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ABSTRACT 

Identification of Membrane Associated Proteins as Potential Markers for the 

DLKP Clonal Subpopulations 

Andrew McCann 

Lung cancer is one of the major causes of cancer death worldwide, it represents a 

heterogeneous group of tumours with distinct morphological, histological and molecular 

features reflected by varied clinical outcome and response to treatment. DLKP is a cell 

line originating from a lymph node metastasis of a primary lung tumour histologically 

described as a “poorly differentiated squamous cell carcinoma”. DLKPSQ, DLKPI and 

DLKPM are three distinct subpopulations derived from DLKP, which are 

morphologically and phenotypically different from each other. The research outlined in 

this thesis aims to identify membrane associated proteins that could be used as potential 

markers for the DLKP clones, but also to identify potentially novel proteins associated 

with lung cancer. 

Cell surface protein isolation and label-free mass spectrometry analysis were performed 

on proteins isolated from DLKP and the DLKP clones. Eight proteins were successfully 

validated in the DLKP clones; AHNAK, HDGF, ROBO2, SLIT2, ALCAM, IQGAP1, 

INA and SPR, using Western blot analysis, Immunofluorescence and 

Immunocytochemistry. Their expression was also investigated in various tumour types 

and representative cell lines. SPR is associated with poor survival of patients with 

Luminal A and basal-like breast cancers and also shows high expression across triple 

negative breast cancer subtypes. siRNA mediated knockdown studies of three candidate 

proteins. ALCAM, INA and SPR knockdown led to a significant reduction in the invasion 

and migration of DLKPM cells, indicating a potential functional role for these proteins in 

lung cancer invasion/migration. 

A pilot in vivo study using severe combined immune-deficient (SCID) mice to investigate 

the growth of DLKP and its clones resulted in all four cell lines forming tumours 

following implantation. Tumours derived from DLKP and DLKPI were the fastest 

growing and largest tumours, DLKPM formed smaller solid tumours following an initial 

lag phase, while DLKPSQ formed large, highly vascularised tumours. 

Immunohistochemical analysis of the xenografts derived from all four cell lines revealed; 

strong Ki67 immunoreactivity, negligible CD31 immunoreactivity and strong N-cadherin 

immunoreactivity. Explant culture revealed a significant reduction in migratory capacity 

of DLKPSQ cells, but also a significant reduction in invasion/migration of DLKPM cells. 

Western blot analysis and immunohistochemical analysis indicated that expression of 

SLIT2, ALCAM, IQGAP1, INA and SPR were maintained in vivo. 

The research presented demonstrates that proteomic analysis of cell surface isolates from 

the DLKP variants can lead to the identification of proteins with potential functional roles 

in cancer. AHNAK, SLIT2, ALCAM, and SPR were identified as potential markers 

capable of distinguishing between each of the DLKP clones. In addition, SPR may 

represent a novel target for triple negative breast cancer. The DLKP cell line model could 

also prove to be an invaluable model to study the effects of potential novel therapeutics 

in lung cancer, in vivo. 
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1.1 Tumour Heterogeneity 

Cancer is not one but many diseases and has traditionally been described as a disease 

attributed to a stepwise accumulation of mutations in key oncogenes and tumour 

suppressors. Tumours are now known to be dynamically evolving entities both 

genetically and epigenetically [1]. Primary and metastatic tumours are generally 

described as heterogeneous, meaning they contain distinct cell populations with differing 

heritable alterations. Cell populations within these heterogeneous tumours can display 

remarkable variability with distinct characteristics such as cellular morphology, 

metabolic activity, motility, proliferation rate, antigen expression, drug response and 

metastatic potential [2, 3]. Within the description of tumour heterogeneity exists; intra-

tumour heterogeneity which specifically refers to heterogeneity within a tumour and 

inter-tumour heterogeneity which refers to heterogeneity in several different tumours [1], 

both types are illustrated in Figure 1.1-1 below. 

 

 

 

Figure 1.1-1:- Tumour heterogeneity in cancer. 

Subclones may intermingle (as shown by subclones 1 and 2) or be spatially separated (as shown 

by subclone 3). Tumour subclones may show differential gene expression due to both genetic and 

epigenetic heterogeneity. Within a subclonal population of tumour cells - shown here as a tumour 

section, hybridized to two fluorescent probes for the centromeres of two chromosomes 

(chromosome 2, red; chromosome 18, green) with DNA (blue) there is intercellular genetic and 

non-genetic variation of, for example, chromosome copy number, somatic point mutations or 

epigenetic modifications that result in phenotypic diversity. Intercellular genetic heterogeneity is 

exacerbated by genomic instability, and may foster the emergence of tumour subclones. Genomic 

instability and tumour subclonal architecture may vary further over time if influenced by, for 

example, cancer treatment [4]. 
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There are two known models lending to heterogeneity in cancer; the cancer stem cell 

model and the clonal evolution model. Both models are illustrated in Figure 1.2-1.  

1.2 The Cancer stem cell model 

The cancer stem cell model is not a new idea and generally, assumes hierarchical 

organisation within the tumour. It suggests that a subset of cells with stem cell properties 

drive tumour initiation and progression, cancer stem cells (CSCs). CSCs have been 

defined by the American association for cancer research (AACR) as “a cell within a 

tumour that possesses the capacity to self-renew and to cause heterogeneous lineages of 

cancer cells that comprise the tumour” [5-7]. A number of cell surface proteins have been 

designated as a marker of CSCs, some of which include CD166, CD133, CD44 (EpCAM) 

and CD271 [8]. 

1.2.1 The clonal evolution model  

The Clonal Evolution model suggests that premalignant or malignant cell populations 

accumulate various hereditary changes over time that may confer certain advantages or 

disadvantages onto the cell. This model is subjected to natural selection. Carcinogenesis 

is initiated by the accumulation of several mutations in a single cell and is driven by the 

emergence of further genetic and epigenetic alterations that confer more aggressive, 

invasive and potentially drug resistant phenotypes [6].  

 

 
 

 

Figure 1.2-1:- Suggested models of heterogeneity in cancer. 

(A) The clonal evolution model: cells are subjected to the Darwinian evolutional trajectory. (B) 

The Cancer stem cell model: cells have the ability of an unlimited number of divisions. 
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1.2.2 Sources of heterogeneity 

Intratumour heterogeneity can be observed at many different levels and may be 

attributable to a number of different factors [9]. Varying degrees of clonal heterogeneity 

may arise as a result of selective outgrowth of any given clone. Subclones may continue 

to expand and evolve in a sequential linear fashion, or else they may continue to diverge, 

following a branched evolutionary trajectory [10, 11]. Diverse phenotypes can arise as a 

result of extrinsic factors such as pH, hypoxia and paracrine signalling interactions with 

stroma and other cells. These factors generate phenotypic diversity through modulation 

of cellular signalling, but also act as selection pressures supporting the clonal expansion 

of cells that proliferate efficiently in a particular micro-environment [12]. 

Genetic instability, a feature in a high proportion of solid tumours, generates a high level 

of intercellular genetic heterogeneity and has been linked with both drug resistance and 

poor prognosis in cancer. For normal cells in tissues, the goal is to accurately duplicate 

the genome and evenly divide up the duplicated genome into two daughter cells. If this 

does not happen, errors (such as amplifications, mutations, deletion, chromosome 

rearrangements etc.) will be passed on to the next generation of cells. This can have 

profound effects on the normal function of the cells (e.g. control of cell death). Normal 

cells control these errors, by preventing DNA replication until any genetic damage has 

been prepared. Certain genes are responsible for this, such as TP53, which encoded the 

checkpoint protein p53 and functions as a tumour suppressor. TP53 gene is mutated in 

approximately 70% lung tumours, 50% of these are NSCLC [1, 13, 14]. Regulation of 

such proteins helps protect the cell against tumorigenesis, which is effectively the 

accumulation of genetic alterations.  

Epigenetic, transcriptomic and proteomic heterogeneity may arise due to underlying 

genotypic variation but can also reflect cell cycle stage and stochastic variation between 

cells or hierarchical organisation of cells according to the cancer stem theory [4]. There 

are a number of routes through which a tumour cell may acquire drug resistance: 

upregulation of drug efflux pumps, drugs may be inactivated or metabolised in the cell, 

or the drug may not be efficiently taken up by the cells. However, it is possible that 

resistance may be pre-existing in minor subpopulations of heterogeneous tumours. In the 

context of EGFR, mutations in its ATP binding sequence (T790M) have been reported 

[15].  

However, the existence of genetic and epigenetic differences in different cancer cells 

within tumours may explain why some tumour cells remain present after cancer treatment. 
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Since genetic instability plays important roles in both cancer initiation and progression, 

it is hugely important to consider genetic instability during treatment regimens as it may 

ultimately be responsible for patient relapse. It is possible that the initial treatment may 

select out more aggressive or drug resistant cells which might be more difficult to treat, 

potentially resulting in a poorer patient prognosis [16]. 

Clonal heterogeneity of cells in tumours has the potential to produce many different types 

of tumours. Cells within the tumours may have certain characteristics which allow them 

to evolve down a number of different trajectories which may result varying genetic and 

phenotypic characteristics. Some of these characteristics may confer the ability of cells to 

evade therapeutic treatments leading to the development of tumours which are more 

resistant to therapy. Heterogeneity presents huge challenges for clinicians in classifying 

the disease and considering the most effective treatment for patients [17]. 
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1.3 Lung Cancer 

Lung cancer is a heterogeneous group of lesions with differences in clinical presentation, 

pathological features and biological behaviour. Lung cancer accounts for about 27% of 

all cancer related deaths and is by far the leading cause of cancer death in both men and 

women [18]. The American Cancer Society has estimated that there will be approximately 

221,200 new cases of cancer in 201 of which 158,040 as a result of lung cancer 

(www.cancer.org). In Ireland, between 2011 and 2013 an average of 2,279 lung cancer 

cases was diagnosed, 1,005 were females and 1,274 were males (www.ncri.ie). 

Traditionally, lung cancer had been most common in men. However, it is nearly as 

common in women due to an increase in the number of women taking up smoking. 

Statistics for lung cancer in Europe for 2012 show that Hungary has the highest overall 

incidence in both men and women (51.6 cases per 100,000). For Ireland during the period 

between 1994 to 2013 lung cancer has been decreasing in men from 71 to 54 cases per 

100,000, but increasing in women from 26 to 41 cases per 100,000. According to the 

National Cancer Registry Ireland (NCRI), these trends are comparable to those seen in 

other northern and western European countries [19]. While, according to the world health 

organisation, the lowest incidence of lung cancer is eastern, middle and western Africa 

(1.7 - 2.0 cases per 100,000).   

Ireland is currently ranked 31st in the world for deaths related to lung cancer with 27.67 

deaths per 100,000, irrespective of sex. The net 5-year survival of patients with lung 

cancer in Ireland has been steadily increasing from 9.3% between 1994 and 1999 to 

15.3% between 2008 to 2012 (www.ncri.ie). Similarly, the rates in the UK have also been 

increasing from 4.6% between 1971 and 1972 to 9.7% in 2010 to 2011 

(www.cancerresearchuk.org). However, data from the National Cancer Institute (NCI) 

also show that there is an increase in the number of people surviving to 5-year survival, 

for patients diagnosed between 1975-1977 the rate was 12.2% compared to 18.7% in 

2006-2012 irrespective of sex and race. Overall, Ireland is performing well when it comes 

to patients with lung cancer with the increases in the 5-year survival rates potentially 

owing to improvements in lung cancer awareness, screening and treatments 

(www.hse.ie). However, survival is dependent on the relative staging and time of 

diagnosis. In England and Wales, statistics presented by cancer research UK indicate that 

the one-year survival rate for patients was 71% with stage I, 48% for stage II, 35% for 

stage III and 14% for stage IV. The survival rates drop dramatically after this period; 35% 

http://www.cancer.org/
http://www.ncri.ie/
http://www.hse.ie/
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for stage I, 21% for stage II and 6% for stage III. Therefore, further improvements in 

screening and treatment in order to improve patient outcome and survival. 

1.3.1 Risk factors associated with Lung Cancer 

There are a number of different risk factors associated with developing lung cancer. 

Smoking cigarettes are the main risk factor attributing to someone developing lung cancer 

over the course of their life. Smoking and exposure to second-hand smoke have long been 

accepted as the primary cause of lung cancer, accounting for 86- 95% of cases in the UK 

and Ireland each year (www.cancerresearchuk.org). With an estimated cost to the Irish 

public healthcare system of €506 million per year, lung cancer and indeed smoking is a 

major public health concern. Smoking is not the only risk factor, others include exposure 

to radiation (including radiation therapy, radon gas), exposure to asbestos, chromium, 

arsenic, soot or tar, exposure to environmental pollutants, possibly a genetic susceptibility 

and age is also considered a risk factor for many cancers, including lung cancer. 

1.3.2 Tobacco control initiatives 

It is well established that smoking is the major cause of lung cancer in Ireland and indeed 

worldwide and is, therefore, one of the most preventable cancers. Tobacco control 

measures are required to completely eliminate smoking from society and increase 

smoking cessation among smokers. Ireland has led the way with a number of initiatives 

with a view to Ireland being tobacco free by 2025. Some of those initiatives include; 

introducing standardised plain packaging of cigarettes, increasing the price of cigarettes 

through taxation, protecting people from second-hand smoke, making it illegal to smoke 

in cars where children are present, introduction of the workplace smoking ban, enforcing 

bans on advertising, promotion and sponsorship and helping people who want to quit 

(http://www.hse.ie/eng/about/Who/TobaccoControl/TCP/). Similar initiatives introduced 

in United states have markedly decreased smoking rates and the number of lung cancer 

occurrence [19] and it is hoped that through these programs that Ireland will see similar 

reductions in the uptake of smoking and lung cancer diagnosis.  

 

 

 

http://www.cancerresearchuk.org/
http://www.hse.ie/eng/about/Who/TobaccoControl/TCP/
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1.4 Lung Cancer Classification 

Lung cancer can be histologically classified into two main groups: non-small cell lung 

cancer (NSCLC) and small cell lung cancer (SCLC) [20, 21].  

1.4.1 Non-Small Cell Lung Cancer 

NSCLC accounts for approximately 80% of lung cancers and is subdivided into 3 main 

subtypes; (i) adenocarcinoma (AD), (ii) squamous cell carcinoma (SCC) and (iii) large 

cell carcinoma (LCC). 

i. Adenocarcinoma is the most common form of lung cancer, accounting for 

approximately 40% of cases. It develops from mucus making cells in the lining of 

the airways and is often found in the outer, or peripheral, areas of the lungs. One of 

the subtypes of adenocarcinoma is bronchioloalveolar carcinoma (BAC) and have 

been associated with middle aged women. While smoking remains an important 

factor for most lung cancers, BAC is postulated to develop from previously scarred 

tissue such as inflammation or scar tissue as a result of tuberculosis [22, 23]. 

ii. Squamous cell carcinoma accounts for 25% to 30% of lung cancers. These cancers 

start in early versions of squamous cells, which are flat cells that line the inside of 

the airways in the lungs. They are often linked to a history of smoking and tend to be 

found in the middle of the lungs, near a bronchus. 

iii. Large cell carcinoma accounts for 10-15% of lung cancer and can appear anywhere 

in the lung. Treatment of this type of lung cancer can be challenging as it tends to 

grow and spread quickly. Large cell neuroendocrine carcinoma is a subtype; it is 

similar to small cell lung cancer. 

iv. Mesothelioma is also a subtype of NSCLC but is a much rarer type of cancer that 

affects the covering of the lung (the pleura). Diagnosis of mesothelioma can be 

difficult and caused by exposure to asbestos, which is an occupational risk in some 

professions  [24, 25]  

Genetic landscape of NSCLC 

Lung cancer genomes and signalling pathways have further defined NSCLCs as a group 

of distinct diseases with genetic and cellular heterogeneity. Modern treatment strategies 

focus on the pathological classification of NSCLC, including the assessment of protein 

expression by immunohistochemistry to assess cell differentiation markers such as TIF1 

and p63. A number of drugs have now been identified to specifically target molecular 

pathways that lead to lung cancer. Some of the most common genetic alterations targeted 

in NSCLC include BRAF, EGFR, ALK, ROS1, RET, MET, FGFR1, PTEN and PIK 
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oncogene and their prevalence, among others, in NSCLC are illustrated in Figure 1.4-1. 

Activating EGFR mutations were the first biomarkers to discriminate a molecular 

subpopulation in NSCLC patients. Patients with activating EGFR mutations then to show 

good prognostic value and benefit from treatment with EGFR tyrosine kinase inhibitors 

[26] 

Small molecule inhibitors that target the tyrosine kinase activity of EGFR, include 

erlotinib and gefitinib, were the first to be made clinically available. Table 1.4-1 indicates 

the current number of targeted therapies available for treatment of lung adenocarcinoma 

[20] some of which may prove to be important as the genetic landscape of NSCLC 

evolves. A study indicated differences in mutations identified in never smokers (EGFR 

mutations and ROS1 and ALK fusions) and smokers (KRAS, TP53, BRAF, JAK2, JAK3), 

indicating that the genomic landscape is markedly distinct in these two groups [27].  

PD-L1 is a checkpoint protein in cells called T-cells. It’s interaction with PD-1 and the 

B7.1 receptor on activated T cells plays an important role in tumour evasion of the host 

immune system [28]. PD-L1 was a significant poor prognostic factor in a 5 year follow 

up with patients with NSCLC, with PD-L1 positive patients having a poorer 5-year 

overall survival than PD-L1 negative patients. A number of MAb based immune therapies 

targeting either PD-1 or PD-L1 can boost the immune response against cancer cells and 

have shown great promise, Pembrolizumab and Nivolumab.  There are other MAbs being 

used for the treatment of NSCLC; Bevacizumab (Avastin) and Ramucirumab (Cyramza), 

they are humanised monoclonal antibodies used to treat advanced NSCLC which both 

target vascular endothelial growth factor (VEGF) [29, 30]. 
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Figure 1.4-1:- Evolving genomic classification of NSCLC 

 

Target Prevalence (%) Therapeutic agents 

EGFR 
Asians ~40%; 

Caucasians ~10 
Erlotinib, Gefitinib, Afatinib 

ALK < 5 Crizotinib 

Her2 < 3 Afatinib, Neratinib, Dacomitinib 

PIK3CA < 5 GDC-0941, XL-147, BKM120 

BRAF < 5 Vemurafenib, GSK2118436 

MEK < 1 AZD6244 

ROS1 ~1 Crizotinib 

RET ~2 Sunitinib, Sorafenib, Vandetanib, Cabozantinib 

MET 1-11 
Onartuzumab, Rilotumumab, Cabozantinib, 

Tivantinib, Crizotinib 

FGFR1 ~3 AZD4547, S49076, Ponatinib, Brivanib 

PTEN < 10 Vandetanib 

PD-1/PD-L1 ~30 Nivolumab, MPDL3280A 

NaPi2b ~70 DNIB0600A (early development) 

Table 1.4-1:- Current molecular targets and treatments for adenocarcinoma. 

Anaplastic lymphoma kinase (ALK); Epidermal Growth Factor Receptor (EGFR), Fibroblast 

Growth Factor Receptor 1 (FGFR1), Interaction of Programmed Death Ligand 1 (PD-L1), 

Phosphatidylinositol 3-kinase, catalytic subunit alpha (PIK3CA) [20]. 
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1.4.2 Small Cell Lung Cancer 

Small cell lung cancer (SCLC) is the lung neoplasia with the poorest outcome, due to its 

high metastatic potential and chemo-resistant phenotype upon relapse. It accounts for 

15% to 20% of all lung cancers and exhibits rapid growth, aggressive behaviour and a 

tendency for early metastasis to distant sites [31]. SCLC occurs exclusively in smokers, 

especially heavy smokers but is also common in former smokers [32]. If left untreated, 

the aggressive nature of SCLC usually results in the death of patients within 2-4 months 

[20]. 

A feature of the cells in SCLC is the dense neurosecretory granules, which give this 

tumour type an endocrine/paraneoplastic syndrome association. These neurosecretory 

granules are believed to contain a variety of secretory products (including neuroendocrine 

hormones), cell surface antigens and enzymes [33]. Incidence rates have increased more 

rapidly in women than men. Depending on the presence of metastasis diagnosis of SCLC 

is described as limited stage or extensive stage disease. Sixty to seventy percent of 

patients have extensive disease (which cannot be targeted within a single radiation 

therapy field) at presentation. Late stage disease cannot usually be targeted with single 

field radiation therapy.  

Although SCLC is a highly aggressive form of lung cancer it is responsive to 

chemotherapy and radiation, improving both quality of life and survival duration. Despite 

this good response to chemotherapy, patients with SCLC usually relapse within one to 

two years. Patients who experience a relapse tend to be more resistant to subsequent 

therapies, at which point different types of chemotherapies can be considered to help 

relieve symptoms and generally offer only a modest improvement of survival. A number 

of platinum based agents may be administered to patients at this point including; 

topotecan, cyclophosphamide and doxorubicin [34]. Combination therapies for the 

treatment of relapsed SCLC have been investigated involving platinum based agents and 

etoposide, vincristine, paclitaxel or irinotecan, their efficacies did not appear to be high 

enough compared to other standard topotecan therapy [35]. 

Alternative names for SCLC are oat cell cancer, oat cell carcinoma and small cell 

undifferentiated carcinoma [36]. SCLC is defined as a tumour with cells that are small in 

size, a round-to-fusiform shape, scant cytoplasm, finely granular nuclear chromatin and 

absent or inconspicuous nucleoli, nuclear moulding is frequent.  Necrosis is frequent and 

often extensive [37].  
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There are two main types of SCLC; 

i. SCLC (pure-SCLC) is primarily a neuroendocrine carcinoma. There are four main 

types of lung neuroendocrine tumours: typical carcinoid tumour (low grade 

malignancy), atypical carcinoid tumour (medium grade malignancy), large cell 

neuroendocrine carcinoma and small cell lung cancer (high grade malignancy) [38]. 

ii. Combined small cell lung carcinoma (c-SCLC) is currently the only recognised 

subtype of SCLC. It is small cell carcinoma combined with an additional component 

consisting of any non–small cell histologic type, including adeno-carcinoma, 

squamous cell carcinoma and large cell neuroendocrine carcinoma. Approximately 

30% of small cell lung carcinoma contain a non–small cell lung carcinoma 

component. Patients with cSCLC have a better overall survival, however, they are 

believed to have a poorer response to chemotherapy [39]. 

Genetic landscape of SCLC 

NSCLC has been widely researched to identify oncogenic drivers responsible for this type 

of lung cancers. However, researching oncogenic drivers in SCLC is lagging behind 

mainly due to the scarcity of patient material available for research use. Some genomic 

studies to date indicate high mutation rates in SCLC, possibly linked to mutagens in 

tobacco smoke. Loss of function of TP53 and RB1 tumour suppressors are the most 

striking alterations found in SCLC. The TP53 gene encodes a transcription factor which 

is activated in response to several forms of cellular stress, including hypoxia and other 

anti-proliferative effects. The presence of p53 and HIF-1α appears to be necessary for the 

hypoxia-induced cell death. The importance of TP53 gene in SCLC is indicated by its 

reported mutation frequency of 75 and 90% [40, 41]. Implications for MYC and 

phosphatidylinositol-3-kinase (PI3K) proto-oncogene have also been identified in SCLC. 

MYC are transcriptional activators that contribute to cell cycle progression but have an 

association with control of pluripotency, self-renewal and Epithelial to mesenchymal 

transition (EMT). PTEN (phosphatase and tension homolog) an inhibitor of the PI3K 

pathway was found to be lost in SCLC. Other genetic alterations in SCLC include 

mutations in CREBBP, EEP300 (histone acetyltransferases) and MLL, MLL2 and EZH2 

(histone methyltransferases). There are a number of targeted therapies in clinical trials for 

the treatment of SCLC some of which are outlined in Table 1.4-2 below. 
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Mechanism of 

action 
Targets Agents 

Inducers of 

apoptosis 
BCL2, BCL-W, BCL-XL, cl-1 AT-101, Oblimersen 

Kinase inhibitors 

AURKA, CDK, EGFR, FGFR, 

IGF1R, KIT, PDGFR, FLT3, 

MET, mTOR, PI3K, PLK1 

Alisertib, Roniciclib, 

Erlotinib, Gefitinib 

NE targeting GD2, GD3, NCAM, NTS1 
BIW-8962, BEC2, 

Lorvotuzumab 

Anti-

angiogenesis 

Matrix metalloproteinases, 

VEGF-A, VEGFB 

BAY12-9566, 

Bevacuzumab, Afliberept 

Immunotherapy CTLA-4, PD-1, TLR 
Ipilimumab, Nivolumab, 

Pembrolizumab, MGN1703 

Table 1.4-2:- Examples of targeted therapies for SCLC in clinical trials. 
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1.5 Heterogeneity in Breast Cancer  

Like lung cancer, breast cancer is also a complex and heterogeneous disease. Breast 

cancer is the second most common cause of cancer related death worldwide, after lung 

cancer and will account for approximately 72,330 deaths in the United States [42]. In 

Ireland, the Irish Cancer Society suggest that there are 2600 women diagnosed each year 

with breast cancer of which approx. 660 women die from the disease 

(www.irishcancersociety.ie).  

Heterogeneity in cancer cell phenotypes and dynamic plasticity of the tumour 

microenvironment make tumour categorization demanding in relation to therapeutic 

responses and disease progression. Molecular profiling and immunohistochemical 

expression of ERα, progesterone receptor (PR) and HER2 led to further classification into 

at least five molecular subtypes Luminal A, Luminal B, HER2, basal and normal. Luminal 

A and Luminal B due to their expression of ER may be treated with hormone therapy 

[43]. The histological and the molecular subtypes identified in breast cancer are illustrated 

in Figure 1.5-1 below. 

1.5.1 Luminal breast cancers 

This group represents the majority of diagnosed breast cancers accounting for 

approximately 60% of breast cancer cases. They typically comprise of tumours 

expressing estrogen receptor (ERs) and are generally broken down into two main 

subtypes: Luminal A is ER positive, HER2 negative, Ki-67 low, and PR high. Luminal B 

(HER2 negative) - ER positive, HER2 negative, and either Ki-67 high or PR low; Luminal 

B-like (HER2 positive)- ER positive, HER2 overexpressed or amplified, any Ki-67, and 

any PR; HER2 positive - HER2 over-expressed or amplified, ER and PR absent; and triple 

negative - ER and PR absent and HER2 negative [44]. Two ERs are known to exist ERα 

and ERβ. More than 70% of breast cancers are ER positive, so the determination of ER 

status has proved to be successful therapeutic target for treatment [45]. Some of the 

standard hormone therapies used to treat luminal breast cancers include tamoxifen 

displays anti-oestrogen activity upon binding which ultimately inhibits the oestrogen 

receptor. Aromatase inhibitors (e.g. anastrozole) which prevent the conversion of 

androgens to oestrogens resulting in a reduction in the amount of estrogen available to 

the oestrogen receptor. Fulvestrant (also known as Faslodex) prevents dimerization and 

nuclear localization by binding to the oestrogen receptor [46]. 

http://www.irishcancersociety.ie/
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Figure 1.5-1:- Histological and molecular subtypes in breast cancer. 
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1.5.2 Her2+ Breast Cancer 

Human epidermal growth factor receptor 2 (Her2) is a transmembrane protein that 

belongs to the ErbB/HER family of tyrosine kinases. The HER2 gene is amplified in up 

to 30% of breast cancers leading to an overexpression of HER2 receptor. This type of 

breast cancer is generally a more aggressive disease with higher recurrence rates and a 

poorer patient prognosis. Trastuzumab has become the standard treatment for patients 

with HER2 positive breast cancer. Patients receiving trastuzumab therapy have shown 

improved disease free and overall survival in a metastatic setting.  However, resistance to 

therapy is a problem with the use of multiple anti-Her2 antibodies, dual tyrosine kinase 

inhibitors, and antibody-drug conjugates, alone or in combination as some of the methods 

used to overcome resistance [46, 47]. One of the newer treatments for HER2+ breast 

cancer is an antibody drug conjugate (ADC), T-DM1 which was approved by the 

European Medicines Agency and the Food and Drug Administration (FDA). It is a 

compound developed by conjugation of trastuzumab and a potent maytansine-derived 

cytotoxic drug (DM1), using a stable thiolinker [48]. T-DM1 was shown to have 

antitumor effects by inhibiting cell division and inducing cell death. It is also very specific 

as an ADC showing minimal effect on non-cancerous cells [49, 50]. 

1.5.3 Triple Negative Breast Cancer 

Heterogeneity also exists in triple negative breast cancer (TNBC) one of the subtypes of 

breast cancer [51]. Within breast cancer, 15-20% are TNBC of which 85% are of the basal 

phenotype. TNBC are characterised as ER-ve, PR-ve & HER2-ve and are biologically 

aggressive and tend metastasize earlier [52]. Within TNBC, 6 additional molecular 

subtypes have been identified, 2 basal-like (BL1 and BL-2), an immunomodulatory (IM), 

a mesenchymal (M), a mesenchymal stem-like (MSL) and a luminal androgen receptor 

(LAR) [43]. Despite advances in treatment resistance to conventional therapy and 

metastasis remain the major causes of death in patients with TNBC. It is thought that the 

onset of metastasis may arise as a result of cells within a tumour with an ability to self-

renewal and tumour initiating abilities. These cells are often referred to as CSCs [53]. 

Currently, there is no targeted therapy available for the treatment of patients with TNBC. 

Therefore, TNBC represents a challenge to patients and clinicians due to the poor 

prognosis and fewer treatment options. In terms of managing TNBC, there are several 

agents being developed including some associated with EGFR (Cetuximab (Erbitux)), 

FGFR2 (FGFR inhibitors) in addition to VEGF inhibition, and mTOR (combination of 

cisplatin and mTOR inhibitors) [54, 55]. 
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1.6 Metastatic Process 

Patients presenting with lung cancer generally do so at a late stage, when metastasis has 

already occurred and therefore beyond the realm of treatment by surgery or radiotherapy. 

Ninety percent of deaths from solid tumours can be attributed to the metastatic spread of 

cancer cells [56]. Invasion and migration, therefore, play crucial roles in lung cancer 

metastasis, which ultimately allow the majority of lung cancers to develop un-noticed. 

While progress has been made in understanding cancer biology and the process of how 

cancer spreads, our understanding of the molecular mechanisms remains poor. Metastasis 

is the spread of malignant tumour cells from their primary site to a distant site or 

secondary site, via a multistep process known as the metastatic cascade. 

1.6.1 Epithelial to Mesenchymal Transition 

In the 1980s, Elizabeth Hay made initial observations which described epithelial to 

mesenchymal phenotypic changes in primitive streaks of chick embryos. Epithelial to 

mesenchymal transition (EMT) was initially known as “epithelial to mesenchymal 

transformation” is a cellular mechanism recognised as a central feature of normal 

development [57, 58]. 

EMT is a biological process that allows a polarized epithelial cell, which normally 

interacts with its basement membrane via its basal surface, to undergo multiple 

biochemical changes that enable it to assume a mesenchymal cell phenotype [59]. Cells 

with a mesenchymal phenotype have distinctive characteristics including enhanced 

migratory and invasive capacity, elevated resistance to apoptosis, greatly increased 

production of ECM components and in some cases stem-like properties. A number of 

distinct molecular processes are engaged in order to initiate an EMT and enable it to reach 

completion. These include activation of transcription factors, over-expression of specific 

cell-surface proteins, reorganization and expression of cytoskeletal proteins and 

production of ECM-degrading enzymes. The plasticity of EMT is revealed by the 

occurrence of the reverse process called mesenchymal-epithelial transition (MET), which 

involves the conversion of mesenchymal cells to epithelial cells; but little is known about 

this process.  

There are three classes of EMT: Type1 (associated with implantation, embryo formation, 

and organ development), Type2 (associated with wound healing, tissue regeneration, and 

organ fibrosis) and Type3 (associated with tumour growth and cancer progression) [59]. 

One hallmark of EMT is the downregulation or even loss of E-cadherin, which is an 

essential component of adherence junctions. E-cadherin binds with its extracellular 
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domain of an E-cadherin molecule of the neighbouring epithelial cell which stabilizes 

cell-to-cell contacts. Intracellularly, E-cadherin binds to β-catenin, α-catenin and p120-

catenin which mediates intracellular signalling and links adherence junctions to the actin 

cytoskeleton. The beginning of the metastatic process is believed to start with EMT. The 

basic process of an EMT is illustrated in Figure 1.6-1 below. 

 

 

Figure 1.6-1:- Process of epithelial-mesenchymal transition. 

An EMT involves a functional transition of polarized epithelial cells into mobile and ECM 

component–secreting mesenchymal cells. The epithelial and mesenchymal cell markers 

commonly used by EMT researchers are listed. Co-localization of these two sets of distinct 

markers defines an intermediate phenotype of EMT, indicating cells that have passed only partly 

through an EMT.  

 

Primary and secondary microenvironments are known to promote metastasis by gene 

products of metastatic cells and/or by direct cell-cell and paracrine interactions between 

cancer cells and stromal cells.  However, very few of the tumour cells released from a 

primary tumour lead to the development of metastasis, therefore the process of metastasis 

is said to be highly inefficient. The main steps involved in the development of metastasis 

are illustrated in Figure 1.6-2 [60]. However, these steps are briefly described below. To 

set up secondary tumours at a distant site, tumour initiating cells must; 

1. Dissociate and leave the primary tumour, through loss of expression of cell-cell 

adhesion molecules such as cadherin’s (e.g. E-cadherin/N-cadherin), selectins (e.g. 

PECAM, ALCAM, L1CAM) and integrin’s (e.g. α3, α5, α6, αv). 

2. Infiltrate the surrounding stroma, invade and migrate through the basement 

membrane of the endothelium of blood or lymphatic vessels using a plethora of 

proteases (e.g. MMPs, serine proteases, cathepsin D, cysteine cathepsin). 

3. Enter into the bloodstream by a process of intravasation, cells survive in the 

bloodstream by evading apoptosis (and anoikis - detachment mediated apoptosis) 

and elements of the immune system (macrophages, neutrophils). 
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4. By a process of extravasation, cells must then leave the vasculature, invade local 

stroma and develop their own microenvironment. Newly formed tumours require 

an oxygen supply, so the development of new blood vessels is stimulated through 

angiogenesis (e.g. VEGF, FDGF) [61, 62]. 

 
Figure 1.6-2:- The main steps involved in the formation of metastases  

Disseminated metastatic tumour cells present in these organs often undergo a period of 

dormancy, whereby cells (and tumours) can remain asymptomatic for years. Dormancy 

is becoming a recognised step in cancer progression as it may lead to the formation of 

tumours years later. Clinical dormancy is frequently observed in many types of tumours 

such as B-cell lymphoma, melanoma, breast cancer and prostate cancer [63]. Tumours 

which are clinically dormant typically show no signs of active disease and are said to be 

asymptomatic tumours. 

Dormant cells may be the source of disease recurrence. Cancer dormancy is poorly 

understood but there are mechanisms that can potentially explain this characteristic of 

tumours [64]. Tumour cells might exhibit a slowdown in the proliferation of the tumour 

cell population, this is known as tumour mass dormancy. In this mechanism, tumour cells 

are usually dividing but due to limitations in blood supply (or presence of an active 
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immune system), the tumour does not expand beyond a certain size. Other mechanisms 

of tumour dormancy result in the arrest of tumour cell growth, this is known as tumour 

cell dormancy or cellular dormancy. During this type of dormancy, tumour cells may 

enter a state of quiescence or senescence [65, 66]. Senescence is said to be an irreversible 

state of cellular growth arrest, while quiescent cells are in a state of ‘rest’ and can resume 

growth when more favourable environmental conditions arise [67].  

Cellular dormancy appears to be an active process that can be activated through a variety 

of signalling mechanisms that ultimately downregulate the RAS/MAPK and PI(3)K/AKT 

pathways. Cancer cells rely on these pathways for their growth and survival [68]. These 

pathways are the subject of intensive research in human cancers [69, 70]. Other 

mechanisms may also play a role in tumour dormancy; including genetic and epigenetic 

changes, cancer stem cells, tumour microenvironment, epithelial-mesenchymal transition 

and non-coding RNA manipulation [63].  
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1.7 Development of animal models to study heterogeneity 

Traditionally, the mechanisms of cancer invasion and metastasis have been investigated 

in vitro, through the use of human tumour derived cell lines. Invaluable information can 

be gained from cell line based studies however, it does not represent the tumour 

environment [71]. While animal models do not represent the ideal model to study human 

cancers, they do offer the best method to study the growth and behaviour of cancer cells 

in vivo [72], but also to study the effect of potential drug treatments on xenograft tumours. 

This is one of the main advantages animal studies have in comparison to cell line based 

studies.  

Some examples of animal used for research include; mice, hamsters, rats, rabbits, 

zebrafish, Mouse models more than any other model system have revolutionised our 

ability to study gene function in vivo and to understand the molecular mechanisms driving 

cancer. There are several advantages when choosing mice as a model to study cancer, 

they are; (i) small in size (ii) inexpensive to maintain, (iii) produce rapidly and have large 

litters; and (v) are amenable to genetic manipulation [73]. Genetically engineered mouse 

models (GEMMs) have enabled numerous studies of non-small-cell-lung cancer that 

wouldn’t normally be possible using patient material. 

There are a number of criteria which should be considered when choosing genetically 

engineered mice (GEM) to study human tumours; (1) the mice must carry the same 

mutation that occurs in human tumours; (2) mutations should be engineered within the 

endogenous locus, and not expressed as a transgene (a transgene is a gene/genetic material 

that has been transferred from one organism to another either naturally or by any genetic 

engineering techniques); (3) mutated genes should be silent during embryogenesis and 

early postnatal development, (4) Mutations should be within the specific target tissues in 

selected cell types and (5) mutations must occur in a limited number of cells. Reproducing 

the tumour microenvironment is difficult to achieve in these mouse models, but should 

also be considered. This will help us to understand the interactions of tumour cells and 

cells of the tumour microenvironment, but also the impact of microenvironment has on 

tumour progression [74]. 

The discovery of the Prkdcscid (protein kinase, DNA activated, catalytic polypeptide) 

mutation was one of the turning points for animal based research. This mutation was first 

identified by Bosma et al., in BALB/c-lghb (CB-17/lcr) mice [75] and it results in the 

absence of Prkdc expression. Animal models are widely used to study cancer, and decades 

of breeding led to the identification and development of numerous strains for use by 
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researchers. Nude and SCID (Severe Combined Immune Deficient) mice are immune 

compromised, by their inability to generate enough T lymphocytes, in the case of nudes 

for the inability to produce any B or T lymphocytes, which are vital in mounting an 

immune response [76]. This is due to the absence of Prkdc expression that results in the 

failure of the VDJ (Variable, Diversity, Joining) rearrangement of lymphocyte antigen 

receptor genes. When considering Nude or SCID mice for animal studies, due to their 

immune deficient status they should be housed in sterile environments (environments free 

from pathogens). A phenomenon known as “leakiness”, was observed in some mice 

bearing the SCID mutation which resulted in the development of functional T and B 

lymphocytes [75]. However, leakiness was mainly observed in aging mice that housed in 

non-sterile environments (www.thejax.org).  

Genetically engineered mouse models (GEMMs) have enabled numerous studies of non-

small-cell-lung cancer that wouldn’t normally be possible using patient material. These 

immune alterations also allow foreign cancer cells to grow and develop in the xenograft 

models. Many studies have been carried out to investigate the factors involved in 

malignant transformation, invasion and metastasis, as well as to examine the response to 

therapy.  GEMMs for the most common driver mutations in NSCLC have been generated 

e.g. KRAS and EGFR (epidermal growth factor receptor) [77]. Some of these mouse 

models have been developed to study various cancers including colon cancer [78], renal 

adenocarcinoma [79], Prostate cancer [80] and lung cancer [81, 82].  

1.7.1 KRASG12D mouse model 

KRAS (also known as V-Ki-ras2 Kirsten rat sarcoma) is a guanine nucleotide transferase 

that can link cell surface receptors to intracellular signalling pathways including kinase 

cascades such as the MAPK pathway, lipid kinases such as phosphoinositide 3-kinase 

(PI3K), and other small molecular weight GTPases including Ral, Rac, and Rho. KRAS 

is known to regulate a number of processes such as cell proliferation, survival, 

differentiation, migration, and extracellular communication. It is an oncogene in approx. 

30% of human cancers, including the majority of lung adenocarcinomas, but are 

uncommon in lung squamous carcinomas. Mutational activation of KRAS generally 

results in aggressive cancers, which confers poor prognosis on patients harbouring the 

mutation. Patients with the KRAS mutation generally show a poor response to current 

therapies [83]. A number of attempts to target KRAS activity, but all appear to have failed 

clinically, for this reason, KRAS has been considered undruggable [84].  



 

23 

 

Mouse models have been developed to investigate the growth of tumours harbouring the 

KRAS mutation. One example is the conditional oncogenic KRASG12D mouse model has 

been used to elucidate the steps from early to late tumorigenesis, owing to the temporal 

controls it affords, and it is easy to combine with mice bearing conditional null alleles for 

other genes of interest. In these mice, KRASG12D tumours only reach a full 

adenocarcinoma stage with a very long latency but KRASG12D-expression and 

transformation related protein 53 (Trp53)-null (p53) tumours are more advanced and 

show a decreased response to certain treatment strategies when compared to KRASG12D 

tumours [85-87]. 
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1.8 Characteristics of DLKP and its clonal subpopulations 

It is well established that primary and metastatic tumours are heterogeneous in nature and 

are home to subpopulations of cancer cells that differ in their genetic, phenotypic and 

behaviour characteristics. Two theories have been described to explain the establishment 

and maintenance of tumour heterogeneity; the cancer stem cell (CSC) theory and the 

clonal evolution/selection model. Both had been thought to be exclusive from each other, 

however, the processes are now believed to be potentially complementary. Heterogeneity 

in tumours has its implications for the approach taken to personalised medicine as it can 

limit therapeutic efficacy, lead to resistance to therapies, impact the strategy taken for 

tumour biopsies and also interfere with the regimes associated with treatment planning 

[88-90]. 

1.8.1 History of DLKP 

DLKP is a human lung cancer cell line which was established by Dr. Geraldine Grant. 

The DLKP cell line was established from lymph node metastasis of a primary lung tumour 

which was initially described as a ‘poorly differentiated squamous cell carcinoma’. This 

tumour was taken from a 52-year old patient who was believed to have smoked 40 

cigarettes per day for most of his adult life. The karyotype of DLKP was previously 

determined  [91] to consist of a hyperdiploid subpopulation (65% of cells with 56 

chromosomes) and hypertetraploid subpopulation (35% of cells with 95-115 

chromosomes).  

DLKP was found to contain at least three morphologically distinct subpopulations, 

DLKPSQ, DLKPI and DLKPM. DLKPSQ resembled a squamous like morphology, with 

distinct cell boundaries and a cobble stone appearance. DLKPM resembled mesenchymal 

appearance with a fibroblast-like morphology, while DLKPI grew in tightly packed 

colonies with indistinct cell boundaries (Figure 1.8-1). The karyotype of the DLKP clones 

was also established; examination of the chromosome distribution found that DLKPM 

was near diploid having between 50-59 chromosomes in 60% of its population and was, 

therefore, the most homogenous. DLKPI was near tetraploid with 36% of its population 

containing 90-99 chromosomes and the remaining population containing 40-110 

chromosomes. DLKPSQ was found to contain 3 large chromosomal populations with 90-

99, 100-110, and 80-89 chromosomes. The morphological diversity seemed to be 

reflected in their respective chromosome numbers, however, the chromosomal 

distribution of the clones was not substantially found in the parental population [92, 93].  
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The ratio of clones present within the DLKP parental cell line seems to be tightly 

controlled through a model of interconversion proposed in previous studies performed by 

McBride, 1995. The model proposed that DLKPSQ may interconvert with DLKPI and 

DLKPI may interconvert with DLKPM. However, interconversion was not observed 

between DLKPSQ and DLKPM. It was therefore suggested that DLKPI resembled a 

potential stem cell-like population in DLKP with its ability to interconvert and give rise 

to both DLKPSQ and DLKPM-like cells.  

A core property of a stem cell is one with a self-renewal capacity. These initial studies 

also indicated that DLKP should be classified as either a variant small cell lung carcinoma 

or non-small cell lung carcinoma with neuroendocrine differentiation. Keratins are the 

first intermediate filament proteins detectable during foetal development and are among 

the most differentiation-specific proteins synthesised in epithelial cells. DLKP contains 

neurofilament and vimentin markers, but no keratin proteins were detected during early 

Immunohistochemical analysis. BrdU is a thymidine analogue capable of inducing 

epitheloid morphology and altering expression of neuroendocrine markers in SCC. Upon 

treatment with BrdU keratin 8 and keratin 18 appeared to be synthesised, and it was 

postulated that a posttranslational block on keratin can be reversed using agents such as 

BrdU [94]. 

 

 
Figure 1.8-1:- Growth and invasion characteristics of the DLKP clones in vitro.  

Morphology of DLKP clones on plastic (A, C and E) and visual analysis of the level of invasion 

of the DLKP clones (B, D and F) (original magnification = 100×, scale bar 50μm). 
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In addition, later studies carried out on DLKP and its clones indicated that they displayed 

differences in the levels of in vitro invasion (Figure 1.8-1), migration and anoikis 

resistance. The DLKPSQ clone displays a poor invasive and migratory capacity, is 

anoikis resistant and displays low level expression of integrin-αv. The DLKPM clone 

displays a high invasive and migratory capacity but is anoikis sensitive. DLKPI clone 

displays an intermediate level of invasive and migratory capacity, with an intermediate 

ability to resist anoikis [95]. Both DLKPI and DLKPM display high adherence capacity 

to bind fibronectin and vitronectin, potentially explained by its increased expression of 

integrin-αv. There was also differences in expression of matrix-metalloproteinases 

(MMPs) which appear to correlate the invasive profile of the clones (Figure 1.8-1). 

DLKPSQ was previously found to express MMP2 and MMP10 at low levels, while 

MMP2 is expressed in DLKPI and MMP2 is expressed in DLKPM [95, 96].  

The DLKP parental cell line was previously used as a model to investigate the mechanism 

of resistance to adriamycin in vitro. Adriamycin is a drug commonly used to treat a variety 

of malignancies including lung and breast cancer. A proteomic comparison between 

DLKP parental vs. DLKPA (adriamycin resistant variant) identified 80 differentially 

regulated proteins including NDPK, RPA2, CCT2, HSP70 and Annexin. Many of the 

other proteins identified correlated with known targets of adriamycin resistance including 

DNA damage repair, apoptosis and ROS [97]. 

Previous attempts were made to identify specific markers for the DLKP clones, for which 

immunocytochemical methods were employed. These methods were qualitative and 

therefore did not allow for the quantitative analysis of expressed proteins. To date, no 

markers have emerged that can allow for the differentiation of individual DLKP clones 

in DLKP. Ideally, a good marker would be one that is expressed in 1 or 2 of the clones, 

but not in all 3 clones. Quantitative proteomic analysis could allow for the identification 

of proteins that are differentially expressed between the clonal variants and could 

potentially act as markers for the clones. Also, identification of such protein markers 

could provide the means to study the model of interconversion between the clones, as 

well as their potential involvement in cell invasion and migration. Identification of 

markers specific to the DLKP clones is also hugely important in the context of tumour 

heterogeneity because if cells within a given tumour have the ability to regenerate through 

a model of interconversion this could have implications for the effectiveness of 

treatments, (i.e. leading to renewed tumour growth after cessation of therapy). Therefore, 

any markers identified to differentiate each of the clonal subpopulations in DLKP, with 
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further investigation, could have the potential to be used in the development of more 

targeted or combination therapies allowing for more personalised treatment of patients 

with lung cancer. The phenotypic differences displayed within the DLKP cell line model 

presents an opportunity to explore both differences in expression of potentially 

biologically relevant proteins but also is a unique model to investigate tumour 

heterogeneity in lung cancer. 
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1.9 Aims of Thesis 

The aims of this thesis are as follows: 

1. To isolate and identify membrane associated proteins from DLKP, DLKPSQ, DLKPI 

and DLKPM and to carry out proteomic profiling to identify differentially expressed 

proteins that could be used as potential markers of the individual clones, but also to 

identify potentially novel proteins associated with lung cancer. 

2. To investigate the functional roles (in vitro) of selected proteins in lung cancer, using 

siRNA silencing. 

3. To examine the expression of selected proteins in human tumours and in 

representative cell lines (lung, pancreatic and breast cancers), using Western blot 

analysis and immunohistochemistry. 

4. To investigate the growth and potential tumour development of DLKP, DLKPSQ, 

DLKPI and DLKPM in vivo, using SCID mice.  

5. To investigate the expression of established markers associated with cancer 

progression (including; Ki-67, CD31, E-cadherin and N-cadherin) and the expression 

of the candidate protein markers in explanted tumour cells and xenograft tissues, 

from the in vivo study. 
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Chapter 2  MATERIALS AND METHODS 
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2.1 Cell lines and cell culture 

All cell culture work was carried out in class II laminar air-flow cabinets (NuAIR). Before 

and after use the laminar flow cabinet was cleaned with 70% industrial methylated spirits 

(IMS). Any items brought into the cabinet were also swabbed down with IMS. At any 

time only one cell line was used in the laminar flow cabinet and upon completion of work 

with any given cell line, 15 mins clearance was given to eliminate any possibilities of 

cross-contamination between the various cell lines. The cabinet was cleaned routinely 

with Virkon (Antech International, P0550) and IMS. Details pertaining to the cell lines 

used for the experiments are provided in Table 2.1-1. All cells were incubated at 37oC 

and where required, in an atmosphere of 5% CO2. Cell lines were maintained in their 

appropriate complete medium (Table 2.1-1) and subcultured, as per section 2.1.1, every 

2-3 days or as required in order to maintain active cell growth. 

