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Abstract. The generic software development situational factors model has been 
developed in order that environments within which software is developed can 
be profiled and better understood. Situational context is a complex concern for 
software developers, with a broad set of situational factors holding the potential 
to affect any one software development project. Safety critical software 
development is broadly similar to other kinds of software development / 
engineering. But there are some additional or more dominant situational factors. 
In this article we conduct a conceptual experiment to define safety critical 
software development context using situational factors. Eleven such factors are 
identified, with some of the factors requiring elaboration beyond the detail 
presently available in the generic situational factors model. We firstly discuss 
the appropriateness of the selected factors in generic safety critical software 
development context. Thereafter we apply the selected factors to the medical 
device and nuclear power domains. Selected situational factors can be used as a 
high level profile and starting point for more detailed process and safety 
assessment. Discussion about potential use cases and further development needs 
is also presented. 

Keywords: Situational factors reference model, safety context, safety critical 
software development. 

1   Introduction 

Software development is a complex activity [1] and there are a rich variety of 
products, applications and domains for which software can provide effective 
solutions. In an initial effort to identify the factors of a context (such as the product or 
application or domain) that affect the manner in which software is developed, the 
situational factors model [2] was produced (by the authors of this paper) as a generic 
set of high level concerns that may influence the choice and form of software 



 

 

development processes. For the avoidance of confusion, we wish to explicitly identify 
“environment”, “setting” and “context” as synonyms of “situation” in this instance 
and therefore, we may also refer to these factors as “contextual factors” or 
“environmental factors” or “factors of the setting” but our preference is to use the 
term “situational factors” as this is the terminology used in the most complete 
reference for such factors [2]. 

The safety critical domain is concerned with “systems whose failure could result in 
loss of life, significant property damage, or damage to the environment” [3] and 
software may form part of such systems, for example in anti-lock braking systems 
(ABS) in cars and in flight control systems in airplanes and rockets. All safety critical 
software therefore has certain common situational factors that strongly influence the 
choice of software development processes. For example, it is common for safety 
critical software systems to be subject to regulation/legislation which demands that 
risk management is actively and robustly implemented throughout the software 
development lifecycle (as a mechanism to reduce the risk of events occurring that will 
adversely affect safety). 

 

 
Fig. 1. Rationale in our conceptual experiment 

2 Situational factors in software engineering 

Although numerous earlier attempts hinted at the existence of (or provided only 
partial descriptions of) certain contextual factors that affected software development, 
the situational factors reference model [2] represents the first substantial initiative to 
unify all factors into a single, comprehensive model. This unified situational factor 
reference model contains 44 individual factors (and a further 170 sub-factors), and 
serves to demonstrate that there are a large number of situational variables to be 
considered when defining and elaborating software development processes (refer to 
Figure 2), perhaps too large to perfectly satisfy as it has also been shown that the 
interaction between a software process and its context is analogous to a complex 
system [1]. Complex systems are characterised by emergent behaviour, which 
essentially means that our ability to predict and control complex systems may be 
limited, as is evidenced in ecosystems where a single change holds the potential for 
unforeseeable, far-reaching and large-scale effects [4]. It is perhaps for this reason 
that process adaptive capability has been shown to be positively associated with 
business performance in the general software engineering field [5]. Clearly, however, 
emergence is not a behavioural property that we want to foster in safety critical 



 

 

systems and it is (at least partially) for this reason that there are a reduced number of 
dominant situational factors that affect safety critical software development processes. 
For this reason, we also find that processes are often formally defined and audited in 
safety critical domains. The reduced set of safety critical situational factors is perhaps 
so dominant that they almost eclipse other factors (or they least exercise significant 
priority over the other factors). We elaborate more on these factors in Section 3. 

 

 
Fig. 2. The Situational Factors Affecting Software Development 

3   Dominant situational factors in safety critical domains 

3.1   Criteria for identification of specific situational factors in safety critical 
software development 

The starting point in this article is that software development for safety critical 
systems is quite similar to any other context. So, what is said about software 



 

 

development at general level is valid also in safety domains. Most software safety 
standards specify additional requirements and do not repeat the basic principles. 
Otherwise the standards would be very long, heavy and difficult to use. Of course, 
there is still some overlap between generic and safety contexts.  

