMF is    

17 (ps/nm)/km at 1550 nm, being D≈1.3614·10
-22

 (s/Hz)/km. Therefore, from eq. 

(5.15), and for the employed rate of 2.7 Gbaud, the distortion in a received FBMC 

signal transmitted through SSMF is γ≈0.1 %/km. It can be concluded that the effect 

of dispersion in short range OSCM links over SSMF is negligible. The experimental 

results described in section 5.4 present a good agreement with the theoretical 

prediction.   

OSCM/OSSB is also suitable for longer transmission distances according to 

the following perspectives. Firstly, OSSB was originally developed as a method to 

overcome dispersive fading [46, 47]. With that technique, SCM/OSSB signals have 

been transmitted over hundreds of km with no penalty due to chromatic dispersion 

[48]. Secondly, several independent studies have concluded that the optimum 

subcarrier spacing for long transmission distance over SSMF is within the range of 2-

10 Gbaud [35-38]. While that spacing is prohibitive for single-carrier dense WDM 

links, it is ideal for WDM/SCM or WDM/OSCM, as closer electrical subchannels 

can be allocated in the electrical domain with a lower cost and complexity. Finally, 
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according to eq. (5.15), the penalty generated by fibre dispersion is small in OSCM 

even for long transmission distances. For example, with a rate of 2.7 Gbaud, the 

distortion after 100 km of SSMF fibre would be ≈10 %. An analogy can be made 

with all-optical filtered OFDM or coherent WDM, where orthogonally overlapping 

subchannels are also multiplexed adjusting the phases at the transmitter [49], and 

dispersion penalties are small even for high speed rates transmitted over tens of km 

[50]. In section 5.5, an OSCM/OSSB link of 50 km will be demonstrated.  

Finally, it should be noted that under the effect of dispersion, the optimum 

electrical subcarrier phase offset in the receiver LO is not the ideal 0º with respect to 

the incoming subcarrier phase [40]. Furthermore, in absence of dispersion there is a 

symmetric margin of ≈±7.5 degrees in the LO phase offset with associated peak 

power distortions below 3 dB. However, with dispersive media, the margin of phase 

error is not symmetric with respect to the optimum [40].    

5.4 Proof of Concept 

This section proves experimentally that the OSCM technique discussed on the 

previous section is feasible and can be successfully implemented with physical 

components. The demonstration is performed in two stages, only with microwave 

components and in a full electro-optical system.  

5.4.1 Microwave Domain  

5.4.1.1 Experimental Scheme 

A microwave FBMC system, equivalent to the one illustrated in Figure 5.7, 

was physically implemented. In the experimental scheme there are two differences 
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 Figure 5.16 Square bit propagation (a) without emphasis and (b) with emphasis. 

 



5. Orthogonal Subcarrier Multiplexing 

156 

with respect to the figure. Firstly, in the theoretical analysis provided in section 5.3.2, 

the performance of the microwave orthogonality filters is based in the pulse shape of 

every bit. Thus, it is important to ensure that quasi-square signals arrive to the input 

of the orthogonality filters in the transmitter. Although the attenuation of high 

frequency components is common in any circuit, these effects can be compensated 

using pre-emphasis in the analogue source [51], as shown in Figure 5.16. Secondly, 

as has been explained in section 5.3.1, a particular phase alignment is required in the 

transmitter to achieve orthogonality, and a PLL is required in the receiver to achieve 

phase locking. For flexibility, phase shifters were employed in the transmitter and the 

receiver and the required phases were established manually.  

The practical block diagram that incorporates the two previous concepts can 

be observed in Figure 5.17. It was implemented relying largely on the components 

described in section 2.5. Inexpensive off-the-shelf MMIC IQ mixers were used to 

generate and demodulate a signal composed of three orthogonal QPSK subchannels 

modulated at 2.7 Gbaud, making an overall data rate of 16.2 Gbit/s. A master 

reference of 2.7 GHz was fed to the input of an electrical comb generator that 

provided the orthogonal LOs. A multi-port microwave filter was used to demultiplex 

the desired tones, namely the second, third and fourth harmonics of the data rate (5.4, 

8.1 and 10.8 GHz). In the FBMC transmitter, six bit streams were sourced from an 

FPGA with integrated analogue transceivers. The FPGA data clock was frequency 
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Figure 5.17 Back-to-back microwave FBMC implementation. 
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locked to the master reference. PRBSs of 2
31

-1 bits, uncorrelated with different 

relative delays, were employed. In every pair of baseband signals, a T/2 relative 

phase shift was introduced using adjustable phase trimmers. Subsequently, both 

signals were pulse shaped with the low pass orthogonality filters, and, finally, 

connected to the baseband input ports of the IQ mixers. As explained above, the best 

performance was obtained when quasi-square signals arrived to the input of the 

orthogonality filters. This was achieved using the emphasis functionality that modern 

FPGAs incorporate in the analogue transceivers [52]. The broadband outputs of the 

IQ mixers were equalized in amplitude with attenuators and multiplexed with a 

passive combiner. The phases of the LOs that feed the IQ mixers in the transmitter 

were adjusted with variable phase shifters. In the back to back electrical FBMC 

configuration, subchannels were included progressively, and the phase shifters were 

adjusted ensuring a maximum eye opening in the receiver. After these phases had 

been adjusted, they remained constant and fixed for the whole set of the 

measurements.  In the FBMC receiver, the incoming RF signal was passively split, 

before IQ mixers were used to perform the demodulation. The resultant output 

signals were fed to the matched orthogonality filters. The LOs of the IQ mixers were 

locked to the incoming phase of the desired subcarrier, using variable phase shifters 

that emulated the functionality of a PLL. In the received baseband signals, there was 

an optimum sampling point with minimum ISI and ICI. Final performance was 

measured in real time with a BERT. 

5.4.1.2 Experimental Results 

Using the same average power of ≈-5 dBm at the input of the FBMC receiver, 

the three filter solutions proposed in section 5.3.2 were tested.  

The first solution employed a sinc compensated SRRC filter in the transmitter 

and a SRRC filter in the receiver, using β=0.5 in both cases. The received eye 

diagrams for the middle subchannel, showing the contributions of the desired signal 

and the ICI, are illustrated in Figure 5.18. As expected, a good ICI cancellation was 

obtained while the main impairments associated to the imperfect group delay 

translated into ISI.  

The second solution employed the LPF Minicircuits model VLF2500 in the 

transmitter and two cascaded Bessel filters in the receiver. The obtained eye 

diagrams in the middle subchannel for this case are showed in Figure 5.19. As 
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predicted, a good ISI cancelation was achieved but the performance of the solution 

was limited by ICI.  

Finally, the third solution employed the LPF Minicircuits model VLF2500 in 

the transmitter, and also in the receiver cascaded with the FIR filter shown in Figure 

5.12. The FIR filter was implemented with power splitters and with a phase shifter to 

establish the T/2 relative delay between the two paths. As predicted, the received eye 

diagrams, which are illustrated in Figure 5.20, presented good ISI and ICI 

cancellation, although the amplitude was lower than in the previous solutions due to 

the attenuation of the FIR filter. 

= +

(a) (b) (c)  

Figure 5.18 (a) Received eye diagram with the achieved SRRC filters for the middle 

subchannel and contributions from (b) desired signal and (c) ICI. In all the cases 60 mV 

per amplitude division and 100 ps per time division. 

= +

(a) (b) (c)  

Figure 5.19 (a) Received eye diagram with the Bessel filters for the middle subchannel 

and contributions from (b) desired signal and (c) ICI. In all the cases 60 mV per 

amplitude division and 100 ps per time division. 

= +

(a) (b) (c)  

Figure 5.20 (a) Received eye diagram with the FIR filter for the middle subchannel and 

contributions from (b) desired signal and (c) ICI. In all the cases 30 mV per amplitude 

division and 100 ps per time division. 
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The received eye diagrams are open in all the cases showing the feasibility of 

the solutions. Performance was measured in real-time with a BERT and the BER 

measurements are showed in Table 5-1 for all the subchannels averaging the BER of 

the I and the Q components. In all the solutions, the different performance between 

subchannels 1 and 3 was associated with the different loss and group delay 

characteristics of the IQ mixers. Subchannel 2 had two adjacent subchannels and, 

accordingly, was more impaired by ICI tending to present a worse BER than 

subchannels 1 and 3 (with the exception of solution 3, as explained below). Solution 

1 achieved the best performance because the bandwidth of the RF signal was 

constrained (4 GHz instead of 5.4 GHz), reducing the impairments produced by the 

imperfect IQ mixers. The differences between solutions 2 and 3 were due to two 

different effects. First, solution 3 generated a lower ICI, which translated into lower 

BER for the second subchannel. Second, solution 3 introduced extra losses due to the 

FIR filter, which generated a higher BER for subchannels 3 and 1. For subchannel 1 

this effect was more pronounced due to the higher conversion loss of the IQ mixers 

employed in the first RF band. These results suggest that all these solutions can be 

used in electro-optical systems, where the typical 7% hard-decision FEC codes set 

the operative threshold at a BER equal to 3.8∙10
-3

. 

5.4.2 Electro-Optical Domain 

5.4.2.1 Experimental Scheme 

 An OSCM system was demonstrated with the experiment illustrated in  

Figure 5.21. The microwave FBMC transmitter and receiver described in the 

previous subsection performed the electrical processing. The SRRC filters were used 

for this experiment, as it is obvious that they achieved the best results of the 

proposed solutions. The multichannel RF signal in the transmitter was amplified 

before a 90º hybrid coupler provided the HT that is required to achieve OSSB. 

Another RF amplifier was employed after the photo-receiver and before the electrical 

demodulation. PRBSs of 2
15

-1 bits were transmitted.  

Table 5-1 Average BER of in-phase and quadrature components. 

Solution Subchannel 1 Subchannel 2 Subchannel 3 

SRRC 2.45∙10
-6 

5.85∙10
-5

 2.05∙10
-8

 

Bessel 1.52∙10
-5

 6.65∙10
-4

 2.33∙10
-7

 

FIR 4.05∙10
-4

 8.9∙10
-5

 6∙10
-7
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 The optical link was established with an external cavity laser and a polymer 

based OIQM [53] with a half-wave voltage Vπ=2.5V and a bandwidth of 20 GHz. 

