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Abstract

Periodicity Detection and its Application in Lifelog Data
Feiyan Hu

Wearable sensors are catching our attention not only in industry but also in the
market. We can now acquire sensor data from different types of health tracking
devices like smart watches, smart bands, lifelog cameras and most smart phones
are capable of tracking and logging information using built-in sensors. As data is
generated and collected from various sources constantly, researchers have focused on
interpreting and understanding the semantics of this longitudinal multi-modal data.
One challenge is the fusion of multi-modal data and achieving good performance
on tasks such activity recognition, event detection and event segmentation. The
classical approach to process the data generated by wearable sensors has three main
parts: 1) Event segmentation 2) Event recognition 3) Event retrieval. Many papers
have been published in each of the three fields.

This thesis has focused on the longitudinal aspect of the data from wearable
sensors, instead of concentrating on the data over a short period of time. The
following aspects are several key research questions in the thesis. Does longitudinal
sensor data have unique features than can distinguish the subject generating the
data from other subjects ? In other words, from the longitudinal perspective, does
the data from different subjects share more common structure/similarity/identical
patterns so that it is difficult to identify a subject using the data. If this is the case,
what are those common patterns ? If we are able to eliminate those similarities
among all the data, does the data show more specific features that we can use to
model the data series and predict the future values ? If there are repeating patterns
in longitudinal data, we can use different methods to compute the periodicity of the
recurring patterns and furthermore to identify and extract those patterns. Following
that we could be able to compare local data over a short time period with more global
patterns in order to show the regularity of the local data. Some case studies are
included in the thesis to show the value of longitudinal lifelog data related to a
correlation of health conditions and training performance.
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Chapter 1

Introduction

Not until we are lost do we begin to

understand ourselves.

Henry David Thoreau

The three basic philosophical questions: Who am I? Why am I here? and Where

am I going? have been haunting us since the very beginning of our civilization.

Scientists were, are and will be trying to understand ourselves from different per-

spectives such as “things that can be materialized” or “thoughts that cannot be”.

We have developed mathematics, philosophy, biology, physics, psychology and other

enormous research areas to help us better understand ourselves. The appearance of

computer science seemed act the same way, except computers do everything faster.

There were times that human calculators were used iteratively to solve functions

that cannot be solved analytically which is so hard to think about it now with

computers doing the same tasks. Using computers to build and validate models

or simulate proposed models faster than ever before has accelerated developments

in nearly every discipline and brought different disciplines together to create some

things that were not here before.

Devices or sensors with computational power can be made smaller, faster, more

energy efficient and more affordable. This is the wave we are experiencing now.
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The trend of small yet powerful devices enables us to wear sensors comfortably

and continuously while data can be captured with adequate accuracy. The use of

multi-model sensory technology has brought challenges and opportunities in personal

sensing such as management and analysis of personal big data. Researchers are now

addressing issues in indexing and retrieval of personal sensing data. Some of the

fundamental problems in this have rarely been touched before, which is what this

thesis is trying to address.

1.1 Personal Sensing Models

How can we build a model to simulate human beings in the sense that it will react

in the similar way that a human being would do ? This is indeed a very interesting

and complicated questions in so many ways. At least using the technology we have

so far it is an unachievable task. Maybe we are able to train computer algorithms to

recognize faces, cars and many other objects or learn how to generate text according

to learned models. The performance for this may be even better than some human

beings, but we have some profound beauties such as creativity, innovation and there

are so many parameters from our uncertain environment and from ourselves that

might influence us, that a single trained model for a complex task cannot solve for

now.

In order to confront less complicated questions, personal sensing is treating hu-

man beings as a black box. By using different sensors that take measurements that

can be logged, we can analyse the data we capture and process it to form some sort

of knowledge about the data, and this knowledge will be eventually fed back to the

person who generated the data in many different possible ways.

The rising research interest into personal sensing has brought challenges in this

research area. Those challenges inclue but not limited to data privacy, sourcing and

stroring personal sensing data, organizing sensing data. For data privacy, research
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by Klasnja et al. (2009) shows privacy concerns about such personal sensing. In

the study 24 participants who took part in a three month study that used personal

sensing to detect their physical activities are interviewed. Those participants show

concerns on what is recorded. They also concern about the context in which partici-

pants worked and lived and thus would be sensed. For sourcing and storing personal

sensing data, the challenges come from continious data capture would consume large

amount of energy thus requiring carrying battery that could support such function

(Ra et al., 2012). On the other hand those wearable devices need to be made as

small as possible. While data science now are heavily data driven, capture high

quality data is vitally important for a good research.

In personal sensing, we would like to capture clean data with good enough res-

olution and low noise. If those data with decent quality need to be stored on the

device, large storage is need (Gemmell et al., 2004). Personal sensing generates

continuous streams of data on a per-person basis, however despite the potential

for real-time interactions, most of the applications for lifelogging we have seen to

date do not yet operate in a real-time mode. So while lifelogging does not yet have

huge volume, this volume of data is constantly increasing as more and more people

lifelog. For a single individual, the data volumes can be large when considered as a

Personal Information Management challenge, but in terms of big-data analysis, the

data volumes for a single individual are small. Considering a lifelog of many peo-

ple, thousands, perhaps millions, all centrally stored by a service provider, then the

data analytics over such huge archives becomes a real big-data challenge in terms

of volume of data.

There are a number of challenges that immediately arise when organising per-

sonal sensing data. A key challenge for processing of lifelog data is in extracting

meaningful information from the content to make it useful. Although deep learn-

ing such as CNN has imporved performance of classification of images greatly, due

to lack of annotation and incompletness of data, it is still hard to retrieve useful
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Figure 1.1: Personal Sensing Model

information.

Figure 1.1 shows the general data processing model for personal sensing. If we

have a look at the outer circle of data flow from ‘People’ to ‘Data’ via steps 1, 2, 3.

Generally speaking, a subject has to have some ideas in mind and impulses make

those ideas into activities and then those activities would be captured by different

wearable or ambient sensors. Let us then have a look at the inner circle from ‘Data’

to ‘People’ via steps 5, 6, 7. Following the same principle, the data being collected

can be processed into activities and then activities can then be processed into higher

semantic level events with more abstract features such as lifestyle and then can we

identify who generated the data. This chain is rather complicated, because there are

so many uncertainties might affect the final results of chain. If we start from people

and end at data, going anti-clockwise, we have to investigate human lifestyle and

activities. Those two can actually be treated as separate researches that we are not

familiar with. In order avoid going deep into those studies, we are going a different

direction. We are trying to bridge the gap between people and data directly to see
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what benefit data can bring to people. We will explore this by omitting manually

investigating each intermediate nodes between data and subject who generated the

data. Instead we use computer hardware and algorithms to model those intermediate

modes to bridge the gap directly.

1.2 Hypothesis and Research Questions

The overall hypothesis in this thesis is that

“Human lifestyles have in-built periodicities of various frequencies

including daily, weekly, monthly, seasonal, and annual and that using

lifelogging sensors to collect data, even though it may have gaps in cov-

erage, we can use time series analysis to detect these periodicities and

use them to good effect.”

To explore this hypothesis, 5 research questions (RQs) have been formulated and we

present these in sequence, and the sets of experiments to be carried out associated

with these RQs.

1.2.1 RQ1: Relationship between people and data

Does each individual generate a unique distribution of their data ? Does the data

generated by a subject have unique features that can represent them ? This research

question is trying to find out if there is a bijective corresponding between ‘People’

and ‘Data’ by omitting intermediate factors that might affect the result. In order

to examine this research question, we will:

1. Show that the data generated by each subject is different.

2. Show that the data can be projected back to the subject.
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In order to study RQ1, we will be using low level data, which is generated by

more than 20 subjects. The point of RQ1 is to prove different subjects generate

different data and the uniqueness of the data can somehow be detected using com-

puter algorithms and mapping it back to the subjects who generate the data, in

other words to identify the subjects. If the bijective correspondence were to prove

to exist to some extent, we will be able to confirm that sensors are able to capture

some unique features of the subject and therefore any knowledge mined from those

data does connect with the subject. This fundamental question is seldom raised,

which can sometimes make the validity of personal sensing questionable.

1.2.2 RQ2: Predict lifelog data

Is human sensing data predictable? This research question is trying to build models

for personal sensing data. We will see how different models such as different machine

learning models, time series or deep learning models do affect the predicability.

Assume there is a one-to-one correspondence between people who generate the data,

this research question is trying to address the issues that the capability of uniqueness

of the personal sensing data to be modelled. If we are able to model the data, what

would be the prediction to be? Experiments will be conducted on both low-level

data and high-level data.

1.2.3 RQ3: Periodicity in lifelog data

Are there any repeating structures in lifelog data? How can we detect periodicity

in personal sensing data? In this research question we are interested in detecting

periodicity in personal sensing data in order to reveal hidden patterns that cannot

been seen directly. Several methods to detect and examine periodicity will be tested

such as parametric and non-parametric methods. Both low-level and high level

datasets will be used since they are all longitudinal data.
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1.2.4 RQ4: Intensity of Periodicity

How can we measure intensity of periodicity ? In this research question we will

compute the strength of periodicity for various datasets. Note that periodicity

is assumed to be reported positive in the previous research question. Since the

periodicity detected can only represent an overall global repetitive structure, there

are many variations locally compared with the global pattern. In the places we

think the bigger the variation is, the smaller the strength of local periodicity is.

In this research question we will define several metrics to compute the strength of

periodicity in lifelog data.

1.2.5 RQ5: Applications in real life

Do the detected patterns of periodicity make sense for users in the real world ? In

this research question, we will be using two case studies to demonstrate how the

patterns of periodicity and/or intensity of those patterns could correlate with sub-

jects’ interpretations of their own real life. In the low-level data case, the correlation

between intensity of circadian periodicity and bio-markers will be investigated. In

the case of high-level data, we will conduct a focus group interview with the sub-

ject and present the results of periodicity analysis by quoting the response of the

subject. Participants will review their lifelog data in order to stir up past memories

for example in the form of an interview and detected patterns will be fed back to

participants as triggers for deciding if these periodicities are right or are irrelevant.

This research question is closely related to the qualitative evaluation of periodicity

detection. How can we give feedback to users after discovering periodicities so that

we can conduct an assessment of the performance of detection according to users’

reaction and/or their biomarkers ?
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1.3 Methodologies

The thesis sets out to study personal sensing data and it’s latent patterns that might

be used to good effect. We used both quantitative and qualitative analysis. For

research questions 1 to 4 we study the data and investigate some algorithms using

quantitative methods to evaluate. In research question 5, we implement qualitative

evaluation for one case.

Evaluation is a challenging task, especially when we are trying to evaluate the

performance of periodicity and intensity of periodicity. The relevance of the periodic-

ity is quite subjective since every individual has his/her understanding of periodicity.

That is why both qualitative and quantitative evaluation will be used. In order to

use quantitative assessment we need to annotate and record accurate meta data.

In RQ1, this is been done by evaluation using precision, recall and F1 measures to

evaluate the result of mapping data to subject by using the identity of each subject

as an annotation. The similarity matrix is used to examine the projection from

subject to data.If we are able to map the data back to people who generate those

data, it is feasible to conclude that any analysis result coming from the data are

more or less related with the subject. In RQ2, models using different algorithms are

evaluated by RMSE, CC and CCC. If the predicted lifelog data is close to ground

truth, then we are able to to use trained model to predict lifelog data. But on the

other hand, it also proves that there are some features machine can pick up and use

it to predict data. In RQ3, the periodograms are firstly evaluated by using synthetic

data and then one chosen method is applied to several datasets in order to show the

feasibility of periodicity detection. If we are able to use empirically selected sophisti-

cated methods used in other research fields to identify periodicity, at the same time

those periodicity are quite significant, we are able to say that there is a occurring

structure in lifelog data on which information is modulated on. Further more we

can then identify the periodicity. In RQ4, the intensity metrics will be evaluated on
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simulated data generated by a model that we propose. The performance of different

metric definitions and window sizes of local intensity will be evaluated. Then we

will choose one metric to generate intensity of periodicity for high-level data and

low-level data collected in real life. If we are able to use measurements to capture

periodicity intensity theoretically, we can then apply those measurement on real life

data, to measure intensity of periodicity of real life. In RQ5, the results of real life

data we generated in RQ3 and RQ4, will be used to find out the connection with real

life. High-level data will be analysed using qualitative analysis. The subject will be

interviewed and asked to answer some questions which are relevant to the patterns

and intensity coming from previous processes. Low-level data will be analyzed by

computing the CC between the strength of circadian periodicity and biomarkers. If

the response from real life is positive, we can then verify the pipe line of the theory

is working. In other words, the framework of lifelog system is valid.

1.4 Organization of the thesis

This thesis will begin by outlining the currently existing work that relates to our

research in Chapter 2. In Chapter 3 we look at the data we will be working on by

examining the data distribution and entropy of the data and a similarity matrix and

confusion matrix will be computed to explore RQ1. Several machine learning and

deep learning algorithms will be used for the classification problem. In Chapter 3,

we will model both high-level and low-level lifelog data. Several machine learning

methods such as SVM, LSTM or time series models such as autoregression types of

model, will be used. This regression problem will provide some reference that we

need to tackle RQ2. Chapter 4 then looks at different methods to detect periodicity.

Parametric methods and non-parametric methods will be applied on synthetic data.

One method will be selected to show the periodicity in real life data across different

datasets (RQ3). Next, Chapter 5 will look at the intensity of detected periodicities.
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Here we compute the strength of significant periodicity/periodicities. Several metrics

will be defined to measure the intensity/strength of periodicity. This chapter is

related to RQ4. Chapter 6 will bridge between the discovered periodicity and/or

intensity of periodicity, and real life interpretation of that data. We use two cases

here to illustrate the practical impacts and validity of processing personal sensing

data. This is trying to answer RQ5. Finally we will conclude with a summary and

look at how in answering our research questions, we have formed a contribution to

the field.
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Chapter 2

Background

Lifelogging is the ambient, digital capture of any of several possible data sources

which log the ordinary day to day activities of a person performing their typical

activities of daily living. There are several possible purposes for such recording of

the daily activities which vary from subsequent searching for events to automatically

determining patterns of a person’s life. Lifelogging is already widely used in medical

and therapeutic applications such as a support for reminiscence therapy, a tool used

in memory reinforcement and helping to promote healthy lifestyle, as described by,

for example, Kerr et al. (2013). In lifelog applications which form part of reminis-

cence therapy, participants are shown items from earlier periods in their life, either

very recently which is where lifelogs can be used, or from their distant past, and

seeing these items which can include photos, helps to evoke memories and to re-live

that past. This, in turn, provides cognitive stimulus as well as having social benefits

like encouraging conversation and storytelling.

In Doherty (2009) created a framework which enables effective memory retrieval

as a form reminiscence therapy for people with memory impairments such as ac-

quired brain injury or some form of dementia. The framework can be simplified

as shown in Figure 2.1, and can support what is in effect an event-based model of

lifelogging. In this framework the lifelog consists of a series of images captured from
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Figure 2.1: Lifelogging Events Detection.

a wearable, front-facing camera and taken automatically on a regular basis, say 2

images per minute. This stream of images is then automatically segmented into

discrete events such as “finishing work in the lab”, “waiting at the bus stop”, and

“chatting with friend at the Skylon hotel lobby”. From each one of these discrete,

non-overlapping events, a single key frame is selected to illustrate the event and the

event as a whole can be subject to a process to determine its novelty or uniqueness

in terms of the rest of the person’s life, as well as to a process of automatic analysis

by tagging it with semantic concepts, which are detected automatically.

The SenseCam1 is, or rather it was, a popular wearable device used to take

pictures automatically with a certain minimal frequency in order to create personal,

visual lifelogs or archives. The challenges of effective structuring of a lifelog, followed

by useful searching and browsing of this image collection for the purpose of locating

important or significant events in a person’s life has been addressed by Lee et al.

(2008). A media process was proposed based on the following simple three-step

process with a specific focus on visual lifelogging:

1. Capture and upload images;

2. Post-processing of images;

1http://research.microsoft.com/en-us/um/cambridge/projects/sensecam/

introduction.htm
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3. Accessing images.

This series of processes maps to almost all uses of lifelogging and the first of these

steps, capture and upload, is common whereas the others will vary depending on

the lifelogging application. We will now look at the capture and upload process in

more detail.

2.1 Lifelog Data Capture

The automatic capture of data for lifelogging has been investigated by many re-

searchers for some time. The first such work is probably that by Mann (1997), who

is recognised as a pioneer who tried to capture what he saw through video cameras

mounted on his head. Over time, these have evolved from head-mounted cameras to

more discreet recorders built into his eyeglasses, but all serve the same purpose, the

continuous capture of his life from his viewpoint as a stream of images. Sellen et al.

(2007) from Microsoft Research in Cambridge has used a more modest device, the

SenseCam, to capture everyday life and in their work the authors report evidence

that images captured from a SenseCam can improve the memory recall of wearers

when they are shown their own SenseCam images at some time later. At MIT,

Eagle and Pentland (2006) carried out an experiment using Bluetooth-enabled mo-

bile telephones to capture Bluetooth signals from surrounding devices such as the

mobile phones of other people and they used these signals to measure information

context in order to identify the deep social patterns that occur in a user’s typical

activities. In effect the mobile phone was recording who, or rather whose phones, a

person would typically be in the same vicinity as the main subject, so the phone’s

Bluetooth signal was acting as a form of proxy for social interaction.

Vemuri and Bender (2004) presented a memory re-finding use for lifelogging

which is called “iRemember”. In their research, the authors recorded audio clips

as the main information used to navigate a subject’s memory and it is their use of
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audio which makes this one of the more unusual cases in the history of lifelogging

as audio is not normally recorded. Patterson et al. (2004) employed a similar kind

of technology to provide real-time transport information to individuals with mild

cognitive disorders and to improve efficiency of their travel and their safety as well.

Mobile phones and smartpones have become very popular nowadays and these

form a useful computing resource because of their in-built sensors like GPS and ac-

celerometers and because they offer continuous network connectivity they can form

a ubiquitous infrastructure for capturing our digital life. The DietSense project by

Reddy et al. (2007) at UCLA makes use of a mobile phone with a camera embedded

to capture pictures automatically. The images collected as the log of a wearer’s meal-

times are used to capture and then subsequently analyze the subject’s diet intake

in order to give the subject feedback on their food intake and to improve their diet

choices. The WayMarkr project by Bukhin and DelGaudio (2006) also makes use of

a mobile phone affixed to a strap to take pictures automatically. Rawassizadeh et al.

(2013) proposed Ubiqlog using mobile phone as a device for life logging. The project

provides extension to other devices, such as ebook readers, T.V.s, etc. Further work

by Eagle and Pentland (2006) studied social dynamics by using mobile Bluetooth

as the measure in lifelogging.

Data capture technology is a topic under active development. For instance,

Google glass2 is a wearable computer with a head-mounted display that displays

information for the wearer in a smartphone-like, hands-free format. The user can

interact with the glass via natural language voice commands. For instance, the

wearer can ask the glass to take a picture or record a video. Another lifelogging

tool that has come to the market recently is a wearable camera called Narrative3 .

Narrative is a small wearable camera about one inch square that clips to a wearer’s

clothing like a shirt lapel, and takes a photo every 30 seconds and automatically

2https://www.google.com/glass/start/
3http://getnarrative.com
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uploads these to an online service. The Narrative also has other in-built sensors.

When capturing data, the data set can be annotated, which is helpful especially for

the use of supervised methods of image analysis as the annotations can provide a

ground truth of description of content. Each observation in an annotated data set

is drawn from a set of pre-defined annotated concepts.

When annotating a (visual) lifelog it is possible to do the annotation while cap-

turing the data by asking the participant to perform a set of activities, and then

to label the captured data based on the performed activity. This method has been

used in many studies, where a researcher supervises and observes the participant

during the set of activities corresponding to the data collecting process but it is only

useful in lab-type settings or other controlled environments where the aim is not to

do ambient lifelogging of a subject in ordinary settings.

Another approach to annotating a lifelog data set is to use manual annotation

protocols. In this approach a vocabulary for annotation would be created and then

the subject could subsequently look over their data, perform the data annotation

process using an annotation tool, and annotate the metadata based on the controlled

vocabulary. For instance, a study which uses such a manual annotation protocol was

performed by Kerr et al. (2013) to assess sedentary behaviour and relaying on worn

accelerometer data and SenseCam images. The data was collected by 40 users,

and images were coded later for sitting and standing posture and 12 activity types.

The coded image data was then compared to the accelerometer data. The authors

reported that manual coding of the images was time-consuming and coding errors

can easily occur.

Although they are successful in solving some design considerations, algorithms

for automatically detecting contexts and situations from lifelog data tend to lack

flexibility. This means that the systems developed cannot generally adapt to the

semantics of different contexts. Whatever context information is captured is not fully

used to receive more flexible approaches for context classification and recognition
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for the task of labeling the semantic meaning of the users’ events in their lifelog.

The size and scope of the research in this thesis shows that there is a very active

research community in lifelogging, exploring a range of techniques and using a variety

of lifelogging devices. Yet lifelogging research needs to address more than just the

data capture technology, it needs to also investigate and create new techniques for

the analysis of lifelogs and to provide search, browsing, and navigation through the

lifelogs. Thus indexing and retrieval are just as important as the lifelog capture

devices.

In order to manage accumulated lifelogs we need good information management

tools, and much related work has been done in multimedia retrieval where low-level

feature-based multimedia queries using image features such as colour, texture, edges

and other attributes have been studied extensively. Examples of this work include

McGuinness et al. (2014). However, despite the progress in this area since reported

by Smeulders et al. (2000), there is still no foolproof means to reflect the coincidence

between features automatically extracted from visual data and the interpretation

that they have for a user in a given situation.

2.2 Time-Independent Lifelogs

When we say time-independent lifelogs, we refer to event based lifelogs. Users use

SenseCam or other personal wearable sensors to generate a huge amount of data.

Annotators are then asked to segment the collection of personal sensing data into

different episodes. The annotations are normally 1) the start and end of an event

2) Semantic concepts (objects) contained in each lifelog unit, such as object(s) in

each image 3) Semantic concepts corresponding to each segment of the data. The

concepts are normally high level, namely activity of each segment of the data. We

can then implement various machine learning methods to learn how to segment the

data and/or how to map the data into higher semantic space.
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2.2.1 Event-based Lifelogging

As researchers started to develop the technology necessary to build a lifelog and

then to make it searchable and browsable by automatically constructing an index,

one of the first issues faced was to decide on the unit of retrieval. This could be a

single image, or something more meaningful. The current approach for lifelog access

is to create an index which uses each of the daily activities of the participant as its

basic unit for retrieval or browsing. Thus, in this task, research is concentrates on

two challenges:

• Event Segmentation: this is the identification of each episode of behaviour,

i.e., a continuous period of time where the participant is engaged in a single

activity. By identifying the points in time where the primary activity changes

(i.e., the boundary between events) we can delineate the periods of time where

a single event started and stopped.

• Event Identification: having determined the time periods where a single

activity is underway, these periods need to be classified, or labelled, with the

identity of the activity taking place (e.g., walking, sleeping, meal-time, on a

bus, etc.).

Ó’Conaire et al. (2007) describe a visual diary of lifelog images constructed by

clustering images based on low-level image features such as a colour spatiogram

and block-based correlation between images. Their experiments also incorporated

additional sensor data from accelerometers which can be worn or in the case of

SenseCam, are built into the camera which capture images. These features allow

the clustering of images into events, allowing the user to search, browse or review

their day by event, rather than as a stream of images.

The study by Doherty and Smeaton (2008a) showed a method for detecting event

boundaries, based on an adaptation of TextTiling algorithm by Hearst (1997), in

which images (or blocks of images) are compared to their neighbours to determine
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their dissimilarity. The system identifies boundaries where the dissimilarity has ex-

ceeded a threshold. The paper investigates the optimal size for the block of images,

the optimal distance metric to measure dissimilarity and the optimal threshold for

successfully detecting event boundaries. The authors described a method that can

automatically segment an image collection. Features used to compare images se-

lected were MPEG-7 descriptors namely color layout, color structure, scalable color

and edge histogram. Similarity scores among current and adjacent images were cal-

culated using those features. The authors used a technique called peak scoring to

enlarge the dissimilarity and some automatic thresholding methods were applied to

determine the boundaries between events. In the final steps of the process, bound-

aries that are too close to each other are removed. Later, researchers would apply

machine learning techniques such as SVM to learn a classifier to identify the bound-

aries between events in a stream of lifelog images. Also, data from other sources

could be used in the segmentation process including data from accelerometers, GPS

co-ordinates or other metadata.

Doherty et al. (2007) examined event-boundary detection using multimodal data.

In that research, the data consists of images, accelerometer data, light sensor values,

temperature and recorded audio. They also experiment with various kinds of data

fusion of these different data sets. From their results they were able to identify three

main types of activity boundaries:

1. a change of activities within the same location,

2. a change of location, and

3. engagement in social interaction.

They show that sensor accuracy is related to the type of activity boundary. For

example, recorded audio is significantly better at identifying changes in social in-

teraction, but not activity changes in the same location. Chennuru et al. (2010)
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developed a lifelogging system using mobile phones to record and index lifelogs us-

ing activity language. By converting sensory data such as accelerometer and GPS

readings into activity language, they apply statistical natural language processing

techniques to index, recognize, segment, cluster, retrieve, and infer high-level seman-

tic meanings of the collected lifelogs. Their lifelog system supports easy retrieval of

log segments representing past similar activities and automatic lifelog segmentation

for efficient browsing and activity summarization. Aghazadeh et al. (2011) devel-

oped a novelty detection algorithm based on identifying deviations from the wearer’s

normal behaviour. Daily activities are logged in the usual fashion. Sequences of sim-

ilar images can be matched over days and weeks (e.g., the wearer’s daily commute to

work). Novelty in day-to-day activities can be detected when a sequence of images

from the lifelog cannot be matched to a previously recorded sequence. Assuming

that the adjoining sequences do match previously recorded sequences, the novel se-

quence can be seen as a temporary deviation from the participant’s normal daily

behaviour, and so the event can be emphasized as significant for that participant.

Yamauchi and Akiba (2016) proposed method to detect repeated event in newest

NTCIR lifelog data.

In much of the research into processing lifelogs, participants have used SenseCam

or other personal wearable visual sensors to generate a huge amount of images. To

test the accuracy of event segmentation, it is best if users themselves rather than a

researcher or a third party, are asked to annotate part of their personal lifelog images,

due to ethical issues like privacy. Typically the annotations generated correspond to

markers for the start and end of an event and, optionally, a set of semantic concepts

corresponding to each lifelog image, or event.

Following the process by which images are segmented into events, a single image

is generally selected to represent the whole event, in order to facilitate event-based

queries from users. Doherty et al. (2008a) investigated several selection methods

including, selecting the middle image, selecting the image that is most representative
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of all the images in the event, selecting the image that is most representative but also

most different to other events. Also, the quality of the image has been considered

as an important criterion in selecting the key frame image (Ratsamee et al., 2015)

and different image quality measures have been compared and included.

Novelty detection gives us an indication of which events are different and possibly

more important in a lifelog as a result of their uniqueness. Doherty and Smeaton

(2008b) uses both frequency of face detected and novelty score calculated using just

the key frame image from each event. The window size and the sampling rules were

defined by the authors to compute similarity between the current event and adjacent

events. Face detection was used to determine the factor of human involvement in

conversation.

A set of classifiers for pre-defined concepts have been trained on lifelog data

and each classifier assigns images a score as to the confidence of that concept being

present in the image. Byrne et al. (2008) was among the first reported work to

determine whether a lifelog image belongs to a set of concept occurrences or not.

One of the most important statistics as a result of concept detection is the author-

calculated average number of concepts detected for each event and compared among

users. The authors of (Byrne et al., 2008) concluded that the average numbers of

concepts detected for each event gives an outline of the differing lifestyles of users.

Doherty et al. (2008b) described a way that a user can retrieve events by using

queries which are based around the 4 search axes of when, where, who, and what.

Moreover, similar events could be retrieved automatically by computing and ranking

similarity between lifelog events using features like Moving Picture Experts Group

(MPEG)-7 colour and texture, combined with data from worn sensors.
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2.2.2 Event Identification

Bridging the gaps between different levels of semantic representation of lifelogs is a

challenge for researchers in content-based information retrieval in all application do-

mains, not just lifelogging. High-level features refer to features that are semantically

meaningful for the end user. While low-level features are never readable by the end

user, high-level features can express the semantics of media in a more acceptable

way as concepts, such as, for example, “indoor”, “outdoor”, “vegetation”, “com-

puter screen”, etc. These features can provide a meaningful link between low-level

features of images like colour and texture, and user interpretations. The extraction

of such high-level features as these demands filling the gap between low-level feature

occurrences and high-level features, which is called the semantic gap in multimedia

retrieval.