Furthermore, different traditions exist in different safety related domains. For 
historical and regulatory reasons, some requirements that may be highly relevant in 
one safety related domain may not be considered to be highly relevant in another 
domain. 

The generic situational factors model (refer to Figure 2) is wide and quite detailed. 
Obviously, some selection criteria are needed to focus on such factors in safety 
contexts which are more specific from a scoping perspective. Our criteria are the 
following:  
• High importance for safety, based on normative sources (standards, regulations) 
• Scalability according to safety requirements (at various safety levels etc.)  
• High safety impact and potentially in overall quality of software and also system 
• Possibility to create, establish and manage safety culture 
The expectation in our experiment is that the following differences between 

generic and safety context factors may occur: 
• Selected safety critical situational factors will remain the same as in the generic 

sense, but the abstraction level may vary. Typically, a safety context factor may 
be more detailed and may also be more constrained. We mean that individual 
factors in the generic model [2] may require further detail for application to a 
safety critical domain, while at the same time, many of the factors in the generic 
model can be descoped in light of safety critical concerns. (Ref. Table 1). 

• Selected generic safety critical situational factors are partially the same, but the 
language and definition should be different to be accurate and best aligned with 
each safety community. A good example of this is the fact that what the medical 
device domain refers to as “risk” management is referred to in certain other 
domains as “safety” management [6]. Furthermore, the application of safety 
levels depending upon the potential for harm can vary between domains. 

• A safety critical situational factor may be so different from the generic situational 
factors model as to be considered additional. It may be also candidate to be added 
in the generic situational factors model in due course. 

3.2   Selected situational factors for further elaboration 

Given the argument that there are certain situational factors that dominate safety 
critical software development, our initial efforts focused on the identification of these 
factors. Following a number of concept elaboration sessions, each of the factors in the 
generic situational factors reference model was evaluated for its relevance to the 
safety critical domain.  

From a total of 44 factor classifications in the generic situational factors model, 8 
have been identified as being particularly important for safety critical software 
development situations, the corresponding analysis for which was performed by the 
authors given their experience in both safety-critical software development and 



 

 

situational factors affecting software development processes. The exercise to identify 
the situational factors involved an iterative process whereby the creators of the 
generic situational factors reference framework proposed factors that might affect 
generic safety critical software development, following which the authors most 
familiar with safety critical software development evaluated the proposed factors for 
relevance and importance in safety critical domains. A total of three iterations were 
required to render the results published in this paper. From the 8 generic situational 
factor classifications, a total of 11 situational sub-factors have been identified (refer to 
column 3 of Table 1). 

Table 1. Mapping from generic situational factors to generic safety critical 
situational factors 

Factor  Description Sub-factor(s) Argument(s): 
Why dominant in a safety context 

(Operational) 
Prerequisites 

Concerns that 
must be satisfied 
prior to 
operationalisation 

Applicable 
standards; 
Applicable 
laws 

Safety manual / plan required; 
Separate safety lifecycle for 
software development; Degree of 
required rigour; Degree of 
independence in functional safety 
assessment; Degree of 
independence in V&V 

(Application) 
Type 

Nature of the 
application 

Application 
domain; 
Application 
criticality 

Degree of safety criticality 

(Application) 
Quality 

Application / 
Product quality 
characteristics  

Required 
product 
quality 

Degree of diversity (or diverse 
software); Defence in depth design 
and programming 

(Requirements) 
Standard 

Standard of 
application / 
product 
requirements 

General 
quality of 
input and 
output 
requirements  

Detailed requirements especially 
for outputs and safety properties in 
almost all software safety standards  

(Application) 
Reuse 

Extent to which 
existing proven 
software is reused 

Required 
reuse; Extent 
of utilisation 
of externally 
sourced 
components 

This is typically not a separate 
requirement in safety context, but 
strict requirements are defined in 
most safety standards to manage 
external components (may be called 
COTS, RUPS, PDS, SOUP etc.) 