2.1.1 Sub-culturing of adherent cell lines 

Waste cell culture medium was removed from the tissue culture flask and discarded into 

a sterile glass bottle. The flask was then rinsed out with 2-5mls trypsin/EDTA solution 

(0.25% trypsin (Gibco, 043-05090), 0.01% w/v EDTA (Sigma, E9884) solution in PBS 

(Oxoid, BRI4a)) to ensure the removal of any residual media. Depending on the size of 

the flask, 2-5ml of trypsin was then added to the flask, which was then incubated at 37oC, 

for approximately 5 mins until all of the cells detached from the inside surface of the flask 

monitored by microscopic observation. Adding an equal volume of complete media 

(described in Table 2.1-1) to the flask deactivated the trypsin. The cell suspension was 

removed from the flask and placed in a sterile universal container (Sterilin, 128A) and 

centrifuged (Beckman, Allergra™, 6KR centrifuge) at 1000rpm for 5 mins. The 

supernatant was then discarded from the universal and the pellet was suspended gently in 

complete medium. A cell count was performed and an aliquot of cells was used to seed a 

flask at the required density. All cell waste and media exposed to cells were autoclaved 

before disposal. 
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Cell line Details Source Complete Media 

DLKP parent 
Human poorly differentiated 

lung carcinoma 
NICB DMEM-HAMS-F12, 5% FCS 

DLKPSQ 

(McBride et al., 1998) 

Squamous-like subpopulation 

clone of DLKP 
NICB DMEM-HAMS-F12, 5% FCS 

DLKPI 
Intermediate sub-Population 

cloned from DLKP 
NICB DMEM-HAMS-F12, 5% FCS 

DLKPM 
Mesenchymal-like clone of 

DLKP 
NICB DMEM-HAMS-F12, 5% FCS 

SQ-Mitox-BCRP-6P 
Mitoxantrone selected variant of 

DLKPSQ 
NICB DMEM-HAMS-F12, 5% FCS 

DLRP 

(Law et al., 1992) 

Human poorly differentiated 

lung carcinoma 
NICB DMEM-HAMS-F12, 5% FCS 

NCI-H69 Small cell lung carcinoma NICB RPMI 1640, 10% FCS 

NCI-H82 Small cell lung carcinoma NICB RPMI 1640, 10% FCS 

DMS-53 Small cell lung carcinoma NICB RPMI 1640, 10% FCS 

NCI-H460 Lung large cell carcinoma NICB RPMI 1640, 10% FCS 

NCI-H1229 Lung large cell carcinoma NICB 
RPMI 1640, 5% FCS, 1mM Na 

Pyruvate 

A549 Lung adenocarcinoma NICB DMEM-HAMS- F12, % FCS 

SK-LU-1 Lung adenocarcinoma NICB 
MEM, 5% FCS, 1% NEAA, 1mM 

Na Pyruvate 

SK-MES-1 Squamous cell lung carcinoma NICB DMEM-HAMS-F12, 5% FCS 

HCC-1937 Triple Negative Breast Cancer ATCC RPMI 1640, 10% FCS 

HCC1143 Triple Negative Breast Cancer ATCC RPMI 1640, 5-10% FCS 

MDA-MB-468 Triple Negative Breast Cancer ATCC RPMI 1640, 10% FCS 

CAL-85-1 Triple Negative Breast Cancer ATCC 
DMEM, 10% FCS, 2mM L-Glut, 

1mM Na pyruvate 

HDQP-1 Triple Negative Breast Cancer ATCC DMEM, 10% FCS 

CAL-51 Triple Negative Breast Cancer ATCC 
DMEM, 5-10% FCS, 1% Na 

pyruvate, 2mM L-Glut 

Hs-578-T Triple Negative Breast Cancer ATCC 
DMEM, 10% FCS, 0.01mg/ml 

insulin 

MDA-MB-231 Triple Negative Breast Cancer ATCC RPMI 1640, 10% FCS 

MDA-MB-157 Triple Negative Breast Cancer ATCC RPMI 1640, 10% FCS 

BxPc-1 Pancreas adenocarcinoma ATCC 
RPMI 1640, 5% FCS, 1mM Na 

pyruvate 

HPAC Pancreas adenocarcinoma ATCC RPMI 1640, 10% FCS 

Panc-1 Pancreas adenocarcinoma ATCC DMEM, 10% FCS, 2mM L-Glut 

MiaPaca2 Pancreas adenocarcinoma ECACC DMEM, 5% FCS 

MiaPaca2 clone3 
Pancreas adenocarcinoma clone 

of MiaPaca2 
NICB DMEM, 5% FCS 

AsPc-1 
Pancreatic adenocarcinoma from 

metastatic ascites 
ATCC RPMI 1640, 10% FCS 

Capan-1 
Liver metastasis of pancreas 

adenocarcinoma 
ATCC DMEM, 20% FCS, 2mM L-Glut 

SW480 
Dukes’ type B colorectal 

adenocarcinoma 
ATCC RPMI 1640, 10% FCS 

SW620 
Dukes’ type C colorectal 

adenocarcinoma 
ATCC RPMI 1640, 10% FCS 

SNB-19 Glioma DSMZ DMEM, 5% FCS 

Lox IVMI Human melanoma NICB RPMI 1640, 10% FCS 

SK-N-SH Neuroblastoma NICB DMEM-HAMS-F12, 5% FCS 

Table 2.1-1:- Description of cell lines used in during this project. 

ATCC: - American Type Culture Collection, Rockville, MD, USA. 

DSMZ: - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (German 

Collection of Microorganisms and Cell Cultures). 

ECACC: - European Collection of Animal Cell Cultures, Salisbury, Wiltshire, UK. 

NICB: - National Institute for Cellular Biotechnology, DCU, Dublin, Ireland. 
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2.1.2 Sub-culturing of suspension/aggregate cell lines 

The cell suspension was removed from the flask and placed in a sterile universal container 

and centrifuged at 1000rpm for 5 mins. The supernatant was then discarded from the 

universal container and the pellet was re-suspended in complete medium. The aggregates 

were broken up by gently pipetting the suspension up and down using a 10ml pipette. An 

aliquot of the cell suspension was used to seed a flask. 

2.1.3 Assessment of cell number 

Prior to cell counts, cells were prepared for sub-culturing as detailed in section 2.1.1 and 

section 2.1.2. An aliquot was then applied to the chamber of a glass coverslip-enclosed 

haemocytometer. For each of the four grids, cells in the 16 squares were counted. The 

average of the four grids was multiplied by a factor of 104 (volume of the grid) and the 

relevant dilution factor to determine the average cell number per ml in the original cell 

suspension. On this basis, the cell number per ml could be calculated. The cell pellet was 

then resuspended in an appropriate volume to obtain a cell suspension of 1x106cells/ml. 

2.1.4 Cryopreservation of cells 

Cells for cryopreservation were harvested in the log phase of growth as described in 

section 2.1.1 and section 2.1.2. Cell pellets were re-suspended in a suitable volume of 

serum. An equal volume of a 10 - 20 % DMSO (Sigma, D2438)/serum solution was added 

dropwise with mixing, to the cell suspension. The cell suspension was then aliquoted in 

1ml volumes to cryovials (Greiner, 122278) and immediately placed at -20oC for up to 

four hours. After four hours, the cryovials were transferred to -80oC for short term storage, 

after which the vials were gradually transferred to the liquid phase of liquid nitrogen for 

long term storage (-196oC). 

2.1.5 Thawing of cryopreserved cells 

A volume of 5ml of fresh growth medium containing serum was added to a sterile 

universal. The cryopreserved cells were removed from the liquid nitrogen and thawed at 

37oC quickly. The cells were removed from the vials and transferred to the aliquoted 

media (also at 37oC). The resulting cell suspension was centrifuged at 1000rpm for 5 

mins. The supernatant was removed and the pellet re-suspended in fresh culture medium. 

Cell viability of thawed cells was noted. Thawed cells were then added to an appropriately 

sized tissue culture flask with a suitable volume of growth medium and allowed to attach 

overnight. The following day, flasks were re-fed with fresh media to remove any 

remaining DMSO and non-viable cells. 
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2.1.6 Monitoring of sterility of cell culture solutions 

Sterility testing was performed in the case of all cell culture media and cell culture related 

solutions. Samples of prepared basal media were incubated at 37oC for a period of seven 

days. This ensured that no bacterial or fungal contamination was present in the media or 

the solutions. 

2.1.7 Serum batch testing 

To prevent batch to batch variation in foetal calf serum (FCS) which is a common problem 

in cell culture, a range of FCS batches were screened and the most suitable were chosen 

for a block of work (HyClone®, ThermoFisher Scientific, SV30143.03). Screening 

involved growing cells in 96-well plates and growth was recorded as a percentage of 

growth of a serum with known acceptable growth rate.  

More specific screening involved performing invasion assays to determine the effects of 

different batches of serum on the ability of particular cell lines to invade through an 

extracellular matrix, in vitro. Invasion assays were performed and evaluated as per section 

2.4.1. 

2.1.8 Indirect mycoplasma analysis of cell lines 

Mycoplasma testing was carried out quarterly, using the indirect method. Mycoplasma-

negative NRK (normal rat kidney fibroblast) cells were used as indicator cells for this 

analysis. NRK cells were seeded onto 35mm petri dishes (Sigma) in DMEM 

supplemented with 10% FCS. A 1ml volume of conditioned medium (from test cell lines) 

was inoculated onto the petri-dishes containing NRK cells and incubated for 4 days at 

37oC in a 5% CO2 atmosphere. Prior to inoculation, test cell lines must be in log phase of 

growth, passaged a minimum of 3 times, free from antibiotics and the conditioned 

medium collected from cell lines must be at least 3 days old. Cells were fixed in Carnoys 

Fixative (1 part of glacial acetic acid to 3 parts of methanol at -20oC) at a ratio of 50:50 

Carnoys: PBS. A fluorescent Hoechst stain was used in for analysis. The stain binds 

specifically to DNA and so stains the nucleus of the cells in addition to any mycoplasma 

present. Mycoplasma infection was indicated by fluorescent bodies in the cytoplasm of 

the NRK cells. The analysis was performed by Michael O’Donohoe or Michael Henry. 

Cell lines used throughout this thesis were mycoplasma negative. 

 



 

34 

 

2.2 Proteomic analysis 

Proteomic analysis detailed in this thesis was carried out with the help and guidance of 

Dr. Paul Dowling and Mr. Michael Henry. 

2.2.1 Cell surface membrane protein Isolation 

Isolation of cell surface proteins was carried using the Cell Surface Isolation kit 

(ThermoFisher Scientific, 89881). This kit used a biotinylation approach to efficiently 

label proteins with accessible lysine residues and sufficient extracellular exposure. The 

process uses a cell impermeable, cleavable biotinylation reagent to label exposed primary 

amines of proteins on the cell surface of intact cells. Biotinylation is a rapid and specific 

process of covalently attaching biotin to a protein. Biotin has a high affinity to streptavidin 

and avidin so proteins can be easily recovered for examination. 

DLKP, DLKPSQ, DLKPI and DLKPM cell lines were obtained from NICB culture 

collection. Cell lines were maintained in 75cm2 flasks in DMEM/Hams-F12 

supplemented with 5% FCS at 37oC in an atmosphere of 5% CO2. Cells were cultured 

until they were approximately 90-95% confluency before treated and processed as per 

manufacturer’s instructions. Triplicate biological replicates of cell surface proteins were 

isolated from all four cell lines. Briefly, for labelling and lysis, cells were treated using 

Sulfo-NHS-SS-Biotin on a rocking platform for 30 mins at 4oC, followed by lysis and 

multiple sonication steps. To isolate labelled proteins, the clarified supernatant was added 

to washed NeutrAvidin agarose slurry and incubated for 60 mins at room temperature 

with end over end mixing on a rotator, after which agarose beads were washed using wash 

buffers. Protein elution was performed during a 60 min incubation at room temperature 

with end over end mixing using 50 mM DTT in PBS. 

2.2.2 In-solution tryptic digestion 

Initial preparation of individual protein fractions for LC-MC/MS analysis was carried out 

by buffer exchange overnight by acetone precipitation. Protein pellets were resuspended 

in Label-Free buffer solubilisation buffer containing 6 M urea, 2 M thiourea, 10 mM Tris, 

pH 8.0 in LC-MS grade water. Re-suspended protein samples were then carefully 

vortexed, sonicated and centrifuged to ensure pellets were fully resuspended. For label-

free MS analysis, volumes were initially equalised with label free buffer and kept to a 

minimum. Protein was re-quantified using the Quick Start Bradford assay kit (Bio-Rad, 

5000201) and 5 µg of each sample were reduced for 30 mins at 56oC with 10 mM DTT 

in 50 mM ammonium bicarbonate. The samples were then alkylated for 20 mins in the 
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dark with 25 mM iodoacetamide in 50 mM ammonium bicarbonate. A final volume of 

0.1% ProteaseMAX (v/v) was added to each fraction and protein digestion was carried 

out using sequencing-grade trypsin at a ratio of 1:20 (protease: protein) overnight at 37oC. 

Ahead of mass spectrometry, digestion was stopped by adding Trifluoroacetic Acid 

(TFA) to a final concentration of 0.5% (v/v). Peptide suspensions were purified using 

Pierce C18 Spin Columns (ThermoFisher Scientific, 89870) and the resulting peptide 

samples were dried through vacuum centrifugation and suspended in 25µl of loading 

buffer consisting of 2% acetonitrile (ACN) and 0.05% TFA in LC-MS grade water. 

Protein suspensions were vortexed and sonicated again to ensure an even suspension. 

2.2.3 Label-Free Liquid chromatography mass spectrometry Analysis 

An Ultimate 3000 nanoLC system (Dionex Corporation, Sunnyvale, CA, USA) coupled 

to an LTQ Orbitrap XL mass spectrometer from ThermoFisher Scientific (Dublin, 

Ireland) was used for the nano LC-MS/MS analysis of differentially expressed proteins 

from cell surface protein preparations of DLKP, SQ, I and M, as previously described. 

Digested peptide mixtures (5 l volume) were loaded onto a C18 trap column (C18 

PepMap, 300 m id × 5 mm, 5 m particle size, 100 Å pore size; Dionex). Desalting was 

carried out at a flow rate of 25 l/min in 0.1% TFA and 2% ACN for 5 min. The trap 

column was switched on-line with an analytical PepMap C18 column (75 m id × 500 

mm, 3 m particle, and 100 Å pore size; Dionex). Peptides generated from skeletal 

muscle proteins were eluted with the following binary gradients: solvent A (2% ACN and 

0.1% formic acid in LC-MS grade water) and 0%–25% solvent B (80% ACN and 0.08% 

formic acid in LC-MS grade water) for 240 min and 25%–50% solvent B for a further 60 

min. The column flow rate was set to 350 nL/min. Data was acquired with Xcalibur 

software, version 2.0.7 (ThermoFisher Scientific). The MS apparatus was operated in 

data-dependent mode and externally calibrated. Survey MS scans were acquired in the 

Orbitrap in the 400–1800 m/z range with the resolution set to a value of 30,000 at m/z 

400 and lock mass set to 445.120025 u. CID fragmentation was carried out in the linear 

ion trap with up to three of the most intense ions (1+, 2+ and 3+) per scan. Within 40 s, a 

dynamic exclusion window was applied. A normalised collision energy of 35%, an 

isolation window of 3 m/z, and one microscan were used to collect suitable tandem mass 

spectra. 

 



 

36 

 

2.2.4 Quantitative Profiling of Label-Free LC-MS/MS Analysis 

Progenesis label-free LC-MS software version 3.1 from Non-Linear Dynamics 

(Newcastle upon Tyne, UK) was used to process the raw data generated from LC-MS/MS 

analysis. Data alignment was based on the LC retention time of each sample, allowing 

for any drift in retention time given and adjusted retention time for all runs in the analysis. 

A reference run was established with the sample run that yielded most features (i.e., 

peptide ions). The retention times of all of the other runs were aligned to this reference 

run and peak intensities were then normalized. Prior to exporting the MS/MS output files 

to MASCOT (www.matrixscience.com) for protein identification, a number of criteria 

were employed to filter the data. This included (i) peptide features with ANOVA ≤ 0.05 

between experimental groups, (ii) mass peaks (features with charge states of +1, +2 and 

+3, and (iii) greater than one isotope per peptide. A MASCOT generic file was used for 

peptide identification using proteome discoverer 2.0 (ThermoFisher Scientific) against 

MASCOT (version 2.2) and Sequest HT (SEQUEST HT algorithm, licence 

ThermoScientific, registered trademark University of Washington, USA) and was 

searched against the UniProtKB-SwissProt database (downloaded January 2015, 

taxonomy: Homo Sapiens). The following search parameters were used for protein 

identification. (i) peptide mass tolerance set to 20ppm, (ii) fragment mass tolerance set to 

0.02 Da, (iv) up to two missed cleavages were allowed, (v) carboxymethylation set as a 

fixed modification, (vi) methionine oxidation set as a variable modification. For re-

importation back into Progenesis LC-MS software, further analysis on only peptides with 

ion score set to minimum of 40.00 of more (from Mascot) and Sequest HT XCorr set to 

minimum of >1.9 for singly charged ions, >2.2 for doubly charged ions and >3.75 for 

triply charged ions or more (from SEQUEST HT) were selected. Target FDR for PSMs 

and peptide validation, peptide and protein filtering, protein scoring, protein FDR 

validation, protein grouping and ProteinCenter annotation was carried out. The 

ProteinCenter annotation node retrieves from the ProteinCenter information from Gene 

Ontology (GO) database, protein annotations from the Ensembl database and PTM 

modifications from the UniProt database. All protein identifications for each sample were 

exported to Microsoft Excel [98, 99]. 
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2.3 Western blot analysis 

2.3.1 Preparation of whole cell lysates 

Cells were grown to 80 - 90% confluency in culture flasks (T75cm2 flask), media was 

removed, cells were washed 3 x in ice cold PBS and then removed. 500 μl (per T75cm2 

flask) or 1 ml (per T175cm2 flask) of RIPA lysis buffer (Sigma, R0278) containing 1X 

Halt protease/phosphatase inhibitor cocktail (ThermoScientific, 78440) and incubated on 

ice for 30 mins with regular agitation. Following centrifugation at 16,000 g (Eppendorf) 

for 5 mins at 4°C, the resulting lysate was stored at -80°C.  

2.3.2 Preparation of membrane proteins 

Membrane proteins were isolated from cells using the ProteoExtract Native Membrane 

Protein Extraction Kit (Calbiochem, 444810) and used according to the manufacturer’s 

instructions. Samples were stored at -80oC. 

2.3.3 Preparation of conditioned medium 

Cells were seeded (1x106cells: DLKP and DLKPM, 1.25x106cells: DLKPI-and 

1.5x106cells: for DLKPSQ) in three biological replicates in T175cm2 flasks and cultured 

for 72 hrs or until 50-60% confluent. Cells were washed x 3 in serum-free media (SFM, 

DMEM/Hams-F12) and incubated in SFM (10 ml/T175cm2 flask) for 60 mins. After this 

time, cells were washed again x 3 in SFM, 30 mls of SFM was added to the cells and 

incubated for a further 72 hrs. After such time, conditioned media was collected, 

centrifuged for 5 min at 1000 rpm and filtered through 0.22μm filter. CM samples were 

kept on ice until required or stored at 4oC for no longer than 24hrs prior to concentration.  

To concentrate conditioned media, 20mls was added to a Vivaspin20 concentrator with a 

5kDa molecular weight cut off (Sartorius, VS.0112) and centrifuged at 4oC at 4000rpm 

(ThermoFisher Scientific, 11175774) until the final volume 10 times the original volume 

(e.g. 10 mls to 1 ml). The sample was removed and then stored in aliquots at -80oC.  
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2.3.4 Protein Quantification 

Protein levels were determined using the Pierce™ BCA Protein assay kit (ThermoFisher 

Scientific, 23225) or the QuickStart Bradford protein Assay Kit (Bio-Rad, 5000201) as 

follows: 

2.3.4.1 BCA protein assay 

Protein in whole cell preparations (prepared in RIPA buffer), Membrane enriched 

samples and CM was quantified using the Pierce BCA Protein Assay Kit (Thermo-Fisher 

Scientific, 23227) as per the manufacturer’s instructions. 

2.3.4.2 Bio-Rad protein assay 

The Quick Start Bradford assay kit (Bio-Rad, 5000201) was used for protein samples 

prepared in 2D lysis buffer (20 mM Tris, 7 M Urea, 2 M Thiourea, 4% CHAPS, pH 8.5). 

A protein standard curve (0, 0.2, 0.4, 0.6, 0.8, 1.0 and 1.5mg/ml) was prepared from the 

BSA stock with dilutions made in UHP and stored at -20oC. A 20 µl volume of protein 

standard dilution or sample (diluted 1:4 to 1:8) was added to appropriate wells of a 96-

well plate. A 250 µl of the Bradford reagent dye was then added to each well and 

incubated at room temperature for 5 mins. All samples were assayed in triplicate. 

Absorbance was assessed at 570nm. The concentration of the protein samples was 

determined from the plot of absorbance at 570nm versus the concentrations of the 

standard curve. 

Protein concentrations obtained using both protein quantifications were adjusted relative 

to the dilutions (e.g. If a 1:4 dilution was used to obtain a concentration of X µg/ml, then 

the value for X was multiplied by 4). 

2.3.5 Gel Electrophoresis 

Protein samples for Western blotting were separated by SDS-PAGE gel electrophoresis, 

using 4-12% gradient gels (ThermoFisher Scientific, NP0335, NP0321). Approximately 

15μg (for whole cell lysates), 8μg (for membrane proteins) and 30ug (for conditioned 

medium) of protein in 4x sample buffer (ThermoFisher Scientific, NP0007) was applied 

to each well of the polyacrylamide gel. Pre-stained molecular weight markers 

(ThermoFisher Scientific, LC5800) were also loaded onto the gel for the determination 

of the molecular weight of the protein samples. Gels were run at 200 volts and 250 

milliamps for 1 hour with 1× MOPS, Tris/ Glycine/ SDS running buffer (ThermoFisher 

Scientific, NP0001). 500 μl of antioxidant (NP0005) was then added to the inner chamber 

of the Xcell SureLock® minicell (EI0001) electrophoresis gel-rig. When the dye front of 
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the samples and the molecular weight markers had reached the end of the gel, 

electrophoresis was stopped.  

2.3.6 Enhanced Chemiluminescence detection 

Proteins were transferred to Polyvinylidene fluoride (PVDF) membranes (ThermoFisher 

Scientific, IB4010-01) using the iBlot transfer system (ThermoFisher Scientific, IB1001). 

The membrane was blocked with 5% milk powder (Biorad, 170-6404) in TBS/Tween (1x 

TBS (Sigma, T5912) and 0.1% Tween20 (Sigma, P1379-500ml)) at room temperature 

for 2 hours, then incubated overnight at 4°C in primary antibody (Table 2.3-1) diluted 

with 0.1 % TBS-Tween in 5 % milk powder. The membrane was washed three times with 

0.5 % TBS-Tween and then incubated at room temperature with secondary antibody 

(Table 2.3-1) in 5 % milk powder with 0.5 % TBS-Tween for 1 hour. The membrane was 

washed three times with 0.5 % TBS-Tween followed by one wash with TBS alone. 

Following the final wash, membranes were incubated for 5mins with 3 ml (for a full 

membrane) of a 50:50 mixture of ECL reagent A and ECL reagent B (Amersham, ECL, 

RPN 2105 or Clarity, BioRad, 170506). Immunoblots were developed using ECL 

reagents which facilitated the detection of bound peroxidase conjugated secondary 

antibody. While developments have made in the way which Western blots are developed 

such as the use of Chemiluminescence imaging systems (e.g. BioRad Chemidoc imaging 

system or ThermoFisher Scientific, MyECL imager), darkroom facilities were used for 

the duration of this thesis. In the darkroom, the PVDF membranes were exposed to 

Amersham HyperfilmTM, Chemiluminescence film (GE Healthcare, 28906837) for 

various times (from 10 seconds to 30 mins depending on the signal). The exposed auto-

radiographic film was developed for between 45 seconds to 1 mins in the developer 

(Kodak, LX-24). The film was then transferred to a fixative (Kodak, FX-40) for 2 mins. 

The film was rinsed with water for 2 mins and left to dry at room temperature. Once dry, 

the blots were then converted into a digital format using Epson Perfection photo scanner 

4990 and Epson Scan software version 3.04a. 
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 Antibody Concentration/Dilution Company 

Primary 

Antibodies 

ALCAM 1:1000 Abcam (ab109215) 

HDGF 1:1000 Abcam (ab128921) 

INA 1:7500 Abcam (ab40758) 

IQGAP1 1:1500 Abcam (ab86064) 

SLIT2 1:1000 Abcam (ab134166) 

SPR 1:6000 Abcam (ab157194) 

GAPDH 1:2000 R&D Systems 

α-tubulin 1:40000 
Sigma Aldrich 

(T9026) 

Secondary 

Antibodies 

Swine Anti-Rabbit HRP 1/2000 Dako (P0399) 

Goat Anti-Mouse HRP 1/2000 Dako (P0477) 

Goat Anti-Rabbit HRP 1/2000 Dako (P0448) 

Table 2.3-1:- List of antibodies and the dilutions used in Western blot analysis 

To control for protein loading, blots were probed with an antibody specific to α-Tubulin 

or GAPDH for whole cell lysates (Table 2.3-1). It was more difficult obtain an appropriate 

housekeeping antibody against specific proteins in membrane enriched samples and 

conditioned medium samples, in this case, a coomassie stain was used to control for equal 

loading (see section 2.3.7). 

2.3.7 Staining - Brilliant Blue G colloidal coomassie staining of gels 

After electrophoresis, the gels containing membrane enriched samples and conditioned 

medium samples were placed into a square petri dish (Sigma, Z617679) containing a 

solution of Brilliant Blue G colloidal Coomassie. A working solution of 50mls prepared 

(32mls of UHP, 8mls of Brilliant Blue G colloidal Coomassie and 10mls of methanol) 

and then applied to the gels for at least 2 hours at room temperature on a rotating platform. 

After this time the coomassie stain was removed and gels were destained in UHP 

overnight with regular changes of UHP. Coomassie stained gels when required were used 

to ensure equal protein loading in these sample types. 
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2.4 Functional analyses 

2.4.1 In vitro invasion assays 

Matrigel (BD Biosciences, 354234) was diluted to a working stock of 1mg/ml in serum- 

free DMEM. Aliquoted stocks were stored at -20oC for up to 1 year. Invasion assays were 

performed using the method modified from [100]. 

Matrigel was removed from the freezer and allowed to thaw overnight on ice at 4oC. A 

volume of 100 μl of matrigel was placed into each insert (BD Biosciences, 353097) 

(8.0μm pore size, 24-well format) and kept at 4oC for 24 hours. The insert and the plate 

were then incubated for one hour at 37oC to allow the proteins to polymerise. To remove 

excess matrigel/media, each well was rinsed by gently by adding 150 μl of warm SFM to 

each insert containing matrigel. This media was then gently removed, all the time trying 

not to disturb the thin layer of matrigel. Cells were harvested and re-suspended in culture 

media containing 5% FCS at 1×106 cells/ml. 100 μl of media (or test solution) was then 

added to each insert followed by 100 μl of the cell suspension (at the optimised cell 

number) to each insert. Finally, 500 μl of culture media containing 5% FCS was added to 

the well underneath the insert and cells were incubated for 24 hours.  

To investigate the effect of the inhibitors DFMO (Sigma, D193) and L-NNA (Sigma 

N5501) on cell invasion, cells were seeded in culture media containing 5% FCS and 

DFMO (2.5 mM and 5 mM) or L-NNA (150μM), see Table 2.5-1. Appropriate 

concentrations of inhibitor were added to the underneath of the insert in 500 μl of media 

containing 5% FCS.  

After a 24-hour incubation, the media was removed from the inside of the insert and the 

insert was wiped with a cotton swab dampened with PBS. The outer side of the insert was 

stained with 0.25% crystal violet for 10 mins and then rinsed in Ultrapure water (UHP) 

and allowed to dry. The inserts were viewed and photographed under the microscope. 

The invasion assays were quantified by counting cells in 10 random fields within a grid 

at 20x objective and graphed as the total number of cells invading at 200× magnification 

(section 2.4.2.1). A minimum of 2 inserts was used per sample tested. 

2.4.2 In vitro migration assay 

Migration assays were carried out as described in section 2.4.1, without the addition of 

extracellular matrix proteins. 



 

42 

 

% Anoikis = (1-(delta OD of unattached cells/delta OD of attached cells)) *100 

2.4.2.1 Determination of total number of invading or migrating cells 

To determine the total number of invading or migrating cells within an assay, the average 

number of invading or migrating cells (of 10 random fields) per insert was multiplied by 

a factor of 140 (growth area of the membrane divided by the area of the field viewed at 

200x magnification), giving the total number of invading cells per insert. The total 

number of invading or migrating cells were then imported into excel and displayed on a 

histogram chart. 

2.4.3 ROS assay 

Cells were set up at 4x104 cells/well in duplicate wells of a 24-well plate. After overnight 

incubation, the cells were washed with Hanks Balanced Salts solution (HBSS) and one 

well was exposed to HBSS and the other to the dye DCFDA at 10uM for 10 mins at 37oC. 

After the incubation, each well was washed twice with HBSS and exposed to fresh 

medium (ATCC + 5% FCS) or to fresh medium containing 100µM H2O2 for 2hrs at 37oC.  

The wells were then washed with HBSS and 1 ml of fresh HBSS added to each well. The 

fluorescence was measured with an excitation of 485nm and emission at 525nm.  Cell 

counts were then made to compare the ROS generated per cell. 

2.4.4 Anoikis assay 

Cells were set up at 1x105 cells/well in duplicate wells of a 24-well plate and a 24-well 

ultra-low attachment plate (Sigma, CLS3473-24EA) to a final volume of 1ml of 

DMEM/Hams-F12 with 5% FCS. Cells were allowed to incubated for a total of 24 hours. 

At 21 hours, 100µl of Alamar blue (ThermoFisher Scientific, DAL1100) was added to 

each well and allowed to incubate for the remaining 3 hours. Plates were read in a dual 

beam plate reader at 570 nm with a reference wavelength of 600nm. Percent anoikis was 

determined using following equation: 

 

2.4.5 Statistical analysis 

A minimum of two replicates was used per sample and three separate biological replicates 

were performed. Triplicate biological replicates refer to a single experiment that was 

carried out in duplicate on three separate occasions e.g. three different passage numbers 

of a particular cell line. For each experiment, assays were performed weekly or bi-weekly 

until triplicate assays displayed agreement. Histograms were plotted using mean (average 
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between triplicate assays) values from triplicate experiments. Error bars were applied to 

each graph indicating plus and minus standard deviations.  

All assays were then subjected to statistical analysis using student’s t-test (two-tailed, 

equal variance, unpaired) in Microsoft Excel 2016. Using Microsoft Excels t-test function 

with mean figures calculated between replicates, a p value was obtained. The p value 

measures the probability that the differences between the control and test samples would 

be observed by chance.  

A p value of ≤ 0.05 was considered significant and assigned *  

A p value of ≤ 0.01 was considered more significant and assigned ** 

A p value of ≤ 0.005 was considered highly significant and assigned *** 

In siRNA experiments, scrambled siRNA or negative control siRNA transfected cells 

were used as controls and were compared to test siRNA treated cells. This was to ensure 

that no off target effects were occurring within the transfection process. Non-treated 

controls (cells only and transfection reagent) were also used within each experiment to 

ensure that the scrambled or negative control siRNA was having no effect and to 

normalise the data. 

In transfection experiments where an effect of less than 20% was observed, the siRNA 

was considered to have “little or no effect”. However, results from these experiments may 

still indicate statistical significance. It is, therefore, important to carry out statistical 

analyses of all results obtained from experiments. 
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2.5 In vitro proliferation assays 

2.5.1 Combination toxicity assays 

Cells in the exponential phase of growth were harvested by trypsinisation. Cell 

suspensions containing 1×104 cells/ml (for 96-well plates, Costar, 3599) or 1x106 cells/ml 

(for 6-well plates, Costar, 3516) were prepared in cell culture medium. To each well 

100µl (of 1x104 cells/ml, for 96-well plates) or 1 ml (of 1x106cells/ml for 6-well plates) 

of the cell suspension was added. Plates were agitated gently in order to ensure even 

dispersion of cells over the surface of the wells and cells were incubated overnight at 

37oC. Stock L-NNA and DFMO inhibitors (N5501 and D193) were diluted in UHP as 

per manufacturer’s instructions and stored at -20oC (Table 2.5-1) Subsequent dilutions 

were made in cell culture medium to the desired concentrations. Inhibitor diluent (UHP) 

was used as a control and also prepared in cell culture medium. A volume of 100 μl of 

the inhibitor dilutions was added to each well and mixed gently. Cells were incubated for 

48 hours. Assessment of cell survival in the presence of the inhibitors was determined by 

the acid phosphatase assay (section 2.5). 

Inhibitor Storage Source 

D, L-a-difluoromethylornithine (DFMO) -20oC Sigma Aldrich 

Nω-Nitro-L-arginine (L-NNA) -20oC Sigma Aldrich 

Table 2.5-1:- Inhibitors used during this project. 

 

2.5.2 Acid phosphatase assay 

Following the incubation period, media was removed from each plate/well. Each well on 

a plate was washed with 100 μl (for 96-well plates) or 500ul (for 6-well plates) of PBS. 

This was removed and 100 μl (for 96-well plates) or 1 ml (for 6-well plates) of freshly 

prepared phosphatase substrate (1.5μg/ml p-nitrophenol phosphate (ThermoScientific, 

34045) in 0.1 M sodium acetate (Sigma, S8625), 0.1% triton X-100 (BDH, 30632), pH 

5.5) was added to each well. The plates were wrapped in tinfoil and incubated in the dark 

at 37°C for 30mins to 2 hours. The enzymatic reaction was stopped by the addition of 50 

μl (96-well plate) or 500 µl (6-well plate) of 1 M NaOH to each well. Plates were read in 

a dual beam plate reader at 405 nm with a reference wavelength of 620nm.  
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2.6 Immunohistochemistry 

2.6.1 Immunofluorescence studies on fixed cells  

Aliquots of 30 μl of 1×106 cells/ml cell suspension from actively growing cultures were 

plated directly onto 10 well 7 mm microscope slides (Erie Scientific Company, 465-68X). 

Cells were allowed to attach overnight. After such time, slides were washed 3 x in PBS 

and allowed to air dry. Slides were carefully foil wrapped and stored at -80oC until 

required. When required, slides were allowed to come to room temperature, cells were 

then fixed in 4% paraformaldehyde for 5 mins. Slides were washed 3 x in PBS and in 

between the wells were then dried using a cotton bud wrapped in lint free tissue, to prevent 

the primary antibody from running into neighbouring wells. The primary antibody (Table 

2.6-1) was applied to appropriate wells and incubated overnight at 4oC. After 24 hours, 

the slides were washed 3 x in PBS and appropriate secondary antibody was applied. 

Either, Alexa Fluor488 goat anti-mouse IgG (ThermoFisher Scientific, A11029) or goat 

anti-rabbit (Thermofisher Scientific, A11034) which was diluted 1:2000 was added for 

1hr at room temperature in the dark. The secondary antibody was removed and cells 

washed as outlined. Slides were mounted with ProLong Gold mounting medium 

(ThermoFisher Scientific, P36930) and covered using a glass cover slip. Cells were 

viewed and photographed using a Nikon phase contrast microscope fitted with an FITC 

filter.  

2.6.2 Immunocytochemical analysis on fixed cells 

A 30µl volume of the appropriate cell suspension was added to slides and incubation is 

as described in section 2.6.1). After 24hrs, the excess supernatant was tapped off, and the 

microscope slides were rinsed gently with PBS. Slides were then air dried overnight, 

wrapped in tin foil, and stored at -80°C. Slides are then removed from -80°C freezers, and 

left for 15 mins prior to immunostaining. Cells were fixed in ice-cold paraformaldehyde 

for 2-4 mins. Immunostaining was carried out as per section 2.6.3, without the initial 

antigen retrieval step. 

2.6.3 Immunohistochemistry 

All Immunohistochemical (IHC) staining was performed using the Dako Autostainer 

(Dako, S3800). Deparaffinisation and antigen retrieval was performed using Epitope 

Retrieval 3-in-1 Solution (pH 6) (Dako, S1699) or the Epitope Retrieval 3-in-1 Solution 

(pH 9) (Dako, S2375) and the PT Link system (Dako, PT101). For epitope retrieval, slides 

were heated to 97°C for 20 mins and then cooled to 65°C. The slides were then immersed 
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in wash buffer (Dako, S3006). On the Autostainer slides were blocked for 10 mins with 

200 μl HRP Block (Dako, S2023). Cells were washed with 1 x wash buffer and 200 μl of 

antibody added to the slides at the optimised concentration/dilution for a minimum of 20 

mins (Table 2.6-1). Slides were washed again with 1 x wash buffer and then incubated 

with 200 μl Real EnVision (Dako, K4065) for 30 mins. A positive control slide was 

included in each staining run. Each slide was also run with Negative Control Reagent (1× 

TBS/0.05% Tween 20), to allow evaluation of non-specific staining and allow better 

interpretation of specific staining at the antigen site. All slides were counterstained with 

haematoxylin (Dako, CS700) for 5 mins, and rinsed with deionised water, followed by 

wash buffer. All slides were then dehydrated in graded alcohols (2 x 3 mins each in 70% 

IMS, 90% IMS and 100% IMS), and cleared in xylene (2 x 5 mins), and mounted with 

coverslips using DPX mounting medium (Sigma, 44581). Mounted slides were allowed 

to stand overnight before examination under the microscope. Slides were viewed and 

photographed using Olympus microscope and imaging system. 

 

Antibody 
Concentration used for: 

Company 
I/F ICC IHC 

AHNAK 1:250 --- --- 
Abcam 

(Ab168149/Ab68556) 

ALCAM 1:150 1:150 1:150 Abcam 

CD31 --- --- 1:50 Dako 

E-cadherin --- --- 2.5 µl Abcam (Ab40772) 

HDGF 1:250 1:500 1:500 Abcam 

Human Mitochondrial 

Protein 
--- --- 1:1000 Abcam (Ab92824) 

INA 1:210 1:210 1:210 Abcam 

IQGAP1 1µg/ml 1µg/ml 1:100 Abcam 

Ki67 --- --- 1:75 Dako (M7240) 

N-cadherin --- --- 3µg/ml 

Thermofisher Scientific 

(333900), Abcam 

(ab19348) 

ROBO2 1:100 1µg/ml 1µg/ml Abcam (ab75014) 

SLIT2 1:500 1:500 1:500 Abcam 

SPR 1:2000 --- 1:2500 Abcam 

Table 2.6-1:- Antibodies used in Immunofluorescence, Immunocytochemistry and 

Immunohistochemistry analysis. 
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2.7 RNA interference (RNAi) 

RNAi using small interfering RNA's (siRNAs) was carried out to silence specific genes. 

The siRNAs used were chemically synthesised and were purchased from AmbionInc or 

Qiagen. These siRNAs were 21-23 bps in length and were introduced to the cells via 

reverse transfection with the transfection agents siPORT NeoFXTM (Ambion Inc., 4511) 

or Lipofectamine 2000 (ThermoFisher Scientific, 11668019).  

2.7.1 Transfection optimisation 

RNA interference knockdown of genes is a well-established method and is used routinely 

to investigate the effect a certain gene has on a cell line of choice. In order to determine 

the optimal conditions for siRNA transfection, optimisation with kinesin siRNA (Ambion 

Inc., 16704) or AllStars Cell Death siRNA (Qiagen, S104381048) was carried out for 

each cell line. There were a number of different parameters that had to be determined to 

establish an optimised protocol for the siRNA transfection of the DLKP clones. Cell 

suspensions were prepared at 1×105, 2×105 and 3×105 cells per ml. Solutions of the 

negative control and positive control siRNA (kinesin or AllStars Cell Death siRNAs) at 

a final concentration of 10 and 30nM were prepared in optiMEM (GibcoTM, 31985047). 

Solutions containing 1.2 μl NeoFX or 2 μl lipofectamine were prepared in 50µl optiMEM 

in duplicate and incubated at room temperature for 10 mins. After incubation, either 

negative control or positive control (kinesin siRNA or AllStars Cell Death siRNA) 

solution was added to each NeoFX or lipofectamine solution. These solutions were mixed 

well and incubated for a further 10 mins at room temperature. To each well of a 6-well 

plate, 100 μl of the siRNA/NeoFX or lipofectamine solutions was added. A volume of 1 

ml of the relevant cell concentrations was added to each well and the plates were mixed 

gently and incubated at 37°C for 24 hours. After 24 hours, the transfection mixture was 

removed from the cells and the plates were fed with fresh medium. The plates were 

assayed for changes in proliferation at 72 hours using the acid phosphatase assay (section 

2.5). Optimal conditions for siRNA transfection were determined, as the combination of 

conditions gave the greatest reduction in cell number after positive control transfection 

and also the least cell kill in the presence of transfection reagent. The optimised conditions 

were 1.2 μl NeoFx or 2 μl of Lipofectamine to transfect 30nM siRNA (for ALCAM) and 

10nM (for both SPR and INA) siRNA respectively, optimised cell densities are shown in 

Table 2.7-1 below. 

 



 

48 

 

Cell line Cell density (per well in 6-well plates) 

DLKPSQ 1.5 x105 cells 

DLKPI 1.25x105 cells 

DLKPM 1x105 cells 

DLKPSQ-Mitox-BCRP-6P 1.5x105 cells 

MDA-MD-468 2x105 cells 

MiaPacC2 Clone3 2x105 cells 

AsPC-1 2x105 cells 

Table 2.7-1:- Optimization of cell number for transfections siRNA. 

2.7.2 Analysis of the growth of siRNA transfected cells 

Cells were seeded using 1.2 μl NeoFX to transfect 30nM siRNA (for ALCAM) or 10mM 

siRNA (for INA and SPR) to optimised cell numbers (shown in Table 2.7-1) per well of 

a 6-well plate. After 24 hrs, the medium was replaced with fresh medium and cells were 

allowed to grow until they reached 80 - 90% confluency over a total of 4 days. Cell 

number was assessed using the acid phosphatase assay (section 2.5). 

2.7.3 Analysis of invasion and migration of siRNA transfected cells 

To assay for changes in invasive capacity using ALCAM, INA and SPR siRNAs, siRNA 

experiments were set up as described in section 2.7.1 in 6-well plates. Transfection 

medium was removed after 24hr and replaced with fresh growth medium. The transfected 

cells were assayed at 72hrs post transfection for changes in invasive capacity using the in 

vitro invasion assay as described in section 2.4.1 and migration assay described in section 

2.4.2. 

2.7.4 Analysis of ROS generation of siRNA transfected cells 

DLKP-M cells with siRNA knock-down of SPR, lipofectamine transfected, or negative 

siRNA transfected cells or untreated cells were set up at 4x104 cells/well in a 24-well 

plate with two wells per condition. Seventy-two hours post transfection, ROS generation 

in DLKPM cells was analysed as described in section 2.4.3. 
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2.8 Development of cell line-derived tumours in vivo (xenografts) 

This in vivo study was carried out in collaboration with Prof. Robert Straubinger 

(University of Buffalo, USA), Ms Ninfa Straubinger (University of Buffalo, USA), Dr. 

Sandra Roche (NICB, DCU, Ireland) and Dr. Fiona O’Neill (NICB, DCU, Ireland) at the 

BioResource Unit (BRU) in the School of Biotechnology, Dublin City University. 

2.8.1 Mice 

For this study, 28-35 day old CB17/lcr-Prkdcscid/Crl mice were chosen based on the 

extensive experience and publishing history our collaborator has using SCID mice for in 

vivo modelling [101, 102]. Mice were used under the guidelines of the Irish Department 

of Health and procedures approved by the research ethics committee of Dublin City 

University, Dublin 9. CB17/lcr-Prkdcscid/Crl mice were purchased from Charles River 

(Charles River International Inc., Wilmington, MA). The immunodeficiency of these 

animals is as a result of the inhibition to produce B and T lymphocytes. This deficiency 

provides the mice with a wide tolerance to implanted foreign tissues and tumours, which 

makes them an ideal model for research. 

2.8.2 Preparation of cell suspensions 

DLKP, DLKPSQ, DLKPI and DLKPM were cultured in vented T75cm2 flasks until 

approximately 70% confluent. Cell counts were completed as per section 2.1.3. Cell 

suspensions were prepared in SF-DMEM as follows: 5x106 cells in 500 μl, 1.5x107 cells 

in 250 μl and 5x107 cells in 250 μl. Matrigel Matrix High concentration (BD, Franklin 

Lakes, NJ, USA, 354262) at a ratio of 1:1 was added to the cell suspensions. This matrigel 

is suited for in vivo studies where a high concentration augments the growth of tumours. 

The high protein concentration (18-22mg/ml) also allows the Corning Matrigel Matrix 

plug to maintain its integrity after subcutaneous injection into mice. This keeps the 

injected cells and/or angiogenic compounds localized for in situ analysis and/or future 

excision. Cell and matrigel suspensions were stored on ice until required. For tumour 

growth, the cells and matrigel mixture was then inoculated into the mice at a final cell 

density shown in Table 2.8-1. 
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 Right Flank Left Flank 

Mouse 1 1 x 106 cells 5 x 106 cells 

Mouse 2 1 x 106 cells 5 x 106 cells 

Mouse 3 1 x 106 cells 1 x 107 cells 

Mouse 4 1 x 106 cells 1 x 107 cells 

Table 2.8-1:- Inoculation densities used for DLKP in vivo study. 

2.8.3 Tumour development 

An appropriate needle was selected for injection of cell suspensions; this prevents the 

destruction of the cells within the matrigel plug. Using the cell suspensions in prepared 

in section 2.8.2, 200 µl of the appropriate cell lines and matrigel suspension was 

subcutaneously injected into the appropriate flank of each mouse as indicated in Table 

2.8-1 above. Mice were monitored daily and once tumours were observed they were 

measured using a digital calliper. The equation used to evaluate the tumour volume was; 

 

2.8.4 Tumour removal and explant culture 

Explant culture was performed to examine any changes in the in vitro characteristics of 

DLKP, DLKPSQ, DLKPI and DLKPM cells after a period of growth in tumours. 

Tumours were developed in mice as per section 2.8.1, 2.8.2 and 0, once tumours were 

removed from mice, they were kept cool by placing the specimen into ice-cold serum free 

DMEM-HAMS-F12 until required. Tumours were diced into small pieces and placed 

onto 0.4 µm inserts (Falcon, 353090), then placed into 6-well plates. Cells were allowed 

to migrate out of the tumour for 3 days without being disturbed. Once cells were seen to 

be attached to the insert, cells were trypsinised and moved to 12.5cm2 flasks and cultured 

as per section 2.1.1. DLKPSQ, DLKPSQ, DLKPI and DLKPM cells were examined for 

changes in morphology, proliferation (as described in section 2.5), invasion (as described 

in section 2.4.1), migration (as described in section 2.4.2) and anoikis (as per section 

2.4.4) capacities post tumour explantation. 

2.8.5 Paraffin embedding of Xenograft tissues 

Preparation of tumours for Immunohistochemical analysis was carried out by Mr Damian 

Tiernan (Royal Victoria Eye and Ear Hospital, Ireland) and Mr. Colin Barr (NICB, DCU). 

Pathological examination of tissues was performed by Prof. Susan Kennedy (Royal 

Victoria Eye and Ear Hospital, Dublin). 

H(height of tumour) x W(width of tumour) x D (depth of tumour)/2 

= volume of tumour (mm3) 
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3.1 Identification of membrane associated markers in DLKP 

Lung Cancer is a leading cause of cancer related death worldwide. Cell surface proteins 

are an important subset of proteins in the cell. They play an important role in signal 

transduction, cell adhesion and in cancer invasion and migration. The accessible location 

of cell surface proteins makes them ideal candidates for use as targets for cancer therapy. 

While membrane proteins constitute 20-30% of the human they represent over 60% of all 

drug targets [103]. With the evolution of patient specific therapy in other cancers, there 

is a continuing need to identify new targets for lung cancer therapy. In this thesis, the 

Pierce cell surface protein isolation kit (ThermoFisher Scientific, 89881) was used to 

identify potential markers in the poorly differentiated squamous cell carcinoma cell line, 

DLKP and also potentially novel proteins associated with lung cancer. Sulfo-NHS-SS-

Biotin, a cleavable biotinylation reagent that is cell-impermeable was used to label 

exposed primary amines on the surface of intact cells from the parental DLKP and its 

clones, DLKPSQ, DLKPI and DLKPM.  

3.1.1 Cell surface protein isolation and protein identification 

DLKP contains at least 3 clonal subpopulations with distinct morphological and 

phenotypical differences (e.g. invasion and anoikis). To identify potential markers for 

each of the clones, cell surface protein isolation was carried out using cell surface 

isolation kit (see section 2.2.1). Reduction and alkylation steps were used to prepare 

proteins for label-free LC-MS/MS analysis. Proteins were eluted in DTT, precipitated in 

acetone (buffer exchange), reduced and alkylated in DTT, iodoacetamide (IAA) (breaks 

di-sulphide bonds and prevents refolding). The proteins were then broken up into peptides 

by a trypsin digestion step. Samples containing peptides were applied to the mass 

spectrometer. Proteome Discoverer Software 2.0 allows for peptides to be assigned to 

proteins using the Mascot and SEQUEST HT (see section 2.2.3 and 2.2.4). Each cell line 

will have a list of proteins that was identified.  Progenesis software was used to analyse 

these proteins and identify proteins that were differentially expressed between DLKP and 

its clones. To do this a number of criteria was applied to the software; (i) to ensure proteins 

are statistically significant an ANOVA score of ≤ 0.05 as used, (ii) to ensure increased 

expression between cell lines a minimum fold change of ≥ 1.5-fold was applied and (iii) 

to ensure correct proteins are identified, proteins with greater than 2 unique peptides 

matched to a particular protein were considered. Data analysis was carried out by Michael 

Henry using the standard criteria outlined above. The criteria used in the data analysis 
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gives strong confidence that the proteins identified are potentially expressed in the cell 

lines, validation needs to be carried out to confirm expression in the cell lines.  