Semantic concepts are usually automatically detected based on a mathematical

model by mapping low-level features to high-level features. The popular pipeline

approach as described by Snoek et al. (2007) is to apply discriminative machine

learning algorithms such as Support Vector Machines (SVMs) to decide the most

likely concepts given the extracted features. Hori and Aizawa (2003) develops a

context-based video retrieval system for life-log applications. This wearable system

is capable of continuously capturing data not only from a wearable camera and a

microphone, but also from various kinds of sensors such as a brain-wave analyzer,

a GPS receiver, an acceleration sensor, and a gyro sensor to extract the user’s con-

texts. By mapping data to higher semantic the system will be able to browsing

or retrieve videos using conversational query. Compared to a discriminative model

which is more task-oriented, generative statistical models such as Markov Models

try to analyze the joint probability of variables as described by Li and Wang (2003),

which are also proposed in concept annotations. Both generative and discrimina-

tive approaches have their pros and cons. A generative model is a full probabilistic
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model of all variables whereas a discriminative model has limited modeling capa-

bility. This is because a discriminative model provides a model only for the target

variable(s), conditional on the observed variables hence cannot generally explain

the more complex dynamics underlying the generation of data for a given class.

However, discriminative models are often easier to learn and perform faster than

generative models. Besides, it has been shown that discriminative classifiers often

get better classification performance than generative classifiers with large training

volume (usually including positive and negative samples).

A limitation for building classifiers is for them to reveal the higher-level semantics

of images when they have multiple concepts with high correlation. The concepts

involved in lifelogging cover numerous aspects of our daily lives and the choice of

concepts is very broad.

Although individuals may have different contexts and personal characteristics,

the common understanding of concepts that is already socially constructed and

allows people to communicate according to Lakoff (1990) and Huurnink et al. (2008),

also makes it possible for users to choose suitable concepts relevant to their own daily

activities. In everyday concept detection and validation as described by Byrne et al.

(2010), concepts are suggested by several SenseCam users after they have reviewed

several days’ worth of their own lifelogged events. The set of concepts used are those

that can be detected with an accuracy rate above a particular threshold.

To find a set of candidate concepts related to each activity in a set of everyday

activities, Wang (2012) and Wang and Smeaton (2012b) carried out user experiments

on concept selection where candidate concepts related to each of the activities above

were pooled based on user investigation. Byrne et al. (2008) used low-level features

of SenseCam images to define high-level semantic concepts such as eating, road, sky,

office, etc. 27 semantic concepts have been defined and used as a source for improving

the segmentation task. Everyday concept detection consists of supervised learning,

visual feature extraction and then finally feature and classifier fusion. The validation
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in the work by Byrne et al. (2008) was done by 9 participants who manually judged

the accuracy of the detection on a subset of 95,507 lifelog images. The results showed

an average precision of 57% for positive matches and 93% for negative matches

within such a collection. The authors see these results as encouraging, and they

suggested that automatic concept detection methods translate well to the domain

of visual lifelogs.

Krizhevsky et al. (2012) proposed Convolutional Neural Network to train convo-

lutional kernels on large scale dataset. The CNN and some variant of the network

such as VGG (Simonyan and Zisserman, 2014) is one of the most widely imple-

mented network of deep neural network in computer vision. One of state-of-art

neural network approach in computer vision is proposed by He et al. (2015). Before

mentioned network all provide open access to pre-trained models in several model

zoos.

Doherty (2009) relied on SenseCam sensor readings and low-level features of im-

ages to create clusters of distinct activities throughout a day. The MPEG-7 visual

descriptors of color layout, scalable color, edge histogram, and color structure in-

formation for each image is extracted to give an indication of what image features

can represent this image. SenseCam sensor readings (including accelerometer, am-

bient temperature, light level, and passive infrared detector) are then associated

with each image based on time. The values of sensor readings and images features

are normalized to ensure that they are all on the same scale for comparison. The

adjacent image/sensor values are then compared against each other to determine

how dissimilar they are. When the dissimilarity value is higher than a threshold

value, a boundary for a new activity is considered.

Bolaños et al. (2015) used a CNN for egocentric videos as an unsupervised feature

extractor for discovering objects. The author reported that the F-1 score of the

classifier to score objectiveness in egocentric video sequences, are better than state-

of-art techniques.
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Accelerometer data has been used in many studies such as by Yang et al. (2008)

and by Atallah et al. (2011) to provide recognition of everyday activities such as

walking, running, sitting and lying. Many researchers utilized machine-learning

techniques to segment each day into activities based on accelerometer data. Bao

and Intille (2004) performed a study to detect activities of daily living using ac-

celerometer data. Participants were asked to perform 20 different activities and five

accelerometers were placed on the upper arm, lower arm, hip, thigh and ankle. Data

from the accelerometers was labelled during the data collection process based on the

performed activity. Features derived from both the time and frequency domain were

extracted from the raw accelerometer data and used to train a number of classifiers

including the C4.5 decision tree, decision tables, naive Bayes and nearest neigh-

bor classifiers. The authors succeeded in classifying 20 different activities with an

accuracy of 86% using the decision tree classifier. Long et al. (2009) used a single ac-

celerometer to detect occurrences of five daily activities including walking, running,

cycling, driving, and playing sports by applying a Bayesian classifier. The data was

collected from wearable accelerometers without intervention and annotated there-

after by just examining the values of the three axial accelerators manually. Features

of the data were extracted and used as input to the automatic classifier and the

accuracy obtained from this was around 80%. Preece et al. (2009) did a similar

study to recognize activities including walking, going up and down stairs, running,

hopping on left or right leg and jumping, all based on wearable accelerometers. The

highest activity recognition accuracy for a single sensor (97%) was achieved using

an ankle-mounted accelerometer. Preece et al. (2009) also relied on features ex-

tracted from the raw accelerometer data namely the Fast Fourier transform (FFT)

component feature set.
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2.3 Time-Dependent Lifelogs

Time dependent lifelog research is more likely to consider lifelog data as time series

data and therefore it is likely to apply analysis techniques originated from time

series modeling. Those time series analysis techniques include, but are not limited

to, detrended fluctuation analysis, autoregression, moving average, autoregression

moving average, and some methods from signal processing.

Li et al. (2013b) used time series analysis methods to study chronologically-

presented lifelogging images. Although the authors did not describe detailed exper-

iments or show convincing data, their conclusion is still very heuristic: Detrended

Fluctuation Analysis (DFA) shows lifelogging data is a time series with a cyclic

fluctuation and it is not a random walk. This statement inspires us to explore time

series analysis, given an assumption that lifelogging data is not totally random and

this is the basis for our proposed work. Hu et al. (2009) apply DFA analysis to ac-

celeromery data in order to test disturbances of scale-invariant activity fluctuation

in elderly humans and elderly people with Alzheimer Disease based on the hypoth-

esis that the master circadian pacemaker or suprachiasmatic nucleus is responsible

for the scale-invariant activity fluctuation in humans.

Li et al. (2013c) applied cross-correlation matrix and Maximum Overlap Discrete

Wavelet Transform (MODWT) to analyse SenseCam lifelog data streams. Eigen-

value decomposition was used at various wavelet scales to determine significant

changes at different granularity in order to find out boundaries between events in

lifelog data. Li et al. (2014) extend the previous work and improve the ability to

remove noises by applying random matrix to cross-correlation matrices.

Wang and Smeaton (2012a) built an ontology of semantic concepts using auto-

matically detected concepts in lifelog image collections. The author included seman-

tic reasoning in order to deduce a set of concepts to represent lifelog content for ap-

plications like searching, browsing or summarization Wang and Smeaton (2013) used
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Hidden Markov Models (HMMs) to capture the temporal information of detected

concepts in lifelog data. The HMMs are thereafter used to detect complex/high-level

activities.

Narimatsu and Kasai (2015) proposed a new dubbed Duration and Interval Hid-

den Markov Model (DI-HMM) trying to model sequential data by defining the event

of continuous duration as ‘state duration’, and defining the discontinuous interval

with no observation as ‘state interval’.

Wang et al. (2016) explored and compared methods both using and without us-

ing temporal information. The authors applied concept detectors firstly and then

used the outputs of concept detectors as inputs into a complex/high-level activities

classifier. The result showed some interesting results, such as that with the im-

provement of basic concept detectors, the performance of time-series based concepts

could be improved but if appropriate approaches are chosen, relatively poorer per-

forming concept detectors can still achieve good performances. In other words, an

appropriate way to choose, extract or model temporal information can compensate

for the loss of information through concept detection.

Besides using images as lifelog data, other types of sensor data have also been

investigated by researchers such as accelerometry, pressure and electrophysiological

data. Cheng et al. (2016) extracting subtle features from a textile-based pressure

sensor array. The author was expecting that the results of an activity recognition

classifier could be improved. One feature utilized was extracted from the time do-

main to improve the performance of the classifier but the importance and properties

of each feature are not discussed in the paper.

Krafty et al. (2015) used electrophysiological time series by polysomnography to

characterize sleep and elucidate the pathways through which sleep affects, and can be

treated to improve, health and functioning. The authors analysed data to quantify

associations between power spectra of time series from different sleep periods with

cross-sectional clinical and behavioral variables.
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2.4 Periodicity

Periodicity is a natural phenomenon observed in biology, astronomy, financial and

sociology such as sunspots which have a 12-years period, the recurring of finan-

cial crises whose periodicity can vary, signals emitted by pulsars, tides, circadian

rhythms, seasons and the depths of a river, all which have a regular periodicity. In

this section, some examples and applications of periodicity will be reviewed to show

how periodicity is used across variety research areas.

2.4.1 Periodicity in Human Behaviour

Intuitively, we think our routine daily life is composed of another form of recurring

events. Without the help of lifelogging devices, analyzing the periodicity of human

life is a challenging proposition as it is not possible to ask a participant to keep

accurate self-reports of their activities to the right level of detail over a period of

months or years.

A study conducted by Czeisler et al. (1999) at Harvard University estimated the

natural human rhythm to be closer to 24 hours and 11 minutes which is much closer

to the solar day but still not perfectly in sync. Studies by Figueiro et al. (2006) have

also shown that exposure to sunlight has a direct effect on human health namely

breast cancer in the paper because of the way it influences the circadian rhythms.

Brocklebank et al. (2015), Bassett et al. (2015), Healy et al. (2011) and Knut-

son et al. (2011) have shown that human behaviors that are measurable using an

accelerometer — sleep, sedentary behavior, and more active behaviors — are con-

sistently associated with cardiometabolic risk biomarkers and health-related quality

of life. Accelerometers can also capture the patterns in which sleep, sedentary, and

active behaviors are accumulated. For example, Wolff-Hughes et al. (2015) showed

that physical activity accumulated in bouts of ≥ 10 minutes have stronger relation-

ships with health outcomes than total physical activity. Finally, in work on analysis
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of sleep, Cappuccio et al. (2010) used accelerometers to quantify measures of sleep

quality (e.g., sleep efficiency, wake after sleep onset) which typically provide greater

predictive value of health outcomes than sleep duration alone.

Despite the capabilities when using accelerometers to measure behaviors across

the 24 hour spectrum, less is known about metrics that encapsulate the full 24 hours

that could be derived from accelerometer data. These metrics may identify unique

patterns of behavior that could further explain relationships with health outcomes.

One such known metric that is ascertained from accelerometry is the rest-activity

cycle, that can represent the human circadian system. Gu et al. (2014) state that

disruptions in the circadian system consistently show profound and detrimental im-

pacts on health. Mormont et al. (2000) and Innominato et al. (2009) conducted

studies using accelerometry and have shown relationships with health-related qual-

ity of life and better survival following metastatic colorectal cancer chemotherapy

treatment.

Recently, with the growth of more wearable accelerometers that accommodate

larger storage capacities, waterproofing, and more unobtrusive wear locations, long-

term monitoring of behavior (i.e. much greater than one week) throughout the 24

hour spectrum have become more feasible. Indeed, consumer-based accelerometers

(e.g., Fitbit, Jawbone) are already achieving long-term population-level data collec-

tion of these health behaviors. With the collection of long-term data, it may now be

possible to characterize weekly, seasonal, and even annual patterns of behavior that

encapsulate the full 24 hour spectrum that extend beyond traditional methods (e.g.

accelerometry thresholds, sleep/wake rhythms). Hu et al. (2014) conducted experi-

ments on several lifelog data collections and found that periodicities (i.e., repeating

patterns) are observed in many human behaviors and may be derived from various

forms of lifelog data. However, such methods have not been applied to long-term

monitoring of accelerometry data as yet.
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2.4.2 Periodicity in Astronomy, Finance and Biology

Pulsars are known to emit pulse signals throughout the universe. Since the first

discovery of pulsars by Bell Burnell (1979), the study of pulsars is an important

topic in Astronomy. The periodicity of a pulsar’s signal can be used to determine

the age of a pulsar and it thought to be as accurate as an atomic clock. 1993

the Nobel prize was awarded to Russell Alan Hulse and Joseph Hooton Taylor, Jr.

for their discovery of a new type of pulsar, a discovery that has opened up new

possibilities for the study of gravitation. Current research by Zhu et al. (2014)

applied image pattern recognition algorithms training a classifier using statistical

features of the image and using the trained classifier to find new pulsars.

An economic cycle is the upward and downward movement of Gross Domestic

Product (GDP) of a country around its long-term growth trend. In Capitalism the-

ory we always see words like “booms” or “expansions” which correspond to rapid

economic growth and “recessions” or “contractions” which correspond to economic

decline or stagnation. The booms and recessions shifting over time are the represen-

tations of the economic cycle. Those fluctuations in economic activities are proven

to be unpredictable.

Chronobiological studies include, but are not limited to comparative anatomy,

physiology, genetics, molecular biology and behavior of organisms within biological

rhythms mechanics. The circadian rhythm is important and investigated in chrono-

biology. The process is related to an oscillation around 24-hour rhythms which are

driven by a circadian clock, and they have been widely observed in plants, animals,

tides and so on. Circadian rhythmicity is present in the sleeping and feeding pat-

terns of animals, including human beings. There are also clear patterns of core

body temperature, brain wave activity, hormone production, cell regeneration, and

other biological activities which use this same periodicity. We are able to find a

clock-related genome in mice, clock-mutant mice are hyperphagic and obese, and
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have altered glucose metabolism Arendt (1997).

In the next section we will present the various datasets constituting lifelogs of

different people, that will be used in the remainder of the work in this thesis.

2.5 Datasets Used in this Thesis

In order to fully explore the hypothesis and research questions set out earlier in

this thesis (see section 1.2), a set of lifelog datasets with different characteristics

are needed, characteristics which differ in terms of length of recording, frequency

of recording, nature of data captured, nature of the subject(s), and variety across

subjects. To this end, we have gathered five different datasets which we outline

briefly here, and which we will return to later in the thesis. The several datasets we

use are chosen so as to support an investigation into our different research questions.

In the literature we see many works being done to analysis personal lifelog data

on per-person base. But researches rarely mentioned the validity of data for each

subject, namely the question why is the analysis of the data can be applied to

the subject. In other words, the validity of personal data framework hasn’t been

studied completely which is one of the focus of the thesis. We have also seen several

deep learning methods are used in computer vision community. Several researches

apply deep learning on lifelog images, but few of them use this approach on low

level longitudinal acceleration data. We bring state-of-art deep learning methods to

longitudinal acceleration data. In the literature, numerous researcher trying to build

connections between people and data through events, but relate people and data

directly using raw data is not common. We explore raw data to identify periodicity

and intensity of periodicity to bridge the gap between people and data.
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2.5.1 Athletic Data

This dataset represents a 10-year record of physical exercise and training activities

including running, cycling and swimming, from an international triathlete (now

retired from competition). The log contains a daily entry for distance covered for

1 or more of the three sports as well as daily text comments which can indicate

mood, training effort, relative performance, weather, etc. and these can be analysed

for sentiment. This sports dataset capture 100% of activity log in the 10 years, i.e.

there are no missing entries and the log is complete.

Obvious periodicities which could be detected from this data include seasons,

performance at targeted sports events, perturbations caused by occasional injury

and overall decline over the decade from aging.

We manually annotated the daily reports by the athlete for both mood and for

performance level to create a third dataset (the other two being distance covered

in each of 3 sports). Four annotators were asked to annotate the text for mood by

following the following strategy: if a comment provides an indication of mood (e.g.

“ feeling great”, “not well” or “ok”), the annotators assign a rating between 1 and 5,

where 1 indicates the worst feelings and 5 indicates the best feelings. If there is no

indication of mood in the text, the annotators assign a rating of 0. For annotation of

performance level, the four annotators were given the following instruction: when a

comment provides an indication of performance level (e.g. “personal best”, “strong

finish”, or “stopped early”), they give a rating between 1 and 5 where 1 indicates

poorest performance and 5 indicates best performance. If there is no indication of

performance in the text, the annotators assign a rating of 0. The purpose to assign

0 to missing values is to identify between missing values and non-missing values.

The assigned zeros are not used in the processing of data.

Comments made by the athlete during the year 2007 were randomised and pre-

sented to 4 annotators. Because the marks for mood and performance given by
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annotators are highly subjective and have biases, inter-annotator agreement namely

Cohen’s Kappa co-efficient as described by Cohen (1968), was calculated across the

annotators.

This dataset is used for RQ2 for the prediction of high-level lifelog data. Because

it’s logged for more than 10 year. It is used in RQ3, RQ4 and RQ5 as well, because

we would like to see if there is an periodicity in sports data and annotation of sports

data or not. If an periodicity is present in this data set we would like to compute

the intensity of the detected periodicity. The result of intensity of periodicity will

be then summarized to questions which is asked to the subject who generate those

data in an interview.

2.5.2 Sleep Data

The dataset represents 2.5 years of continuous nightly sleep monitoring for an in-

dividual (male, middle age, daytime 5-day week worker) with a ≥80 % capture

rate. Data was collected using the wrist-worn Lark sleep sensor4 and contains the

following information:

1. Time to sleep - represents the time taken between going to bed and falling

asleep;

2. Time to rise - represents the time taken between waking and getting out of

bed;

3. Time asleep - represents the duration of sleep;

4. Quality - a numeric indicator of sleep quality computed as a function of how

well the night’s sleep mapped to the circadian sleep (90-minute) rhythm and

how many cycles of that rhythm were completed;

4http://www.lark.com
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5. Times woken up - represents the number of instances of a wake-up during

sleep, where ”wake up” represents even a turning over in the bed;

An obvious periodicity we would expect to detect in this data is based on the

weekly cycle where the subject tends to sleep longer at weekends than during work-

days because he has a regular work schedule of Monday to Friday.

This dataset is used only in RQ3 to show that even in unevenly sampled lifelog

data we are able to detect periodicity. We didn’t apply it in other RQs is because it

has only 2.5 year with about 20% of data missing. And sleep conditions are hard to

remember especially there is no comment or annotation which will help the subject

to remember anything during an interview.

2.5.3 ASU Accelerometer Data

The ASU runs a program to monitor sleep quality for US Veterans. Participants

in the program used a smartphone-based, multi-component behavioral intervention

which targeted changes in sleep, sedentary behavior, and more active behaviors. In

other words, the smartphone’s on board sensors were used to determine message

interventions to help subjects improve their sleep and reduce the amount of their

sedentary behaviour.

The target population in this study was US Veterans currently receiving clinical

care at a regional Veterans Health Administration (VHA) hospital in the South-

western United States, aged 35-65 years, measured as either overweight or obese

(BMI ≥ 25 kg/m2), with a fasting glucose of ≥ 100 mg/dL. Eligibility criteria for

the study also included reporting of (a) insufficient physical activity (defined as en-

dorsing activity ranking categories ≤ 4 on the Stanford Brief Activity Survey by

Taylor-Piliae et al. (2006), which closely aligns with US national physical activity

guidelines), excessive sitting (defined as ≥ 8 hours of sitting from the International

Physical Activity Questionnaire [IPAQ] by Hagströmer et al. (2006)), and short
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sleep duration (< 7 hours/night) or mild/moderate sleep complaint (modified ver-

sion of the Insomnia Severity Index [ISI] by Morin et al. (2011)). All participants

completed a telephone screening to determine eligibility. Institutional review boards

governing the local VHA hospital and the Arizona State University in which some

of the researchers on the study were affiliated, approved all study procedures. All

participants provided written informed consent.

Participants were initially screened by telephone and this was followed by an

in-person visit to confirm eligibility and complete informed consent procedures. At

this visit participants were given a wrist-worn accelerometer for three consecutive

weeks. This period constituted the “un-in” period of the behavioral intervention and

baseline data collection. Participants were instructed to wear the monitor continu-

ously during both sleep and wake. As part of the run-in period, participants were

asked to self-monitor their sleep, sedentary, and active behaviors using a customized

smartphone application designed for this purpose. After two weeks, participants

were mailed a second accelerometer and asked to return the first accelerometer in

a pre-paid envelope. At three weeks participants returned for a second in-person

visit where the second accelerometer was returned and all other study measures

including questionnaires, blood draws, and clinical measurements were completed.

Participants received 25 USD for completing study measures at this visit.

Following this visit, participants were randomized to receive active elements of

the behavioral intervention. A full description of the intervention can be found in the

work by Buman et al., but briefly, participants were randomized into a full-factorial

2x2x2 screening experiment where smartphone-based interventions targeting sleep,

sedentary behavior, and physical activity were delivered for 8 weeks. All partic-

ipants maintained self-monitoring of their behaviors using the custom application

during the intervention phase. Participants also attended two additional visits dur-

ing the eight weeks to complete study-related assessments and to return/exchange

accelerometers to maintain continuous wear and data collection. To take advantage
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of the continuous and longitudinal nature of the data, the full accelerometer data

for the run-in and intervention periods were leveraged for this analysis and the effect

of the intervention was statistically controlled for in all analyses.

During the data-gathering, movements during sleep and wake by participants

were monitored objectively and continuously throughout the study period using the

GENEactiv accelerometer5. The GENEActiv is an open source, wave-form wrist-

worn accelerometer that is fully waterproof, allowing the monitor to be worn contin-

uously, 24 hours a day without the need to be removed during water activities or be

shifted from hip to wrist for daytime and nighttime measurement. Since the GENE-

activ provides continuous forms of data recordings for periods of at least 1 month

it can be considered a valid form of lifelogging. Raw data captures acceleration of

X, Y and Z 3 axis along side temperature and lumen. All raw data is encoded with

HEX format. Data captured on board the device were initially sampled at 40Hz and

summarized to 60 second epochs using a gravity-subtracted sum of vector magni-

tudes and provided through the Activinsights software package. Periods of non-wear

were screened for and removed based upon variability in the monitor temperature

outputs (i.e., low variability indicates lack of normal fluctuation in temperatures

indicated human wearing), and visual inspection. Additional removal occurred for

overlapping wear periods that occurred when the monitors were in transit by post.

Before data processing, there are several practical difficulties in the data set that

need to be addressed. First of all, during the data capture process, some data entries

have become corrupted or some data attributes have not been logged due to various

reasons. Beside this, in the ASU data there are some large data gaps due to the fact

that participants were encourage to wear the sensor as long as possible, but they

were still free to decide when and where to wear the device. There is also an overlap

problem in the ASU data. The device cannot log data constantly for 3 months,

which is the upper limit of the logging period, so it has to be changed at some point,

5http://www.geneactiv.org
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perhaps more than once. This is done by either the participants visiting the lab or a

new sensor was posted to them. The overlap problem is because the new sensor will

have started to log data while the old sensor was still attached to the participant

and the exact time when the participants changed the sensor was not recorded. If

the participants change the sensor on site in the lab, the overlapping problem still

exists but is minor, but if the new sensor was posted to a participant, the overlap

could be large and must be fixed. Under current experimental settings, we manually

decide the time points where the changing of sensors happened. This dataset poses

some interesting possibilities for periodicity which may improve or disimprove before

and after the sleep intervention and it will be interesting to examine this to see if

the intervention has an impact on the participants’ periodicity.

This dataset is used in all the RQs. It is used in RQ1, because 25 subjects

participated in the experiment. For RQ2, each subject is logged for months’ data

with high sampling rate. We use it for RQ3 because we are hypothesis that there

are periodicities in such longitudinal raw acceleration data. For RQ4 and RQ5, we

are interested to see if the intensity of a certain periodicity would be correlated with

some health related biomarkers.

2.6 Conclusion

In this chapter, related lifelog research was reviewed, including state-of-art data

capturing methods, detection of boundaries in lifelogs, event detection and applying

time series analysis method to lifelog data. Periodicity, the phenomenon of regularly

occurring patters in other fields was also introduced and reviewed. Despite much

research carried out in lifelogging and post-processing of lifelog images, research

concentrating on analysis of lifelogging data which uses the chronological aspect

and investigates longitudinal aspects and its causality and impact on lifestyle, is

not widespread. Consider a sequence of collected data where we could potentially
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discover some patterns such as trends, or even full periodicity, seasonality, partial

periodicity, periodicity association rules, frequent patterns and cross correlation.

Detecting such patterns would be very helpful to reveal aspects of a person’s lifestyle.

One of the most interesting patterns of a person’s lifestyle is their daily routine, it

conveys a near-truth of your lifestyle by your recurring activities or events, in other

words, the periodicity of your life. This is one of the things we set out to investigate

in this thesis.
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Chapter 3

Uniqueness of Users and their

Lifelog Data

This chapter is related to the first of the research questions (RQ1) introduced at the

start of this thesis, which concentrates on the question: Does longitudinal log data

have some unique features than can distinguish the subject generating the data from

other subjects ? In other words, from a longitudinal perspective, does the lifelog

data captured from different subjects share more common structural or similarity

or even identical patterns so that it is difficult to identify subjects from the data ?

For instance, if we assume two subjects are generating two time series of lifelog data

and if the two data series are very distinct from each other, we could say that the

two subjects share less common properties and there is a lesser chance for us to

discover similarity in lifelog patterns between them. In another extreme example, if

two subjects generate exactly the same data series, we could say that the patterns

found in one subject can be applied to another relatively easily, because they are

identical. Before looking at methods for finding common patterns and periodicity

within lifelog data, as introduced in Chapter 5, it is very important to look into

lifelog data itself first. The purpose of doing this is to discover some unseen and

perhaps unknown properties of lifelog data that we are dealing with. Each of the
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sections in this chapter will try to test or examine one of the following statements:

1. Lifelog data generated by one person is different from lifelog data generated

by other people.

2. Lifelog data generated by one person changes with time.

3. Computer algorithms are able to identify different persons given lifelog data

series.

Section 3.1 is related to the first statement. The overall distribution of data

generated by different subjects will be computed and metrics that can measure

similarity between the distribution of the subjects will show the uniqueness of each

subject in terms of data distribution of their lifelog data.

Section 3.2 is related to the second statement. The distribution of data generated

by each subject will be studied. Each data series of lifelog data will be divided into

window size of a day. The distribution within each window will be computed and

the distribution changing with time will be calculated, in order to see how lifelog

data does change with time.

Section 3.3 is related the third statement. Several machine learning methods

will be used to classify different subjects. We expect to see that the result of this

classification will be better than a random guess.

It is legitimate to envisage a more or less bijective correspondence between each

subject and the data generated by the subject. If the one-to-one mapping exists on

a degree, it implies that each person has enough uniqueness in their accelerometer

data to distinguish themselves from others, that this then makes the case for a

need for visualisation and analysis on a per-subject, individual basis. On the other

hand, the bijection between subjects and data could also means that patterns mined

on each data series do represent the subject, because of the uniqueness carried in

the time series. This could potentially be the bases and foundation of analyzing

longitudinal-populational lifelog data.
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3.1 Data distribution

In this section, data distribution refers to a probability density distribution of lifelog

data and we will compute the data distribution for each unique subject for whom

we have lifelog data. The reason we are doing this is because we are interested to

see if there are any differences among subjects in terms of their data distributions.

Several methods to measure differences between distributions will be used.

3.1.1 Experiment Settings

We will use the ASU dataset, introduced earlier in Section 2.5.3, to examine the

distribution of lifelog data across different subjects. The ASU data is a dataset

which contains data on more than 25 subjects. Each subject was asked to wear a

wristband like wearable sensor freely for several weeks without interruption. The

dataset includes data gathered by an accelerometer, luminance, temperature, voltage

of the device itself and all these are timestamped. In a data distribution analysis

experiment, only the 3-dimensional accelerometer data, and its timestamp, will be

used. In the first experiment the time variable is not considered, which means the

data generated from the beginning until the end of the data collection period will

be used as a whole.

1D histogram is computed using 999 bins with range from -8.5 to 8.5. Three

histograms are computed from each axis of the accelerometer. For 2D histogram,

we use 999× 999 lattice as bins with range from -8.5 to 8.5 for each dimension. Three

histograms are computed for X-Y axis, X-Z axis and Y-Z axis of the accelerometer.

As for 3D histogram, due to limited memory, we apply 199 × 199 × 199 cubes

as bins with range from -8.5 to 8.5 for each dimension. There is one histogram

computed for the 3D case.
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3.1.2 Results of Data Distribution

We firstly visualize and examine the ASU data. Figure 3.1 is a 2D histogram of

the distribution of all the X and Y axis of accelerometer data collected. The colour

shows the probability of a value falling into an interval indicated by the X and Y axis.