(Business) 
Magnitude of 
potential loss 

Impact of 
negative events  

Loss of 
human life 

Magnitude of potential loss  

(Business) 
External 
Dependencies 

Dependencies 
outside of the 
business 

Dependency 
on outside 
suppliers 

Tool confidence level (or similar); 
Degree of COTS/RUSP 
qualification 



 

 

(Personnel) 
Culture 

The culture that 
exists among the 
personnel 

Team culture Safety culture 

4   Elaboration of situational factors in safety critical software 
engineering 

What we are assuming is that “there are a reduced set of situational factors that 
dominate safety critical software development”. Correspondingly, where the generic 
situational factors reference model highlights the need to consider the application 
degree of risk, it does not go so far as to elaborate on different degrees of risk 
depending on the risk classification of the safety critical software.  

Since some safety critical software is more critical than other safety critical 
software, there is often a distinction drawn in various safety critical domains which 
has the impact of imposing more stringent safety oriented constraints for higher 
degrees of risk. For example, medical device software that is classified as safety 
classification A does not require that detailed designs are developed and verified for 
interfaces between software units whereas medical device software safety 
classification C does impose such constraints (according to IEC 62304 [7]). We can 
therefore see the benefit of identifying the dominant factors affecting safety critical 
software development and where appropriate extending some of those factors with the 
additional level of detail that is common in safety critical software. For example, the 
degree of risk associated with the application may be extended to take account of the 
various different levels of risk.    

Process evaluation is also a common feature of safety critical software 
development and in certain domains there is a basic requirement to pass an 
independent external audit in order to legally supply software to the sector (as is the 
case in the medical device sector). However, process assessment can be adapted to 
satisfy the needs of process audit, since all of the regulatory requirements of an audit 
can be embedded in a process capability framework – such as is the case with 
MDevSPICE [8] and Nuclear SPICE [9]. With process assessments, various different 
types of process assessment can be undertaken, ranging from an internal, first party, 
informal process assessment to an assessment led by an independent, certified third 
party. Since it is envisaged that the safety critical situational factors reference model 
described in this work may be utilised for the purpose of identifying the key 
situational concerns in advance of a process assessment, the process assessment type 
is also included as a factor in the generic safety critical situational factors reference 
list (Table 2). Note that a total of 12 generic safety critical situational factors (Table 
2) have been elaborated from the 11 generic situational factors identified in Table 1.  

Our first step in adapting and applying the generic software development 
situational factors model to the safety critical domain is at a generic level, “generic 
safety critical software”1. We try to identify common factors in numerous domain-

                                                             
1 Such ”generic safety critical software” may not exist, because most industry sectors use their own 

standards. Note also that terminology may vary in standards, for example “safety-related software” or 
“software important for safety”.  



 

 

specific safety standards. Later in Section 5 we apply this generic set to two domains: 
medical devices and nuclear power. Our approach also allows a comparison between 
sector-specific profiles. 

Many sector-specific safety standards and models have a long history and their 
own development community. In this paper, IEC 61508:2010 [10] is selected as the 
main source and reference for generic safety critical situational factors. More 
specifically, IEC 61508:2010 Part 3 is used, because it is a specific standard for safety 
related software development. In some sectors, this standard is reasonably well 
adopted and is the main starting point for sector specific additional requirements and 
adjustments. Good examples are the process industry (standard IEC 61511), 
automotive (standard ISO 26262) and railways (for example standards EN 50126, 
50127, 50128). Medical device, space, avionics and nuclear sectors are somewhat 
distanced from IEC 61508, and use their own concepts. The nuclear sector goes 
further again and has separate standards for different safety classes (IEC 62138 and 
IEC 60880).  

IEC 61508 is the main generic standard for functional safety. Software is only one 
element, the entire system (including hardware) must be considered. This is also the 
case in the nuclear sector, where IEC 61513 is the highest system-level standard (and 
it includes software). If system and software requirements are the same, then a system 
requirement is more valid. In the medical device sector however, software can be an 
independent of a physical (i.e. mechanical or electrical) medical device.  