The parallel MZMs inside the OIQM were biased at quadrature, and driven by the 

RF FBMC signal and its HT, achieving OSSB, with a total rms OMI, M%, of ≈20%, 

or ≈500 mVRMS. From Figure 5.15, a sensitivity of -35 dBm for a BER of 3.8·10
-3

 

would be potentially achievable with ideal components. A higher OMI was avoided 

as the peak to peak voltage signal would be higher than the Vπ value, and more 

undesirable nonlinear effects would occur in the modulator. The optical signal was 

transmitted over 1 km of SSMF. At its output, a variable optical attenuator was used 

to emulate more fibre losses. A pre-amplified receiver, consisting of an EDFA and a 

photo-receiver with a 20 GHz bandwidth, was used at the end of the optical link. The 

EDFA worked in constant power mode, ensuring 3.5 dBm at its output regardless of 

the average received optical power, PIN. An optical BPF of 2 nm removed ASE at the 

output of the EDFA, but it is omitted in  Figure 5.21 for simplicity. The optical signal 

was down-converted to its original microwave frequencies, using direct detection 

with a single photodiode. 
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 Figure 5.21 Direct Detection OSCM/OSSB link consisting of three orthogonal 2.7 Gbaud 

QPSK subchannels. 
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5.4.2.2 Experimental Results 

With the frequency plan consisting of three orthogonal QPSK subchannels, 

the overall data rate was 16.2 Gbit/s over a bandwidth of 12.8 GHz (1.265 bit/s/Hz) 

including the optical carrier or 9.4 GHz (1.72 bit/s/Hz) excluding the optical carrier. 

Note that the calculation of the spectral efficiency has taken into account that the 

SRRC filters reduce the bandwidth of the RF subchannels to 4 GHz. The transmitted 

electrical spectrum at the input of the hybrid coupler and the received electrical 

spectrum at the output of the photo-receiver are illustrated in Figure 5.22. The 

spectrum of the OSSB signal, which presents a sideband suppression ratio of 20 dB, 

is also shown in Figure 5.22. In all the cases, the contributions from individual 

subchannels can be observed.  

BER as a function of PIN was measured for the three subchannels, and it is 

illustrated averaging the I and the Q components in Figure 5.23. Measurements were 

(a) (b)

(c)
 

Figure 5.22 Optical and electrical spectra at: (a) the output of the RF FBMC 

transmitter, (b) the output of the photo-receiver and (c) the output of the optical 

modulator (resolution 180 MHz). In all the spectra, the black line shows the overall 

spectrum, while the grey lines show individual subchannels measured when they are 

transmitted alone. 
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taken with an optical Back to Back (BTB) link, and transmitting over 1 km of SSMF. 

Considering a hard-decision FEC code with a 7% overhead, the threshold of 

acceptable BER is 3.8·10
-3

. The results show a good agreement with the theoretical 

predictions. Firstly, the middle subchannel is more impaired than the ones in the 

extremes, as can be observed at PIN=-14.5 dBm, when the optical noise is low. 

Secondly, the sensitivity is close to -30 dBm for all the subchannels. When PIN is 

very low, the optical noise at the output of the EDFA is dominant and determines the 

QF of the system. This experimental result is 5 dB worse than the theoretical limit. 

Finally, the dispersion generated by the fibre does not have any influence on the 

performance. As predicted, OSCM achieves orthogonal transmission without 

requiring a cyclic prefix.  

The presented results indicate that purely analogue broadband OSCM links 

are feasible. Neglecting the optical carrier, and assuming that all the multicarrier 

schemes can be implemented in an OSSB configuration, traditional all-analogue 

SCM/QPSK links achieve a spectral efficiency of 1 bit/s/Hz. In the same conditions, 

the spectral efficiency of OSCM/QPSK is at least 1.5 bit/s/Hz for a three subchannel 

configuration, and approaches to 2 bit/s/Hz when a higher number of subchannels is 

employed. Broadband SCM/16-QAM links have been reported, but DSP has been 

required to overcome the limitations of the microwave IQ mixers [54]. In that sense, 

 

 
Figure 5.23 Average BER as a function of PIN for the I and Q components 

transmitted in the first, second, and third subchannels for optical back to back  and 

transmission over 1 km of SSMF. FEC limit for a 7 % overhead. 
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it is noteworthy that the results presented here have been achieved using off-the-shelf 

IQ mixers and long PRBS sequences of 2
15

-1 bits. The spectral efficiency achieved 

with OSCM/QPSK can be close to the one obtained with SCM/16-QAM, with the 

advantage of employing a simpler front-end interface in the baseband receiver, a bi-

level comparator. 

5.5 Synchronization 

5.5.1 Relevance 

Synchronization in SCM systems consists of ensuring that the receiver LOs 

are phase and frequency locked to the incoming subcarriers, as explained in section 

2.2. In practice, any realistic communication transceiver requires a sophisticated 

synchronization scheme based on PLLs [55].  

In contrast, research SCM experiments often simplify the synchronization and 

employ a unique LO source that is split to generate the transmitter and receiver LOs, 

obtaining immediate frequency locking. The phase locking is then achieved 

employing phase shifters. This approach presents several drawbacks.  

Firstly, as explained below, any realistic synchronization scheme implies the 

introduction of new elements that typically translate into additional impairments and 

a loss of sensitivity. In other words, by avoiding a realistic synchronization scheme, 

sensitivities that might not be achieved in practice are obtained.  

Secondly, fibre is very sensitive to environmental fluctuations. Namely, 

temperature changes both the length of the fibre, with a coefficient of thermal 

expansion equal to 4∙10
-7

/ºC, and also the refractive index, with a coefficient of   

1.2∙10
-5

/ºC [56, 57]. Considering both values, a subcarrier transmitted over fibre 

suffers a phase shift with temperature that is equal to 15º ºC
-1

 GHz
-1 

km
-1

 [58]. As an 

example, if a QPSK subchannel is transmitted at 10.8 GHz over 10 kms of fibre, a 

change in fibre temperature of only ∆T=0.027 ºC translates into a phase shift of 45º, 

closing completely the received eye diagrams. This effect, which is more pronounced 

over longer distances and at higher subcarrier frequencies, can be easily observed in 

SCM transmission experiments where phase locking is performed manually. It is 

manifested as a continuous and random closing and opening of the received eye 

diagrams. In practice, for the BER measurements that are performed in real-time 

broadband SCM experiments over long distances, it can be concluded that any 
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manual phase locking only ensures an accurate measurement for a small fraction of 

time. As a result, the quality of the measurements obtained without realistic 

synchronization can be disputed.     

This section reviews typical synchronization schemes that have been used in 

SCM systems, and proposes and demonstrates a new method that requires a lower 

number of components and can be employed in both SCM and OSCM schemes.      

5.5.2 Review of Typical Methods 

5.5.2.1 Carrier Recovery 

 An interesting method consists of generating the subcarrier directly from the 

received subchannel. This is potentially achievable with a particular PLL called a 

Costas loop [59], or elevating the subchannel to the power of N [60]. If a BPSK 

subchannel is squared, the subcarrier is obtained at two times the original frequency. 

Similarly, if a QPSK subchannel is elevated to the fourth, the subcarrier is obtained 

at four times the original frequency. In both cases, the modulation is removed and a 

PLL with a division factor (2 for BPSK and 4 for QPSK) is used to recover the 

nominal frequency required by the receiver mixer.  

This method was employed in an SCM link in [61] and is conceptually 

illustrated in Figure 5.24. The main advantage of this procedure is that no power is 

wasted in the transmission of pilot tones. It also presents several disadvantages. 

Firstly, it requires that high frequencies are generated and, secondly, one nonlinear 

block plus one PLL are necessary per each subchannel.  

5.5.2.2 Pilot Tones 

Another option relies on transmitting pilot tones that are locked to the 

subchannels. These pilot tones follow the phase fluctuations that the signal 

O/E

QPSK QPSK

f1 fN

Filters

f1

| x |4

4f1

. . .

fN

data 1

data N

PLL 1 

(/4)

PLL N 

(/4)

4fN

. . .

| x |4

 

Figure 5.24 Carrier recovery of QPSK subchannels elevating to the 4
th

 in the receiver. 
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experiences during the transmission over fibre. PLLs are used in the receiver to 

obtain the locked subcarriers from the pilot tones. There are two possibilities to 

implement this method. 

The first alternative is to transmit one pilot tone with every subchannel, as 

was proposed in [41] and is conceptually illustrated in Figure 5.25. This method is 

simpler than the previous solution as no higher frequencies are generated. However, 

it also presents several disadvantages. Namely, there is a power penalty due to the 

transmission of the pilots, and one pilot tone and one PLL per subchannel are 

necessary.      
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Figure 5.25 SCM receiver using a pilot tone per subchannel to synchronize. 
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Figure 5.26 SCM receiver using one pilot tone to synchronize all the subchannels. 
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Figure 5.27 SCM receiver using one SRD to synchronize all the subchannels. 
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The second alternative only transmits one low frequency pilot tone that is 

used to generate all the locked subcarriers in the receiver. This method was 

employed in [42] and is illustrated in Figure 5.26. As the dependency of chromatic 

dispersion with temperature is very small [62], the phase variations due to 

temperature are practically the same for the pilot tone and the subchannels, which 

ensures the stability of this technique [42]. Although this approach presents a simpler 

configuration, one PLL per subchannel is still required. Apart from that, the phase 

noise of the receiver LOs is proportional to the multiplication factors of the PLLs, 

which are high when the pilot tone is located at a low frequency [42]. 

5.5.3 Novel Technique 

5.5.3.1 Concept 

The proposed method is illustrated in Figure 5.27 for the case of four 

overlapping subchannels and a symbol rate of 2.7 Gbaud. The use of SRRC shapes 

reduces the bandwidth of the subchannels so that it is possible to allocate the pilot 

tone at the data rate frequency, 2.7 GHz. This method exploits the fact that the 

subcarriers frequencies are harmonics of the data rate. The pilot tone is filtered and 

locked to the receiver reference with a PLL. Then, all the subcarriers are generated 

employing an electrical comb based on a Step Recovery Diode (SRD). These LOs 

are then fed to the corresponding mixers.   