The value of the probability is indicated using colour coding. The colour mapping

is indicated on the right side of the figure. The lighter the colour, the higher the

probability value is. We can see there is a vague white circle in the middle because

data has a smaller chance to fall on the most of the intervals. Thus we enlarged the

centre part where the interval ranges from around -2.5G to +2.5G, so that we can

see a clearer picture of the distribution in the centre. Figure 3.2 shows the result of

the enlarged centre of the histogram. The same idea was applied to a histogram of

X and Z axis in Figure3.3 and Figure 3.4, and also a histogram of Y and Z axis in

Figure 3.5 and Figure 3.6.

At first glance, the distribution of data seems to look like a 2D Gaussian distri-

bution, where there is a peak in the centre and probability values getting lower when

the distance between points and centre becoming bigger. Although the histograms

of X-Y axis, X-Z axis and Y-Z axis are not exactly the same, they are more or less

following similar pattern, which is to have a smaller chance to have values around

the edges of the histogram.

We can observe something very interesting after we enlarge the histogram in all

three settings namely that there is a circle that can be seen among all three settings.

The reason we can see the circle is because the colour of the circle is lighter than the

colour of the background. From a 3D perspective, we can imagine the higher value

or lighter colour as hills and darker background as valleys, so most of the data that

the subjects generated are bounded between -g and g. And we also can see some

hills in the area bounded by the hills with radius of one gravity.
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Figure 3.1: Histogram for X and Y axis of raw acceleration from
all subjects. X axis is the range of Y-axis acceleration
from -8.5G to 8.5G. Y axis is the range of X-axis accel-
eration from -8.5G to 8.5G. Colour scale represents the
logarithm of probability.
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Figure 3.2: Enlarged histogram for X and Y axis of raw acceleration
from all subjects. X axis is the range of Y-axis acceler-
ation from -1.4G to 1.4G. Y axis is the range of X-axis
acceleration from -1.4G to 1.4G. Colour scale represents
the logarithm of probability.
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Figure 3.3: Histogram for X and Z axis of raw acceleration from
all subjects. X axis is the range of Z-axis acceleration
from -8.5G to 8.5G. Y axis is the range of X-axis accel-
eration from -8.5G to 8.5G. Colour scale represents the
logarithm of probability.
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Figure 3.4: Enlarged histogram for X and Z axis of raw acceleration
from all subjects. X axis is the range of Z-axis acceler-
ation from -1.4G to 1.4G. Y axis is the range of X-axis
acceleration from -1.4G to 1.4G. Colour scale represents
the logarithm of probability.
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Figure 3.5: Histogram for Y and Z axis of raw acceleration from
all subjects. X axis is the range of Z-axis acceleration
from -8.5G to 8.5G. Y axis is the range of Y-axis accel-
eration from -8.5G to 8.5G. Colour scale represents the
logarithm of probability.
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Figure 3.6: Enlarged histogram for Y and Z axis of raw acceleration
from all subjects. X axis is the range of Z-axis acceler-
ation from -1.4G to 1.4G. Y axis is the range of Y-axis
acceleration from -1.4G to 1.4G. Colour scale represents
the logarithm of probability.
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Figure 3.7: Distances between 3D histograms of subjects using
squared Euclidean distance. X and Y axis are subject
number. Colour scale represent the normalized distance
between subjects.

3.1.3 Similarity Metrics

A 3D histogram will be used to calculate the distance in terms of lifelog data,

between each subject. In order to see how different distance matrices work on our

3D histogram, we will use and compare several distance metrics. We can hypothesis

now that different metrics could reveal or emphasize different aspects of difference.

Distance metrics are always used to measure dissimilarity, for instance the squared

Euclidean distance is a norm 2 distance which is widely used to measure similarity,

where s(x, y) measures the distance between x and y:

s(x, y) = ||x− y||22

Cosine similarity measures the similarity between two vectors by calculating the

cosine of the angle between two vectors. The cosine of 0◦ is 1 which means the two
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Figure 3.8: Distances between 3D histograms of subjects using
squared Euclidean distance (flattened). X and Y axis
are subject number. Colour scale represent the normal-
ized distance between subjects.

vectors point in the same direction while the cosine of 180◦ is 1 which means the

two vectors point in the opposite direction to each other. The cosine distance of

between vectors A and B can be written as:

cos(θ) = 1− A ·B
||A|| ∗ ||B||

In probability theory and in information theory, the Kullback-Leibler divergence

or KL divergence (Kullback, 1987) is a measure of the difference between two prob-

ability distributions P and Q. The Q distribution is normally referred to as the

theoretical distribution while P is considered as the actual distribution. The KL

divergence is given by the formula

DKL(P ||Q) =
∑
i

P (i) log
P (i)

Q(i)
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Figure 3.9: Distances between 3D histograms of subjects using co-
sine similarity (flattened). X and Y axis are subject
number. Colour scale represent the normalized distance
between subjects.

It should be noted that the measure between distribution P and Q is not symmetric,

which means that the KL divergence from P to Q is not equal to the KL divergence

from Q to P .

We applied the above-mentioned metrics to measure distances between each

subject pair. Note that distance is the negative value of similarity. We used colour

coding in the visualization of the similarity metrics, where the lighter the colour,

the more similar two subjects are. The result of the original metrics are adjusted

by normalization and divided by standard deviation using the following equation:

Aij =
Aoriginalij

σ ∗
∑

i,j Aij

where Aij is the distance matrix and σ is the standard deviation of the flattened

distance matrix Aij. This step is to make different measurements are within a

comparable range of values. Figure 3.7 and Figure 3.8 show that according to the
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Figure 3.10: Distances between 3D histograms of subjects using
Kullback-Leibler divergence. X and Y axis are subject
number. Colour scale represent the normalized distance
between subjects.

squared Euclidean distance, most of the subjects are similar to each other, except for

subjects 103, 111, 115, 123 and 128. The metric might be good at locating subjects

that are very different. Figure 3.9 uses cosine similarity to measure the distance

between subjects and it turns out that according to this metric, most subjects

are quite different from each other. Figure 3.10 uses Kullback-Leibler divergence,

a metric which is known to be asymmetric, which could cause some problems in

some circumstances. The metrics shows subjects 103, 111, 115 and 123 are very

different from the rest of subjects. The result is similar to squared Euclidean distance

while KL divergence also reveals the difference of other subjects from each other in

general. To summarize, of the metrics for measuring distribution similarity, squared

Euclidean distance is least capable of showing the difference, while cosine similarity

has the strongest ability, and KL divergence somewhere in-between.
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3.2 Data distribution through time

In the previous section, our experiment showed how the ASU accelerometer data

distributed differently across participants and how different metrics showed the dis-

crepancy different subjects. In this section, we try to show how lifelog data changes

over time. A similar experimental setting will be used as in the previous section.

Time series accelerometer lifelog data from each of our subjects will be separated

into each day. We take advantage of the knowledge we acquired about the data

distribution from the previous section, so that distribution in this section is calcu-

lated by the 3D histogram where each axis has 199 bins which range from -2.5G to

+2.5G. Because we observed that most of the acceleration data falls within a circle

with 1G radius with the centre located at zero gravity, in 3D, it should be a sphere

with a 1G radius with the centre located at zero gravity. To make the boundary

loose, we use -2.5G to +2.5G instead of -G to +G as the range of the histogram. As

for the choice of number of bins, since 3D histogram takes much more memory than

2D and 1D, so that we apply small 199 bins on 3D histogram. On the other hand,

a reduced interval and a reduced number of bins can reduced the size of histogram

significantly while speeding up the calculation of similarity and reducing memory

usage. Then the 3D distribution of each day from each subject would be calculated

in order to show the change of data generated each day, for every subject.

Figure 3.11 and Figure 3.12 show two examples of the change in lifelog data

for individual subjects’ data over time. The red curve is the change of entropy.

Entropy represents how much information is being carried in the data. When the

entropy line goes down, it means accelerometer data carries less information. In

other words, there is an abnormality at the point where entropy is lower than most

of the days but we can’t tell the exact reason for the low entropy day. This might

because the subject switched off the device, the subject didn’t wear the device, or

it is a switching overlap day and so forth. For example in Figure 3.11 there are
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Figure 3.11: Change of distribution (Subject 116). X axis for all
three panels are time in days. Y axis for first panel is
entropy. Y axis for first panel is KLD using all data as
true distribution. Y axis for first panel is entropy using
previous day data as true distribution.
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Figure 3.12: Change of distribution (Subject 119). Y axis for first
panel is entropy. Y axis for first panel is KLD using
all data as true distribution. Y axis for first panel is
entropy using previous day data as true distribution.
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low entropy periods between 60-70 days and at around 80 days. In Figure 3.12 the

red line or entropy line is oscillating with a period of around 12 days. This might

indicate that the subject repeats some action periodically. The blue curve in the

figures indicates the KL divergence between the current day and the previous day

and the higher the value, the bigger the difference. In both Figure 3.11 and Figure

3.12, we observe the big change in distribution happens at the borderline of high

entropy and low entropy days, while there are some small changes corresponding

to small entropy changes during high entropy days. The green curves show the

KL divergence between each day and the total distribution, namely the sum of

distribution of each day, for each subject. This indicates the abnormality of each

day but shows more trending features instead of just local changes. For example,

for subject 116, we can see the abnormality is increased from a point at around 60

days.

3.2.1 Change of Distribution / Change Detection

The objective of change point detection is to discover abrupt property changes ly-

ing behind or embedded within time series data. This is the process of identifying

differences in the state of an object or phenomenon by observing it at different

times. Change detection can be categorized into real-time detection (Garnett et al.,

2009) and retrospective detection (Yamanishi and Takeuchi, 2002; Moskvina and

Zhigljavsky, 2001). Real-time change-point detection targets applications that re-

quire immediate responses such as, for example, robot control. On the other hand,

although retrospective change-point detection requires longer reaction periods, it

tends to give more robust and accurate detection. Retrospective change point de-

tection accommodates various applications that allow certain delays, for example,

climate change detection (Reeves et al., 2007), genetic time-series analysis (Wang

et al., 2011), signal segmentation (Basseville et al., 1993), and intrusion detection
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in computer networks (Yamanishi et al., 2004). Change detection is also very im-

portant in geo-informatics using remotely-sensed data obtained from Earth-orbiting

satellites (Verbesselt et al., 2010), such as land use change analysis, monitoring

of shifting cultivation, assessment of deforestation, study of changes in vegetation

phenology, seasonal changes in pasture production, damage assessment, crop stress

detection, disaster monitoring snow-melt measurements, day/night analysis of ther-

mal characteristics and other environmental changes.

Researchers have developed methods to either directly estimate probability den-

sity or the ratio of probability densities. Probability density estimation can be tack-

led using parametric methods or non-parametric methods. The first method requires

an assumption of pre-defined density functions like probability density models, au-

toregressive models, and state-space models. Within statistical framework, several

parametric methods are proposed such as generalized likelihood ratio (Basseville

et al., 1993) and cumulative sum (Gustafsson, 1996; Gustafsson and Gustafsson,

2000). Those approaches focusing on logarithm of the likelihood ratio between two

consecutive intervals in time-series data to detect change points. In data mining

community has applied those parametric method to real life data and application

such as novelty detection Guralnik and Srivastava (1999) and maximum-likelihood

estimation Markou and Singh (2003) and autoregressive models trained with online

learning Takeuchi and Yamanishi (2006). Some researchers are also focusing on

methods using analysis of subspaces in which time-series sequences are constrained

by Moskvina and Zhigljavsky (2003); Kawahara et al. (2007). This approach has

a strong connection with a system identification method called subspace identifi-

cation, which has been thoroughly studied in the area of control theory. Some

non-parametric approaches to change detection problems have been discussed by

Brodsky and Darkhovsky (2013) to compute the likelihood ratio. However, due

to the properties of non-parametric density estimation Härdle et al. (2012), it is

hard to put this naive approach into practice. Instead of estimate distributions
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separately, Kawahara and Sugiyama (2009); Liu et al. (2013) used relative Pearson

divergence as a divergence measurement estimated by a method to estimate density

ratio directly, which avoids expensive non-parametric density estimation. In other

words, the ratio of distributions are calculated directly instead of computing the

distribution separately.

The point of change detection in lifelog data can be explained in Figure 3.11 and

Figure 3.12 where we can see a clear entropy change. The detection could potentially

reveal points where changes in lifelog data reflecting a reach change in the subject’s

lifestyle or behaviour, happen. On the other hand, it provides us with a prospect

that the activity or behavioural change associated with the lifelog data change could

also possibly be detected, and this is something that we shall return to later in the

thesis.

3.3 Automatic Classification

Machine learning techniques are usually used to solve classification problems. A

weak classifier can be as simple as using a threshold value where above, or below,

this value signals a classification. However, most machine learning methods are

more complicated than just computing a threshold value. To formalize the machine

learning problem, we denote the following notations: assume there exists a function

g : X → Y that can map input instance x ∈ X to an output label y ∈ Y . If Y is

discrete then this is defined as a classification problem otherwise if Y is continuous,

then this is defined as a regression problem. Machine learning techniques try to

learn a mapping function h : X → Y as close as the actual function g. One common

way to learn an approximate function g is achieved by defining a loss function that

will assign a value that indicates the difference between ground truth labels and

labels being computed by an approximate function g. Then the goal of machine

learning algorithms are to try to minimize the expected loss function. For example
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1-0 loss is a common loss function. This loss function simply assigns a loss of 1 to

a label that does not match annotation while assigning a loss of 0 to a label that

matches. From a probability point of view the problem becomes how to estimate

the probability of each possible output label given a certain input instance. The

formalization of the problem becomes:

p(l|x, θ) = f(x, θ)

where l is the label and f is parametrized by θ. Discriminative methods compute the

probability directly from x and θ such as the general linear method or even a Support

Vector Machine (SVM), while generative approaches compute the probability using

Bayesian rules:

P (Ai|B) =
P (B|Ai)P (Ai)∑
j P (B|Aj)P (Aj)

So the generative model will try to predict the probability of every possible label

given input and parameters, as follows:

P (y|x, θ) =
p(x|y, θ)p(y|θ)∑

y∈Labels p(x|y)p(y|θ)

The purpose of machine learning is to learn the best θ:

θ∗ = arg max
θ
p(θ|X, Y )

where:

p(θ|X, Y ) = [
∏
i

p(yi|xi, θ)]p(θ)

3.3.1 Machine Learning Methods

The following sub-sections will briefly introduce how different methods would tackle

the machine learning problem.
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3.3.1.1 Support Vector Machine (SVM)

The Support Vector Machine (SVM) was and is still a popular machine learning

algorithm originated from Vapnik-Chervonenkis’ theory (Vapnik and Chervonenkis,

2015). The theory tries to explain what is the condition that makes data learnable

and the SVM implementation is one of the products of that theory. An implemen-

tation of a SVM tries to find a hyperplane w · x− b = 0 given a training set x ∈ X

and y ∈ Y . One can find the intermediate equations and techniques to assist with

implementation such as Lagrange multipliers in the paper by Cortes and Vapnik

(1995). The original optimization problem becomes:

max
α

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjx
T
i xj

s.t., αi ≥ 0, i = 1, ..., n

n∑
i=1

αiyi = 0

where αi are the Lagrange multipliers. If we solve the αi, we can then get the

hyperplane by w =
∑

i αiyixi and b = w · xi − yi. Sequential minimal optimization

(SMO) as described by Platt et al. (1998) is normally used to solve the optimization

problem by fixing two Lagrange multipliers at one time. The SVM with soft margins

and kernel trick is then used to solve the situation that the training data are not

separable. The whole problem can then be reformulated as:

max
α

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjk < xTi xj >

s.t., 0 ≤ αi ≤ C, i = 1, ..., n

n∑
i=1

αiyi = 0

56



where C is the parameter that would allow some training data to be mis-classified.

k is the kernel that needs to be determined.

3.3.1.2 Neural Networks (Recurrent Neural Network (RNN)/LSTM/Auto-

Encoder)

The technique of using neural networks, especially deep neural networks, for classi-

fication is very popular among the research community. Researches have found that

the human brain has a deep structure and deep neural networks are designed to

imitate this deep structure of human brain. This makes deep neural networks good

for solving the same kinds of problems the brain solves, like vision and recognition.

In order to achieve the deep structure, many layers of neural networks need to be

stacked together but a stacked deep structure had brought up some new issues and

problems. These problems arise from the backpropagation algorithm which we use

to train neural networks. Backpropagation first calculates the error or loss between

output of forward propagation and ground truth, and then computes the gradient

of weights, layer by layer, applying a chain rule so that the error propagates from

output to input. The weights between layers are then updated by minus the portion

of the gradient. After the weights are updated iteratively using gradient descent,

the loss function will be close to local minimum. Some methods can also give a

momentum while we perform gradient descent in order to jump out of the local

minimum.

During backpropagation, the error would be disappear from output to input.

Traditional activation functions such as the hyperbolic tangent function have gradi-

ents in the range (−1, 1) or (0, 1), and backpropagation computes gradients by the

chain rule. This has the effect of multiplying n of these small numbers to compute

gradients of the layers close to input layer in an n-layer network, meaning that the

gradient (error signal) decreases exponentially with n and the front layers train very

slowly. Many new network structures have been brought up to tackle those problems
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Figure 3.13: One auto-encoder

like autoencoder or restricted Boltzman Machines.

Auto-encoder (Bengio, 2009) is a technique that works as an unsupervised learn-

ing method. Figure 3.13 shows one basic configuration of auto-encoder. For a basic

autoencoder, there are three layers, one input, one hidden and one output as in

the figure L1, L2 and L3. The output L3 is the same or almost same as input L1,

so the network is trying to learn how to encode itself by give input and use the

input as output. Many autoencoders like this can be stacked together to generate a

deep structure. If many autoencoders stacked together, each layer is trained as an

autoencoder by minimizing the error in reconstructing its input. Once the first k

layers are trained, we can train the k + 1th layer because we can now compute the

code or latent representation from the layer below. The fact that the output is the

same as input and the way that hidden layer stacked and trained makes autoencoder

a good way to do unsupervised learning to automatically extract features.

Convolutional Neural Networks (CNNs) (Krizhevsky et al., 2012) are another
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Figure 3.14: Convolutional Neural Network

popular neural network with deep structure which is growing in terms of widespread

used in the computer vision community. A convolutional layer and a max pooling

layer are two features of CNNs. Unlike a fully connected layer, only a small region of

the input data are fully connected with each node in the convolutional layer. Using

this small region or local receptive field as a convolutional kernel enables a CNN to

capture local features. Partially connected layers also greatly reduce the number of

weights to be trained and this brings benefit to performance.

Another concept used in CNNs is that of max-pooling, which is a form of non-

linear down-sampling. Max-pooling partitions the input data into a set of non-

overlapping sub-sets and, for each such sub-region or sub-set, outputs the maximum

value. Figure 3.14 shows a CNN network with 2D convolutional layers and max

pooling layers. In the example the input is a grey-scale 2D matrix image. S1 is a

convolutional layer with 4 convolutional kernels, 4 kernels correspond to 4 feature

maps, and the size of each feature map is related to strides defined to move convo-

lutional kernel. C1 is the maxpooling layer to reduce the size of each feature map.

Each feature map is divided into non-overlapping blocks, the maximum value of

each block forms the maxpooling layer. S2 and C2 are the convolutional layer and

the maxpooling layer, C2 is then fully connected with next hidden layer in order to

create a softmax classifier.

A Recurrent Neural Network (RNN) (Cruse, 2006) is normally used to train se-

quence data in applications like machine translation, image restoration or language

modelling (Mikolov et al., 2010). RNN is a type of neural network in which con-
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nections between units form a directed cycle. This creates an internal state of the

network which allows it to exhibit dynamic temporal behavior. In an RNN, the

input and output of the previous step will be fed into a cell along with the cur-

rent input in order to generate the current output. Such a mechanism enables the

network to encode the temporal correlation between current data and previous data.

A feedforward neural network like autoencoder or CNN can only input data

with a fixed length, but RNNs can use their internal memory to process arbitrary

sequences of input. The fact that an RNN does not require its every input sample

to have same length makes it popular in speech recognition and modeling language.

For instance, in order to build a machine translate model, the first input could be a

sentence with 10 words and the next sentence could be 20 words, which could not

be processed by CNN or autoencoder, but it’s applicable for RNN. Vanilla RNN

is not good at encoding long range correlations also known as long-term memory

which is why Long Short Term Memory (LSTM) and its variations are widely used

to improve long range encoding by using different types of gates.

LSTM is a RNN architecture published by Hochreiter and Schmidhuber (1997).

Figure 3.15 shows the connected three cells and the internal structure of a cell of

LSTM. The key to LSTMs is the cell state, the horizontal line running through the

top of the diagram. The cell state works like a conveyor belt for information. It runs

straight down the entire chain, with little linear interactions. The linear interactions

come from structures called gates. Gates are a way to optionally let information

through. They are composed of a sigmoid neural net layer and a pointwise multi-

plication operation. For example the output of the sigmoid layer σ is between zero

and one, describing how much of each component should be let through. A value of

0 means letting nothing through, in other words forgetting, while a value of 1 means

letting everything through which is equal to remembering the value. The LSTM

showen in the figure has three of these gates, to protect and control the cell state.
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Figure 3.15: LSTM

3.3.2 Classification Based on Features vs. Based on Raw

data

Automatic classification using data from a wearable accelerometer has many appli-

cations. Mathie et al. (2004) used the data from a triaxial accelerometer to classifier

daily movements using a pre-defined binary decision tree. Their experiment was

done in controlled lab environment while Choi et al. (2011) also conducted experi-

ments in a lab to validate classification algorithms for wear and non-wear time based

on statistical analysis.

Despite the success of deep neural networks on some tasks, not many papers have

yet explored the application of deep neural networks which work good in computer

vision, on accelerometer data. We will implement a deep neural network approach

on the classification task on accelerometer data and the result will be presented

later.

As we have seen earlier, accelerometer data is actually quite noisy and may

have many gaps and missing days or even days which might not contain useful

information. Such days normally have low information entropy, so we manually

examined entropy curves for each subject and determined an entropy threshold

for each subject. This corresponds to a personalised threshold of activity level,

per subject. We then only use days which have an entropy value bigger than the
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Subject ID 101 102 103 104 105 106 108 109 111 112
Entropy threshold (nat) 7 6 3 6 5 6 7 5 6 7

Table 3.1: Entropy threshold for 10 subjects

threshold, to yield our training set and testing set. Table 3.1 shows the entropy

threshold for only 10 subjects due to the space. The entropy threshold range from

3 to 7 with mean 5.932 and standard deviation 1.12.

Entropy represents how much information is being carried in the data. When

the entropy line goes down, it means the accelerometer data carries less or minor

information, which does not contribute much to our knowledge of the subject. After

we have chosen only days with high entropy values, we get more than 1,000 days of

lifelog data as our input. Our next experiment will try to identify each subject using

their own longitudinal accelerometer data which will be used as one data entry. The

label of the data entry is the subject who generated the data entry. In total we

have 25 subjects. Note that we only use data of a day exceeding a certain entropy

threshold value as stated in Table 3.1. Since our data is sampled at 40Hz, each

day of data will have 3,456,000 data points. Since some of the machine learning

algorithms need to load all their training data in to memory, such as for example

an SVM, in order to calculate distance from one point to the rest of the points,

we need to reduce the dimensionality of the data. The memory needed to load all

the training data corresponds to more than 30 GB and since the computer we use

to do the experiments is only equipped with 8GB memory this would cause a lot

of page swopping and thrashing, which will increase computation time. In order

to reduce the dimensionality, for every 100 non-overlapping points we calculate a

mean and a standard deviation for each X,Y,Z axis as two features to represent

those 100 points. The reason to choose downsampling rate between 1/2 to 1/3 Hz

is because we suspect downsampling less than this wouldn’t be enough to capture

enough information. While down to 1 Hz or more would still be time consuming for

computers to calculate classifiers. Also, we need to split the data into training as
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well as testing sets. In the end, this yields a training set of size 862 × 207,360 and a

testing set of size 292 × 207,360. this is calculated as 862 days for training and 292

days for testing and each day has extracted features of 207,360 dimensions. Please

note that raw data can be only used in neural networks, because Neural Networks

(NN)s do not require all their training data to be loaded to memory at once. Also

the data we have is imbalanced across subjects since not every subject recorded the

same length of lifelog data. Some subjects have collected data for an extremely short

period, like a couple of days while most others are of the order of several weeks. We

ran several machine learning algorithms to see if those subjects can be identified

from their accelerometer data as described in the next subsection.

3.3.3 Experiments

We applied SVM (C=1) with a linear kernel, Gaussian Näıve Bayes (glsgnb), De-

cision Trees (Decision tree (DT)) and Random Forest Random forest (RF), to the

task of classifying users from accelerometer data. Each of the classifiers used default

settings. We also constructed a perceptron with two hidden layers where each layer

had 100 and 100 hidden nodes. The drop-out rates between each layer are 0.2, 0.5

and 0.5 respectively.

We also constructed a 1D Convolutional Neural Network (glscnn) using the fol-

lowing settings. First, the convolutional layer has 500 filters with size 200 and stride

80, without dropout. This is followed by a max pooling layer with each region of

size 10, and then another 1D convolutional layer with 150 nodes with size 100 and

stride 10. This is followed by a max pooling layer with size of 5. The last pooling

layer is fully connected with next hidden layer with 50 nodes and a dropout rate

0.5. The current neural network settings are taken from the best performance in

three different settings.

Long-Short Term Memory (LSTM) is a popular type of recurrent neural network
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Figure 3.16: Visualization of confusion Matrix for SVM with linear
kernel.

and works well when modelling sequences like sentences, or DNA sequences. In order

to make LSTM work better for our application we need to reorganize our training

samples. If we consider each data point from each day as a sentence of our life, then

our sentence of life has more than 200,000 words, which is not possible to train on

our lab computer due to hardware restrictions. So we reorganize our data to 120

“chunks” and each of the chunks has a vector with 1,278 dimensions. The size of the

training set then become 862 × 120 × 1,278, which is much more manageable. All

the neural networks we implemented are trained using a hardware accelerator, an

NVIDIA GTX 660 Ti with 2GB memory which is compatible with Compute Unified

Device Architecture (CUDA). CUDA6 is a library which accelerates computation by

parallelization using a graphic card. Each network is trained with 100 epochs.

Figures 3.16 to 3.22 show the confusion matrices for each machine learning al-

gorithm we implemented, for each subject. On Figure 3.16, 3.19 and all neural

networks we can clearly see a strong line on the diagonal, which means the machine

6https://developer.nvidia.com/about-cuda
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Figure 3.17: Visualization of confusion Matrix for Gaussian Näıve
Bayes
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Figure 3.18: Visualization of confusion Matrix for Decision Tree
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Figure 3.19: Visualization of confusion Matrix for Random Forest
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Figure 3.20: Visualization of confusion Matrix for MLP

66



10
1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
11

1
11

2
11

4
11

5
11

6
11

7
11

8
11

9
12

1
12

2
12

3
12

4
12

5
12

6
12

7
12

8

Predicted label

101
102
103
104
105
106
107
108
109
111
112
114
115
116
117
118
119
121
122
123
124
125
126
127
128

T
ru

e
 l
a
b
e
l

Confusion matrix

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Figure 3.21: Visualization of confusion Matrix for CNN

10
1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
11

1
11

2
11

4
11

5
11

6
11

7
11

8
11

9
12

1
12

2
12

3
12

4
12

5
12

6
12

7
12

8

Predicted label

101
102
103
104
105
106
107
108
109
111
112
114
115
116
117
118
119
121
122
123
124
125
126
127
128

T
ru

e
 l
a
b
e
l

Confusion matrix

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Figure 3.22: Visualization of confusion Matrix for LSTM
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learning algorithms do recognize most of our subjects when given testing data. On

Figure 3.17, Gaussian Näıve Bayes (Gaussian Näıve Bayes (GNB)) can be seen to

recognize most of the subjects as subjects 116. Decision tree (in Figure 3.18) works

much worse than Random forest (Figure 3.19). We can see the subjects who are

mis-classified against other different subjects, but the confusion matrix from ran-

dom forest is much clearer than that from decision tree, indicating there are fewer

pairwise confusions.

In terms of the confusion matrices for the three neural network approaches,

LSTM seems to work best. This is actually not surprising because LSTM is designed

to model sequences, which is the nature of our data.

Precision Recall F1-score

SVM 0.59 0.63 0.59
GNB 0.16 0.21 0.15
DT 0.24 0.23 0.23
RF 0.44 0.44 0.41

MLP 0.63 0.64 0.6
CNN 0.7 0.73 0.69

LSTM 0.77 0.77 0.76

Table 3.2: Evaluation of performance of different classifiers

Table 3.2 shows the average performance of each classifier which we implemented.