Our result from the first step is presented in Table 2. It is a shortlist of selected 
situational factors based on requirements in the generic safety standard IEC 
61508:2010. This standard has a wide range of safety related requirements. For that 
reason and to make a comparison between sector profiles easier, we propose an 
ordinal scale for each of the selected factors. It is typically a 3-point or 4-point scale, 
see Table 2. We try to avoid a binary scale (for example No/Yes), because safety is 
rather a continuum than black or white. This is easily seen for example in safety 
integrity levels (SIL), which are in range 1 – 4.  

In some cases, IEC 61508 does not have a direct requirement for some highly 
relevant factor. This may be true because no consensus is achieved as to how some 
requirement should be formulated. Diversity can be seen as one such factor. The other 
reason may be that a requirement or topic is not in the scope of IEC 61508 and is 
assumed to be valid only implicitly or indirectly. One such important topic is safety 
culture, which is a “soft” factor and may be implemented by organisational 
management rather than the development unit or project. Many such factors are in 
sector specific standards, and are therefore important to consider. 

Table 2. Safety critical software development, definition of generic profile 

Generic safety 
situational factor 
(adapted from Table 1) 

Source(s) Range (ordinal scale if possible) 

Separate safety lifecycle 
for software development 

IEC 61508-3, chapter 6, 
7, 8 

Not Required (NR), Recommended 
(R), Highly Recommended (HR) 

Safety manual / plan IEC 61508-1, Table A.3 Not Required (NR), Recommended 
(R), Highly Recommended (HR) 

Degree of safety 
criticality 

IEC 61508-1 SIL1…SIL4 



 

 

Magnitude of potential 
loss, consequences  

IEC 61508-1, 8.2.17 A, B, C, D 

Degree of required rigour IEC 61508-3, Annex C R1, R2, R3 
Tool confidence level (or 
similar) 

IEC 61508-3, 7.4.4 
IEC 61508-4, 3.2.11 

T1, T2, T3 
See ISO26262 Part 8 for further 
details 

Degree of independence 
in functional safety 
assessment 

IEC 61508-1, Tables 4 
and 5 

1: independent person, 2: independent 
department, 3: independent 
organisation 

Degree of independence 
in V&V (IV&V) 

Is specified in many 
domain specific safety 
standards, not directly 
in IEC 61508 

1: independent person, 2: independent 
department, 3: independent 
organisation 
Example: ISO 26262 Part 2: Table 1, 
Table D.1 and 6.4.6.4. 

Degree of COTS/RUSP 
qualification 2 

Is specified in many 
domain specific safety 
standards, not directly 
in IEC 61508 

1: independent person, 2: independent 
department, 3: independent 
organisation 
Example: IEC 60880 chapter 15 

Degree of diversity (or 
diverse software) 

Is specified in many 
domain specific safety 
standards, not directly 
in IEC 61508 

Not Required (NR), Recommended 
(R), Highly Recommended (HR) 
Example: IEC 60880, Annex G.5. 
See also ISO26262 Part 6 method 
Table 5. 

Defence in depth design 
and programming 

Is specified in many 
domain specific safety 
standards, not directly 
in IEC 61508 

Not Required (NR), Recommended 
(R), Highly Recommended (HR) 
Example: IEC 60880 Chapter 13 
(prevention of common cause 
failures) 

Safety culture Is specified in many 
domain specific safety 
standards, not directly 
in IEC 61508 

Not Required (NR), Recommended 
(R), Highly Recommended (HR) 
Example: ISO 26262 Part 2, Annex B 

 
As we can see in Table 2, all factor candidates are not well (or directly) defined in 

the generic functional safety standard IEC 61508. Some are still kept in the list, 
because they are mentioned in several domain standards (see some examples and 
references in the range column). It is also possible that the generic IEC 61508 
standard is incomplete because of the consensus-driven standardisation process. 

                                                             
2 COTS = Commercial off-the-self. RUSP = ready to use software product. In some standards, the 

abbreviation PDS (= pre-developed software) is used. Their meaning is equivalent in practice. 