Despite the small power penalty due to the transmission of one pilot tone, the 

method presents several advantages. Firstly, the number of components is lower than 

in any of the previous techniques. Secondly, only one pilot tone and one PLL are 

required regardless of the number of subchannels. Finally, the pilot tone is allocated 

at a high frequency so that the maximum multiplication factor is small, only five in 

this case, ensuring low phase noise in the generated LOs. 

5.5.3.2 Experimental Setup 

This technique was demonstrated in an OSCM/OSSB link equivalent to the 

one illustrated in Figure 5.28. Four 2.7 Gbaud QPSK overlapping subchannels were 

transmitted employing the SRRC filters with β=0.5. As a result, the electrical data 

signal had an overall data rate of 21.6 Gbit/s and a spectral efficiency of               

1.78 bit/s/Hz. The optical link presented in the schematic has been described in 

section 5.4.2.1, but it employed 50 km of SSMF for this experiment. Similarly, the 
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implementation of the microwave FBMC transmitter and receiver was equivalent to 

the one described in section 5.4.1.1, but including four subchannels instead of three.  

The proposed synchronization scheme can also be observed in Figure 5.28. A 

2.7 GHz reference was employed in the transmitter to generate the LOs. That 

reference was also multiplexed with the transmitted signal as a pilot tone. In the 

receiver, the pilot tone was filtered and fed to a PLL that locked a 2.7 GHz reference. 

Finally, this reference was employed by an SRD to generate the receiver LOs. A PLL 

with a 2.7 GHz reference input can be implemented with discrete components [41], 

but in this case an off-the-shelf MMIC PLL with an integrated oscillator was 
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Figure 5.28 Direct detection OSCM/OSSB link with four orthogonal 2.7 Gbaud 

subchannels. Synchronization achieved with only one PLL for all the subcarriers. 
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employed, namely the device Hittite model HMC840LP6CE. These commercially 

available devices typically require low frequencies in the reference input. For that 

reason the recovered 2.7 GHz pilot tone was passed through two frequency dividers, 

namely the Hittite models HMC363 (/8) and HMC361 (/2), obtaining an overall 

division ratio of 16 and a tone at 168.75 MHz that was appropriate for the PLL input. 

The output of the PLL was the nominal 2.7 GHz.      

5.5.3.3 Results 

The transmitted and received electrical spectra can be observed in Figure 

5.29(a-b). With the SRRC shapes, the bandwidth of the first subchannel is reduced to 

the range between 3.4 GHz and 7.4 GHz so that there is wide margin of 700 MHz to 

filter and recover the pilot tone in the receiver. The optical spectrum at the output of 

the optical modulator is illustrated in Figure 5.29(c). An OSCM/OSSB signal with a 

sideband suppression ratio of 20 dB can be observed. For all these figures, the 

overall OMI was M%≈11%. It should be noted that due to the synchronization 

scheme more reliable BER measurements over longer time scales could be obtained. 

(a) (b)

(c)
 

 Figure 5.29 Electrical and optical spectra at (a) the output of the RF transmitter, (b) 

the input of the RF receiver, and (c) the output of the optical modulator for a 

synchronized OSCM/OSSB scheme with overall OMI of 11%. 
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With the described setup, there are several trade-offs in the selection of the 

OMI. To begin with, the trade-off between the CSPR and NLD that was thoroughly 

analysed in Chapter 3 is present. Additionally, the inclusion of the pilot tone and the 

synchronization scheme also has an influence [42]. A high CNR in the received pilot 

tone is desired to diminish the phase noise at the output of the PLL. In other words, 

the level of the received pilot tone must be much higher than the noise sources (ASE, 

RIN, shot noise, thermal). However, a high level of the pilot tone in the transmitter 

translates into a higher OMI and higher nonlinearities, which are enhanced during the 

fibre transmission [63, 64], and from a certain level the carrier to noise ratio of the 

pilot tone decreases.  

The experiments were conducted in the following way. The OIQM was 

biased at quadrature and the power of the electrical signal at the input was varied in 

steps of 3 dB (from a CSPR of ≈24 dB to ≈12 dB). The power of the pilot tone was 

10 dB below the power of the rest of the electrical signal. Figure 5.30 illustrates the 

BER measurements for the different values of OMI. Considering all the subchannels, 
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Figure 5.30 Performance versus average optical input power as a function of OMI for 

subchannels: (a) 1, (b) 2, (c) 3 and (d) 4.   
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the best OMI was M%≈11%. Sensitivities were in the range of -20 to -24 dBm due to 

the different behaviour of the RF components in the RF bands. The values of 

sensitivity are much higher than the theoretical ideal limit of -29 dBm (obtained from 

Figure 5.15) due to the imperfect components and the additional nonlinearities 

produced by the pilot tone and the fibre transmission.  

For the case of best OMI, Figure 5.30 also compares the measurements of the 

50 km transmission case with the back to back configuration. From eq. (5.15), a 

distortion of 5% after 50 km transmission is expected. Accordingly, a small impact 

on the BER can be anticipated. However, the fibre transmission increases the CSO 

[63, 64], which is zero at quadrature for low transmission distances (see Chapter 3), 

and affects the subchannels with a higher NCSO. With the presented frequency plan, 

and including the pilot tone, NCSO=3 for subchannel 1, NCSO=2 for subchannel 2, 

NCSO=1 for subchannel 3, and NCSO=0 for subchannel 4. This effect explains that the 

highest penalties in sensitivities due to fibre transmission occur in subchannel 1 (3 

dB) followed by subchannel 2 (1 dB), while there is practically no penalty in 

subchannels 3 and 4.  

5.6 Conclusions 

SCM allows the implementation of reliable electro-optical transceivers, as it 

leverages the performance of the more mature microwave components. The main 

disadvantage of SCM systems is the low spectral efficiency, especially when it is 

compared with DSP based implementations.  

This chapter has presented a novel technique, referred to as OSCM, which 

can potentially double the spectral efficiency of traditional all-analogue SCM links 

by transmitting orthogonally overlapping subchannels. The concept has been 

demonstrated in real-time experiments employing 2.7 Gbaud QPSK orthogonal 

subchannels and relying largely on off-the-shelf components. The technique requires 

the implementation of FBMC schemes with broadband microwave circuits. With the 

appropriate microwave filtering, bits sourced at multi-gigabit rates can be pulse 

shaped, and modulated and demodulated orthogonally without requiring DSP. It has 

been demonstrated that standard filters can be employed, although the best 

performance is achieved with custom implementations that match the ideal Nyquist 

shapes. Additionally, the combination of FBMC signals and SCM permits the 

transmission of orthogonal subchannels over fibre without requiring a cyclic prefix. 



5. Orthogonal Subcarrier Multiplexing 

171 

The expected tolerance to dispersion of OSCM/OSSB has also been 

confirmed. The highest penalty occurs in the subchannel that is most affected by the 

nonlinearities associated with the combined effect of the optical modulator and the 

fibre dispersion. A novel synchronization scheme, applicable to both traditional SCM 

and OSCM, has been introduced. It allows the synchronization of any number of 

practical subchannels requiring only one PLL. As a consequence, this 

synchronization method presents the lowest number of components of any analogue 

solution presented to date. 
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Chapter 6 

6 Multichannel WDM/OSCM based on 

Optical Frequency Combs 

 Electro-optical transceivers can be implemented employing all-analogue 

signal processing in order to achieve low values of power consumption and latency. 

Simultaneously, the spectral efficiency of an optical channel can be increased by 

employing orthogonal multicarrier techniques. Overall capacity can then be 

multiplied by combining a number of WDM optical channels. For the generation of 

the optical carriers, Optical Frequency Combs (OFC) are a promising technique 

because they can generate multiple optical carriers from ideally a single laser. Unlike 

independent lasers, OFCs can achieve a stable optical carrier spacing and potentially 

lower cost. Real-time OSCM experiments with data rates of up to 400 Gbit/s were 

performed emulating a WDM system composed of multiple optical channels. The 

optical carriers were provided by different types of OFCs, namely Gain Switched 

Lasers (GSL) and Mode Locked Lasers (MLL). The use of orthogonally overlapping 

subchannels and tightly allocated optical carriers achieves an unprecedented spectral 

efficiency in all-analogue real-time broadband WDM/SCM links. 

6.1 Motivation 

The increasing demand for capacity in optical networks has translated into a 

growing interest and research effort in high-speed short-reach optical interconnects 

and its associated technologies [1]. For practical and real-time applications, electro-

optical transceivers are preferred due to the stability and maturity of electronic 

circuits and microwave components, in contrast with their optical counterparts. The 

broad range of possible electronic implementations presents a trade-off between 

three major figures of merit in communications systems: spectral efficiency, power 

consumption and latency. In recent years, the majority of advances in the area have 

been supported by DSP due to its ability to increase spectral efficiency and mitigate 

impairments [2]. However, a high number of computational operations also brings 

about disadvantages such as increased power consumption and latency [3].  This fact 
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motivates the investigation of electro-optical transceivers that rely on all-analogue 

signal processing to maximize power efficiency and minimize latency [4].  

Nowadays, there is a proliferation of data centres addressing a variety of 

services. Most data centre subsystems need moderate total capacity but a high 

capacity per interface while reducing power consumption and latency to a minimum. 

For such applications, a purely analogue implementation potentially presents the best 

trade-off between those key parameters. In addition to these fundamental features, 

there are several important performance requirements which may determine the most 

appropriate scheme. Firstly, tolerance to dispersion allows compatibility between 

inter and intra data centre distances, simplifying inventory. Secondly, direct 

compatibility with parallel Gbit/s electrical interfaces would simplify the buffering 

and (de)multiplexing of data at different symbol rates. Finally, integration with 

WDM systems multiplies the overall capacity and potentially allows the same 

transponders to be employed in the wide area network.  

As explained in previous chapters, a purely analogue SCM/OSSB scheme is 

possible and compatible with the desired baseband rates using microwave filters, 

mixers, combiners and splitters [5]. It achieves high interface capacity per port, its 

power consumption is determined solely by the drive amplifiers common to all 

solutions, and the latency is low as it is given by the group delay of the microwave 

components. Apart from that, the overall electrical transceiver can be integrated 

using MMIC technology [6], widely employed in the front ends of commercial and 

consumer communication devices. Furthermore, SCM/OSSB meets all the additional 

requirements. Firstly, high tolerance to dispersion is achieved [7]. Secondly, an 

appropriate subcarrier symbol rate also allows direct termination of parallel Gbit/s 

electrical interfaces avoiding data rate converters. Finally, as shown in chapter 4, cost 

and spectrally efficient WDM implementations consisting of tightly allocated optical 

channels are viable.  