From the Table we can see that LSTM works best among all the classifiers and that

CNN, MLP and SVM with a linear kernel also work well. Since we have collected

only a limited number of samples, the performances of different classifiers might vary

within an interval. In the experiment, the capability of CNN and LSTM to model

data has over-performed the rest of the machine learning algorithms. In CNN, filters

moving at the convolutional layer work the same way as we examine the data from

one small part to another, so that local features are kept and remain connected. A

fully connected layer could aggregate those locally connected features together to

extract global features. As for LSTM, or the other variation of recurrent neural net-

work approaches, these would also work very well on time series data. If we consider
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the application of recurrent neural networks to applications like machine translation,

of which input and output are sequences, time series data like accelerometer data

that we are dealing with shares some similar properties with sentences in language

processing problems, and this might offer a reason for the performances we observe.

3.4 Conclusions and RQ1

In this chapter, we have examined wrist-worn accelerometer data collected from 25

subjects over extended, but varying periods of time on a 24 hours/day basis. Data

distribution of 2D histograms from all subjects shows that accelerometer data are

mostly bounded in a circle which has a radius of one gravity (1G). This means that

most of our subjects’ activities are of such magnitude that they are within positive

and negative one gravity. If we use a 3D histogram to visualise the aggregated data,

then most our subjects’ activities are bounded by a sphere with a radius which is

also one gravity.

We calculated the difference between different subjects and their accelerometer

data (i.e. their activities) using several metrics. Different metrics do show the differ-

ence between each subject, but the metrics themselves have some specialization. For

example squared Euclidean distance tends to show the most different person, cosine

similarity shows that everyone is very different, while KL divergence is somewhere

in-between. For this reason, we chose KL divergence for the subsequent calculations,

because the result of KL divergence is quite balanced in that it does not exaggerate

the difference nor ignore any small discrepancies.

As part of our analysis of this data we split the accelerometer data into days,

and computed entropy and KL distance between the current day and previous day,

and the KL distance between each day and the summation of distribution of each

subject. In this experiment we saw some days with low entropy which means low

information carried in those days. We do see changes of entropy across each day or
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changes of distribution between one and the previous day. Through those changes

we hypothesize that some days can be dismissed due to their low entropy value.

If we are going to use those days to identify a subject from among others, then it

might interfere with the training and test process, so we choose only days in which

entropy is higher than a certain threshold.

We then generated the training set and the testing set. Input data is the data

from a day, and the output or label is the enumerated subject. For every 100

points in the input data, the mean and standard deviation is computed and used

as features. Several machine learning algorithms were used to train classifiers to

identify subjects. Our results showed that classifiers based on neural networks have

higher performance than the others and for all cases, the result is better than random

guess. We can conclude that each subject will generate data with some features that

makes it identifiable and can be detected and captured by computer algorithms.

To summarize, we can simply say that everyone, and the data they generate for

their own lifelogs, is different. What’s more a more or less bijective/ one-to-one cor-

respondence between subjects and their data has been proven to exist in this thesis

chapter. The uniqueness of subjects are represented in the data they generated, and

the ability of capturing this uniqueness can be improved by improving algorithms to

find better mapping functions between subjects and data. The uniqueness of each

subject and their data thus provides a case for requiring individualized analysis.
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Chapter 4

Predicability

In previous chapters we used machine learning to discover a one-to-one match be-

tween individual subjects and longitudinal population-based activity data and we

were able to identify individuals from within the (small) population. Based on the

fact that this shows the uniqueness of a subject is represented in the data we col-

lected, an interesting question is now raised: is it possible to use the uniqueness

from within the longitudinal data in order to model lifelog data sets. If computer

algorithms are able to create generative models based on previous data by using

the uniqueness in the data, it is reasonable to hypothesise that there are patterns

existing in the data, and the patterns can be perceived by algorithms. If such mod-

els exist, it could facilitate applications such as subject differentiation, abnormality

detection or recommendation. In this chapter we further explore lifelog data and

its possible application by using different methods to potentially model longitudinal

data.

If we are able to build a model for longitudinal lifelog data for each individual

subject, we would have the following benefits: 1) predicting future trends 2) filling

missing gaps for current data. The first benefits would be applicable in the scenario

where long-term monitoring is needed, such as when caring for people with dementia.

Collected longitudinal lifelog data can be modeled and thereafter used to predict
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future trends of development by measuring for instance activity level, sleep quality

or heart rate. That is to say we could build a model that we then can use to give

predictions of future response based on current interventions. The second benefit

would facilitate us with the data cleaning process, since lifelog data are usually quite

messy and have many gaps during the collection periods, especially when there is a

long period during which no data is collected. On the other hand, the longer the

whole collection duration is, the more gaps that we will likely have. We can use

a built model using the data we have collected to fill in whatever data gaps with

parameters like the length (duration) of gaps or our confidence of the prediction

result and so on. Although it cannot be used to reliably fill every gap in the data,

it is a considerable approach to improving the integrity of the collected data. Even

if it cannot solve the data cleaning problem entirely, it still provides a perspective

to tackle the challenge.

In order to show how regular and predictable lifelog data can be and how we

can model lifelog data especially longitudinal data, in this chapter, we will firstly

state our regression problem in section 4.1, and the approach we will be using in

our approach to the regression problem. In sections 4.2, 4.3 and 4.4 several popular

models are introduced. These models have been used in some other research fields

such as computer vision, language processing and finance to model data or to solve

regressing problems. In the experimental part of the chapter which is section 4.6,

two data sets will be used to test our hypothesis, that is: are we able to build

a generative model to predict lifelog data based on data we already have. In the

experiments, we build a general predictor for every subject, i.e. not each individual

one, that we are going to build, although building a predictor for each subject might

improve the performance.
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4.1 Regression

To predict values in lifelog data, we need to explore those approaches which can

handle continuous data as output because that is the nature of lifelogging, it needs

to be continuous. In order to unify the entire thesis, we denote using the same

notations as in previous chapters. Assume there exists a function g : X → Y

that can map input instance x ∈ X to an output label y ∈ Y . If Y is discrete,

it is defined as a classification problem, otherwise Y is continuous, and this is a

regression problem instead. More specific in our regression problem, there are two

approaches to describe our effort to model lifelog data.

1. Mapping function g is trying to model a correlation between absolute time

and data. That is to say input data is one dimensional time and output is

values of acceleration of axis X and/or Y and/or Z in our case. There are some

methods such as local weighted regression to tackle this type of requirement

but local weighted regression would be utterly impractical as our lifelog data

is longitudinal and is likely to be extended over time.

2. Mapping function g is trying the model a relationship between relative time

and data. In this case, input data is observed as previous data and output

is the current data for example. In other words, we are using data from xt−n

to xt−1 (where n < 1) to predict xt. The application of such temporal infor-

mation could capture temporal and dynamic information such as seasonality,

or periodicity. It is because periodicity or seasonality appears in the lifelog

data, we find that the repeating cycle of a season or a period is stable and

with minor changes. The occurrence of patterns could re-enforce the model

and thus we need to learn parameters to fit the periodic signal.

Since the capability of the second approach has those mentioned properties, that

seems to be appropriate for our data. Thus this is the type of model that we will
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use to capture the relative correlation between current and previous data. Using

this approach, the length of data that will be used to used as input of the model in

our ASU data for example, introduced earlier in Section 2.5.3, is one day, so we are

trying to build a model based on the one day data. We will then predict future data

based on the model we learned and then evaluate the model using ground truth.

4.2 Time Series Models

Time series analysis has been widely used to model sets of observations generated

sequentially in time. Many sets of data appear as time series including weekly

lottery sales (Farrell et al., 1999), hourly observed temperature of a meteorological

station (Easterling and Peterson, 1995) or GDP per capita of a country (Perron,

1997). Lifelogging researchers concentrate on multi-platform data collected from

multiple wearable sensors, and on event detection with little investigation into data

from a longitudinal point of view. Li et al. (2013c) applied time series analysis

techniques such as cross correlation matrix and Wavelet transforms to investigate

how Eigenvector and Eigenvalues calculated from a correlation matrix in different

scales can be used to detect statistically significant events Li et al. (2013a,b). Li et al.

(2014) introduced random matrix theory to further analyze cross correlations across

whole data streams. Yet in lifelogging, the data logged is not always complete and

might have gaps of some hours, a day or several days. It is known that filling missing

data gaps would greatly improve the performance of any form of data processing.

Thus it is vitally important to clean data by predicting missing data using time series

or machine learning techniques. For stationary processes with uni-variate data there

exist Autoregressive Models (Autoregressive (AR)) and Moving Average (Moving-

average (MA)) models and even a mixture of the two, which we introduce later in

this section, and all these Autoregression Models model time series by computing

parameters which map previous values to current ones based on some assumptions.
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In other words, having previous data, can we estimate the parameters of the model

and therefore predict missing values.

4.2.1 Autoregressive Models (AR)

AR models could be helpful for some types of time series data. Compared to re-

gression, this stochastic model tries to express current values using a finite, linear

aggregate of previous values of the process and a random noise at. The AR model

uses the following equation:

z̃t = φ1z̃t−1 + φ2z̃t−2 + · · ·+ φpz̃t−p + at

where z̃t = zt − µ which is the series of deviations from µ. t, t1, t2, · · · are equally

spaced time intervals. We define B as a lag operator φ(B) = 1−φ1B−φ2B
2−· · ·−

φpB
p and so the model could be written in the form:

φ(B)z̃t = at

4.2.2 Moving Average Models (MA)

Another kind of model, MA, represents observed time sequences by using a linear

combination of current and previous random ‘shock(s)’. Thus,

z̃t = at − θ1at−1 − θ2at−2 − · · · − θpat−p

is called an MA process of order q. We define a moving average operator of order

q by θ(B) = 1 − θ1B − θ2B2 − · · · − θqBq and so a moving average model my be

written as:

z̃t = θ(B)at
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4.2.3 Mixed Autoregressive-Moving Average Models (ARMA)

In order to better fit time series using AR models, we can combine AR and MA

thus:

z̃t = φ1z̃t−1 + φ2z̃t−2 + · · ·+ φpz̃t−p + at − θ1at−1 − θ2at−2 − · · · − θpat−p

or

φ(B)z̃t = θ(B)at

For this, we need to estimate parameters µ,φ1, · · · , φp, and θ1, · · · , θq which is the

variance of white noise from data. It has been proven in economics that adequate

models like autoregressive, moving average or mixed can be used to successfully

model stationary time series.

4.2.4 Vector Autoregressive (VAR)

Multivariate time series analysis is the study of statistical models and methods of

analysis that describe relationships among several time series. To fully utilize the

lifelogged data and correlation between each variable or sensor stream recored, VAR

(Hamilton, 1994) need to be introduced. In previous uni-variate AR models, each

random variable z̃t only corresponds to one value, but for multi-modal datasets the

random variable would contains several elements, so that z̃t becomes a random vector

in which each element is a random variable. The VAR model for a stationary multi-

variate time series, with a zero mean vector, represented by xt = (x1t, x2t, · · · , xnt)

is of the form

xt = φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + at − θ1at−1 − θ2at−2 − · · · − θqat−q

where
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• xt is n× 1 column vectors, and at represents multivariate white noise. φp and

θq are n× n parameter matrix.

• E[at] = 0, E[ata
′
t−k] = 0 when k 6= 0, E[ata

′
t−k] =

∑
a when k = 0 where

∑
a

is the covariance matrix of at.

4.3 SVM regression

A support vector machine (SVM), so-called “traditional” machine learning approach,

can be also used for regression purposes. The difference between an SVM used for

classification and used for regression is originated from the use of different loss

functions. The classification task uses a so-called hinge loss function where for an

intended output ŷ = ±1 and a classifier score, the hinge loss of the prediction ŷ is

defined as:

`(ŷ, y) = max(0, 1− ŷ · y)

Note that ŷ is the predicted label and y is the ground truth label. If the predicted

label ŷ and the gold standard y have the same sign (meaning y predicts the right

class) and |y| ≥ 1, the hinge loss `(y) = 0, but when they have opposite signs, `(y)

increases linearly with y.

On the other hand, a different type of loss function is used in a SVM when it is

used for regression such as the ε-insensitive loss function described by Müller et al.

(1997). The details of comparison between these loss functions can be seen in the

work by Suykens and Vandewalle (1999). The equation of ε-insensitive loss function

is:

`(ŷ, y) =


0 if |y − ŷ| ≤ ε

|y − ŷ| − ε otherwise
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4.4 Neural networks (RNN/LSTM)

The idea behind a Recurrent Neural Network was introduced in the previous chapter

in section 3.3.1.2. To explain it again briefly, this type of network would share all

the weight of the network during the propagation through time. The key element of

this type of network is a cell which contains different types of gate to control flow of

information. In the previous chapter we worked on applying a neural network to a

classification task, but in this chapter we will be using LSTM to solve a regression

problem. The way to achieve this is to modify the loss function which is used to

compute the loss between ground truth and output of forward propagation and the

loss can then be back propagated through time using chain rules. In a classification

task, the loss function we used is categorical cross entropy. The cross entropy be-

tween two probability distributions measures the average number of bits needed to

identify an event from a set of possibilities, if a coding scheme is used based on a

given probability distribution Ŷ , rather than the true distribution Y . The equation

to calculate categorical cross entropy of two distributions is:

H(Y, Ŷ ) = −
∑
x

Y (x) log Ŷ (x)

In a regression task, we just need to change this loss function to continuous error

instead of categorical type of error, such as root square error or square error. Here

we choose square error:

L(Y, Ŷ ) = (Y − Ŷ )2

4.5 Evaluations

Evaluation plays a very important part in classification an/or regression problems.

Because different evaluation metrics can tell us the discrepancy among different

approaches we will now briefly introduce several popular evaluation metrics that we
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will use in our experiments.

4.5.1 RMSE

RMSE is defined literally as the square root of the mean square error. The mean

square error calculates the absolute difference between predicted values and ground

truth. It measures the average of the squares of the errors or deviations, that is, the

difference between the estimator and what is estimated. The equation to calculate

the RMSE is as follows:

RMSE =
√
MSE

MSE =
1

n

∑
i

(ŷi − yi)2

CCC measures the absolute difference between two random variables. If CCC is 0,

in our case the predicted time series would be the exact same match as the ground

truth.

4.5.2 Correlation Coefficient

Correlation Coefficient (CC) is also known as Pearson product-moment correlation

coefficient and is a measure of the linear correlation between two variables X and Y .

The values of correlation coefficient range from −1 to +1, where +1 is total positive

correlation, 0 is no correlation, and −1 is total negative correlation. The equation

to calculate CC is:

ρŶ ,Y =
cov(Ŷ , Y )

σŶ σY
=
E[(Ŷ − µŶ )(Y − µY )]

σŶ σY

CC is widely used to measure the degree of linear dependence between predicted

values and ground truth. If CC is +1, which implies fully linear dependence, it does

not yet mean the predicted values are exactly the same as the ground truth. For

instance, in an extreme example if every predicted value is 10 times bigger than the
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actual value, the CC is 1. Or, put another way, if every predicted value is 5 times

larger than true labels, the CC would still be 1. Informally speaking, CC is really

about measuring the difference of ‘shape’ of data.

4.5.3 Concordance Correlation Coefficient

Due to limitations of CCC and CC, Concordance Correlation Coefficient (CCC)

Lawrence and Lin (1989) was proposed to take into account both absolute and

shape differences. As an evaluation measure, Concordance Correlation Coefficient

(CCC) combines the Pearson’s correlation coefficient (CC) with the square difference

between the mean of the two compared time series:

ρc =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2

where ρ is the Pearson correlation coefficient between two time series in our case

it’s predicted and ground truth time series, σ2
x and σ2

y are the variance of each time

series, and µx and µy are the mean value of each. Therefore, predictions that are well

correlated with the gold standard but shifted in value are penalised in proportion

to the deviation.

4.6 Experiments

A series of experiments were conducted on ASU raw accelerometer data and on

athletic data, both described earlier. The reason to use two data sets is to see the

predicability on both raw data (ASU) and on higher level data (athletic), since the

athletic data consists of detected activities using an accelerometer. We expect to

see algorithms that are able to learn data models using previous data and to predict

new or missing data.

80



4.6.1 Using ASU Data

The same data preprocessing is applied to ASU data as was described in Chapter

3 section 3.1. The cleaned data is used to generate training and testing data. We

applied fixed training and testing data (which will be rotated into an n-fold cross-

validation in the future study). The splitting mechanism is as following:

1. For each subject, data is split into non-overlapping time series with an interval

of 1.5 days.

2. The 1.5-day data chunks are randomly shuffled. Each chunk is called a basic

data unit.

3. For each subject, 80% of all basic data units are selected as the training set

and 20% of all basic data units are selected as the testing set. If the number

of testing sets for each subject is less than one basic data unit, then a basic

data unit will be chosen randomly.

Randomization of training and testing data is a standard approach in machine

learning to evaluate classifiers. We choose 1.5 days is because we are trying to

explore the maximum capability of predictive model we think. In this case, we are

using one day of data to predicting half day data, so that is 1.5 day in total. We

firstly investigate the performance of different regression methods by giving one day

data to predict one and then giving one day data to predict many points after.

4.6.1.1 Predicting one point

After the process, we have 576 basic data units in training sets and 157 in testing

sets, with each basic data unit of length 1.5 days. The reason to shuffle the order

of basic data units at the beginning is to eliminate the situation that subjects keep

to a pattern frequently within a period of time. In this case, if the training basic

data units are not randomized, there is a chance that the model can only model a
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certain pattern, which could constrain the generalization of the model. Due to the

limitations of each regression method, each basic data unit has to be reformed for

different algorithms.

AR models are not used in our experiments on ASU data since the ASU data

has gaps and for the best performance of AR models, we need to use data series

without gaps. However we will apply AR-type models in data series with higher

semantics because this data is both clean and has no gaps.

For SVM regression and for linear regression, a window size with one day within

each basic data unit will be used as input and the next point will be used as a

label with a continuous value. We used 40,000 points as stride to move windows

and generate new training data within the basic data unit. Since SVM or linear

regression needs all data to be fed into the regressor at once, and due to limitations

of our computer’s memory, raw input data needs to be further reduced. We choose

to divide the 1-day input data into non-overlapping 2,000 pieces with each piece

having 1,728 data points, and for each piece the mean value is calculated. So at

the end of this process, training data input is formed with size 25,344 × 1,728, and

labelled with size 25,344. Please note that our task is regression, so the label here

is continuous.

For LSTM, we use two approaches: 1) a similar strategy is used to generate

training data. Each axis will be trained as a LSTM 2) An LSTM will be trained using

data from three axis. The performance of SVM and linear regression are guaranteed

by the underlying theories but the applying real life data with noises would always

bring challenges in any kind of machine learning algorithms. As for neural networks,

they are normally data driven models. That is to say give enough good quality

data, less complicated linear models with deep enough layers can achieve quite

good result. Event without considering the noises, the number of samples that are

correctly collected often caused issues, such as under-fitting and over-fitting. Also

the parameter of those models can be further optimized by grid search to improve
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Figure 4.1: One of best results to predict X-axis using SVM regres-
sion (RBF kernel) evaluated by CCC. X axis is time. Y
axis is acceleration value.

the final performance, but it’s a very computational intensive task which cannot be

done on our machine with reasonable time.

In the training process, for SVM regression and for linear regression, default

settings are used. For LSTM we use a single axis, and the input data uses a mini

batch with size 10. One day data is used as input with length 1 and dimension

1,728. For LSTM we use data from all three axises, input data uses a mini batch

with size 10 and each data series consisting of a day of each axis is combined and

used as input with length 3 and dimension 1,728. The output of the network is three

for LSTM using data from all three axis. the LSTM model consists of 2 layers with

50 nodes in each layer. The models saved are the model with least loss achieved on

training data.

Figures 4.1 and 4.2 show one of best and one of the worst predicted results

compared with ground truth measured by CCC. Figures 4.3 and 4.4 show one of

best and one of the worst predicted results compared with ground truth measured
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Figure 4.2: One of worst results to predict X-axis using SVM regres-
sion (RBF kernel) evaluated by CCC. X axis is time. Y
axis is acceleration value.

Figure 4.3: One of best results to predict X-axis using SVM regres-
sion (RBF kernel) evaluated by CC. X axis is time. Y
axis is acceleration value.
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Figure 4.4: One of worst result to predict X-axis using SVM regres-
sion (RBF kernel) evaluated by CC. X axis is time. Y
axis is acceleration value.

by coefficient correlation. In those figures red lines are predicted values and blue

lines are ground truth with 40 times sub-sampling. Since the predictors only give

prediction points after one day data, we compute the prediction for the testing set

by a 40-point step within a basic data unit in order to generate a time series to be

evaluated. In the figures, it can be seen that the predictor can well predict the trend

of the time series even in the two worst performing examples evaluated by CCC and

CC. We can also see some sudden changes in the time series which would be hard

to predict. Evaluation results of different methods are shown in Tables 4.1, 4.2, and

4.3.

Tables 4.1, 4.2, and 4.3 show the performance of different regressors in modelling

the data. CCC indicates the error of predicted data series vs. ground truth. The

lower the CCC value, the better the result is predicted. CC and CCC show the

correlation between predicted data and ground truth, in a range from −1 to +1.

The higher the value, the more correlation between predicted and true data. Cross

85



CCC CC CCC

SVM RBF 0.2546 0.8087 0.7832
SVM Linear 0.2836 0.7912 0.7742

Linear Regression 0.2452 0.8192 0.8080
LSTM 0.3696 0.6560 0.6471

LSTM (3 axises) 0.3338 0.7033 0.6955

Table 4.1: Evaluation of performance of different classifiers for X-
axis

CCC CC CCC

SVM RBF 0.2786 0.7981 0.7724
SVM Linear 0.2941 0.7921 0.7798

Linear Regression 0.2738 0.8011 0.7872
LSTM 0.4316 0.5949 0.5867

LSTM (3 axises) 0.3922 0.6604 0.6537

Table 4.2: Evaluation of performance of different classifiers for Y-
axis

referencing the three tables, some approaches show similar performance on different

axis. Linear regression performs best among all the methods, while SVM regression

on the second tier and LSTM does not seem to work well. We hypothesise that his

phenomenon comes from the task in the experiment. In this experiment a whole day

of data with 3,456,000 data points is used to predict the next one point. There is a

big chance that the value of a predicted point is close to those points chronologically

near it. Linear regression performs best among those methods indicating that there

exists a linear correlation between predicted value and the data from the previous

day.

LSTM does not work well for this task but what should be noticed is that the

LSTM model trained using 3 axis combined works better than separately trained

models on each axis. More information about training data thus seems to improve

the LSTM performance. The reason that LSTM does not work as well as linear

models might be because

1. LSTM is good at modeling sequence-to-sequence relationships. The model we
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CCC CC CCC

SVM RBF 0.2746 0.8022 0.7753
SVM Linear 0.2983 0.7802 0.7628

Linear Regression 0.2683 0.8094 0.7967
LSTM 0.4169 0.6170 0.6091

LSTM (3 axises) 0.3753 0.6712 0.6658

Table 4.3: Evaluation of performance of different classifiers for Z-
axis

are training is a sequence-to-point;

2. As we mentioned before, chronologically near data points might be more cor-

related than distant ones. LSTM models long term correlation well but does

not model short term correlations as well, especially when there are sudden

changes in behaviour within a short period of time;

3. Since the number of samples we have is not large, there are chances that the

best model on training data might be overfitting.

There are various of ways to improve the performance of classifier we use. Firstly,

we could change the way we generate more training and testing samples such as

reduce the step size we choose to generate more data. Secondly cross validation

would be considered to train those regressor with less bias. Last but not least

we could use grid search to optimize those machine learning algorithms. Those

parameters can be different kernel functions in SVM or different combination of

layer in neural networks.

4.6.1.2 Predicting many points

Another experiment was conducted to see how well each model is at predicting many

points in the data stream instead of just predicting one point. We use trained SVM

regression and linear regression models as in the previous experiment but we use a

different testing method as we are predicting many points after giving one day of
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data and once a new prediction of the next point is generated, the first point in

the training data will be removed and we will predict the next point using a sliding

window of training data. The newly-formed training data with the predicted next

point will be then used to predict the next one, and so on.

For LSTM we will train a new LSTM model whose output is a sequence instead

of a value, so that the LSTM model can model the sequence-to-sequence correlation

to take full advantages of LSTM’s of long term memory. The implementation of

multiple output LSTM uses raw accelerator data as input. Firstly, one day’s data

is used as input and for every non-overlapping 100 points in the input, the mean

value is calculated and then the newly-formed data will be resized to 1,728 × 20

and used as input to LSTM. The output is the raw accelerator data consisting of

the next 34,560 points. We evaluate the ability of the model to predict 1,000 points.

Due to the computation limitations, we are able to compute only 1,000 points in a

reasonable time.

CCC CC CCC

SVM RBF 0.2186 -0.0035 0.0041
SVM Linear 0.2598 -0.0057 -0.0081

Linear Regression 0.2249 -0.0002 -0.0006
LSTM 0.4828 0.0491 0.0107

Table 4.4: Evaluation of performance of different classifiers for Y-
axis to predict 1,000 points at once

Table 4.4 shows a less satisfying result compared with predicting just one point.

LSTM seems better than the others, but all the results are not promising. Although

absolute error looks not that bad, correlation scores indicate that the predicted curve

shows almost no correlation with the ground truth. The reasons for this might be

1. For one point prediction escalation, we sampled several windows with one day

within a basic data unit, and here in a 1,000-point prediction test, we are only

able to use one 1-day window due to limited computational power;
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2. LSTM could be better trained with more layers and nodes on a graphics card

with bigger memory;

3. The loss function used to train the neural network is using error instead of

correlation. In other words the network is trying to lower the square error

instead of correlating. It is interesting to see the result using correlation as

loss function;

4. The experiment shows the difficulty of predicting multiple points in lifelog data

even with state-of-art approaches. Detecting or anticipating sudden changes

in lifelog data is still a challenge to model, especially when we are trying to

predict many points given only one day’s data in advance.

4.6.2 Using Athletic Data

In the previous section we showed how we conducted the regression task on raw

accelerometer data but we are able to model the raw accelerometer data with rea-

sonable loss only in the situation when we are predicting one data point at a time.

Another interesting perspective is to see if a similar result can be observed wen

working at a higher semantic level. In this scenario, raw accelerometer data is con-

verted into different activities such as running, cycling and swimming. We used our

Athletic dataset to explain and conduct this next experiment. This dataset was col-

lected from a triathlete who use an wearable device to record daily training for over

10 years. The data recorded consists of distance of running, cycling and swimming

every day. This data will be used in the next experiments to see if a model can be

built to predict the distances covered for different activities.

SVM regression with a linear kernel and radial basis function (RBF) kernel were

used and linear regression was used to model the time series data. For these models,

the whole dataset is split into 10 chunks and the first 9 chunks are used for training.

The last chunk is used to evaluate trained model. For the training set, we apply
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Figure 4.5: Prediction with Linear regression for running data. X
axis is time. Y axis is running distance.

a window with size of 360 days, and the next day as the target or output of the

models. The window moves forward with a stride of size 1. In the last chunk, first

360 points of data will be used as input for the model, and the next 105 data points

will be the prediction to be evaluated. In the experiment, predicted values will be

added into the previous input with size 360 as the new input data. Figures 4.5, 4.6,

4.7 show the results of predicted values and the ground truth.

In the figures, we can observe that both Linear regression and SVM regression

with linear kernels show better results than SVM regression with an RBF kernel.

We assume this is because the data along a chronological order has more linear

correlation. The SVM with a linear kernel seems to learn fluctuations better than

linear regression while linear regression tends to assume the data are more flat. Both

the models have the ability to capture the linear correlations showing the existence

of periodicity with the training data.

Vector Autoregression and ARMA models are also used to build predictive mod-

els. The data set is once again split into 10 chunks and first 9 used to train VAR
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Figure 4.6: Prediction with SVM Linear for running data. X axis is
time. Y axis is running distance.

Figure 4.7: Prediction with SVM RBF for running data. X axis is
time. Y axis is running distance.
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Figure 4.8: Prediction with ARMA for running data. X axis is time.
Y axis is running distance.

and ARMA models and the same pieces of time series data as in SVM regression

and linear regression will be predicted using VAR and ARMA models.

As we can see the results of VAR and ARMA in Figure 4.8 and 4.9 respectively.

The ARMA model tends to generate a more stable model which has an obvious

repetitive structure and very little fluctuation, while VAR has more dynamics which

fluctuate along the time axis. LSTM is also used to train a sequence-to-sequence

model. Figure 4.10 shows the result of LSTM.