 

 

5   Adaptation of generic safety context factors in medical device 
and nuclear domains 

5.1   Safety context definition in medical device domain 

Table 3 is an adaptation of the generic safety situational factors (refer to Table 2) to 
the medical device domain. The medical device domain has long experience in safety 
standards (both in ISO, IEC and CENELEC) and regulatory body requirements (for 
example FDA in USA). 

Table 3. Safety critical software development, adaptation of generic profile in 
medical device domain 

Generic safety 
situational factor (see 
Table 2) 

Additional source(s) in 
medical device domain 

Range in medical device 
domain (ordinal scale if 
possible) 

Separate safety lifecycle 
for software development 

No lifecycle specified – but 
typically V-model seen as 
default IEC 62304 Annex 
C.4.2 

Class A, B, C 

Safety manual / plan IEC 62304 Clause 5.1.1 IEC 62304 Clause 5.1.1 Note 
1 

Degree of safety criticality IEC 62304 Clause 4.3 Class A, B, C 
Magnitude of potential 
loss, consequences  

IEC 62304 Clause 4.3 Class A, B, C 

Degree of required rigour IEC 62304 Clause 4.3 No scale. Class A, B, C can be 
used. 

Tool confidence level (or 
similar) 

Encourages use of IEC 
61508 for tool advice 

Proposed scale: Not Required 
(NR), Recommended (R), 
Highly Recommended (HR)3 

Degree of independence in 
functional safety 
assessment 

ISO 14971 Annex F.3 Proposed scale: NR, R, HR 

Degree of independence in 
V&V (IV&V) 

ISO 14971 Annex F.3 Proposed scale: NR, R, HR 

Degree of COTS/RUSP 
qualification  

IEC 62304 Clause 5.3.3 
COTS is called SOUP in 
IEC 62304. 

Proposed scale: NR, R, HR 

Degree of diversity (or 
diverse software) 

IEC 60601-1 Proposed scale: NR, R, HR 

Defence in depth design 
and programming 

IEC 60601-1 Proposed scale: NR, R, HR 

Safety culture ISO 14971 Clause 4.2 Proposed scale: NR, R, HR 
 

                                                             
3 Medical device standards do not propose any scale for these factors. A scale from generic Table 2 is used 

here as an option. 



 

 

Whereas a number of other domains adopt IEC 61508 for the design of Safety 
critical software the Medical industry does not adopt this safety standard and has 
instead defined their own safety classification levels within the medical device 
software process lifecycle standard IEC 62304.  

The three main elements within the IEC 61508 standard are addressed differently 
within a combination of three medical device standards: (1) IEC 62304 [7]; (2) ISO 
14971 [11] (the medical device risk management standard) and ISO 60601-1 [12] (the 
umbrella product level medical device standard).   

The first of these areas that are covered within the IEC 61508 Risk Management 
lifecycle and lifecycle processes is covered in the medical device domain by IEC 
62304 directly referencing the medical device standard for risk management (ISO 
14971) as central to the IEC 62304 lifecycle process for medical device software. In 
fact, the risk management process in IEC 62304 references ISO 14971 and extends it 
only with additional software specific medical device elements that were not included 
in the more generic ISO 14971 standard. 

The second of these 3 areas within IEC 61508 was the definition of Safety Integrity 
Levels (SILs). The medical device industry does not adopt SILs but instead uses the 
idea of software safety classes as defined in IEC 62304. Whereas, there are 4 SIL 
levels within IEC 61508 there are only 3 software safety classes of A, B and C within 
IEC 62304. Software safety class A means that no injury or damage to health is 
possible if the software system failed. Software safety class B means that non serious 
injury is possible if the software system failed. Software safety class C means that 
death or serious injury is possible if the software system failed. The main reason why 
the medical device domain uses these software safety classes as opposed to SILs is 
that SILs are based upon reliability which quantifies both the probability and the 
severity of harm caused by a software failure. This presents an issue within the 
medical device sector as the probability of failure of software is assumed to be 100%. 
Therefore, within IEC 62304 a more simplified approach is adopted as prior to 
assignment of software safety classes only the severity of the harm that will be caused 
by a software failure is taken into consideration. Once a software system has been 
assigned one of the 3 software safety classes, different processes are required for each 
of the different software safety classes as IEC 62304 specifies what is required for 
each of the safety classes (for each process). Whenever, a software safety class has 
been assigned to a software system it is thereafter desirable to make efforts to further 
reduce the probability of failure of the software (if possible). 