To evaluate the differentially expressed proteins in the cell lines DLKP, DLKPSQ, 

DLKPI and DLKPM, six comparative protein lists were generated and exported to excel 

from Progenesis. The analysis was designed to identify biologically relevant differentially 

expressed proteins that correlated with increased expression, that is, from highest to 

lowest fold changes (DLKP vs. DLKPSQ, DLKP vs. DLKPI, DLKP vs. DLKPM, 

DLKPSQ vs. DLKPI, DLKPSQ vs. DLKPM, DLKPI vs. DLKPM). Unique and common 

proteins, as well as proteins with a novel aspect, were chosen. To further strengthen the 

choice of proteins selected, their expression was also examined in a combination of 

analyses previously performed in our laboratory (i) microarray analysis performed by Dr. 

Helena Joyce (ii) unpublished proteomic analysis (on conditioned medium (CM) from 

DLKP clones) performed by Dr. Joanne Keenan and (iii) unpublished proteomic analysis 

(of whole cell lysates) performed by Mr. Shane Kelly. The analysis presented in this thesis 

was performed using a protein isolation protocol. The kit may potentially allow for 

isolation and subsequent identification (through LC-MS/MS analysis) of novel proteins 

associated with cell membrane using a biotin labelling approach. Validation of selected 

proteins was performed to confirm their expression in DLKP and its clones by 

Immunofluorescence staining, Western blot analysis and immunocytochemical analysis. 
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3.1.2 Principle component analysis of DLKP and the DLKP clones 

Principle component analysis (PCA) is a statistical analysis used to visualise variation 

and strong patterns between data sets. To show differences in protein expression between 

DLKP and DLKP clones a global analysis was carried out on all four cell lines, using 

Progenesis LC-MS software. To identify proteins that are differentially expressed 

between the DLKP and its clones, it was important to ensure good separation between all 

four cell lines and that each of the replicate samples clustered together. The PCA analysis 

shown in Figure 3.1-1, indicates a clear separation between all four cell lines but also the 

individual replicates are clustering together. The analysis also indicates that DLKP 

(Green) and DLKPSQ (blue) cluster close together, this is not surprising due to the fact 

that DLKP is made up of approx. 70% DLKPSQ cells [93]. The PCA analysis indicates 

that the isolation of cell membrane associated protein and subsequent proteomic analysis 

in DLKP and its clones was robust and reproducible. 

 

 

 
Figure 3.1-1:- Principle component analysis showing separation of DLKP and its clones. 

Label free proteomic analysis was carried out on triplicate cell surface preparations of DLKP 

(Green), DLKPSQ (Blue), DLKPI (Orange) and DLKPM (purple), using the cell surface isolation 

kit. 
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3.1.3 Comparative proteomic analysis of DLKP and the DLKP clones 

Following principle component analysis of the four cell lines, six comparative protein 

lists were generated. The analysis was designed to identify biologically relevant 

differentially expressed proteins that correlated with increased expression, that is, from 

highest to lowest fold changes. The six comparisons were:  DLKP vs. DLKPSQ, DLKP 

vs. DLKPI, DLKP vs. DLKPM, DLKPSQ vs. DLKPI, DLKPSQ vs. DLKPM, DLKPI vs. 

DLKPM. Table 3.1-1 summarises the total number of proteins that were identified from 

each comparison and the number of proteins that showed increased expression. The 

subsequent tables (Table 3.1-2 - Table 3.1-7) shows the first 14 - 18 proteins in each 

comparison and are organised by maximum fold change (see appendix I for full 

differentially expressed protein lists). The proteins which were identified in these 

comparisons represent a number of different cellular processes, however, to elucidate the 

molecular function, biological processes and pathways which control these proteins 

further analysis using PANTHER classification system should be carried out.  

Experimental comparison No. of identified differentially expressed proteins 

DLKP vs. DLKPSQ 

49 proteins in total 

35 were increased in DLKP 

14 were increased in DLKPSQ 

(See Table 3.1-2) 

DLKP vs. DLKPI 

114 proteins in total 

74 were increased in DLKP 

40 were increased in DLKPI 

(See Table 3.1-3) 

DLKP vs. DLKPM 

144 proteins in total 

86 were increased in DLKP 

58 were increased in DLKPM 

(see Table 3.1-4) 

DLKPSQ vs. DLKPI 

94 proteins in total 

55 were increased in DLKPSQ 

39 were increased in DLKPI 

(see Table 3.1-5) 

DLKPSQ vs. DLKPM 

110 proteins in total 

59 were increased in DLKPSQ 

51 were increased in DLKPM 

(see Table 3.1-6) 

DLKPI vs. DLKPM 

58 proteins in total 

26 were increased in DLKPSQ 

32 were increased in DLKPM 

(see Table 3.1-7) 

Table 3.1-1:- Summary of six comparisons made using Progenesis LC-MS software and the 

number of proteins with increased expression in each cell line.
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DLKP vs. DLKPSQ 

Highest in DLKP Highest in DLKPSQ 

Accession 

Number 
Protein Name 

Gene 

symbol 

Fold 

Change 

Accession 

Number 
Protein Name 

Gene 

symbol 

Fold 

Change 

Q9HCK4 Roundabout homolog 2 ROBO2 56.88 P16930 Fumarylacetoacetase FAH 19.87 

P05362 Intercellular adhesion molecule 1 ICAM1 56.16 O43175 
D-3-phosphoglycerate 

dehydrogenase 
PHGDH 4.52 

P35221 Catenin alpha-1 CTNNA1 30.84 A0MZ66 Shootin-1 KIAA1598 3.87 

Q16658 Fascin FSCN1 14.08 P43358 Melanoma-associated antigen 4 MAGEA4 2.44 

P35222 Catenin beta-1 CTNNB1 12.58 P11137 Microtubule-associated protein 2 MAP2 2.24 

Q9UBR2 Cathepsin Z CTSZ 6.85 O75531 Barrier-to-autointegration factor BANF1 2.15 

Q6PIU2 
Neutral cholesterol ester hydrolase 

1 
NCEH1 6.39 Q9BUF5 Tubulin beta-6 chain TUBB6 2.01 

Q09666 
Neuroblast differentiation-

associated protein 
AHNAK 5.00 P13010 

X-ray repair cross-complementing 

protein 5 
XRCC5 1.97 

P50454 Serpin H1 SERPINH1 4.21 Q06830 Peroxiredoxin-1 PRDX1 1.75 

Q8NBJ5 
Procollagen galactosyltransferase 

1 
COLGALT1 3.31 P46940 

Ras GTPase-activating-like 

protein 
IQGAP1 1.73 

Q01581 
Hydroxymethylglutaryl-CoA 

synthase, cytoplasmic 
HMGCS1 3.10 Q15417 Calponin-3 CNN3 1.65 

O60888 Protein CutA CUTA 2.59 Q96AE4 
Far upstream element-binding 

protein 1 
FUBP1 1.58 

Q96PK6 RNA-binding protein 14 RBM14 2.40 O00264 
Membrane-associated progesterone 

receptor component 1 
PGRMC1 1.54 

P35579 Myosin-9 MYH9 2.33 P30041 Peroxiredoxin-6 PRDX6 1.54 

Table 3.1-2:- Comparison of DLKP vs. DLKPSQ. 
List of top 14 statistically significant, differentially expressed proteins in DLKP and DLKPSQ. The following criteria were applied; (i) ANOVA score ≤ 

0.05, (ii) max-fold change of ≥ 1.5 and (iii) a minimum of 2 peptides leading to the identification of proteins. 
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DLKP vs.  DLKPI 

Highest in DLKP Highest in DLKPI 

Accession  
Number 

Protein Name 
Gene 

symbol 
Fold 

Change 
Accession 
Number 

Protein Name 
Gene 

symbol 
Fold 

Change 

Q6UVK1 Chondroitin sulfate proteoglycan 4 CSPG4 82.94 P08575 
Receptor-type tyrosine-protein 

phosphatase C 
PTPRC 37.62 

P05362 Intercellular adhesion molecule 1 ICAM1 55.65 Q13740 CD166 antigen ALCAM 18.80 

P32119 Peroxiredoxin-2 PRDX2 31.26 Q05707 Collagen alpha-1(XIV) chain COL14A1 15.61 

Q9UBR2 Cathepsin Z CTSZ 9.26 P35232 Prohibitin PHB 7.71 

O75347 Tubulin-specific chaperone A TBCA 5.34 Q99623 Prohibitin-2 PHB2 7.64 

P43487 
Ran-specific GTPase-activating 

protein 
RANBP1 5.21 P46940 Ras GTPase-activating-like protein IQGAP1 7.61 

P12277 Creatine kinase B-type CKB 4.63 O75369 Filamin-B FLNB 7.44 

P55060 Exportin-2 CSE1L 4.48 P11233 Ras-related protein Ral-A RALA 6.55 

Q99798 Aconitate hydratase, mitochondrial ACO2 4.00 P02545 Prelamin-A/C LMNA 5.75 

P07602 Prosaposin PSAP 3.63 Q09666 
Neuroblast differentiation-associated 

protein 
AHNAK 5.55 

P00441 Superoxide dismutase [Cu-Zn] SOD1 3.57 Q9BSJ8 Extended synaptotagmin-1 ESYT1 4.61 

Q14240 Eukaryotic initiation factor 4A-II EIF4A2 3.53 P21333 Filamin-A FLNA 4.59 

P49419 
Alpha-aminoadipic semialdehyde 

dehydrogenase 
ALDH7A1 3.48 Q96HC4 PDZ and LIM domain protein 5 PDLIM5 4.55 

P09211 Glutathione S-transferase P GSTP1 3.43 O75947 ATP synthase subunit d, mitochondrial ATP5H 3.81 

Table 3.1-3:- Comparison of DLKP vs. DLKPI. 

List of top 14 statistically significant, differentially expressed proteins in DLKP and DLKPI. The following criteria were applied; (i) ANOVA score ≤ 

0.05, (ii) max-fold change of ≥ 1.5 and (iii) a minimum of 2 peptides leading to the identification of proteins. 
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DLKP vs.  DLKPM 

Highest in DLKP Highest in DLKPM 

Accession 

Number 
Protein Name 

Gene 

symbol 

Fold 

Change 

Accession 

Number 
Protein Name 

Gene 

symbol 

Fold 

Change 

P10586 
Receptor-type tyrosine-protein 

phosphatase F 
PTPRF 89.23 Q96HC4 PDZ and LIM domain protein 5 PDLIM5 13.80 

P05362 Intercellular adhesion molecule 1 ICAM1 61.31 Q05707 Collagen alpha-1(XIV) chain COL14A1 12.64 

Q9HCK4 Roundabout homolog 2 ROBO2 60.59 P46940 Ras GTPase-activating-like protein IQGAP1 8.99 

Q6UVK1 Chondroitin sulfate proteoglycan 4 CSPG4 45.49 P02538 Keratin, type II cytoskeletal 6A KRT6A 8.81 

O15031 Plexin-B2 PLXNB2 27.33 P11233 Ras-related protein RALA 8.81 

Q92692 Nectin-2 PVRL2 25.06 Q99623 Prohibitin-2 PHB2 8.35 

P28906 
Hematopoietic progenitor cell antigen 

CD34 
CD34 24.97 P46087 

Probable 28S rRNA (cytosine (4447)-C (5))-

methyltransferase 
NOP2 8.25 

Q13308 Inactive tyrosine-protein kinase 7 PTK7 10.40 O75643 
U5 small nuclear ribonucleoprotein 200kDa 

helicase 
SNRNP200 8.00 

Q9UBR2 Cathepsin Z CTSZ 10.01 P35232 Prohibitin PHB 7.83 

O00410 Importin-5 IPO5 7.44 Q14008 Cytoskeleton-associated protein 5 CKAP5 7.80 

P30533 
Alpha-2-macroglobulin receptor-

associated protein 
LRPAP1 6.68 O75369 Filamin-B FLNB 7.75 

Q15084 Protein disulfide-isomerase A6 PDIA6 6.05 P62805 Histone H4 HIST1H4A 6.86 

Q13740 CD166 antigen ALCAM 5.97 Q8WXF1 Paraspeckle component 1 PSPC1 5.90 

Q9Y4L1 Hypoxia up-regulated protein 1 HYOU1 5.83 P23246 Splicing factor, proline- and glutamine-rich SFPQ 5.65 

Table 3.1-4:- Comparison of DLKP vs. DLKPM. 

List of top 14 statistically significant, differentially expressed proteins in DLKP and DLKPM. The following criteria were applied; (i) ANOVA score ≤ 

0.05, (ii) max-fold change of ≥ 1.5 and (iii) a minimum of 2 peptides leading to the identification of proteins. 
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DLKPSQ vs. DLKPI 

Highest in DLKPSQ Highest in DLKPI 

Accession 
Number 

Protein Name 
Gene 

symbol 
Fold 

Change 
Accession 
Number 

Protein Name 
Gene 

symbol 
Fold 

Change 

P55957 BH3-interacting domain death agonist BID 18.07 P08575 
Receptor-type tyrosine-protein 

phosphatase C 
PTPRC 42.10 

O43175 D-3-phosphoglycerate dehydrogenase PHGDH 7.36 P19022 Cadherin-2 CDH2 29.00 

O00625 Pirin PIR 6.45 P23246 
Splicing factor, proline- and 

glutamine-rich 
SFPQ 28.92 

Q9UBB4 Ataxin-10 ATXN10 6.23 P35222 Catenin beta-1 CTNNB1 26.80 

P12277 Creatine kinase B-type CKB 6.08 Q13740 CD166 antigen ALCAM 24.30 

P43487 Ran-specific GTPase-activating protein RANBP1 5.89 Q9HCK4 Roundabout homolog 2 ROBO2 21.85 

P31937 
3-hydroxyisobutyrate dehydrogenase, 

mitochondrial 
HIBADH 5.12 Q96PK6 RNA-binding protein 14 RBM14 17.52 

P00441 Superoxide dismutase [Cu-Zn] SOD1 5.07 Q14126 Desmoglein-2 DSG2 17.34 

P04792 Heat shock protein beta-1 HSPB1 4.76 Q15233 
Non-POU domain-containing 

octamer-binding protein 
NONO 14.81 

P34897 
Serine hydroxymethyltransferase, 

mitochondrial 
SHMT2 4.68 Q16658 Fascin FSCN1 14.34 

O75347 Tubulin-specific chaperone A TBCA 4.44 P35221 Catenin alpha-1 CTNNA1 10.81 

P09211 Glutathione S-transferase P GSTP1 4.41 Q99623 Prohibitin-2 PHB2 10.26 

P00390 Glutathione reductase, mitochondrial GSR 4.31 P35232 Prohibitin PHB 10.06 

P07602 Prosaposin PSAP 4.14 Q09666 
Neuroblast differentiation-

associated protein 
AHNAK 9.29 

P00558 Phosphoglycerate kinase 1 PGK1 4.13 Q86UP2 Kinectin KTN1 8.37 

P12004 Proliferating cell nuclear antigen PCNA 3.86 P02545 Prelamin-A/C LMNA 7.38 

O43399 Tumor protein D54 TPD52L2 3.72 P21333 Filamin-A FLNA 7.07 

P35270 Sepiapterin reductase SPR 3.64 Q9BSJ8 Extended synaptotagmin-1 ESYT1 6.23 

Table 3.1-5:- Comparison of DLKPSQ vs. DLKPI. 
List of top 18 statistically significant differentially expressed proteins in DLKP and DLKPI. The following criteria were applied; (i) ANOVA score ≤ 

0.05, (ii) max-fold change of ≥ 1.5 and (iii) a minimum of 2 peptides leading to the identification of proteins. 



 

60 

 

DLKPSQ vs. DLKPM 

Highest in DLKPSQ Highest in DLKPM 

Accession 
Number 

Protein Name 
Gene 

symbol 
Fold 

Change 
Accession 
Number 

Protein Name 
Gene 

symbol 
Fold 

Change 

A0MZ66 Shootin-1 KIAA1598 7.02 P46087 
Probable 28S rRNA (cytosine (4447)-C 

(5))-methyltransferase 
NOP2 12.26 

O43175 
D-3-phosphoglycerate 

dehydrogenase 
PHGDH 6.70 O75643 

U5 small nuclear ribonucleoprotein 200 
kDa helicase 

SNRNP200 11.69 

Q9Y2Q3 Glutathione S-transferase kappa 1 GSTK1 5.22 Q99623 Prohibitin-2 PHB2 11.52 

O00625 Pirin PIR 4.95 P23246 
Splicing factor, proline- and glutamine-

rich 
SFPQ 10.66 

P08107 Heat shock 70 kDa protein 1A/1B HSPA1A 4.84 Q15233 
Non-POU domain-containing octamer-

binding protein 
NONO 10.17 

O43399 Tumor protein D54 TPD52L2 4.31 Q96HC4 PDZ and LIM domain protein 5 PDLIM5 9.67 

P27797 Calreticulin CALR 4.12 P35232 Prohibitin PHB 9.45 

P34931 Heat shock 70 kDa protein 1-like HSPA1L 3.98 Q09666 
Neuroblast differentiation-associated 

protein 
AHNAK 8.04 

O14980 Exportin-1 XPO1 3.96 P62805 Histone H4 HIST1H4A 7.84 

P23526 Adenosylhomocysteinase AHCY 3.86 Q96PK6 RNA-binding protein 14 RBM14 7.59 

O00410 Importin-5 IPO5 3.65 P11233 Ras-related protein Ral-A RALA 7.46 

Q58FF7; 
Q58FF8 

Putative heat shock protein HSP 
90-beta-3 

HSP90AB3P 3.58 Q14444 Caprin-1 CAPRIN1 6.91 

P04792 Heat shock protein beta-1 HSPB1 3.52 P46940 Ras GTPase-activating-like protein IQGAP1 6.17 

P27824 Calnexin CANX 3.48 P35222 Catenin beta-1 CTNNB1 5.71 

Table 3.1-6:- Comparison of DLKPSQ vs. DLKPM. 

List of top 14 statistically significant differentially expressed proteins in DLKPSQ and DLKPM. The following criteria were applied; (i) ANOVA score 

≤ 0.05, (ii) max-fold change of ≥ 1.5 and (iii) a minimum of 2 peptides leading to the identification of proteins. 
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DLKPI vs.  DLKPM 

Highest in DLKPI Highest in DLKPM 

Accession 
Number 

Protein Name 
Gene 

symbol 
Fold 

Change 
Accession 
Number 

Protein Name 
Gene 

symbol 
Fold 

Change 

P08575 
Receptor-type tyrosine-protein 

phosphatase C 
PTPRC 41.79 P31937 

3-hydroxyisobutyrate dehydrogenase, 
mitochondrial 

HIBADH 7.32 

Q13740 CD166 antigen ALCAM 30.15 P12277 Creatine kinase B-type CKB 7.28 

Q9HCK4 Roundabout homolog 2 ROBO2 26.95 O75347 Tubulin-specific chaperone A TBCA 4.52 

P10586 
Receptor-type tyrosine-protein 

phosphatase F 
PTPRF 25.10 P49419 

Alpha-aminoadipic semialdehyde 
dehydrogenase 

ALDH7A1 4.11 

Q14126 Desmoglein-2 DSG2 24.70 P07195 L-lactate dehydrogenase B chain LDHB 3.47 

P60709 Actin, cytoplasmic 1 ACTB 22.32 P07741 Adenine phosphoribosyltransferase APRT 3.45 

P19022 Cadherin-2 CDH2 20.86 P08758 Annexin A5 ANXA5 3.45 

P30533 
Alpha-2-macroglobulin receptor-

associated protein 
LRPAP1 9.17 P43487 

Ran-specific GTPase-activating 
protein 

RANBP1 3.43 

Q92692 Nectin-2 PVRL2 7.93 P09211 Glutathione S-transferase P GSTP1 3.32 

P35222 Catenin beta-1 CTNNB1 7.92 P16152 Carbonyl reductase [NADPH] 1 CBR1 3.22 

Q15067 
Peroxisomal acyl-coenzyme A 

oxidase 1 
ACOX1 4.47 P50454 Serpin H1 SERPINH1 3.18 

Q01581 
Hydroxymethylglutaryl-CoA 

synthase, cytoplasmic 
HMGCS1 4.25 Q96HC4 PDZ and LIM domain protein 5 PDLIM5 3.03 

Q9Y2Q3 Glutathione S-transferase kappa 1 GSTK1 4.05 P62937 Peptidyl-prolyl cis-trans isomerase A PPIA 3.02 

P21333 Filamin-A FLNA 3.89 P00441 Superoxide dismutase [Cu-Zn] SOD1 2.87 

Table 3.1-7:- Comparison of DLKPI vs. DLKPM. 

List of top 14 statistically significant differentially expressed proteins in DLKPSQ and DLKPM. The following criteria were applied; (i) ANOVA score 

≤ 0.05, (ii) max-fold change of ≥ 1.5 and (iii) a minimum of 2 peptides leading to the identification of proteins. 
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3.1.4 Summary of proteins selected for validation studies in DLKP 

Table 3.1-8 below summarises the proteins that were selected as potential protein markers 

for DLKP clones and possibly novel proteins associated with lung cancer. Two proteins 

that did not appear on the comparative proteomic lists (i) Alpha-Internexin (INA) and (ii) 

SLIT2 were also selected for validation. On further examination, less stringent criteria 

revealed HDGF as differentially expressed in DLKP vs. DLKPI (fold change 2.19), 

criteria applied was (i) an ANOVA of ≤0.05, (ii) ≥1.5 fold and (ii) proteins with ≥1 unique 

peptide matched to identify HDGF. Little is known about HDGF and its receptor and was, 

therefore, an interesting protein for follow up analysis. INA was chosen for validation in 

DLKP and its clones based on novelty, on its association with pancreatic neuroendocrine 

cancer tumour aggressiveness [104]. On further examination of INA, unpublished 

proteomic analysis on whole cell lysates of DLKP and its clones revealed its expression 

was increased in DLKPSQ vs. DLKPM. Early studies performed on DLKP indicated that 

DLKP should be characterised as either variant small cell lung carcinoma (SCLC-V) or 

non-small cell lung carcinoma with neuroendocrine differentiation [93], further 

strengthening our reasons for selecting INA. Microarray analysis carried out by Dr. 

Helena Joyce found that SLIT2 was expressed in DLKP. In this proteomic study, ROBO2 

(the receptor for SLIT2 and probably SLIT1) was found to be expressed within the DLKP 

cell line model, therefore both proteins were chosen for validation studies. Surprisingly, 

a number of the proteins selected for validation appear to have a neuronal association, 

which may further indicate the borderline nature of DLKP towards a neuroendocrine 

tumour. 

No Protein Name 
Gene 

Symbol 

Accession 

number 
Molecular function 

1.  
Neuroblast differentiation-

associated protein 
AHNAK Q09666 

Structural molecule 

conferring elasticity 

2.  
Hepatoma Derived Growth 

Factor 
HDGF P51858 

Transcription co-factor 

activity, Growth factor 

activity 

3.  SLIT2 Homolog SLIT2 O94813 Receptor activity 

4.  Roundabout 2 Homolog ROBO2 Q9HCK4 

Receptor activity, 

Phosphoprotein 

phosphatase activity 

5.  
Activated Leukocyte cell 

adhesion molecule 
ALCAM Q13740 Receptor activity 

6.  
Ras-GTPase-activating-like 

protein 1 
IQGAP-1 P46940 

Catalytic activity, small 

GTPase activity 

7.  Alpha-Internexin INA Q16352 
Structural constituent of 

Cytoskeleton 

8.  Sepiapterin Reductase SPR P35270 Oxidoreductase activity 

Table 3.1-8:- Summary of all proteins selected for validation studies. 
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3.2 Validation of protein targets from proteomic analysis 

A number of proteins were identified as differentially expressed following comparative 

proteomic analysis of DLKP and its clonal variants (DLKPSQ, DLKPI and DLKPM). 

Six comparisons were performed to identify statistically significant proteins that were 

differentially expressed: DLKP vs. DLKPSQ, DLKP vs. DLKPI, DLKP vs. DLPKPM, 

DLKPSQ, vs. DLKPI, DLKPSQ vs. DLKPM and DLKPI vs. DLKPM. Presented in 

section 3.1.3 were tables of statistically significant differentially expressed proteins of 

each comparison from which proteins were selected. Selection of proteins from these 

comparisons was based on (i) ANOVA score of ≤ 0.05, (ii) max-fold change of ≥ 1.5 and 

a minimum of 1-2 peptides matched in order to identify each protein. The aim was to 

identify differentially expressed proteins that could act as potential markers for individual 

clones and to potentially identify novel proteins associated with lung cancer. Table 3.1-8 

shows a summary of all of the proteins that were selected for validation studies.  

Western blot analysis was used to validate the expression of the selected proteins in whole 

cell lysates, membrane enriched fractions and conditioned medium samples of DLKP, 

DLKPSQ, DLKPI and DLKPM cells (section 2.3). Validation of selected proteins in 

whole cell lysate and membrane enriched fractions would indicate the expression of 

particular proteins in the cells, while validating in conditioned medium (CM) samples 

would suggest if the protein was secreted. With further investigation, this information 

could be useful for determining whether a particular protein could be used as a cancer 

biomarker. Biomarkers are proteins or factors produced by cancer cells and secreted into 

bodily fluids such as blood and urine. Immunofluorescence (section 2.6.1) and/or 

Immunocytochemical analysis (see sections 2.6.2) was performed to confirm localisation 

of expression in the cells. Commercially available antibodies described in Table 2.3-1 

and Table 2.6-1. 
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3.2.1 Validation of AHNAK expression in DLKP 

Originally identified as a nuclear phosphoprotein in human neuroblastomas and skin 

epithelial cells, AHNAK is an exceptionally large protein of ~629kDa protein.  Lee et al., 

reported that AHNAK functions as a tumour suppressor by mediating TGFβ signalling, 

leading to cell cycle arrest. AHNAK expression was found to be increased in 

differentially expressed protein comparisons: DLKP vs. DLKPSQ, DLKPI vs. DLKPSQ, 

DLKPI vs. DLKPSQ and DLKPM vs. DLKPSQ, following comparative proteomic 

analysis of membrane preparations, Tables of proteins showing expression of AHNAK 

are presented in section 3.1.3. Immunofluorescence staining was performed to validate 

the expression of AHNAK in DLKP and its clonal subpopulations, see Figure 3.2-1 

below. Immunoreactivity was observed in all of the cell lines with the DLKPI and 

DLKPM cells showing the strongest immunoreactivity, membrane reactivity was 

observed in a small population (< 10%) of DLKPSQ cells.  

 

  

  

Figure 3.2-1:- Validation of AHNAK expression in DLKP. 

Representative immunofluorescence staining of AHNAK, (A) DLKP parental cells, (B) 

DLKPSQ, (C) DLKPI and (D) DLKPM cells stained with an AHNAK specific antibody. 

Immunoreactivity was observed in all cell lines. (Original magnification of all photomicrographs, 

×400, scale-bar = 50μm (n=1). 

 

A B 

C D 
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3.2.2 Validation of HDGF expression in DLKP 

While little is known about the receptors of hepatoma derived growth factors (HDGFs), 

it is thought that HDGF contains a peptide region responsible for binding to the cell 

surface. Subsequent binding of HDGF at the cell surface is also thought to activate 

ERK1/2 in fibroblasts [105]. The ERK pathway is thought to play a key role in the 

invasion of DLKP [96]. Hepatoma derived growth factor (HDGF) was found to be 

increased in comparative proteomics analysis of DLKP vs. DLKPI (2.19 fold), however, 

less stringent criteria were applied (i) ANOVA score of ≤ 0.05, (ii) a max-fold change of 

≥ 1.5, with 1 peptide matched to identify HDGF. Refer to appendix 1, which shows 

expression of HDGF in DLKP. 

HDGF is thought to be localised mainly to the nucleus, but localisation to the cytosol has 

also been reported [106]. In DLKP, no membrane immunoreactivity was observed but 

there was strong nuclear and some cytoplasmic immunoreactivity observed. 

Immunoreactivity was strongest in DLKP with lower levels in DLKPSQ, DLKPI and 

DLKPM (see Figure 3.2-2 (A)). 

Western blot analysis of whole cell lysates, membrane enriched fractions and conditioned 

media (CM) preparations of DLKP, DLKPSQ, DLKPI and DLKPM cells was performed 

to investigate the expression of HDGF. Western blot analysis of membrane enriched 

fractions clearly shows expression of HDGF is highest in DLKP compared to the clones 

(SQ, I and M). Analysis of whole cell lysates and CM samples showed expression of 

HDGF across the four cell lines. Immunoblots show the migration of HDGF at 

approximately 37kDa, however, non-specific bands were observed in the whole cell and 

CM samples above 37kDa which may represent potential HDGF-related proteins [106] 

of HDGF (see Figure 3.2-2 (B)). Immunocytochemical analysis of HDGF in DLKP, 

DLKPSQ, DLKPI and DLKPM cells displayed strong immunoreactivity in all cell lines, 

however, DLKP showed the strongest membrane reactivity (see Figure 3.2-2 (C)). 
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A 

 

B 

 

C 

 

Figure 3.2-2:- Validation of HDGF expression in DLKP. 

(A) Immunofluorescence staining of HDGF (n=1) (B) Representative immunoblot showing 

expression of HDGF in the DLKP clones (α-tubulin served as loading control (n=3), and (C) 

Immunocytochemical staining of HDGF in DLKP and its clones (n=1). Immunoreactivity was 

observed in all cell lines with the DLKP cells showing the strongest immunoreactivity (Original 

magnification of all photomicrographs, ×400, scale-bar = 50μm (A) and 200μm (C)). 
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3.2.3 Validation of SLIT2 ligand and ROBO2 receptor expression in DLKP 

Roundabout-2 Homolog (ROBO2) expression was found to be increased in differentially 

expressed protein comparisons: DLKP vs. DLKPSQ (~57-fold), DLKP vs. M (~60-fold), 

DLKPI vs. DLKPSQ (~21-fold) and DLKPI vs. DLKPM (27~fold), Tables of proteins 

showing expression of ROBO2 in DLKP are presented in section 3.1.3.. In addition, 

microarray analysis previously carried out on DLKP and its clones had revealed that 

ROBO2 was overexpressed in DLKPI only, while proteomic analysis on CM also 

indicated its expression in DLKP and its clones. Interestingly, ROBO2 expression in CM 

was highest in DLKPSQ, this may indicate that DLKPSQ may shed ROBO2 into the CM. 

ROBO2 acts as the receptor for SLIT2 (and probably SLIT1) guide to cellular migration 

during neuronal development [107]. Recently, it has been shown that ROBO1 expression 

in breast cancer cells coupled with SLIT2 expression from stromal fibroblasts has been 

associated with inhibition of tumour progression [108]. This indicates the influence the 

expression of proteins from cells within the tumour microenvironment may have on 

cancer progression. Both ROBO2 and SLIT2 proteins were selected for validation 

studies.  

Both Immunofluorescence and Immunocytochemical analysis of SLIT2 show 

immunoreactivity in all cell lines, DLKPM showing an overall the highest expression 

with DLKPSQ showing lower expression, this cell line appears to display membrane 

reactivity. Extracellular immunoreactivity can be observed in all cell lines (see Figure 

3.2-3 (A) & (D)), indicating potential secretion of SLIT2 into the surrounding media. 

Immunofluorescence staining for ROBO2 (Figure 3.2-3 (C)) revealed immunoreactivity 

in all of the cells with the DLKP-M cells showing the strongest immunoreactivity and 

DLKP showing weakest expression. SLIT2 expression appears to correlate with ROBO2 

expression in DLKP and its subpopulations, by immunofluorescence. 

Western blot analysis (Figure 3.2-3 (B)) was carried out to investigate the expression of 

SLIT2 in whole cell lysates, membrane enriched fractions and CM of DLKP, DLKPSQ, 

DLKPI and DLKPM cells. DLKPM and DLKP showed the highest level of expression 

while DLKPSQ and DLKPI showed the lowest level of expression in all samples. 

Western blot analysis of SLIT2 does not appear to correlate with Immunofluorescence 

analysis, however, there does appear to be similar expression trends between both 

techniques. ROBO2 expression was only validated by Immunofluorescence staining as 

the antibody did not work for Western blot analysis or Immunocytochemical analysis. 
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(a)  

 

(b)  

 

(c)  

 

(d)  

 

Figure 3.2-3:- Validation of SLIT2 and ROBO2 receptor expression in DLKP. 

(A) Immunofluorescence staining of SLIT2 in the DLKP clones (n=1). (B) Representative 

Immunoblot showing expression of SLIT2 in the DLKP clones (α-tubulin was used as an equal 

loading control (n=3)). (C) Immunofluorescence staining showing cell surface staining of 

ROBO2 (n=1). (D) Immunocytochemical staining of SLIT2 in the DLKP clones (n=1). DLKP 

parental cells, DLKPSQ, DLKPI and DLKPM cells stained with both an antibody specific to 

SLIT2 and ROBO2. Immunoreactivity was observed in all cells (Original magnification of all 

photomicrographs, ×400, scalebar = 50μm (A and C) and 200μm (D)). 

DLKP DLKPSQ DLKPI DLKPM 

SLIT2 
165kDa 

SLIT2 
165kDa 

SLIT2 
165kDa 

α-Tubulin 
50kDa 

Whole Cell 

Membrane 

Conditioned Media 

DLKP SQ I M 

DLKP DLKPSQ DLKPI DLKPM 

DLKP DLKPSQ 

DLKPI DLKPM 



 

69 

 

3.2.4 Validation of ALCAM expression in DLKP 

Activated Leukocyte Cell Adhesion molecule (ALCAM), also known as CD166 antigen, 

is a highly conserved 110kDa multi-domain, transmembrane type-1 glycoprotein of the 

immunoglobulin superfamily. ALCAM was first described as a CD6 ligand but is capable 

of homophilic and heterophilic interactions [109]. ALCAM expression was found to be 

increased in a number of comparisons of differentially expressed proteins; DLKP vs. 

DLKPM (~5.97-fold), DLKPI vs. DLKPSQ (~24.3-fold) and DLKPI vs. DLKPM 

(~30.15-fold), Tables of proteins showing expression of ALCAM in DLKP are presented 

in section 3.1.3. In addition, microarray analysis previously carried out on DLKP and its 

clones revealed that ALCAM was overexpressed in DLKPI only relative to DLKPSQ, 

while proteomic analysis on CM also indicated expression in DLKP cell lines. 

Interestingly, ALCAM expression in CM was highest in DLKPSQ and DLKPM. 

Potentially indicating that DLKPSQ sheds ALCAM into the conditioned medium. A 

number of studies have identified ALCAM as a potential lung cancer stem cell marker 

[110]. Since DLKPI may show a potential ability to interconvert to DLKPSQ and 

DLKPM, it was proposed that DLKPI may resemble a possible stem cell population in 

DLKP and was therefore chosen for validation studies.  

 

Immunofluorescence (Figure 3.2-4 (A)) and Immunocytochemical analysis of ALCAM 

(Figure 3.2-4 C)) indicated strong membrane reactivity in DLKPI compared to DLKP and 

DLKPM. ALCAM appeared to be almost absent in DLKPSQ. Western blot analysis 

(Figure 3.2-4 (B)) confirms that the expression level of ALCAM was highest in DLKPI 

compared to DLKP, DLKPSQ and DLKPM. Immunofluorescence, Western blot analysis 

and immunocytochemical analysis confirmed proteomics analysis by showing strongest 

expression of ALCAM in DLKPI. ALCAM, due to its strong expression could potentially 

be a good candidate for use as a marker for DLKPI. 
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Figure 3.2-4:- Validation of ALCAM expression in DLKP. 

(A) Immunofluorescence staining of ALCAM in the DLKP clones (n=1). (B) Representative 

Immunoblot showing expression of ALCAM in the DLKP clones (α-tubulin was used as an equal 

loading control (n=3)). (C) Immunocytochemical staining of ALCAM in formalin fixed paraffin 

embedded cells from DLKP and its clones (1000x magnification (n=1). Strongest 

immunoreactivity is observed in DLKPI. (Original magnification of all photomicrographs, ×400, 

scalebar = 50μm (A) and 200μm (C)). 

DLKP DLKPSQ DLKPI DLKPM 

Whole cell 

Membrane 

CM 

DLKP SQ I M 

ALCAM 
105kDa 

ALCAM 
105kDa 

 

ALCAM 

105kDa 

α-tubulin 

50kDa 

DLKP DLKPSQ 

DLKPI DLKPM 



 

71 

 

3.2.5 Validation of IQGAP1 expression in DLKP 

Ras-GTPase-activating-like protein-1 (IQGAP1) is a member of the IQGAP family of 

proteins with a molecular weight of approximately 189kDa. IQGAP1 regulates cell 

morphology and motility by its interaction with cell adhesion molecules, signalling 

molecules and components of the cytoskeleton [111]. IQGAP1 expression was found to 

be increased in a number of comparisons of differentially expressed proteins: DLKPSQ 

vs. DLKP (~2-fold), DLKPI vs. DLKP (~8-fold), DLKPM vs. DLKP (~9-fold) and 

DLKPM vs. DLKPSQ (~6-fold) obtained from comparative proteomic analysis of DLKP, 

Tables presented in section 3.1.3 show expression of IQDAP. In addition, microarray 

analysis previously carried out on DLKP and its clones revealed that IQGAP1 was 

overexpressed in DLKPI relative to DLKPSQ. IQGAP1 is thought to interact with over 

90 proteins including β-catenin, E-cadherin and N-cadherin, which are well established 

in cancer. In addition, IQGAP1 has also been reported to be a potential interacting protein 

of ALCAM [112] which we found to be almost uniquely expressed in DLKPI (see section 

3.2.4). 

 

Immunofluorescence (Figure 3.2-5 (A)) and Immunocytochemical analysis (Figure 3.2-5 

(C)) of IQGAP1 indicated that immunoreactivity was observed in all four cell lines. 

Expression appears to be strongest in DLKPM relative to DLKP, DLKPSQ and DLKPI. 

Western blot analysis Figure 3.2-5 (B)) also confirms expression levels of IQGAP1 is 

highest in DLKPM compared to DLKP, DLKPSQ and DLKPI.  
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Figure 3.2-5:- Validation of IQGAP1 expression in DLKP. 

(A) Immunofluorescence staining of IQGAP1 in the DLKP clones. (B) Representative 

Immunoblot showing expression of IQGAP1 in the DLKP clones (α-tubulin was used as an equal 

loading control). (C) Immunocytochemical staining of IQGAP1, strongest immunoreactivity was 

observed in DLKPM (Original magnification of all photomicrographs, ×400, scalebar = 50μm 

(A) and 200μm (C)). 
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3.2.6 Validation of INA expression in DLKP 

Alpha-Internexin (INA) is a 66kDa neuronal intermediate filament that is abundantly 

expressed in the peripheral nervous system. Overexpression of INA in oligodendroglial 

phenotype gliomas has been related to the 1p/19q co-deletion and been reported as a 

favourable prognostic marker [113]. Increased expression of INA was identified as a 

biomarker for neuroendocrine pancreatic cancer tumour aggressiveness and prognosis 

[104]. However, unpublished proteomic analysis performed on whole cell lysates of 

DLKP and its clones also indicated that INA expression was increased in DLKPSQ vs. 

DLKPM (~2.4-fold). Initial studies performed on DLKP indicated that DLKP should be 

characterised as either variant small cell lung carcinoma (SCLC-V) or non-small cell lung 

carcinoma with neuroendocrine differentiation. INA was therefore chosen for validation 

in DLKP based on novelty, relating to lung cancer and on its association with pancreatic 

neuroendocrine cancer. 

 

Immunofluorescence (Figure 3.2-6 (A)) and immunocytochemical (Figure 3.2-6 (C)) 

analysis of INA indicated that immunoreactivity was observed in DLKP, DLKPSQ and 

DLKPM. Expression appears to be strongest in DLKPSQ and weak immunoreactivity 

observed in DLKPI. Western blot analysis (Figure 3.2-6 (B)) confirmed expression of 

INA in whole cell lysates and membrane enriched samples of DLKP and its clones. INA 

appears to show association with the membrane of DLKPSQ and not for DLKP. 
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Figure 3.2-6:- Validation of INA expression in DLKP. 

(A) Immunofluorescence staining of INA in DLKP and the clones (n=1). (B) Representative 

Immunoblot showing expression of INA in the DLKP clones (α-tubulin was used as an equal 

loading control (n=3)). (C) Immunocytochemical staining of INA, strongest immunoreactivity 

was observed in DLKPSQ (Original magnification of all photomicrographs, ×400, scalebar = 

50μm (A) and 200μm (C)). 
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3.2.7 Validation of SPR in DLKP 

Sepiapterin Reductase (SPR) is a 27-kDa enzyme localised to the cytoplasm. It is 

involved in the final two steps in the conversion of 6-pyruvol-tetrahydrobiopterin to 

tetrahydrobiopterin (BH4), an essential co-factor of nitric oxide synthase. Nitric oxide 

synthase (NOS) is required for the conversion of L-Arginine to Citrulline or nitric oxide. 

Comparative proteomics analysis found increased expression of SPR in DLKPSQ vs. 

DLKPI (3.64 fold) (see Table 3.1-5). In addition, microarray analysis previously carried 

out on DLKP and its clones indicated that SPR was overexpressed in DLKPSQ and 

DLKPM relative to DLKPI. 

 

Immunofluorescence analysis of SPR (Figure 3.2-7 (A)) shows that immunoreactivity 

was observed DLKP, DLKPSQ and DLKPM. Expression appears to be strongest in 

DLKPSQ, with weak immunoreactivity observed in DLKPI. In DLKPSQ, 

immunoreactivity appears to be nuclear or sub-cytoplasmic. Western blot analysis (Figure 

3.2-7 (B)) confirmed expression of SPR in whole cell lysates and membrane enriched 

samples of DLKP and its clones. 
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A 

 

B 

 

Figure 3.2-7:- Validation of SPR expression in DLKP. 
(A) Immunofluorescence staining of SPR in DLKP and its clones, n=1. (B) Representative 

Immunoblot showing expression of SPR in the DLKP clones (α-tubulin was used as an equal 

loading control (n=3)). Strongest Immunoreactivity was observed in DLKPSQ (Original 

magnification of all photomicrographs, ×400, scalebar = 50μm). 
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3.2.8 BreastMark Analysis 

Breast cancer is a heterogeneous disease of which the majority of cases develop resistance 

to drugs despite advances in early detection and the progress made in the treatment of 

patients using systemic agents. This becomes a challenge for clinicians who are involved 

in the treatment of patients. It is, therefore, critical in the effective treatment of breast 

cancer (and other cancers) to identify and target the pathways that promote or sustain 

growth and invasion of cancer cells. There is a greater understanding of the molecular 

mechanisms underlying carcinogenesis which has led to the identification of novel 

molecular targets and development of targeted therapies [114, 115]. Targeted therapies 

for breast cancer include the use of tyrosine kinase inhibitors (TKIs) that target HER1, 

HER2, HER3, IGF receptor, C-MET and FGF receptor, but also inhibitors of intracellular 

signalling pathways such as PI3K, AKT, mTOR and ERK [116]. We used BreastMark to 

evaluate the significance of the markers identified in this thesis in relation to survival of 

patients with breast cancer. BreastMark is an algorithm developed to allow for the 

identifications of genes that are associated with disease progression in various breast 

cancer subtypes. It integrates gene expression and survival data from 26 datasets on 12 

different microarray platforms corresponding to ~17,000 genes in up to 4,738 clinical 

samples. [117]. 

The prognostic significance of each of the proteins validated in section 3.2.8 was 

determined for each breast cancer molecular subtype (i) Luminal A (ii) Luminal B (iii) 

Her2+ and (iv) Basal-like. Validated proteins were analysed using the combined survival 

option in BreastMark, where he outcome is overall survival. The Kaplan Meir survival 

curves are presented in Figure 3.2-8 to Figure 3.2-15 for each of the validated proteins, 

results are summarised in Table 3.2-1. Of the eight proteins chosen for validation studies, 

BreastMark analysis indicated that six of those were statistically significant and 

potentially worthy of further investigation in breast cancer. 
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Target 
Significance in Molecular 

subtypes 

Patient 

outcome 

Hazard 

Ratio 

p-

value 

AHNAK High expression in Luminal B Better 0.88 0.0330 

ALCAM Not significant in Luminal A, Luminal B, Her2+ or Basal subtypes 

HDGF Low expression Luminal A Better 1.27 0.0094 

INA High expression in Luminal B Better 0.27 0.0009 

IQGAP1 High expression in Luminal A Better 0.72 0.0006 

ROBO2 Expression not significant in Luminal A, Luminal B, Her2+ or Basal subtypes 

SLIT2 Expression not significant in Luminal A, Luminal B, Her2+ or Basal subtypes 

SPR 

Low expression in Luminal A Poor 1.36 0.0019 

Low expression in Basal Poor 1.33 0.0228 

Table 3.2-1:- Summary of BreastMark survival analysis performed on validated proteins. 
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(a)  (b)  

  

(c)  (d)  

  

Figure 3.2-8:- Survival analysis of AHNAK expression in breast cancer. 
Kaplan-Meier estimates of prognostic significance of AHNAK expression in molecular subtypes 

of breast cancer; (a) Luminal A (n= 1544, HR = 0.8314 (0.6875 - 1.005), p=0.05663), (b) Luminal 

B (n= 1473, HR = 0.8344 (0.7063 - 0.9858), p=0.03305), (c) Her2+ (n= 377, HR = 0.9786 (0.719 

- 1.332), p=0.8907) and (d) Basal-like (n= 674, HR = 1.085 (0.8064 - 1.459), p=0.5907). Kaplan-

Meier graph representing survival prognosis in patients based on high or low expression of 

AHNAK in their tumour. Data generated using BreastMark at 

http://glados.ucd.ie/BreastMark/index.html. 
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(a)  (b)  

  

(c)  (d)  

  

Figure 3.2-9:- Survival analysis of HDGF expression in breast cancer. 

Kaplan-Meier estimates of prognostic significance of HDGF expression in molecular subtypes of 

breast cancer; (a) Luminal A (n= 1650, HR = 1.271 (1.06 - 1.523), p=0.0094), (b) Luminal B (n= 

1499, HR = 0.992 (0.8436 - 1.166), p=0.9224), (c) Her2+ (n= 417, HR = 1.293 (0.9678 - 1.728), 

p=0.0813) and (d) Basal-like (n= 710, HR = 0.9072 (0.6951 - 1.184), p=0.4732). Kaplan-Meier 

graph representing survival prognosis in patients based on high or low expression of HDGF in 

their tumour. Data generated using BreastMark at http://glados.ucd.ie/BreastMark/index.html. 
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(a)  (b)  

  

(c)  (d)  

   

Figure 3.2-10:- Survival analysis of SLIT2 expression in breast cancer. 

Kaplan-Meier estimates of prognostic significance of SLIT2 expression in molecular subtypes of 

breast cancer; (a) Luminal A (n= 1523, HR = 0.9492 (0.7858 - 1.147), p=0.5883), (b) Luminal B 

(n= 1464, HR = 0.928 (0.7851 - 1.097), p=0.3809), (c) Her2+ (n= 371, HR = 0.752 (0.5509 - 

1.026), p=0.07161) and (d) Basal-like (n= 662, HR = 1.134 (0.8808 - 1.46), p=0.3288). Kaplan-

Meier graph representing survival prognosis in patients based on high or low expression of SLIT2 

in their tumour. Data generated using BreastMark at http://glados.ucd.ie/BreastMark/index.html. 
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(a)  (b)  

  

(c)  (d)  

  

Figure 3.2-11:- Survival analysis of ROBO2 expression in breast cancer. 

Kaplan-Meier estimates of prognostic significance of ROBO2 expression in molecular subtypes 

of breast cancer; (a) Luminal A (n= 338, HR = 0.9812 (0.7023 - 1.371), p=0.9112), (b) Luminal 

B (n= 376, HR = 0.9626 (0.7186 - 1.29), p=0.7984), (c) Her2+ (n= 112, HR = 1.005 (0.6062 - 

1.666), p=0.9842) and (d) Basal-like (n= 187, HR = 1.116 (0.7032 - 1.771), p=0.6415). Kaplan-

Meier graph representing survival prognosis in patients based on high or low expression of 

ROBO2 in their tumour. Data generated using BreastMark at 

http://glados.ucd.ie/BreastMark/index.html. 
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(a)  (b)  

  

(c)  (d)  

  

Figure 3.2-12:- Survival analysis of ALCAM expression in breast cancer 

Kaplan-Meier estimates of prognostic significance of ALCAM expression in molecular subtypes 

of breast cancer; (a) Luminal A (n= 1630, HR = 0.9045 (0.7509 - 1.089), p=0.2902), (b) Luminal 

B (n= 1474, HR = 1.075 (0.9124 - 1.266), p=0.3879), (c) Her2+ (n= 399, HR = 0.8696 (0.6478 - 

1.167), p=0.3521) and (d) Basal-like (n= 704, HR = 1.064 (0.7813 - 1.449), p=0.6938).  Kaplan-

Meier graph representing survival prognosis in patients based on high or low expression of 

ALCAM in their tumour. Data generated using BreastMark at 

http://glados.ucd.ie/BreastMark/index.html. 
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(a)  (b)  

  

(c)  (d)  

  

Figure 3.2-13:- Survival analysis of IQGAP1 expression in breast cancer. 

Kaplan-Meier estimates of prognostic significance of IQGAP1 expression in molecular subtypes 

of breast cancer; (a) Luminal A (n= 1650, HR = 0.729 (0.6079 - 0.8741), p=0.0006124), (b) 

Luminal B (n= 1499, HR = 0.8769 (0.7438 - 1.034), p=0.1174), (c) Her2+ (n= 417, HR = 1.207 

(0.8871 - 1.643), p=0.2301) and (d) Basal-like (n= 710, HR = 1.004 (0.7958 - 1.267), 

p=0.9711). Kaplan-Meier graph representing survival prognosis in patients based on high or low 

expression of IQGAP1 in their tumour. Data generated using BreastMark at 

http://glados.ucd.ie/BreastMark/index.html. 
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(a)  (b)  

  

(c)  (d)  

  

Figure 3.2-14:- Survival analysis of INA expression in breast cancer. 