Table 4.5 lists the evaluation of different approaches using data for different ac-

tivities. In the table we can see the approaches have different capability to model and

predict activities with higher semantics than just raw accelerometer data. Also, the

difficulty for methods to predict each activity varies. Generally speaking, running

is easiest to model amongst the three, with cycling in the middle, and swimming

is hardest to model and predict. We guess running is more frequent than cycling

or swimming, so that more data about running is gathered hence a better model

can be generated. The ARMA model has the best performance for running and

92



Figure 4.9: Prediction with VAR for running data. X axis is time.
Y axis is running distance.

Figure 4.10: Prediction with LSTM for running data. X axis is time.
Y axis is running distance.
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swimming data, while linear regression works quite well for cycling data. LSTM

does not seem to work well on this task. The reasons might be 1) There are many

short-term sudden changes in the data which LSTM is not quite good at expressing

those sudden short term changes. Meanwhile long-term changes are quite stable for

the subject and LSTM tends to model the data in a stable manner. 2) The task

has a limited number of training and test samples. We can argue that the ability of

LSTM is constrained by the number of samples presented in the network. Normally

the corpus for training LSTM in natural language processing tasks are enormous.

The details about qualitative analysis of this data set will be described in the case

study presented later in Chapter 7.

RMSE CC CCC

Run

SVM Linear 2.5470 0.4089 0.3901
SVM RBF 2.7859 0.4090 0.0037
Linear Regression 2.3872 0.4674 0.3350
VAR 2.8683 0.2294 0.2178
ARMA 2.1921 0.5684 0.4154
LSTM 2.4897 0.3819 0.1298

Cycle

SVM Linear 18.9751 0.4191 0.3825
SVM RBF 19.3863 0.0001 0.0001
Linear Regression 15.8767 0.4785 0.4315
VAR 18.3266 0.3567 0.3376
ARMA 16.8373 0.3852 0.2107
LSTM 17.9980 0.1082 0.0313

Swim

SVM Linear 35.9941 0.0170 0.0159
SVM RBF 31.6449 0.0001 0.0001
Linear Regression 28.0336 0.1796 0.1303
VAR 32.0294 0.0894 0.0771
ARMA 27.8164 0.1956 0.1347
LSTM 28.1985 0.0578 0.0002

Table 4.5: Evaluation of performance of different classifiers for dif-
ferent activities

Despite different approaches showing different predicabilities, one interesting

common fact is that several methods such as linear regression, ARMA and even

LSTM tend to model the training data as a periodic signal or more precisely as a

quasi-periodic signal and those methods tend to have better performance than other
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approaches. The predicted periodic properties can be seen in Figure 4.5, 4.8 and

4.10, which raise an interesting question . . . if machine tend to ‘think’ the signal

is periodic, is the signal actually periodic ? We will investigate this in the next

chapter.

4.7 Conclusion and RQ2

We have shown more or less bijective correspondence between subject and data in

the previous chapter. Based on the findings in the previous chapter, we conducted

a further analysis which is to see if the uniqueness presented in longitudinal data

could potentially be modeled from raw accelerometer data. Different models which

could tackle regression problems are used to model or capture the uniqueness of the

data and the models are further used to predict future values for both one point

and for many points scenarios. RMSE, Coefficient Correlation and Concordance

Correlation Confident are used to evaluate how well the data are predicted. In the

experiment to predict one point given one-day data, basic linear regression seems

to have the best performance, which could be the closeness of chronological order

between the point to be predicted and previous points. The result show that all

predicted results using different algorithms show quite high correlation with the

ground truth. We then conducted experiments to predict more than one point, by

adding new predicted values into training data for SVM regression with a linear

kernel, SVM regression with an RBF kernel and linear regression. For LSTM in this

situation, we implemented a multiple output network. In the example of predicting

many points, overall performance of all approaches are not satisfactory by giving

low error but almost no correlation, which indicates this is still a tough task even

with state-of-the-art approaches.

Experiments were also conducted on data with higher semantic meaning instead

of just raw accelerometer data. In this experiment, ARMA models and Linear
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Regression seem to work well for running and cycle data. For swimming data,

all the methods perform worse than running and cycling data. LSTM does not

work best in this task, the reason we hypothesise is because it is less expressive

of sudden short term changes and there is a limited amount of training data. For

running and cycling data, based on the results of different methods, the data is still

quite predictable when choosing suitable models. For swimming data, the result is

even worse than for running and cycling data, if appropriate approaches are chosen,

the predicted result still shows correlation with the ground truth to some extent.

Another interesting finding is that several good performance models tend to model

the data with periodic features, which make us raise the question: is the nature of

the longitudinal signal actually periodic ?

To summarize, longitudinal lifelog data can be modeled and predicted with suit-

able models and under several constraints. In the experiment the number of points

to be predicted yields very different results. In other words, the uniqueness of lon-

gitudinal lifelog data can captured by computer algorithms under the condition of

how ‘greedy’ the model is to be and some of the best performing methods model

lifelog data with higher semantics as a quasi-periodic signal.
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Chapter 5

Spectrum Estimation

In the previous chapter, we have shown several time series and/or machine learning

models that can be used to model longitudinal lifelog data, especially to predict

missing data, i.e. the next several points over a short period of time. Interestingly,

we found the best-performing models tend to model longitudinal time series as quasi-

periodic signals which gives us encouragement to investigate this further. In this

chapter, we investigate several spectrum estimators in order to examine if there

is/are periodicity/periodicities in longitudinal lifelog data.

Detecting patterns of periodicity would give huge insights and could help to

reveal aspects of a person’s lifestyle. However, periodicity detection usually relies

on data which is both complete and has no missing values, and is accurate with

no probabilities associated with values of the data. With lifelogging data, this isn’t

always the case as people can simply decide not to switch on their logging devices

or there can be calibration errors with lifelog sensors. In this chapter we address

how to detect repeating patterns of lifestyle from lifelogs when 1) the data is fully

logged and 2) the underlying data has missing or incomplete data, or even data

which is erroneous. Once such patterns and periodicities have been detected it is

beyond the scope of this chapter as to how to use them or present them back to

users. The details of presenting the periodicity results back to the participant and/or
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illustrating the result of periodicity detection will be introduced in a case study in

chapter 7.

To illustrate our work on detecting periodicity from such noisy data we work with

real lifelog datasets7 which have in-built gaps and noise. Our work demonstrates

that even with very noisy data which is also far from being continuous, we can detect

repeating patterns and periodicities.

Our aim is to detect and report longitudinal patterns in lifelogs which we can

regard as a form of time series, and these patterns can be referred to as periodicities.

In terms of lifelogging, the periodogram can be used to detect the natural cycles that

occur in lifestyle, behaviour, and activities. Periodicity can be observed in many

natural phenomena, such as circadian rhythms associated with our sleep, annual

seasons and so on. Intuitively, we think of our routine daily lives as composed of

various forms of recurring events with obvious periodicities around daily, weekly,

monthly, seasonal and annual cycles. In any kind of spectral analysis of a lifelog

we expect to see periodicity around these frequencies. However, without the help of

lifelogging devices and the resulting lifelog, analyzing the periodicity of human life

is not a practical proposition.

5.1 Non-Parametric Methods

Signal processing theory tells us that in order to detect low-level periodicities in

any time-series, we calculate its power spectral density (PSD or power spectrum)

(Vlachos et al., 2005). The PSD essentially tells us how strong is the expected

signal power at each possible frequency of the signal. Because frequency is the

inverse of period, we wish to identify frequencies that carry most of the energy and

then from that to detect the most dominant periods. Two estimators of the PSD

7As scientists our philosophy is always to make our research data openly available to others in
the interests of transparently and reproducibility but because this is personal data from a personal
lifelog we cannot publish this easily.
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could be used to detect and present periodicities; the periodogram and the circular

autocorrelation or full cross correlation. The power spectral density can be computed

using the Discrete Fourier transform (DFT) (Discrete Fourier Transform) or FFT

(Fast Fourier Transform). PSD is also called a periodogram and we can detect and

visualise periodicity using a periodogram. The periodogram was first proposed by

Schuster (1898) and is visualised as a 2D plot with spectral frequencies on the x-axis

and the strength of the pattern at each frequency measured on the y-axis.

5.1.1 Autocorrelation

In statistics, correlation is basically measuring how similar two sequences are. The

quantitative measurement of similarity of signal 1 and signal 2 can be defined as:

r12 =
1

N

N−1∑
n=1

x1[n]x2[n]

Cross correlation between time shifted sequences, can be defined as:

r12(k) =
1

N

N−1∑
n=1

x1[n]x2[n+ k]

All possible k-shifted time series could generate another sequence of numbers only

changing with k, which is called full cross-correlation. The correlation between a

signal and a time-shifted version of itself is called an auto-correlation. A lag operator

is used to generate the time-shifted signal and ‘0 lag’ equals to mean-square signal

power. Auto-correlation can be defined as:

r11(k) =
1

N

N−1∑
n=1

x1[n]x1[n+ k]
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5.1.2 Periodogram

The normalised Discrete Fourier Transform (DFT) of a sequence x(n), n = 0, 1, . . . , N−

1 is a sequence of complex numbers X(f):

X(fk/N) =
1√
n

N−1∑
n=0

x(n)e−
j2πkn
N

where the subscript k/N denotes the frequency that each coefficient captures. Sup-

pose that X is the DFT of a sequence x(n). The periodogram P is provided by the

squared length of each Fourier coefficient:

P (fk/N) = ‖X(fk/N)‖2 k = 0, 1, . . . , dN − 1

2
e

Notice here that k ranges from 0 to N−1
2

. In order to find the k dominant periods,

we need to pick the k largest values of the periodogram. This works well for short

to medium length periods but for long periods or low frequencies, performance

is worse because each value in the periodogram indicates the power at frequency

interval [N
k
, N
k−1 ] which is too wide to capture large periodicity. Thus the accuracy

of periodicity detection at low frequency will be lower than at higher frequency.

For lifelogging, this means there is difficulty in detecting patterns measured in cycle

times of years.

Another difficulty when using periodograms is spectrum leakage, which causes

frequencies that are not integer multiples of the DFT bin width to disperse over the

entire spectrum which could result in false alarms being detected in the periodogram.

However, the periodogram is still a good way to guarantee the accuracy of detected

periods with short to medium frequency.
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5.2 Parametric Methods

Parametric methods are an aggregation of different methods that fit data into an

assumed model first, and then a periodogram will be computed based on the model

parameterised by parameters that make the data fit best. One reason to choose

parametric methods is that non-parametric spectral analysis methods are limited to

that fact that they do not incorporate information that may be available about the

process generating the data series. Yet this is also a disadvantages of the parametric

methods. If data cannot fit into the chosen model, there is a big chance that the

spectrum based on the parameter of the model is not accurate. We will show this in

synthetic data examples later. We will now introduce Autoregressive models since

these kinds of models show high performance when modeling high-level lifelog data.

Also, a Least-Squares Spectral Analysis or Lomb-Scargle method is also introduced

since these can handle data with gaps or can work with unevenly sampled data.

5.2.1 Autoregressive Models

With a parametric approach, the first step is to select an appropriate model for

the process. This selection may based on a priori knowledge about the way the

process was generated or based on experimental results indicating that the particular

model suits well. Commonly used models are autoregressive (AR), moving average

(MA), and autoregressive moving average (ARMA). After the model is selected,

the parameters that make the data best suited to the model will be estimated

as the next step. The final step is to estimate the power spectrum by using the

estimated parameters. Although it is possible to significantly improve the resolution

of the spectral estimation with a parametric method, it is important to realise that

unless the model that is used is appropriate for the analysed process, inaccurate or

misleading estimation may result.

If there is a time-domain signal YN that consists of N data samples Y0, ..., YN−1,
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we assume it is possible to model the signal precisely with a model with a number

of parameters. Therefore we can efficiently use the parameter of the model to

transmit or store the data which can be represented by those parameters, from

which we can reconstruct the original signal. Assuming YN is generated by an

Linear time-invariant (LTI) system, which is obtained by filtering white noise e(t)

of power σ2 through the rational stable and causal filter with the transfer function

H(ω) = B(ω)/A(ω), where

A(ω) = 1 + a1e
−jω + ...+ ane

−jnω

B(ω) = 1 + b1e
−jω + ...+ bne

−jnω

In the time domain, the above filtering can be represented as:

y(t) +
n∑
i=1

aiy(t− i) =
m∑
i=0

bje(t− j)

If both m and n are non-zero, then the signal is said to be auto-regressive moving

average (ARMA) and is denoted by ARMA(n,m). If m = 0, then the signal is an

auto-regressive (AR) signal and is denoted by AR(n). If n = 0, the signal is a moving

average (MA) signal and is denoted by MA(m). The spectrum of an ARMA(n,m)

process may be estimated using estimates of the model parameters:

P̂ARMA(ejω) =
|
∑q

k=0 b̂ke
−jkω|2

1 + |
∑p

k=1 âke
−jkω|2

The AR model parameters can be estimated from modified Yule-Walker equa-

tions either directly or by using a least squares. Once the AR parameter âk has

been estimated, an MA modeling technique, such as Durblin’s method may be used

to estimate the MA parameters b̂k
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5.2.2 Least-Squares Spectral Analysis

In the context of our work on periodicity detection from lifelogs, one of the challenges

we are faced with is missing or erroneous data from the lifelog. For such a scenario,

the Lomb-Scargle periodogram Scargle (1982) can be used to detect periodicity in

signals with missing, or unequally spaced data. Past work Zechmeister and Kürster

(2009) has shown that the Lomb-Scargle periodogram that handles missing data

values can be successfully applied to generate periodograms from non-continuous

lifelog data. Least-squares spectral analysis or Lomb-Scargle (LS) periodogram is a

very different method developed by Lomb and Scargle based on work by Barning and

Vanicek to handle continuous data with missing parts Press et al. (2007); Scargle

(1982). To formalise the problem, suppose we have a data sequence with N data

points: Xn = Xtn , n = 0, 1, ..., N − 1. The mean and variance of the data sequence

needs to be calculated first. The Lomb-Scargle periodogram is defined formally as:

PX(ω) =
1

2

{
[
∑N

n=1 y(tn) cos(ω(tn − τ))]2∑N
n=1 cos2(ω(tn − τ))

+

[
∑N

n=1 y(tn) sin(ω(tn − τ))]2∑N
n=1 sin2(ω(tn − τ))

}

where τ is defined as:

tan(2ωτ) =

∑N
n=1 sin(2ωtn)∑N
n=1 cos(2ωtn)

5.3 Experiments on Synthetic Data

We will first show periodicity detection using synthetic data as a form of worked

example. The purpose of using synthetic data is to see 1) how different methods

could potentially be used as methods to detect periodicity and 2) how noise in the
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data series could affect the detection of periodicity. These two points are critical

in the analysis of real life data. The choice of methods such as parametric or non-

parametric could give misleading information when illustrating a spectrum. For

example, in parametric methods, the accuracy of the spectrum is based on an as-

sumption that the model chosen can be used to model data series as well. So if the

model is not good at modeling the data series, parametric methods can give results

that cannot represent the spectrum very well. Also, as real life data is almost al-

ways noisy, it is important to observe how noise in the data series could influence

the resulting spectrum.

In the first experiment, the data series is generated using cosine waves mixed

with a level of noise. These synthetic waves have sampling frequency of 1 which

corresponds to one sample per day, and the wave frequency is smaller than 1/2, in

order to fulfill the Nyquist sampling theorem, which is that the sampling frequency

should be equal or more than twice the maximum signal frequency. In resulting

spectrum or periodogram, the X-axis is frequency and Y-axis is energy carried by the

corresponding frequency. For all the periodograms in this experiment, the frequency

is converted to period using T = 1
f
, the unit of X-axis is day and the 0-day period

corresponds to the DC component of the periodogram.

Figure 5.1 is generated by the equation:

x[t] = cos(2πt ∗ f0) + A ∗ w[t]

where f0 is the frequency of the signal and w[t] is the white noise with variance 1.

In the example data in Figure 5.1, f0 is 1/14, in other words the period is 14 days

and the strength of noise A is set to 4.

Figure 5.2 is the periodogram of the synthetic data with a 14-day period, and we

can observe there is a peak at the 14-day period, followed by several others, which

are probably harmonics. Although the strength of noise is four times the signal
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Figure 5.1: Synthetic data visualization.

Figure 5.2: Spectrum using periodogram. X axis is frequency. Y
axis is energy.
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Figure 5.3: Spectrum using Welch smoothed periodogram. X axis is
frequency. Y axis is energy.

amplitude, we can still identify the 14-day period. Despite the rich information

contained in a simple periodogram, we can also use the Welch periodogram to smooth

the simple periodogram. What is needed here is to set up a sliding window over

the whole time series and the periodogram within each window is then summed and

the average of all the periodograms is computed in order to achieve a smoothed

periodogram. Figure 5.3 shows the smoothed periodogram.

Parametric analysis methods using ARMA are shown in Figure 5.4 and Figure

5.5. Since parametric methods need to model data using the Autoregressive Moving

Average method to model the data, parameters need to be specified in order to

fit into the model. Two tuples of parameters are selected to show how the choice

of parameter could impact the data modeling and therefore affect the estimated

spectrum.

We can observe in both parametric estimators that the spectrums generated are

quite ‘clean’, with little noise. In Figure 5.4 there is an obvious and significant

periodicity at the 14-day period. The significance is more than non-parametric

methods achieved. Figure 5.5 uses the same ARMA model but different parameters
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Figure 5.4: Spectrum using ARMA - part 1. X axis is frequency. Y
axis is energy.

Figure 5.5: Spectrum using ARMA - part 2. X axis is frequency. Y
axis is energy.
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Figure 5.6: Spectrum using periodogram with higher noise strength.
X axis is frequency. Y axis is energy.

to fit the data, and while the result is still quite clean there are several false alarms,

which do not actually carry in the signal we generated. That tells us that parametric

methods are very sensitive to the quality of the model. If the model does not fit

very well, like in Figure 5.4, the final estimation of the spectrum could be very

misleading.

If we increase the strength of noise from 4 to 8, both parametric and non-

parametric methods struggle to identify the right periodicities. The results are

shown in Figure 5.6 and Figure 5.7. Based on the results of synthetic data, we will

not be using parametric methods in our analysis of real life data because we are not

confident enough to make the assumption that the data can fit into certain types of

model due to the natural character of real life data such as it being noisy and less

structured. In addition, we know that the spectrum of parametric methods is very

sensitive to the selection of the models.
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Figure 5.7: Spectrum using ARMA with higher noise strength. X
axis is frequency. Y axis is energy.

5.4 Experiments on Real Lifelog Data

We have demonstrated the capability of different methods to detect periodicity on

synthetic data. Now we will move to data collected in real life in order to see if

there is any latent periodicity. Since this is real life data, the detected periodicity

or periodicities can be related to a real life entity or scenario or participant. It

will be interesting and practical to illustrate those detected periodicities with real

examples.

5.4.1 Periodicities in Athletic Data

We now describe the athletic data briefly. The data consists of 1) running distance 2)

cycling distance 3) swimming distance 4) comments made by an athlete to indicate

his performance or mood. This data is recorded on a daily basis. In Figure 5.8, the

raw distances for running, cycling, swimming and for aggregated activity effort is

shown. The latter of these plots accounts for days where the athlete would exercise

or compete in more than one activity or discipline and the aggregated activity is

computed according to the metabolic equivalent (MET) where the unit of MET is 1
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kcal/kg*h. To calculate this the average speed for each of the three sports activities

of the athlete is used. In Jette et al. (1990), the MET for each sport activity at the

average speeds indicated by the athlete are shown in Table 5.1.

Table 5.1: MET TABLE

Activity Speed (kph) MET

Running 13 12.9
Cycling 25 8.4

Swimming 3 8.9

Figure 5.8: Visualization of raw data in the athletic activity dataset.
X axis is time. Y axis is performance of different activi-
ties.

In the running, cycling, swimming and aggregated data graphs, visualised in

Figure 5.8 the X-axis represents time, while Y-axis is the distance for the corre-

sponding activity. Note that this data has been gathered over a period of over 7

years so Figure 5.8 presents a very compacted picture. From the visualization, no
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obvious periodicity can be observed in running, swimming or aggregated data but

there seems to be an annual periodicity in the cycling data.

For each sporting activity and for the aggregated data, we applied window sizes

of 7, 14, 30, 120 and 365 days to calculate moving averages. Figures 5.9, 5.10, 5.11

and 5.12 show the results of this. Running, cycling and swimming start from 2000,

2007 and 2005 respectively. Moving average calculates the mean value of a fixed

size window and then moves the window one day forward to get the new value.

Moving average works like a low-pass filter; the bigger the window size, the lower

the frequency can pass. Because of this, it is easier to find long-term trends using a

larger window size because short term shocks in the data (competitions, vacation,

short-term injuries) will be smoothed. From the moving average results, we can see

that running distance decreased over time, while the cycling and swimming distances

increased. The total amount of energy expenditure according to MET fluctuates,

and no obvious trends can be seen in the aggregated data. We can infer from this

data that after the athlete started to train for swimming in 2005 and for cycling in

2007, he adapted himself to this by reducing the amount of training for running.

One major difference between the sleep dataset that we used earlier and the

sports dataset that we are using here is that the sports dataset has 100% capture

rate of activity over 10 years, while the sleep dataset captures just over 80% of

the nights in a 2.5 year period. The raw figures on sporting activity distances

are augmented by the athlete annotating most days with text comments which

summarise the day and occasionally report on performance or mood. These reports

are infrequent (25–30%), and so provide sparse data which we can also examine for

periodic patterns.

We manually annotated the text comments for mood and for performance in

order to create a third dataset. Four annotators were asked to annotate the text for

mood by following the following strategy:

• if a text comment provides an indication of mood (“feeling great” or “not

111



Figure 5.9: Moving average values for run. X axis is time. Y axis
is filtered result for running. From top to bottom the
window sizes used to filter are 7, 14, 30, 120, 365.

well”, “ok”), give a rating between 1 and 5, where 1 indicates the worst mood

feelings and 5 indicates the best mood feelings. If there is no indication of

mood in the text, give a rating of 0.

For annotation of performance the four annotators were given the following instruc-

tion:

• when a text comment provides an indication of performance (“personal best”,

“strong finish”, “stopped early”), give a rating between 1 and 5 where 1 in-

dicates poorest performance and 5 indicates best performance. If there is no

indication of performance in the text, give a rating of 0.

Comments made by the athlete during the year 2007 were randomised and pre-

sented to 4 annotators. Because the marks for mood and performance given by an-

notators are highly subjective and have biases, inter-annotator agreement, namely

Cohen’s Kappa co-efficient Cohen (1968) was calculated across the annotators and
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Figure 5.10: Moving average values for cycle. X axis is time. Y axis
is filtered result for cycling. From top to bottom the
window sizes used to filter are 7, 14, 30, 120, 365.

is presented in Tables 5.2 (mood) and 5.3 (performance).

Table 5.2: Inter annotation agreement for Mood

Annotator A B C D

A 1.00 0.47 0.60 0.47
B 0.47 1.00 0.41 0.48
C 0.60 0.41 1.00 0.36
D 0.47 0.48 0.36 1.00

Cohen’s Kappa coefficient ranges from 0 to 1, where a value of 1 indicates com-

plete agreement between a pair of annotators, and 0 denotes complete disagreement.

For mood, we can see that annotator A highly agrees with annotator C, while C

and D are agree least with each other, though all values are greater than 0.3. For

annotation of performance, it is obvious that annotator A has low agreement with

all three other 3 annotators. Based on this assessment of inter-annotator agreement,

we apply the following fusion strategy:

• For Mood, for each annotated comment, discount the value which is the great-
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Figure 5.11: Moving average values for swim. X axis is time. Y axis
is filtered result for swimming. From top to bottom the
window sizes used to filter are 7, 14, 30, 120, 365.

Table 5.3: Inter annotation agreement for Performance

Annotator A B C D

A 1.00 0.15 0.12 0.17
B 0.15 1.00 0.35 0.37
C 0.12 0.35 1.00 0.36
D 0.17 0.37 0.36 1.00

est outlier and average the remainder;

• For Performance, discount annotator A completely and then for the other three

(B,C,D) annotations on each comment, discount the one who is the greatest

outlier, then average the remainder.

The fused mood and performance data from the 4 annotators are sparse and

have large amounts of missing data and gaps as shown in Figure 5.13 where a black

horizontal line represents a mood or performance value while whitespace indicates

there is either no comment made by the subject for that day’s activity or the mood

and/or performance indicators are absent. The gap sizes for fused mood and per-
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Figure 5.12: Moving average values for aggregated. X axis is time.
Y axis is filtered result for aggregated data. From top
to bottom the window sizes used to filter are 7, 14, 30,
120, 365.

(a) Fused mood

(b) Fused performance

Figure 5.13: Distribution of fused data from annotators

formance vary between 1 and 19 days, while mood has a mean gap of size 4.15 days

compared to 3.15 for performance. This unevenly sampled data makes it a real chal-

lenge to detect periodicity from this data and an ideal target for the Lomb-Scargle

periodogram.

Since the sampling rate of our sports activity dataset is 1 day, the minimum pe-

riodic pattern of this dataset we can detect is 2 days. In Figure 5.14, periodograms

for the sports dataset which does not have missing data and is consistently and reg-

ularly sampled for the three sport activities and for the aggregated data MET levels,

shows interesting results. We can observe three significant energy levels carried by

three different frequencies consistently across all 4 subplots. These three frequencies
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are around 0.14, 0.28, 0.43, which corresponding to periods of 7 days, 3.5 days and

2.3 days. Moreover, if we look at the plots more thoroughly, there exists a frequency

at circa 0.0027 located near the left end of the cycling and aggregated data subplots.

This frequency corresponds to the annual period (ca. 365 days) that we observed in

the visualization of the cycling data.

Figure 5.14: Sports dataset periodograms. X axis is frequency
(1/day). Y axis is energy.

In order to investigate periodicity in irregularly sampled data, a second tool we

use is autocorrelation. Autocorrelation of 10 years data is plotted in Figure 5.15.

An autocorrelation computes the correlation between the signal and a time-

shifted version of the same signal. The X-axis of the autocorrelation plot is time

lagged and the Y-axis is a measure of the correlation of the original signal and

the lagged signal. If the original signal is periodic then the autocorrelation of the

signal should also be periodic and the periods will be located at the peaks of the

autocorrelation plot. From Figure 5.15, there are no periodicities observed in the

running, swimming or MET score aggregated data, but an annual periodicity can be
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Figure 5.15: Sports dataset autocorrelations. X axis is time lag
(day). Y axis is correlation between original signal and
signal with time lag.

found in the autocorrelation of the cycling data. Curious as to where the periodicities

over 7, 3.5 and 2.3 days which were found in periodograms from running, swimming

and the aggregated data, we took one year of data from 2007 to see if we could

detect periodicity in periodograms for just that year. An autocorrelation plot for

data from the year 2007 is shown in Figure 5.16.

The autocorrelation plot of sports data from 2007 shows that there is a very reg-

ular weekly periodicity in running, cycling and in the total energy expenditure of

activities, but a less regular weekly periodicity for swimming. We can also find

smaller peaks between the two obviously large peaks from running and cycling data,

which may correspond to the 3.5- and 2.3-day periodicities also detected in the peri-

odogram. However there are no obvious smaller peaks found in the autocorrelation
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Figure 5.16: Autocorrelation plot of sports data from the year 2007.
X axis is time lag (day). Y axis is correlation between
original signal and signal with time lag.

of aggregated data. A possible explanation may be that these detected periodicities

indicate the lifestyle of the subject such as regular scheduled training sessions for

running, cycling and swimming. Another explanation might be that there exists an

inherent timetable that the subject follows in order to balance participation in the

three different activities. For instance the timetable could be every 2 or 3 days run,

cycle or swim once. Determining this requires going back to the subject to con-

firm this, though this falls into the category of exploiting rather than determining

periodicities which as mentioned earlier, is beyond the scope of this chapter.

In order to detect periodicity in mood and performance data, which are unevenly

sampled and have gaps in the data, the Lomb-Scargle periodogram is applied to the

mood and to the performance data. For the Lomb-Scargle periodogram, the period

is T = 2π
f

. In Figure 5.17, we can see that there are no statistically significant
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(a) Mood. X axis of first panel is time and Y axis is score for mood. X axis of
second panel is frequency and Y axis is energy.

(b) Performance. X axis of first panel is time and Y axis is score for performance.
X axis of second panel is frequency and Y axis is energy.

Figure 5.17: Mood and performance data
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energy levels carried by any of the frequencies in the LS periodogram for mood

or for performance. In other words, no periodicity is detected in either mood or

performance data which has been fused from the manual annotators of the subject’s

text comments. Trying to rationalise this by going back to the subject might reveal

that the training schedule is oriented to have peak performance during the months

of competition, typically the Summer months, so there could be an annual cycle for

performance which could be tied to a mood performance cycle. There may also be

peaks in performance, and in mood, around regular seasonal targets such as Winter,

Spring, Summer and Autumn events. The fact that such periodicities did not appear

does not mean that they do not exist, it just means that they were not detected,

most probably because of the sparsity of our mood and performance data with large

gaps and irregular sampling. Not even the Lomb-Scargle periodogram was able to

overcome this disadvantage.