The third of these 3 areas within IEC 61508 relates to recommending methods, 
tools etc. for software development and also provides information in relation to the 
independence of personnel responsible for performing different lifecycle activities. 
This is not handled by an individual standard within the medical device domain but 
rather a combination of standards and in fact IEC 62304 recommends IEC 61508 as a 
good source for software methods, tools etc. In terms of the medical device sector, 
information relating to the independence of personnel responsible for performing 
different lifecycle activities is covered in ISO 14971 as opposed to IEC 62304. ISO 
14971 contains requirements for the independence of those performing for example 
verification and safety assessments.   



 

 

5.2   Safety context definition in nuclear domain 

Table 4 is an adaptation of generic safety situational factors (refer to Table 2) to the 
nuclear domain. The nuclear industry also has long experience in safety standards 
(mainly IEC) and regulatory body requirements. Global cooperation is extensive, 
important and well established, for example the International Atomic Energy Agency 
(IAEA) based in Vienna. The national level is most important for regulatory issues, 
because each country wants to define their own policy in nuclear energy and safety. 
The Common Position [13] is an example of cooperation between authorities in 
selected European countries. 

A predominant feature in the nuclear domain is that the system life cycle and safety 
life cycle are considered separate. In practice, this means that functionality important 
to safety has independent systems from operational systems. Naturally, the same 
applies to software. Safety classes are numbered 1, 2 and 3, 1 denoting the highest 
safety class. Categories (A, B, C) – A being the highest – are assigned based on 
Instrumentation and Control (I&C) functions safety relevance. 

IEC 60880 [14] covers the requirements for the software life cycle applicable in 
safety class 1. Additionally, it contains informal annexes on different special software 
qualification aspects such as defence against common cause failures, tools for 
software development and qualification, as well as requirements on pre-existing 
software. IEC 62138 contains graded requirements for software implementing 
category B and C functions [15]. IEC 60880 and IEC 62138 provide the principles 
and requirements for software safety classes. I&C functions of category A may be 
implemented in class 1 systems only, I&C functions of category B may be 
implemented in class 1 and 2 systems, I&C functions of category C may be 
implemented in class 1, 2, and 3 systems [16]. 

Table 4. Safety critical software development, adaptation of generic profile in 
nuclear domain 

Generic safety 
situational factor (see 
Table 2) 

Additional source(s) in 
nuclear domain 

Range in nuclear domain 
(ordinal scale if possible) 

Separate safety lifecycle 
for software development 

IEC 60880 Clause 5.3; 
Annex A 
IEC 62138 Clause 4.3; 5; 
& 6 

Systems performing category A 
functions; safety class 1 
Systems performing category B or 
C functions; safety classes 2 and 3 

Safety manual / plan IEC 60880 Clause 5.5 
IEC 62138 Clause 5.1.1 
& 6.1.1 

Software quality assurance plan 
Quality assurance plan (maybe 
part of System QA plan) 

Degree of safety 
criticality 

IEC 61226 [17] 
 
IEC 61513 

Categories of functions A, B, and 
C for I&C functions important to 
safety 
Safety classes of systems 1, 2 and 
3; unclassified 

Magnitude of potential 
loss, consequences  

N/A  

Degree of required rigour IEC 61513 Clause 6.4.1.2 Safety classes 1 & 2 
Tool confidence level (or 
similar) 

IEC 60880 Clause 14; 
Annex H 

none 



 

 

Degree of independence 
in functional safety 
assessment 

N/A  

Degree of independence 
in V&V (IV&V) 

IEC 60880 Clause 8; 10 By process requirements, 
verification team separate from the 
development management 

Degree of COTS/RUSP 
qualification  

IEC 60880 Clause 15 none 

Degree of diversity (or 
diverse software) 