Kaplan-Meier estimates of prognostic significance of INA expression in molecular subtypes of 

breast cancer; (a) Luminal A (n= 1544, HR = 1.15 (0.9259 - 1.428), p=0.2061), (b) Luminal B 

(n= 1473, HR = 0.7271 (0.6018 - 0.8783), p=0.000904), (c) Her2+ (n= 377, HR = 0.9656 (0.6877 

- 1.356), p=0.84) and (d) Basal-like (n= 674, HR = 1.004 (0.7862 - 1.281), p=0.9772). Kaplan-

Meier graph representing survival prognosis in patients based on high or low expression of INA 

in their tumour. Data generated using BreastMark at http://glados.ucd.ie/BreastMark/index.html. 
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(a)  (b)  

  

(c)  (d)  

  

Figure 3.2-15:- Survival analysis of SPR expression in breast cancer. 

Kaplan-Meier estimates of prognostic significance of SPR expression in molecular subtypes of 

breast cancer; (a) Luminal A (n= 1678, HR = 1.366 (1.121 - 1.664), p=0.001923), (b) Luminal B 

(n= 1519, HR = 0.9395 (0.8002 - 1.103), p=0.4459), (c) Her2+ (n= 423, HR = 1.317 (0.9721 - 

1.783), p=0.07463) and (d) Basal-like (n= 714, HR = 1.335 (1.04 - 1.714), p=0.02289). Kaplan-

Meier graph representing survival prognosis in patients based on high or low expression of SPR 

in their tumour. Data generated using BreastMark at http://glados.ucd.ie/BreastMark/index.html. 
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3.2.9 Summary of results from validation experiments 

Proteins identified through comparative proteomic analysis performed on DLKP, 

DLKPSQ, DLKPI and DLKPM cell lines revealed a number of differentially expressed 

proteins between within DLKP cell line model. Six proteins (AHNAK, ALCAM, HDGF, 

IQGAP1, ROBO2 and SPR) were selected directly from this analysis. INA was selected 

based on its association with neuroendocrine pancreatic cancer and its novelty. SLIT2 

was selected due to its association with its receptor ROBO2, identified in the proteomic 

analysis presented in. All of the selected proteins were examined in DLKP, DLKPSQ, 

DLKPI and DLKPM cells and their expression was presented in section 3.2. Some 

differences in the expression levels of the proteins were observed between each of the 

techniques used for validation, however, overall the expression patterns of individual 

proteins showed similar trends. Table 3.2-2 presents a representative indication of the 

expression of each of the protein validated by Western blot analysis (of the whole cell, 

membrane enriched and/or conditioned medium samples), Immunofluorescence, and/or 

Immunocytochemical analysis of the cell lines.  

 DLKP DLKPSQ DLKPI DLKPM 

AHNAK + + ++++ ++++ 

ALCAM + -/+ ++++ + 

HDGF ++ + + + 

INA ++ ++ -/+ + 

IQGAP1 ++ + ++ +++ 

ROBO2 + ++ + ++ 

SLIT2 ++ + + ++ 

SPR + ++ + ++ 

Table 3.2-2:- Summary table showing representative expression of the proteins validated in 

DLKP and its clones. 

-/+  absent or weak expression 

+ weak expression 

++ moderate expression 

+++ strong expression 

++++  very strong expression 
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3.3 Expression of selected proteins in human cancer cell lines. 

Comparative proteomics analysis was used to select differentially expressed proteins as 

potential markers for DLKP clones. A number of proteins were selected and validated by 

Western blot analysis, Immunofluorescence and Immunohistochemistry. AHNAK, 

ROBO2, ALCAM, IQGAP1, and SPR were selected following membrane proteomics. 

SLIT2 was selected from microarray analysis, through its association with the ROBO2 

receptor. HDGF was selected from membrane proteomics, however, less stringent criteria 

were applied. These proteins were examined further for their expression across panels of 

representative tumour cell lines including lung cancer, pancreatic cancer, TNBC, colon, 

glioma, melanoma and neuroblastoma. 

3.3.1 Expression of validated proteins in a representative panel of lung 

cancer cell lines 

Preliminary investigations were carried out to examine the expression of HDGF, SLIT2, 

ALCAM, INA and SPR in a representative panel of lung cancer cell lines. The full panel 

of cell lines including their subtypes are shown in Table 3.3-1 below: 

Subtype Abbreviation Cell lines 

Small Cell Lung Cancer SCLC NCI-H69, NCI-H82, DMS-53 

Large Cell Lung Cancer LCLC NCI-H460, H1229 

Adenocarcinoma AC A549, SK-LU-1 

Squamous Cell Carcinoma SCC DLRP, SKMES-1 

Table 3.3-1:- Lung cancer cell lines used to examine the expression of protein targets. 

 

HDGF expression appears to be strongest in the SCLC and AC cell lines, while lower 

expression levels were observed in the remaining subtypes (Figure 3.3-1), SLIT2 (Figure 

3.3-2) and ALCAM (Figure 3.3-3) expression appears to be strongest in NCI-H69 

(SCLC) and lower expression levels were observed in the remaining subtypes. SCC cell 

lines were not available at the time of carrying out western blot analysis of HDGF, SLIT2, 

ALCAM and INA, but their expression should be examined in this lung cancer subtype. 

Expression of INA in the whole cell preparations displayed strongest expression in all 

SCLC cell lines, in one LCLC (H1229) and in one SCC (SKMES-1), while low to an 

absence of expression was observed in AC and in the remaining cell lines. Analysis of 

the panel for membrane expression appears to associate INA to SCLC cell lines since no 
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detectable levels of INA was observed in LCLC and AC cell lines (Figure 3.3-4). 

Expression of SPR in whole cell preparations and membrane preparations appears to be 

strongest in DMS-53 (SCLC), A549 (AC) and DLRP and SKMES-1 (SCC) cell lines, 

strong expression was also observed in LCLC and AC cell lines, while low level 

expression was observed in two SCLC cell lines (Figure 3.3-5). Western blot analysis of 

the markers in cell lines representing various lung cancer subtypes appears to show strong 

expression in the SCLC subtype. The expression of these markers in DLKP could suggest 

a potential SCLC component in DLKP, which was originally proposed by McBride, 1995  

[93]. To confirm this suggestion, further analysis should be carried out using these 

markers. 
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Figure 3.3-1:- Western blot analysis of HDGF expression in lung cancer cell lines. 
Representative immunoblot showing expression of HDGF in; (i) SCLC: NCI-H69, NCI-H82 and 

DMS-53, (ii) LCLC: NCI-H460 and H1229 and (iii) AC: A549 and SK-LU-1. Membrane 

enriched samples were separated by SDS-PAGE and probed with an antibody specific to HDGF. 

SCLC cell lines appear to show the strongest expression of HDGF (n=1). 
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Figure 3.3-2:- Western blot analysis of SLIT2 expression in lung cancer cell lines. 
Representative immunoblot showing expression of SLIT2 in; (i) SCLC: NCI-H69, NCI-H82 and 

DMS-53, (ii) LCLC: NCI-H460 and H1229 and (iii) AC: A549 and SK-LU-1. Membrane 

enriched samples were separated by SDS-PAGE and probed with an antibody specific to SLIT2. 

NCI-H82 appears to show the strongest expression of SLIT2 (DLKPM served as a positive 

control) (n=1). 
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Figure 3.3-3:- Western blot analysis of ALCAM in lung cancer cell lines 
Representative immunoblot showing expression of ALCAM in; (i) SCLC: NCI-H69, NCI-H82 

and DMS-53, (ii) LCLC: NCI-H460 and H1229 and (iii) AC: A549 and SK-LU-1. Membrane 

enriched samples were separated by SDS-PAGE and probed with an antibody specific of 

ALCAM. NCI-H69 appears to show the strongest expression of ALCAM. (n=1). 

 

 

 

 

 

 

 

 

 

 

 

 

ALCAM 
105kDa 

SCLC LCLC AC 



 

93 

 

 

 

 

 

 

 

A.   

 

 

 

 

 

    
 

B.  

 

 

 

 

 

    
 

Figure 3.3-4:- Western blot analysis of INA in lung cancer cell lines. 
Representative immunoblot showing expression of INA in; (i) SCLC: NCI-H69, NCI-H82 and 

DMS-53, (ii) LCLC: NCI-H460 and H1229, (iii) AC: A549 and SK-LU-1 and (iv) SCC: DLRP 

and SKMES-1. Expression of INA was examined in; (a) whole cell lysates (α-tubulin served as 

loading control) and (b) membrane enriched samples were separated by SDS-PAGE and probed 

with an antibody specific to INA. NCI-H69 and NCI-H82 appear to show the strongest expression 

of INA (n=1). 
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Figure 3.3-5:- Western blot analysis of SPR in lung cancer cell lines. 
Representative immunoblot showing expression of SPR in, (i) SCLC: NCI-H69, NCI-H82 and 

DMS-53, (ii) LCLC: NCI-H460 and H1229, (iii) AC: A549 and SK-LU-1 and (iv) SCC: DLRP 

and SKMES-1. Expression of SPR was examined in; (a) whole cell lysates (α-tubulin served as 

loading control), (b) membrane enriched fractions samples were separated by SDS-PAGE and 

probed with an antibody specific to SPR (n=1). 
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3.3.2 Expression of validated proteins in a representative panel of TNBC 

cell lines 

Preliminary investigations were carried out to examine the expression of HDGF, INA and 

SPR in a representative panel of triple negative breast cancer (TNBC) cell lines. Survival 

analysis using the BreastMark algorithm did not find the expression of SLIT2 and 

ALCAM to be statistically significant in patients with breast cancer and were therefore 

excluded from this analysis. The full panel of cell lines including their subtypes are shown 

in Table 3.3-2 below: 

Molecular subtype Abbreviation Cell lines 

Basal-like-1 BL-1 HCC-1143, MDA-MB-468. 

Basal-like-2 BL-2 HCC1937, CAL-851, HDQP-1. 

Mesenchymal M CAL-51 

Mesenchymal-like MSL Hs-578-T, MDA-MB-231, MDA-MB-157. 

Table 3.3-2:- TNBC cell lines used to examine the expression of protein targets. 

Whole cell lysates were used to examine the expression of HDGF, INA and SPR in this 

cell line panel. Western blot analysis revealed strong expression of HDGF across the 

TNBC subtypes (Figure 3.3-6). INA appeared to show strongest expression in HCC-1937 

and HCC-1143 (BL-1), with strong expression was also observed in HDQP-1 (M) and 

MDA-MB-157 (MSL) cell lines. Low level to an absence of expression was observed in 

the remaining cell lines on the panel (Figure 3.3-7). Expression of SPR appeared to be 

strongest in MDA-MB-468 (BL-1), CAL-51 (M) and MDA-MB-231 and MDA-MB-157 

(MSL) cell lines, while lower expression levels were observed in BL-2 (CAL-851 and 

HDQP-1) and in the remaining cell lines on the panel (Figure 3.3-8). There are clear 

differences in the expression of these targets across the panel of TNBC cell lines, but SPR 

and INA appear to be strongly expressed in BL-1 breast cancer.  
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Figure 3.3-6:- Western blot analysis of HDGF in TNBC cell lines. 

Representative immunoblot showing expression of HDGF in; (i) BL-1: HCC1937, HCC-1143 

and MDA-MD-468, (ii) BL-2: CAL-851 and HDQP-1, (iii) M: CAL-51 and (iv) MSL: Hs-578-

T, MDA-MB-231 and MDA-MB-157. Samples were separated by SDS-PAGE and probed with 

an antibody specific to HDGF. Strong expression is observed across TNBC (α-tubulin served as 

loading control (n=1)). 
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Figure 3.3-7:- Western blot analysis of INA in TNBC cell lines. 
Representative immunoblot showing expression of INA in; (i) BL-1: HCC1937, HCC-1143 and 

MDA-MD-468, (ii) BL-2: CAL-851 and HDQP-1, (iii) M: CAL-51 and (iv) MSL: Hs-578-T, 

MDA-MB-231 and MDA-MB-157. Samples were separated by SDS-PAGE and probed with an 

antibody specific to INA. Expression of INA appears to be strongest in the BL-1 subtype. (α-

tubulin served as loading control) n=1. 
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Figure 3.3-8:- Western blot analysis of SPR in TNBC cell lines. 
Representative immunoblot showing expression of SPR in; (i) BL-1: HCC1937, HCC-1143 and 

MDA-MD-468, (ii) BL-2: CAL-851 and HDQP-1, (iii) M: CAL-51 and (iv) MSL: Hs-578-T, 

MDA-MB-231 and MDA-MB-157. Samples were separated by SDS-PAGE and probed with an 

antibody specific to SPR. SPR expression is observed across TNBC cell lines (α-tubulin served 

as loading control (n=1)). 
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3.3.3 Expression of validated proteins in a representative panel of 

pancreatic cancer cell lines 

Preliminary investigations were carried out to examine the expression of HDGF, 

ALCAM, INA and SPR in a representative panel of pancreatic cancer cell lines. SLIT2 

was not included in this analysis. INA was included in this analysis, however, extremely 

low level of expression to the absence of expression was observed (data not shown). The 

panel of cell lines was BxPc-3, HPAC, Panc-1, MiaPaca2, MiaPaca2 clone3, AsPc-1 and 

Capan-1 (all cell lines are pancreatic ductal adenocarcinoma).  

Western blot analysis was used to examine the expression of HDGF, ALCAM and SPR 

in (a) Whole cell lysates and/or (b) membrane-enriched fractions of the cell lines. HDGF 

showed strong expression across all pancreatic cancer cell lines, with Panc-1 showing 

lowest expression levels. Strong expression of HDGF was also observed in whole cell 

lysates obtained from explanted human pancreatic cancer tumour cells. An increased 

membrane expression of HDGF was observed in MiaPaca2 clone3 (invasive clone of 

MiaPaca2) compared to its parental cell line. Figure 3.3-9 shows expression of HDGF in 

(a) Whole cell lysates (b) membrane enriched fractions and (c) cells recovered via explant 

culture from two human pancreatic cancer tumours (explant culture was performed by 

Dr. Fiona O’Neill and Dr. Sandra Roche, whole cell and membrane samples were 

prepared by Edel McAuley). 

ALCAM appeared to show strong expression in BxPc-3, with low level to no expression 

observed in the remaining cell lines on the panel (Figure 3.3-10). Strong expression of 

SPR was observed in whole cell lysates across the panel of pancreatic cancer cell lines, 

with exception of BxPc-3 showing weakest SPR expression. Expression in membrane 

enriched preparations appear to be much lower, with AsPc-1 displaying strongest 

expression (Figure 3.3-11). Both whole cell lysate and membrane samples appear to show 

increased expression in the invasive MiaPaca2 clone3 cell line compared to its parental. 
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Figure 3.3-9:- Western blot analysis of HDGF in pancreatic cancer cell lines. 
Representative immunoblot showing expression of HDGF in; (a) whole cell Lysates of BxPc-3, 

HPAC, Panc-1, MiaPaca2, MiaPaca2 clone3, AsPc-1 and Capan-1 (α-tubulin served as loading 

control).  (b) membrane enriched fractions of BxPc-3, AsPc-1, Panc-1, MiaPaca2 and MiaPaca2 

clone2 and (c) membrane samples and whole cell lysates from explanted human patient tumour 

cells. Samples separated by SDS-PAGE and probed with an antibody specific to HDGF (n=1). 
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Figure 3.3-10:- Western blot analysis of ALCAM in pancreatic cancer cell lines. 
Representative immunoblot showing expression of ALCAM in membrane enriched samples of 

BxPc-3, AsPc-1, Panc-1, MiaPaCa2 and MiaPaCa2 clone3 invasive. Samples were separated by 

SDS-PAGE and probed with an antibody specific to ALCAM. Expression of ALCAM appears 

strongest in the membrane fractions of BxPc-3 (n=1). 
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Figure 3.3-11:- Western blot analysis of SPR in pancreatic cancer cell lines. 
Representative immunoblot showing expression of SPR in; BxPc-3, HPAC, Panc-1, MiaPaCa2, 

MiaPaCa2 clone3, and clone3 (B), AsPc-1 and Capan-1. SPR expression was examined in (a) 

whole cell lysates and (b) membrane enriched fractions, samples were separated by SDS-PAGE 

and probed with an antibody specific to SPR (n=1). 
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3.3.4 Expression of validated proteins in colon, glioma neuroblastoma and 

melanoma cell lines 

Preliminary investigations were carried out to examine expression HDGF, ALCAM, INA 

and SPR in representative cell lines from colon, glioma, neuroblastoma and melanoma 

tumour types. The cell lines used are presented in Table 3.3-3 below.  

Tumour type Cell line 

SW480 Primary colon 

SW620 Metastatic colon 

SNB-19 Glioma 

SK-N-SH Neuroblastoma 

LOX IVMI Melanoma 

Table 3.3-3:- Colon, glioma, neuroblastoma and melanoma cell lines used for Western blot 

analysis. 

Western blot analysis was used to examine the expression of HDGF, ALCAM, INA and 

SPR in whole cell lysates and/or membrane enriched fractions of the cell lines. Strong 

expression of HDGF was observed in the metastatic colon cancer cell line (SW620) 

versus the isogenic primary cell line (SW480) from the same patient, strong expression 

was also observed in glioma and melanoma cell lines (Figure 3.3-12). ALCAM 

expression was increased in glioma and melanoma, while expression of ALCAM 

appeared to be undetectable in both colon cancer cell lines (Figure 3.3-13).  

Increased expression of INA was also observed in membrane enriched fractions of 

neuroblastoma compared to glioma (Figure 3.3-14), while whole cell lysates indicate 

increased expression of SPR in glioma compared to neuroblastoma (Figure 3.3-15).  
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Figure 3.3-12:- Western blot analysis of HDGF in colon, glioma and melanoma cell lines. 
Representative immunoblot showing expression of HDGF in; colon (SW480 and SW620), glioma 

(SNB-19) and melanoma (Lox) cell lines. HDGF expression appears to be increased in the 

metastatic colon cell line (SW620) compared the primary colon (SW480), samples were separated 

by SDS-PAGE and probed with an antibody specific to HDGF (n=1). 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.3-13:- Western blot analysis of ALCAM in colon, glioma and melanoma cell lines. 
Representative immunoblot showing expression of ALCAM in; colon (SW480 and SW620), 

glioma (SNB-19) and melanoma (Lox) cell lines. Low expression of ALCAM was observed in 

glioma and melanoma cell lines, samples were separated by SDS-PAGE and probed with an 

antibody specific to ALCAM (n=1). 
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Figure 3.3-14:- Western blot analysis of INA in neuroblastoma and glioma cell lines. 
Representative immunoblot showing expression of INA in neuroblastoma (SK-N-SH) and glioma 

(SNB-19). Increased expression of INA is observed in the neuroblastoma cell line vs. glioma, 

samples were separated by SDS-PAGE and probed with an antibody specific to INA. Increased 

expression of INA is observed in SK-N-SH (n=1).  
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Figure 3.3-15:- Western blot analysis of SPR in neuroblastoma and glioma cell lines. 
Representative immunoblot showing expression of SPR in neuroblastoma (SK-N-SH) and glioma 

(SNB-19). SPR expression was examined in; (a) whole cell lysates and (b) membrane enriched 

fractions, samples were separated by SDS-PAGE and probed with an antibody specific to INA. 

Increased expression of SPR was observed in SNB-19 vs. SK-N-SH cell line (n=1). 
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3.3.5 Summary of immunoreactivity in DLKP Cell lines and Human cancer 

cell lines 

 HDGF, SLIT2, ALCAM, INA and SPR were examined for their expression in a 

representative panel of lung cancer cell lines. Expression of all proteins was found 

in all subtypes, the SCLC subtype displayed the strongest expression of each 

protein target. 

 HDGF, INA and SPR were examined for their expression in a representative panel 

of TNBC cell lines. Expression of these protein targets was found in all of the cell 

lines used in this panel. However, INA appeared to show strong expression in a 

small number of the TNBC cell lines used, but absent in the remaining cell lines 

on the panel.  

 Strong expression of HDGF and SPR was observed in a representative panel of 

pancreatic cancer cell lines. HDGF expression was decreased in the invasive 

MiaPaCa2 clone 3 vs. MiaPaCa2 parent, but also in the metastatic colon cell line 

(SW480) compared to the primary (SW620). SPR expression was increased in 

MiaPaCa2 clone3 vs. MiaPaCa2 parent but was highest in the AsPc-1 (a cell line 

established from an ascites). Both proteins should be investigated further as 

having a potential association with cancer invasion. 
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3.4 Functional analysis of target proteins by siRNA knockdown 

Differentially expressed protein targets were chosen based on comparative proteomic 

analysis of DLKP, DLKPSQ, DLKPI and DLKPM cell lines. Conditions were optimised 

in 6-well plates (see section 2.7.1) using a positive control (Kinesin (Ambion) or Cell 

Death (Qiagen) and a negative control (scrambled-2 siRNA (Ambion) or negative control 

siRNA (Qiagen)). Un-transfected cells (Control) and NeoFX or lipofectamine (Lipo) 

were also included in all sets of transfections as further controls.  

 

Three protein targets were chosen to investigate their functional roles in DLKP; (i) 

Activated leukocyte cell adhesion molecule (ALCAM), (ii) α-Internexin (INA) and (ii) 

Sepiapterin Reductase (SPR) and were all shown to be expressed in DLKP and its clones 

(see section 3.2).  These three proteins were considered for follow up functional studies 

based on their expression profile in the DLKP cell line model and whether they could be 

used as potential markers for any of the clones. Other considerations included the 

availability of commercially produced siRNAs (ALCAM (AmbionInc, 4392420), INA 

(Qiagen, GC9118) and SPR (Qiagen, GS6697), a suitable antibody for evaluation by 

Western blot analysis and on their novelty. 

 

Seventy-two hours post transfection:  

 Western blot analysis (see section 2.3) was performed to confirm knockdown of 

each protein, whole cell lysates were prepared and separated by SDS-PAGE and 

analysed using specific antibodies targeted at each protein. 

 Acid-phosphatase assays (see section 2.5) were carried out on transfected cells to 

assess the impact of a specific protein knockdown on growth. 

 Invasion assays (see section 2.4.1) were carried out on transfected cells to 

investigate if the proteins play a functional role in invasion. 

 Migration assays (see section 2.4.2) were carried out on transfected cells to 

investigate if the proteins play a functional role in migration. 
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3.4.1 Investigation into the role of ALCAM in lung cancer 

The comparative proteomic analysis identified ALCAM to be differentially expressed 

between DLKPSQ, DLKPI and DLKPM, highest ALCAM expression was observed in 

DLKPI. The analysis showed that ALCAM was increased by ~30-fold when compared 

to DLKP, DLKPSQ and DLKPM. Expression of ALCAM was confirmed by 

Immunofluorescence, Western blot analysis and Immunocytochemistry in section 3.2.4. 

Three cell lines were chosen to investigate a functional role for ALCAM in lung cancer 

(i) DLKPSQ-Mitox-BCRP-6P, (ii) DLKPM and (iii) DLKPI.  

3.4.1.1 Effect of siRNA knockdown of ALCAM on DLKPSQ-Mitox-BCRP-6P 

DLKPSQ-Mitox-BCRP-6P is an invasive drug resistant variant of DLKPSQ. DLKPSQ-

Mitox-BCRP-6P was chosen for ALCAM knockdown studies because this cell line was 

previously shown to exhibit an increased invasive capacity and increased expression of 

ALCAM compared to the parental DLKPSQ cell line [96]. Figure 3.4-1 (a) shows by 

Western blot analysis, the efficient knockdown of ALCAM in one of two siRNAs used 

to transfect DLKPSQ-Mitox-BCRP-6P cells compared to negative control and un-

transfected cells.  

 

Seventy-two hours post-transfection with ALCAM siRNAs, invasion assays were 

performed. The total number of cells invading was increased in DLKPSQ-Mitox-BCRP-

6P cells transfected with ALCAM siRNAs. Figure 3.4-2 (a) shows representative images 

of invading cells and (b) the total number of invading cells post siRNA transfection.  

ALCAM siRNA transfection increased the invasion capabilities of the cells. Invasion was 

increased by 55% (p=0.0563) with ALCAM-1 and a significant increase 111% 

(p=0.0040) for ALCAM-2, when compared to negative control. This significant increase 

in the invasive ability was a surprising result as a reduction was expected following 

ALCAM knockdown. 
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(a) 

 

 

 

(b) 

 

Figure 3.4-1:- ALCAM knockdown reduced cell growth of DLKPSQ-mitox-BCRP-6P. 

(a) Representative immunoblot showing efficient knockdown of ALCAM 72hrs post-transfection 

in DLKPSQ-Mitox-BCRP-6P cells transfected with two independent siRNAs targeting ALCAM 

relative to negative control siRNA transfected cells (GAPDH served as a loading control). (b) 

Proliferation assays on siRNA transfected DLKPSQ-mitox-BCRP-6P cells targeting ALCAM. 

Results graphed as % cell survival relative to negative control siRNA in a single experiment 

(n=1).  
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(a) 

  

  

 (b) 

 

 

Figure 3.4-2:- ALCAM increases the invasive capacity of DLKPSQ-mitox-BCRP-6P. 

(a) Invasion assays of DLKPSQ-Mitox-BCRP-6P cells (i) Untreated control (ii) Negative control 

(iii) ALCAM-1 siRNA and (iv) ALCAM-2 siRNA (Magnification, x100; scale bar = 500µm) (b) 

Histogram showing an increase in the total number of invading DLKPSQ-mitox-BCRP-6P cells 

post siRNA transfection targeting ALCAM. Data plotted represents the mean ± standard deviation 

of duplicate trans-well inserts from triplicate biological assays. Statistics **p≤0.01 and compared 

with negative control siRNA. Student’s t test (two-tailed with equal variance, unpaired (n=3)). 
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3.4.1.2 Effect of siRNA knockdown of ALCAM on DLKPM 

Western blot analysis (Figure 3.4-3 (a)) shows the efficient knockdown of ALCAM in 

DLKPM cells transfected with two siRNAs, compared to negative control and un-

transfected cells. Proliferation assays (Figure 3.4-3 (b)) showed a slight reduction in 

growth in ALCAM-1 siRNA (p= 0.023) and no effect using ALCAM-2. The effect seen 

on growth using ALCAM-1 could be as a result of an off target effect. 

 

Seventy-two hours post-transfection with ALCAM siRNAs; Western blot analysis and 

invasion assays were performed. The total number of cells invading was reduced in 

DLKPM cells transfected with ALCAM siRNAs. Figure 3.4-4 (a) shows representative 

images of invading cells and (b) shows the total number of invading cells following 

siRNA knockdown. ALCAM siRNA transfection reduced the invasion capabilities of the 

cells. Invasion was significantly decreased using ALCAM-1 (p=0.05) by 19% and 51% 

(p=0.004) for ALCAM-2, when compared to negative control. 
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(a)  

 

(b)   

 

 

Figure 3.4-3:- ALCAM knockdown shows no effect on cell growth of DLKPM. 

(a) Representative immunoblot showing knockdown of ALCAM 72hrs post-transfection in 

DLKPM cells transfected with two independent siRNAs targeting ALCAM relative to negative 

control siRNA transfected cells (GAPDH served as a loading control). (b) Proliferation assays 

showing the effect of ALCAM on DLKPM cells targeting ALCAM. Results graphed as % cell 

survival relative to negative control siRNA. Data plotted represents the mean ± standard deviation 

of from triplicate biological assays. Statistics *p≤0.05 compared with negative control siRNA. 

Student’s t test (two-tailed with equal variance, unpaired (n=3)). 
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(a)  

  

  

(b)  

 

 

Figure 3.4-4:- ALCAM decreases the invasive capacity of DLKPM cells. 

(a) Invasion assays of DLKPM cells (i) Untreated control (ii) Negative control (iii) ALCAM-1 

siRNA and (iv) ALCAM-2 siRNA, (Magnification, x100; scale bar = 500µm). (b) Histogram 

showing a reduction in the total number of invading DLKPM cells following transfection 

targeting ALCAM. Data plotted represent the mean ± standard deviation of duplicate transwell 

inserts from triplicate biological assays. Statistics *p≤0.05 and **p≤0.01 compared with negative 

control siRNA. Student’s t test (two-tailed with equal variance, unpaired (n=3)). 
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3.4.1.3 Effect of siRNA knockdown of ALCAM on DLKPI 

Western blot analysis (Figure 3.4-5 (a)) shows a partial knockdown of ALCAM in DLKPI 

cells transfected with two siRNAs, compared to negative control and un-transfected cells. 

The partial knockdown achieved as a result of transfection of ALCAM in DLKPI may be 

due to the extremely high levels of ALCAM these cells. Proliferation assays (Figure 

3.4-5(b)) shows a slight decrease in growth for DLKPI cells. 

 

Seventy-two hours post-transfection with ALCAM siRNAs, invasion assays were 

performed. The total number of cells invading was increased slightly in DLKPI cells 

transfected with both ALCAM siRNAs. Figure 3.4-6 (a) shows representative images of 

invading cells and (b) shows the total number of invading cells following siRNA 

knockdown. No significant increase was observed for ALCAM transfected DLKPI cells 

using ALCAM-1 (p=0.079) and ALCAM-2 (p=0.057) siRNAs. 
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Figure 3.4-5:- ALCAM knockdown shows no effect of cell growth of DLKPI cells. 

(a) Representative immunoblot showing a partial knockdown of ALCAM at 72hrs post-

transfection in DLKPI cells transfected with two independent siRNAs targeting ALCAM 

(GAPDH served as a loading control). (b) Proliferation assays on siRNA transfected DLKPI cells 

indicate a slight reduction in monolayer cell growth. Results graphed as % cell survival relative 

to negative control siRNA in one experiment (n=1). 
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(a)  

  

  

(b)  

 

Figure 3.4-6:- ALCAM increases the invasive capacity of DLKPI cells. 

(a) Invasion assays of DLKPI cells (i) Untreated control (ii) Negative control (iii) ALCAM-1 

siRNA and (iv) ALCAM-2 siRNA, (Magnification, x100; scale bar = 500µm). (b) Histogram 

showing a slight increase in the total number of invading DLKPI cells following transfection. 

Data plotted represent the mean ± standard deviation of duplicate trans-well inserts from triplicate 

biological assays. Statistics *p≤0.05, **p≤0.01 and ***p≤0.005 compared with negative control 

siRNA. Student’s t test (two-tailed with equal variance, unpaired (n=3)). 
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3.4.2 Investigation into the role of INA in lung cancer 

As previously mentioned, DLKP was proposed to be classified as a variant small cell lung 

carcinoma (SCLC-V) or a non-small cell lung carcinoma with neuroendocrine 

differentiation (NSCLC-NE) [93]. Recently, α-Internexin (INA) was reported to have a 

novel association with pancreatic neuroendocrine tumour aggressiveness and prognosis. 

Unpublished work performed in our laboratory indicated expression of INA was 

increased in the lowly invasive DLKPSQ (~2.3-fold) compared to highly invasive 

DLKPM. INA expression was not previously reported in lung cancer but a novel 

association with pancreatic neuroendocrine cancer (PNETs) was previously reported 

[104]. INA was selected for follow up functional investigations into its role in the invasion 

process of DLKPSQ and DLKPM. 

3.4.2.1 Effect of siRNA knockdown of INA on DLKPSQ 

Figure 3.4-7 (a) shows by Western blot analysis, the efficient knockdown of INA in two 

siRNA transfected DLKPSQ cells compared to negative control and un-transfected cell. 

Negligible effect on growth was observed for DLKPSQ cells (Figure 3.4-7 (b)). 

 

Seventy-two hours post-transfection with INA siRNAs, invasion and migration assays 

were performed. There was no change in the total number of invading and migrating 

DLKPSQ cells transfected with INA siRNAs. Figure 3.4-8 (a) shows representative 

images of invading cells and Figure 3.4-9 (a) shows representative images of migrating 

cells. Knockdown of INA using two siRNAs, INA-6 and INA-8, did not affect the 

invasive or migratory capacities of DLKPSQ cells when compared to negative control 

(Figure Figure 3.4-8 (b) and Figure 3.4-9 (b)). DLKPSQ is a lowly invasive cell line,  
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(a) 

 

(b) 

 

Figure 3.4-7:- INA knockdown does not affect cell growth of DLKPSQ. 
(a) Representative immunoblot showing efficient knockdown of INA 72hrs post-transfection in 

DLKPSQ cells transfected with two independent siRNAs targeting INA relative to negative 

control siRNA transfected cells (GAPDH served as a loading control). (b) Proliferation assays on 

siRNA transfected DLKPSQ cells transfected targeting INA. Results graphed as % cell survival 

relative to negative control. Data plotted represents the mean ± standard deviation of duplicate 

biological assays (n=2). 
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(a)   (b)  

  

 

  

 

Figure 3.4-8:- INA knockdown does not affect invasion of DLKPSQ. 

(a) Invasion assays of DLKPSQ cells (i) Untreated control, (ii) Negative control siRNA, (iii) 

INA-6 siRNA and (iv) INA-8 siRNA. (Magnification, x100; scale bar = 500µm). (b) Histogram 

showing the total number of invading DLKPSQ cells following transfection with siRNAs 

targeting INA. Data plotted represents the mean between two inserts from one single experiment 

(n=1). 

 

(a)   (b)  

  

 

  

 

Figure 3.4-9:- INA knockdown does not affect migration of DLKPSQ. 

(a) Migration assays of DLKPSQ cells (i) Untreated control, (ii) Negative control siRNA, (iii) 

INA-6 siRNA and (iv) INA-8 siRNA. (Magnification, x100; scale bar = 500µm). (b) Histogram 

showing the total number of migrating DLKPSQ cells following transfection with siRNAs 

targeting INA. Data plotted represents the mean between two inserts from one single experiment 

(n=1). 
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3.4.2.2 Effect of siRNA knockdown of INA on DLKPM 

INA expression was shown to be expressed in DLKPM cells compared to DLKP and 

DLKPI. Its expression in DLKPM was marginally lower than DLKPSQ. Seventy-two 

hours’ post-transfection with INA siRNAs, invasion and migration assays were 

performed using four siRNAs targeting INA. 

 

The efficient knockdown of INA is shown in Figure 3.4-10, by Western blot analysis, 

with negligible effect on growth was observed for DLKPM cells (Figure 3.4-10). The 

morphology of DLKPM cells was also monitored and is shown in Figure 3.4-11, under 

control conditions (i) un-transfected, (ii) lipofectamine control and post transfection with 

four independent siRNAs targeting INA; (iii) INA-6, (iv) INA-7, (v) INA-8 and (vi) INA-

9. The morphology of the cells after transfection using two siRNAs is obviously different. 

The cells are more elongated using INA-7 (iv), while using INA-9 (vi) the cells are 

notably shorter, in both cases cells were growing in a more isolated pattern, compared to 

the control (ii). 

 

Invasion and migration assays were performed on INA transfected cells. Figure 3.4-12 

(b) shows significantly reduced invasion capability of DLKPM cells following 

transfection with INA-7 (p=0.0021) and INA-9 (p=0.0015) siRNAs. A reduction in 

invasion was noted with INA-6 but did not show statistical significance (p=0.0662), while 

an increase was observed using INA-8 (p=0.07286). Figure 3.4-13 shows reduced 

migratory ability of DLKPM cells following transfection with INA-6 (n=3), INA7 (n=2), 

INA8 (n=3) and INA9 (n=2) siRNAs, however, the reduction did not prove significant. 

To investigate if reduction observed with INA7 and INA 9 was significant further 

biological replicates would need to be carried out. 
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(a)  

 

 (b) 

 

Figure 3.4-10:- INA knockdown has does not affect cell growth of DLKPM. 

(a) Representative immunoblot showing efficient knockdown of INA in DLKPM 72hrs post-

transfection with two independent siRNAs targeting INA (GAPDH served as a loading control). 

(b) Proliferation assays on siRNA transfected DLKPM cells targeting INA. Results graphed as % 

cell survival relative to negative control. Data plotted represents the mean ± standard deviation of 

duplicate biological assays (n=2). 
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Figure 3.4-11:- Morphology of DLKPM cells following siRNA knockdown of INA. 
(i) Untreated control, (ii) Negative control siRNA, (iii) INA-6 siRNA (iv) INA-7 siRNA (v) INA-

8 siRNA and (vi) INA-9 siRNA, compared to negative control. (Magnification, x100; scale bar 

= 500µm). 
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(a) 

  

  

  

 (b) 

 

Figure 3.4-12:- INA knockdown decreases the invasive capacity of DLKPM cells. 
(a) Invasion assays of DLKPM cells (i) Untreated control, (ii) Negative control siRNA, (iii) INA-

6 siRNA (iv) INA-7 siRNA (v) INA-8 siRNA and (vi) INA-9 siRNA. (Magnification, x100; scale 

bar = 500µm). (b) Histogram showing a reduction in the total number of invading DLKPM cells 

following transfection with INA-6, INA-7 siRNA and INA-9 siRNAs, while an increase for INA-

9. Data plotted represent the mean ± standard deviation of duplicate transwell inserts from 

triplicate biological assays. Statistics **p≤0.01 and ***p≤0.005 compared with negative control 

siRNA. Student’s t test (two-tailed with equal variance, unpaired, n=3). 
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 (a) 

  

  

  

 (b) 

 
 

Figure 3.4-13:- INA knockdown decreases the migratory capacity of DLKPM. 
(a) Migration assays of DLKPM cells (i) Untreated control, (ii) Negative control siRNA, (iii) 

INA-6 siRNA (iv) INA-7 siRNA (v) INA-8 siRNA and (vi) INA-9 siRNA. (Magnification, x100; 

scale bar = 500µm). (b) Histogram showing a reduction in the total number of migrating DLKPM 

cells following transfection with INA-6 siRNA, INA-7 and INA-9, an increase for INA-8 siRNA. 

Data plotted represent the mean ± standard deviation of duplicate transwell inserts from triplicate 

biological assays. Statistics *p≤0.05 compared with negative control siRNA. Student’s t test (two-

tailed with equal variance, unpaired, n=3).  
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3.4.3 Investigation into the role of SPR in DLKP clones 

 

The comparative proteomic analysis identified sepiapterin reductase (SPR) to be 

differentially expressed in DLKPSQ compared to DLKPI. The analysis showed that 

expression of SPR was 4-fold highest in DLKPSQ compared to DLKPI (section 3.2.7). 

To date, there are no reports associating SPR and cancer invasion, so SPR was 

investigated further for potential functional roles in the invasion and migration processes 

of DLKPSQ and DLKPM. 

3.4.3.1 Effect of siRNA knockdown of SPR in DLKPSQ 

The efficient knockdown of SPR in two siRNA transfected DLKPSQ cells is shown in 

Figure 3.4-14, by Western blot analysis. A negligible effect was observed for cell growth 

compared to negative control and un-transfected cells. Seventy-two post-transfection with 

SPR siRNAs, invasion and migration assays were performed. There was a reduction in 

the total number of cells invading and migrating DLKPSQ cells transfected with SPR-6 

siRNAs. Figure 3.4-15 (a) shows representative images of invading cells and Figure 

3.4-16 (a) shows representative images of migrating cells. Knockdown of SPR using two 

siRNAs shows a reduction of invasion (Figure 3.4-15 (b) and migration (Figure 3.4-16 

(b) using SPR-6 siRNA but not SPR-1, compared to the negative control siRNA. 

DLKPSQ is a lowly invasive cell line and it was unclear if this result represented an off 

target effect, it was decided to continue transfections in DLKPM cells. 
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(a)  

 
 

 

(b)   

 
 

Figure 3.4-14:- SPR knockdown shows does not affect cell growth of DLKPSQ. 
(a) Representative immunoblot showing efficient knowdown of SPR 72 hrs post-transfection in 

DLKPSQ cells transfected with two independent siRNAs targeting SPR, relative to negative 

control siRNA transfected cells (GAPDH served as a loading control). (b) Proliferation assays on 

siRNA transfected DLKPSQ cells targeting SPR. Results graphed as % cell survival relative to 

negative control in two independent biological experiments (n=2). 
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(a)  

  

  

(b)  

 

 

Figure 3.4-15:- SPR-6 siRNA potentially reduces the invasive capacity of DLKPSQ. 

(a) Invasion assays of DLKPSQ cells (i) Untreated control, (ii) Negative control siRNA, (iii) 

SPR-1 siRNA, and (iv) SPR-6 siRNA (magnification, x100; scale bar = 500µm). (b)  Histogram 

showing a reduction in the total number of invading DLKPSQ cells following transfection with 

SPR-6 siRNA. Data plotted represents the mean of duplicate trans-well inserts from two 

biological experiments (n=2).  

 

 

(a)  

  

  

(b)  

 

 

Figure 3.4-16:- SPR-6 siRNA potentially reduces the migratory capacity of DLKPSQ. 
(a) Migration assays of DLKPSQ cells (i) Untreated control, (ii) Negative control siRNA, (iii) 

SPR-1 siRNA, and (iv) SPR-6 siRNA (magnification, x100; scale bar = 500µm). (b)  Histogram 

showing a reduction in the total number of migrating DLKPSQ cells following transfection with 

SPR-6 siRNA. Data plotted represents the mean of duplicate trans-well inserts from two 

biological experiments (n=2).  
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3.4.3.2 Effect of siRNA knockdown of SPR in DLKPM 

The efficient knockdown of SPR in DLKPM is shown in Figure 3.4-17 by Western blot 

analysis using four independent siRNAs (SPR-1, SPR-2, SPR-5 and SPR-6). The effect 

on proliferation (b) using SPR-1, SPR-2, SPR-5 was negligible, however, a significant 

effect on proliferation was observed using SPR-6 (p=0.0158) when compared to negative 

control. 

Seventy-two hours post-transfection with SPR siRNAs, invasion and migration assays 

were performed. SPR siRNA transfection reduced invasive and migratory abilities of 

DLKPM cells. Figure 3.4-18, shows (a) representative images of invading cells and (b) 

shows highlights the total number of invading cells. Invasion was significantly reduced 

by 71% with SPR-1 (p=0.0031) and 81% with SPR-6 (p=0.0014) siRNAs. Figure 3.4-19 

shows (a) representative images of migrating cells and (b) shows highlights the total 

number of migrating cells. Migration was reduced by 78% with SPR-1 (p=0.0054) and 

80% with SPR-6 (p=0.0048) siRNAs when compared to the negative control siRNA. 

Huge variability was observed using SPR-2 and SPR-5 siRNAs. 
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(a)  

 

 

(b)  

 

Figure 3.4-17:- SPR-6 siRNA reduces cell growth of DLKPM. 

(a) Representative Immunoblot showing efficient knockdown of SPR 72hrs post-transfection in 

DLKPM cells transfected with four independent siRNAs targeting SPR relative to negative 

control siRNA transfected cells (α-Tubulin served as a loading control). (b) Proliferation assays 

carried out on siRNA transfected DLKPM cells indicates a significant reduction in cell growth 

with SPR-6 siRNA (p-value 0.015859). Results graphed as % cell survival relative to negative 

control. Data plotted represents the mean +/- standard deviation of triplicate biological assays. 

Statistics *p≤0.05 compared with negative control siRNA. Student’s t test (two tailed with equal 

variance, unpaired, n=3).  
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(a)  

  

  

  

(b)   
 

 

Figure 3.4-18:- SPR knockdown decreases the invasive capacity of DLKPM. 
(a) Invasion assays of DLKPM cells (i) Untreated, (ii) Negative control siRNA, (iii) SPR-1 

siRNA, (iv) SPR-2 siRNA, (v) SPR-5 siRNA and (vi) SPR-6 siRNA (magnification, x100; scale 

bar = 500µm). (b) Histogram showing a reduction in the total number of invading DLKPM cells 

following transfection with SPR-1 and SPR-6 siRNAs. Data plotted represents the mean ± 

standard deviation of duplicate trans-well inserts from triplicate biological assays. Statistics 

**p≤0.01 and *** p≤0.005 compared with negative control siRNA. Student’s t test (two tailed 

with equal variance, unpaired (n=3)). 
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(a)  

  

  

  

(b)  

 
 

Figure 3.4-19:- SPR knockdown decreased the migratory capacity of DLKPM. 
(a) Migration assays of DLKPM cells (i) Untreated, (ii) Negative control siRNA, (iii) SPR-1 

siRNA, (iv) SPR-2 siRNA, (v) SPR-5 siRNA and (vi) SPR-6 siRNA (magnification, x100; scale 

bar = 500µm). (b) Histogram showing a reduction in the total number of migrating DLKPM cells 

following transfection with SPR-1 and SPR-6 siRNAs. Data plotted represents the mean ± 

standard deviation of duplicate trans-well inserts from triplicate biological assays. Statistics 

**p≤0.01 and *** p≤0.005 compared with negative control siRNA. Student’s t test (two tailed 

with equal variance, unpaired (n=3)). 
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3.4.3.3 Investigation into the effect of ornithine decarboxylase on DLKPM 

Polyamines are often elevated in cancer cells and tissues, compared to normal cells and 

tissues. D,L-α-difluoromethylornithine (DFMO) is an irreversible inhibitor of ornithine 

decarboxylase (ODC) which can be used to induce depletion of polyamines. In 2013, 

Lange et al identified SPR as a regulator of ODC enzyme activity and described a model 

in which SPR drives ODC-mediated malignant progression in Neuroblastoma (NB). In 

section 3.4.3, siRNA interference knockdown was used to investigate SPR in lung cancer 

cell lines. SPR was found to play a potential role in the invasion and migration processes 

of DLKPM. To investigate a role for ODC in the invasion process in DLKPM, the DFMO 

inhibitor was used to treat DLKPM cells prior to their addition to invasion assays. Various 

concentrations of DFMO were used to optimise conditions in 6-well plates, final 

concentrations of 2.5mM and 5mM of DFMO were used. Untreated cells were also 

included as controls. 

Prior to testing the effects of the DFMO, the appropriate concentration range for each 

inhibitor was established with the aim of finding a concentration which caused 

approximately 10% cytotoxicity. Proliferation assays were carried out over 5 days to 

assess the impact of the various concentrations (1mM, 2.5mM and 5mM) of the DFMO 

inhibitor on DLKPM cells. In preliminary investigations, a reduction in cell growth of 

47% and 40% was observed for DFMO at concentrations of 1mM and 2.5mM 

respectively, while a negligible effect was observed using 5mM DFMO, compared to 

untreated control cells. Therefore, an optimum concentration of between 2.5mM to 5mM 

of DFMO could be used for further assays (Figure 3.4-20 (a)); for the purpose of this 

investigation 2.5mM and 5mM was used. 

To assess the impact of DFMO on DLKPM, cells were treated with 2.5mM and 5mM 

DFMO 30mins (co-treat) and 24hrs (pre-treat) prior to setting up invasion assays. In a 

preliminary investigation, co-treatment with 2.5mM DFMO resulted in a significant 

reduction of 27% (p=0.0412) in the invasion of DLKPM cells, a reduction was also 

observed following 24hr pre-treatment. A modest reduction in invasion was observed for 

5mM DFMO when compared to untreated control (Figure 3.4-20 (b)). 
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(a)  

 

(b)  

 

 

Figure 3.4-20:- DFMO treatment reduces the invasive capacity of DLKPM. 

(a) Histogram showing proliferation assays carried out on DLKPM cells treated with 1mM, 

2.5mM and 5mM DFMO over 5 days’ (n=2). (b) Histogram showing a reduction in the total 

number of invading DLKPM cells following co-treatment (30mins) and pre-treatment (24hrs). 

Data plotted represents the mean ± standard deviation of duplicate trans-well inserts from 

duplicate biological assays. Statistics *p≤0.05, compared with negative control siRNA (n=3). 

Student’s t test (two tailed with equal variance, unpaired). 
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3.4.3.4 Investigation into the effect of Nω-Nitro-L-arginine on DLKPM 

SPR is an enzyme that converts 6-pyruvoyl-tetrahydropterin to tetrahydrobiopterin (BH4), 

which acts as a co-factor for Nitric-Oxide-Synthase (NOS) in the conversion of Arginine 

to Citrulline. This reaction results in the production of Nitric Oxide (NO). We have shown 

the involvement of SPR-1 and SPR-6 in the invasion and migration processes in DLKPM.  

To investigate the potential role of NO in the invasive and migratory process we aimed 

to inhibit the action of NOS using an arginase inhibitor. The Nω-Nitro-L-arginine (L-

NNA) inhibitor was used to treat DLKPM cells prior to their inclusion in invasion assays.  

Prior to testing the effects of the L-NNA, the appropriate concentration range for each 

inhibitor was established with the aim of finding a concentration which caused 

approximately 10% cytotoxicity. Proliferation assays were carried out over 5 days to 

assess the impact of the L-NNA inhibitor on DLKPM cells. In a preliminary investigation, 

an increase in growth of 33% and 85% was observed for L-NNA at concentrations of 

50µM and 150µM respectively, while a negligible effect was observed using 100µM L-

NNA, compared to untreated control cells. Therefore, an optimum concentration of 

between 100µM to 150µM of L-NNA could be used for further assays (Figure 3.4-21 

(a)); for the purpose of this investigation, 150µM L-NNA was used. 

To assess the impact of L-NNA on DLKPM, cells were treated with 150µM of L-NNA 

for 30mins (co-treatment) and 24hrs (pre-treatment) prior to setting up invasion assays. 

In a preliminary investigation, pre-treatment with L-NNA resulted in 37% reduction in 

the invasive capacity of DLKPM cells. However, the addition of L-NNA directly (co-

treatment) into invasion assay at a concentration of 150µM, did not result in any change 

in invasion (Figure 3.4-21 (b)). 
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(a)  

 

(b)  

 

 

Figure 3.4-21:- L-NNA treatment reduces the invasive capacity of DLKPM. 
(a) Histogram showing proliferation assays carried out on DLKPM cells treated with 50µM, 

100µM and 150µM L-NNA over 5 days’. Data plotted represents the mean +/- standard deviation 

of duplicate biological assays (n=2). (b) Histogram showing the invasive capacity of DLKPM 

cells following L-NNA treatment for 30mins (co-treat) and 24hrs (pre-treat), in a Boyden chamber 

assay. The total number of invading cells through the matrigel is shown. Data plotted represents 

the mean ± standard deviation of duplicate trans-well inserts from duplicate biological assays 

(n=1).  
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3.4.3.5 Investigation into the effect of SPR knockdown on the generation of ROS  

To investigate the role of reactive oxygen species (ROS) on SPR transfected in DLKPM 

cells, siRNA knockdown on DLKPM was performed and cells were tested for ROS 

generation. There was a reduction in ROS generation in SPR transfected cells using four 

independent siRNAs when compared to negative control cells. A significant reduction of 

ROS generation was observed in three out of four siRNAs targeting SPR; SPR-1 (22%, 

p= 0.04), SPR-5 (32%, p= 0.006) and SPR-6 (31%, p= 0.009), see Figure 3.4-22 below. 