The main weakness of previously reported all-analogue SCM and 

WDM/SCM solutions is the spectral efficiency as they make use of traditional QPSK 

subchannels [8, 9]. However, as explained in the previous chapter, OSCM overcomes 

this weakness by multiplexing orthogonally overlapping subchannels according to 

FBMC theory [10, 11]. This chapter demonstrates WDM/OSCM schemes employing 

optical frequency combs (OFC) to generate the optical carriers for the WDM signal. 

An OFC obtains multiple optical carriers from ideally a single laser, ensuring a more 
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stable carrier spacing and potentially a lower cost compared with independent lasers. 

As a result, WDM/OSCM links with tightly allocated optical channels were 

implemented, enhancing further the increased spectral efficiency with respect to 

previous all-analogue WDM/SCM solutions.     

6.2 Generic Scheme 

A WDM/OSCM transmission scheme composed of N OSSB channels and 

based on an OFC is shown in Figure 6.1. The use of an OFC instead of individual 

lasers reduces the number of required components and ensures the maintenance of 

constant frequency spacing, referred to from now on as Free Spectral Range (FSR), 

between the optical channels.  

The optical carriers at the output of the OFC are demultiplexed and each one 

is modulated producing an OSSB signal. As explained in chapter 2, this can be 

achieved with dual drive Mach Zehnder (DD-MZM) modulators or with optical IQ 

modulators (OIQM) whose electrical inputs are fed with the desired signal and its 

Hilbert transformed (HT) pair. The HT of an electrical signal can be obtained 

directly in the analogue domain by employing a microwave hybrid splitter. The 

modulating electrical signal is generated with an all-analogue FBMC transmitter and 

is composed of orthogonally overlapping subchannels carrying digital data. The N 

optical channels are combined and transmitted over fibre. In the receiver, the optical 

channels are demultiplexed and direct detection is used to recover the FBMC 

electrical signals. Finally, all-analogue FBMC receivers demodulate the orthogonal 

electrical subchannels. The realization of the all-analogue FBMC blocks has been 

thoroughly explained in chapter 5. 
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   Figure 6.1 WDM/OSCM transmission scheme with N OSSB channels based on OFC. 
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6.3 Optical Frequency Combs 

 Unlike independent lasers, OFCs offer constant frequency spacing or FSR 

between the optical carriers, allowing the reduction of inter-channel guard bands and 

the spacing between optical channels. However, an OFC needs to exhibit a number 

of properties such as excellent spectral flatness, high frequency stability, and high 

optical carrier to noise ratio (CNR). For direct detection links OFCs also require low 

RIN while low linewidth is necessary for coherent systems. Additionally, for flexible 

networks a tunable FSR is also a requisite. Different OFC technologies are briefly 

reviewed below. 

 Typically, mode-locked lasers (MLL) are popular candidates for the 

generation of OFCs in electro-optical transceivers [12, 13].  The term mode-locking 

indicates the phase locking between multiple longitudinal modes in a laser cavity 

[14]. If the cavity modes oscillate with comparable amplitudes and locked phases, 

mode-locking occurs and a periodical pulsed radiation, which is equivalent to a 

multicarrier signal in the optical domain, is generated. The different mechanisms to 

obtain mode-locking can be classified into active, when phase synchronization 

requires an external periodic source, or passive, when the synchronization is obtained 

directly in the laser cavity [14]. MLLs can generate a high number of optical carriers 

in a wide bandwidth. The main disadvantages are cavity complexity, high linewidth 

and RIN per individual comb line, and fixed FSR. Apart from that, from a practical 

perspective, they present difficulties to maintain stable mode locking.  
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 Figure 6.2 Schematic of an OFC based on an externally injected gain-switched laser. 
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OFC generation with gain switched lasers (GSL), typically DFBs, is another 

simple and cost efficient alternative [15]. Gain switching is achieved by driving the 

laser diode with a large RF signal at the desired frequency or FSR. The associated 

abrupt periodic optical pulse is equivalent to a multicarrier signal in frequency. The 

GSL is usually combined with external injection obtaining beneficial properties, such 

as an increase in the number of comb tones, improved spectral flatness, enhanced 

CNR, and reduced RIN and linewidth on each of the comb tones [16]. Optical 

external injection is a complicated procedure in which a laser “locks” to an external 

laser, partially acquiring the properties of the second. A typical set-up diagram of an 

externally-injected GSL can be observed in Figure 6.2. In practice, the main 

advantages of this technique are the stability and the tunable FSR, while the main 

disadvantage is the lower number of comb tones that are obtained when compared 

with MLLs.  

OFCs can also be obtained by cascading a number of optical modulators 

driven by a large voltage RF tone, exploiting the non-linear behaviour of the 

modulators to obtain multiple carrier frequencies at the output [17, 18].  Inherent 

modulator properties such as bias drift and high insertion loss make this technique 

less attractive for network deployment. Finally, parametric OFCs that make use of 

highly nonlinear fibre to excite multiple optical carriers have also been demonstrated 

[19], but this solution is difficult to integrate in a realistic network.  

Table 6-1 Summary of the WDM/OSCM Experiments. 

Properties Experiment 1 Experiment 2 

Section 6.4.1 6.4.2 

OFC Technology 
Externally-Injected 

GSL 

Quantum-Dash 

MLL 

FSR 20 GHz 37 GHz 

Optical Channels 5 20 

Electrical Subchannels per 

Optical Channel 
4 4 

Total Electrical Subchannels 20 80 

Electrical Modulation Orthogonal QPSK Orthogonal QPSK 

Orthogonality Filters Bessel (section 5.3.2.3) SRRC (section 5.3.2.2) 

Baseband Data Rate 2.7 Gbit/s 2.7 Gbit/s 

Baseband Patterns PRBS7 PRBS7 

Data Rate per Optical Channel 21.6 Gbit/s 21.6 Gbit/s 

Overall Gross Data Rate 108 Gbit/s 432 Gbit/s 

Net Data Rate after 7% FEC 100.44 Gbit/s 401.76 Gbit/s 

Subcarrier Synchronization Same LOs in TX/RX 
PLL+SRD in RX 

(as section 5.5.3.2) 

Fibre Length Back to Back 2 km SSMF 

 



6. Multichannel WDM/OSCM based on Optical Frequency Combs 

180 

6.4 Experiments 

For a practical electro-optical transceiver, MLLs represent the most 

straightforward solution to integrate an OFC in an industrial product. GSLs are also 

promising because of their simplicity and stability. For those reasons, both 

technologies were employed in the real-time WDM/OSCM experiments described in 

this section. The parameters of the two experiments are summarized in Table 6-1. 

For this kind of direct detection system, the performance of different optical channels 

depends on the RIN and the CNR of the optical lines in the OFC, as it has been 

demonstrated for OFDM signals [20]. 

6.4.1 WDM/OSCM based on Gain-Switched Laser 

6.4.1.1 Scheme and Spectra 

A real-time direct detection WDM/OSCM system equivalent to that shown in 

Figure 6.1 was emulated for the case of five optical channels separated by 20 GHz, 

as illustrated in Figure 6.3. The physical implementation of the basic electrical 

scheme has been thoroughly described in section 5.4.2. In this case, the microwave 

FBMC scheme (de)modulated four QPSK 2.7 Gbaud orthogonal subchannels 

employing the solution based on Bessel filters described in section 5.3.2.3. Typical 

transmitted and received electrical spectra can be observed in Figure 6.4.   

The OFC was generated with an externally injected gain-switched DFB laser. 

The spectrum of the OFC is illustrated in Figure 6.5(a). The FSR was 20 GHz, set by 

the radio frequency synthesizer used to drive the laser. Five lines of similar 

amplitude (≈3 dB flatness) were filtered and amplified, as can be observed in Figure 

6.5(b). During the experiments, the OFC was also substituted with an ECL to 

compare the performance of the system with a single optical carrier case.  
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 Figure 6.3 Schematic of the WDM/OSCM experiment based on a GSL. 
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The optical link was established with a polymer based OIQM that presented a 

half-wave voltage Vπ=2.5V and a bandwidth of 20 GHz. Every optical carrier was 

modulated generating an OSSB channel. A sideband suppression ratio of 20 dB was 

achieved. The optical spectrum of the WDM/OSCM signal at the output of the 

OIQM can be observed in Figure 6.6. The parallel MZMs inside the OIQM were 

biased at quadrature, and driven by the RF FBMC signal and its HT, with a total rms 

OMI of M≈20%, or ≈500 mVRMS. From Figure 5.15, a sensitivity of ≈-33 dBm for a 

BER of 3.8·10
-3

 would be the theoretical limit achievable with perfect components. 

The desired optical channel was then selected with a tunable optical BPF, as shown 

in Figure 6.7. The rejection ratio of the adjacent optical carrier was 22 dB. A VOA 

(a) (b)  
Figure 6.4 Typical electrical spectra composed of four orthogonal QPSK 2.7 Gbaud 

subchannels at the output of the (a) FBMC transmitter and (b) photo-receiver. 

 

(a) (b)
 

Figure 6.5 (a) OFC at the output of the externally-injected GSL and (b) after filtering 

and amplifying five comb lines. 
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was used to simulate fibre losses. The resultant signal was introduced into a pre-

amplified optical receiver consisting of an EDFA and a photo-receiver with 20 GHz 

bandwidth. The EDFA was operated in constant power mode to ensure an average 

optical power of 5 dBm was fed to the photo-receiver regardless of the average 

received optical power, PIN. 

Given the close allocation of optical channels, there are two contributions that 

set the minimum distortion of the system. Firstly, the imperfectly suppressed side 

bands from the neighbouring OSSB channel, as explained in chapter 4. Secondly, the 

optical carrier of the adjacent optical channel could not be perfectly suppressed in the 

receiver (see Figure 6.7), adding cross-talk due to the beating in the photo-detector. 