5.4.2 Periodicities in Sleep Data

The sleep dataset that we used represents 2.5 years of continuous nightly sleep

monitoring for an individual and contains the following information:

1. Time to sleep - represents the time taken between going to bed and falling

asleep;

2. Time to rise - represents the time taken between waking and getting out of

bed;

3. Time asleep - represents the duration of sleep;

4. Quality - a numeric indicator of sleep quality computed as a function of how

well the night’s sleep mapped to the circadian sleep (90-minute) rhythm and

how many cycles of that rhythm were completed;
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Figure 5.18: Some of the raw sleep data. X axis is time. Y axis of
the first panel is bed time. Y axis of the second panel
is wake up time.

5. Times woken up - represents the number of instances of a wake-up during

sleep, where ’“wake up” represents even a turning over in the bed.

The distribution of some of these metrics (3 and 4) is shown in Figure 5.18 and

the frequency of data capture is shown in Figure 5.19 where a thin horizontal black

line represents an instance of captured data, and where days are contiguous these

form the wide black bands in the figure. An obvious periodicity we would hope

to detect is based on the weekly cycle where the subject tends to sleep longer at

weekends than during workdays because the subject has a regular work schedule of

Monday to Friday.

Figure 5.19: Frequency of capture of sleep data

Each of the metrics from sleep logging (duration, quality, number of wakes, time

in bed, etc.) has been analysed for periodicity but rather than present all of them, we

limit ourselves to just two. For time asleep, a weekly periodicity is clearly detected
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as can be seen in Figure 5.20. This can be explained by the weekday/weekend

cycle which is the basis for the subject’s lifestyle of working during weekdays and

having to get up early to commute to work and then leisure activities with later

rising at the weekend. There is also a relatively weaker periodicity at around the

120 day frequency, about every 4 months but without going back to the subject to

investigate, this remains unexplained for the moment.

Figure 5.20: Time asleep periodogram. X axis is frequency. Y axis
is energy.

For sleep quality as shown in Figure 5.21 there is no weekly periodicity which tells

us that even though the subject sleeps more at weekends, he does not actually sleep

with better quality. We also observe a periodicity around 128 days (ca. 4 months)

for sleep quality but at the time of writing, without conferring with the subject, this

is something we cannot explain.

Figure 5.21: Sleep quality periodogram. X axis is frequency. Y axis
is energy.
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While the other sleep parameters such as time spent in bed, time going to bed

have also yielded interesting results, the point we wanted to make is already made,

namely that we can detect credible periodicities from real lifelogs even though there

is missing data and irregular sampling.

5.4.3 Periodicities in Sleep Data from ASU

For this experiment, 25 adults took part and gathered data from a wrist-worn ac-

celerometer, continuously, 24 hours per day, for between 28 and 72 consecutive days.

Each of our participants took part in this study conducted by Arizona State Uni-

versity (ASU) because they have some sleep issues and during the lifelogging period

there were some sleep improvement interventions introduced. We are interested to

see if the effects of the interventions on behavior can be detected in the periodicity

analysis. The computation of strength of periodicity will be introduced in the next

chapter.

The non-parametric methods are used to compute periodogram for subjects that

have complete data. If there are gaps in the data we can either set the missing

data as zeros or use the Lomb-Scargle periodogram. The reason we are not using

parametric methods is because 1) Time series models such as AR/MA/ARMA would

possibly not be good at modelling this type of longitudinal data with high sampling

frequency and 2) a large lag is needed to compute this type of model which could

lead to enormous calculation time.

Since the collected data contains measures of acceleration of 3 axis, the raw data

from the accelerometer was summarised to 1 second epochs. We firstly computed

gravity-subtracted sum of vector magnitude for each 3 axis acceleration. And then

we sum every 1 second of the computed gravity-subtracted sum of vector magnitudes.

A sample of this for subject 102 from the experiment is shown in Figure 5.22. This

plot of the overall activity levels illustrates several isolated periods of high activity,
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probably exercise of some form, throughout the 12- week period of data logging but

there is no evidence of changes in behavior. It provides visualization of the sum of

vector magnitudes (1 second epochs) along the y-axis and time along the x-axis over

the course of the monitoring period. Sleep and wake periods are evident visually

from these data.

Figure 5.22: ASU sleep data - 1 second epoch. X axis is time. Y
axis is summed 1s epoch.

For each of the 25 participants we generated a periodogram like Figure 5.23,

and a sample periodogram for the same participant, number 102, is shown in Figure

5.23. The figure displays a periodogram calculated from 1 minute epochs. The

x-axis is frequency and y-axis is energy of the frequency, namely, how strong the

corresponding frequency is. This shows a reasonably strong energy level around

the 1-day point and a smaller peak at around the 12-hour point. Compared to

some of our other participants who have gathered similar data, the regularity of

this individual’s daily cycle is not particularly strong for the whole of the 12-week

period, suggesting that s/he may work shifts or just have a very disorganised and

irregular lifestyle. In this figure, we observe strong circadian periodicity followed by

a 12 h periodicity which is the harmonic of the circadian. Interestingly, there is a

peak standing at the weekly period. This could be caused by a high level of noise,

but no within-day patterns were observed.

Figure 5.24 shows 60s epoch of subject 108 and the result of Lomb-Scargle pe-
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Figure 5.23: Periodogram from ASU Participant. X axis is fre-
quency (1/day). Y axis is energy.

riodogram conducted on this subject which is with missing gaps. In the 60s epoch

sub-figure, we can see the gap is at around the 8th week and in the Lomb-Scargle

periodogram, we need to specify the starting and stoping frequency that we will

examine. In this case we choose the frequency between 3 days and 0.3 day, and the

number of frequency in between is set to 1,000. In this sub-figure below, we can see

that a strong response resides at the 1-day period, followed by a half-day period, but

there is no peak at around the 0.25 day mark. We can observe a similar spectrum

in the periodogram and in the L-S periodogram.

5.5 Conclusions and RQ3

In the chapter, inspired by the results of modeling longitudinal lifelog data and

works by other researchers, we applied periodicity detection on several longitudinal

datasets, which include

1. synthetic data to show the character of different periodicity detection methods;

2. distances covered for athletic training and competition for an international

triathlete, over a 10-year period;

3. sleep quality, duration and timing data from a subject over a 2.5 year period;
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Figure 5.24: ASU Lomb-Scargle Periodogram. First panel is 1s
epoch. X axis of first panel is time (week). Y axis
is 1s-epoch. Second panel is L-S periodogram. X axis
of second panel is frequency (1/day). Y axis of second
panel is energy.

4. raw accelerometer data for 25 participants from an Arizona State University

sleep study dataset.

Experiments on synthetic data has shown the advantages and disadvantages of sev-

eral important methods to tackle periodicity detection. For the reason that para-

metric methods have higher requirements which is that the data has to fit into an

assumed model, and our typical lifelog data does not necessary fit into such models,

we choose to use parametric methods for cases where we have complete data and we

choose to use the Lomb-Scargle method for cases where we have incomplete data.

The athletic training dataset (number 2 above) was augmented with a pool-based

annotation of the triathlete’s daily text commentary on his training and perfor-
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mance, from which we were able to get annotations for mood, and for performance.

This gave us a collection of datasets which are rich in the variability of their reg-

ularity of logging, from consistent and regular daily entries to much more sporadic

data with missing data and irregular sampling.

Applying moving average, we discovered that after starting cycling and swim-

ming at a point several years ago, the subject decreased the amount of running while

the distances for swimming and cycling kept increasing. The use of periodograms

revealed that there are rhythms of repeating patterns at 7, 3.5 and 2.3 days for the

running, cycling and swimming data, as well as for when the individual activity data

is aggregated based on MET scores. An annual periodicity was also detected in the

cycling data. Using an autocorrelation plot for data from the year 2007, an obvious

weekly periodicity was detected in running, cycling and aggregated MET data but

the weekly pattern for swimming is weak suggesting less rigour and regularity asso-

ciated with training in that sport. An autocorrelation plot of running and cycling

shows an unexpected periodicity at a cycle of less than a week (2 or 3 days). This

infra-week periodicity may be caused by training schedules for different sports in

order to achieve a balanced exercise portfolio. There are no significant periodicities

detected in the Lomb-Scargle periodogram for mood or for performance when fused

from the annotations of a set of four annotators.

In the sleep dataset (number 3 above), several metrics related to sleep were

examined. There are not a common or unified pattern detected across different

metrics, that is to say each metric used to detect periodicity either has periodicity

with different periods or does not have periodicity. For example in time asleep, a

weekly periodicity is clearly detected and for sleep quality there is a periodicity at

around 4 month detected.

In the Arizona State University raw accelerometer dataset (number 4 above),

the raw data was firstly preprocessed into 60s epochs, and then a periodogram was

computed for both complete data and data with gaps. 1-day periodicity is revealed in

127



most of the participants, and in some participants there is even weekly periodicity

detected. The fact that a periodogram can be calculated directly from low-level

accelerometer data without converting it into a higher semantic level facilitates a

method for characterizing behavioral patterns that encapsulate behaviors across the

24h spectrum, longitudinally. Our results indicate a pattern that resembles natural

circadian rhythms; however, this framework is flexible enough to identify additional

periodicities that may emerge and characterises the strength of these patterns.

Evaluating the detected periodicities using some form of qualitative evaluation

will be detailed in Chapter 7. Case study can be often seen in qualitative studies.

Researchers usually study case-by-case independently and then draw findings sep-

arately. An interview is a common way to collect sufficient data to for qualitative

analysis. After a case-by-case study, a cross case analysis could be conducted to

discover common phenomena. Evaluation is always a challenging part of such re-

search and the relevance of any detected periodicities is quite subjective since every

individual has his/her own understanding of their own periodicity.

We have demonstrated in this chapter that automatic detection of periodicities

from lifelog data can be achieved, even when there is substantial missing data. We

have shown that methods based on periodograms and/or autocorrelation can be used

to detect periodicity on complete datasets, while Lomb-Scargle periodograms can

be used to detect periodicity on datasets with missing data. Experiments conducted

on real life datasets with different levels of sparsity show that we are able to detect

periodicity in these datasets. Since we are able to detect periodicity in real life data,

the next chapter will address how to compute the strength of the periodicity in order

to reveal potential behavioural changes in longitudinal data.
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Chapter 6

Intensity of Periodicity

In the previous chapter of this thesis, we have shown that there is periodicity in

longitudinal lifelog data, even when we use a basic periodogram to detect this. In

this chapter, we are focusing on how to define and calculate the degree to which a

frequency is periodic, in a lifelog. For this reason we introduce the idea of intensity

of periodicity where the ideal output of intensity of periodicity would be a number

or value that indicates the regularity of a certain periodic frequency within a given

timespan or duration. If we use a window, sliding through a whole dataset or lifelog

with incremental steps, the output would be a series of numbers or values indicating

the change of regularity of a certain period, within the whole dataset. Changes in

intensity of periodicity could potentially reveal changes in periodic data which could

potentially correspond to changes of behaviour. In the literature, we haven’t seen

many works in lifelog to detection periodicity, not even mentioning the intensity

of periodicity. Since we discovered the periodicity in lifelog data, to measure the

strength/intensity to enable more application would be reasonable next step.

The intensity of periodicity potentially provides a different and practical perspec-

tive for researchers to review lifelog data. After identifying the significant periodicity

frequency (e.g., weekly, daily) we would like to compute how strong or weak that

period is and/or how the strength of the period changes over time. Tempo-spectral
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analysis is popular in signal processing to understand how the frequency of a signal

changes with time. Suppose we are able to detect the most significant periods in

lifelog data, it is interesting to see how the strength of the periods changes, so that

we can identify when is high/low regularity. The intuitive idea is to calculate the

energy carried by those significant periods using a moving window. Here are the

high-level steps we follow to calculate period intensity change with time:

1. Choose a suitable length of window, within which a periodogram could be

calculated. If the window size is too long, the time resolution of the signal

would be poor while good frequency resolution could be achieved and vice

versa. One way to trade off between time and frequency is to overlap windows,

but what needs to be addressed is that overlapping of windows brings issues of

time lag into the intensity of periodicity. This may cause delays or advances

of the resulting intensity graph, comparing it to actual data.

2. From the periodogram, extract the frequency that is exactly and/or close

to detected significant periods of the lifelog, and calculate the corresponding

energy. Depending on the size of the window, the most significant period

within a window may differ from the most significant period detected, using

all data. Also, the most important periods detected using all data could be

affected by spectral leakage due to the fact that real frequencies may not be

integer times the frequencies of cosine/sine basis, in FFT. Using sophisticated

methods such as adding various window functions could decrease the spectral

leakage problem.

3. Move windows and repeat the second step, until there are no more data point

available. The y-axis in the resulting figure stands for energy, namely the

regularity of the selected frequency. Note that the high total amount of energy

within a window might lead to high intensity values.
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6.1 Definition of Intensity

In order to define what intensity is, we will try to understand what factors may

related to modeling lifelog data, and those factors may result in changes in lifelog

data. We shall then focus on using those factors to generate simulated data with

known intensity. With the simulated data can we then compare the performance

of different metrics to measure the intensity of periodicity quantitatively, against

ground truth.

6.1.1 Activity trends in data

The first factor that may affect the measurement of intensity of lifelog data is the

trend of activity in the lifelog data. That is to say, the quantity of activity either

increases, declines or stays the same within a period of time locally and/or longi-

tudinally. For instance, for a triathlete this situation may happen due to the need

for intensive training during a short period of time when preparing for competition.

Or, people suffering from aging symptoms might decrease their overall activity levels

due to constrained mobility. The previously mentioned longitudinal trend or global

trend is the trend over a long period of time compared with the local trend which

is within a short period of time. The trend can be linear or non-linear. The rea-

son that activity might affect the intensity of periodicity is that the activity level

itself might change the results of spectrum analysis and we suspect this may affect

the low frequency energy. As we mentioned earlier, both global and local trends

could be linear or non-linear but in our experiments, we only consider linear trends,

which might or might not fit the real world experience, but is clearer to illustrate

the problem we are facing, namely to compute intensity.
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6.1.2 Local Activity Patterns

Local activity patterns refer to activity patterns repeated within a short period of

time. For example a pattern can be exercise on Friday and Sunday for 6 months.

So the patterns can be:

1. Activities repeated at a certain day in a week over a certain period of time. For

instance routine activity on every Monday for a year. In this case, within the

one year the intensity of weekly periodicity should remain the same, although

the local trend or global trend might change.

2. Activities repeated at any day in a week within a certain period of time. For

instance activities that are done once every week for 6 months. In this case

we still would like to think the activity is routinely executed, and although on

an irregular day but at the same time being done regularly on a weekly basis.

The first situation can be simulated by sampling data using a Gaussian distribution

and the second one can be achieved using uniform distribution. In theory the first

one would have less randomness than the second one. Because uniform distribution

has bigger entropy than Gaussian distribution, thus more information is carried. In

the matter of factors even if the activity is always repeated at some day, there are

chances that the strength of each activity can vary at each repeated day. Because

of this, even more uncertainty can be brought into the data.

6.1.3 Missing Activity Routine

It is practically impossible to maintain any activity routine without missing some

planed activity in real life situations due to a variety of reasons. The chances that

a routine activity would be missed could potentially cause a change of intensity of

periodicity. The probability of missing a routine activity thus bring another form of

uncertainty into our model. The example of probably of missing an activity could
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be as much as a 20% chance that a weekly activity would be missed within a certain

month. In other words, the intensity of the weekly periodicity would have been 0.8

of the original intensity if the original routine was kept. We assume the probability

of the chance that missing a routine activity follows a uniform distribution, which

will be examined in the synthetic data experiment.

6.1.4 Intensity of Periodicity

Having discussed the factors might change the intensity of periodicity, we have to

define what is intensity of periodicity and how can it be computed. Starting from

the point where we have already determined which periodicity is significant in our

lifelog data, we shall then decide the intensity of the periodicity. That is to say, to

have a detected periodicity is a condition for computing intensity. In fact it is quite

intuitive to understand, since we have to know what is the main periodicity in the

lifelog data, then can we decide how strong the periodicity is. However here is the

key issue, how do we know how “strong” a periodicity is, namely the intensity of the

periodicity? Firstly, let us think about the requirement of intensity of periodicity.

It should be able to show:

1. The difference of patterns in terms of quantity. For example two patterns may

be the same shape, but with different sizes, and the intensity should show the

difference.

2. The integrity of patterns. For instance, two patterns could be the same shape,

but only if missing points were filled in. The intensity should be able to show

the completeness of a pattern.

Based on the requirement of strength of a periodicity, we can find out that

correlation between the original signal and local patterns could achieve both. In the

next Section we will design some metrics to compute such a correlation in detail.
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6.2 Metrics of Strength of Periodicity

Since periodicity is observed and significant in almost all lifelog data generated by

human subjects, and we suppose we have identified those significant periodicities in

the periodogram, we would like to use the lifelog to compute the strength of a certain

periodicity for each participant at different points in time or as a whole. If we are to

compute the intensity change through time, we can use a window and compare the

local data with discovered global repeating patterns. The similarity between local

data and global patterns is the intensity. So, the intensity could be a correlation or

error between local data and the global pattern with a significant periodicity. We

use the following denotation to explain how we calculate the strength of periodicity.

F denotes the DFT of signal x(n), n = 0, 1, ..., N − 1, and F ′ denotes the inverse

transformation. S stands for the strength of periodicity. Suppose the periodicity

we are concerned about is circadian periodicity. The specified periodicity can be

changed according to different periodicities detected in real life. The metric we

developed was calculated using six different approaches, described as follows:

A1(k) =
1

k

N−1∑
n=1

x[n]x[n+ k]

A2(k) =
N−1∑
n=1

x[n]x[n+ k]

(6.1)

Method 1:

S = P (f)

P (f) =
1

N
F(xn)2

(6.2)

where: f = 1
day
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Method 2:

S = P (f)

P (f) =
1

N
F(A1(xn))2

(6.3)

where: f = 1
day

Method 3:

S = P (f)

P (f) =
1

N
F(A2(xn))2

(6.4)

where: f = 1
day

Method 4:

S = max(P (f))

P (f) =
1

N
F(xn)2

(6.5)

Method 5:

S =
1

2

√∑
n

(xn − x′n)2

x′n = F ′(P (f)), iff 6= 1

day
, P (f) = 0

P (f) = F(xn)

(6.6)

Method 6:

S = CC(xn, x
′
n)

x′n = F ′(P (f)), iff 6= 1

day
, P (f) = 0

P (f) = F(xn)

(6.7)

where CC is correlation coefficient.
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Method 1 uses the power carried by 1/day frequency as the strength of the cir-

cadian periodicity, namely, the correlation between signal and sinusoid with daily

periodicity. Methods 2 and 3 use A1 and A2 to calculate autocorrelation, respec-

tively. Using the result of autocorrelation as input to compute the periodogram, we

thereafter use power of daily periodicity as strength of the circadian periodicity. It

should be noted that A1 is normalized autocorrelation. Method 4 uses the maximum

power in the periodogram to represent strength of periodicity, though in this case

it is not assured that daily periodicity will carry maximum power all of the time.

Method 5 calculates a sinusoid with daily periodicity that is most correlated to the

data and then computes root mean square error (RMSE) between the signal and

the most fitting sinusoid with daily period. Finally, Method 5 finds out a sinusoid

with daily periodicity that is most correlated with the data, and then computes CC

between the signal and the most fitting sinusoid with daily period.

If we consider the informal formulation of spectrum estimation as estimating

how the total power is distributed over the frequency, the definition of intensity of

periodicity can be thought of as the power corresponding to a certain periodicity or

several periodicities. Method 1 comes directly from the definition of power spectral

density, which uses Discrete-time Fourier transform (DTFT) to calculate how power

is distributed over frequency directly and here in Method 1 we only take the power

carried by 24-hour periodicity. Methods 2 and 3 derive from another definition of

power spectrum which shows that spectrum can be achieved as the DTFT of the

autocorrelation. Method 3 is normally used to calculate autocorrelation in signal

processing. The reason we also use Method 2 is because when we lag signal to

calculate autocorrelation, the bigger the lag is, the fewer the number of points that

are involved in the calculation. Method 2 tries to eliminate this effect by using

averaged value. Both Methods 2 and 3 use power of circadian periodicity as the

intensity. Method 4 uses power of frequency with maximum power as intensity.

The reason we use this method is that we are trying to see how the frequency with
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maximum power would be correlated with biomarkers. In particular, it is interesting

to see a comparison of the result between Methods 1 and 4. Method 5 uses a different

way to calculate how the signal is different from the 24-hour periodicity. The rest

of the methods use correlation as a metric to quantify the difference while Method

5 uses summed error as the metric to quantify the deviation.

6.3 Experiments

An experiment is firstly conducted on synthetic data before moving to real data.

The data is modeled by the three factors described in Section 6.1 and intensity of

periodicity is computed on both low-level and high-level accelerometer data.

6.3.1 Experiment on synthetic high-level data

In this section we conduct experiment on synthetic data. In order to generate

synthetic data, we used the model described before and randomness is introduced

by adding noise at different synthetic stages. Assume we are going to simulate

N data points where N is a number which is 7 times an integral and we use this

because in the last chapter, we discovered a strong weekly periodicity in high-level

accelerometer data. The prior is used here and the 7-day pattern is a basic pattern

which could compose the whole signal with different scaling and time shifting. The

value of N is assumed to consist of local patterns with different smaller sizes. For

easy understanding we assume the local pattern is also the integral times 7. The

problem can be formalized as: assuming there is a signal xn, n = 0, 1, ..., N −1. The

equation to split the signal would be:

Xm =
∑
n

xnSnδ(m− n)
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where St is the function used to split data, δ is a Dirac delta function, and m

is the number of segmentations of the original signal. Xm is one segment of the

signal. |Xm| is the notation for the length of Xm, namely how many points in each

segment. The size of each segment is sampled from uniform distribution. St is a

function similar to a window function, but its function is to split the data into local

patterns. If we are going to split the data into Xm segments, Sn is defined as:

Sn =


1 if n is in a segmentation

0 Otherwise

(6.8)

Each segment Xm is composed of a global trend, local trend and local patterns

with missing probabilities. The following settings are used to generate each segment

of synthetic data:

1. The size of a segment is firstly chosen from 2 to 10 uniform distributions. The

chosen number will then be multiplied by 7 in order to make a week as a unit

of the local pattern. 50 segments are generated to simulate high-level lifelog

data.

2. At the stage of generating local and global trends, a linear model Xm = wn+b

is chosen as the trend. Parameters w and b from the local linear model are

chosen randomly from a uniform distribution range from -0.005 to 0.005 plus

Gaussian noise with 0 mean and 0.3 std to the output of the linear model.

Parameters w and b of the global linear model are chosen randomly from a

uniform distribution range from -0.0005 to 0.0005 plus Gaussian noise with 0

mean and 0.3 std to the output of the linear model.

3. The local patterns chosen, is a pattern with a weekly repeating period. For

example, activities can be done every Monday for 4 weeks. In order to intro-
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duce randomness into the model, the day when the activity is repeated can be

randomly chosen from a uniform distribution, which means that each day has

equal probability of doing the activity and the day chosen can be based on a

Gaussian distribution, which means activities are more likely done on a certain

day. In reality, the prior of an activity being done on each day could be useful,

but here we do not want to make any strong assumption. The quantity of the

level of activity is selected from a uniform distribution with range from 2 to 7,

plus normal distribution with 0 mean and 0.5 std. The probability of missing

some activities within each segment is randomly chosen from a uniform distri-

bution range from 0 to 1. For example if the probability of missing an activity

within a segment could be 0.2. so we randomly set 20% of activities done in

that segment, to 0.

4. The intensity of each week will then computed using the quantity of each

activity level multiplied by the probability of missing the activity.

The reason to select the above mentioned settings is based on the assumption

that a participant have each training plan/segmentation last from 2 to 10 weeks.

The choice of local and global linear model parameters is to introduce trend but

minimize effect of trend, especially global trend, to actually training performance.

Within each training plan/segmentation we assume the subject is doing one exercise

every week and the performance of each exercise range from 2KM to 7KM. The day

of which exercise is done is randomly chosen within each training plan/segmentation

and has random chance of missing weekly exercise. To compare the fact intensity

we used to simulate lifelog data and the computed intensity with different proposed

methods, firstly let us have a look at the periodogram from the example simulated

data. Figure 6.1 shows the randomly generated global and local trend data with

Gaussian noise with zero mean and 0.3 standard deviation.

Figure 6.2 shows the result signal with global and local trends, and local patterns
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Figure 6.1: Global and Local Trend with gaussian noise

with local patterns. The local patterns are activities that repeat weekly and the

repeating day of doing the activity is chosen randomly from a uniform distribution,

and the chances of missing activities within a local pattern is randomly chosen from a

uniform distribution as well. Figure 6.3 shows the periodogram of the final simulated

data. Interestingly, we can see that the periodogram is similar to the real data

generated by the triathlete in Fig. 5.14. The similarity refers to high energy carried

at low frequency and two harmonics following a weekly periodicity. The similarity

of simulated data and real life data could possibly provide an explanation for the

correlation between the time domain signal and spectrum. The power of spectrum

in the lower frequency, namely on the left side of the periodogram, indicates the

trend of the activity. We can also observe on both periodograms, harmonics on

7-day, 2/7-day and 3/7-day frequencies. It is legitimate to hypothesise that this is

caused by regular weekly activity conducted on different days of a week, because

this is how we generated the simulated data.

Figure 6.4 indicates the result using the 6 different methods to compute that we
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Figure 6.2: Signal with Trends and local patterns

introduced in Section 6.2 and the result is compared with ground truth intensity

used to generate the data. We can observe in the result that some methods tend

to enlarge the peak while some methods are quite close to the ground truth. Since

this is just one run of random generated data, there are chances that this run might

not reveal the true effect of different methods. In order to evaluate those metrics

with more confidence, we will run the randomly generated data for 1,000 iterations

and the result will be shown in a table. The performance of those proposed metric

methods are evaluated with correlation coefficient (CC) and root-mean-square error

(RMSE) as measures.

Table 6.1 shows the result of the performance of the different methods, measured

by CC and RMSE between computed intensity using the previously mentioned meth-

ods and the intensity used to generate the lifelog data. In the table the window is

fixed to 35 days with zero overlapping. We compare the result using two different

distributions of days, namely normal and uniform. The choice of normal distribu-

tion is to simulate the situation that most of the occurrence of an activity is on one
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Figure 6.3: Periodogram of simulated data. X axis is frequency. Y
axis is energy.

day and the distribution of the other days follows a normal distribution. The choice

of uniform distribution corresponds to the scenario that activities could be done on

any day of a week with equal probability. Not surprisingly, normal distribution has

better performance than uniform because uniform distributions introduce yet more

uncertainties. Based on the periodogram we have using real life data, we tend to

think that normal distributions are more common than uniform distributions but

because a 7-day periodicity normally carries the highest energy than its harmonics,

this is the case using normal distribution.

The definition of intensity of periodicity can be thought of as the power corre-

sponding to a certain periodicity or several periodicities. In this case, method 1

comes directly from the definition of power spectral density, which uses DTFT to

calculate how power is distributed over frequency directly. Both Methods 2 and 3

use power of circadian periodicity as the intensity. They derive from another defi-

nition of power spectrum which shows that spectrum can be achieved as the DTFT

of the autocorrelation. The difference between method 2 and 3 is that they use
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Figure 6.4: Intensity computed with different methods. X axis is
time. Y axis is periodicity intensity.

different ways to compute autocorrelation. Method 4 uses power of frequency with

maximum power as intensity. In particular, it is interesting to see a comparison of

the result between Methods 1 and 4. Method 5 uses a different way to calculate

how the signal is different from the 24-hour periodicity. The rest of the methods

use correlation as a metric to quantify the difference while Method 5 uses summed

error as the metric to quantify the deviation. Method 6 is similar to method 5 but

using correlation as the deviation from the pattern signal.

Figure 6.5 and Figure 6.6 show the correlation coefficient between computed

intensity levels using different metrics and the intensity used to generate the lifelog

data. The X-axis is the window size with a unit of a week. Please note that the

starting of window size is 1 week which corresponds to 0 on the X-axis. We can see

that the CC changes with the window size. The CC is increasing at the beginning

with increasing of the window size but at a certain point, the CC is not improving

as we continue to increase the window size. For some metrics, the performance is

even decreasing. Figure 6.5 used normal distribution to generate the day on which

activities would be conducted. In this setting, the performance of CC tends to
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Table 6.1: Performance of 6 methods as measured by CC and RMSE
using a 35-day window

CC RMSE
Distribution Method Mean Std. Mean Std.