The reduction in ROS generation as a result of SPR transfection may indicate that (with 

further investigation) that reactive oxygen species may be associated with SPR in 

DLKPM cells. 

 

 

 

 

Figure 3.4-22:- ROS generation is reduced in SPR transfected DLKPM cells. 
ROS assays on transfected DLKPM cells 72 hrs post-transfection using four independent siRNAs 

targeting SPR, relative to negative control siRNA transfected cells. Results graphed as % ROS 

generated per cell relative to negative control. Data plotted represents the mean ± standard 

deviation of duplicate wells from triplicate biological assays. Statistics *p≤0.05, compared with 

negative control siRNA. Student’s t test (two tailed with unequal variance, unpaired, n=3). 
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3.4.4 The investigation into the functional role of SPR in breast cancer and 

pancreatic cancer. 

BreastMark survival analysis indicated that low expression of SPR was associated with 

poor survival ability of patients with Luminal A and basal molecular subtypes of breast 

cancer. To investigate the functional role for SPR in breast cancer and pancreatic cancer, 

three cell lines were chosen for preliminary siRNA knockdown studies; (i) MDA-MB-

468 (TNBC), (ii) MiaPaCa2 clone3 (PDAC) and (iii) AsPc1 (PDAC). 

3.4.4.1 Effect of siRNA knockdown of SPR on MDA-MB-468 

In the panel of TNBC breast cancer cell lines, MDA-MD-468 showed highest expression 

of SPR (Figure 3.3-8). To represent TNBC, the MDA-MB-468 cell line was chosen to 

perform siRNA knockdown of SPR. Figure 3.4-23 (a), shows the efficient knockdown of 

SPR by Western blot analysis using four independent siRNAs, compared to negative 

control and un-transfected cells. There was approximately a 15 and 52% reduction in 

growth with SPR-1 and SPR-2 respectively (see Figure 3.4-23 (b)). This significant 

reduction in growth which was observed with SPR-2 (p=0.00945576) may be as a result 

of toxicity to the siRNA. 

 

Seventy-two hours post-transfection with SPR siRNAs, invasion assays were performed. 

There was a significant reduction in the total number of invading MDA-MB-468 cells 

transfected with SPR-6 siRNA (p=0.000908). Figure 3.4-24 (a) shows representative 

images of invading cells post transfection with SPR-1, SPR-5 and SPR-6 siRNAs, images 

for the SPR-2 siRNA could not be acquired due to the toxic effect of this siRNA. The 

total number of invading cells is presented in Figure 3.4-24 (b). These experiments 

indicate that SPR may potentially be involved in growth and invasion of the MDA-MB-

468 cell line. In order to establish a potential role of SPR in breast cancer further 

investigations would need to be completed on another breast cancer cell line. 
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(a)  

 

 

(b)  

 
 

Figure 3.4-23:- SPR knockdown reduces cell growth of MDA-MB-468. 

(a) Representative immunoblot showing knockdown of SPR 72 hrs post-transfection, in MDA-

MB-468 cells transfected with four independent siRNAs targeting SPR, relative to negative 

control siRNA transfected cells (α-Tubulin served as the loading control). (b) Proliferation assays 

on siRNA transfected MDA-MB-468 cells uing SPR-1, SPR-2 and SPR-6 siRNAs. Results 

graphed as % cell survival relative to negative control. Data plotted represents the mean ± standard 

deviation of triplicate biological experiments. Statistics *p≤0.05 compared with negative control 

siRNA. Student’s t test (two tailed with equal variance, unpaired (n=3)). 
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(a)  

  

  

  

(b)  

 
 

Figure 3.4-24:- SPR knockdown reduces the invasive capacity of MDA-MB-468. 

(a) Invasion assays of MDA-MB-468 cells (i) Untreated Control, (ii) Lipofectamine Control, (iii) 

Negative control, (iv) SPR-1 siRNA, (v) SPR-5 siRNA and (iv) SPR-6 siRNA (Magnification, 

x100; scale bar = 500µm). (b) Histogram showing a reduction in the total number of invading 

MDA-MB-468 cells following transfection with SPR-6 siRNA. Data plotted represents the mean 

± standard deviation between duplicate inserts from triplicate biological experiments. Statistics 

*p≤0.05 and *** p≤0.005 compared with negative control siRNA. Student’s t test (two tailed with 

equal variance, unpaired (n=3)). 
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3.4.4.2 Effect of SPR knockdown in pancreatic cell lines MiaPaCa2 Clone3 and 

AsPc-1 

Expression of SPR in MiaPaCa2 Clone3 and AsPc-1 was established in a previous 

investigation (see section 3.3.3), where a panel of pancreatic cancer cell lines was 

examined for SPR expression. Expression of SPR was shown to be increased in MiaPaca2 

clone3 compared to the parental MiaPaca2, while AsPc1 also showed increased 

expression of SPR. Preliminary siRNA transfections were performed on both cell lines, 

to investigate a potential functional role for SPR in pancreatic cancer. 

Figure 3.4-25 shows by Western blot analysis, the efficient knockdown of SPR using four 

independent siRNAs transfected into (a)(i) MiaPaca2 clone 2 and (b) (i) AsPc-1 cell, 

compared to negative control and un-transfected cells. A reduction in growth is shown 

for MiaPaca2 clone3 (a)(ii), with negligible effect on growth for (b)(ii) AsPc-1 cells. 

 

Invasion and migration assays were performed on SPR transfected cells. Figure 3.4-26 

shows reduced invasion capability of (a)(i) MiaPaca2 clone3 and (b)(i) AsPc-1 cells 

following transfection with SPR-6 (n=1), a negligible effect was observed for SPR-1, 

SPR-2 and SPR-5 siRNAs for both cell lines. Figure 3.4-26 (a)(ii) and (b)(ii) shows the 

total number of cells invading for MiaPaca2 Clone3 and AsPc-1 respectively. Figure 

3.4-27 shows reduced migratory capability of (a)(i) MiaPaca2 clone3 and (b)(i) AsPc-1 

cells following transfection with SPR-6 (n=1), A negligible effect was observed for SPR-

1, SPR-2 and SPR-5 siRNAs for both cell lines. The total number of migrating cells is 

shown in Figure 3.4-27 (b)(ii) MiaPaca2 Clone3 and (b)(ii) AsPc-1 cell lines. These 

transfections were preliminary investigations, further invasion and migration assays 

would need to be performed on MiaPaca2 clone 3 and AsPc-1 to establish a functional 

role for SPR in these cell lines. 
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(a) MiaPaCa2 Clone3 

(i)  

 

 

 

(ii)  

 

(b) AsPc-1 

(i)  

 

(ii)  

 

 

Figure 3.4-25:- SPR knockdown reduces the growth of MiaPaca2 clone 3. 
Representative immunoblot showing efficient knockdown of SPR 72hrs post-transfection in (a) 

(i) MiaPaca2 Clone3 and (b) (i) AsPc-1 cells (α-Tubulin served as loading control). Proliferation 

assays on siRNA transfected (a) (ii) MiaPaCa2 clone3 and (b) (ii) AsPc-1 cells. Results graphed 

as percent cell survival relative to negative control. Data plotted represents a mean ±standard 

deviation of duplicate wells from one biological experiment (n=1). 
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(a) MiaPaCa2 Clone3  

i.  

  

  

  

ii.  

 
 

(b) AsPc-1  

i.  

  

  

  

ii.  

 

 

Figure 3.4-26:- SPR knockdown reduces the invasive capacity of MiaPaCa2 Clone3 and 

AsPc-1. 

Invasion assays of (a) (i) MiaPaCa2 clone3 and (b) (i) AsPc-1 cells following siRNA transfection 

with SPR-1, SPR-2, SPR-5 and SPR-6 siRNAs (magnification, x100; scale-bar = 500µm). 

Histogram showing a reduction in the total number of invading cells of (a) (ii) MiaPaCa2 Clone3 

and (b) (ii) AsPc-1, following transfection with SPR-6 siRNA. Data plotted represents the mean 

± standard deviation of two inserts from one individual experiment (n=1). 
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(a) MiaPaca2 Clone3  

i.  

  

  

  

ii.  

 

(a) AsPc-1  

i.  

  

  

  

ii.  

 

 

Figure 3.4-27:- SPR knockdown reduces the migratory capacity of MiaPaCa2 clone 2. 
Migration assays of (a) (i) MiaPaCa2 clone3 and (b) (i) AsPc-1 cells following siRNA 

transfection with SPR-1, SPR-2, SPR-5 and SPR-6 siRNAs (magnification, x100; scalebar = 

500µm). Histogram showing a reduction in the total number of migrating cells of (a) (ii) 

MiaPaCa2 Clone3, following transfection with SPR-6 siRNA. Data plotted represents the mean 

± standard deviation of two inserts from one individual experiment (n=1). 
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3.4.5 Summary of functional analyses 

 ALCAM is highly expressed in DLKPI compared to DLKPSQ and DLKPM, 

indicating its potential use as a marker for DLKPI. Knockdown of ALCAM resulted 

in a significant decrease in the invasive capacity of DLKPM and a significant 

increase in the invasive capacity of DLKPSQ-mitox-BCRP-6P. ALCAM may, 

therefore, have dual invasion roles in these cell lines. 

 DLKPSQ displayed the highest expression levels of INA and SPR compared to 

DLKPI and DLKPM, indicating their potential use as markers for DLKPSQ. Both 

INA and SPR were also expressed in DLKPM cells. 

 Knockdown of INA and SPR resulted in a significant reduction in the invasion and 

migration capacities of DLKPM. Reduced invasive capacity of MDA-MB-468 was 

also observed following knockdown of SPR. 

 Potential roles for INA and SPR in the invasion and migration capacity of these cell 

lines was shown through silencing of their respective genes. In addition, generation 

of ROS in DLKPM cells was reduced following knockdown of SPR which may 

indicate a potential link between SPR and ROS.  
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3.4.6 Immunohistochemical analysis of INA and SPR expression in lung 

cancer 

Western blot analysis of INA showed that expression was highest in DLKPSQ and DLKP 

and a lower level in DLKPM, while increased SPR expression was established in 

DLKPSQ and DLKPM compared to DLKP and DLKPI. Expression of INA had been 

associated with pancreatic neuroendocrine cancer while little Immunohistochemical 

analysis of the distribution of SPR in human cancers has been reported. To look at the 

distribution of INA and SPR expression in lung cancer, tissue microarrays (TMA) 

(Biomax, LC1502) were immunohistochemically stained using primary antibodies 

specific for INA and SPR. The arrays contained:  2 cases of normal lung, 23 cases of 

squamous cell carcinoma, 21 cases of adenocarcinoma, 5 cases of adenosquamous 

carcinoma, 5 cases of bronchioloalveolar carcinoma, 7 cases of small cell undifferentiated 

carcinoma and 3 cases of neuroendocrine carcinoma. Other cases on the TMA that 

showed negative to weak immunoreactivity included large cell carcinoma 

undifferentiated carcinoma, malignant mesothelioma, carcinosarcoma, chronic 

bronchitis, lobar pneumonia, pulmonary tuberculosis where negligible staining for INA 

was observed. There were duplicate cores per case providing 75 cases (total 150 TMA 

cores). TMA cores were scored semi-quantitatively, according to the intensity of the INA 

immunoreactivity observed (weak, moderate, strong).   

Expression of INA (Table 3.4-1) and SPR (Table 3.4-2) in human lung cancer was 

investigated further. Immunoreactivity for INA and SPR was observed in a number of 

tumour types. The overall immunoreactivity on the TMA displayed very specific 

membrane reactivity of isolated cells. Figure 3.4-28 illustrates negligible staining for INA 

in normal lung, while isolated cells displayed immunoreactivity in adenocarcinoma. 

Squamous cell carcinoma also shows immunoreactivity but the most intense staining was 

observed in the sections of neuroendocrine cancer. Overall staining for SPR on the lung 

cancer TMA displayed was variable across the lung cancer tumour, however, moderate 

to strong cytoplasmic immunoreactivity was observed in lung squamous tumour cases. 

Figure 3.4-29 illustrates negligible staining for SPR in normal lung, while moderate to 

strong immunoreactivity was observed in squamous carcinoma, while the other tumour 

types displayed a lower level of immunoreactivity. 
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Tumour Type INA staining intensity 

Squamous cell carcinoma 

17/23 - negative 

4/23 - weak 

2/23- moderate 

Adenocarcinoma 
16/21 - negative 

5/21 – weak 

Adenosquamous 

1/5 - negative 

2/5- weak 

2/5 - moderate 

Bronchioalveolar 
4/5 - negative 

1/5 – weak 

Small cell undifferentiated 
6/7- negative 

1/7 - weak 

Neuroendocrine 
1/3 - negative 

2/3 – moderate 

Table 3.4-1:- Immunoreactivity of INA on lung cancer TMA. 

The table above shows the results from staining of squamous, adenocarcinoma, adenosquamous, 

bronchioalveolar, small cell lung and neuroendocrine primary tumours using an antibody specific 

to INA. 

 

 

Tumour Type SPR staining intensity 

Squamous cell carcinoma 

8/23 - negative 

11/23 - weak 

2/23- moderate 

1/23 - strong 

Adenocarcinoma 

4/21 - negative 

14/21 - weak 

2/21- moderate 

1/21 - strong 

Adenosquamous 
4/5 - weak 

1/5- moderate 

Bronchioalveolar 5/5 - weak 

Small cell undifferentiated 
5/7- negative 

2/7 - weak 

Neuroendocrine 
2/3 - negative 

1/3 - weak 

Table 3.4-2:- Immunoreactivity of SPR on lung cancer TMA. 

The table above shows the results from staining of squamous, adenocarcinoma, adenosquamous, 

bronchioalveolar, small cell lung and neuroendocrine primary tumours using an antibody specific 

to SPR. 
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Figure 3.4-28:- Immunohistochemical analysis of INA expression in human lung cancer. 

A TMA containing normal lung, squamous, adeno, small cell, large cell and neuroendocrine 

carcinoma was immunohistochemically stained using a primary antibody specific to INA. 

Representative photomicrographs are shown (A) Negligible staining is observed in normal lung 

tissue, (B) Isolated cells staining in Squamous, (C) Isolated cells staining in adenocarcinoma, (D) 

& (E), negligible staining in small cell and Large cell, in contrast to (F) strong isolated staining 

in neuroendocrine. Neuroendocrine carcinoma shows distinct immunoreactivity for INA 

(Original magnification of all photomicrographs, 400×, scale bar = 200 μm). 
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Figure 3.4-29:- Immunohistochemical analysis of SPR expression in human lung cancer. 

A TMA containing normal lung, squamous, adeno, small cell, large cell and neuroendocrine 

carcinoma was immunohistochemically stained using a primary antibody specific to SPR. 

Representative photomicrographs are shown; (A) Negligible staining is observed in normal lung 

tissue, (B) Intense staining in squamous, (C) weak staining in adenocarcinoma, (D) intense 

staining in mucinous and (E) strong staining for bronchioalveolar, (F) isolated cells staining in 

small cell, (G) neuroendocrine and (H) Large cell carcinomas. Squamous carcinoma shows 

moderate to strong immuno-reactivity for SPR (Original magnification of all photomicrographs, 

400×, scale bar = 200 μm). 
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3.4.7 Immunohistochemical analysis of SPR in Breast cancer 

BreastMark analysis of SPR indicated that low expression of SPR may be associated with 

poor prognosis of Luminal A and Basal-like molecular subtypes of breast cancer. SPR 

expression was then investigated in a breast cancer TMA (A712 (18)) containing 12 

invasive ductal breast carcinomas with their corresponding adjacent normal tissues. 

Immunoreactivity of SPR was observed in a number of breast cancer cases (Table 3.4-3), 

while weak immunoreactivity was observed in a number of adjacent normal tissues. 

Figure 3.4-30 shows representative staining of TMA cores that were scored semi-

quantitatively, according to the intensity of the SPR immunoreactivity observed (weak, 

moderate, strong). In addition, SPR expression was also investigated in a small panel of 

patient tumours tissues of unknown subtypes, Figure 3.4-31 shows negligible 

immunoreactivity in normal breast tissue and representative immunoreactivity for SPR in 

grade 1, grade 2 and a 3 grade breast cancer of unknown subtypes, evidence of membrane 

localisation was also observed. 

 

Breast tissue type SPR staining Intensity 

Normal 
Negative – 8/12 

Weak – 4/12 

Invasive ductal 

Negative – 4/12 

Weak – 4/12 

Moderate - 4/12 

Table 3.4-3:- Immunoreactivity of SPR in invasive ductal breast cancer tissues with 

corresponding adjacent normal tissue. 

  

Figure 3.4-30:- Immunohistochemical analysis of SPR expression in human breast cancer. 

A TMA containing invasive ductal breast and adjacent Normal breast, immunohistochemically 

stained using a primary antibody specific for SPR. Representative photomicrographs are shown 

(A) Negligible staining is observed in normal breast tissue, (B) Intense staining in invasive ductal 

breast (ER (-), PR (+), C erb B2 (2+/3), shows moderate immunoreactivity for SPR (Original 

magnification of all photomicrographs, 200×, scale bar = 200 μm). 
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Figure 3.4-31:- Immunohistochemical analysis of SPR in a panel of breast cancer tissues. 

Staining for SPR observed in seven out of eight breast cancer tissues. Representative images 

showing immunoreactivity in: (A) normal breast tissue, (B) Histological Grade 1, (C) Histological 

Grade 2 and (D) Histological grade 3 breast cancer (subtypes unknown) (magnification x400, 

scale-bar = 200µm. 
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3.5 The investigation into the growth and tumour development of DLKP and its 

clonal subpopulations in vivo. 

3.5.1 Background to DLKP clones 

Lung Squamous cell line DLKP was originally established from a tumour histologically 

diagnosed as “poorly differentiated Squamous carcinoma” and later found to contain at 

least three morphologically and phenotypically distinct clonal subpopulations [93]. 

DLKPSQ, DLKPI and DLKPM are the three established clones of DLKP and all have 

the ability to grow on monolayers. DLKPSQ are squamous-like and form colonies with 

distinct cell boundaries and account for approximately 70% of the DLKP parent. DLKPM 

make up approximately 5% of DLKP parent, are more irregular in shape with a 

fibroblastoid-like morphology and do not form colonies. DLKPI grow in colonies but 

their boundaries are less distinct in appearance and account for approximately 25% of the 

DLKP. DLKPSQ, DLKPI and DLKPM display different growth and invasion 

characteristics but also distinctly different morphologies. However, a model of 

interconversion (shown in Figure 3.5-1 below) between these clonal subpopulations was 

previously described, the model suggested that interconversion can occur between 

DLKPSQ and DLKPI, DLKPI and DLKPM and vice versa but not between DLKPSQ 

and DLKPM. 

 

Figure 3.5-1:- Proposed model of interconversion between DLKPSQ, DLKPI and DLKPM. 

Further characterisation of the clones found that the in vitro invasion (ability to 

breakdown extracellular matrix components and invade) and anoikis (ability to survive in 

anchorage-independent conditions) abilities of the clones were also different. DLKPSQ 

was found to be poorly invasive and anoikis resistant, DLKPM was highly invasive and 

is anoikis sensitive, while the intermediate, DLKPI, appears most sensitive to anoikis and 

dies more readily. Interestingly, DLKPM appears to use autophagy as cell survival 

mechanism before dying [93, 95, 96]. Autophagy is a general term for the degradation of 

cytoplasmic components within lysosomes and mediated by an organelle known as an 

autophagosome [118].  
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3.5.2 The in vivo investigation of DLKP 

The heterogeneous nature of DLKP and the distinct characteristics displayed between the 

clones make DLKP an ideal cell line model to investigate their growth and behaviour in 

vivo.  A pilot study to investigate growth and development of cell line based tumours was 

carried out by sub-cutaneous injection of DLKP, DLKPSQ, DLKPI and DLKPM cell 

lines at two sites in 4 groups of 4 CB17/lcr-PrkdcSCID/Crl mice (4 mice per cell line), in 

collaboration with Prof. Robert Straubinger, Ms Ninfa Straubinger, Dr. Fiona O’Neill and 

Dr. Sandra Roche. Three different cell numbers were used in this study (1x106 cells in 

250 μl, 5x106 cells in 250 μl and 1x107 cells in 500 µl), cells were prepared in matrigel 

and injected into mice as described in section 2.8. There are a number of potential animal 

models that could be used for this study, however as mentioned in section 2.8 our 

collaborator has extensive experience and publishing history using SCID mice for in vivo 

modelling [101, 102], which is one of the main reasons why this animal model was 

chosen. A schematic showing a summary of the experimental approach is outlined in 

Figure 3.5-2.  

After injection, animals were monitored until tumours had developed, once palpable 

tumours formed, one mouse from each group was sacrificed for exploratory surgery 

(indicated on schematic by blue boxes). The organs from this group of animals were 

paraffin embedded, sectioned and examined using haematoxylin and eosin (H&E) 

staining by a pathologist, Prof. Susan Kennedy at Royal Victoria Eye and Ear Hospital 

for evidence of metastasis. This examination did not find any evidence of metastasis 

within the organs, however, the xenograft tumours were described as “poorly 

differentiated squamous carcinoma”. The description of these tumours is in line with the 

diagnosis of the original DLKP tumour. The remaining 12 animal cohort were allowed to 

progress to experimental finality or until a guideline tumour volume of 2000mm3 had 

been reached. Animals were monitored daily and measurements were taken twice weekly 

to determine tumour volume. At the end of the experiment, representative tumours were 

embedded in paraffin and OCT medium for examination by immunohistochemistry 

(indicated on the schematic by red boxes). This study also provided a unique opportunity 

to characterise the cells within the xenograft tumours, this was performed using explant 

culture (indicated on the schematic by green boxes). Tumour growth curves from tumours 

produced by DLKP, DLKPSQ, DLKPI and DLKPM cell lines in mice were determined 

using average measurements obtained from three different inoculation densities (1x106 

cells (n=2), 5x106 cells (n=4) and 1x107 cells (n=2)). 
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Figure 3.5-2:- Schematic showing development of xenografts derived from DLKP and its clones. 

Outline of the steps involved in the generation of the cell line derived tumours and tumour xenografts from DLKP, DLKPSQ, DLKPI and DLKPM cells. 

Organs from one group of mice were examined for evidence of metastasis (Blue), explant culture was performed on tumours and recovered cells were 

examined (green) and tumours were immunohistochemically examined for expression of markers of proliferation, angiogenesis and EMT (Red).   
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3.5.2.1 Examination of the growth of DLKP in vivo 

Four 28-35 day old SCID mice received subcutaneous injections of DLKP cells at cell 

densities of 1x106 cells, 5x106 cells and 1x107 cells. All four mice displayed tumour 

formation across the three different inoculation densities of DLKP at both injection sites. 

Exploratory surgery performed on one mouse (mouse 3) to look for evidence of metastasis 

after 21 days of growth revealed no evidence of metastasis. Figure 3.5-3 gives a 

representation of the tumours produced by DLKP and their locations (indicated by red 

arrows).  

Measurements for the tumours produced by DLKP and for each of the cell densities used 

in this study are presented in Table 3.5-1 (a) 1x106 cells (n=2), (b) 5x106 cells (n=4) and 

(c) 5x107 cells (n=2). Tumours produced by DLKP appeared to be fast growing and large 

tumours. The growth curves (Figure 3.5-4) highlights the size of tumours produced by 

DLKP in SCID mice over 32 days.  

A 

 

B 

 

 

Figure 3.5-3:- Growth of xenograft tumours from DLKP cells. 

Representative images showing xenograft tumours following subcutaneous injection of DLKP 

cells at inoculation densities of 5x106 cells (Image A) and 1x107 cells (image B) in SCID mice. 

Red arrows indicate tumour location on both sides of the mouse. 
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(a)  

Mouse 

no 

DLKP: Tumour growth measurements (mm3) from mice 

inoculated with 1x106 cells (Days) 

 21 25 29 32 

1 107.64 241.28 782.93 696.7 

2 129.4 209.58 296.7 484.84 

(b)  

Mouse 

No 

DLKP: Tumour growth measurements (mm3) from mice 

inoculated with 5x106 cells (Days) 

 21 25 29 32 

1 166.12 295.12 457.52 505.68 

2 185.2 787.52 535.13 818.7 

3 209.3 Mouse sacrificed at day 21 

4 124.03 410 829.6 910.2 

(c)  

Mouse 

No 

DLKP: Tumour growth measurements (mm3) from mice 

inoculated with 1x107 cells (Days) 

 21 25 29 32 

3 378.324 Mouse sacrificed at day 21 

4 192.19 494.5 778.04 985.71 

Table 3.5-1:- DLKP xenograft tumour measurements. 

The growth of xenograft tumours following subcutaneous injection of DLKP cells. Measurements 

of the tumours in SCID mice inoculated with DLKP at cell densities of (a) 1x106 cells (n=2), (b) 

5x106 cells (n=4) and (c) 1x107 cells (n=2). 

 

 

Figure 3.5-4:- Xenograft tumour growth curves for DLKP. 

Xenografts tumours were developed following subcutaneous injection of DLKP cells in SCID 

mice over 32days post injection. Tumour growth curves for DLKP. Cell numbers injected: 1x106 

cells (n=2), 5x106 cells (n=4), 1x107 cells (n=2). Black arrow indicates when a mouse was 

sacrificed, reducing the numbers continuing on in the experiment. 

21 25 29 32

Days Post Implant

1xE6 cells (n=2) 118.5 225.4 539.8 590.8

5xE6 cells (n=4) 171.2 497.5 607.4 744.9

1xE7 cells (n=2) 285.3 494.5 778.0 985.7
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3.5.2.2 Examination of the growth of DLKPSQ in vivo 

Four 28-35 day old SCID mice received subcutaneous injections of DLKPSQ cells at cell 

densities of 1x106 cells, 5x106 cells and 1x107 cells. All four mice displayed tumour 

formation across the three different inoculation densities of DLKPSQ at both injection 

sites.  

Exploratory surgery was performed on one mouse (mouse 1) to look for evidence of 

metastasis after 21 days of growth. Figure 3.5-5 gives a visual representation of tumours 

produced by DLKPSQ and their locations (indicated by red arrows).  Measurements for 

the tumours produced by DLKPSQ at each of the cell densities used in this study are 

presented in Table 3.5-2 (a) 1x106 cells (n=2), (b) 5x106 cells (n=4) and (c) 1x107 cells 

(n=2). Tumours produced by DLKPSQ appeared to vary in size (indicated by the red 

arrows in images A, B, D, E and G), but displayed increased vascularisation and 

angiogenesis compared to tumours produced by DLKP, DLKPI and DLKPM (indicated 

by blue arrows in images B, D, E, G and H). 

Upon dissection, two out of four mice were found to have small white masses distributed 

within the peritoneal cavity, suggesting evidence of suspected metastasis (image E, F and 

H - green arrows) and an enlarged lymph node was also noted (Image C- yellow arrow). 

The growth curves (Figure 3.5-6) highlights the size of tumours produced by DLKPSQ 

in SCID mice over 32 days.  
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Figure 3.5-5:- Growth of xenograft tumours from DLKPSQ cells. 

Representative images showing xenograft tumours following subcutaneous injection of DLKPSQ 

cells at inoculation densities 1x106 cells (images B and D), 5x106 cells (images A, C, E and G) 

and 1x107 cells (images F and H) in 28-35 day old SCID mice. Red arrows indicate tumour 

locations. 
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(a)  

Mouse 

no 

DLKPSQ: Tumour growth measurements (mm3) from mice 

inoculated with 1x106 cells (Days) 

 21 25 29 32 

1 63.96 Mouse sacrificed at day 21 

2 0 449.31 426.88 663.17 

(b)  

Mouse 

No 

DLKPSQ: Tumour growth measurements (mm3) from mice 

inoculated with 5x106 cells (Days) 

 21 25 29 32 

1 54 Mouse sacrificed at day 21 

2 60.39 310.38 574.19 663.26 

3 0 0 0 0 

4 0 0 0 0 

(c)  

Mouse 

No 

DLKPSQ: Tumour growth measurements (mm3) from mice 

inoculated with 1x107 cells (Days) 

 21 25 29 32 

3 61.64 406.12 1045.90 1951.82 

4 69.79 280.30 508.38 762.96 

Table 3.5-2:- DLKPSQ xenograft tumour measurements. 

The growth of xenograft tumours following subcutaneous injection of DLKPSQ cells.  

Measurements of the tumours in SCID mice inoculated with DLKPSQ at cell densities of (a) 

1x106cells (n=2), (b) 5x106cells (n=4) and (c) 1x107cells (n=2). 

 

 

Figure 3.5-6:- Xenograft tumour growth curves for DLKPSQ. 

Xenograft tumours were developed following subcutaneous injection of DLKPSQ cells in SCID 

mice over 32 days post injection. Tumour growth curves for DLKPSQ. Cell numbers injected: 

1x106 cells (n=2), 5x106 cells (n=4), 1x107 cells (n=2). Black arrow indicates when a mouse was 

sacrificed, reducing the numbers continuing on in the experiment. 

21 25 29 32

Days Post Implant

1xE6 cells (n=2) 32.0 449.3 426.9 663.2

5xE6 cells (n=4) 28.6 103.5 191.4 221.1

1xE7 cells (n=2) 65.7 343.2 777.1 1357.4
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3.5.2.3 Examination of the growth of DLKPI in vivo 

Four 28-35 day old SCID mice received subcutaneous injections of DLKPI cells at cell 

densities of 1x106 cells, 5x106 cells and 1x107 cells.  

All four mice displayed tumour formation across the three different inoculation densities 

of DLKPI at both injection sites. Exploratory surgery performed on one mouse (mouse 

3) to look for evidence of metastasis after 21 days of growth revealed no evidence of 

metastasis. The rapidly growing tumours produced by DLKPI cells in mouse 4 had 

exceeded guideline measurement of 2000mm2, so it was necessary to sacrifice this mouse. 

Figure 3.5-7 gives a visual representation of tumours produced by DLKPSQ and their 

locations (indicated by red arrows). DLKPI appeared to produce the largest tumours and 

more quickly than those produced by DLKP, DLKPSQ and DLKPM. The DLKPI 

tumours appeared to resemble those produced by the DLKP parent. 

There was variation observed in the growth of tumours from DLKPI cells. The 

measurements for the tumours and each of the cell densities used in this study are 

presented in Table 3.5-3 (a) 1x106 cells (n=2), (b) 5x106 cells (n=4) and (c) 1x107 cells 

(n=2). The growth curves (Figure 3.5-8) highlights the large size of tumours produced by 

DLKPI in SCID mice over 32 days, it appears that tumour growth an inoculation cell 

density of 1x106cells would be optimal for DLKPI cells for further in vivo studies. 
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Figure 3.5-7:- Growth of xenograft tumours from DLKPI cells. 
Representative images showing xenograft tumours following subcutaneous injection of DLKPI 

cells at inoculation densities of 5x106 cells (Image A) and 1x107 cells (image B) in 28-35 day old 

SCID mice. Red arrows indicate tumour location on both sides of the mouse. 
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(a)  

Mouse 

no 

DLKPI: Tumour growth measurements (mm3) from mice 

inoculated with 1x106 cells (Days) 

 21 25 29 32 

1 117.20 398.36 584.06 807.79 

2 65.80 251.16 564.37 563.70 

(b)  

Mouse 

No 

DLKPI: Tumour growth measurements (mm3) from mice 

inoculated with 5x106 cells (Days) 

 21 25 29 32 

1 286.65 692.20 711.62 1080.54 

2 554.40 766.26 1498.65 1602.84 

3 460.04 Mouse sacrificed at day 21 

4 491.39 970.22 1670.92 
Mouse 

sacrificed 

(c)  

Mouse 

No 

DLKPI: Tumour growth measurements (mm3) from mice 

inoculated with 1x107 cells (Days) 

 21 25 29 32 

3 266.13 Mouse sacrificed at day 21 

4 
149.50 435.24 907.26 

Mouse 

sacrificed 
Table 3.5-3:- DLKPI xenograft tumour measurements. 
The growth of xenograft tumours following subcutaneous injection of DLKPI cells. 

Measurements of the tumours in SCID mice inoculated with DLKPI cells at cell densities of (a) 

1x106 cells (n=2), (b) 5x106 cells (n=4) and (c) 1x107 cells (n=2). 

 

 

Figure 3.5-8:- Xenograft tumour growth curves for DLKPI. 

Xenografts tumours were developed following subcutaneous injection of DLKPI cells in 

SCID mice over 32 days post injection. Tumour growth curves for DLKPI. Cell numbers 

injected: 1x106 cells (n=2), 5x106 cells (n=4), 1x107 cells (n=2). Black arrow indicates 

when a mouse was sacrificed, reducing the numbers continuing on in the experiment. 

21 25 29 32

Days Post Implant

1xE6 cells (n=2) 91.5 324.8 574.2 685.7

5xE6 cells (n=4) 448.1 809.6 1293.7 1341.7

1xE7 cells (n=2) 207.8 435.2 907.3
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3.5.2.4 Examination of the growth of DLKPM in vivo 

Four 28-35 day old SCID mice received subcutaneous injections of DLKPM cells at cell 

densities of 1x106 cells, 5x106 cells and 1x107 cells.  

Three out of four mice displayed tumour formation across the three different inoculation 

densities of DLKPM at both injection sites. Exploratory surgery performed to look for 

evidence of metastasis in one mouse (mouse 4) inoculated with DLKPM cells after 21 

days of growth revealed no evidence of metastasis. Figure 3.5-9 (A) and (B) gives a visual 

representation of tumours produced by DLKPM and their location (indicated by red 

arrows).  

Tumours produced by DLKPM were the slowest growing, smallest and were more solid 

compared to those produced by DLKP, DLKPSQ and DLKPI. However, the most 

successful tumours to be produced by DLKPM were those injected with 1x107 cells, 

indicating an optimal cell number could be required for tumour growth of DLKPM.  

Measurements for the tumours produced by DLKPM for each of the cell densities used 

in this study are presented in Table 3.5-4 (a) 1x106 cells (n=2), (b) 5x106 cells (n=4) and 

(c) 1x107 cells (n=2). The growth curves (Figure 3.5-10) highlights the size of tumours 

produced by DLKPM in SCID mice over 35 days. 
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Figure 3.5-9:- Growth of xenograft tumours from DLKPM cells. 
Representative images showing xenograft tumours following subcutaneous injection of DLKPM 

cells at inoculation densities of 5x106 cells (Image A) and 1x107 cells (image B) in 28-35 day old 

SCID mice. Red arrows indicate tumour location on both sides of the mouse. 
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(a)  

Animal 

No 

DLKPM: Tumour growth measurements (mm3) from mice 

inoculated with 1x106 cells (Days) 

 21 25 29 32 35 

1 0 0 0 470.20 698.15 

2 0 0 0 0 0 

(a)  

Animal 

No 

DLKPM: Tumour growth measurements (mm3) from mice 

inoculated with 5x106 cells (Days) 

 21 25 29 32 35 

1 0 0 0 391.04 603.65 

2 0 0 0 0 0 

3 79.67 0 0 327.63 1324.56 

4 224.40 Mouse sacrificed at day 21 

(b)  
Animal 

No 

DLKPM: Tumour growth measurements (mm3) from mice 

inoculated with 1x107 cells (Days) 

 21 25 29 32 35 

3 102.25 196.56 304.29 367.08 807.40 

4 253.34 Mouse sacrificed at day 21 

Table 3.5-4:- DLKPM xenograft tumour measurements. 

The growth of xenograft tumours following subcutaneous injection of DLKPM cells. 

Measurements of the tumours in SCID mice inoculated with DLKPM cells at cell densities of (a) 

1x106 cells (n=2), (b) 5x106 cells (n=4) and (c) 1x107 cells (n=2).  

 

 
 

Figure 3.5-10:- Xenograft tumour growth curves for DLKPM. 

Tumour xenografts were developed following subcutaneous injection of DLKPM cells in SCID 

mice over 35 days post injection. Tumour growth curves for DLKPM. Cell numbers injected: 

1x106 cells (n=2), 5x106 cells (n=4), 1x107 cells (n=2). Black arrow indicates when a mouse was 

sacrificed, reducing the animal numbers continuing on in the experiment. 

 

 

21 25 29 32 35

Days Post Implant

1xE6 cells (n=2) 0.0 0.0 0.0 235.1 349.1

5xE6 cells (n=4) 76.0 0.0 0.0 239.6 642.7

1xE7 cells (n=2) 177.8 196.6 304.3 367.1 807.4
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3.5.2.5 Summary of xenograft tumour growth from the DLKP in vivo study 

Growth curves of tumours developed by DLKP, DLKPSQ, DLKPI and DLKPM (Figure 

3.5-11) in mice were determined using average measurements obtained from the chosen 

three different inoculation densities (1x106 cells (n=2), 5x106 cells (n=4) and 1x107 cells 

(n=2)). Tumour formation was clearly visible at all inoculation densities for DLKP, 

DLKPSQ, DLKPI and DLKPM cell lines indicating that this cell line model was deemed 

compatible with the mouse model used in this study.  

 DLKP, DLKPSQ, DLKPI and DLKPM cell lines were all capable of producing 

tumours. 

 DLKP and DLKPI appeared to grow fastest giving rise to the largest tumours (DLKPI 

appeared to be marginally faster). 

 DLKP & DLKPI appeared to respond similarly with tumours produced on both 

injection sites at all cell densities by day 21. 

 DLKPM showed a range in response: at 21 days 0 out of 2 mice inoculated with 

1x106 cells had tumours, 2 out of 4 mice inoculated with 5x106 cells had tumours, 

while 2 out of 2 mice inoculated with 1x107cells had tumours). 

 DLKPI and DLKP tumours appeared to look similar, while DLKPM tumours were 

smaller and more solid.  

 Tumours produced by DLKPSQ appeared to be much more vascularised and 

angiogenic. In 2 out of 4 mice inoculated with DLKPSQ, small growths were 

produced in the peritoneal cavity (suggesting evidence of potential metastasis). Mr 

Vincent Lynch suggested that these growths were carcinomatosis of the peritoneal 

cavity. In a follow up experiment, the masses were produced in 1 out of 6 mice (data 

not shown).  
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Figure 3.5-11:- Summary growth curves of xenografts tumours developed by DLKP and its 

clones. 

 (A) Tumour growth curve for DLKP, DLKPSQ, DLKPI and DLKPM in SCID mice at an 

inoculation density of 1x106 cells, (n=2). (B) Tumour growth curve for DLKP, DLKPSQ, DLKPI 

and DLKPM in SCID mice at an inoculation density of 5x106 cells, (n=4). (C) Tumour growth 

curve for DLKP, DLKPSQ, DLKPI and DLKPM in SCID mice at an inoculation density of 1x107 

cells, (n=2). Black arrow indicates where a mouse was sacrificed, reducing the animal numbers 

continuing on in the experiment. 

21 25 29 32 35

Days Post Implant

DLKP 118.5 225.4 539.8 590.8

DLKPSQ 32.0 449.3 426.9 663.2

DLKPI 91.5 324.8 574.2 685.7

DLKPM 0.0 0.0 0.0 235.1 349.1
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Days Post Implant

DLKP 171.2 497.5 607.4 744.9

DLKPSQ 28.6 103.5 191.4 221.1

DLKPI 448.1 809.6 1293.7 1341.7

DLKPM 76.0 0.0 0.0 239.6 642.7

0.0

500.0

1000.0

1500.0

Tu
m

o
u

r 
vo

u
m

e
 (

m
m

3
) 

21 25 29 32 35

Days Post Implant

DLKP 285.3 494.5 778.0 985.7

DLKPSQ 65.7 343.2 777.1 1357.4

DLKPI 207.8 435.2 907.3

DLKPM 177.8 196.6 304.3 367.1 807.4
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3.6 Characteristics of DLKP, DLKPSQ, DLKPI and DLKPM cell lines post 

tumour explant culture 

DLKP has at least three morphologically and phenotypically distinct clonal 

subpopulations (DLKPSQ, DLKPI and DLKPM). In culture, the ratios of these 

subpopulations in DLKP appear to remain balanced. Shirley McBride previously 

described a model for interconversion between the clonal subpopulations (i.e. DLKPSQ 

convert to DLKPI and DLKPI convert to DLKPM, but DLKPSQ cannot convert to 

DLKPM). One of the aims of this investigation was to establish if the DLKP clones 

developed different characteristics as a result of their growth in tumours compared to their 

growth under control conditions. The in vivo study presented an opportunity to recover 

DLKP and its clones from the tumours produced in SCID mice and to assess their 

characteristics post tumour growth. 

3.6.1 Isolation of DLKP clones from Xenograft tumours by explant culture 

Explant culture is a technique where by cells are isolated from a piece or pieces of tissue. 

Explant culture was carried out on xenograft tumours to investigate any changes in the in 

vitro characteristics of DLKP, DLKPSQ, DLKPI and DLKPM, post tumour growth. 

Table 3.6-1 indicates the names assigned to cell lines recovered from xenograft tumours 

and masses of the peritoneal cavity. This nomenclature was established to differentiate 

between the original DLKP cell lines and the DLKP cell lines established from the 

xenograft tumours, eliminating the risk of cross-contamination. The newly established 

tumour derived cell lines were initially cultured in serum free DMEM-Hams-F12 + 1% 

pen-strep to reduce the outgrowth of fibroblasts and contamination. Tumour derived cell 

lines were subsequently maintained in DMEM-Hams-F12 with 5% FCS. Established 

tumour cell lines were examined for changes in morphology, monolayer growth, anoikis, 

invasion and migration.  

Control culture Re-cultured cells Source 

DLKP DLKPt DLKP xenograft tumours 

DLKPSQ (1) DLKPSQta DLKPSQ xenograft tumours 

DLKPSQ (2) DLKPSQtn Growths from DLKSQ mice 

DLKPI DLKPIt DLKPI xenograft tumours 

DLKPM DLKPMt DLKPM xenograft tumours 

Table 3.6-1:- Nomenclature of DLKP and its clones in control culture vs. DLKP and its 

clones recovered from mouse xenografts.  
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3.6.2 Examination of the morphology of explanted tumour cells 

Once explant culture was complete, all cell lines were trypsinised from 6 well-plates into 

12.5cm2 where images were taken (early culture). Established recovered cell lines were 

then monitored for the subsequent 5 passages (late culture). Figure 3.6-1 shows the 

morphology of DLKPSQ, DLKPI and DLKPM cell lines pre-tumour growth (control) 

compared to recovered DLKPSQta, DLKPSQtn, DLKPIt and DLKPMt cell lines from 

xenograft tumours (early culture and late culture). 

Early culture (passage 1): Compared to control culture, all clones appeared to have an 

obvious morphological difference in appearance compared to control cells. Most notable 

for DLKPSQtn and DLKPMt was that individual cells appeared to be more elongated, 

late culture (between passage 3 and passage 5), DLKPSQtn and DLKPIt appeared to 

revert back to the morphology seen in control culture. However, DLKPMt appeared to 

retain a more elongated appearance. 
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Control 

Explant Culture Explant culture of carcinomatosis peritoneum 

Early Culture Late Culture Early culture Late culture 

(A) 

DLKPSQ 

     

(B) DLKPI 

   
 

(C) 

DLKPM 

   

Figure 3.6-1:- Morphology of DLKP clones preimplantation vs. DLKP clones post explant culture. 

Explant culture was performed on xenograft tumours implanted with DLKPSQ, DLKPI and DLKPM. (A) DLKPSQ (i) Control, (ii)  Early culture post explant, 

(iii) Late culture post explant (DLKPSQta), cells from suspected Carcinomatosis: (iv) early culture, (v) Late culture (DLKPSQtn). (B) DLKPI (i) Control, (ii)  

Early culture post explant, (iii) Late culture post explant (DLKPIt). (C) DLKPM (i) Control, (ii)  Early culture post explant, (iii) Late culture post explant 

(DLKPMt). (Original magnification, x400; scale bar = 100 & 500µm). 

(i) (iv) (iii) 

(ii) 

(ii) 

(ii) 

(i) 

(i) (iii) 

(iii) 
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3.6.3 Examination of growth of explanted tumour cells 

Recovered cell lines from xenograft tumours were examined for changes in growth. 

Figure 3.6-2 (A) shows a preliminary examination of the growth of explanted cells 

DLKPt, DLKPSQta, DLKPIt and DLKPMt compared to cells pre-tumour growth. 

Generally, all explanted cell lines grew in a similar fashion to control cells. However, a 

90% decrease in growth of DLKPSQtn (cells from carcinomatosis peritoneum) relative 

to DLKPSQ control cells was observed.  

3.6.3.1 Anoikis ability of explanted tumour cells 

Recovered cell lines from xenograft tumours were examined for changes in anoikis 

resistance. Figure 3.6-2 (B) shows a preliminary examination of growth under anoikis 

conditions of explanted DLKPt, DLKPSQta, DLKPIt and DLKPMt vs. control cells. 

Under anoikis conditions, explanted DLKP clones grew similar to DLKP control clones. 

However, an increase in anoikis sensitivity was observed for DLKP, from 17% in control 

cells to 43% in explanted DLKPt cells. 
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Figure 3.6-2:- Growth and anoikis capabilities of the DLKP clones post tumour growth. 
DLKP and its clones under control conditions (grey) vs. recovered DLKP and clones from 

xenografts (white). DLKPt and clones from tumour explant culture were compared to DLKP and 

its clones under control conditions for changes in (A) growth (acid phosphase) and (B) anoikis 

ability (using alamar blue). Data plotted represents the single technical replicate from one 

biological assay (n=1). 

 

 

 

 

 

0

50

100

150

DLKP DLKPt DLKPSQ SQta SQtn DLKPI It DLKPM Mt

R
e

la
ti

ve
 C

e
ll 

Su
rv

iv
al

 (
%

)

0

20

40

60

80

100

DLKP DLKPt DLKPSQ SQta SQtn DLKPI It DLKPM Mt

A
n

o
ik

is
 a

b
ili

ty
 (

%
)



 

172 

 

3.6.4 Examination of invasive and migratory capacity of explanted tumour 

cells 

Recovered cell lines from xenografts tumours were examined for changes in invasion and 

migration capacity. To assess whether the growth of DLKP and subpopulations in 

xenografts effected their invasive capacity, in vitro invasion assay were performed (as 

described in section 2.4.1), on explanted cells. Representative photomicrographs in 

Figure 3.6-3 show the invasive capacity of DLKP and its clones post tumour explant 

compared to cells in control culture, while Figure 3.6-4 shows the total number of 

invading DLKPt, DLKPSQta, DLKPIt and DLKPMt cells through matrigel compared to 

control cells. This preliminary examination of explanted cells indicates an increase in the 

invasion of DLKPt vs. DLKP control cells, while a reduction in invasion was observed 

for explanted DLKPSQta and DLKPMt cells compared to control cells.  

Further examination of the invasive and migratory capacity of explanted DLKPSQta and 

DLKPMt were carried out.  Figure 3.6-5 (B) (iii) shows a significant reduction in 

migratory capacity was observed for DLKPSQta (p=0.00605) vs. control DLKPSQ cells, 

while a significant reduction in (C) (iii) invasive capacity (p=0.000976) and (D) (iii) 

migratory capacity (p=0.008014) of DLKPMt vs. control DLKPM cells (Figure 3.6-5). 
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A. DLKP B. DLKPSQ C. DLKPI D. DLKPM 

    

    
 

 
 

Figure 3.6-3:- The invasive capacity of DLKP and its clones post tumour growth.  

DLKP and clones pre-implantation (Top row) vs. recovered DLKP and clones (bottom row) post 

explant culture. Explanted cell lines from xenograft tumours were examined for changes in levelss 

of invasion (A) (i) DLKP (ii) recovered DLKPt, (B) (i) DLKPSQ (ii) recovered DLKPSQta (iii) 

recovered DLKPSQtn, (C) (i) DLKPI (ii) recovered DLKPIt and (D) (i) DLKPM (ii) recovered 

DLKPMt (Original magnification x100, scale-bar = 200µm). 

 

 

 

 
 

Figure 3.6-4:- The invasive capacity of DLKP and its clones post tumour explant culture. 

Preliminary invasion assays showing: DLKP and its clones (grey) compared to DLKP post tumour 

growth (white). Explanted cell lines from xenograft tumours were examined for changes in levels 

of invasion. An increase was observed for DLKPt cells, while a reduction was observed for 

DLKPMt cells compared to control cells. The total number of invading cells is shown. Data 

plotted represents mean ± standard deviation of duplicate inserts, (n=1). 
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(B) 

 

(iii) 

 
(iii) 

 

(C) 

 
(D) 

 
 

 

(iii) 

 
 

(iii) 

 

Figure 3.6-5:- Invasive and migratory capacity of DLKPSQ and DLKPM post tumour 

growth. 

Invasion and migration assays were carried out on DLKPSQ and DLKPM pre-implantation and 

post explant culture. (A) Invasive capacity of DLKPSQ (i) pre-implantation (ii) post explant 

culture (iii) Total invading cells: preimplantation vs. explant culture invasive capacity. (B) 

Migratory capacity of DLKPSQ (i) pre-implantation (ii) post explant culture (iii) Total migrating 

cells: preimplantation vs. explant culture (p=0.00605). (C) Invasive capacity of DLKPM (i) pre-

implantation (ii) post explant culture (iii) Total invading cells: preimplantation vs. explant culture 

invasive capacity (p=0.000976). (D) Migration of DLKPM (i) pre-implantation (ii) post explant 

culture (iii) Total migrating cells: preimplantation vs. explant culture (p=0.008014). Data plotted 

represents the mean +/- standard deviation duplicate inserts from triplicate biological assays. 