As the transmitted baseband streams are uncorrelated, and with the selected 

 
Figure 6.6 Spectrum of the 5x21.6 Gbit/s WDM/OSCM signal. 

 

 
Figure 6.7 Spectrum of the fourth channel after being selected and filtered. 
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frequency plan, it can be deduced that in all the cases both distortions are 

uncorrelated with the desired signal. Therefore, no further decorrelation of the WDM 

signal is required. 

6.4.1.2 Results 

The optical carriers were modulated generating OSSB subchannels (see 

Figure 6.6). As it can be observed in Figure 6.5(b), the fifth optical channel presented 

the lowest CNR for this modulation, ≈50 dB, and, accordingly, the worst 

performance. For this channel, Figure 6.8 shows the average BER of the two 

components (I and Q) transmitted in every electrical subchannel, as a function of the 

average optical power at the input of the pre-amplified optical receiver, PIN. 

Measurements were taken with an optical back to back link. The performance of all 

the electrical subchannels was similar and the sensitivity for the 7% HD-FEC code 

was ≈-23 dBm. Under the same conditions, performance was measured using only 

one optical channel whose optical carrier was coming from a high-performance ECL. 

The RIN of the ECL was ≈-155 dB/Hz, in contrast with ≈-130 dB/Hz in the OFC 

[16]. The CNR of the ECL was >80 dB, in contrast with the ≈50 dB in the worst case 

of the OFC. As it can also be observed in Figure 6.8, the sensitivity achieved with the 

ECL was ≈-28 dBm for all the electrical subchannels, closer to the estimated ideal 
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 Figure 6.8 Comparison of performance between the worst optical channel in the 

WDM signal based on a GSL, and a single channel based on one low-RIN high-CNR 

ECL. FEC limit for a 7 % overhead. 
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value of -33 dBm.  It should be noted that in the WDM case, the optical channel 5 

experienced interference from the imperfectly suppressed sideband of channel 4, as 

can be deduced from chapter 4. It can be concluded that the maximum penalty 

generated by the tightly allocated WDM solution based on an externally-injected 

gain switched DFB laser was 5 dB with respect to a high performance individual 

channel. The penalty was due to the higher RIN and lower CNR of the OFC, and the 

interference generated by the adjacent optical channel. In Figure 6.8, it can also be 

observed that the WDM case, in comparison with the ECL case, establishes a higher 

noise floor that limits the best performance that can be obtained regardless the value 

of PIN. 

A more comprehensive approach requires individually analysing the 40 

components (5x4x2, 5 optical carriers, 4 electrical subcarriers, and 2 due to the 

quadrature modulation on each subcarrier). Another realization of the measurements 

was carried out obtaining the sensitivity for a 7% FEC for the 40 electrical 

components. The results are illustrated in Figure 6.9. Components 1 to 8 belong to 

the first optical channel and components 33 to 40 belong to the fifth one. There are 

several points that can be discussed. Firstly, some subchannels presented a disparity 

between the I and Q components (up to 5.5 dB). This IQ imbalance was mainly 

attributed to the limited performance of the electrical IQ mixers with broadband 
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 Figure 6.9 Individual sensitivities for all the baseband components in the 

WDM/OSCM link based on a GSL. 
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signals. Secondly, it can be confirmed that the CNR of the optical lines in the OFC 

determines the final performance of the optical channels. In this case the best CNR 

value corresponds to optical channel 1, ≈65 dB (see Figure 6.5(b)), and it presents 

the best performance. Moreover, optical channel 5 presents the worst performance 

with a CNR of ≈50 dB. Finally, all the components were able to achieve BER values 

below the FEC limit, with the sensitivity of the worst case at -20.5 dBm.  

The overall data rate is 108 Gbit/s (5x21.6) which after a 7% overhead FEC 

would be reduced to 101.44 Gbit/s. The presented results achieve a higher spectral 

efficiency than any previously reported broadband real-time DSP-less WDM/SCM 

link, as they made use of traditional non-orthogonal QPSK modulation that is limited 

to 1 bit/s/Hz in the electrical signal [8, 9]. Neglecting the optical carriers, the spectral 

efficiency of the presented OSCM scheme is 1.6 bit/s/Hz (21.6 Gbit/s in a bandwidth 

of 13.5 GHz), approaching 2 bit/s/Hz for a higher number of subcarriers. 

Additionally, the presented experiment has employed reduced guard bands with an 

optical channel separation of 20 GHz. This reduction has been supported by the use 

of an OFC, which ensures a fixed FSR, in contrast with independent lasers whose 

frequency separation drifts with time.  

6.4.2 WDM/OSCM based on Mode-Locked Laser 

6.4.2.1 Scheme and Spectra 

A real-time direct detection WDM/OSCM system equivalent to that shown in 

Figure 6.1 was also emulated employing a MLL as illustrated in Figure 6.10. The key 

differences with respect to the previous experiment will be listed.  

The electrical scheme was the one described in section 5.5.3.2. It consisted of 

four 2.7 Gbaud QPSK orthogonal subchannels. The SRRC orthogonality filters 

EDFA EDFA OBPF

IQ Modulator

Hybrid 

Splitter

0° 

OBPF OBPF

Photo-receiver

Transmitter

VOA

Receiver

90° 

FBMC

TX

FBMC

RX

MLL

EDFA
2 km

SSMF

5.4 13.58.1 10.8

(GHz)

2.7

 

Figure 6.10 Schematic of the WDM/OSCM experiment based on a MLL. 
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described in chapter 5 were employed. A pilot tone at 2.7 GHz was multiplexed in 

the transmitted signal and used in the receiver to synchronize all the subcarriers. 

Examples of transmitted and received electrical spectra are shown in Figure 6.11.    

The OFC was generated with a passively locked Quantum-Dash MLL [21] 

biased at 200 mA and with an FSR of 37 GHz. The spectrum of the OFC is 

illustrated in Figure 6.12(a). Twenty lines of similar amplitude were filtered and 

amplified, as can be observed in Figure 6.12(b). During the experiments, the MLL 

was also substituted with a high-performance ECL to compare the performance of 

the system with a single optical carrier case.  

(a) (b)
 

Figure 6.11 Typical electrical spectra composed of four orthogonal subchannels and 

pilot tone at the output of the (a) FBMC transmitter and (b) photo-receiver. 

 

(a) (b)
 

Figure 6.12 (a) OFC at the output of the Quantum-Dash MLL and (b) after filtering 

and amplifying twenty comb lines. 
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The resultant comb was optically modulated emulating a 20x21.6 Gbit/s 

WDM scheme (see Figure 6.13). The OIQM produced the OSSB signal with an OMI 

of M=20%. The optical signal was amplified and transmitted through 2 km of SSMF. 

The desired optical channel was then selected with a tunable optical BPF in the 

receiver (see Figure 6.14). A VOA was used to simulate additional fibre losses. The 

resultant signal was introduced into a pre-amplified receiver consisting of an EDFA 

and a 20 GHz photo-receiver. The EDFA was operated in constant power mode to 

ensure an average optical power of -4 dBm was fed to the photo-receiver.  

 

Figure 6.13 Spectrum of the 20x21.6 Gbit/s WDM/OSCM signal. 

 

 
Figure 6.14 Spectrum of the twelfth channel after being selected and filtered. 
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6.4.2.2 Results 

The performance of the system was measured obtaining the BER as a 

function of the average optical power at the input of the receiver EDFA, PIN. From 

Figure 6.13, one of the worst optical channels was the 12
th

 channel, as it had lower 

optical CNR, ≈45 dB. The BER measured for its four electrical subchannels 

(averaging the I and Q components) is shown in Figure 6.15. Measurements were 

taken with a link of 2 km of SSMF. The performance of all the electrical subchannels 

was similar and the sensitivity for the 7% HD-FEC code was ≈-25 dBm. Under the 

same conditions, the performance was measured using only one optical channel 

whose optical carrier was coming from a high-performance ECL. The RIN of the 

ECL was ≈-155 dB/Hz, in contrast with ≈-130 dB/Hz in the MLL [21]. The CNR of 

the ECL was >80 dB, in contrast with the ≈45 dB in the worst case of the MLL. As it 

can also be observed in Figure 6.15, the sensitivity achieved with the ECL was        

≈-29.5 dBm for all the electrical subchannels, closer to the estimated ideal value of 

≈-33 dBm. The achieved sensitivities are ≈2 dB better than with the GSL because 

this experiment employed the pseudo-ideal SRRC orthogonality filters. Apart from 

that, in the MLL case, due to the FSR of 37 GHz, the optical channels did not 

experience interference from the imperfectly suppressed sideband of the adjacent 
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channel. It can be concluded that the maximum penalty generated by the WDM 

solution based on a MLL was ≈4.5 dB with respect to a high performance individual 

channel. The penalty was due to the higher RIN and lower CNR of the OFC. Again, 

in Figure 6.15, it can also be observed that the WDM case, in comparison with the 

ECL case, establishes a higher noise floor that limits the best performance that can be 

obtained regardless the value of PIN. 

A more thorough measurement individually analysed the 160 baseband 

signals (20x4x2, 20 optical channels, 4 subchannels, and 2 due to the QPSK 

modulation). All the sensitivities, considering a hard decision 7% FEC code, are 

illustrated in Figure 6.16. Components 1 to 8 belong to the first optical channel and 

components 153 to 160 belong to the twentieth one.  All the sensitivities are in the 

range of -22 to -28.5 dBm. Performance differences can be attributed to the 

amplitude asymmetry of the optical carriers, and the varying behaviour of the IQ 

mixers in each of the frequency bands. In comparison with the GSL based case, all 

the optical channels present a more uniform behaviour due to the more similar CNR 

in the different comb lines. 

The overall data rate was 432 Gbit/s (20x21.6) that, after a 7% overhead FEC, 

would be reduced to 401.76 Gbit/s. The spectral efficiency of the electrical signals 

was 1.78 bit/s/Hz, (21.6 Gbit/s in a bandwidth of 12.1 GHz), slightly higher than in 
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Figure 6.16 Individual sensitivities for all the baseband components in the 

WDM/OSCM link based on a MLL. 
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the previous experiment with the GSL due to the use of the SRRC filters. In contrast, 

considering the optical carriers, the overall spectrally efficiency was reduced because 

of the higher FSR of 37 GHz of the MLL in comparison to that of the GSL.  