IEC 60880 Clause 13.4; 
Annex G 

none 

Defence in Depth design 
and programming 

IEC 61513 Annex A.3; 
Annex C 
IEC 61226 Clause 5 
IEC 60880 Clause 13 

Safety classes and categories 
Safety classes  
Defence in Depth levels 1 - 5 in 
IAEA standard INSAG-10 

Safety culture Common Position Clause 
1.6 

none 

 
Standards in the nuclear domain focus on quality assurance and the prevention of 

failures rather than analysing the possible consequences of failures. The IEC 61513 
standard states: 

The highest practicable integrity is generally deemed necessary for any system 
which prevents or mitigates the consequences of radioactive releases. A lower level of 
integrity may be acceptable for systems which support protection against there being 
releases, but do not directly prevent or mitigate them. Consequently, there is not an 
equivalent scheme to the reliability/risk reduction SIL levels proposed in IEC 61508 
in common use in the nuclear sector. This deterministic approach has been found 
generally sufficient in the nuclear industry and has resulted in practice in the setting 
of very high targets of all protective functions. However, the nuclear sector does 
recognise the numerical approach, and methods of probabilistic safety analysis (PSA) 
may provide clearer targets for the reliability of CB systems [16]. 

Defence in depth is required for all safety activities. IEC 60880 provides 
requirements for defences against software design and coding faults which can lead to 
common cause failures (CCF) of functions classified as category A [15]. 

6   Discussion & Conclusion 

Our conceptual experiment demonstrates – and maybe validates to some extent - that 
the generic situational factors model can be used as the main source to define 
dominant safety factors. Adaptation and mapping is however, not straightforward. 
Most of the selected factors required further elaboration for generic safety critical 
situational factor identification. Some additional factors are also needed (Table 2). 
The authors also highlight that while we possess considerable expertise in both safety 
critical software development and software development situational factors, the 
exercise to elaborate the generic safety critical situational factors (from the generic 
software development situational factors) presently lacks an independent validation.  

One idea in this experimental research was to propose an ordinal scale for selected 
safety factors. It would allow for a “safety profile” to be identified, a high-level 



 

 

common set of system/software specific normative requirements. When each factor 
value in an ordinal scale is aggregated further, it would be an overall indicator of 
safety in a given situation and for a given system/software.  

Further adaptation of the selected factors from generic safety to domain-specific 
safety shows remarkable differences in results. Medical device software has much 
fewer requirements than nuclear domain. Major gaps also exist in the definition of the 
ordinal scale per each factor. At least, domain-specific standards may not even have 
such concepts. Maybe for historical reasons, different safety classifications are very 
popular. Unfortunately, they are quite different and not directly comparable. There 
may be benefits to adopting the generic IEC 61508 standard as a starting point and 
baseline in different domains, to improve comparability and cross-domain mapping of 
concepts and requirements. 

Our research is still in early phase and remains highly conceptual. An in-depth 
validation is needed. Situational safety factors should be piloted and results should be 
compared between domains. Then it could be possible to improve comparability and 
better mapping between requirements in different standards. 

A safety profile could be a first step in more detailed and well-established safety 
demonstration, such as safety case definition and assessment of system/software 
development processes. This is illustrated in figure 3. A safety profile can also be a 
separate result, some kind of quick analysis of system/software specific safety 
requirements and their achievement. Early identification of potential gaps could 
reduce risks in deliveries. 

 
Fig. 3. Use of situational factors in defining a safety profile 

 
The SPICE-based assessment approach is in use both in medical device and 

nuclear domains. Assessment methods are called with brand names such as 
MDevSPICE and Nuclear SPICE. The ISO/IEC 330xx family of standards is the main 
reference and starting point in both methods. Situational factors could extend the 
methods into earlier steps in supplier and system/software/platform selection.  

The proposed safety situational factors contribute mainly in quality, for obvious 
reasons. They could be selected and elaborated further also by productivity and time 
criteria. It is a general trend in software and system markets that the overall success is 
much based on correct timing for markets. More agility is therefore also needed. In an 
ideal situation, quality and productivity factors would converge on a single point, and 
this is perhaps an outcome that can be achieved through the more aggressive adoption 



 

 

of technology-enabled software development processes [18] that we are starting to see 
emerging in the general software engineering field.  
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