Statistics ** p≤0.01 and *** p≤0.005. Student’s t test (two tailed with equal variance, unpaired, 

n=3). 
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3.7 Immunohistochemical analysis of xenograft tumours 

An in vivo investigation was carried out where DLKP, DLKPSQ, DLKPI and DLKPM 

cell lines were implanted into mice. Section 3.5.2 outlines the capacity of each cell line 

to form tumours in vivo over a 32 - 35-day period post implantation of cells. After this 

period (or once the guideline tumour volume of 2000mm2 was reached) the mice were 

sacrificed and the tumours were harvested. One mouse from each cell line was sacrificed 

for exploratory surgery at day 21, the tumours from this mouse were formalin-fixed-

paraffin embedded and sectioned for immunohistochemical analysis. This investigation 

would allow us to characterise tumours for the expression of angiogenesis and 

proliferation markers, but also to evaluate any differences in expression of validated 

proteins from section 3.2 as a result of growth in tumours. 

An immunohistochemical survey was carried out using antibodies specific to a small 

number of protein markers known to be involved in cancer progression. For all xenograft 

tumours, the same tumour block was used throughout this study, however, fresh sections 

were cut when required. Antibodies targeted against the protein targets were used to stain 

xenograft tumours derived from DLKP, DLKPSQ, DLKPI and DLKPM cell lines. 

Tumours used for IHC were established from an inoculation density of 1x106 cells and 

5x106 cells.  

3.7.1 Human mitochondrial protein 

Human cells were used to form human tumours, however, the tumours were allowed to 

form in mice, these tumours may recruit murine tissue in order for the tumours to form. 

Before starting any immunohistochemical analysis, it was necessary to determine the 

amount of infiltrating murine tissue present in each of the tumours. The xenograft tissues 

were therefore stained using a commercial antibody specific to human mitochondrial 

proteins. 

Paraffin embedded sections of DLKP, DLKPSQ, DLKPI and DLKPM xenograft tissue 

sections were examined for reactivity to Human mitochondrial protein. Intense staining 

was observed in all tumours from all cell line derived tumours, some areas of the tumours 

displayed weaker expression (Figure 3.7-1). 

3.7.2 Ki-67 

Ki-67 antigen is a protein present in the nuclei of proliferating cells. It is widely used as 

a marker of proliferating tumour cells [119]. An antibody specific to Ki-67 was used to 

examine Ki67 expression in paraffin-embedded sections of xenograft tumours from the 
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in vivo study. Strong staining was observed in all tumours, however possibly more intense 

staining was found to be in tumours derived from DLKP and DLKPI cells (Figure 3.7-2). 

There appear to be more cells staining positive for Ki67 in the tumours compared to 

staining observed for human mitochondria proteins. Strong Ki-67 staining indicates that 

the xenograft tumours derived by DLKP, DLKPSQ, DLKPI and DLKPM cells were 

highly proliferative.  

3.7.3 CD31  

CD31 (PECAM-1) is found on the surface of endothelial cells and has been used routinely 

as a marker for angiogenesis [120]. An antibody specific to CD31 was used to examine 

the expression of CD31 in paraffin-embedded sections of xenograft tumours from our 

DLKP in vivo study. In xenograft tumours derived from DLKP, DLKPSQ, DLKPI and 

DLKPM, weak/low level staining of CD31 was observed (Figure 3.7-3). 

3.7.4 E-cadherin and N-cadherin 

E-cadherin and N-cadherin are proteins known to be involved in processes such as cell-

cell adhesion, differentiation, migration and invasion. Their involvement in epithelium to 

mesenchymal transition (EMT) has also been suggested. During an EMT, E-cadherin is 

downregulated while N-cadherin is upregulated during a process known as cadherin 

switching [121]. Expression of both E-cadherin and N-cadherin were examined in 

paraffin embedded sections of xenograft tumours from our DLKP in vivo study. 

In the xenograft tumours associated with DLKPSQ, low-level staining in small areas of 

the tumours was observed for E-cadherin, however, tumours derived from DLKP, DLKPI 

and DLKPM showed very low to negative immunoreactivity for E-cadherin (Figure 

3.7-4). Staining was not observed in explanted cells from the tumour xenografts (Figure 

3.7-5). N-cadherin expression was previously established in DLKP and the clones. As 

expected strong staining was observed in tumours associated with DLKP, DLKPI and 

DLKPM with low level staining in tumours associated with DLKPSQ (Figure 3.7-6). 

Interestingly, in explanted cells, the intensity of expression of N-cadherin was increased 

in explanted DLKPt cells and DLKPSQta cells and is reduced in explanted DLKPMt cells 

compared to control cells (Figure 3.7-7). Tissue section associated with DLKPI 

(inoculation density of 1x106 cells) is not shown because the section did not stain 

correctly. A summary of the immunohistochemical analysis of markers outlined above is 

presented in Table 3.7-1. 
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Figure 3.7-1:- Expression of human mitochondrial protein in xenograft tumours. 

Xenograft tumours derived from; (A) DLKP implanted with (i) 1x106 cells (ii) 5x106 cells, (B) 

DLKPSQ implanted with (i) 1x106 cells (ii) 5x106 cells, (C) DLKPI implanted with (i) 1x106 cells 

(ii) 5x106 cells and (D) DLKPM implanted with (i) 1x106 cells (ii) 5x106 cells. Strong staining 

was observed in all xenograft tumours using an antibody specific to a human mitochondrial 

protein. (Magnification, x400; scale bar = 200µm). 
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Figure 3.7-2:- Expression of Ki-67 in xenograft tumours. 

Xenograft tumours derived from; (A) DLKP implanted with (i) 1x106 cells (ii) 5x106 cells, (B) 

DLKPSQ implanted with (i) 1x106 cells (ii) 5x106 cells, (C) DLKPI implanted with (i) 1x106 cells 

(ii) 5x106 cells and (D) DLKPM implanted with (i) 1x106 cells (ii) 5x106 cells, intense staining 

was observed in all tumours, using an antibody specific to Ki67. (Magnification, x400; scale bar 

= 200µm). 
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Figure 3.7-3:- Representative images of xenograft tumours stained for the expression of 

CD31. 

Xenograft tumours derived from; (A) DLKP (i) 1x106 (ii) 5x106, (B) DLKPSQ (i) 1x106 cells (ii) 

5x106 cells, (C) DLKPI ((i) 1x106 cells (ii) 5x106 cells and (D) DLKPM (i) 1x106 cells (ii) 5x106 

cells, weak/low level staining was observed in all xenograft tumours, using an antibody specific 

to CD31 (Magnification, x400; scale bar = 200µm). 
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Figure 3.7-4:- Representative images of xenograft tumours stained for the expression of E-

cadherin. 

Xenograft tumours derived from; (A) DLKP implanted with (i) 1x106 cells (ii) 5x106 cells, (B) 

DLKPSQ implanted with (i) 1x106 cells (ii) 5x106 cells, (C) DLKPI implanted with (i) 1x106 cells 

(ii) 5x106 cells and (D) DLKPM implanted with (i) 1x106 cells (ii) 5x106 cells. Low level staining 

for E-cadherin observed in DLKPSQ tumours, using an antibody specific to E-cadherin. 

(Magnification, x400; scale bar = 200µm). 
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Figure 3.7-5:- Representative images of control cells vs. explanted cells stained for 

expression of E-cadherin. 

Control cells compared to explanted cell lines from xenograft tumours.  (A) DLKP (i) control 

cells (ii) explanted cells, (B) DLKPSQ (i) control cells (ii) explanted cells, (C) DLKPI (i) control 

cells (ii) explanted cells and (D) DLKPM (i) control cells (ii) explanted cells. Using an antibody 

specific to E-cadherin, staining was not observed in explanted tumour cells. (Magnification, x400; 

scale bar = 200µm). 
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Figure 3.7-6:- Expression of N-cadherin in xenograft tumours 

Xenograft tumours derived from; (A) DLKP implanted with (i) 1x106 cells (ii) 5x106 cells, (B) 

DLKPSQ implanted with (i) 1x106 cells (ii) 5x106 cells, (C) DLKPI implanted with 5x106 cells 

and (D) DLKPM implanted with (i) 1x106 cells (ii) 5x106 cells. Staining was observed in all 

xenograft tumours using an antibody specific to N-cadherin. (Magnification, x400; scale bar = 

200µm). 
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Figure 3.7-7:- Expression of N-cadherin in cells derived from xenograft tumours. 

Xenograft tumours derived from; (A) DLKP (i) control cells (ii) explanted cells, (B) DLKPSQ (i) 

control cells (ii) explanted cells, (C) DLKPI (i) control cells (ii) explanted cells and (D) DLKPM 

(i) control cells (ii) explanted cells (ii) 5x106 cells, using an antibody specific to E-cadherin. 

(Magnification, x400; scale bar = 200µm). 
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3.7.5 Summary of staining observed in cell line derived-xenografts 

 

Target protein 
Cell line derived Xenografts 

DLKP DLKPSQ DLKPI DLKPM 

Human Mitochondrial protein +++ +++ +++ +++ 

Ki-67 +++ ++ ++ ++ 

CD31 (PECAM-1) - -/+ - - 

E-cadherin + -/+ + - 

N-cadherin + -/+ ++ + 

Table 3.7-1:- Summary of Immunohistochemical analysis carried out on xenograft tumours. 

Representative analysis of tumours formed after implantation of cells at 1x106 and 5 x106 cells. 

+++ very intense positivity, ++ intense positivity, +weak positivity: +/- some very weak 

positivity, - Negative. 
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3.8 Immunohistochemical analysis of differentially expressed proteins in 

xenograft tumours derived from DLKP clones 

DLKP, DLKPSQ, DLKPI and DLKPM cell lines were all shown to be able to produce 

tumours in SCID mice. In this section, Western blot analysis and Immunohistochemistry 

were used to investigate the expression of the differentially expressed proteins which 

were identified by comparative proteomics analysis (section 3.1.3 and section 3.1.4), in 

explanted cells and xenograft tissues. Representative tumour blocks were prepared from 

tumours derived from inoculation densities of 1x106 cells and 5x106 cells, fresh sections 

were prepared as required. 

3.8.1 Expression of SLIT2 and ROBO2 in vivo. 

SLIT2 ligand and its receptor ROBO2 were previously studied in DLKP and its clones 

(see section 3.2.3). The expression of SLIT2 and ROBO2 was examined in explanted 

tumour cells and xenograft tumours derived from DLKP and its clones. 

Western blot analysis was carried out to establish the expression of SLIT2 in membrane 

enriched fractions which were prepared from cells recovered from xenograft tumours via 

explant culture. Expression of SLIT2 was examined in recovered cells (DLKPt, 

DLKPSQta, DLKPIt and DLKPMt) and control cells (DLKP, DLKPSQ, DLKPI and 

DLKPM). A potential loss of SLIT2 was observed with DLKPSQta compared to control 

DLKPSQ cells, while a potential increase in expression of SLIT2 was observed in DLKPt 

compare to control DLKP (Figure 3.8-1), DLKPIt and DLKPMt cells appear to maintain 

expression compared to control cells. This was a preliminary investigation and would 

need to be repeated with the inclusion of appropriate loading controls. 

Immunohistochemistry was carried out to determine the expression of SLIT2 and its 

receptor ROBO2 in paraffin embedded sections of the xenograft tissues. Figure 3.8-2 

shows strong staining for SLIT2 in xenograft tissues in (A) DLKP, (B) DLKPI, (C) 

DLKPSQ and (D) DLKPM. The expression pattern of SLIT2 in xenografts is broadly in 

line with expression seen in Western blot validations in section 3.2.3. The in vivo 

expression of ROBO2 appears to show the same pattern of expression seen for SLIT2, 

increased expression in DLKP and DLKPM xenograft and lower expression levels for 

DLKPSQ and DLKPI (Figure 3.8-3). 
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Figure 3.8-1:- Expression of SLIT2 in the explanted DLKP tumour cells 
Represents expression of SLIT2 in membrane enriched fractions from explanted tumour cells 

(DLKPt, DLKPSQta, DLKPIt and DLKPMt) compared to control cells (DLKP, DLKPSQ, 

DLKPI and DLKPM), using an antibody specific to SLIT2 (n=1). 

 

 

 

 

 

 

 

 

 

 

 

 

SLIT2 

165kDa  

  

Control culture Explant culture 



 

187 

 

A (i) 

 

(ii) 

 

B (i) 

 

(ii) 

 

C (i) 

 

(ii) 

 

D (i) 

 

(ii) 

 

 

Figure 3.8-2:- Expression of SLIT2 in the xenograft tumours. 

Xenograft tumours derived from; (A) DLKP implanted with (i) 1x106 cells (ii) 5x106 cells, (B) 

DLKPSQ implanted with (i) 1x106 cells (ii) 5x106 cells, (C) DLKPI implanted with (i) 1x106 cells 

(ii) 5x106 cells and (D) DLKPM implanted with (i) 1x106 cells (ii) 5x106 cells, Strong 

immunoreactivity was observed in all tumours using an antibody specific to a SLIT2 

(Magnification, x400; scale bar = 200µm). 
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Figure 3.8-3:- Expression of ROBO2 in the xenograft tumours. 

Xenograft tumours derived from; (A) DLKP implanted with (i) 1x106 cells (ii) 5x106 cells, (B) 

DLKPSQ implanted with (i) 1x106 cells (ii) 5x106 cells, (C) DLKPI implanted with (i) 1x106 cells 

(ii) 5x106 cells and (D) DLKPM implanted with (i) 1x106 cells (ii) 5x106 cells. Immunoreactivity 

was observed in all tumours using an antibody specific to a ROBO2 (Magnification, x400; scale 

bar = 200µm). 
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3.8.2 Expression of ALCAM in vivo. 

ALCAM expression was previously studied in DLKP and its clones (see section 3.2.4). 

The expression of ALCAM was investigated in explanted tumour cells and xenograft 

tumours derived from DLKP and its clones. 

Western blot analysis was carried out to establish the expression of ALCAM in 

membrane-enriched fractions which were prepared from cells recovered from xenograft 

tumours via explant culture. Figure 3.8-4 confirms expression of ALCAM to be 

maintained strongly in recovered cells from DLKPIt xenografts tumours compared to 

cells under control conditions. In the control cells, ALCAM is expressed at a notably 

lower level in DLKP, DLKPSQ and DLKPM compared to DLKPI, this expression pattern 

is also maintained in vivo. This was a preliminary investigation carried out on membrane 

enriched fractions of the and would need to be repeated but also examined in whole cell 

lysates of the cell lines with the inclusion of appropriate loading controls. 

Immunohistochemical analysis was carried out to determine the expression of ALCAM 

in paraffin embedded sections of the xenograft tissues. Representative images showing 

staining of ALCAM in xenografts tumours derived from DLKP and its clones (Figure 

3.8-5), intense expression was maintained throughout DLKPI xenograft tumour, while 

smaller areas of staining were observed for DLKP, DLKPSQ and DLKPM xenograft 

tissues.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

190 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8-4:- Expression of ALCAM in the explanted DLKP tumour cells. 

Represents expression of ALCAM in membrane enriched fractions from explanted tumour cells 

(DLKPt, DLKPSQta, DLKPIt and DLKPMt) compared to control cells (DLKP, DLKPSQ, 

DLKPI and DLKPM), using an antibody specific to ALCAM (n=1). 
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Figure 3.8-5:- Expression of ALCAM in the xenograft tumours. 

Xenograft tumours derived from; (A) DLKP implanted with (i) 1x106 cells (ii) 5x106 cells, (B) 

DLKPSQ implanted with (i) 1x106 cells (ii) 5x106 cells, (C) DLKPI implanted with (i) 1x106 cells 

(ii) 5x106 cells and (D) DLKPM implanted with (i) 1x106 cells (ii) 5x106 cells, staining was 

observed in all tumours with DLKPI showing most intense immunoreactivity, using an antibody 

specific to a ALCAM (Magnification, x400; scale bar = 200µm). 
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3.8.3 Expression of IQGAP1 in vivo 

Expression of IQGAP1 was previously studied in DLKP and its clones (see section 3.2.5). 

The expression of IQGAP1 was examined in explanted tumour cells and xenograft 

tumours derived from DLKP and its clones. Western blot analysis was carried out to 

establish expression of IQGAP1 in membrane enriched fractions which were prepared 

from cells recovered from xenograft tumours via explant culture. Figure 3.8-6 confirmed 

expression of IQGAP1 in recovered cells (DLKPt, DLKPSQta, DLKPIt and DLKPMt) 

compared to cells cultured under control conditions (DLKP, DLKPSQ, DLKPI and 

DLKPM). Post tumour explantation, expression of IQGAP1 appears to be decreased in 

DLKPSQta, DLKPIt and DLKPMt compared to control cells, while expression in DLKPt 

appears to be increased compared to control DLKP. This was a preliminary investigation 

and would need to be repeated with the inclusion of appropriate loading controls. 

Immunohistochemistry was carried out to determine the expression of IQGAP1 in 

paraffin embedded sections of the xenograft tissues. Figure 3.8-7 shows strong 

immunoreactivity for IQGAP1 in all xenograft tissues with DLKPI and DLKPM showing 

marginally higher levels of expression compared to DLKP and DLKPSQ. Expression 

IQGAP1 appears to be maintained under in vivo conditions. 
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Figure 3.8-6:- Expression of IQGAP1 in the explanted DLKP tumour cells. 

Represents expression of IQGAP1 in membrane enriched fractions from explanted tumour cells 

(DLKPt, DLKPSQta, DLKPIt and DLKPMt) compared to control cells (DLKP, DLKPSQ, 

DLKPI and DLKPM), using an antibody specific to IQGAP1 (n=1). 
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Figure 3.8-7:- Expression of IQGAP1 in the xenograft tumours. 

Xenograft tumours derived from; (A) DLKP implanted with (i) 1x106 cells (ii) 5x106 cells, (B) 

DLKPSQ implanted with (i) 1x106 cells (ii) 5x106 cells, (C) DLKPI implanted with (i) 1x106 cells 

(ii) 5x106 cells and (D) DLKPM implanted with (i) 1x106 cells (ii) 5x106 cells. Immunoreactivity 

was observed in all tumours, using an antibody specific to a IQGAP1 (Magnification, x400; scale 

bar = 200µm). 
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3.8.4 Expression of INA in vivo 

Expression of INA was previously studied in DLKP and its clones (see section 3.2.6). 

The expression of INA was examined in xenograft tumours derived from DLKP and its 

clones. 

Immunohistochemistry was carried out to determine the expression of INA in paraffin 

embedded sections of the xenograft tissues. Figure 3.8-8, shows staining for INA in 

xenograft tissues in (A) DLKP, (B) DLKPSQ, (C) DLKPI and (D) DLKPM. The 

expression pattern of INA in the xenografts is in line with expression observed by 

Western blot validations of cultured cells, with expression observed in tumours derived 

from DLKP, DLKPSQ and DLKPM. Highest expression appears to be in DLKP and is 

absent in DLKPI, this indicates that DLKP and its clones retained their expression of INA 

under in vivo. 
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Figure 3.8-8:- Expression of INA in the xenograft tumours. 

Xenograft tumours derived from; (A) DLKP implanted with (i) 1x106 cells (ii) 5x106 cells, (B) 

DLKPSQ implanted with (i) 1x106 cells (ii) 5x106 cells, (C) DLKPI implanted with (i) 1x106 cells 

(ii) 5x106 cells and (D) DLKPM implanted with (i) 1x106 cells (ii) 5x106 cells. Immunoreactivity 

was observed in tumours derived DLKP, DLKPSQ and DLKPM, with the strongest staining 

observed in DLKPSQ tumours, using an antibody specific to INA (Magnification, x400; scale 

bar = 200µm). 
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3.8.5 Expression SPR in vivo 

Expression of SPR was previously studied in DLKP and its clones (see section 3.2.7). 

The expression of SPR was examined in explanted tumour cells and xenograft tumours 

derived from DLKP and its clones. 

Western blot analysis was carried out to establish the expression of SPR in membrane 

enriched fractions which were prepared from cells recovered from xenograft tumours via 

explant culture. Figure 3.8-9 confirmed expression of SPR in recovered cells (DLKPt, 

DLKPSQta, DLKPIt and DLKPMt) compared to cells cultured under control conditions 

(DLKP, DLKPSQ, DLKPI and DLKPM). Expression of SPR was maintained in all cell 

lines derived from tumours, with explanted DLKPt and DLKPSQta having highest 

expression.  

Immunohistochemistry was carried out to determine the expression of SPR in paraffin 

embedded sections of the xenograft tissues. Figure 3.8-10 shows strong staining for SPR 

in xenograft tissues in (A) DLKP, (B) DLKPSQ, (C) DLKPSQ and (D) DLKPM. The 

expression pattern of SPR in xenografts is broadly in line with expression seen in Western 

blot validations, indicating all cell lines maintained expression of SPR in vivo. 
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Figure 3.8-9:- Expression of SPR in the explanted DLKP tumour cells. 
Represents expression of SPR in membrane enriched fractions from explanted tumour cells 

(DLKPt, DLKPSQta, DLKPIt and DLKPMt) compared to control cells (DLKP, DLKPSQ, 

DLKPI and DLKPM), using an antibody specific to SPR (n=1). 
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Figure 3.8-10:- Expression of SPR in the xenograft tumours. 

Xenograft tumours derived from; (A) DLKP implanted with (i) 1x106 cells (ii) 5x106 cells, (B) 

DLKPSQ implanted with (i) 1x106 cells (ii) 5x106 cells, (C) DLKPI implanted with (i) 1x106 cells 

(ii) 5x106 cells and (D) DLKPM implanted with (i) 1x106 cells (ii) 5x106 cells. immunoreactivity 

was observed in all cell lines with DLKPSQ and DLKPM derived tumours showing strongest 

staining, using an antibody specific to SPR (Magnification, x400; scale bar = 200µm). 
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4.1 DLKP and its clonal subpopulations 

It is well established that primary and metastatic tumours are heterogeneous in nature and 

are home to subpopulations of cancer cells that differ in their genetic, phenotypic and 

behaviour characteristics. Two theories have been described to explain the establishment 

and maintenance of tumour heterogeneity; the cancer stem cell (CSC) theory and the 

clonal evolution/selection model. Both had been thought to be exclusive from each other, 

however, the processes are now believed to be potentially complementary. Heterogeneity 

in tumours can limit therapeutic efficacy and lead to resistance to therapies [88-90]. 

DLKP is a cell line established from the lymph node metastasis of a primary lung tumour 

histologically, described as a poorly differentiated squamous cell carcinoma. In early 

studies, DLKP was found to contain at least three morphologically distinct 

subpopulations, DLKPSQ, DLKPI and DLKPM. DLKPSQ resembled a squamous like 

morphology, with distinct cell boundaries and a cobble stone appearance. DLKPM 

resembled mesenchymal appearance with and fibroblast-like morphology, while DLKPI 

grew in tightly packed colonies with indistinct cell boundaries. The ratio of clones present 

within the DLKP parental cell line seems to be tightly controlled through a proposed 

model of interconversion [93]. This model proposed that DLKPSQ may convert to 

DLKPI and DLKPI may convert with DLKPM (and vice versa). Initial observations 

suggest that DLKPSQ and DLKPM they must pass through the DLKPI ‘phase’ first. The 

mechanism that allows the DLKP clones to interconvert remains unknown, but further 

investigations should be carried out in order to investigate interconversion in the DLKP 

clones. However, this model of interconversion could suggest also that DLKP may also 

represent a possible in vitro model of EMT. These observations suggested that DLKPI 

may resemble a potential stem cell-like population in DLKP given its ability to 

interconvert and give rise to both DLKPSQ and DLKPM cells. A core property of a stem 

cell is one with a self-renewal capacity and expression of specific cell surface markers. A 

number of different markers have been identified for lung cancer stem cells including 

ALDH1A1, CD177 and EpCAM. ALCAM has also been suggested as a putative stem 

cell marker for NSCLC [122, 123]. ALCAM is expressed in the DLKP clones but is 

expressed strongest in DLKPI and may, with further investigation, help confirm DLKPI 

as a stem cell population within DLKP (Figure 3.2-4). Expression of the cancer stem 

marker, ALCAM, may also suggest that the cancer stem cell model may fit the DLKP 

cell line model.  

https://www.rndsystems.com/search?common_name=Aldehyde%20Dehydrogenase%201-A1%2FALDH1A1
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The initial studies also indicated that DLKP should be classified as either; variant small 

cell lung carcinoma (vSCLC) or non-small cell lung carcinoma with neuroendocrine 

differentiation [93]. vSCLC is distinguished from classic SCLC by having large cell 

undifferentiated carcinoma, with large cells and prominent nucleoli [124]. One of the 

interesting findings of the comparative proteomic study performed in this thesis, was that 

the identified proteins were associated with a variety of cellular processes, some of the 

proteins that were identified and subsequently validated appear to have strong neuronal 

association (e.g. INA, SPR, AHNAK), but also that their expression appeared to be 

strongest in SCLC cell lines (see section 3.3.1). These findings appear to correlate with 

these suggestions made by McBride 1998. In addition, later studies carried out on DLKP 

and its clonal variants indicated that the clones displayed differences in the levels of in 

vitro invasion, migration and anoikis resistance. Also, differences in its expression of key 

proteins associated with cancer progression were also found to be different between the 

clones. The DLKPSQ clone displays a poor invasive and migratory capacity, is anoikis 

resistant in vitro and displays low level expression of integrin αv. The DLKPM clone 

displays a high invasive and migratory capacity but is anoikis sensitive. The DLKPI clone 

displays an intermediate level of invasive and migratory capacity, with an intermediate 

ability to resist anoikis [95]. Anoikis is a Greek word used to describe the loss of a ‘home’ 

or ‘homelessness’[125]. Effectively, anoikis is a form of apoptosis which is induced by 

loss of attachment of cells from its ECM or by attachment to the incorrect ECM. However, 

some tumour cells have the ability to ‘resist anoikis’. Anoikis resistance is one of the 

hallmarks of cancer progression. If tumour cells resist anoikis they may develop the 

ability to survive in suspension or under anchorage-independent conditions. Cells given 

the ability to grow under these conditions may be able to disseminate throughout the body 

and give rise to metastasis [126]. Under normal conditions, anoikis is a control 

mechanism to prevent cells from colonizing elsewhere in the body, for this reason, the 

process of anoikis has been described as a physiologically relevant process in tissue 

homeostasis and development [127]. In gastric and ovarian cancers, it has been reported 

that anoikis is important for the peritoneal dissemination of cells [128, 129]. Interestingly, 

results from the DLKP in vivo study appear to suggest that the anoikis resistant cell line, 

DLKPSQ, appeared to display peritoneal dissemination of cells. There are a number of 

mechanisms whereby cells develop the ability to resist anoikis, one of those is through 

the loss of adhesion through integrin mediated cell-matrix attachment [130, 131]. 
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DLKPI and DLKPM both display high adherence capacity to bind fibronectin and 

vitronectin, potentially explained by their increased expression of integrin αv. Integrins 

are heterodimeric cell surface receptors that are involved in signal transduction. In 

addition, integrins also function to mediate attachment of cells to their substratum, e.g. 

integrin αvβ3 functions as a receptor for proteins with exposed Arg-Gly-ASP tripeptide, 

examples of such proteins include; fibronectin, vitronectin, fibrinogen, laminins and 

collagens. It has been reported that integrin αvβ3 binds MMP-2 and co-localises with 

degraded collagen type 1 [132]. Matrix metalloproteases (MMPs) are a diverse family of 

endopeptidases, which are enzymes capable of breaking down components of 

extracellular matrix (ECM). Common properties of MMPs are their dependence on zinc 

in the catalytic site for activity but also they are generally synthesised as inactive 

zymogens that require proteolytic cleaving to become active. They are known to be 

expressed in normal tissues only when and where they are required e.g. wound healing 

and embryonic development. However, aberrant expression of MMPs has been associated 

with roles tumour cell invasion and metastasis [133]. Differences in expression of MMP2 

and MMP10 was observed between the DLKP clones [96].   

Previous attempts were made to identify specific markers for the clones, through 

Immunocytochemical methods. A marker would serve to identify the individual clones 

from each other in a mixed population.  Therefore, to select a protein that is specific to 

one of the clones (i.e. a marker), ideally, it would be expressed in one or two of the clones, 

not in all three. To date, no specific markers have been identified that can allow us to 

distinguish the individual DLKP clones. Quantitative proteomic analysis potentially 

allows for the identification of differentially expressed proteins between the DLKP clones 

and thus could potentially act as markers for the individual clones. Also, identification of 

such membrane protein markers could provide the means to study the previously 

proposed model of interconversion between the clones, as well as their potential 

involvement in cell invasion and migration. This study also presents an opportunity to 

identify potentially novel membrane associated proteins that could be associated with 

lung cancer. The phenotypic differences of DLKP and its clones present a prime 

opportunity to investigate both heterogeneity in lung cancer, but also the mechanisms 

associated with lung heterogeneity, in vitro.  
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4.2 Proteomic analysis of DLKP and its subpopulations 

To identify proteins that could act as potential markers for the DLKP clones and also 

potentially novel proteins associated with lung cancer, the comparative proteomic 

analysis was carried out on DLKP, DLKPSQ, DLKPI and DLKPM cell lines. In this 

study, the four cell lines were grown in triplicate under standard culture conditions until 

approx. 90% confluent. To ensure cells were healthy, the cell culture media was changed 

the day before processing (section 2.2.1). Isolated proteins were then prepared for LC-

MS/MS as described in section 2.2.2 and 2.2.3. Peptide identification was performed 

using proteome discoverer 2.0 against MASCOT and SEQUEST databases against the 

UniProtKB-SwissProt database. Comparative proteomic analysis was performed using 

Progenesis label-free software to identify proteins from 3 biologicals and 3 technical 

replicates of the 4 cell lines (DLKP, DLKPSQ, DLKPI and DLKPM) (section 2.2.4). 

Principle component analysis (PCA) revealed good separation of the cell lines and each 

of the replicates into their corresponding groups, indicating that the isolation and 

subsequent proteomic analysis performed in this study was robust and reproducible 

(section 3.1.2). 

A proteomic profile of proteins associated with the cell membrane of the DLKP and its 

clones was developed in vitro. Six lists of differentially expressed protein lists were 

generated from comparative proteomic analysis of DLKP vs. DLKPSQ, DLKP vs. 

DLKPI, DLKP vs. DLKPM, DLKPSQ vs. DLKPI, DLKPSQ vs. DLKPM and DLKP vs. 

DLKPI. Six statistically significant differentially expressed proteins were identified in 

DLKP and the DLKP clones (SQ, I and M); AHNAK, ROBO2, ALCAM, IQGAP1 and 

SPR (see section 3.1.3), ), less stringent criteria revealed HDGF as having statistical 

significance (p= 0.0302) and was also chosen for validation studies (see section 3.1.4). 

The objective of this analysis was to find proteins that could potentially be used as 

markers for the DLKP clones and, in addition, identify novel proteins associated with 

lung cancer. Proteins showing membrane association could be (with further investigation 

and validation) extrapolated to other tumour types and may lead to the identification of 

novel targets for treatment of other lethal cancers such as pancreatic cancer. Table 4.2-1 

below indicates the comparison from which each protein was identified. Two further 

proteins INA and SLIT2 were added to the panel of proteins selected for validation 

studies. Early studies suggested that DLKP could be classified as a non-small cell lung 

carcinoma with neuroendocrine differentiation. Another comparative proteomic study 

found INA to be increased in DLKPSQ vs. DLKPM (~2.5-fold). Increased INA 
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expression was recently associated with pancreatic neuroendocrine cancer tumour 

aggressiveness [104], hence why INA was selected for validation. ROBO2 acts as a 

receptor for SLIT2 and both of these genes were identified by microarray analysis of the 

DLKP clones previously carried out in our laboratory, thus both proteins were validated 

in this thesis [96]. 

 

Selected proteins for validation studies: identified from comparative proteomic 

analysis of DLKP and its clones 

Gene 

name 
Protein Name 

DLKP 

vs. 

DLKPSQ 

DLKP 

vs. 

DLKPI 

DLKP 

vs. 

DLKPM 

DLKPSQ 

vs. 

DLKPI 

DLKPSQ 

vs. 

DLKPM 

DLKPI 

vs. 

DLKPM 

AHNAK 

Neuroblast 

differentiation 

associated 

protein 

5.0 5.5 --- 10 8.0 --- 

ALCAM 

Activated 

leukocyte cell 

adhesion 

molecule 

--- --- 5.9 24.3 --- 30.2 

HDGF 

Hepatoma 

derived growth 

factor 

--- 2.2 --- --- --- --- 

IQGAP1 

Ras GTPase 

activating-like 

protein 1 

1.7 7.6 8.9 --- --- --- 

ROBO2 
Roundabout 

Homolog 2 
--- --- 60.6 21.8 --- 26.9 

SPR 
Sepiapterin 

Reductase 
--- --- --- 3.6 --- --- 

Table 4.2-1:- Summary of all proteins selected for validation studies. 
The table above indicates the proteins identified from the comparative proteomic analysis as 

potential markers for DLKP. Proteins are organised in alphabetical order, the list/s from which 

they came and their fold change. 

4.2.1 Neuroblast differentiation-associated protein 

Neuroblast differentiation-associated protein (AHNAK) or desmoyokin, is an 

exceptionally large protein (~629kDa), originally identified as a nuclear phosphoprotein 

in human neuroblastomas and skin epithelial cells. It has been reported as a membrane 

scaffold protein with three structurally distinct regions; an amino-terminal (500 amino 

acids), a large central region (4388 amino acids) and a carboxyl-terminal 1003 amino 

acids [134]. The specific localisation of AHNAK is controversial, with studies reporting 

localisation to the nucleus, Golgi apparatus, cytoplasm and association with the plasma 
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membrane. Its translocation from the cytoplasm and the plasma membrane in the Ca2+ 

and Protein Kinase C dependent manner in keratinocytes may potentially explain 

AHNAK’s ability to localise to different sites in the cell [135]. It has also been reported 

that in the presence of arachidonic acid, AHNAK binds and activates phospholipase C-

γ1 [136], a protein believed to play a key role in cell migration and invasion [137]. It also 

acts as a key molecular switch in the regulation of tumour migration [138]. AHNAK was 

recently found to be essential for pseudopodia formation and tumoural 

migration/invasion [134]. One study in mesothelioma showed that siRNA knockdown of 

AHNAK induced pseudopodia retraction, inhibited cell migration and invasion, reduced 

actin cytoskeleton dynamics and induced mesenchymal to epithelial transition [139]. 

Chen et al., reported that the AHNAK gene was among eight genes to show an association 

with relapse-free survival in lung and breast cancer patients treated with chemotherapy 

[140]. 

AHNAK was chosen as a potential marker for DLKPI or DLKPM, based on its 

comparative proteomic analysis carried out in section 3.1.3. AHNAK protein expression 

was increased in DLKP vs. SQ (increased in DLKP 5 fold), DLKP vs. DLKPI (increased 

in DLKPI 5.5 fold), DLKPSQ vs. DLKPI (increased in DLKPI 9.3 fold) and DLKPSQ 

vs. DLKPM (increased in DLKPM 8 fold). The large size of AHNAK made it difficult 

for validation by Western blot analysis and Immunohistochemistry. A number of attempts 

were made using gels that allow for the separation of high molecular weight proteins and 

the use of two separate antibodies targeting AHNAK. It was not possible to identify the 

AHNAK reactive band and staining of formalin fixed paraffin embedded tissues did not 

reveal AHNAK immunoreactivity. However, Immunofluorescence staining did show 

membrane immunoreactivity for AHNAK (see section 3.2.1), with high expression 

observed in both DLKPI and DLKPM compared to DLKP. Also, lower expression levels 

were observed in DLKPSQ, where individual cells showed strong membrane 

immunoreactivity. This could indicate a potential subpopulation within DLKPSQ. 

Survival analysis was carried out using the BreastMark algorithm to evaluate AHNAK 

expression in Luminal A, Luminal B, Her2+ and Basal-like molecular subtypes of breast 

cancer. The analysis indicates a significant association of AHNAK expression with 

outcome in patients with Luminal B (p=0.032) breast cancer (Figure 3.2-8). AHNAK has 

been reported to function as a tumour suppressor in breast cancer due to its involvement 

as a mediator of TGFβ signalling leading to cell cycle arrest. Mechanistic studies 

performed by Lee et al., indicated that TGFβ-induced nuclear translocation of AHNAK 
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leads to potentiation of R-Smad function and downregulation of c-Myc and cyclin D1/D2 

as well as inhibition of cell growth [141]. While the comparative proteomic analysis 

indicated differential expression of AHNAK within the DLKP clones, the subsequent 

validation studies confirmed high expression in DLKPI and DLKPM cells. AHNAK 

expression was also observed in DLKP and DLKPSQ cell lines, but membrane 

immunoreactivity was only observed in a specific population of these cell lines (see 

Figure 3.2-1). This may indicate the presence of further subpopulations in DLKP and 

DLKPSQ. Further investigations could include cell sorting using a fluorescent-activated 

cell sorting (FACS) to characterise any potential subpopulations. However, AHNAK 

would not serve as a good marker for identification of the individual DLKP clones. There 

is still little known about the role of AHNAK in lung cancer and could be investigated 

further in the DLKP cell line model by use of inhibitors targeting PI3K/MAK/MTOR 

pathways or through the use of siRNA mediated knockdown of the AHNAK gene. 

4.2.2 Hepatoma-derived growth factor 

Hepatoma-derived growth factor (HDGF) has a molecular weight of approximately 

37kDa. HDGF is a heparin-binding growth factor originally purified from media 

conditioned with the human hepatoma cell line HuH-7. Its precise function is unclear, 

however, HDGF is believed to translocate to the nucleus which is essential for its effect 

on cell growth by binding to DNA using its PWWP motif [142]. HDGF lacks the N-

terminal hydrophobic sequence that is characteristic of most signal proteins, therefore 

suggesting that HDGF is secreted via an alternative pathway and is independent of the 

golgi secretion system. [143-145].  

HDGF was selected as a potential marker for DLKP based on its comparative proteomic 

data which compared protein expression in DLKP vs. DLKPI (see appendix 1.1). A 

putative receptor for HDGF has not been established [105]. However, part of the HATH 

region, containing 80-100 amino acids, has been proposed as a potential receptor binding 

site [146]. Immunocytochemical analysis and Western blot analysis subsequently 

confirmed highest expression of HDGF in DLKP compared to DLKPSQ, DLKPI and 

DLKPM (Figure 3.2-2). Levels of expression in the clones appear to be similar. HDGF 

was initially isolated from conditioned medium (CM) of HuH-7 cells and its secretory 

expression seems to correlate with the high levels of HDGF in CM generated from DLKP 

and its clones.  
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There are accumulating findings suggesting that HDGF is closely related to the aggressive 

biological potential of cancer cells and could be of prognostic value for patients with 

pancreatic cancer [147]. In the studies presented in this thesis, HDGF expression was 

investigated across representative tumour cell line panels from lung cancer (Figure 3.3-1), 

TNBC (Figure 3.3-6), pancreatic cancer (Figure 3.3-9), colon, glioma and melanoma 

(Figure 3.3-12). Results indicate that higher expression of HDGF may be associated with 

a more invasive/metastatic phenotype, in vitro. The invasive MiaPaCa2 Clone3 showed 

increased expression compared to the less invasive MiaPaCa2 parent and high expression 

was also observed in AsPc-1; a pancreatic cancer cell line derived from a metastatic 

ascites (www.atcc.org) and in the metastatic colon cell line (SW620) compared to its 

primary cell line counterpart (SW480). High expression was observed in LoxIVMI, a cell 

line derived from a metastatic melanoma. Survival analysis was carried out using the 

BreastMark algorithm to evaluate HDGF expression in Luminal A, Luminal B, Her2+ 

and Basal-like molecular subtypes of breast cancer. The analysis indicated that low 

expression of HDGF was associated with better outcome in patients with Luminal A 

breast cancer (Figure 3.2-9). High expression of HDGF was observed across a 

representative panel of cell lines: basal-like 1, basal like 2, mesenchymal and 

mesenchymal-like TNBC cancer cell lines. Validation studies confirmed increased 

expression of HDGF in DLKP and similar levels observed across the clones. Therefore, 

HDGF could not act as a selective marker to distinguish the individual DLKP clones. 

However, the preliminary evidence relating to HDGF expression in TNBC suggest a 

potential association with invasiveness, in vitro (Figure 3.3-6). Further investigations into 

the role for HDGF in metastatic cancers such as pancreatic, breast, colon or lung cancer 

should be performed. 

4.2.3 SLIT2 and ROBO2 

SLIT2 belongs to the Slit family of large extracellular matrix-secreted glycoproteins and 

consists of 3 genes (slit1, slit2, and slit3). The slit2 gene is located on chromosome 4p15.2 

and acts as a ligand for the repulsive guidance receptors, the robo gene family (robo1-4) 

[148]. SLIT2 interacts with ROBO1 and possibly ROBO2 receptors. SLIT–ROBO 

interactions are believed to play an important role in axon guidance in the central nervous 

system, but in human cancers, the slit2 gene is frequently inactivated by 

hypermethylation in its promoter region or allele loss in the lung, breast, colorectal 

cancers and malignant gliomas. This suggests a tumour-suppressive role for SLIT2, 

which inhibits cell migration and invasion in breast cancer and medulloblastoma [149]. 



 

209 

 

Studies in breast cancer and lung cancer have shown that SLIT2 elicits its tumour 

suppressor effects by its regulation of β-catenin and PI3K/Akt signalling pathways. In 

breast cancer, this regulation has shown to enhance β-catenin/E-cadherin-mediated cell-

cell adhesion [148, 150].   

ROBO2 was selected as a potential marker for DLKPI based on the comparative 

proteomic data analysis of DLKP vs. DLKPSQ (increased in DLKP ~57-fold), DLKP vs. 

DLKPM (increased in DLKP ~61-fold), DLKPSQ vs. DLKPI (increased in DLKPI ~22-

fold) and DLKPI vs.  DLKPM (increased in DLKPI ~27-fold), see section 3.1.3. Not only 

did ROBO2 appear in this differentially expressed proteomic analysis, but also in 

microarray analysis previously carried out by Dr. Helena Joyce indicated that ROBO2 

was overexpressed in DLKPI cells. Unpublished proteomic analysis performed on CM of 

DLKP and the clones also suggests secreted ROBO2 is increased in DLKPSQ and 

DLKPM compared to DLKP and DLKPI, providing supporting evidence for carrying out 

validation studies. 

The expression of both SLIT2 and ROBO2 was investigated in the DLKP cell line model 

using Immunofluorescence, Western blot analysis and Immunocytochemistry. SLIT2 and 

ROBO2 expression was highly varied across the DLKP clones. High expression of SLIT2 

was observed in DLKP and DLKPM only, with a lower level of expression observed in 

DLKPSQ and DLKPI. Western blot analysis indicated that expression of SLIT2 is highest 

in DLKPM and suggesting a potential use as a marker for DLKPM (Figure 3.2-3). SLIT2 

is a secreted protein and this was confirmed by Immunofluorescence and 

Immunocytochemical analysis, where immunoreactivity was visually observed in the 

extracellular space surrounding DLKP, DLKPI and DLKPM cells. To investigate a 

potential role for SLIT2 in the invasive process of DLKPI and DLKPM, siRNA 

transfections targeting SLIT2 were carried out. However, inconclusive results were 

observed following invasion assays (data not shown). Further investigations should be 

carried out to establish a functional role, if any, for the SLIT/ROBO signalling system in 

DLKP (e.g. this could include overexpression of SLIT2 in DLKPSQ). SLIT2 and ROBO2 

were investigated in parallel as potential markers for the DLKP clones. Following 

validation studies, expression was confirmed in DLKP and its clones. While a correlation 

of expression was observed between ROBO2 and SLIT2 in the DLKP cell line model, 

both, SLIT2 and ROBO2 expression was not considered specific enough to be able to 

identify the individual clones and was not carried forward as a potential marker for DLKP 

clones. 
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4.2.4 Ras-GTPase-activating-like protein 1 

Ras-GTPase-activating-like protein 1 (IQGAP1) is a scaffolding protein that binds to 

actin, which functions to cross-link and stabilise actin filaments through its calponin 

homology domain. IQGAP1 is approximately 189kDa and is a member of the IQGAP 

family of proteins of which three isoforms have been described in humans: IQGAP1, 

IQGAP2 and IQGAP3. IQGAP1 is the best characterized and the most widely studied. It 

is believed that they interact with signalling and structural molecules and are usually 

overexpressed in metastatic breast cancer [111] and advanced colorectal cancer [151]. 

IQGAP1 localizes to sites of cell–cell contact in epithelial cells and has been shown to 

regulate E-cadherin-mediated cell–cell adhesion as well as a number of signal 

transduction pathways, including Ca2+/ calmodulin, CDC42 and Rac MAPK and 

mTORC1–Akt. IQGAP1 shows elevated levels in a variety of cancer types, including 

pancreatic cancer [152, 153]. Jameson et al., investigated tumour formation in IQGAP1 

-/- mice with RAS-driven cancer and their studies indicated that there was diminished 

tumour formation in the knock out mice [154].  

IQGAP1 was selected as a potential marker for the DLKP clones based on comparative 

proteomic analysis of DLKP vs. DLKPSQ (increased in DLKPSQ ~1.7-fold), DLKP vs. 

DLKPI (increased in DLKPI ~8-fold), DLKP vs. DLKPM ~9-fold) and DLKPSQ vs. 

DLKPM (increased in DLKPM ~6.2-fold) see section 3.1.3. Unpublished proteomic 

analysis performed by Dr. Joanne Keenan in our laboratory also indicated that IQGAP1 

was present in CM of DLKP and the clones. A further reason for selecting IQGAP1 for 

validation studies was its reported interaction with ALCAM [112]. 

Immunofluorescence, Western Blot analysis and Immunocytochemical analysis 

confirmed that expression of IQGAP1 was highest in DLKPI and DLKPM compared to 

both DLKP and DLKPSQ (Figure 3.2-5). A good marker would theoretically allow for 

the identification of one clone from another in a mixed culture because IQGAP1 was 

expressed in all DLKP cell lines it would therefore not serve as a good choice. Jannie 

(2012) reported that ALCAM co-localised with N-cadherin, and, with IQGAP1 bound to 

the cytoplasmic tail of ALCAM, it elicits an effect on β-catenin. High expression of N-

cadherin had been previously shown in DLKPI, but also at lower levels in DLKP, 

DLKPSQ and DLKPM. ALCAM and N-cadherin appear to display a similar pattern of 

expression in DLKP and the clones. This suggests that, as proposed by Jannie (2012), 

IQGAP1 may interact with ALCAM and NCAD in DLKP, this potential interaction 

would need to be compared through immunoprecipitation. 
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4.2.5 Activated Leukocyte Cell Adhesion Molecule  

Activated leukocyte cell adhesion molecule (ALCAM) is a 105kDa protein that belongs 

to the immunoglobulin superfamily and is expressed by epithelial cells in several organs 

with reported functions in embryogenesis, angiogenesis, haematopoiesis and the immune 

response [155]. Originally, ALCAM was discovered as a ligand for CD6 in leukocytes 

[156] and is known to mediate both heterophilic (ALCAM-CD6) and homophilic 

(ALCAM-ALCAM) cell-cell interactions. ALCAM expression has been correlated with 

invasiveness of malignant melanoma and has been proposed as a prognostic marker of 

melanoma, prostate cancer, breast cancer, colorectal cancer, bladder cancer, oesophageal 

squamous cell carcinoma and ovarian cancer [157].  However, reports relating to tumour 

expression of ALCAM are conflicting, with one study suggesting that membranous 

expression in colorectal cancer appears to correlate with a shortened patient survival 

[158]. However, another suggests cytoplasmic localisation in breast cancer correlates 

with poorer patient outcome [159]. To investigate the association of ALCAM with 

survival in breast cancer, we used the BreastMark algorithm to evaluate ALCAM 

expression in Luminal A, Luminal B, Her2+ and Basal-like molecular subtypes of breast 

cancer. The analysis did not indicate significance in association with ALCAM expression 

in the molecular subtypes of breast cancer (Figure 3.2-12), therefore ALCAM was not 

investigated in the panel of TNBC cell lines. 

ALCAM was selected as a potential marker for DLKPI based on its comparative 

proteomic analysis of DLKP vs. DLKPI (increased in DLKPI ~19 fold), DLKP vs. 

DLKPM (increased in DLKP ~6-fold), DLKPSQ vs. DLKPI (increased in DLKPI ~24-

fold) and DLKPI vs. DLKPM (increased in DLKPI ~30-fold) see section 3.1.3. The stem 

cell theory proposes that a subpopulation of tumour cells initiates and maintains the 

tumour due to its ability to undergo asymmetrical divisions [122]. A number of studies 

have identified ALCAM as a lung cancer stem cell marker, other markers include 

aldehyde dehydrogenase isoform 1 (ALDH1), CD133 and CD44. The proteins have also 

been investigated as potential stem cell markers in colorectal cancer, melanoma, 

glioblastoma, ovarian and breast cancer. [110]. ALCAM has also been associated with 

colorectal cancer stem cells [160, 161]. Tachezy et al., reported that ALCAM expression 

was more frequent in smaller tumours without lymph node metastasis and with a benign 

grading that didn’t affect patient survival. They suggested that this was not consistent 

with a cancer stem cell, but instead reported ALCAM as an ‘inert’ cancer stem cell marker 

for NSCLC [122]. As an intermediate subpopulation in DLKP and with a potential ability 
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to give rise to DLKPSQ and DLKPM cells through interconversion, it was previously 

proposed that the DLKPI resembled a stem cell population in DLKP. There is little known 

about the function of ALCAM in lung cancer, so we wanted to investigate if ALCAM 

played a role in the invasion process in DLKP. Previous microarray and proteomic 

analyses indicate that ALCAM was highly overexpressed in DLKPI only and increased 

shedding of ALCAM from DLKPSQ and DLKPM cells was observed compared to DLKP 

and DLKPI, in conditioned media. sALCAM is a soluble isoform of ALCAM that is 

thought to be produced by alternative splicing. It is believed to play a regulatory effect 

on ALCAM may function but also potentially modulate endothelial function through 

ALCAM-dependent and ALCAM-independent pathways [109]. Immunofluorescence, 

Western blot analysis and immunocytochemical analyses confirmed that expression of 

ALCAM was highest in DLKPI while DLKP, DLKPSQ and DLKPM showed low levels 

of expression. Expression in CM did correlate with expression observed in the whole cell 

lysate and membrane enriched fractions (Figure 3.2-4). Soluble ALCAM (sALCAM) is 

believed to have a lower molecular weight than ALCAM [109].  Western blot analysis, 

using an ALCAM specific antibody revealed an additional band at approximately 60kDa 

(data not shown) in CM of DLKP, DLKPSQ, DLKPI and DLKPM and with higher 

expression in DLKPSQ. This band may represent sALCAM and potentially indicate its 

presence in the conditioned medium. To confirm this result, a Western blot analysis could 

be carried out using an antibody specific to sALCAM. 