6.5 Conclusions 

SCM can leverage the maturity of microwave components to implement 

reliable real-time electro-optical transceivers. Purely analogue SCM implementations 

have the potential to achieve good performance in terms of power consumption, 

latency and tolerance to dispersion, but have been traditionally limited to low values 

of spectral efficiency. The previous weakness has been overcome by the transmission 

of orthogonal electrical subchannels following FBMC theory.  

For the first time, broadband real-time all-analogue WDM/OSCM schemes 

have been demonstrated, achieving a higher spectral efficiency than any previously 

reported equivalent link. The most relevant features of the described experiments are 

emphasized below. Firstly, net rates higher than 100 Gbit/s and 400 Gbit/s would be 

achieved after applying a 7% FEC. Secondly, the compatibility and suitability of 

OSCM and two different types of OFCs has been proved. GSLs are simple and stable 

solutions, can be implemented with off-the-shelf components, and achieve a tight 

allocation of optical channels. MLLs are custom solutions and have stability issues 

but they generate a high number of comb lines obtaining higher overall data rates. 

Finally, the baseband rate used in the experiment was 2.7 Gbit/s, directly compatible 

with the typical electrical interfaces employed in computing and electro-optical 

transceivers. The described features ensure that OSCM is a feasible and promising 

technique to be considered in the design of future WDM electro-optical transceivers. 
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Chapter 7 

7 Conclusions and Future Work 

Optical communications overcame the limited data rates of electrical systems 

and made possible the development of the Internet. Currently, all high-capacity 

networks employ optical systems regardless of their reach and purpose.  The devices 

that carry out the interface between the electrical and optical domains are called 

electro-optical transceivers. These key components can adopt a number of forms and 

characteristics depending on the network where they are deployed. The signals, 

modulations, and processing techniques that they employ, must be carefully selected 

to meet the requirements of a given subsystem.   

SCM is a well-known and reliable technique that can be employed in the 

design of electro-optical transceivers. It divides the available bandwidth into 

narrower subchannels obtaining high-speed transmission with relevant advantages: 

baseband signals with reduced bit rate and increased tolerance to dispersion. From an 

electronics perspective, ASP is preferred to ensure low power consumption and low 

latency, but a practical industrial implementation would only be possible employing 

MMIC technology. Accordingly, an SCM electro-optical transceiver relying on off-

the-shelf MMIC components has been presented. The key electrical devices, namely 

the microwave IQ mixers, have been characterized. Off-the-shelf components are 

designed for radio applications, which do not employ broadband multi-gigabit 

signals as in optical transmission. As a result, their group delay is not optimized for 

broadband communications and the highest modulation order that can be reliably 

achieved is QPSK. In the presented SCM transceiver, five 1.35 Gbaud QPSK 

subchannels were employed, obtaining 13.5 Gbit/s and a spectral efficiency of          

1 bit/s/Hz in the electrical signal. Higher modulation orders would require custom 

ICs for this particular and demanding application.    

Best SCM performance is achieved when it is combined with two techniques: 

OSSB and carrier suppression. OSSB avoids dispersive fading and allows a closer 

allocation of WDM channels. Carrier suppression potentially achieves better 

sensitivities in the receiver. The mathematical study of SCM has been extended by 

analysing the OIQM, an ideal choice in the transmitter because, unlike other 
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alternatives, both OSSB and carrier suppression can be obtained directly, without 

external components, by adjusting the bias points. When the frequency plan ensures 

that the subchannels are only affected by CTB, CSPR can be modified without 

adding any additional impairment in the subchannels. When at least one of the 

subchannels is interfered by CSO, a trade-off between CSPR and NLD is present. A 

mathematical model has been developed and can be applied to any frequency plan. It 

can be used to determine the optimum bias point and predict the gains in sensitivity 

that can be achieved for every subchannel. Experiments have been conducted with a 

scheme and components that ensure subcarriers are located at multiples of the data 

rate, which makes it ideal for an accurate study of the effects of intermodulation 

distortion. The theoretical predictions have been validated measuring CSPR, NLD, 

and their effect on the performance of channels. The sensitivity gains that can be 

directly achieved with OIQMs prove the suitability of this device to improve the 

power budget of SCM/OSSB links without incurring additional costs. 

SCM can be combined with WDM to increase the flexibility and the capacity 

of a network. To allocate closer optical channels, achieving improved spectral 

efficiency, OSSB signals are required but the performance is limited by the sideband 

suppression ratio obtained at the electro-optic transmitter. A WDM/SCM link 

consisting of OSSB signals has been presented. It was based on a state of the art 

OIQM, and the penalty associated with the residual sideband from the neighbouring 

optical channel was studied. A suppression ratio of more than 20 dB was achieved 

directly with the optical modulator without requiring additional optical filters, and a 

penalty of less than 2 dB in overall performance of the WDM/SCM system was 

measured due to the associated interference. It can be concluded that, despite the 

imperfect behaviour of optical modulators generating OSSB signals, a close 

allocation of WDM channels, which gives rise to a spectrally efficient solution, is 

feasible and viable avoiding expensive optical filters in the transmitter. Additionally, 

a fine adjustment of the frequency separation between optical channels can also be 

employed to ensure optimum performance in these systems, making the peaks of the 

residual interference coincide with the nulls of the desired subchannels. 

The main disadvantage of SCM systems is the low spectral efficiency, 

especially when it is compared with DSP based implementations. This thesis has 

proposed a novel technique, referred to as OSCM, which can potentially double the 

spectral efficiency of traditional all-analogue SCM links by transmitting orthogonally 
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overlapping subchannels. The concept has been demonstrated in real-time 

experiments employing up to four 2.7 Gbaud QPSK orthogonal subchannels, with a 

total rate per optical channel of up to 21.6 Gbit/s and spectral efficiencies of up to         

1.78 bit/s/Hz, and relying largely on off-the-shelf components. The technique 

requires the implementation of FBMC schemes with broadband microwave circuits. 

With the appropriate microwave filtering, bits sourced at multi-gigabit rates can be 

pulse shaped, and modulated and demodulated orthogonally without requiring DSP. 

It has been demonstrated that standard filters can be employed, although the best 

performance is achieved with custom implementations that match the ideal Nyquist 

shapes. Additionally, the combination of FBMC signals and SCM permits the 

transmission of orthogonal subchannels over fibre without requiring a cyclic prefix. 

The expected tolerance to dispersion of OSCM/OSSB has also been 

confirmed. The highest penalty occurs in the subchannel that is most affected by the 

nonlinearities associated to the combined effect of the optical modulator and the fibre 

dispersion. A novel synchronization scheme, applicable to both traditional SCM and 

OSCM, has been introduced. By locating all the subcarriers at harmonics of the data 

rate, they can be generated with a single device, an electrical comb or SRD. As a 

consequence, the technique allows the synchronization of any number of practical 

subchannels requiring only one PLL. Accordingly, this synchronization method 

presents the lowest number of components of any analogue solution presented to 

date. 

Broadband real-time all-analogue WDM/OSCM schemes have also been 

demonstrated, achieving a higher spectral efficiency than any previously reported 

equivalent link. The most relevant features of the described experiments are 

emphasized below. Firstly, net rates higher than 100 Gbit/s and 400 Gbit/s would be 

achieved after applying a 7% FEC. Secondly, the compatibility and suitability of 

OSCM and two different types of OFCs has been proved. GSLs are simple and stable 

solutions, can be implemented with off-the-shelf components, and achieve a tight 

allocation of optical channels. MLLs are custom solutions and have stability issues, 

but they generate a high number of comb lines obtaining higher overall data rates. 

Finally, the baseband rate used in the experiment was 2.7 Gbit/s, directly compatible 

with the typical electrical interfaces employed in computing and electro-optical 

transceivers. The described features ensure that OSCM is a feasible and promising 

technique to be considered in the design of future WDM electro-optical transceivers. 
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This section also describes several ideas to extend the concepts that have been 

studied: 

 

 The thesis has presented a real-time all-analogue broadband SCM link. Off-the-

shelf microwave IQ mixers limit the higher modulation order achieved in the 

system, as detailed in chapter 2. A possible solution consists of employing off-the-

shelf microwave low-pass FIR filters to compensate the impairments of these 

devices. Potentially, the same FIR filters could achieve pulse shaping, IQ mixer 

equalization and dispersion compensation, obtaining a high-performance 

SCM/OSCM link with a high modulation order and low power consumption.    

 

 Chapter 3 analysed the case of SCM/OSSB with OIQMs at any bias point, which 

implies different levels of optical carrier suppression and nonlinear distortion. 

This study could be extended by comparing thoroughly the OIQM with the DD-

MZM in terms of CSPR, NLDs and best achievable sensitivities.    

 

 In chapter 3, a technique to measure accurate CSPR from the photocurrent of the 

intensity modulated optical signals was provided. In the area of accuracy, this 

method improves traditional approximations that rely on estimating the area inside 

the spectrum that can be observed in any optical spectrum analyser. Potentially, a 

generalized accurate mathematical expression of the CSPR could be provided for 

FDM, OFDM and FBMC signals as a function of the bandwidth of each 

subchannel, the optical subchannel to noise ratio, the roll-off factor, and the level 

of the optical carrier. The validity of the expression could be confirmed 

experimentally using the technique shown in this project consisting of measuring 

the photocurrent. 

 

 Spectrally efficient WDM/SCM schemes have been presented in chapter 4. When 

a closer allocation of OSSB channels is implemented, a source of distortion is the 

imperfect SSR achieved directly with the optical modulator. An interesting task 

consists of studying mathematically the impairments in performance as a function 

of the SSR, the bandwidth of every subchannel and the modulation order. Such a 

study, if verified with experimental results, would potentially be used to predict 
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the minimum suppression ratio required in any future WDM/SCM system 

consisting of OSSB channels. Experimentally, the analysis could be verified 

obtaining different SSRs with the optical modulator and then measuring 

performance. These different SSRs could be achieved by biasing some of the 

optical modulators with phase shifts deviated from the theoretical 90 degrees. 

 

 The OSCM study presented in chapter 5 can be extended. Theoretically, the 

distortions associated with dispersion for any beta factor and for any microwave 

filter could be studied obtaining optimum filters for an electro-optical link. A 

digital implementation with an arbitrary waveform generator and a high speed 

digital scope could be used to verify the predictions emulating any microwave 

filter. 