Normal

Method 1 0.791 0.053 0.0015 0.0002
Method 2 0.757 0.057 0.0017 0.0002
Method 3 0.725 0.056 0.0027 0.0005
Method 4 0.827 0.044 0.0011 0.0002
Method 5 0.740 0.059 0.0009 0.0001
Method 6 0.677 0.083 0.0009 0.0002

Uniform

Method 1 0.747 0.063 0.0017 0.0003
Method 2 0.763 0.059 0.0017 0.0003
Method 3 0.700 0.062 0.0029 0.0006
Method 4 0.832 0.042 0.0011 0.0002
Method 5 0.741 0.059 0.0008 0.0001
Method 6 0.576 0.098 0.0011 0.0002

converge at window size of 4 or 5 weeks. Figure 6.6 uses uniform distribution to

generate the day on which activities would be done. A similar trend can be observed

in both figures. We can observe that the performance of method 6 is always the

worse among all the methods. We suspect that it is the summed absolute values

like RMSE that matters when computing the deviation of real data from patterns.

That leads poor result of CC here.

Figure 6.5: CC trend with window size changing using normal dis-
tribution. X axis is window size. Y axis is CC between
estimated intensity and ground truth.
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Figure 6.6: CC trend with window size changing using uniform dis-
tribution. X axis is window size. Y axis is CC between
estimated intensity and ground truth.

6.3.2 Experiments on the ASU data

In this section we use the ASU data which we introduced in chapter 2. To explain the

results we obtained more concretely, we use one participant, number 102, shown in

Figure 6.7 which outlines the methodological steps for identifying periodicities and

visualizing periodicity strength that we followed. From the top to bottom of that

Figure we see 4 sub-figures, and we name these Panel A, B, C and D correspondingly.

Panel A provides a visualization of the sum of vector magnitudes (at 1 min epochs)

along the Y-axis and time along the X-axis over the course of the monitoring period.

Sleep and wake periods are evident visually from these data, which runs for 12

weeks of data collection. The raw data from the accelerometer was summarized

to 60 second epochs using the gravity-subtracted sum of vector magnitudes. This

plot of the overall activity levels illustrates several isolated periods of high activity,

probably exercise of some form, throughout the 12-week period of data logging but

there is no evidence of changes in behavior.

Panel B displays a periodogram calculated from 1 minute epochs. Here, the

X-axis is frequency and Y-axis is energy of the frequency, namely, how strong the
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corresponding frequency is. In this panel, we observe strong circadian periodicity

followed by a 12 hour periodicity. This shows a reasonably strong energy level

around the 1-day point and a smaller peak at around the 12-hour point which is

the harmonic of the circadian. No within-day or weekly patterns were observed.

Compared to some of our other participants who have gathered similar data, the

regularity of this individual’s daily cycle is not particularly strong for the whole

of the 12-week period, suggesting that s/he may work shifts or just have a very

disorganized and irregular lifestyle.

Panel C plots time (X-axis) by the strongest periodicity observed over the 3-day

time lagged window. The Y-axis of panel C is the frequency that carries maximum

power within a window. In this example, the 24 hour periodicity held consistently for

the majority of 3-day windows with small breaks at the beginning of the monitoring

period.

Panel D describes the strength of the periodicity using Method 1 (Y-axis) over

time (X-axis). The strength/intensity of the 24 hour circadian periodicity changes

throughout the lifelogged observation period, showing, for example, a weaker period

of regular circadian cycle from day 0 to day 14 and again from day 32 to day 44.

The raw acceleration data is firstly summarized using 1s epoch in order to cap-

ture information from all 3 axis acceleration over 1s time. After the raw data is

summarized, we then computed periodogram to detect periodicity of 1s epoch data.

Although different way to summarize the data may have impact on the result of

periodicity detection, but the refinement of periodicity detection is not included in

the research questions. After the periodicity is detected, we further examined which

frequency carrying maximum energy to provide some extra insight for the subject.

In the example we showed in the Fig. 6.7 we can see the subject is not very regular

in terms of circadian periodicity. By applying method 1 we can then plot intensity

of circadian periodicity. We also computed the intensity of the accelerometer data

using Methods 1 to 5 for every subject and the detailed result will be introduced in
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next chapter.

6.3.3 Experiments on Athletic data

The metric using Method 1 with a 28-day window and zero overlapping is used

to show the example results on the Athletic data, which we introduced in chapter

2. Figures 6.8, 6.9, 6.10 and 6.11 are the results of such settings. The result of

the intensity is normalized with the sum of the intensity data series. The reason

for selecting a 28-day as window is because this window size showed some good

quality in the simulated experiment described earlier in Section 6.3.1. The result of

processing this data set will then be summarized into questions and those questions

will be then used in an interview with the athlete who generated those data. The

detailed results will be described in next chapter.

In Figure 6.8 we are able to see several running patterns in the intensity graph.

For example there are peaks at the beginning of 2004 and 2006 and at the end of

2008 and beginning of 2009. Generally speaking, the intensity is increasing until 2007

where it maxes and then starts to decrease. In Figure 6.9 we show the intensity of

weekly periodicity for cycling. We are able to see the subject started to cycle from

2007 onwards and the intensity level increases until 2014 when there is a sudden

decrease. In the middle of 2010 there is very high intensity. Figure 6.10 shows fewer

changes compared with running and cycling. But still we can see peaks at around

the beginning of 2008, the end of 2009 and the end of 2012 or beginning of 2013.

In aggregated data shown in Figure 6.11, peaks seems repeated with a period of 2

years.

Since in the previous experiment we have shown that there is a strong weekly

periodicity in the athletic data, we focus on computing the intensity of weekly period-

icity of this dataset. The weekly periodicity intensity graph for running, swimming,

cycling and aggregated data show a oscillating effect consisting of numerous peaks
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and valleys. Those changing places are especially interesting for us to further inves-

tigating to confirm the validity of intensity graph, which will be used in qualitative

analysis.

6.4 Conclusions and RQ4

In this chapter, we further studied the intensity of periodicity in lifelog data. We

proposed a model to simulate lifelog data and we used the generated data in our first

experiments. We proposed several methods to calculate the intensity of periodicity.

Selected methods were executed on real life high-level and low-level accelerometer

data.

In the model we proposed to simulate high-level lifelog data, we considered factors

that we think might be close to the real data we collected. The factors are global

trends, local trends, local patterns, and the probability of missing activities not

being logged or recorded. Each of the factors is determined by further parameters

with introduced randomness deliberately. We use known intensity which is also

randomly generated, to simulate high level lifelog data. Because of this, we are able

to compare the performance of different metrics with the intensity used to generate

data. Not only can we see the result of different metrics, but also we can observe how

the changing of window size can affect the performance of those metrics. We firstly

compared the periodogram of simulated data and real high-level lifelog data, and

discovered the similarity between them. Local and/or global trending tend to affect

the low frequency, which is indicated on the graph as the high significant peaks on

the left side of the periodogram. Also, the distribution of the day on which activity

is conducted can affect the harmonics in the periodogram. If the distribution of the

day of the activity is uniform, that is to say that the activity is likely to happen on

any day of a week with equal probability, the harmonic tends to have the same level

of significance of power. On the other hand, if the distribution is normal, that is to
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say activity is more likely to happen on a certain day, the 7-day period tends to carry

more energy than 3.5-day or 2.3-day period harmonics. In terms of a periodogram,

we have achieved a similar periodogram as for the real data, and also the simulated

data provided some explanation of harmonics which we observed in real lifelog data

not once but repeatedly.

Different methods performed on simulated data are able to achieve similar re-

sults, except method 6 is always the worst method compared with the rest. In

general, methods 1 - 5 show quite correlated results compared with the intensity

used to generate the lifelog data for both uniform distribution of days and normal

distribution of days. In the experiment to find out the correlation between window

size and performance, we explored different window sizes. We discovered that the

performances are increasing rapidly at the beginning, but after window size exceeded

ca. 4 weeks, the improvement in the performance tends to be stable, and for some

methods even to decrease.

For experiments on real life data, we conducted experiments on ASU data and on

Athletic data. The experiment is conducted based on a pipeline. The first step is to

compute 1 second epochs from the X, Y and Z axis, and a periodogram is computed

to reveal periodicity. Then, we define a window with fixed window size and step size

to slide through all the data. Within each window, we extract the period that carries

maximum energy. At the same time, we also compute the intensity of the circadian

periodicity within each window. As we can see, the figures are able to reveal the

change of intensity. But a question remains, does the intensity of periodicity have

realistic use? Or, more precisely, what are the underlying facts about participants

that the intensity of periodicity is trying to tell? We will investigate this in the next

Chapter.

The experiments conducted on Athletic data have also shown some of the inten-

sity of each sport event that the triathlete is changing. We need to use some of the

significant changes found in the intensity graph, as feedback to the subject. There
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will be an interview asking the athlete about those abnormalities in the intensity

graph. The results of this interview will also be revealed in the next chapter.

In this chapter, we proposed several methods to measure the intensity of pe-

riodicity, and the experiments on synthetic data help us to understand where the

harmonics in the periodogram come from and how the peak on lower frequencies in

the periodogram, are generated. The result of different methods are compared using

the synthetic data and the result is generally good. Experiments conducted on real

lifelog data have suggested that further exploration with the subject involved in the

experiment, is needed.
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Figure 6.7: Result for Subject 102. Panel A provides a visualization
of the sum of vector magnitudes. Panel B displays a
periodogram calculated from 1 minute epochs. Panel C
plots time (X-axis) by the strongest periodicity observed
over the 3-day time lagged window. Panel D describes
the strength of the periodicity using Method 1 (Y-axis)
over time (X-axis).
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Figure 6.8: Intensity Graph for Running Data. X axis is time. Y
axis is periodicity intensity.

Figure 6.9: Intensity Graph for Cycling Data. X axis is time. Y axis
is periodicity intensity.

Figure 6.10: Intensity Graph for Swimming Data. X axis is time. Y
axis is periodicity intensity.
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Figure 6.11: Intensity Graph for Aggregated Data. X axis is time.
Y axis is periodicity intensity.
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Chapter 7

Case Studies

In carrying out some case studies on our data analysis, we are trying to illustrate

the usefulness of the computed patterns identified from user data in the previous

chapters. The first case study is an interview with the triathlete from whom the

high-level lifelog data was collected. The questions used in the interview which form

part of the case study are generated by using the detected periodicity and intensity of

periodicity with different window sizes and various step sizes. The second case study

we focus on is the low-level ASU accelerometer data. The question we are trying

to address in this case study is how does the intensity or strength of periodicity

correlate with the subjects who were involved in the experiment. The methods we

developed to compute periodicity intensity have been shown in the previous chapter

to have high correlation coefficient using simulated lifelog data and in this chapter

we will see the correlation between results of those methods and several biomarkers

collected from the subjects.

7.1 Case Study: Athletic Data

In order to determine what questions to be asked in an interview with the subject

who generated the data, periodograms and graphs of intensity of periodicity need to
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be generated first. After the response to the questions is answered by the athlete,

the results of the interview were studied in order to find a correspondence between

computed graphs and the actual training intensity or regularity. We would also like

to see if the mined result would potentially reveal some facts that the athlete would

have ignored or not known about.

7.1.1 Graphs of Intensity

The data from which intensity graphs are computed are originated from the athletic

data which consists of running, cycling, swimming and aggregated data. These 4

different sub-datasets are all time series data which are sampled daily. The corre-

sponding units for running, cycling, swimming and aggregation are miles, kilometres,

laps and MET. Power Spectral Density is calculated to determine the frequencies

that carry significant energy. In other words, we conducted PSD calculations on

the whole data length (more than 10 years) in order to detect periodicities that are

important. After determining the significant frequencies, we can observe a common

phenomenon. Energy carried by sine/cosine functions with weekly periods are sig-

nificant in all 4 subsets. Therefore, we generate intensity graphs based on weekly

periodicity. The intensity graphs show the strength of weekly periodicity, changing

with time. Different window sizes and overlapping sizes are chosen to calculate the

intensity graph, namely window sizes of 14, 28, 70, 28 corresponding with overlap-

ping sizes of 7, 21, 63, 0. The unit for both window and overlapping sizes, are one

day.

Figures 7.1, 7.2, 7.3 and 7.4 show the results of running, cycling, swimming and

aggregation respectively, generated by using different window and overlapping sizes.

The abnormalities, namely peaks and valleys, are the special interests that we may

raise questions from.

In order to investigate the subjects’ interpretations of intensity graphs, we de-
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Figure 7.1: Graph of intensity of periodicity for running. Panel A is
intensity graph computed with window size 14 overlap-
ping size 7. Panel B is intensity graph computed with
window size 28 overlapping size 21. Panel C is intensity
graph computed with window size 70 overlapping size
63. Panel D is intensity graph computed with window
size 28 overlapping size 0. X axis is time and Y axis is
periodicity intensity.

signed and conducted an interview with the subject who generated the data. The

interview would help us to understand how well the algorithms could be used to

generate intensity graphs, and at the same time we cannot interpret the intensity

graph without building a connection with the personal experience of the subject. In

other words, we could confirm some of the results coming from the computation of

the PSD/periodogram and interpret the intensity using personal response as input.

As we can see from the figures, there are many peaks and valleys that we are

interested in. In order to achieve the objective, we pay attention to these peaks and

valleys in the intensity graphs. The reasons for this are:

1. Peaks correspond to high regularity that the subjects might be aware of and/or

keep on record. For example if you look at Fig. 7.1, there is a peak between

156



Figure 7.2: Graph of intensity of periodicity for cycling. Panel A is
intensity graph computed with window size 14 overlap-
ping size 7. Panel B is intensity graph computed with
window size 28 overlapping size 21. Panel C is intensity
graph computed with window size 70 overlapping size
63. Panel D is intensity graph computed with window
size 28 overlapping size 0. X axis is time and Y axis is
periodicity intensity.

2008 and 2010, and the intensity before and after are very low, that make this

peak interesting, and we will ask question about the subject what happened

at the peak.

2. Valleys correspond to breaks/injury/tiredness/travel/holidays in the training

which the subject might remember and/or keep on record. For example in Fig.

7.1, there is a valley at end of 2005 and beginning of 2006, we guess something

might happened to stop the athlete from training.

Based on the idea that peaks and valleys are important for the triathlon athlete and

the periods to which those peaks and valleys correspond could make sense for the

subject from his/her own perspective, we designed our interview around the peaks

and valleys in the intensity graph. Due to huge amount of work to identify every
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Figure 7.3: Graph of intensity of periodicity for swimming. Panel A
is intensity graph computed with window size 14 over-
lapping size 7. Panel B is intensity graph computed with
window size 28 overlapping size 21. Panel C is intensity
graph computed with window size 70 overlapping size
63. Panel D is intensity graph computed with window
size 28 overlapping size 0. X axis is time and Y axis is
periodicity intensity.

single peaks and valleys from intensity graph, we pay attention to those peaks and

valleys appear on larger window size first, because we hypothesis that the athlete

might have better memory about those changes in training last longer.

7.1.2 Questions

In order to raise questions against the discovered patterns, we will describe the rea-

sons why we have these questions and what questions will be asked in the interview.

All the questions will be categorized into three types: 1) short period 2) long period

3) general questions. The first type is related to intensity changes within a short

period of time such as a sudden increase or decrease of intensity. In the section we

refer this as a ‘point’ change. The second type of question asks about the longer
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Figure 7.4: Graph of intensity of periodicity for aggregate data.
Panel A is intensity graph computed with window size
14 overlapping size 7. Panel B is intensity graph com-
puted with window size 28 overlapping size 21. Panel C
is intensity graph computed with window size 70 over-
lapping size 63. Panel D is intensity graph computed
with window size 28 overlapping size 0. X axis is time
and Y axis is periodicity intensity.

term changes such as interesting patterns within a three-month period. We will ask

the subject to explain the changes s/he might think of. We refer to these types of

questions as ’interval’ change. The last question type refers to some general ques-

tions regarding general patterns that the subject has, such as training schedules.

Although we are only able to put resized Fig. 7.1 to Fig. 7.4 due to limited of

size of pages, in fact while generating those questions we can view enlarged inten-

sity graph. That means the scale of X-axis which represent date, can be seen with

greater granularity. So that we can locate the corresponding months to peaks and

valleys on intensity graph.

The following questions concern running data:

1. General questions
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(a) Ask the subject to confirm detected periodicity.

(b) Ask the subject to segment his/her running training.

2. Interval change

(a) Why was running not regular from beginning of running to April 2002 ?

(b) Ask the subject to explain the high regularity between May 2002 to Oc-

tober 2003 ?

(c) The intensity repeated about every 3 months between May 2002 to Octo-

ber 2003. Ask the subject to explain those oscillating peaks during this

period of time ?

(d) What happened between December 2004 to March 2006 related to low

intensity ?

3. Point change

(a) Why was running getting regular from the start of 2002 ?

(b) What happened in May 2002 ?

(c) What happened in February 2003 ?

(d) What happened in May 2003 ?

(e) What happened in March 2004 ? It’s very regular.

(f) Why is it declining in March 2004 ?

(g) What happened in October 2004?

(h) What happened in April and May 2005?

(i) What happened in April 2006

(j) What happened three months later in July 2006 ?

(k) What happened in January 2007 ? It’s a peak.
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(l) Did you stop running after March 2007 ?

(m) What happened on November 2008 ?

(n) Did you stop running after November 2008 ?

(o) Was the running after November 2008 regular ?

(p) Regularity is increasing from the end of 2010. What’s the reason for

that ?

The following questions concern cycling data:

1. General questions

(a) When did you start cycling ?

(b) Do you have schedule for cycling ?

2. Interval change

(a) Did you stop cycling between May and June 2010 ?

(b) Did you follow same pattern in 2009 and 2011 ?

3. Point change

(a) It was regular in August 2009. What happened ?

(b) What happened in September 2009 ?

(c) What happened at beginning of 2012 ?

(d) What happened in May 2013 ?

(e) What happened in May 2014 ?

The following questions concern swimming data:

1. General questions

(a) When did you start swimming ?
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(b) Were you aware of the fact that you run less while swimming more ?

(c) Ask the subject to segment swimming in the past 10 years.

2. Interval change

(a) Were you regular at the beginning ?

(b) From year 2008 to year 2010 would you call it regular training of swim-

ming ?

(c) In general, would you say the regularity of training is increasing ?

3. Points change

(a) What happened in January 2008 ?

(b) What happened in the end of 2009 ?

(c) What happened in February or March 2008 ?

(d) What happened at the end of 2012 or beginning of 2013 ?

The following questions concern aggregated data:

1. General questions

(a) Is the total regularity of training increasing over time ?

(b) Do you think your volume of training is increasing ?

2. Points change

(a) What happened in May 2008 ?

(b) What happened in May 2010 ?

(c) What happened in June 2010 ? It seem to be decreasing fast.

(d) What happened in April 2011 ?

(e) What happened in April 2013 ?
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7.1.3 Running Responses

General questions:

1. There are weekly periodicity and several harmonics detected in the peri-

odogram. The subject responded positively and said “In general over the

decades, I would run reasonably regularly”, which corresponds to detected

periodicity, And s/he further explained that “I have a fixed time of the day,

that’s how I manage to get the regularity. So it’s the fixed time of the day

during the weekdays or at the weekends”. Also the subject denied a deliberate

training plan. The athlete said: “No. I never had weekly or monthly plan or

a long-term plan. I just do run on a day-to-day basis. I may have targets or

may go to run at race or to do events, and then I increase the training in the

month beforehand., but I don’t plan out a schedule for this, or this is what I

am going to do this week. I have targets in my mind of how and what would

I like to do or should do. And I try to reach these targets”.

2. The subject was asked to segment his/her running. The athlete tended to

split into 4 different phases, s/he said “You would have to group them into 4

which is prior to taking up swimming, prior to taking up bike, and then most

of recent years I am doing all three. Those are the phases of my life. When

we build the pool where I work was when I started to swimming and then I

changed to that. And then when I got the bike when I sort of doing triathlons,

then I changed again. And then around about that period when I started to

doing things that blended different sports you know they changed again. So

those tipping points in my life are explained by the dairy entries”.

Interval change:

1. On the intensity graph it seems the intensity was kept at a low level until April

2002. But the subject couldn’t provide detailed information from beginning

of running to April 2002 to explain the intensity graph.
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2. From May 2002 to October 2003, the intensity is oscillating with a period

around 3 months. The subject explained that it might because of the travel

he/she did. The subject confirmed that he/she would try to run during trips.

She/He said “But it’s more difficult, because it depends on where you are”.

And the subject said “I would try. I hate using a gymnasium. I wouldn’t use

them and that’s absolutely”. The subject thinks the valleys of the oscillation

in intensity graph related to long haul trips every 3 months during that period.

She/He said “I’d say every 3 months I am doing a long trip. Every 3 month I

am between one long trip and next long trip”.

3. From December 2004 to March 2006, we can see an oscillation on the intensity

graph. The subject said he/she “was in Australia for a part of that month”

(December 2004) and back in January 2005. The subject confirmed that “there

weren’t that much travels for that calendar year 2005. And when there were

travels, there were travels where it’s easy to do runs”. And the subject said

the regularity ended in March 2006 because “there was a couple of holidays”.

Point change:

1. From the start of 2002, the intensity gets higher than at the beginning on

the intensity graph, the subject said “There were no major events or races or

anything to explain any deviation in that”. He/she did confirm that “I started

to do some weekly gym sessions and that probably made my overall training

for everything more regular”.

2. There is high intensity at around May 2002. The subject reported that there

is “Nothing special. But the mileage was quite a lot at that period May 2002”.

3. There is a small peak at around February 2003. According the to subject “I

was doing not lot of miles but I was doing shorter faster 600 meter 800 meter

races and interval training at that period. So the training was quite intense”..
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4. Further peaks reside at around May 2003. The subject reported it’s “big

mileage then. Yeah 40+ something a week. But between those months,

between February and May I was off for an entire month without anything

training because of travel”. Interestingly, the months that the athlete are off

correspond to valleys on intensity graphs during this period of time.

5. There is a high peak at around March 2004. The subject responded that “The

training was intense because I was doing a lot of miles and I was also in the

gym”.

6. After March 2004, the intensity graph declines suddenly and the subject re-

ported it’s because of travel. S/he confirmed “it was a decline overall, because

there is no regularity, because of the travel schedule”.

7. At round October 2004 the intensity went back to ahigh level. The subject

confirmed that the regularity went back and he/she went to gym “twice a week

at that point”.

8. At some time around April and May 2005 the intensity starts to go up. The

subject mentioned that the swimming pool opened in February. But he/she

didn’t mention regularity change in April for running. She/he mentioned for

swimming “That was April and May and then I guess what happened by May.

I started to getting used to it, because during those two months there were

entries there”.

9. There is a high intensity peak around April 2006. The subject responded that

“April was a period of not too much running activity at all. And then I started

getting back in May”. The subject confirmed that “I started getting back in

May”.

10. There is a small peak at around July 2006. The subject said “There is a bit

travel. And running was good I think”.
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11. After March 2007 the intensity graph shows low level for a long time, the

subject explained “ That’s when I got a bike”. The subject said “ And the

thing about the cycling and running is that the running reduced in terms of

its volume or the miles completed and was compensated by the increase in the

energy spent on cycling”.

12. We can see a peak at around January 2007. To explain this the subject said

“There was no travel. And there is a really large amount of running. Because

over the Christmas break from about the Christmas Eve through to about 5th

or 6th of January, I ran with a group from home”.

13. A peak can be observed at around November 2008. The athlete said “It’s

because in the winter time I put away the bike”. And “I literally every winter

would put away the bike for 2, 3, 4 months”.

14. After November 2008, the running intensity graph shows a very low regularity.

The subject said “ I cycle more but every year I run approximately the same”.

The subject said “It’s not regular in the daily sense. It’s regular in the amount

in total sense”.

15. At around End of 2010 regularity is increasing. The subject confirmed and

said “It’s due to Christmas intensive running”.

7.1.4 Cycling Responses

General questions:

1. The subject confirmed that start of cycling “around about March 2007. I

started swimming in February 2005.

2. The subject said s/he has a schedule for cycling which is “Weekly slot, week-

ends, Sundays”.
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Interval change:

1. Although from April 2010 the intensity is kept at a high level, 3 out of 4

intensity graphs show that there is a deep valley at around May or June 2010.

The subject confirmed the high-level of intensity and said “Having left all for

January, February and done a little bit in the gym in March it’s now starting

to get out regularly”. But the valley can’t be explained by the subject. We

specially asked if the subject was aware of a sudden decline, the subject said

“No. I was very regular. Even though there were trips. I remember there were

trips but we rent bikes there. And I was cycling always”.

2. On the 3rd sub-figure of the intensity graph, the pattern of 2009 looks similar

to 2011. The athlete answered “Not deliberately. But probably accidentally

doing. So yes. Because I go for the same triathlon. I go for the same targets.

And following the same kind of patterns. Or maybe even some travel plans.

That would give an illusion of, yeah I suppose the expression of the regularity.

Appearance of regularity”.

Point change:

1. Intensity is very high in August 2009 and the subject confirmed that “It was a

very regular period. I was doing 50 something kilometres every Sunday. That

was the Summer like. That was the long evenings. And prior to that it’s

building up for those kinds of distances and that’s just the way cycling is”.

2. In September 2009 intensity started to decrease and the subject reported it’s

because of the weather and travel. The athlete said “Well it started to get

cool after then. So it isn’t nice but you know in the case of when you look at

September. I went away at the end of August and that messed up the . . . yeah

in August I went away in France, would have been to Brussels, would have

been to France again. Yeah, so it was the travel things in September 2009

which disrupted the regularity”.
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3. At the beginning of 2012 the intensity went up again and the subject couldn’t

associate it with a specific reason at the beginning but s/he suggested that

“the weather must be good, must be a mild Winter and because of that it was

appealing to start cycling in January. And you can see I cycled every week

through the January into February into March and April”. And the subject

said the distances weren’t good, because of some trips s/he made. The subject

afterwards said the reason for the peaks at the beginning of 2012 is “There was

triathlon on the 25th of March 2012 in Melbourne and that would be earlier

than I would normally do but I decided because I was going to Melbourne

I do that triathlon in March that’s why I started cycling in early January

deliberately for that”.

4. May 2013 the intensity was quite high. The athlete confirmed that It is “very

regular just once a week cycle of more than 50 kilometres. Week on week on

weeks on Sundays. Building up for the first triathlon which would have been

later in the year which was later in the Summer. I was actually aiming for

a cycling event in Italy that I took part in at the end of June so May would

have been regular. Longer and longer distance Sunday spins”.

5. Intensity in May 2014 was quite obviously high as well. The athlete confirmed

another event s/he took part in. “Yeah it was aiming for triathlon at the end

of May. So it was lots of regular cycles. Short not very long but twice a week

at the end of the week. Thats why I would get the regularity”.

7.1.5 Swim Responses

General questions:

1. The subject confirmed that the start of swimming “would have started in

February 2005. Not doing a lot”.
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2. The subject confirmed that s/he is aware of that s/he runs less while swimming

more.

3. The subject was asked to segment the swimming training. The athlete re-

sponded “I would say the first period there from 2006 through to 2008, it’s

just getting used to it. Learning how to swim and from 2008 through to 2010

I wouldn’t say it’s changed that much even since then 2008 there have been

waves of enthusiasm where regularity is gone up or down on a monthly basis

but I’d say swimming is very consistent. From about 2008 through to now, I

am not changing anything. I might start doing sea swimming on the weekends

but it is very recent. It’s not captured that data there. I think my swimming

has been regularly consistent”.

Interval change:

1. The intensity graph shows low intensity at the beginning of swimming. But

the subject said s/he was quite regular at the beginning. “Not regular as in

every day of the week, but large number of days with a regular slot”. And

s/he added that “I swim a couple of times a week. But not on a given day”.

2. From year 2008 to year 2010 the intensity is quite high, the athlete said because

“I got used to it. Because it takes that long to be able to get used to swimming.

It became part of, yeah, you are able to do it without falling asleep for the

rest of the day. And it took that year to do that. And when I got the that

stage I was comfortable doing that”.

3. The intensity graph does not show a significant trend of intensity in the data.

The subject said “I would say I am still getting 2 or 3 days of swimming a

week but I think that remains constant throughout the calendar year unlike

the cycling. And I think that varies from one day to the next. So on this
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week that might be Monday, Wednesday, Friday and next week it might be

Tuesday, Thursday because it depends upon things that happen”.

Point change:

1. January 2008 is high intensity. The subject confirmed that “Yeah. There is

a lot of lengths on then practically every day. Two days a week. Two times

every second day. I just do a lot of swimming. Oh I think that was the target.

I think I set myself target of doing 1,000 lengths in a month. That’s what that

peak is. 1,000 lengths in a calendar month 25 kilometers a month”.

2. There is high intensity in February or March 2008. The subject responded

positively “Yeah. Again it was lot of regularity because there is no real travel.

And its just 3 times a week (repeat) yeah very regular between about 1st

January through to about 13th of March just a lot of regularity”.

3. At the end of 2009 the intensity was very high. And the athlete confirmed

that “Wow look at that. Oh yeah. Look at those days. I think because I

was injured, running, yeah that’s it was. So look at that month it’s got the

huge number of swims. No running right and it’s because I was injured from

running. Yeah. It pulled me out of running for 4 weeks and I was swimming

instead”.