We investigated a possible role for ALCAM in the invasive process of DLKPM, DLKPI 

and DLKPSQ-mitox-BCRP-6P, using siRNA knockdown of ALCAM. As previously 

shown in the validation experiments in section 3.2.4; DLKPI displayed the highest levels 

of ALCAM, while DLKPM showed lower expression levels compared to DLKPI. Dr 

Helena Joyce developed the DLKPSQ-mitox-BCRP-6P cell line after pulsing DLKPSQ 

with mitoxantrone. Subsequent characterisation of this cell line by Western blot analysis 

and Immunofluorescence analysis indicated increased expression of ALCAM in the drug 

resistant variant compared to DLKPSQ, its parental cell line (Helena Joyce PhD). In 

addition, DLKPSQ-mitox-BCRP-6P was also shown to have an increased ability to 

invade in vitro. It was therefore thought that DLKPSQ-mitox-BCRP-6P would be a good 

candidate cell line to investigate the role of ALCAM in lung cancer. There was no effect 

on proliferation in both DLKPSQ and DLKPM cell lines following siRNA knockdown 

of ALCAM, indicating that ALCAM does not appear to play a role in the growth of DLKP 

SQ or DLKPM. 
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4.2.5.1 Effect of ALCAM siRNA knockdown in DLKP 

High expression of ALCAM in DLKPI made it challenging for transient siRNA 

knockdown studies. Western blot analysis showed only a partial reduction of ALCAM at 

the protein level, with very little functional effect on proliferation and invasion. However, 

a reduction in protein levels occurred in both DLKPSQ-mitox-BCRP and in DLKPM, 

showing opposing roles in these cell lines. In DLKPSQ-mitox-BCRP-6P, an increase in 

invasion was observed following knockdown of ALCAM, with a significant increase 

observed using ALCAM-2 siRNA (p=0.0040) see section 3.4.1.1. A reduction in invasion 

was observed following siRNA knockdown of ALCAM in DLKPM, with a significant 

decrease shown using ALCAM-2 siRNA (p= 0.0041) see section 3.4.1.2. As discussed, 

there are contradictive roles for sALCAM and ALCAM in human cancers. sALCAM is 

reported to attenuate invasion of metastatic melanoma BLM cells [161, 162] but promotes 

invasion of glioblastoma [163]. In breast cancer ALCAM expression has been associated 

with suppression of invasion of breast cancer cells [164], while ALCAM promotes 

tumour cell invasion of glioblastoma cells. Membranous expression of ALCAM 

enhanced invasion and migration of NSCLC cells in vitro and was associated with poor 

survival of patients with NSCLC [165]. In this study, we have shown that invasion is 

significantly reduced in DLKPM and significantly increased in drug resistant cell line 

DLKPSQ-mitox-BCRP-6P. Our results suggest that siRNA knockdown of ALCAM does 

not affect cell growth but may have opposing roles in cancer cell invasion within a lung 

cancer cell line model, thus reflecting the contradicting roles for ALCAM reported in the 

literature.  

4.2.6 Alpha-Internexin 

Alpha-Internexin (INA) is a 66-kDa intermediate filament protein that maps to 

chromosome 10q24.33.  It is a component of the primary neurofilament triplet proteins 

of the central nervous system which include neurofilament subunits of low molecular 

weight (68kDa), a middle molecular weight (160kDa) and a high molecular weight 

(205kDa). To date, INA has mainly been investigated in cancers related to the brain such 

as Glioblastoma [166], Oligodendroglioma [113, 167] and medulloblastoma [168].  Using 

gene expression arrays, Ducray et al (2011) found that neuronal associated proteins were 

preferentially expressed in gliomas that were 1p19q codeleted and of these genes INA 

was one of the most differentially expressed [169], suggesting that INA may act as a 

surrogate marker for the 1p19q co-deletion. However, a recent study hypothesized that 

INA could be expressed in pancreatic neuroendocrine tumours (PNETs) [104]. Shirley 
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McBride initially characterised DLKP and suggested that DLKP should be classified as 

either a variant small cell lung carcinoma or non-small cell lung carcinoma with 

neuroendocrine differentiation [93]. This association led us to investigate the expression 

and a potential role of INA in the lung cancer cell line model DLKP. Presently, there are 

no reports relating to a functional role for INA in lung cancer.  

4.2.6.1 Effect of siRNA knockdown of INA on DLKPSQ and DLKPM 

Increased expression of INA has been associated with pancreatic neuroendocrine cancer 

tumour aggressiveness. A previous comparative proteomic study carried on DLKP cell 

line model in our laboratory found INA to be increased in DLKPSQ vs. DLKPM (~2.5-

fold). As previously stated, early studies suggested that DLKP could be characterised as 

a non-small cell lung carcinoma with neuroendocrine differentiation. INA was chosen for 

validation based on its recent association with PNETs.  

Western blot analysis, Immunofluorescence and Immunocytochemical analysis 

confirmed expression of INA was highest in DLKPSQ compared to both DLKP and 

DLKPM, with the lowest expression seen in DLKPI, see section 3.2.6. To investigate 

whether INA expression had a functional role in invasion and migration in the DLKP 

lung cancer cell line model, siRNA knockdown of the INA gene was carried out in two 

of the DLKP clones, DLKPSQ and DLKPM. DLKPSQ displays highest levels of INA 

expression and DLKPM which showed lower INA expression. There was no effect on 

proliferation in both DLKPSQ and DLKPM cell lines following siRNA knockdown of 

INA, indicating that INA does not appear to play a role in the growth of both cell lines. 

Two independent siRNAs were used to knockdown INA in DLKPSQ. The invasive and 

migratory ability of DLKPSQ, using both INA-6 and INA-8 siRNAs remained unchanged 

following transfection (see section 3.4.2.1). By comparison, siRNA knockdown in 

DLKPM using four independent siRNAs resulted in a variety of effects. Firstly, a 

morphological change was observed with two out of four siRNAs. Under normal 

conditions, DLKPM cells are irregularly shaped with fibroblastoid-like morphology and 

do not appear to form colonies. This morphology has been suggested to be typical of 

highly invasive and motile cancer cells. However, in DLKPM cells that were transfected 

with INA-7, the cells appeared to display a more elongated morphology, whilst cells 

transfected with INA-9 cells became more isolated and lost their fibroblastoid-like 

morphology (see section 3.4.2.2). One of the biological functions of INA is its 

involvement in cellular differentiation (www.uniprot.org) and it has been shown to be 
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expressed in neuronal cells as they begin to differentiate [170]. This observation may be 

evidence of potential differentiation of DLKPM from a highly invasive to a less invasive 

phenotype. We then looked at the effect on invasion and migration following knockdown 

of INA in DLKPM. A reduction in the invasive capacity of DLKPM was observed 

following INA knockdown, a significant reduction using INA-7 (p=0.0021) and INA-9 

(p=0.0016), while a reduction was also observed for INA-6 (n=2). Migratory ability was 

also reduced following INA knockdown, significantly with INA-6 (p=0.024). However, 

an increase in the invasive and migratory ability was noted using INA-8 siRNA, 

significantly for migration using INA-8 (p=0.015 (n=3)). A decreased migratory ability 

was also noted for the remaining two siRNAs (INA-7 and INA-9 (n=2)) see section 

3.4.2.2. This, to our knowledge, is the first report associating INA with both invasion 

/migration of lung cancer in vitro, suggesting that INA may have a potential role in the 

invasion and migratory process of lung cancer. 

INA expression was investigated by Western blot analysis in panels of cell lines 

representing various tumour types including lung cancer (Figure 3.3-4), TNBC (Figure 

3.3-7), neuroblastoma and glioma (Figure 3.3-14). Investigation of INA expression across 

a panel of pancreatic ductal adenocarcinoma (PDAC) cell lines appeared to show no 

detectable levels of expression (results not shown). This is not surprising considering the 

only reported association of INA with pancreatic cancer has been an association with the 

aggressiveness of PNETs [104]. In addition, Immunohistochemical analysis performed 

on a small number of pancreatic cancer tissues were negative for INA immunoreactivity. 

These findings suggest that INA may not play a role in PDAC, but further investigation 

would need to be carried out in order to confirm this finding. In the panel lung cancer of 

cell lines, there was also a low level of expression of INA, with the exception of NCI-

H69, a SCLC cell line. Expression of INA in NCI-H69 is not unexpected considering it 

is reported to express neuronal markers such as neuronal cell adhesion molecule and 

neuroendocrine markers such as neuronal specific enolase, chromogranin A and 

synaptophysin [171]. In addition, a lung cancer tissue microarray (TMA) was 

immunohistochemically stained for INA expression. Overall immunoreactivity on the 

TMA showed very specific reactivity of individual cells in lung adenocarcinoma and 

squamous cell carcinoma. However, the most intense staining was observed in the lung 

neuroendocrine tissues see Figure 3.4-28. This result could potentially suggest specificity 

of INA for neuroendocrine cells within different lung tumour types and thus suggest that 

INA may represent a potential marker for neuroendocrine lung cancer. Further 
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immunohistochemical analysis would need to be carried out on a larger number of 

neuroendocrine tissues of different tumour types. 

To date, there have been no reports of INA expression in breast cancer. TNBC is an 

aggressive form of breast cancer with high rates of relapse and overall poor prognosis. 

Survival analysis using the BreastMark algorithm was carried out and indicated that high 

expression of INA was associated with better outcome in patients with Luminal B breast 

cancer (Figure 3.2-14). This was a surprising result since increased INA expression had 

been reported as a marker for tumour aggressiveness in PNETs. The expression of INA 

was investigated in a panel of cell lines representing various TNBC sub-types. INA 

specific bands were detected at ~60kda in 4 out of 10 cell lines; HCC-1937, HCC-1143 

(BL-1), HDQP-1 (BL-2) and MDA-MB-157 (MSL), whereas the remaining 6 cell lines 

displayed very low expression of INA (Figure 3.3-7). In the remaining cell lines, INA 

expression was also observed in the neuroblastoma (SK-N-SH) cell line relative to glioma 

(SNB-19) as shown in Figure 3.3-14. The findings in relation to INA appear to suggest 

that INA expression could be associated with neuroendocrine cancer and that INA has 

potential as a marker for neuroendocrine cancer. Schimmack et al., have investigated the 

clinical relevance of INA as a potential marker for gastroenteropancreatic neuroendocrine 

neoplasms [172]. It is tempting to suggest that the four TNBC cell lines showing reactivity 

for INA, could indicate a neuroendocrine association. To verify this association, further 

investigation would need to be carried out to confirm expression of neuronal markers in 

these cell lines. In addition to breast cancer, INA should be investigated further as a 

potential neuroendocrine marker in other cancers. 

4.2.6.2 Summary 

In summary, we have shown that siRNA knockdown of INA in DLKPM; (i) does not 

affect cell growth, (ii) induces morphological changes to a potentially less invasive 

phenotype that may be associated with differentiation and (iii) results in significant 

reduction of invasion and migration. Western blot analysis indicates that INA is expressed 

at low levels across representative tumour cell line panels including lung cancer and 

TNBC cell lines. IHC analysis of a lung TMA also indicates that INA is expressed at low 

levels in various lung tumours. We have shown through IHC analysis that expression of 

INA may be associated with neuroendocrine cancer and that INA has the potential for use 

as a marker of neuroendocrine cancer. We have shown that targeting INA, through siRNA 

silencing may potentially indicate a role for INA in the invasive and migratory processes 

of lung cancer. This investigation may also support early findings suggesting that DLKP 
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should be classified as non-small cell lung carcinoma with neuroendocrine 

differentiation, through its expression of INA. 

4.2.7 Sepiapterin Reductase  

The SPR gene encodes for a 27kDa cytoplasmic enzyme. SPR is a homodimeric enzyme 

belonging to the family of short chain dehydrogenase/reductases and is inhibited by N-

acetyl derivatives of both serotonin and dopamine.  The SPR gene, which is located on 

chromosome 2p14-p12 and disease causing mutations, can cause a rare inherited error in 

pterin metabolism leading to Levodopa-responsive disorder [173, 174].  Individuals with 

this disorder frequently manifest motor disorders, cognitive delays and more frequently 

neurological disorders [175]. SPR is localised to the cytoplasm where it functions as an 

aldo-keto reductase catalysing the NADPH-dependent formation of dihydrobiopterin 

(BH2), a precursor for tetrahydrobiopterin (BH4) [176]. BH4 is an essential co-factor for 

enzymes such as nitric oxide synthase (NOS), Phenylalanine-3-3-hydroxylase, and 

catecholamine, but also for serotonin-biosynthesis enzymes tyrosine-4-hydroxylase and 

tryptophan-5-hyrdoxylase [174]. BH4 production appears to be crucial for normal cell 

functions with richest sources of SPR found in erythrocytes, the liver and the brain. 

Biosynthesis of BH4 (Figure 4.2-1) is regulated by the BH4 de novo synthesis pathway, 

the BH4 salvage pathway and a BH4 regeneration system [177]. It has been reported that 

homeostasis of BH4, dopamine, norepinephrine, serotonin and phenylalanine were greatly 

disturbed in SPR-/- mice leading to dwarfism and impaired body movement. The study 

did not investigate the activities of nitric oxide (NO) in the SPR mutant [178]. 
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Figure 4.2-1:- Mechanisms of BH4 biosynthesis. 

BH4 is synthesised through the de-novo pathway (green), salvage pathway (red) and BH4 

recycling (yellow). BH4 biosynthesis is regulated by the de novo pathway in which guanidine 

triphosphate (GTP) is converted to BH4 under the control of the rate-limiting enzyme GTP 

cyclohyrolase I (GTPCHI) and two intermediate enzymes pyruvoyl tetrahydrobiopterin synthase 

(PTPS) and sepiapterin reductase (SR - red star). BH4 is also synthesized by a “salvage pathway,” 

whereby sepiapterin is converted to 7,8-dihydrobiopterin (BH2) via SR and subsequently reduced 

to BH4 by dihydrofolate reductase (DHFR) [179]. 
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4.2.7.1 Effect of siRNA knockdown of SPR on DLKPSQ and DLKPM 

SPR was selected as a potential marker for DLKPSQ based on its comparative proteomic 

analysis of DLKPSQ vs. DLKPI (increased in DLKPSQ ~3.6-fold). Western Blot analysis 

confirmed expression of SPR was highest in DLKPSQ compared to DLKP and DLKPM, 

with the lowest expression seen in DLKPI (see section 3.1.3). Proteomic analysis and 

subsequent Western blot analysis of conditioned medium (CM) did not indicate 

expression of SPR in DLKP or its clones (data not shown). SPR is primarily localised to 

the cytoplasm. Immunofluorescence staining confirmed cytoplasmic staining in all four 

cell lines. membrane immunoreactivity was observed in a small population of DLKPSQ 

cells.  

There is limited knowledge related to the potential functional role of SPR in cancer. One 

study presented data demonstrating a functional role in proliferation for SPR in 

neuroblastoma through a novel association with Ornithine Decarboxylase (ODC) [180], 

see Figure 4.2-2. Two independent studies have associated Sepiapterin (SP) with 

proliferation and migration in ovarian cancer through downregulation of p70S6K-

dependent VEGFR2 expression [181] and in lung cancer through an association with 

Sepiapterin and integrin α3β1 and p53 [182]. Whilst these studies have reported findings 

directly related to proliferation and migration, presently there is no report in the literature 

associating SPR with cancer invasion, in vitro. A lung cancer TMA was 

immunohistochemically stained to examine SPR expression across different lung cancers. 

Variable staining was observed across the lung tumour types. The most intense and 

strongest staining was observed in the lung squamous cell carcinoma tumours (Figure 

3.4-29). DLKP was established from a “poorly differentiated squamous carcinoma”, so 

the intense staining in this tumour type was expected [92]. We wanted to see if SPR had 

a functional role in invasion and migration in the DLKP lung cancer cell line model. 

Knockdown of SPR was carried out in DLKPSQ and DLKPM because both cell lines 

show different levels of invasion and migration. There was a negligible effect on cell 

growth of both cell lines, however, one siRNA significantly (SPR-6, p=0.015) reduced 

cell growth of DLKPM. 

Two independent siRNAs were used to knockdown SPR in DLKPSQ. The invasive and 

migratory abilities using SPR-6 siRNA were reduced, but a high degree of variability was 

observed within a single biological replicate. By carrying out siRNA knockdown in a 

lowly invasive cell line, we were hoping to observe an increase in the invasion levels of 

DLKPSQ. Invasion levels of DLKPSQ are very low, so we were unable to determine if 
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the decrease was as a result of the knockdown or due to the low invasive and migratory 

capacity of DLKPSQ (see section 3.4.3.1). It was therefore decided to focus on DLKPM. 

Four independent siRNAs were used to knockdown SPR in DLKPM (SPR-1, SPR-2, 

SPR-5 and SPR-6). The invasive capacity of DLKPM cells was significantly reduced; 

SPR-1 (p=0.0031) and SPR-6 siRNA (p=0.0014) and the migratory ability was also 

significantly reduced using SPR-1 (p=0.0054) and SPR-6 (p=0.0048) see section 3.4.3.2. 

This is to our knowledge, the first report associating SPR with invasion and migration in 

vitro, suggesting that SPR may have a potential role in the invasive and migratory process 

of lung cancer. 

4.2.7.2 Effect of SPR knockdown in TNBC and pancreatic cancer 

Survival analysis using the BreastMark algorithm indicated that low expression of SPR 

was significantly associated with poor outcome in patients with Luminal A (p=0.0019) 

and Basal-like (p=0.022) breast cancer (section 3.2.8). Currently, there are no available 

targeted therapies for triple negative breast cancer (TNBC). SPR expression was 

investigated in a panel of cell lines representing various TNBC sub-types. SPR specific 

bands were detected at ~27kDa in TNBC cell lines, with the highest level of expression 

observed in MDA-MB-468, a basal-like 1 breast cancer subtype (Figure 3.3-8). PDAC is 

the most common type of pancreatic cancer, accounting for up to 90% of cases. Several 

mutations have been associated with pancreatic cancer development; KRAS, TP53, 

CDKN2A, EGFR and SMAD4. These mutations may lead to pancreatic tumour 

development and potentially chemo-resistance  [183]. A role for SPR in the invasion or 

migration processes is not currently described in TNBC or pancreatic cancer. Preliminary 

siRNA knockdown studies were carried out to investigate a potential role for SPR in 

TNBC (MDA-MB-468: BL-1) and pancreatic cancer (MiaPaCa2 Clone3 and AsPc-1). 

These cell lines were selected based on their increased expression profile of SPR in 

representative TNBC and PDAC cell line panel (Figure 3.3-8 and Figure 3.3-11). siRNA 

knockdown studies in MDA-MD-468 cells resulted in a reduction in invasion using at 

least two siRNAs targeting SPR, a significant reduction for SPR-6 (p=0.000908). 

Preliminary transfections were also carried out on MiaPaCa2 clone3 and AsPc-1 cells; 

reduced invasion and migration was observed for MiaPaCa2 clone 3 cells, while 

migration was only reduced for AsPc-1 cells. Although further investigations will need 

to be carried out in these pancreatic cancer cell lines, preliminary results indicate a 

potential role for SPR in breast and pancreatic cancer (Figure 3.4-26). BreastMark 

analysis indicated that SPR expression may be significant in relation to survival of 
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patients with breast cancer. SPR expression was examined in a small panel of breast 

cancer tissues (subtypes unknown), we found increased expression of SPR in these tissues 

compared to normal. In addition, a TMA containing 12 invasive ductal breast carcinomas 

also showed moderate to weak membrane staining (see section 3.4.7). This study aimed 

to evaluate SPR expression in a small cohort of breast cancer tissues, however, a larger 

number of tissues would need to be stained to verify the distribution of SPR in breast 

cancer.  

4.2.7.3 Hypoxia and tumour progression 

Tumour hypoxia occurs as a result of inadequate supply of blood borne oxygen to tumours 

due to the rapid cell proliferation that exceeds the development of the tumours blood 

supply. This can cause changes in the expression pattern of certain proteins in the tumours 

can induce hypoxia. Such proteins can act as makers for hypoxia, for example, Hypoxia-

inducible factors (HIFs) transcription factors that respond to a decrease in oxygen in the 

cellular environment. Activation of HIF-l (hypoxia-inducible factor 1) in cancer can 

increase the transcription of genes involved in glucose metabolism, apoptosis resistance, 

proliferation, invasion, metastasis and angiogenesis. Elevated levels of HIF-1α and or 

HIF-2α have been found in the majority of human cancers and their metastases and has 

been associated with higher patient mortality. Two other proteins have been described as 

intrinsic markers of hypoxia: Glucose-transport protein-1 (GLUT-1) and Carbonic 

anhydrase 9 (CAIX). Hypoxic conditions can lead to changes in characteristics of cells 

within a tumour and potentially lead to tissue heterogeneity, some cells may adapt and 

escape leading to potential local invasion and metastatic spread [184, 185]. Some of the 

changes in hypoxic conditions may result in increased sensitivity of cells as well as 

increased resistance to chemotherapy, the latter presenting a major clinical challenge in 

the treatment of certain cancers [186]. 

4.2.7.4 Reactive oxygen species 

Reactive oxygen species (ROS) are derived from the metabolism of molecular oxygen 

and are highly reactive. The major source of endogenous ROS is hydrogen peroxide and 

superoxide anion, which are generated as by-products of cellular metabolism such as 

mitochondrial respiration. ROS can be categorized into two groups. The first group 

include free oxygen radicals e.g. superoxide, hydroxyl radical, nitric oxide, organic 

radicals, peroxyl radicals, alkoxyl radicals, thiyl radicals, sulfonyl radicals, thiyl peroxyl 

radicals and disulphides. The second group are non-radical ROS which include: hydrogen 

peroxide, singlet oxygen, ozone/trioxygen, organic hydroperoxide, hypochloride, 
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peroxynitrite, nitrosoperoxycarbonate anion, nitrocarbonate anion, dinitrogen dioxide, 

nitronium, and highly reactive lipid-or carbohydrate derived carbonyl compounds. ROS 

exists in all aerobic cells but is tightly balanced by biochemical antioxidants. When this 

critical balance is disrupted oxidative stress occurs due to excess production of ROS 

coupled with depletion of antioxidants [187]. 

ROS are potential carcinogens because they facilitate mutagenesis, tumour promotion and 

progression [188]. The growth promoting effects of ROS are related to redox-responsive 

cell signalling cascades and have been implicated in the regulation of the mitogen-

activated protein (MAP) kinase/Erk cascade, phosphoinositide-3-kinase (PI3K)/Akt-

regulated signalling cascades, as well as the IκB kinase (IKK)/nuclear factor κ-B (NF-

κB)-activating pathways). [187, 188]. In addition to this, DFMO used to inhibit invasion 

in DLKPM cells (see section 3.4.3.3) has been implicated in two opposing cellular actions 

(cell survival and cell cycle arrest) in neuroblastoma through the inhibition of ornithine 

decarboxylase (ODC), leading to the activation of both AKT/Protein kinase B and 

p27Kip1 [189]. 

4.2.7.5 Effect of SPR knockdown on generation of ROS in DLKPM 

To investigate the effect of SPR on the generation of reactive oxygen species (ROS). 

DLKPM cells were transfected using four independent siRNAs targeting SPR and were 

then tested for generation of ROS. There was a reduction in ROS generation in SPR 

transfected cells using four independent siRNAs when compared to negative control cells. 

For SPR-1, SPR-5 and SPR-6, a 22% (p= 0.04), 32% (p= 0.006) and 31% (p= 0.009). The 

results in section 3.4.3.5, indicate that ROS generation may be potentially impaired as a 

result of knockdown of SPR.  

4.2.7.6 Investigation of the role of NOS and ODC in invasion of DLKPM 

To further develop our understanding of the role of SPR in the invasive process of the 

lung cancer cell line DLKPM, we performed preliminary studies to investigate the role 

of NOS and ODC in the invasion of DLKPM. We used two inhibitors; Nω-Nitro-L-

arginine (L-NNA) and DL-α-Difluoromethylornithine (DFMO) inhibitors for this study. 

An appropriate concentration was established for each inhibitor prior to carrying out 

invasion assays.  

4.2.7.7 Effect of L-NNA on DLKPM invasion 

As mentioned earlier, SPR is an enzyme that catalyses the final one or two steps in the 

production of BH4. BH4 is an essential co-factor for a number of enzymes including NOS. 
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There are three isoforms of NOS in mammalian tissues NOS-1 or nNOS was first purified 

from neuronal tissue, NOS-3 or eNOS was first found in endothelial cells. Both are 

constitutively expressed in epithelial tissues and are dependent on the transient influx of 

calcium to activate calmodulin. NOS-2 or iNOS permanently binds calmodulin and 

functions independent of calcium, its inducible by pro-inflammatory stimuli and once 

induced, NO is produced in high concentrations for longer periods. Also, sustained high 

levels can contribute to stroke and neurotoxic effects. NO is generally a short lived, 

endogenously produced gas and is responsible for numerous physiological functions such 

as vasodilation, inhibition of platelet aggregation and neurotransmission in central and 

peripheral nervous systems. However, it has been reported that components of the tumour 

microenvironment of breast cancer, may be important in the regulation of NOS in vitro. 

IL-8, TLR4, TIMP1, S100A8 and IL-6 were all implicated in this regard [190] 

L-NNA is a competitive inhibitor for all isoforms of NOS, it interacts non-covalently with 

all NOS’es but its coupling with iNOS is reported to be immediate and rapidly reversible 

with arginine. The role of NOS was investigated using the inhibitor L-NNA. The cell 

viability of DLKPM cells following treatment with L-NNA was determined by the acid 

phosphatase assay as described in section 2.5. Three different concentrations of L-NNA 

inhibitor were used (50μM, 100μM and 150μM) over a 5-day period. Results indicate that 

the growth inhibitory effects of L-NNA at all concentrations were negligible. In fact, at 

the higher concentration of 150μM, L-NNA treatment resulted in an increase cell growth 

of DLKPM. This concentration range of between 50μM and 150μM was used to 

investigate the effect of NO on the invasive capacity of DLKPM. Invasion assays were 

performed using two approaches. Firstly, a co-treatment, whereby L-NNA was added 

directly to the cells in the invasion assay and secondly, whereby the cells were treated for 

24hrs prior to invasion assay. The results indicate that there was no inhibitory effect 

following co-treatment with L-NNA. However, a 37% reduction in invasion (Figure 

3.4-21) was observed following the 24hr pre-treatment, indicating a potential role for NO 

in lung cancer cell invasion, in vitro. 

4.2.7.8 Effect of DFMO on DLKPM invasion 

Ornithine decarboxylase (ODC) is an enzyme that catalyses the first step of polyamine 

biosynthesis in humans: the decarboxylation of ornithine to putrescine. ODC is 

indispensable because of its central role in polyamine biosynthesis and because 

polyamines play essential roles in normal cell growth and differentiation. The resulting 

low molecular weight polyamines, spermidine, spermine and putrescine, are known to 
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interact with various macromolecules and have a variety of cellular effects. Polyamines 

are known to be involved in cell growth and have also been implicated in the process of 

cell transformation. In cancer, elevated levels of polyamine biosynthesis and 

accumulation have been associated with rapid tumour growth [191, 192]. SPR has been 

previously shown to interact with and activate ODC in order to elicit an effect on 

proliferation in neuroblastoma, the proposed mechanism for crosstalk between SPR and 

ODC is illustrated in Figure 4.2-2 [180]. We have also shown a potential role for SPR in 

the invasive and migration processes of DLKPM cells (section 3.4.3.3).  

 

 

Figure 4.2-2:- Proposed crosstalk between polyamine and nitric oxide (NO) pathways. 

Arginine is converted to ornithine by the action of arginase in the urea cycle. The enzyme ODC 

converts ornithine to putrescine and is a key enzyme in the biosynthesis of higher polyamines 

(spermidine, spermine). The NO pathway enzyme sepiapterin reductase (SPR) converts 6-

pyruvoyl tetrahydropterin to tetrahydrobiopterin (BH4), a cofactor for NO synthase (NOS) which 

converts arginine to citrulline. In reverse, citrulline converts to arginine via argininosuccinate 

(AS).  ODC forms a heterodimer complex with SPR which activates ODC and stimulates cell 

proliferation.  

 

The role of ODC was investigated using the inhibitor, L-α-difluoromethylornithine 

(DFMO). DFMO is an irreversible inhibitor of ODC which is used to induce the depletion 

of polyamines. Three different concentrations of the DFMO inhibitor were used (1mM, 

2.5mM and 5mM) over a 5-day period. Results indicate that there were growth inhibitory 

effects of associated with DFMO at 1mM and 2.5mM, (between 40-47% reduction in 

growth), while the highest concentration of 5mM showed little or no inhibitory effects on 

DLKPM cells. To investigate a potential role for ODC in the invasion of DLKPM cells, 

2.5mM and 5mM of DFMO was used. Invasion assays were performed using the same 

approach as used for L-NNA, a co-treatment and a 24hr pre-treatment. There was a 

significant reduction in the invasive capacity (p=0.04) of DLKPM following co-treatment 
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with the DFMO inhibitor, indicating that ODC (and potentially the production of 

polyamines) may be important for invasion of DLKPM (Figure 3.4-20). 

4.2.7.9 Summary 

In summary, the effect of SPR silencing was investigated in the invasive cell line, 

DLKPM. We have shown that siRNA knockdown of SPR; (i) does not appear to affect 

cell growth but (ii) results in a significant reduction of invasion and migration in DLKPM. 

We also suggest a potential association with MDA-MB-468 (TNBC) and MiaPaCa3 

Clone3 and AsPc-1 (PDAC). We have indicated that NOS and ODC (through the use of 

inhibitors) may also have a role in the invasive process of DLKPM cells.  
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4.3 Investigation of the growth of DLKP and its clones, in vivo 

A pilot study was carried out to investigate the growth of DLKP and its clones in vivo. 

DLKP, DLKPSQ, DLKPI and DLKPM cell lines were previously used in the in vitro 

generation of xenografts, no tumours were produced in this case. However, unlike the 

previous study SCID mice were selected for use in this study, so it was not known whether 

these cell lines would grow and result in the formation of tumours. The main aims of this 

study were to see if DLKP and the clones would grow and result in tumour formation in 

SCID mice.  

4.3.1 Examination of DLKP and its clones in vivo 

In vitro observations of the growth of DLKP and the clones indicated that they display 

different growth rates. DLKPSQ appears to be the slowest growing and DLKPM appears 

to grow the fastest, with DLKP and DLKPI displaying similar growth patterns [93]. Since 

an in vivo study such as this had not previously been carried out using DLKP and the 

clones, it was decided to use three different cell densities (1x106cells, 5x106cells and 

1x107cells) for implantation. When the cell lines were implanted into the mice, they 

appeared to show an initial lag in their growth, this characteristic also resembles their 

growth in vitro. Up to day 21, small palpable tumours were present in mice inoculated 

with DLKP, DLKPSQ and DLKPI cells, after this period the tumours appeared to grow 

at a rapidly (see section 3.5.2), while DLKPM cells produce tumours but at a slower rate 

to the other clones. The growth of DLKP and its clones in vitro is well established, they 

appear to exhibit slow growth for up to 2 days post trypsinisation, after which they appear 

to show an increased rate of growth. However, tumours developed using all cell lines, but 

DLKP and DLKPI cells appeared to behave similarly in vivo. DLKP (Figure 3.5-3 and 

Figure 3.5-4) and DLKPI (Figure 3.5-7 and Figure 3.5-8) were the fastest growing and 

largest, giving rise to tumours of over 100mm3 by 21 days, DLKPI were marginally faster. 

In contrast, DLKPSQ also gave rise to large tumours that were highly vascularised and 

angiogenic tumours (Figure 3.5-5 and Figure 3.5-6), while tumours produced by DLKPM 

were small, compact and more ‘solid’ in appearance (Figure 3.5-9 and Figure 3.5-10). 

The size of the tumours produced by the cell lines may be reflected in the expression of 

Ki67. Ki67 is a marker for proliferation and is expressed by proliferating cells in all active 

phases of the cell cycle (G (1), S, G (2), and mitosis), [193, 194]. Strong expression of 

Ki67 was observed in all tumours, a reduced level was observed in DLKPM derived 

tumours. The relatively high levels of ki67 expression observed in the xenograft tumours 

indicate that cells are actively proliferating and suggest a reason why such large tumours 
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were produced with DLKP, DLKPSQ and DLKPI. Ki67 expression in DLKPM derived 

tumours were reduced relative to the other tumours and thus potentially explaining why 

small tumours were produced for DLKPM cells. The large size of the tumours produced 

by DLKP and DLKPI indicated evidence of necrosis or potential hypoxia (Figure 3.5-3 

and Figure 3.5-7). This was not surprising due to the lack of visible vasculature in these 

tumours. Immunohistochemical analysis of the tumours for markers of hypoxia (e.g. HIF-

1α or Glut-1) would help confirm the presence of a hypoxic environment in these 

tumours.   

Use of different cell numbers for subcutaneous injection of cell lines allowed for 

examination of potential dose responses relating to tumour growth of the cell lines. In the 

case of DLKP and DLKPI, large tumours formed with all cell numbers, however, a lower 

cell number of 1x106 cells may be optimal for the in vivo growth of DLKP and DLKPI in 

future experiments. It appears that DLKPSQ produced tumours at each cell number, but 

failed to produce tumours in two mice out of four at 5x106 cells, however, an optimal cell 

number for DLKPSQ would be between 1x106 cells and 5x106 cells. DLKPM seemed to 

be cell density dependent showing optimal tumour growth using an inoculation density 

of 1x107cells. While all cell lines produced tumours, tumours were not produced at all 

three cell densities, indicating that there may be an optimal seeding density tot could be 

used for further experimentation. However, where tumours were produced by DLKP, 

DLKPSQ and DLKPI, they very large tumours and were produced very quickly. DLKPM 

appeared to be the exception producing smaller more solid tumours.  An optimal cell 

number for tumour growth would prevent excessively large tumours being produced in 

future studies and potentially allow for the examination of the effect of drugs on tumour 

growth over a longer period of time. The fact that all four cell lines produced tumours 

indicates that DLKP is an invaluable cell line model that could be used to carry out further 

in vivo experiments. A role for INA and SPR in tumour growth and development could 

be investigated through stable knockdown of DLKPSQ or DLKPM, shRNA transfected 

cells could be implanted into SCID mice as performed in this study and examined for 

effects on tumour growth. But also the effect of potential drug candidates on lung cancer 

tumour growth could also be examined using this cell line model. 

To examine the animals for evidence of potential metastasis, at day 21 one animal was 

sacrificed. The organs of each animal in this group were embedded in paraffin wax, 

sectioned and examined by a pathologist (Prof. Susan Kennedy) for evidence of 

metastasis. In this group of animals, there was no evidence of metastasis found in these 
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organs. The organs from the remaining mice in this study should be examined for 

metastasis. Tumours from one group of mice were also examined using Haematoxylin 

and Eosin staining, the xenografts were described as “poorly differentiated squamous cell 

carcinoma”. This description of the xenograft tumours is consistent with the original 

tumour from which DLKP was isolated. When harvesting the organs and tumours, the 

mice were examined for potential metastasis in the abdomen.  Upon inspection one 

injection site inoculated with DLKPSQ at an inoculation density of 5x106 cells failed to 

produce a tumour, this mouse in addition to one other produced small growths throughout 

their abdomen, indicating evidence of suspected metastasis or peritoneal carcinomatosis 

as described by Mr. Vincent Lynch (Figure 3.5-5). Carcinomatosis is very rare and is 

detected in about 10% of patients at the time of primary resection. The mechanisms 

causing carcinomatosis include dissemination of free cancer cells as a result of serosal 

involvement of the primary tumour, implantation of free cancer cells or the presence of 

cancer cells in the lymph fluid or venous blood retained in the peritoneal cavity [195]. 

Interestingly these growths did not appear in mice inoculated with DLKP, DLKPI or 

DLKPM, which would be considered to have moderate to high levels of invasion in vitro. 

CD31 is an established marker for angiogenesis [196], CD31 that has been associated 

with multiple cellular functions including adhesion, apoptosis, coagulation, host 

response, and protein synthesis that could influence tumour growth [197]. CD31 

expression was examined in the xenograft tumours, while the xenograft tumours showed 

extremely low expression in all tumours, DLKPSQ derived tumours did show some CD31 

immunoreactivity. The low expression of CD31 in DLKPSQ derived tumours may 

indicate why evidence of potential metastasis was observed in only three out of ten mice 

and why there was no observed evidence of potential metastases in mice inoculated with 

DLKP, DLKPI and DLKPM (Figure 3.7-3). 

The observation of potential evidence of metastasis in a total of three out of ten mice 

inoculated with DLKPSQ was an unexpected result due to the poorly invasive nature of 

this cell line.  One possible explanation for the distribution of these growths may be the 

ability of DLKPSQ to survive in suspension or rather its ability to resist anoikis [95]. 

Anoikis is an important process that contributes to cancer metastasis and is a particular 

type of apoptosis that occurs as a result of detachment or the absence of attachment to 

extracellular matrix (ECM), or to an inappropriate ECM [198, 199]. Evasion of anoikis 

is mainly regulated by integrins. Integrins protect the cell from anoikis, and so also do 

several kinases activated by integrins, like SRC, FAK and ILK [200]. Some tumour cells 
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use ROS to avoid anoikis through oxidative stress, where by the production of ROS leads 

to the oxidation/activation of tyrosine kinase SRC leading to the activation of mechanisms 

that promotes survival and metastasis [201]. In a follow-up experiment, six mice were 

inoculated with DLKPSQ with the aim of replicating the original experiment i.e. to the 

production of growths in the peritoneal cavity. This study resulted in production growths 

in just one out of the six mice, this time, the growths were smaller than previously 

observed. In total 3 out of 10 mice produced evidence of potential metastasis. This result 

could indicate that not all DLKPSQ cells have the capacity to produce these growths and 

possibly suggesting that there may be potential tumorigenic and non-tumorigenic 

subpopulations in DLKPSQ [202]. This could indicate potential cellular heterogeneity 

within DLKPSQ. 

This study indicated that DLKP, DLKPSQ, DLKPI and DLKPM cell lines were all 

capable of forming tumours in vivo (section 3.5.2). Apart from the growths produced by 

DLKPSQ, there was no other evidence of metastasis. However only organs from one 

mouse inoculated with each cell line were examined for metastasis, it would, therefore, 

be important to examine the organs from the remaining animals for evidence of 

metastasis.  It is possible that the tumour microenvironment, which comprises of a 

complex network of tumour cells, immune cells, stromal cells and extracellular matrix, 

may have favoured the growth of a stem-like subpopulation within DLKPSQ, that 

resulted in the dissemination of DLKPSQ cells throughout the peritoneal cavity. This 

study provided a unique opportunity to study each of the cell lines under in vitro 

conditions but after a period of time in a tumour. We wanted to examine DLKP and its 

clones post tumour growth for changes in their invasive and migratory capabilities. 

Explant culture was performed by placing small pieces of the tumours into dishes 

containing serum free media and allowing the tumour cells migrate outward over a 

number of days. During the initial culture of cells derived from tumours, DLKPSQta 

appeared to display a more rounded morphology and had difficulty bedding down, while 

DLKPMt appeared to be smaller and more elongated and was capable of bedding down. 

Interestingly cells explanted from the DLKPSQ growths displayed marked changes in 

their morphology, while DLKPIt became slightly more fibroblastoid-like. However, after 

culturing over a number of passages, cells derived from DLKPSQ and DLKPI tumours 

appeared to revert to a morphology that resembled their original culture. Cells derived 

from DLKPM tumour appeared to retain its newly established morphology (Figure 3.6-1). 

In addition, cells derived from DLKPM tumours exhibited a reduced invasive and 
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migratory capacity (Figure 3.6-5) over prolonged growth in culture but also showed 

reduced expression of N-cadherin, this could be evidence of a move to a less aggressive 

cell type [202]. Perhaps this reduced expression of N-cadherin is indicative of reduced 

tumorigenic capacity of DLKPM cells. In contrast, cells derived from DLKP parental 

showed large tumour production, whilst an increased N-cadherin expression was 

observed in the explanted cells (Figure 3.7-6). N-cadherin is a known marker for EMT 

[203, 204]. The change in N-cadherin expression could indicate the start of the processes 

of epithelial to mesenchymal transition (EMT) in the case of DLKP or potentially 

mesenchymal to epithelial transition (MET) the case of DLKPM. It could also indicate 

potential interconversion of DLKPM to DLKPI-like cells. There was no change in E-

cadherin expression in xenograft tumours or in explanted cells (Figure 3.7-4 and Figure 

3.7-5). The EMT model indicates that cancer cells with an EMT phenotype can invade 

and intravasatate, but cannot form metastatic nodules. Cancer cells without an EMT 

phenotype cannot invade, but are able to form metastatic nodules. Cancer cells with a 

mixed EMT and non-EMT phenotype can complete the entire process of spontaneous 

metastasis. However, an additional model of EMT has been described and may be 

relevant to the results obtained in our in vivo study, where DLKPSQ, poorly invasive cell 

line produced evidence of metastasis in vivo. The model indicates, EMT cells with an 

enhanced invasive and migratory phenotype are responsible for degrading the 

surrounding ECM and penetrating the local tissues and blood or lymphatic vessels 

(intravasation). It is thought that the non-EMT cells migrate with EMT cells and thereby 

follow them into the circulation [205]. We suggested earlier that there may be an 

additional subpopulation present in DLKPSQ that was responsible for producing 

evidence of metastasis. That subpopulation may have played a role in initiating the 

process that led to the production of the growths in the peritoneal cavity. 

4.3.2 Investigation of the expression of validated proteins in vivo 

Eight proteins selected for validation studies in section 3.2, were also examined in 

xenograft tumours that were produced from the growth of DLKP, DLKPS, DLKPI and 

DLKPM in SCID mice. Proteins were identified from the comparative proteomic analysis 

carried out as part of this thesis (section 3.1.3), but also from an examination of other 

analyses performed in the NICB. Xenograft tumours were immunohistochemically 

examined using antibodies specific to each of the proteins and also by Western blot 

analysis of the cells recovered from the tumours. Table 4.3-1 shows overall expression of 

SLIT2, ROBO2, ALCAM, IQGAP1, INA and SPR from both xenograft tumours, while 
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Table 4.3-2 shows the expression of SLIT2, ALCAM, IQGAP1 and SPR in explanted 

cells recovered from tumours compared to control cells.  

 

Overall expression in xenograft tumours 

 DLKP DLKPSQ DLKPI DLKPM 

ALCAM ++ + ++++ ++ 

INA + + - + 

IQGAP1 + + ++ +++ 

ROBO2 ++ + + ++ 

SLIT2 +++ ++ ++ +++ 

SPR +++ +++ ++ ++ 

Table 4.3-1:- Expression of validated protein in xenograft tumours. 

Scoring reflects overall expression in tumours from two injection sites (1x106 cells and 5x106 

cells). ++++ Very Strong; +++ Strong; ++ Intermediate; + weak; +/- very weak; - negative 

 

 

Expression of proteins in control vs. explanted cells 

  DLKP DLKPSQ DLKPI DLKPM 

ALCAM 
Control + +/- ++++ +/- 

Explant +/+ +/- ++++ +/- 

IQGAP1 
Control +/- + ++ +++ 

Explant ++ + ++ ++ 

SLIT2 
Control ++ +/- + +++ 

Explant + +/- + +++ 

SPR 
Control ++ ++ + + 

Explant ++ ++ + + 

Table 4.3-2:- Expression of validated proteins was maintained in recovered cells from 

DLKP in vivo study. 
Expression of proteins in control cells was compared to expression in cells recovered by explant 

culture from DLKP tumours. ++++ Very Strong; +++ Strong; ++ Intermediate; + weak; +/- very 

weak; - negative 
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ROBO2 and SLIT2 expression was examined in xenograft tumours (section 3.8.1). 

Expression trends in vivo appear to be similar to that seen in culture. For SLIT2, strong 

expression was observed in all cell line derived tumours with DLKP and DLKPM 

showing the most intense level of expression, whilst DLKPSQ and DLKPI showed lower 

levels of expression. 

ALCAM expression was confirmed by Western blot analysis in DLKP and its clones 

(section 3.8.2), with the highest expression observed in DLKPI and lower levels observed 

in DLKP and DLKPM cells. Investigation of ALCAM expression in xenograft tumours 

appears to show similar trends in the expression of ALCAM between each of the cell line 

derived tumours. Briefly, DLKPSQ shows the lowest level of expression. However, 

strong expression was observed in isolates areas of both tumours produced from 1x106 

and 5x106 cells. DLKPI shows the strongest expression throughout both tumours while 

DLKPI and DLKPM shows a moderate level of expression in areas of each tumour 

(summarised in Table 4.3-1 and Table 4.3-2). Fujiwara et al., carried out a study to 

investigate the significance of ALCAM expression in pancreatic cancer. They found that 

ALCAM+ve pancreatic cancer cells exhibited stronger tumourigenicity than that of 

ALCAM-ve cells, whereas ALCAM-ve pancreatic cancer cells exhibited comparatively 

stronger invasive and migratory activities [206]. The DLKP cell line model shows varied 

levels of expression of ALCAM and all cell lines produced tumours in vivo, it could 

further indicate the contradictory role of ALCAM in cancer, as discussed previously. 

Validation studies (Section 3.2) confirmed that expression of IQGAP1 is lowest in DLKP 

with increasing levels in DLKPSQ, DLKPI and in DLKPM. Examination of IQGAP1 

expression observed in xenograft tumours appears to show similar trends in its expression 

in vivo vs. in vitro expression (see section 3.8.3). Strong membrane reactivity was 

observed in tumours from all cell lines, however, DLKP showed the lowest level of 

expression in both tumours produced from 1x106 and 5x106 cells. DLKPM shows the 

most intense membrane immunoreactivity throughout both tumours, while DLKPSQ and 

DLKPI shows a more moderate level of expression (Table 4.3-1). As mentioned earlier 

Jameson et al., investigated tumour formation in IQGAP1-/- mice and showed that there 

was diminished tumour formation in the knock-out mice [154]. We have a cell line model 

showing strong expression of IQGAP1, which appears to be maintained in vivo, 

suggesting that IQGAP1 may play an important role in tumourigenicity of DLKP, 

DLKPSQ, DLKPI and DLKPM cell lines in vivo. For confirmation of the role of IQGAP1 
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in tumour growth of DLKP and its clones, further investigations would need to be 

performed. 

INA expression in xenograft tumours shows similar trends to that seen in culture. Briefly, 

DLKP, DLKPSQ and DLKPM appear to show moderate levels of expression of INA, 

while DLKPI shows an absence of expression in both tumours produced from 1x106 and 

5x106 cells (see section 3.8.4, Figure 3.8-8). It is unlikely that INA is required for tumour 

growth, given that DLKP and its clones were all capable of tumour development in SCID 

mice. 

In vivo expression of SPR in xenograft tumours (see section 3.8.5) appears to show similar 

expression trends to that seen in culture. However strong immunoreactivity was observed 

in all four cell lines, DLKP and DLKPSQ showed the highest immunoreactivity for SPR, 

while DLKPI and DLKPM appear to show a lower level of expression - especially in 

tumours derived from 1x106 cells. A number of different dilutions of the SPR antibody 

were used to stain the xenograft tumours and all concentrations resulted in extremely 

strong staining. The antibody dilution used for the purposes of this these was 1:3000.  A 

more optimal concentration of SPR antibody should be used to examine fully the extent 

of expression of SPR in the tumours. However, there is evidence of membrane staining 

within tumours developed from DLKP, DLKPSQ and DLKPI. Preliminary Western blot 

analysis of membrane enriched samples appears to show maintenance of SPR expression 

in cells recovered from the tumours compared to cells in control culture. High expression 

of SPR in the xenografts may indicate that SPR is important for the development of 

tumours. Evidence of membrane expression of SPR in the xenograft tissues indicates that 

SPR may be important for use as a potential membrane target for therapy. 

4.3.3 Summary 

The in vivo study presented here shows that DLKP, DLKPSQ, DLKPI and DLKPM are 

all capable of forming tumours in SCID mice. We have shown that the expression of 

proteins identified from the comparative proteomic analysis was maintained in both 

recovered cells and also in xenograft tumours. We have shown DLKP and its clones 

display tumorigenic abilities in SCID mice and at certain cell densities, these conditions 

will make it easier to perform further in vivo studies using the DLKP cell line as a model. 

DLKP and its clones having distinctly different levels of invasion and other phenotypical 

characteristics could, therefore, prove to be an invaluable model to study the efficacy of 

chemotherapy drugs or monoclonal antibody therapies for lung cancer in vivo.  
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Chapter 5  CONCLUSIONS AND FUTURE WORK 
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5.1 Conclusions 

1. Proteomic profiling of membrane associated proteins of DLKP, DLKPSQ, DLKPI 

and DLKPM cell lines identified a number of statistically significant differentially 

expressed proteins: AHNAK, ALCAM, IQGAP1, HDGF, ROBO2 and SPR. All 

candidate membrane proteins including two further proteins; INA and SLIT2 were 

validated in DLKP and its clones, indicating that the method used in this study 

successfully isolated potentially biologically relevant membrane proteins. 

 

2. A dual invasion role for ALCAM was demonstrated through siRNA silencing of the 

ALCAM gene, a significant decrease in the invasive potential of DLKPM was 

observed, while a significant increase in the invasive potential was observed in the 

DLKPSQ-mitox-BCRP-6P cell line.  

 

3. A functional role for SPR and INA in invasion/migration of DLKPM cells was 

demonstrated through siRNA silencing of their respective genes, a significant 

decrease in the invasive and migratory potential of DLKPM was observed. In 

addition, a role for ROS was shown through a significant reduction in ROS 

generation following siRNA knockdown of SPR in DLKPM cells.  