 

 The WDM/OSCM technique has been demonstrated in chapter 6 relying on 

OFCs, achieving up to 400 Gbit/s transmissions. In practice, MLLs produce a 

high number of comb lines. Optimizing all the components in the systems, it is 

possible to use more lines and increase the overall data rate. According to the 

number of lines generated by semiconductor MLLs, it should be possible to reach 

1 Tbit/s with real-time WDM/OSCM implementations.  

   

 All the experiments presented in the thesis have been conducted with direct 

detection. Coherent OSCM and the associated long-reach transceivers are 

potentially possible. An option consists of transmitting a pilot tone that is used in 

the receiver to implement an RF-assisted optical PLL. The same pilot tone could 

also be used to perform subcarrier synchronization.  

 

 The proposed OSCM scheme can also be applied to radio over fibre systems in 

the 60 GHz band or beyond. A possible study consists of finding the highest 

bandwidth per subchannel that can be implemented in such a radio-wireless link. 

The advantages of microwave FBMC in terms of power consumption and latency 

would be potentially obtained.   
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Appendix A  

LO Management and Distribution PCB  

This appendix shows the schematics of the PCB that was designed to split, 

equalize and phase shift the LO signals coming from the electrical comb. All those 

tasks were performed with MMIC phase shifters, attenuators and amplifiers. The 

board was supplied with three different voltages: +15V, +8V and -8V.  

A.1 Block Diagram 

The board splits an incoming LO and performs variable phase shift and 

variable gain amplification according to the following diagram of blocks:  

A.2 Schematics 

The schematics with all the components of the board are illustrated below. 
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A.3 Top PCB Print 

This is the top layer of the PCB before being populated with components: 
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Appendix B  

Optical IQ Modulator Equations 

This section shows the derivation of the mathematical expressions that are 

required for the analysis of the trade-off between CSPR and NLD that occurs in an 

SCM/OSSB link based on an OIQM.  

B.1 Output Electrical Field Eo(t) 

 An OIQM is composed of two parallel MZMs whose inputs are fed by the 

same optical field which is split at the input of the device, and whose outputs go 

through a third MZM that introduces an additional relative phase shift before 

recombination. To generate OSSB, the electrical ports of the two parallel MZMs are 

fed with the desired RF signal and its Hilbert transform (HT) pair respectively. 

Additionally, the third MZM must introduce a relative phase shift of 90 degrees.   

The analysis of the electrical field Eo(t) at the output of the OIQM can be 

simplified using phasors. The optical carrier at the input is Ei·e
jωt and the associated 

phasor is then Ei. For a lossless OIQM, it can considered that the incoming phasor is 

split into four phasors with equal amplitudes Ei/4 and each one goes through a 

different path as it can be observed in the following picture: 
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 In each arm a different phase is applied. In all the cases a push-pull internal 

configuration has been considered. The overall relative phase shifts performed by the 

parallel MZMs, 2ϕ, are determined by the bias voltage Vb with the following 

expression: 
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The overall phase shift of the third modulator must be π/2 for an OSSB 

configuration. The RF modulating signals are composed of N tones of amplitude VAC 

and whose frequencies and phases are arbitrary and denoted as Ωi and θi for the i
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Thus, the OMI per subcarrier m is defined as: 
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Similarly, the contribution of every phasor at the end of every path can be written as:       
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The resultant phasor at the output is: 
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 The terms inside the products can be expanded with Bessel functions 

according to the Jacobi-Anger expansion: 
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where Jr(m) stands for the r
th

 order Bessel function of the first kind. 
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 Adding all the terms required to obtain the total contribution of any 

fundamental tone, harmonic or intermodulation product Ek1,k2...kN whose frequency is 

(ωc+k1Ω1+k2Ω2+….+kNΩN), where k1,k2,…,kN are arbitrary integer numbers reflecting 

the nature of the signal in question, the total contribution from the four paths is given 

by the following expression:  
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Extracting a common factor: 
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According to Euler’s formula, the previous equation becomes: 
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Applying the identity cos(u)+cos(v)=2cos((u+v)/2)cos((u-v)/2): 
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As the development has dealt with phasors, the final contribution of any frequency 

component Eo_k1,k2...kN(t) can be written as: 
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 (B.16) 

 

Note that the configuration of the phases in the origin gives rise to a lower single side 

band signal. Also, the value of m usually meets the following property: m << 1.  

Any fundamental tone, harmonic product, or intermodulation product can be 

derived from eq. (B.16). The nonlinear distortion can be obtained as the power ratio 

between any harmonic or intermodulation product and a desired tone. The most 

meaningful values are presented in Table 3-2.  

B.2 Output Photo-Current Io(t) 

B.2.1 Analytical Expression 

To calculate the associated photo-current at the output of the OIQM, Io(t), an 

analytical expression for the electrical field Eo(t) must firstly be obtained. NLD in 

Io(t) will be the same regardless the OSSB configuration that it is employed, upper 

side band or lower side band.  

The parameters defined in the previous subsection are employed. Without 

losing generality, it will be considered that the electrical field at the input of the 

OIQM is cos( 4)i cE t   . The electrical fields at the output of the parallel MZMs, 

EMZM_I(t) and EMZM_Q(t), when they are biased at the same point can be expressed as: 
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The third MZM induces a relative phase shift of 90 degrees (+π/4,-π/4) before 

recombination. Therefore, the total field at the output of the OIQM is given by: 
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Now the following equality will be applied: 
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Resulting in: 
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The phase φ depends on m, s(t) and ϕ, but it has not been written out because it will 

not have any influence in the photocurrent. The associated photocurrent is equal to 

the mean square value of the electric field. This can be obtained squaring Eo(t) and 

removing the frequency terms at 2ωc: 
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After a basic manipulation, the final result is:  
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B.2.2 Bessel Expansion 

B.2.2.1 Global Expression 

To calculate the frequency components and NLD at the output photocurrent 

of an OIQM that is generating OSSB, it is necessary to process the Bessel expansion 

of the sinusoidal terms in eq. (B.23). The expression to expand can be reduced to: 
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Applying the equality cos(u+v)=cos(u)cos(v)-sin(u)sin(v), the result is: 
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Applying Euler’s formulas:  
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After some manipulation, previous equation becomes:  
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With the previous equation, the Bessel expansion is reduced to analyse one 

expression and then substitute for the different frequencies and phases in eq. (B.27). 

Such an expression is the Jacobi-Anger expansion, shown in eq. (B.11).  

B.2.2.2 Individual Terms Deduction 

The important terms will be derived in this subsection. Every term inside the 

products in eq. (B.27) is expanded with Bessel functions according to eq. (B.11). 

Initially, the analysis focuses on the first product. That product is expanded as 

follows (for a case with N > 3):     
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 To obtain the first harmonic of the first subcarrier, only the following sub-

indexes must be considered: p=+1 and p=-1, and the rest of the sub-indexes equal to 

zero. The partial solution for the first harmonic would be: 

 

             

     

''

1

1 1 0

1

0 1 1 1

1 _

1 1 1 12 2

( )

2 2 2

2 2 2 cos .

N

N

st harmonic

j jj t j j t j

I t

J m J m J m

j J m J m t

e e e e e e
 

 









    



 
   
 
 

  

  (B.29) 

 

For the previous derivation, and for the subsequent that take place in this section, the 

following relation is required: 
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The result obtained in equation (B.29) is the most general, but it can be immediately 

modified to obtain all the terms that are required in eq. (B.27), just substituting θ1 

with the required phases. Substituting all these terms and resolving eq. (B.27), the 

value of the first harmonic in the output photocurrent of the OIQM is obtained. All 

the constant multipliers that were shown in eq. (B.23) are now taken into account and 

the final result is: 
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 For the second harmonic, only the following sub-indexes must be considered: 

p=+2 and p=-2, and the rest of the sub-indexes equal to zero. The partial and the final 

solutions for the second harmonic are: 
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 For the third harmonic, only the following sub-indexes must be considered: 

p=+3 and p=-3, and the rest of the sub-indexes equal to zero. The partial and the final 

solutions for the third harmonic are: 
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 For the second order intermodulation, only the following sub-indexes must be 

considered: p=+1 and p=-1, q=+1 and q=-1, and the rest of the sub-indexes equal to 

zero. The partial and the final solutions for the second order intermodulation are: 
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 For the third order intermodulation, only the following sub-indexes must be 

considered: p=+1 and p=-1, q=+2 and q=-2, and the rest of the sub-indexes equal to 

zero. The partial and the final solutions for the third order intermodulation are: 
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 Finally, for the triple beat, only the following sub-indexes must be 

considered: p=+1 and p=-1, q=+1 and q=-1, r=+1 and r=-1, and the rest of the sub-

indexes equal to zero. The partial and the final solutions for the third order 

intermodulation products are: 
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When all the terms are derived, the nonlinear distortion can be obtained as the 

power ratio between any harmonic or intermodulation product and a desired tone. 

The most meaningful values of nonlinear distortion are shown in Table 3-3. In the 

calculations of the intermodulation products contributions, it should be noted that 

only one of every two potential combinations of frequencies is obtained. As an 

example, focusing on triple beat in eq. (B.36), the mixing of 3 frequencies generate 8 

potential combinations, but only 4 are present in the output. The eight possibilities 

are represented by four pairs, and each pair is formed by a set of mixing frequencies 

and the opposite one. Only one of the realizations of every pair appears in the output.  

This fact must be taken into account when counting intermodulation product 

numbers like NCSO and NCTB (see Table 3-1).  
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 Another important component that can be obtained with the previous analysis 

is the DC term in the photocurrent. With that purpose, and from eq. (B.28), all the 

sub-indexes must be equal to zero: p=0, q=0, …. and  r=0. The partial result must be 

introduced in eq. (B.27) and then in eq. (B.23) to obtain the final value: 

 

  
2

01 (2 )cos(2 ) .
8

Ni
DC

E
I J m    (B.37) 

 

The previous value is the DC term that arises when the electric field is squared and 

the optical carrier and the fundamental tones are multiplied by themselves. However, 

more terms can fall at DC, but those would be the result of NLD and, in general, will 

be small in comparison with the DC component obtained as a consequence of the 

optical carrier.  