4. At the end of 2012 or beginning of 2013, the intensity gets very high again.

The athlete said “End of 2012 there wasn’t a lot because I was away. Because I

don’t do much swimming in the Christmas period, because the place is closed.

And I had a bad back I had to get needle acupuncture in December 2012. And

then from about 9th of January onwards I was doing lots of regular swimming

for about a month. Yeah from 9th of January through to about 8th February

I was swimming every second day. No particular reason. Just very regular”.
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7.1.6 Aggregated Data Responses

General:

1. The athlete cannot assure that the intensity is increasing. But s/he said “I

don’t know if the regularity is increasing. I think regularity is my annual

cycle”. The graph suggests an annual pattern with various intensity.

2. The subject does not think the volume of training is increasing. She/He said

“Probably isn’t. Over the years you do less but maybe by diversifying the

sports it’s allowing me to lose as much”.

Point change:

1. In May 2008 the intensity of aggregated data is high. The subject confirmed

with “Even thought there is trip there. A trip to Iceland, I was swimming

there most days there, yeah everyday no interruptions to regularity because

travel facilitated activities”. The subject mentioned only running, cycling and

swimming seemed dismissed.

2. In May 2010 the intensity is high. The subject said “There is an event. There

is a triathlon event. Oh two events in May 2010”.

3. There is a valley around June 2010. The subject did endorse that with “Yeah

recovery. And it was a week holiday. In the month of June 2010.” But the

athlete report that s/he did “a lot of sports instead in August 2010”, which

could correspond to a peak in the intensity graph.

4. There is a high peak in April 2011. The athlete said “a lot of sports instead in

August 2010”. She/He report high swim mileages “Yeah the distance in swim

were hard. It was 80 lengths. Yeah it was moderate”.

5. There is another peak around April 2013. The athlete reports another event.

“I was in Australia. Did another triathlon in April 2013”.
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7.2 Conclusion

By referring back to the subject in an interview, we are able to see for most of the

patterns, no matter whether intensity peaks, intensity valleys or general trends of

intensity over a period of time, these are responded to positively by the athlete. That

is to say that the knowledge we learned from the periodogram and intensity graph

has fit greatly with the athlete’s self-reported training career. Even though we didn’t

know any training experience as prior knowledge. The questions that the subject

didn’t respond to are mostly due to the fact that the athlete cannot remember, and

some questions are rejected by the subject but endorsed by the subject later after

a time delay. As a qualitative study of periodicity and intensity of periodicity, we

can conclude from the data and response from the athlete that the periodicity and

intensity of periodicity are somewhat correlated with the training experience of a

real person.

7.3 ASU Data

The intensity or strength of circadian periodicity is computed in the ASU accelerom-

eter data using Method 1-5 as described in the previous chapter. The intensity of

circadian periodicity is computed for each subject applied on full length of collected

data without using sliding windows. If there are gaps in the data, the missing data

gap is set to zero. The reason we use all data for each subject is because there are

several biomarkers associated with each subject and we would like to see how the

overall intensity of circadian periodicity could be related to those biomarkers.

7.3.1 Participants

Table 7.1 provides demographic information regarding the final sample of partici-

pants. In total, 25 participants were enrolled for this analysis; however, five were
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excluded due to not presenting for the study measure completion following the initial

three weeks of accelerometer wear. The final sample (N = 20) were middle-aged,

primarily men and Caucasian, inactive, and with moderate levels of insomnia symp-

toms. Continuous accelerometer wear time varied from 13.9 (minimum) to 102.0

(maximum) days (mean wear: days). Non-wear time was minimal across the 24-h

period in the sample ( 0.03± 0.07 percent of days). Of the 25 participants, 15 had

complete data ( 58.8± 26.4 days). The remaining nine participants had 73.6± 23.1

days of data collection and 9.2%± 9.0% days of missing data. Overall missing data

across the full data collection period was 3.5%± 7.1%.

Table 7.1: Participant demographics (N = 20).

Age, M±SD 49.7±9.1
Men, N(%) 17 (85.0)
Race/ethnicity, N(%)
Caucasian 14(70.0)
African-American 3 (15.0)
Hispanic 2 (10.0)
Asian American 1 (5.0)
Leisure-time physical activity (MET-min/week), M±SD 878.6±1680.9
Insomnia symptoms (ISI), M±SD 14.8±6.4

ISI = Insomnia Severity Index (range: 0 - 28).

7.3.2 Periodicity Strength Metrics

Table 7.2 presents descriptive statistics and intercorrelations among the five meth-

ods for calculating periodicity. Methods 1 - 4 displayed very high correlations

among methods. In particular, Method 1 was strongly correlated with Method

4 and Method 2 was strongly correlated with Method 3. Method 5 was not strongly

correlated (r′s < 0.40) with any of the other methods. Normalized versions of these

metrics were calculated and similar patterns of results was observed (not pictured).
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Table 7.2: Means, standard deviations, and Pearson correlations
among five periodicity strength metrics (N = 20)

Method 1 Method 2 Method 3 Method 4 Method 5
Mean 0.2 0.10 0.10 0.23 0.45
SD 0.24 0.22 0.21 0.24 0.15

Method 1
Method 2 0.930
Method 3 0.93 0.99
Method 4 0.98 0.90 0.92
Method 5 0.29 0.14 0.19 0.38

7.3.3 Associations with Cardiometabolic and Quality of Life

Outcomes

Tables 7.3 and 7.4 present descriptive data for cardiometabolic and quality of life

outcomes and partial correlation coefficients for each of the periodicity strength

metrics and cardiometabolic and quality of life outcomes. The profile of partic-

ipants’ descriptive data suggests that the sample was at moderate to high risk

for cardiometabolic risk diseases. The strongest and most consistent correlations

were observed between the periodicity strength metrics and LDL-cholesterol and

triglycerides outcomes. Consistent-yet only moderate in strength-relationships were

observed for hs-CRP and health-related quality of life. HDL-cholesterol, plasma

glucose, and insulin were not consistently associated with the periodicity strength

metrics. As expected (due to high intercorrelations), Methods 1 - 4 displayed very

similar patterns of results. In contrast to Methods 1 - 4, Method 5 displayed a mod-

erately strong relationship with systolic BP and HDL-cholesterol and no relationship

with hs-CRP or triglycerides.

7.3.4 Discussion

In the previous chapter we have tried to develop a framework for identifying peri-

odicities (i.e., repeating patterns) from longitudinal wrist-worn accelerometer data

and to establish whether these periodicities were independently associated with key
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Table 7.3: Partial correlation coefficients, between cardiometabolic
biomarkers and health-related quality of life indices, and
periodicity strength metrics (N=20) for Method 1 - 3.

Periodicity strength metrics
M±SD Method 1 Method 2 Method 3

Waist circumference, in 66.82 ± 35.10 0.28 0.27 0.25
Systolic BP, mm Hg 138.6 ± 17.13 ‡ ‡ ‡
Diastolic BP, mm Hg 89 ± 16.32 ‡ ‡ ‡
Total cholesterol, mg/dL 177.4 ± 50.51 0.52† 0.68∗∗ 0.57∗

HDL cholesterol, mg/dL 33.9 ± 11.76 ‡ ‡ ‡
LDL cholesterol, mg/dL 109.7 ± 37.64 0.45† 0.57∗ 0.46†

hs-CRP, mg/dL 7.76 ± 5.60 0.47† 0.38 0.30
Triglycerides, mg/dL 168.7 ± 74.06 0.77∗∗ 0.86∗∗∗ 0.81∗∗∗

Plasma glucose, mg/dL 117.2 ± 50.69 ‡ ‡ ‡
Insulin, pmol/L 44.58 ± 73.01 ‡ ‡ ‡
Health-related quality of life 47.25 13.03 0.37 0.54∗ 0.55∗

∗∗∗P < 0.001; ∗∗P < 0.01; ∗P < 0.05; †P < 0.10; ‡r < 0.25 and P > 0.0.
All models are adjusted for age, gender, race/ethnicity, leisure-time physical activity,
insomnia symptoms, and intervention assignment.

Table 7.4: Partial correlation coefficients, between cardiometabolic
biomarkers and health-related quality of life indices, and
periodicity strength metrics (N=20) for Method 4 - 5.

Periodicity strength metrics
M±SD Method 4 Method 5

Waist circumference, in 66.82 ± 35.10 0.30 ‡
Systolic BP, mm Hg 138.6 ± 17.13 ‡ 0.57∗

Diastolic BP, mm Hg 89 ± 16.32 ‡ ‡
Total cholesterol, mg/dL 177.4 ± 50.51 0.46† 0.47†

HDL cholesterol, mg/dL 33.9 ± 11.76 ‡ 0.51†

LDL cholesterol, mg/dL 109.7 ± 37.64 0.40 0.42
hs-CRP, mg/dL 7.76 ± 5.60 0.53† ‡
Triglycerides, mg/dL 168.7 ± 74.06 0.75∗∗ ‡
Plasma glucose, mg/dL 117.2 ± 50.69 ‡ ‡
Insulin, pmol/L 44.58 ± 73.01 ‡ ‡
Health-related quality of life 47.25 13.03 0.37 0.52†

∗∗∗P < 0.001; ∗∗P < 0.01; ∗P < 0.05; †P < 0.10; ‡r < 0.25 and P > 0.0.
All models are adjusted for age, gender, race/ethnicity, leisure-time physical activity,
insomnia symptoms, and intervention assignment.
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markers of cardiometabolic health and health-related quality of life. The resultant

periodograms demonstrated a consistent 24-h pattern representing a typical rest-

activity cycle; however, the strength of this 24-h rest-activity pattern varied within

and between individuals. Using varying methods of quantifying periodicity strength,

we found preliminary evidence that the strength of the rest-activity cycle was asso-

ciated with key cardiometabolic risk biomarkers and health-related quality of life,

independent of self-rated physical activity and insomnia symptoms.

Despite different methodologies in characterizing the rest-activity cycle and health

outcomes, the result from this section is consistent with other studies. Mormont

et al. (2000) examined the rest-activity cycle in metastatic colorectal cancer patients

using an autocorrelation coefficient at 24-h and a dichotomy index that compared

activity in bed and out of bed. These metrics were positively correlated with im-

proved quality of life, response to treatment, and survival. In a follow-up to this

study, Innominato et al. (2009) further clarified the importance of the rest-activity

cycle, as measured via accelerometry, by demonstrating the stronger correlations

observed between the rest-activity cycle metrics compared to mean counts of phys-

ical activity for health-related quality of life and survival outcomes in metastatic

colorectal cancer patients. Our approach extends these findings in some important

ways. First, these studies sampled behavior over 3-4 consecutive days. Therefore,

our investigation substantially lengthens the monitoring period and therefore pro-

vides a clearer picture of habitual 24-h rest-activity cycles. Second, we have explored

these relationships and found associations with a broader set of health outcomes in a

group at elevated cardiometabolic risk. Finally, our framework for the development

of periodograms and metrics to characterize periodicity strength represents a more

sophisticated and nuanced approach that may provide a more precise determination

of the 24-h rest-activity cycle.

One of the most interesting findings from the current investigation was the differ-

ences and similarities in correlation of the various periodicity strength metrics and
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health outcomes. Methods 1 - 4 yielded very similar results due to high intercorre-

lations among these related methods for quantifying periodicity strength. Methods

1 - 4 computed correlation as the sum of products (s ∗ r) over all points, si , in the

pattern against corresponding points ri, in the original signal. This tells us how close

the shape is between the original signal and the detected pattern. These metrics were

consistently and strongly correlated with cardiovascular physiology outcomes such

as LDL-cholesterol, triglycerides, and inflammation (hs-CRP). In contrast, Method

5 produced a different profile of correlation with health outcomes. Method 5 com-

puted correlation as the root-mean-square error of the difference (s − r) between

corresponding points in the original data and the pattern. This tells us the sum of

absolute differences between the pattern and the original signal. This metric was

associated with HDL-cholesterol and systolic blood pressure, while Methods 1 - 4

were not. While it is not directly clear why these unique correlates were identi-

fied for the various periodicity strength metrics, it does suggest that nuances in the

rest-activity cycle may uniquely contribute to cardiometabolic disease risk.

7.3.5 Strengths and Limitations

An important strength of our approach was the long-term, longitudinal nature of

the collection of accelerometry data. Typically, accelerometer data are collected

for seven or fewer consecutive days. These analyses demonstrate a novel method-

ology for harnessing longitudinal accelerometry data with demonstrated additional

explanatory power for health outcomes beyond what has typically been reported in

reports of accelerometry data and health outcomes. An additional strength was the

minimal amount of missing accelerometer data. While the methods employed here

were relatively robust to missing data, the trivial missing data demonstrates the

feasibility of collecting long-term monitoring data. A final strength of our intensity

based approach was the reliance on a completely open-source, raw data collection
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methodology with no proprietary algorithms. An important limitation of this pre-

liminary experiment was the relatively small sample size and limited duration of the

monitoring period. While there was substantial within- and between-person vari-

ability in periodicity strength observed, a larger sample may have yielded stronger

and more definitive patterns in the rest-activity cycle. Relatedly, the sample was ex-

clusively those with elevated cardiometabolic risk and the results may not generalize

to a healthy population. Furthermore, while the length of the monitoring was indeed

longer than typically what is reported, longer monitoring periods may have yielded

more interesting month, seasonal, or annual patterns of data as have been observed

in other forms of lifelog data (Hu et al., 2014). Additionally, while the periodicity

strength metrics were calculated based on longitudinal data, the cardiometabolic

and health-related quality of life metrics were measured concurrently, and therefore

the relationships reported represent cross-sectional associations. Finally, these data

were collected in the context of a behavioral intervention. While the effect of this

intervention was statistically adjusted for, residual confounding may exist.

7.3.6 Conclusion

The use of periodograms and periodicity strength represents a novel methodology for

understanding long-term monitoring of 24-h accelerometry data. The intensity based

analytical framework can be used with minimally processed accelerometer data and,

in this sample, demonstrated moderate to strong independent associations with key

cardiometabolic and health-related quality of life outcomes. This framework and

preliminary work may be useful as long-term monitoring of accelerometer data across

the 24-h period becomes more commonplace in epidemiological and intervention

research.
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Chapter 8

Conclusion

The chapter summarizes the thesis and highlights the contribution to knowledge

that is made. Some future work to be done is also included as well.

8.1 Hypothesis and Research Questions

Please visualize this in your mind. Imagine every one of us as a particle. Every

particle has different size and rotates differently. The thesis has proven the unique-

ness of the rotation of each particle and, also, that the rotation can some how be

modelled and predicted given enough data. Interestingly, each particle seems to

rotate at near the same periodicity such as one day per circle. Yet, every particle

rotates slightly differently and even for the same particle, the rotation of each day

is different. It is almost like the information from each rotation is modulated on

circadian periodicity. Even for circadian periodicity, each particle may rotate dif-

ferently because the particles have different sizes and may rotate suddenly faster,

or slower. Let’s acknowledge that there is a difference between standard circadian

rotation and actual rotation intensity. If we map each particle into an acceleration

domain, this is data we have collected. This can be also projected onto a different

biomarker domain. We found those two domains are highly correlated by intensity.
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Last, but not least, the intensity has correspondence with how the particle actually

rotates.

8.1.1 RQ1

For our first research question, we found that everyone, and the data they generate

for their own lifelogs, is different. We also proved the existence of a more or less

bijective/one-to-one correspondence between subjects and their data. We found out

that the uniqueness of subjects are represented in the data they generate, and the

ability of capturing this uniqueness can be improved by improved algorithms to find

better projection functions between subjects and data. Because of the uniqueness of

each subject and their data, we endorse the idea to provide individualized analysis.

8.1.2 RQ2

We found that longitudinal lifelog data can be modelled and predicted with suitable

models and under several constraints. We have found that in the experiments in

section 4.6 we conducted, the number of points to be predicted yields very different

results. That is to say the uniqueness of longitudinal lifelog data can be captured

by computer algorithms under the condition of how ‘greedy’ the model is to be.

We also observed that some of the best performing methods model high-level lifelog

data as a quasi-periodic signal.

8.1.3 RQ3

We have found it is possible to achieve detection of periodicities from lifelog data,

even when there is substantial missing data. To be more precise, we have found out

that methods based on periodograms and/or autocorrelation can be used to detect

periodicity on complete datasets, while Lomb-Scargle periodograms can be used

to detect periodicity on datasets with missing data. We have observed periodicity
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across several lifelog datasets collected in real life by conducting experiments on

those datasets. We showed that even in the cases with different levels of sparsity,

periodicity can still be detected.

8.1.4 RQ4

We found that our proposed model can simulate real life high-level data quite well.

We explained the harmonics we observe in periodograms and the peaks on lower

frequency in periodograms. We have showed that the performance of different met-

rics and how to choose window size by using the synthetic data, and the result is

generally good. Experiments conducted on real lifelog data have suggested that

further exploration with subjects involved in the experiment is needed.

8.1.5 RQ5

In the first case study we have found that the knowledge we learned from the pe-

riodogram and intensity graph has fit quite well with the athlete’s self-reported

training career, even though we didn’t know any training experience as prior knowl-

edge. The result is drawn from an interview with the subject who generated the

data. We have demonstrated in this case study that the athlete responded positively

to most of the questions, except for those questions that the athlete wasn’t be able

to answer due to loss of memory. We found some questions were rejected by the

subject initially but responded positively later, after a short time delay.

In the second case study, we revealed the use of periodograms and periodicity

strength represents a novel methodology for understanding long-term monitoring of

24-h accelerometry data. The intensity based analytical framework can be used with

minimally processed accelerometer data. We have demonstrated moderate to strong

independent associations with key cardiometabolic and health-related quality of life

outcomes. We therefore can conclude that the intensity computed from longitudinal
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lifelog data may be useful for long-term monitoring of accelerometer data across the

24-h becomes more commonplace in epidemiological and intervention research.

8.2 Contribution

In the literature we did not see many of the works to validate the feasibility of

lifelog data existing. The validity of such a lifelog framework is so important that

the result of analysis could be questioned sometimes. In the thesis we are trying to

provide convincible evidence by using different datasets. The aim to use cross dataset

validation is to show that the fundamental ideas of lifelog is theoretical examinable.

In order to achieve this we have applied several state-of-art deep learning methods on

raw accelerometer data which is rarely discussed in the literature. The fact that we

directly operate, manipulate and process raw low-level and high-level acceleration

data is a new direction in lifelog data processing. It is the first time in lifelog

research that we discover and identify periodicity in lifelog data. Beside this we

further proposed several measurement to capture periodicity intensity which is one

of the frontier research in lifelog research.

The main contribution of the thesis is to provide evidence to support lifelog

data framework. This include prove bijective correlation between data and people,

predicability of lifelog data and find periodicity and periodicity intensity of lifelog

data. Beside the research questions presented in the thesis which showed validity

of data flows from people and to people, we take advantage of this framework and

demonstrate how to correlate data with people using periodicity and intensity of

periodicity. There are several contributions that this thesis makes to knowledge and

they are enumerated as follows:

1. We have discovered that raw accelerometer data as a distribution of 2D his-

tograms from all subjects shows that accelerometer data are mostly bounded

in a circle which has a radius of one gravity (1G).
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2. We have demonstrated that data generated by each subject is different as

measured by various metrics and the local variance of the data generated by

each subject fluctuates through time. Local variance can be measured by

metrics such as KL divergence or entropy.

3. We have used different machine learning techniques such as SVM and deep

learning methods such as CNN and LSTM to classify data by using the identity

of each subject as the target class. The performance of different methods

have shown quite good results in terms of precision, recall and F1-score. The

application of deep learning methods has been rarely applied to longitudinal

lifelog data in the literature.

4. We have used machine learning, deep learning methods to model lifelog data

in order to build a generative model for low-level data in section 4.6. We also

built models for high-level data using various machine learning, deep learning

and time series models. These models have shown satisfactory results when

evaluated by root-mean-square error, Correlation Coefficient and Concordance

Correlation Coefficient to predict data points with short time lag. We have

discovered that the learned parameters tend to model the data as a periodic

signal.

5. We have shown that different algorithms can tackle the periodicity detection

problem even for irregularly or unevenly sampled data. We have demonstrated

that periodicity is a common, natural feature of lifelog data by using several

lifelog datasets, both regularity sampled and unevenly sampled.

6. We have proposed a lifelog data model composing global trends, local trends,

local patterns and missing possibility of local patterns. Periodograms have

shown the proposed models have similar features to real life high level lifelog

data. We provided a possible explanation of harmonics occurring in real life
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data periodograms.

7. We have proposed several metrics to measure intensity of periodicity. Eval-

uated by the proposed model, we have shown the performance of different

intensity metrics measured by root-mean-square error and CC. We have also

studied the optimal relationship between window size and performance of dif-

ferent metrics. We have used selected intensity metrics to generate intensity

graphs for both low-level and high-level data.

8. We have demonstrated two case studies to show the correlation between com-

puted intensity and real life meaning. A low-level data case study has shown

that there is a correlation between intensity of circadian periodicity and sev-

eral biomarkers. For high-level data, an interview was conducted with the

subject and the results have shown the subject has respond positively to most

of the abnormalities in the periodicity intensity graph, and, some insightful

explanations have been made by the subject.

8.3 Limitations

In this thesis, most of research is evaluated quantitatively while few points are ad-

dressed by qualitative method. There are some limitations that is inevitable which

we would like to discuss it in this section. From dataset point of view, we used three

datasets, 2 of them are contributed by one subject, and 1 of them are collected from

25 subjects. For the dataset contributed from one subject, the biggest limitation is

generalization of the model. Since we did an interview with the subject using the

intensity graph computed from 1 method, if we need to conduct more interviews

with the subject with different measurements described in the thesis, those inter-

views are not considered independent interviews, which means the result of those

interviews are more or less correlated. For the dataset contributed from 25 subjects,
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although the variety of the data is ensured, but since the data collection process is

less controlled so that there are many overlapping and noisy segments that needed to

be manually removed. To make sure the data we have has enough information to be

captured by machine learning algorithms we have to remove those days with low en-

tropy to balance between quantity and quality. As for the evaluation of ASU dataset,

the results show some measurement are quite correlated with different biomarkers.

But the limitation is that as the number of subject we collect, can we still see the

correlation of those biomarkers. In this case we require the experiment is conducted

on larger scale. To collect more data from more people for longer period of time

would not only provide more evidence of the existence of bijective correlation and

predicability of lifelog data, but also enable large scale unsupervised learning.

As for the methods we choose, if we had enough space and computational power,

we could generate more training and testing samples so that each machine learning

models can converge more to the expected result. And please note that performance

of different machine learning methods are bounded by the data we have. In some

extreme cases, even simplest model can achieve good result with well captured and

annotated data. Limitation also comes with the training process of different algo-

rithms. Due to large parameter space of each algorithms, we are not able to explore

the whole space using methods like grid search, which means some of the methods

might be biased. But in the thesis we are focused on if the model works rather than

which model works best makes this limitation less arguable.

For the methods used to detect periodicity, the limitation is to evaluate those

methods quantitatively. This issue arises from the nature of lifelog data. In signal

processing, we can assume for instance high frequency part of a signal is noise. But

in lifelog data, we are not able to make this statement, because data generated by

human is rather a complex system. It’s is hard to defined what is noise.

We also proposed some periodicity intensity measurements. Those measurement

are evaluated by synthetic data, again several aspect may affect it, such as adjust-
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ing the calculation of intensity from ground truth, change of noise distribution or

even change range of parameters to generate trends. But the evolution of the mea-

surement can be designed to tackle those problems. Again due to the lifelog data

property it is still a hard task to evaluate those measurement. That’s why we decide

to correlate with real life scenario such as biomarkers captured.

8.4 Future Directions

Logical next steps for this work are threefold. First, replication of these methods

on larger and more diverse samples is warranted. In the thesis most experiments

is conducted on ASU low-level data generated by more than 20 subjects and an

athletic high-level data generated by a single subject. This may include the use

of existing cohorts where raw data collection protocols of 24-h accelerometry are

in place (even protocols that only include seven days of wear) with health-related

outcomes measured in a cross-sectional or longitudinal fashion (e.g., US National

Nutrition and Health Examination Survey, UK Biobank).

Second, an expansion of our theory to longitudinal multimodal data is needed.

We are interested to see periodicity of visual logs combined with other sensors.

Also, how would the periodicity of each modality correlate with each other. It is

also interesting to see how can we expand our proposed model to low-level data

and to compare the proposed model with machine learned models could also be a

next step. It is also very important to find a probability model that can be used to

generate periodic signals to simulate lifelog data and then we can use the probability

model and Monte Carlo Markov chain to generate better simulation data.

Finally, it is not known whether this metric may be more sensitive to some

biomarkers or activities such as changes in sleep, sedentary behavior, physical activ-

ity, some combination of these behaviors, or some alternative feature not currently

being considered. Further clarification is needed for why these metrics were associ-
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ated with certain biomarkers and not others, as well as why there was such variability

in the strength of these associations with various biomarkers. Causality cannot be

established between biomarkers and intensity metrics, and therefore it is impera-

tive that these relationships be followed longitudinally where periodicity strength is

experimentally manipulated in a manner to invoke changes in cardiometabolic risk

biomarkers.
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E. B. Hekler, S. Vega-López, P. Ohri-Vachaspati, A. C. Hekler, et al. BeWell24:

Development and Process Evaluation of a Smartphone App to Improve Sleep,

Sedentary, and Active Behaviors in US Veterans with Increased Metabolic Risk.

Translational Behavioral Medicine, pages 1–11.

D. Byrne, A. R. Doherty, C. G. Snoek, G. G. Jones, and A. F. Smeaton. Validating

the detection of everyday concepts in visual lifelogs. In Semantic Multimedia,

pages 15–30. Springer, 2008.

D. Byrne, A. R. Doherty, C. G. Snoek, G. J. Jones, and A. F. Smeaton. Everyday

concept detection in visual lifelogs: validation, relationships and trends. Multi-

media Tools and Applications, 49(1):119–144, 2010.

F. P. Cappuccio, L. D’Elia, P. Strazzullo, and M. A. Miller. Quantity and quality

of sleep and incidence of type 2 diabetes a systematic review and meta-analysis.

Diabetes Care, 33(2):414–420, 2010.

189



J. Cheng, M. Sundholm, B. Zhou, M. Hirsch, and P. Lukowicz. Smart-surface: Large

scale textile pressure sensors arrays for activity recognition. Pervasive and Mobile

Computing, 2016.

S. Chennuru, P.-W. Chen, J. Zhu, and J. Y. Zhang. Mobile lifelogger–recording,

indexing, and understanding a mobile user?s life. In International Conference on

Mobile Computing, Applications, and Services, pages 263–281. Springer, 2010.

L. Choi, Z. Liu, C. E. Matthews, and M. S. Buchowski. Validation of accelerometer

wear and nonwear time classification algorithm. Medicine and science in sports

and exercise, 43(2):357, 2011.

J. Cohen. Weighted Kappa: Nominal scale agreement provision for scaled disagree-

ment or partial credit. Psychological Bulletin, 70(4):213, 1968.

C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–

297, 1995.

H. Cruse. Neural networks as cybernetic systems. Brain, minds, and media. See

http://www. brains-minds-media. org/archive/289, 2006.

C. A. Czeisler, J. F. Duffy, T. L. Shanahan, E. N. Brown, J. F. Mitchell, D. W.

Rimmer, J. M. Ronda, E. J. Silva, J. S. Allan, J. S. Emens, et al. Stability,

precision, and near-24-hour period of the human circadian pacemaker. Science,

284(5423):2177–2181, 1999.

A. R. Doherty. Providing effective memory retrieval cues through automatic structur-

ing and augmentation of a lifelog of images. PhD thesis, Dublin City University,

2009.

A. R. Doherty and A. F. Smeaton. Automatically segmenting lifelog data into events.

In Image Analysis for Multimedia Interactive Services, 2008. WIAMIS’08. Ninth

International Workshop on, pages 20–23. IEEE, 2008a.

190



A. R. Doherty and A. F. Smeaton. Combining face detection and novelty to identify

important events in a visual lifelog. In Computer and Information Technology

Workshops, 2008. CIT Workshops 2008. IEEE 8th International Conference on,

pages 348–353. IEEE, 2008b.

A. R. Doherty, A. F. Smeaton, K. Lee, and D. P. Ellis. Multimodal segmentation

of lifelog data. In RIAO 2007: Large Scale Semantic Access to Content (Text,

Image, Video, and Sound), pages 21–38, 2007.

A. R. Doherty, D. Byrne, A. F. Smeaton, G. J. Jones, and M. Hughes. Investigat-

ing keyframe selection methods in the novel domain of passively captured visual

lifelogs. In Proceedings of the 2008 International Conference on Content-Based

Image and Video Retrieval, pages 259–268. ACM, 2008a.
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