 

4. Survival analysis using the BreastMark algorithm indicated that low expression of 

SPR was associated with poor outcome of Luminal A breast cancer and TNBC. A 

significant reduction in the invasive capacity of MDA-MB-468 (TNBC cell line) was 

also demonstrated following siRNA knockdown of SPR gene, indicating a potential 

role for SPR in breast cancer invasion. IHC analysis of SPR in a small panel of breast 

cancer tissues showed evidence of membrane reactivity, suggesting that SPR could 

be used as a potential therapeutic target. 

 

5. The differentially expressed proteins markers; HDGF, SLIT2, ALCAM, INA and 

SPR were all shown to be highly expressed in DLKP and SCLC cell lines, indicating 

an association of DLKP with SCLC. In addition, IHC analysis of INA carried out on 

lung cancer tumours indicated expression was observed mainly in lung 

neuroendocrine, suggesting that INA could serve as a marker for neuroendocrine 

cancers. 
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6. A study indicated that DLKP, DLKPSQ, DLKPI and DLKPM were highly 

tumorigenic in SCID mice. DLKP and DLKPI produced the largest and fastest 

growing tumours. DLKPSQ produced large, but extremely vascularised tumours 

with three out of ten mice showing evidence of potential metastasis in the peritoneal 

cavity. Immunohistochemical analysis of xenografts revealed strong Ki67 

immunoreactivity in xenografts derived from all four cell lines, suggesting that all 

cell lines were highly proliferative in vivo, particularly for DLKP, DLKPSQ and 

DLKPI. 

 

7. Explant culture revealed a significant decrease in the migratory potential of DLKPSQ 

cells, but also a significant decrease in both invasive and migratory potential of 

DLKPM cells. Western blot analysis of explanted cells and immunohistochemical 

analysis of xenograft tumours revealed that the expression of the differentially 

expressed proteins was maintained in vivo. 

 

8. We have shown that DLKP and its clones display tumorigenic abilities in SCID mice, 

the conditions used in this study will make it easier to perform further in vivo studies 

using the DLKP cell line as a model. 
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5.2 Future work 

1. Immunohistochemical analysis should be carried out to determine the distribution of 

ALCAM in a range of human cancer tissues (e.g. lung cancer, pancreatic cancer). To 

explore the mechanism responsible for the dual invasion role of ALCAM in the 

DLKP cell line model, further investigations should be carried out using siRNA 

knockdown followed by analysis of protein expression (e.g. E-cadherin, N-Cadherin, 

Vimentin, β-catenin, T-ERK/P-ERK etc.) by western blot analysis. 

 

2. BreastMark survival analysis indicated that SPR expression was significant in 

relation to survival of patients with Luminal A and Basal-like breast cancers. To 

further investigate a functional role for SPR in TNBC, siRNA knockdown studies 

should be carried out on additional cell lines associated with these cancer subtypes. 

SPR also displayed evidence of membrane association in a number of breast cancer 

tissues. Further immunohistochemical analysis should be carried out on a larger 

cohort of breast tumour types (including triple negative, HER2+, ER+, invasive and 

non-invasive) to further investigate if SPR is amenable as a potential drug target. 

 

3. To further examine the involvement of Nitric Oxide Synthase and Ornithine 

decarboxylase as a mechanism by which SPR decreased invasion and migration in 

DLKPM cells, further assays could be carried out using additional inhibitors of ODC 

and NOS. Inhibitors could be used in combination to establish a synergistic role. In 

addition to inhibitor studies, siRNA knockdown studies could to carried out to further 

evaluate a role for NOS (eNOS, nNOS, iNOS) or ODC in invasion and migration of 

the DLKPM cell line and TNBC cell lines. 

 

4. SPR and INA should be investigated in representative colon cancer cell lines to 

establish potential differences in their expression between primary and metastatic 

cell types (e.g. SW480 and SW620). Immunohistochemistry should be performed to 

establish the expression of these proteins in non-cancerous tissues and in other 

tumour types such as melanoma or glioma. 

 

5. Using commercially available antibodies, immunoprecipitation should be performed 

to identify potential binding partners of SPR and INA, which would help us to further 

understand the mechanism by which they effect invasion and migration in DLKPM 
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cells. Immunoprecipitation studies may also help identify further potentially novel 

proteins involved in cancer.  

 

6. Functional roles for target proteins should be investigated in other cellular processes 

such as anoikis, adhesion, through siRNA knockdown. Use of 3D assays could be 

useful to look at the effect of transfected cells on cellular growth in vitro. 

 

7. DLKPSQ produced evidence of potential metastasis in the peritoneal cavity of a 

number of mice in the pilot in vivo study. A further in vivo study with DLKPSQ using 

a larger number of mice should be performed to further investigate DLKPSQ as 

having a potential metastatic subgroup or subpopulation capable of producing 

metastasis. DLKP and its clones could, therefore, prove to be an invaluable model to 

study the efficacy of chemotherapy or monoclonal antibody therapies for lung cancer 

in vivo. 
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Comparative proteomic analysis: DLKP vs. DLKPSQ 
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Description Accession 
Anova 

(p) 

Max fold 

change 

Roundabout homolog 2  Q9HCK4 2.51E-02 56.88 

Intercellular adhesion molecule 1  P05362 1.40E-02 56.16 

Catenin alpha-1  P35221 9.23E-03 30.84 

Fumarylacetoacetase  P16930 4.53E-03 19.87 

Fascin  Q16658 1.41E-03 14.08 

Catenin beta-1  P35222 1.98E-02 12.58 

Cathepsin Z  Q9UBR2 1.60E-03 6.85 

Neutral cholesterol ester hydrolase 1  Q6PIU2 4.15E-03 6.39 

Neuroblast differentiation-associated protein AHNAK  Q09666 1.02E-02 5.00 

D-3-phosphoglycerate dehydrogenase  O43175 1.43E-03 4.52 

Serpin H1  P50454 2.14E-04 4.21 

Shootin-1  A0MZ66 2.49E-04 3.87 

Procollagen galactosyltransferase 1  Q8NBJ5 1.40E-03 3.31 

Hydroxymethylglutaryl-CoA synthase, cytoplasmic  Q01581 1.57E-03 3.10 

Protein CutA  O60888 1.46E-04 2.59 

Melanoma-associated antigen 4  P43358 5.30E-03 2.44 

RNA-binding protein 14  Q96PK6 2.29E-02 2.40 

Myosin-9  P35579 9.02E-03 2.33 

GDP-fucose protein O-fucosyltransferase 1  Q9H488 1.46E-02 2.33 

Microtubule-associated protein 2  P11137 2.22E-02 2.24 

Nucleolar RNA helicase 2  Q9NR30 6.24E-03 2.24 

Non-POU domain-containing octamer-binding protein  Q15233 1.11E-02 2.21 

Transcription intermediary factor 1-beta  Q13263 7.40E-03 2.15 

Barrier-to-autointegration factor  O75531 3.05E-02 2.15 

Glucose-6-phosphate isomerase  P06744 2.94E-02 2.12 

Protein disulfide-isomerase A6  Q15084 1.79E-02 2.06 

Leucine-rich PPR motif-containing protein, 

mitochondrial  
P42704 2.49E-02 2.05 

Protein disulfide-isomerase  P07237 1.42E-02 2.04 

Tubulin beta-6 chain  Q9BUF5 3.23E-03 2.01 

X-ray repair cross-complementing protein 5  P13010 3.60E-02 1.97 

Filamin-A  P21333 5.35E-03 1.97 

Importin-5  O00410 1.33E-02 1.96 

Elongation factor 1-gamma  P26641 5.09E-03 1.87 

Endoplasmin  P14625 1.33E-03 1.81 

Peroxiredoxin-1  Q06830 5.97E-03 1.75 

Neutral alpha-glucosidase AB  Q14697 1.00E-02 1.74 

Ras GTPase-activating-like protein IQGAP1  P46940 2.32E-02 1.73 

Endoplasmic reticulum resident protein 29  P30040 1.66E-04 1.72 

Exportin-2  P55060 7.60E-03 1.71 

78 kDa glucose-regulated protein  P11021 7.71E-04 1.71 

Kinectin  Q86UP2 3.73E-03 1.68 

Calponin-3  Q15417 1.20E-02 1.65 

Glyceraldehyde-3-phosphate dehydrogenase  P04406 1.37E-02 1.62 

Far upstream element-binding protein 1  Q96AE4 8.71E-03 1.58 

Fatty acid synthase  P49327 2.49E-03 1.56 
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Talin-1  Q9Y490 1.99E-02 1.56 

Membrane-associated progesterone receptor 

component 1  
O00264 3.16E-02 1.54 

ATP-dependent RNA helicase A  Q08211 1.34E-02 1.54 

Peroxiredoxin-6  P30041 9.64E-03 1.54 
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Appendix 1.2 

 

Comparative proteomic analysis: DLKP vs. DLKPI 
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Description Accession 
Anova 

(p) 

Max fold 

change 

Chondroitin sulfate proteoglycan 4  Q6UVK1 1.65E-02 82.94 

Intercellular adhesion molecule 1  P05362 1.18E-02 55.65 

Receptor-type tyrosine-protein phosphatase C  P08575 1.52E-02 37.62 

Peroxiredoxin-2  P32119 4.59E-04 31.26 

CD166 antigen  Q13740 3.79E-02 18.80 

Collagen alpha-1(XIV) chain  Q05707 1.58E-02 15.61 

Cathepsin Z  Q9UBR2 4.18E-03 9.26 

Prohibitin  P35232 1.15E-02 7.71 

Prohibitin-2  Q99623 1.28E-02 7.64 

Ras GTPase-activating-like protein IQGAP1  P46940 1.78E-03 7.61 

Filamin-B  O75369 2.19E-02 7.44 

Ras-related protein Ral-A  P11233 1.21E-02 6.55 

Prelamin-A/C  P02545 2.12E-02 5.75 

Neuroblast differentiation-associated protein AHNAK  Q09666 7.38E-04 5.55 

Tubulin-specific chaperone A  O75347 6.18E-03 5.34 

Ran-specific GTPase-activating protein  P43487 1.06E-03 5.21 

Creatine kinase B-type  P12277 2.80E-03 4.63 

Extended synaptotagmin-1  Q9BSJ8 4.04E-02 4.61 

Filamin-A  P21333 1.38E-02 4.59 

PDZ and LIM domain protein 5  Q96HC4 7.21E-03 4.55 

Exportin-2  P55060 6.62E-03 4.48 

Aconitate hydratase, mitochondrial  Q99798 5.66E-03 4.00 

ATP synthase subunit d, mitochondrial  O75947 2.92E-03 3.81 

Prosaposin  P07602 6.87E-03 3.63 

Lamin-B1  P20700 1.57E-04 3.57 

Superoxide dismutase [Cu-Zn]  P00441 2.74E-03 3.57 

Eukaryotic initiation factor 4A-II  Q14240 1.22E-03 3.53 

Alpha-aminoadipic semialdehyde dehydrogenase  P49419 7.26E-04 3.48 

Glutathione S-transferase P  P09211 5.78E-03 3.43 

Calponin-3  Q15417 4.24E-02 3.42 

Macrophage migration inhibitory factor  P14174 1.13E-03 3.41 

Annexin A2  P07355 9.00E-03 3.30 

Glutathione reductase, mitochondrial  P00390 5.35E-03 3.30 

Heat shock protein beta-1  P04792 5.91E-04 3.25 

Pirin  O00625 3.21E-02 3.18 

Cystatin-B  P04080 3.49E-02 3.10 

Vimentin  P08670 1.53E-02 3.09 

Calnexin  P27824 2.49E-02 3.07 

Lamina-associated polypeptide 2, isoform alpha  P42166 2.73E-04 3.05 

Serpin H1  P50454 1.78E-03 3.03 

Spectrin beta chain, non-erythrocytic 1  Q01082 2.00E-02 2.94 

Chloride intracellular channel protein 1  O00299 1.05E-02 2.93 

GDP-fucose protein O-fucosyltransferase 1  Q9H488 4.07E-03 2.91 

Enoyl-CoA delta isomerase 1, mitochondrial  P42126 3.37E-03 2.90 

Calreticulin  P27797 1.48E-03 2.88 

Actin, cytoplasmic 1  P60709 1.97E-02 2.83 
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Spectrin alpha chain, non-erythrocytic 1  Q13813 2.65E-02 2.78 

Platelet-activating factor acetylhydrolase IB subunit 

gamma  
Q15102 3.17E-03 2.75 

Thioredoxin-dependent peroxide reductase, 

mitochondrial  
P30048 9.13E-03 2.75 

Heat shock protein 105 kDa  Q92598 7.11E-03 2.73 

Thioredoxin domain-containing protein 12  O95881 1.51E-02 2.68 

Band 4.1-like protein 2  O43491 1.70E-03 2.68 

Ubiquitin-conjugating enzyme E2 variant 1  Q13404 2.18E-02 2.66 

Crk-like protein  P46109 2.06E-03 2.64 

6-phosphogluconate dehydrogenase, decarboxylating  P52209 5.00E-03 2.60 

Triosephosphate isomerase  P60174 1.47E-02 2.59 

ADP/ATP translocase 2  P05141 9.57E-03 2.58 

Phosphoglycerate kinase 1  P00558 4.28E-03 2.57 

ATP synthase subunit O, mitochondrial  P48047 9.10E-03 2.57 

X-ray repair cross-complementing protein 5  P13010 3.30E-03 2.57 

Thioredoxin domain-containing protein 5  Q8NBS9 4.01E-02 2.56 

Histone H4  P62805 2.06E-02 2.56 

Leucine-rich repeat-containing protein 59  Q96AG4 1.59E-02 2.51 

Rho GDP-dissociation inhibitor 1  P52565 4.65E-03 2.50 

Neutral alpha-glucosidase AB  Q14697 6.76E-03 2.44 

Nuclear autoantigenic sperm protein  P49321 4.16E-03 2.38 

Nucleoside diphosphate kinase A  P15531 5.95E-03 2.37 

Ataxin-10  Q9UBB4 6.54E-03 2.34 

Leucine-rich PPR motif-containing protein, 

mitochondrial  
P42704 1.35E-02 2.34 

Fatty acid synthase  P49327 3.28E-02 2.30 

Cytosolic acyl coenzyme A thioester hydrolase  O00154 8.01E-03 2.30 

Fumarate hydratase, mitochondrial  P07954 4.22E-03 2.27 

DNA-dependent protein kinase catalytic subunit  P78527 4.32E-02 2.27 

Myosin-11  P35749 8.06E-03 2.25 

Nucleophosmin  P06748 8.09E-03 2.21 

Electron transfer flavoprotein subunit alpha, 

mitochondrial  
P13804 3.05E-02 2.19 

Hepatoma-derived growth factor  P51858 3.02E-02 2.19 

L-lactate dehydrogenase B chain  P07195 8.46E-04 2.18 

Puromycin-sensitive aminopeptidase  P55786 6.70E-03 2.13 

ATP synthase subunit alpha, mitochondrial  P25705 6.55E-03 2.13 

Transitional endoplasmic reticulum ATPase  P55072 1.76E-02 2.10 

Putative nucleoside diphosphate kinase  O60361 1.24E-02 2.08 

Phosphoglycerate mutase 1  P18669 7.31E-03 2.07 

ATP synthase subunit beta, mitochondrial  P06576 1.07E-02 2.04 

10 kDa heat shock protein, mitochondrial  P61604 2.17E-02 2.04 

60 kDa heat shock protein, mitochondrial  P10809 9.79E-03 2.04 

Transaldolase  P37837 7.76E-03 2.03 

Ubiquitin carboxyl-terminal hydrolase isozyme L1  P09936 9.89E-03 2.03 

ATP-dependent RNA helicase A  Q08211 8.30E-03 2.01 

Glucose-6-phosphate isomerase  P06744 5.91E-03 1.98 

Malate dehydrogenase, cytoplasmic  P40925 1.11E-02 1.94 
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Heat shock protein HSP 90-beta  

P08238; 

Q58FF8; 

Q58FG1 

1.11E-02 1.94 

Ubiquitin-like modifier-activating enzyme 1  P22314 3.68E-02 1.93 

Myosin-9  P35579 1.44E-03 1.93 

Aspartate aminotransferase, mitochondrial  P00505 4.33E-03 1.90 

Polypyrimidine tract-binding protein 1  
P26599; 

Q9UKA9 
1.43E-02 1.88 

Annexin A1  P04083 3.37E-02 1.88 

Actin-related protein 3  P61158 4.77E-03 1.86 

Protein disulfide-isomerase A6  Q15084 6.06E-03 1.86 

Adenosylhomocysteinase  P23526 2.50E-02 1.85 

Heterogeneous nuclear ribonucleoprotein H  P31943 9.34E-04 1.82 

Tumor protein D52  P55327 1.60E-02 1.81 

Rab GDP dissociation inhibitor beta  P50395 3.65E-03 1.78 

Microtubule-associated protein 2  P11137 1.14E-02 1.77 

Peptidyl-prolyl cis-trans isomerase A  P62937 1.26E-02 1.75 

Cytochrome c  P99999 9.35E-03 1.72 

Transketolase  P29401 5.12E-03 1.71 

Heat shock 70 kDa protein 1A/1B  P08107 1.42E-02 1.69 

Stress-70 protein, mitochondrial  P38646 1.63E-02 1.67 

78 kDa glucose-regulated protein  
P11021; 

P17066 
1.89E-02 1.64 

Melanoma-associated antigen 4  P43358 1.31E-02 1.63 

Heat shock cognate 71 kDa protein  P11142 1.55E-02 1.63 

Cytosol aminopeptidase  P28838 1.95E-02 1.59 

LETM1 and EF-hand domain-containing protein 1, 

mitochondrial  
O95202 1.93E-02 1.52 

 

 

 

 

 

 

 

 

 



 

262 

 

 

 

 

 

 

 

 

 

Appendix 1.3 

 

Comparative proteomic analysis: DLKP vs. DLKPM 

 

 

 

 

 

 

 

 

 

 



 

263 

 

Description Accession 
Anova 

(p) 

Max fold 

change 

Receptor-type tyrosine-protein phosphatase F  P10586 4.00E-02 89.23 

Intercellular adhesion molecule 1  P05362 1.09E-02 61.31 

Roundabout homolog 2  Q9HCK4 1.93E-02 60.59 

Chondroitin sulfate proteoglycan 4  Q6UVK1 2.28E-02 45.49 

Plexin-B2  O15031 3.79E-02 27.33 

Nectin-2  Q92692 2.59E-02 25.06 

Hematopoietic progenitor cell antigen CD34  P28906 1.29E-02 24.97 

PDZ and LIM domain protein 5  Q96HC4 1.48E-03 13.80 

Collagen alpha-1(XIV) chain  Q05707 6.85E-04 12.64 

Inactive tyrosine-protein kinase 7  Q13308 4.86E-02 10.40 

Cathepsin Z  Q9UBR2 5.08E-04 10.01 

Ras GTPase-activating-like protein IQGAP1  P46940 4.89E-03 8.99 

Keratin, type II cytoskeletal 6A  P02538 3.68E-03 8.81 

Ras-related protein Ral-A  P11233 1.92E-02 8.81 

Prohibitin-2  Q99623 8.46E-03 8.35 

Probable 28S rRNA (cytosine(4447)-C(5))-

methyltransferase  
P46087 9.45E-03 8.25 

U5 small nuclear ribonucleoprotein 200 kDa helicase  O75643 1.99E-02 8.00 

Prohibitin  P35232 1.18E-02 7.83 

Cytoskeleton-associated protein 5  Q14008 3.39E-03 7.80 

Filamin-B  O75369 2.67E-02 7.75 

Importin-5  O00410 1.53E-03 7.44 

Histone H4  P62805 3.39E-02 6.86 

Alpha-2-macroglobulin receptor-associated protein  P30533 8.30E-03 6.68 

Protein disulfide-isomerase A6  Q15084 1.95E-02 6.05 

CD166 antigen  Q13740 2.10E-02 5.97 

Paraspeckle component 1  Q8WXF1 2.73E-03 5.90 

Hypoxia up-regulated protein 1  Q9Y4L1 9.52E-03 5.83 

Splicing factor, proline- and glutamine-rich  P23246 2.81E-03 5.65 

Caldesmon  Q05682 4.35E-02 5.60 

Voltage-dependent anion-selective channel protein 2  P45880 1.55E-02 5.54 

Spectrin beta chain, non-erythrocytic 1  Q01082 1.91E-02 5.52 

Band 4.1-like protein 2  O43491 2.41E-04 5.44 

Neutral cholesterol ester hydrolase 1  Q6PIU2 1.74E-03 5.23 

Neuroblast differentiation-associated protein AHNAK  Q09666 2.80E-03 5.04 

Spectrin alpha chain, non-erythrocytic 1  Q13813 2.51E-02 5.02 

Heat shock 70 kDa protein 1A/1B  P08107 1.51E-03 4.88 

60S ribosomal protein L13  P26373 4.41E-02 4.81 

Cleavage and polyadenylation specificity factor 

subunit 6  
Q16630 9.95E-03 4.79 

Non-POU domain-containing octamer-binding protein  Q15233 5.05E-03 4.75 

Keratin, type II cytoskeletal 1  P04264 1.38E-02 4.61 

Ornithine aminotransferase, mitochondrial  P04181 2.04E-02 4.51 

ATP-dependent RNA helicase DDX3X  O00571 4.86E-03 4.40 

ATP synthase subunit alpha, mitochondrial  P25705 1.92E-02 4.26 

Heat shock 70 kDa protein 1-like  P34931 2.76E-03 4.22 

Exportin-1  O14980 6.30E-03 4.19 
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60S ribosomal protein L12  P30050 3.04E-02 4.00 

Dolichyl-diphosphooligosaccharide--protein 

glycosyltransferase subunit 1  
P04843 3.39E-02 3.90 

Exportin-2  P55060 5.86E-03 3.90 

Nucleolar RNA helicase 2  Q9NR30 9.75E-03 3.79 

Barrier-to-autointegration factor  O75531 5.20E-04 3.79 

ATP synthase subunit O, mitochondrial  P48047 1.43E-02 3.76 

Phospholipase D3  Q8IV08 4.30E-03 3.70 

ATP synthase subunit beta, mitochondrial  P06576 2.83E-02 3.69 

Cytosolic acyl coenzyme A thioester hydrolase  O00154 2.38E-03 3.66 

Annexin A2  P07355 1.86E-02 3.55 

60S ribosomal protein L4  P36578 3.57E-02 3.55 

60S acidic ribosomal protein P0-like  Q8NHW5 1.95E-02 3.52 

Calnexin  P27824 1.83E-02 3.50 

Trifunctional enzyme subunit beta, mitochondrial  P55084 3.50E-02 3.49 

Proliferation-associated protein 2G4  Q9UQ80 9.76E-03 3.48 

Calreticulin  P27797 7.16E-03 3.47 

Cadherin-2  P19022 2.10E-02 3.39 

Glutathione S-transferase kappa 1  Q9Y2Q3 2.99E-03 3.30 

Tropomyosin alpha-4 chain  P67936 3.87E-03 3.27 

Keratin, type I cytoskeletal 9  P35527 3.17E-02 3.26 

Fumarate hydratase, mitochondrial  P07954 4.26E-03 3.22 

RNA-binding protein 14  Q96PK6 1.23E-02 3.21 

Peroxisomal multifunctional enzyme type 2  P51659 4.03E-02 3.18 

Hydroxymethylglutaryl-CoA synthase, cytoplasmic  Q01581 1.74E-03 3.13 

60S ribosomal protein L5  P46777 1.05E-02 3.12 

Inorganic pyrophosphatase  
Q15181; 

Q9H2U2 
2.40E-02 3.06 

Prolyl 3-hydroxylase 1  Q32P28 2.84E-03 3.03 

Peroxiredoxin-6  P30041 1.38E-02 3.02 

Protein CutA  O60888 1.96E-02 3.00 

Nucleophosmin  P06748 1.18E-02 2.99 

Protein disulfide-isomerase A4  P13667 5.68E-03 2.97 

Cytoplasmic dynein 1 heavy chain 1  Q14204 6.08E-03 2.94 

Lamin-B1  P20700 1.20E-03 2.94 

Prelamin-A/C  P02545 2.19E-02 2.90 

60S ribosomal protein L7a  P62424 3.04E-02 2.89 

Drebrin-like protein  Q9UJU6 5.69E-03 2.85 

Fructose-bisphosphate aldolase C  P09972 2.83E-02 2.82 

THO complex subunit 4  Q86V81 9.47E-03 2.80 

Transitional endoplasmic reticulum ATPase  P55072 2.31E-02 2.78 

Adenylyl cyclase-associated protein 1  Q01518 1.80E-03 2.78 

Annexin A1  P04083 3.11E-02 2.77 

Adenylate kinase 2, mitochondrial  P54819 2.79E-02 2.74 

Fructose-bisphosphate aldolase A  P04075 2.13E-02 2.74 

Valine--tRNA ligase  P26640 4.78E-03 2.72 

Receptor-type tyrosine-protein phosphatase C  P08575 1.39E-02 2.65 

26S proteasome non-ATPase regulatory subunit 2  Q13200 3.17E-03 2.64 
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Thioredoxin domain-containing protein 12  O95881 2.21E-02 2.63 

DNA replication licensing factor MCM7  P33993 1.22E-02 2.63 

F-actin-capping protein subunit beta  P47756 7.98E-04 2.61 

60S acidic ribosomal protein P1  P05386 2.71E-02 2.60 

6-phosphogluconate dehydrogenase, decarboxylating  P52209 2.87E-03 2.60 

Adenosylhomocysteinase  P23526 1.38E-02 2.53 

Myosin-9  P35579 2.74E-02 2.45 

X-ray repair cross-complementing protein 5  P13010 4.32E-05 2.45 

Heat shock protein beta-1  P04792 1.33E-02 2.44 

Malate dehydrogenase, mitochondrial  P40926 4.96E-03 2.42 

Serine/arginine-rich splicing factor 7  Q16629 1.30E-02 2.39 

Alpha-enolase  P06733 5.48E-03 2.38 

Dihydrolipoyllysine-residue succinyltransferase 

component of 2-oxoglutarate dehydrogenase complex, 

mitochondrial  

P36957 4.13E-03 2.35 

Isoleucine--tRNA ligase, mitochondrial  Q9NSE4 2.15E-02 2.31 

Putative heat shock protein HSP 90-beta-3  Q58FF7 2.57E-02 2.31 

78 kDa glucose-regulated protein  
P11021; 

O95399 
1.00E-03 2.30 

Bifunctional glutamate/proline--tRNA ligase  P07814 4.45E-04 2.29 

Fatty acid synthase  P49327 3.99E-03 2.29 

Protein SET  Q01105 7.34E-03 2.26 

Heat shock protein HSP 90-beta  
P08238; 

Q58FG1 
5.16E-03 2.23 

Heterogeneous nuclear ribonucleoprotein U  Q00839 3.31E-04 2.23 

Ran-specific GTPase-activating protein  P43487 6.93E-03 2.22 

60S ribosomal protein L24  P83731 1.56E-02 2.22 

Serpin H1  P50454 9.30E-03 2.13 

T-complex protein 1 subunit beta  P78371 2.98E-02 2.12 

Proteasome subunit alpha type-3  P25788 1.59E-02 2.11 

Hypoxanthine-guanine phosphoribosyltransferase  P00492 2.82E-02 2.09 

Heat shock protein HSP 90-alpha  P07900 2.61E-03 2.09 

Neutral alpha-glucosidase AB  Q14697 3.13E-03 2.07 

Far upstream element-binding protein 1  Q96AE4 6.99E-03 2.05 

Endoplasmin  P14625 1.97E-03 2.03 

Glucosidase 2 subunit beta  P14314 5.14E-04 2.01 

Heat shock protein 105 kDa  Q92598 1.54E-02 2.00 

C-1-tetrahydrofolate synthase, cytoplasmic  P11586 2.43E-02 2.00 

Protein disulfide-isomerase  P07237 1.14E-02 1.97 

Elongation factor 1-gamma  P26641 1.02E-02 1.91 

Nucleoprotein TPR  P12270 7.77E-03 1.90 

Heterogeneous nuclear ribonucleoprotein Q  O60506 1.67E-03 1.89 

Tubulin beta-6 chain  Q9BUF5 1.96E-03 1.88 

T-complex protein 1 subunit theta  P50990 9.30E-03 1.87 

Transcription intermediary factor 1-beta  Q13263 1.11E-02 1.85 

T-complex protein 1 subunit eta  Q99832 1.91E-03 1.84 

Endoplasmic reticulum resident protein 29  P30040 5.94E-03 1.84 

Leucine-rich PPR motif-containing protein, 

mitochondrial  
P42704 4.71E-03 1.81 
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Heterogeneous nuclear ribonucleoprotein M  P52272 2.32E-02 1.75 

Actin-related protein 2/3 complex subunit 4  P59998 3.49E-02 1.74 

Protein phosphatase 1G  O15355 6.27E-03 1.74 

Glyceraldehyde-3-phosphate dehydrogenase  P04406 2.61E-02 1.70 

T-complex protein 1 subunit gamma  P49368 1.40E-02 1.64 

Retinal dehydrogenase 1  P00352 2.07E-03 1.57 

Transketolase  P29401 1.28E-02 1.57 

Peroxiredoxin-1  Q06830 2.86E-02 1.55 

Heat shock cognate 71 kDa protein  P11142 2.90E-02 1.53 
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Description Accession 
Anova 

(p) 

Max fold 

change 

Receptor-type tyrosine-protein phosphatase C  P08575 1.43E-02 42.10 

Cadherin-2  P19022 4.13E-02 29.00 

Splicing factor, proline- and glutamine-rich  P23246 3.07E-02 28.92 

Catenin beta-1  P35222 5.52E-03 26.80 

CD166 antigen  Q13740 2.75E-02 24.30 

Roundabout homolog 2  Q9HCK4 1.66E-02 21.85 

BH3-interacting domain death agonist  P55957 1.82E-03 18.07 

RNA-binding protein 14  Q96PK6 3.22E-02 17.52 

Desmoglein-2  Q14126 2.62E-02 17.34 

Non-POU domain-containing octamer-binding protein  Q15233 3.02E-02 14.81 

Fascin  Q16658 4.17E-02 14.34 

Catenin alpha-1  P35221 1.42E-02 10.81 

Prohibitin-2  Q99623 6.30E-03 10.26 

Prohibitin  P35232 7.57E-03 10.06 

Neuroblast differentiation-associated protein AHNAK  Q09666 5.60E-05 9.29 

Kinectin  Q86UP2 1.26E-02 8.37 

Prelamin-A/C  P02545 4.68E-02 7.38 

D-3-phosphoglycerate dehydrogenase  O43175 1.08E-03 7.36 

Filamin-A  P21333 6.95E-03 7.07 

Pirin  O00625 2.06E-04 6.45 

Ataxin-10  Q9UBB4 1.59E-03 6.23 

Extended synaptotagmin-1  Q9BSJ8 1.77E-02 6.23 

Creatine kinase B-type  P12277 5.94E-04 6.08 

Ran-specific GTPase-activating protein  P43487 3.38E-03 5.89 

Filamin-B  O75369 2.30E-02 5.68 

Ras GTPase-activating-like protein IQGAP1  P46940 3.27E-03 5.50 

Nucleolar RNA helicase 2  Q9NR30 8.07E-03 5.36 

3-hydroxyisobutyrate dehydrogenase, mitochondrial  P31937 3.09E-03 5.12 

Superoxide dismutase [Cu-Zn]  P00441 3.46E-03 5.07 

Tropomyosin alpha-1 chain  P09493 2.19E-02 4.78 

Heat shock protein beta-1  P04792 3.03E-04 4.76 

Serine hydroxymethyltransferase, mitochondrial  P34897 2.04E-03 4.68 

Tubulin-specific chaperone A  O75347 1.76E-02 4.44 

Glutathione S-transferase P  P09211 9.46E-03 4.41 

Glutathione reductase, mitochondrial  P00390 6.73E-03 4.31 

U5 small nuclear ribonucleoprotein 200 kDa helicase  O75643 2.03E-02 4.20 

Hydroxymethylglutaryl-CoA synthase, cytoplasmic  Q01581 2.22E-02 4.15 

Prosaposin  P07602 2.62E-02 4.14 

Phosphoglycerate kinase 1  P00558 5.72E-03 4.13 

Lamin-B1  P20700 1.51E-04 4.06 

Ras-related protein Ral-A  P11233 1.06E-02 4.03 

Proliferating cell nuclear antigen  P12004 9.88E-03 3.86 

Tumor protein D54  O43399 5.08E-03 3.72 

Sepiapterin reductase  P35270 2.61E-02 3.64 

Crk-like protein  P46109 1.46E-02 3.64 

Lamina-associated polypeptide 2, isoform alpha  P42166 1.49E-02 3.60 
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Macrophage migration inhibitory factor  P14174 3.81E-04 3.56 

Puromycin-sensitive aminopeptidase  P55786 9.45E-03 3.46 

Actin, cytoplasmic 1  P60709 2.94E-02 3.45 

Spermidine synthase  P19623 2.89E-02 3.45 

Melanoma-associated antigen 4  P43358 9.84E-03 3.44 

Adenine phosphoribosyltransferase  P07741 2.50E-02 3.39 

Annexin A2  P07355 1.52E-02 3.37 

Histone H4  P62805 4.78E-03 3.34 

Peptidyl-prolyl cis-trans isomerase A  P62937 2.96E-02 3.31 

Actin, aortic smooth muscle  P62736 2.86E-02 3.26 

Spectrin alpha chain, non-erythrocytic 1  Q13813 1.11E-02 3.23 

PDZ and LIM domain protein 5  Q96HC4 1.20E-02 3.19 

Ubiquitin carboxyl-terminal hydrolase isozyme L1  P09936 2.41E-02 3.02 

Alanine--tRNA ligase, cytoplasmic  P49588 5.42E-03 2.98 

Alpha-actinin-4  O43707 1.14E-02 2.93 

Alpha-aminoadipic semialdehyde dehydrogenase  P49419 3.32E-03 2.93 

Carbonyl reductase [NADPH] 1  P16152 3.27E-02 2.90 

Electron transfer flavoprotein subunit alpha, 

mitochondrial  
P13804 1.15E-02 2.80 

Phosphoglycerate mutase 1  P18669 6.68E-03 2.79 

Puromycin-sensitive aminopeptidase-like protein  A6NEC2 1.62E-02 2.76 

Ubiquitin-conjugating enzyme E2 variant 1  Q13404 1.39E-02 2.74 

Aconitate hydratase, mitochondrial  Q99798 1.20E-02 2.73 

Heat shock protein 105 kDa  Q92598 1.53E-02 2.70 

ATP-dependent RNA helicase A  Q08211 3.92E-03 2.70 

Calnexin  P27824 1.91E-02 2.70 

Heterogeneous nuclear ribonucleoprotein H3  P31942 2.77E-03 2.67 

Transitional endoplasmic reticulum ATPase  P55072 3.92E-03 2.56 

Exportin-2  P55060 3.40E-02 2.49 

Alpha-enolase  P06733 1.67E-02 2.49 

C-1-tetrahydrofolate synthase, cytoplasmic  P11586 4.56E-04 2.48 

Stathmin  P16949 2.68E-02 2.44 

Microtubule-associated protein 2  P11137 1.93E-02 2.42 

Aspartate aminotransferase, mitochondrial  P00505 1.59E-03 2.37 

Heat shock protein 75 kDa, mitochondrial  Q12931 1.06E-02 2.37 

L-lactate dehydrogenase B chain  P07195 3.60E-02 2.34 

Ubiquitin-like modifier-activating enzyme 1  P22314 8.50E-03 2.31 

60 kDa heat shock protein, mitochondrial  P10809 4.17E-03 2.31 

Succinyl-CoA ligase [GDP-forming] subunit beta, 

mitochondrial  
Q96I99 1.38E-02 2.23 

Peptidyl-prolyl cis-trans isomerase B  P23284 1.32E-02 2.22 

Nuclear autoantigenic sperm protein  P49321 1.40E-02 2.16 

Malate dehydrogenase, cytoplasmic  P40925 2.08E-02 2.15 

Nucleophosmin  P06748 2.93E-02 2.07 

Bifunctional purine biosynthesis protein PURH  P31939 1.38E-02 1.99 

Transketolase  P29401 2.08E-02 1.94 

Stress-70 protein, mitochondrial  P38646 1.00E-02 1.92 

Peroxiredoxin-1  Q06830 3.52E-03 1.80 
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ATP synthase subunit alpha, mitochondrial  P25705 2.16E-02 1.74 

Malate dehydrogenase, mitochondrial  P40926 5.91E-03 1.56 
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Comparative proteomic analysis: DLKPSQ vs. 

DLKPM 
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Description Accession Anova (p) 
Max fold 

change 

Probable 28S rRNA (cytosine(4447)-C(5))-

methyltransferase  
P46087 1.70E-03 12.26 

U5 small nuclear ribonucleoprotein 200 kDa helicase  O75643 1.44E-02 11.69 

Prohibitin-2  Q99623 5.54E-03 11.52 

Splicing factor, proline- and glutamine-rich  P23246 5.15E-03 10.66 

Non-POU domain-containing octamer-binding 

protein  
Q15233 2.00E-03 10.17 

PDZ and LIM domain protein 5  Q96HC4 1.77E-03 9.67 

Prohibitin  P35232 1.41E-02 9.45 

Neuroblast differentiation-associated protein 

AHNAK  
Q09666 5.56E-04 8.04 

Histone H4  P62805 1.63E-02 7.84 

RNA-binding protein 14  Q96PK6 4.59E-03 7.59 

Ras-related protein Ral-A  P11233 9.63E-03 7.46 

Shootin-1  A0MZ66 1.29E-03 7.02 

Caprin-1  Q14444 1.26E-02 6.91 

D-3-phosphoglycerate dehydrogenase  O43175 2.51E-04 6.70 

Ras GTPase-activating-like protein IQGAP1  P46940 8.84E-03 6.17 

Catenin beta-1  P35222 2.19E-02 5.71 

Kinectin  Q86UP2 8.39E-03 5.30 

Glutathione S-transferase kappa 1  Q9Y2Q3 1.28E-02 5.22 

Nucleolar RNA helicase 2  Q9NR30 2.41E-03 5.13 

Guanine nucleotide-binding protein G(i) subunit 

alpha-1  

P63096; 

Q03113 
1.91E-02 5.01 

Pirin  O00625 3.10E-04 4.95 

Heat shock 70 kDa protein 1A/1B  P08107 2.36E-03 4.84 

Filamin-B  O75369 2.61E-02 4.72 

Tumor protein D54  O43399 1.76E-02 4.31 

Calreticulin  P27797 9.51E-03 4.12 

Cytoskeleton-associated protein 5  Q14008 1.60E-02 4.10 

Collagen alpha-1(XIV) chain  Q05707 9.72E-03 4.05 

Filamin-A  P21333 3.83E-02 4.04 

Heat shock 70 kDa protein 1-like  P34931 4.09E-03 3.98 

Exportin-1  O14980 1.43E-02 3.96 

Spectrin alpha chain, non-erythrocytic 1  Q13813 3.00E-02 3.93 

Adenosylhomocysteinase  P23526 6.64E-03 3.86 

Tropomyosin alpha-4 chain  
P67936; 

P07951 
5.00E-04 3.74 

Importin-5  O00410 1.27E-03 3.65 

Putative heat shock protein HSP 90-beta-3  
Q58FF7; 

Q58FF8 
3.55E-03 3.58 

Cleavage and polyadenylation specificity factor 

subunit 6  
Q16630 1.76E-02 3.57 

Serpin H1  P50454 3.21E-03 3.52 

Heat shock protein beta-1  P04792 5.26E-03 3.52 

Calnexin  P27824 5.69E-03 3.48 
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Lamin-B1  P20700 9.74E-04 3.35 

Neutral alpha-glucosidase AB  Q14697 7.90E-03 3.25 

Nucleophosmin  P06748 2.05E-02 3.24 

Cytosolic acyl coenzyme A thioester hydrolase  O00154 2.46E-03 3.11 

Exportin-2  P55060 3.95E-03 3.10 

ATP-dependent RNA helicase DDX3X  O00571 1.30E-02 3.08 

Annexin A2  P07355 8.36E-03 3.05 

Probable ATP-dependent RNA helicase DDX5  P17844 1.57E-02 3.02 

ATP synthase subunit alpha, mitochondrial  P25705 1.09E-02 3.02 

Serine hydroxymethyltransferase, mitochondrial  P34897 6.34E-03 2.99 

Receptor-type tyrosine-protein phosphatase C  P08575 2.13E-02 2.94 

Protein disulfide-isomerase A4  P13667 1.29E-03 2.94 

Peroxiredoxin-6  P30041 3.40E-03 2.92 

60S ribosomal protein L5  P46777 1.77E-02 2.90 

F-actin-capping protein subunit beta  P47756 1.33E-03 2.90 

Fumarate hydratase, mitochondrial  P07954 3.48E-03 2.90 

Myotrophin  P58546 1.13E-02 2.90 

60S acidic ribosomal protein P0-like  Q8NHW5 3.35E-02 2.89 

Tropomyosin alpha-1 chain  P09493 2.93E-02 2.87 

Drebrin-like protein  Q9UJU6 3.40E-03 2.84 

Hypoxanthine-guanine phosphoribosyltransferase  P00492 5.74E-04 2.84 

Histone H2A type 1-B/E  P04908 5.36E-03 2.81 

Phosphoglycerate kinase 1  P00558 2.78E-02 2.75 

THO complex subunit 4  Q86V81 2.62E-02 2.69 

Acetyl-CoA acetyltransferase, mitochondrial  P24752 4.15E-03 2.69 

6-phosphogluconate dehydrogenase, decarboxylating  P52209 7.68E-03 2.69 

Probable ATP-dependent RNA helicase DDX6  P26196 5.91E-03 2.68 

Protein disulfide-isomerase A6  Q15084 9.22E-03 2.64 

Adenylate kinase 2, mitochondrial  P54819 1.13E-02 2.62 

Ran-specific GTPase-activating protein  P43487 1.20E-02 2.60 

Alpha-enolase  
P06733; 

P13929 
1.68E-02 2.58 

26S proteasome non-ATPase regulatory subunit 2  Q13200 4.17E-03 2.57 

Inorganic pyrophosphatase  
Q15181; 

Q9H2U2 
3.23E-02 2.56 

Peroxiredoxin-1  Q06830 6.14E-03 2.46 

Keratin, type II cuticular Hb4  Q9NSB2 1.70E-03 2.42 

Isoleucine--tRNA ligase, mitochondrial  Q9NSE4 1.05E-02 2.42 

Importin subunit beta-1  Q14974 1.08E-02 2.39 

Band 4.1-like protein 2  O43491 3.31E-02 2.34 

Keratin, type II cytoskeletal 1  P04264 4.95E-02 2.34 

Retinal dehydrogenase 1  P00352 2.33E-02 2.32 

Valine--tRNA ligase  P26640 8.10E-03 2.31 

Far upstream element-binding protein 1  Q96AE4 3.33E-03 2.25 

Heat shock protein HSP 90-beta  P08238 6.96E-03 2.23 

Heterogeneous nuclear ribonucleoprotein K  P61978 2.28E-02 2.21 

Heat shock protein 105 kDa  Q92598 1.36E-02 2.20 

Alpha-actinin-1  P12814 3.55E-02 2.19 
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Cytoplasmic dynein 1 heavy chain 1  Q14204 2.09E-03 2.18 

Catenin alpha-1  P35221 2.08E-02 2.17 

Calcyclin-binding protein  Q9HB71 1.45E-02 2.16 

Pyruvate kinase PKM  P14618 2.08E-02 2.15 

Actin, aortic smooth muscle  P62736 2.57E-02 2.13 

Heterogeneous nuclear ribonucleoprotein Q  O60506 1.67E-03 2.08 

Ras-related protein Rab-2A  P61019 2.71E-02 2.04 

Malate dehydrogenase, mitochondrial  P40926 2.11E-02 2.03 

Peptidyl-prolyl cis-trans isomerase A  P62937 1.45E-02 2.01 

Actin, cytoplasmic 1  P60709 1.17E-02 2.01 

Ubiquitin-like modifier-activating enzyme 1  P22314 1.20E-02 1.97 

ATP-citrate synthase  P53396 1.69E-03 1.97 

Dihydrolipoyllysine-residue succinyltransferase 

component of 2-oxoglutarate dehydrogenase 

complex, mitochondrial  

P36957 6.17E-04 1.97 

T-complex protein 1 subunit theta  P50990 9.15E-03 1.92 

Puromycin-sensitive aminopeptidase-like protein  A6NEC2 3.35E-02 1.90 

78 kDa glucose-regulated protein  P11021 4.48E-04 1.90 

Fructose-bisphosphate aldolase A  P04075 2.44E-02 1.89 

Multifunctional protein ADE2  P22234 2.02E-02 1.85 

40S ribosomal protein S19  P39019 1.85E-02 1.85 

Fatty acid synthase  P49327 5.49E-04 1.84 

X-ray repair cross-complementing protein 5  P13010 1.75E-02 1.81 

Aspartate aminotransferase, mitochondrial  P00505 4.59E-03 1.69 

Stress-70 protein, mitochondrial  P38646 1.50E-02 1.61 

3-hydroxyacyl-CoA dehydrogenase type-2  Q99714 2.94E-03 1.54 

Heat shock cognate 71 kDa protein  P11142 9.38E-03 1.54 
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Appendix 1.6 

 

Comparative proteomic analysis: DLKPI v DLKPM 
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Description Accession Anova (p) 
Max fold 

change 

Receptor-type tyrosine-protein phosphatase C P08575 2.77E-02 41.79 

CD166 antigen Q13740 2.54E-02 30.15 

Roundabout homolog 2 Q9HCK4 6.95E-03 26.95 

Receptor-type tyrosine-protein phosphatase F P10586 1.78E-02 25.10 

Desmoglein-2 Q14126 1.68E-02 24.70 

Cadherin-2 P19022 3.44E-02 20.87 

Alpha-2-macroglobulin receptor-associated protein P30533 1.59E-02 9.17 

Nectin-2 Q92692 3.12E-02 7.93 

Catenin beta-1 P35222 1.42E-02 7.93 

3-hydroxyisobutyrate dehydrogenase, mitochondrial P31937 4.57E-03 7.33 

Creatine kinase B-type P12277 1.72E-03 7.29 

Tubulin-specific chaperone A O75347 4.50E-03 4.52 

Peroxisomal acyl-coenzyme A oxidase 1 Q15067 2.86E-02 4.48 

Hydroxymethylglutaryl-CoA synthase, cytoplasmic Q01581 2.39E-02 4.26 

Alpha-aminoadipic semialdehyde dehydrogenase P49419 2.51E-03 4.12 

Glutathione S-transferase kappa 1 Q9Y2Q3 2.52E-02 4.05 

Filamin-A P21333 1.87E-02 3.89 

Heat shock 70 kDa protein 1-like P34931 4.53E-03 3.81 

L-lactate dehydrogenase B chain P07195 2.29E-02 3.47 

Adenine phosphoribosyltransferase P07741 7.56E-03 3.45 

Annexin A5 P08758 9.87E-04 3.45 

Ran-specific GTPase-activating protein P43487 1.31E-03 3.43 

Nucleoprotein TPR P12270 3.79E-02 3.35 

Glutathione S-transferase P P09211 1.28E-02 3.33 

Peroxisomal multifunctional enzyme type 2 P51659 1.07E-02 3.32 

Carbonyl reductase [NADPH] 1 P16152 4.63E-03 3.22 

Serpin H1 P50454 1.46E-02 3.18 

F-actin-capping protein subunit beta P47756 1.56E-03 3.07 

PDZ and LIM domain protein 5 Q96HC4 3.98E-02 3.03 

Peptidyl-prolyl cis-trans isomerase A P62937 2.28E-02 3.02 

Heat shock 70 kDa protein 1A/1B P08107 7.65E-03 2.93 

Superoxide dismutase [Cu-Zn] P00441 1.45E-02 2.88 

Macrophage migration inhibitory factor P14174 6.15E-03 2.79 

Band 4.1-like protein 2 O43491 3.50E-03 2.75 

ATP-dependent RNA helicase A Q08211 1.70E-02 2.74 

Dihydrolipoyllysine-residue succinyltransferase 

component of 2-oxoglutarate dehydrogenase complex, 

mitochondrial 

P36957 1.73E-03 2.72 

Keratin, type II cytoskeletal 1 P04264 2.59E-02 2.68 

Malate dehydrogenase, cytoplasmic P40925 2.30E-02 2.66 

Tumor protein D52 P55327 1.62E-02 2.58 

Electron transfer flavoprotein subunit alpha, 

mitochondrial 
P13804 3.03E-03 2.49 

Phosphoglycerate mutase 1 P18669 4.10E-03 2.46 

C-1-tetrahydrofolate synthase, cytoplasmic P11586 5.35E-03 2.41 

Phosphoglycerate kinase 1 P00558 1.07E-02 2.39 

Actin-related protein 2/3 complex subunit 4 P59998 3.45E-03 2.37 
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Heat shock cognate 71 kDa protein P11142 1.35E-02 2.33 

Ubiquitin carboxyl-terminal hydrolase isozyme L1 P09936 2.45E-02 2.25 

Heat shock protein HSP 90-alpha P07900 9.74E-03 2.20 

Aconitate hydratase, mitochondrial Q99798 3.47E-02 2.14 

Fatty acid synthase P49327 4.08E-03 2.11 

Puromycin-sensitive aminopeptidase P55786 1.86E-03 2.09 

Peptidyl-prolyl cis-trans isomerase B P23284 4.24E-03 2.06 

Calreticulin P27797 2.68E-02 2.05 

Protein disulfide-isomerase A6 Q15084 2.80E-02 1.96 

Peroxiredoxin-1 Q06830 1.45E-02 1.95 

Enoyl-CoA delta isomerase 1, mitochondrial P42126 2.08E-03 1.86 

Melanoma-associated antigen 4 P43358 2.93E-02 1.82 

Fructose-bisphosphate aldolase A P04075 1.90E-02 1.76 

60 kDa heat shock protein, mitochondrial P10809 1.57E-02 1.70 

 

 