B.3 Optimum Bias Point 

This subsection shows the mathematical derivation of the minimum achievable 

sensitivity for a desired quality factor QF in a SCM/OSSB link based on an optical 

IQ modulator, a pre-amplified receiver (see Figure 3.5) and N QPSK subchannels.  

The receiver consists of an EDFA whose gain is G, a photo-detector whose 

responsivity is R and an RF demodulator. The average optical power at the input of 

the receiver can be obtained as the DC component of the associated photocurrent for 

responsivity equal to 1. From eq. (B.37), and normalizing Ei=1: 
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1 (2 )cos(2 ) .

8

N

INP J m    (B.38) 

 

The amplitude of the kth electrical subcarrier at the detected photocurrent can be 

obtained from eq. (B.31): 
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To calculate the sensitivity of the link, the detected photocurrent must be written 

making PIN an independent variable:  
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where Ωk and θk is the frequency and phase of the k
th

 subcarrier and Iϕ represents the 

dependency of the amplitude of the subcarrier on the bias point: 
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Thus, the amplitude of the k
th

 subcarrier can be written as: 

 

 .k INI RGP I  (B.42) 

 

In the described link, neglecting NLD, the main source of noise will be amplified 

spontaneous emission (ASE) coming from the EDFA. After demodulation the 

contribution of this noise will be [1]: 

 

 2 22 ( 1)ASE IN eR P G G Fh B    (B.43) 

 

where F is the noise figure of the EDFA, h is Planck’s constant, v is the optical 

frequency and Be is the electrical bandwidth of the baseband channel at the receiver. 

Under a Gaussian approximation the time averaged second and third order 

intermodulation current power [2, 3] is added like noise as in [4]. Thus, from eq. 

(3.7), the absolute contribution of NLD is: 
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The quality factor QF after the RF demodulator for a SCM/QPSK system is obtained 

substituting in eq. (2.38): 
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After some manipulations and for G>>1, the minimum achievable sensitivity for a 

desired value of QF can be deduced as: 
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Appendix C  

Phase Alignment in Microwave FBMC 

This section details a simplified technique to achieve the orthogonal phase 

alignment in a microwave FBMC transmission system, equivalent to the one 

presented in Chapter 5.  

C.1 FBMC Scheme 

The original FBMC scheme developed in [1], where the bit period is T and 

the angular data frequency is ωr, is shown below: 

 

The delays that can be found in the transmitter in any real microwave 

implementation are also included in the figure. For the i
th

 frequency band, where i is 

an integer that can present three consecutive values (k-1, k, k+1) and whose 

subcarrier frequency is i∙ωr: the term dAi accounts for any delay of the baseband pair 
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prior to the IQ mixing, dBi represents the delay after the mixing and before the 

overall combination of subchannels, and φi is the phase shift in the LO with respect 

to the ideal case. The LOs at the receiver are locked to the incoming signal, as in any 

FDM transmission system. Without losing generality, the delays in the channel or in 

the receiver have not been included.  

The real physical implementation using IQ mixers, as illustrated in Figure 

5.7, includes extra phase shifts of 180 degrees in some of the LOs, but it can be 

readily seen that those shifts do not have any influence in the final results. 

Considering any phase shift between different pairs of baseband data, and any 

difference in the delay introduced by the IQ mixers at the different RF frequencies, 

orthogonal phase alignment can be accomplished by adjusting only the phase of the 

transmitting LOs. This ensures that there is a sampling point free of ISI and ICI in 

the received baseband signals. The required phase shifts in the transmitting LOs will 

be derived mathematically. In the derivation, a full roll-off HSRRC(ω) extending till ωr 

(β=1) is used. 

C.2 Transmitted Spectrum 

When a single pulse is transmitted, the spectrum of the generated signal, 

S(ω), is equal to the sum of the I and Q contributions in each frequency band, Si,I(ω) 

and Si,Q(ω). Considering the three orthogonal subchannels: 
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 (C.4) 

 

C.3 Interference 

Initially, the I component of the k
th

 subchannel is analysed. As matched 

HSRRC(ω) filters are used in the transmitter and the receiver, ISI will be zero at: 

 

 ( 0) , ,ISI k I k kt nT dA dB     (C.5) 

 

where n denotes the bit number. 

C.3.1 Interaction with (k-1)th Subchannel 

The ICI coming from the (k-1)
th

 subchannel can be derived as follows. In the 

receiver, the interfering spectrum generated by the I component of the (k-1)
th

 

subchannel, over the I component of the k
th

 subchannel is: 
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Note that: 
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Therefore, eq. (C.6) can be written as: 
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The temporal contribution can be calculated as in section C.4.1. From eq. (C.32) it 

can be deduced that the ICI coming from the I component of the (k-1)
th

 subchannel, 

over the I component of the k
th

 subchannel, cancels when:  
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Similarly, the interfering spectrum generated by the Q component of the      

(k-1)
th

 subchannel, over the I component of the k
th

 subchannel is: 
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After some manipulation, the previous equation becomes: 
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The temporal contribution can be calculated as in section C.4.2. From eq. (C.38) it 

can be deduced that the ICI coming from the Q component of the (k-1)
th

 subchannel, 

over the I component of the k
th

 subchannel, cancels when: 
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As this is the same condition as that in eq. (C.9), it can be generalized that the ICI 

coming from the (k-1)
th

 subchannel, over the I component of the k
th

 subchannel, 

cancels at:  
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From eqs. (C.9) and (C.12),  it becomes clear that varying the phase of the (k-1)
th

 

subcarrier φk-1, the sampling point at which the ICI is equal to zero moves. It must 

coincide with the sampling point free of ISI, from eq. (C.5), such that: 

 

 
( 1)

( 0), , ( 0) , .k
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 Substituting, the desired value of φk-1 is derived: 
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With the previous value of phase, the ICI coming from the I component of the 

k
th

 subchannel, over the I and Q components of the (k-1)
th

 subchannel, can also be 

analysed yielding the desired results, as it cancels at t=(2n+1)(T/2)+dAk-1+dBk-1 and 

t=nT+dAk-1+dBk-1 respectively. 

C.3.2 Interaction with (k+1)th Subchannel 

Similarly, in the receiver, the interfering spectrum generated by the I 

component of the (k+1)
th

 subchannel, over the I component of the k
th

 subchannel is: 
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 (C.16) 

 

Note that: 
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Therefore, eq. (C.16) can be written as: 
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The temporal contribution can be calculated as in section C.4.1. From eq. (C.32) it 

can be deduced that the ICI coming from the I component of the (k+1)
th

 subchannel, 

over the I component of the k
th

 subchannel, cancels when:  
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Similarly, the interfering spectrum generated by the Q component of the 

(k+1)
th

 subchannel, over the I component of the k
th

 subchannel is: 
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After some manipulation, the previous equation becomes: 
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The temporal contribution can be calculated as in section C.4.2. From eq. (C.38) it 

can be deduced that the ICI coming from the Q component of the (k+1)
th

 subchannel, 

over the I component of the k
th

 subchannel, cancels when: 
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As this is the same condition as that in eq. (C.19), it can be generalized that the ICI 

coming from the (k+1)
th

 subchannel, over the I component of the k
th

 subchannel, 

cancels at: 
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From eqs. (C.19) and (C.22), it becomes clear that varying the phase of the (k+1)
th

 

subcarrier φk+1, the sampling point at which the ICI is equal to zero moves. It must 

coincide with the sampling point free of ISI, from eq. (C.5), such that: 
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Substituting, the desired value of φk+1 is derived: 
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With the previous value of phase, the ICI coming from the I component of the 

k
th

 subchannel, over the I and Q components of the (k+1)
th

 subchannel, can also be 
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analysed yielding the desired results, as it cancels at t=(2n+1)(T/2)+dAk+1+dBk+1 and 

t=nT+dAk+1+dBk+1 respectively. 

Due to the symmetry of the system, the same values of φk-1 and φk+1 are 

obtained if the Q component of the k
th

 subchannel is analysed. The functionality of 

these values was verified by simulation.  

C.4 Temporal Solutions 

During the mathematical developments described above, two generic spectra 

are obtained. This subsection shows the temporal signals associated with the spectra 

and their resolution. 

C.4.1 Case 1 

For a spectrum defined with the following equation: 
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where F(ω) is an even function defined in the range (-2π/T, 2π/T), equivalent to an 

HSRRC(ω) (see Figure 5.3).   

The associated temporal signal is given by: 
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As F(ω) is an even function, the two first terms in the equation are equal, while the 

sum of the third term and the fourth term cancels. The previous statement is 

illustrated below showing an example of the shape of the functions: 

 

As a result, eq. (C.27) becomes: 
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With a change of variable u = ω - π/T: 
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After some manipulations: 
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When the integrand of the previous equation is an odd function, r(t) cancels, as it can 

be deduced from the following picture: 

 

Hence, from eq. (C.30), r(t)=0 when: 
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Note that if τ can be expressed in the form '
2

T
    , the previous condition 

becomes: 

 ' .
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C.4.2 Case 2 

For a spectrum defined with the following equation: 
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where F(ω) is an even function defined in the range (-2π/T, 2π/T), equivalent to an 

HSRRC(ω) (see Figure 5.3).   

The associated temporal signal is given by: 
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 (C.34) 

 

As F(ω) is an even function, the two first terms in the equation cancel, while the 

third and fourth terms are equal. As a result, the previous equation can be expressed 

as: 
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With a change of variable u = ω - π/T: 
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After some manipulations: 
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When the integrand of the previous equation is an odd function, r(t) cancels. This 

happens when: 
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Note that if τ can be expressed in the form '
2

T
    , the previous condition 

becomes: 

 

  ' 2 1 .
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T T
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C.5 Conclusions 

 It can be concluded that, aligning only the T/2 shift inside every baseband 

pair, any number of practical subchannels can be orthogonally aggregated by 

adjusting the phase shift of every new transmitting LO. This phase moves the time at 

which the new ICI over the baseband components transmitted in the neighbouring 

subchannels is cancelled, until it coincides with the sampling point, where ISI is also 

zero. Knowing all the delays of the components, the required phase shifts can be 

directly introduced in the tracks of a hypothetical integrated circuit or printed circuit 

board. 
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