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Title:   Analysis of protein expression in Chinese hamster ovary cells and breast cancer 

Name:  Mark Gallagher 

Abstract 

 Genomic tools in the last few decades have made it possible to produce proteins for 

pharmaceutical use in mammalian cells such as Chinese Hamster Ovary cells (CHO). As 

such there is an ever increasing demand protein biopharmaceuticals. By identifying key 

proteins involved in the growth patterns of mammalian cells we hope to be able to 

manipulate CHO cell for biopharmaceutical production. We used two different methods to 

manipulate cell growth and then identified the proteins involved using quantitative label 

free LC-mass spectrometry. Previous studies in our lab showed up-regulation of 

microRNA-7 (miR-7) reduces proliferation in CHO-K1-SEAP cells but increases 

productivity over time. A similar phenotype is observed in temperature shifted (31 oC) CHO 

cells and is often used in industry for increased productivity. The mechanism of both these 

phenotypes in CHO are largely unknown at the protein level. Using label-free LC-MS/MS 

we identified catalase and stathmin as potential targets of miR-7, the potential role of 

glutathione metabolism up-regulation and the potential role of structural process inhibition 

in causing this phenotype. Using the same techniques combined with subcellular 

fractionation to analyse the temperature shift phenotype in CHO-K1-SEAP cells we were 

able to double the number of protein identifications from 960 with no fractionation to 2298 

using fractionation. Two differentially regulated proteins, cyclon and lamin A/C, were 

identified as significantly reducing cell proliferation and cell size and may have potential as 

targets to induce an industrially relevant phenotype in CHO cells. 

 Breast cancer is the leading cause of cancer death in women, there is an urgent need 

to identify new molecular targets for certain aggressive breast cancer subtypes to lead to 

improved treatments for patients. We used bioinformatics profiling of publicly available 

data-sets to compare gene expression across breast cancer sub-types compared to normal 

breast tissue to identify a panel of differentially expressed membrane candidate targets. 

Candidate target expression was validated in membrane enriched breast cancer cell line 

extracts and extensive immunohistochemical (IHC) analysis of target expression in breast 

cancer subtypes, normal breast tissue and highly proliferating tissues was carried out. Two 

proteins, IGSF9 and KLRG2, not previously associated with breast cancer, were 

demonstrated to show significantly higher expression in triple negative (TNBC) and HER-2 

positive breast cancers than in normal breast tissue and  also have very low presence in 

other normal (and highly proliferating) tissues. These two protein targets may have potential 

to be further investigated as ADC molecular targets for these aggressive breast cancer 

subtypes.  
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1.1 General Introduction - Chinese hamster ovary and bioprocessing 

With the elucidation of the structure of DNA the field of genomics emerged and 

revolutionised the scientific landscape. With the profiling of genes it was possible to 

identify key effectors in disease, predict and prevent pathologies and eventually control 

genetic elements to alter cellular behaviour. While differential expression of genes can 

be used to diagnose and predict disease more often it is the protein generated by these 

genes which result in presentation of pathologies. By targeting these proteins it became 

possible to treat cellular dysfunctions. With the advent of genetic engineering 

techniques in the 1980s it became possible to produce such protein therapeutics.  

Among the many expression systems available Chinese hamster ovary cells emerged as 

one of the most suitable expression system with their high proliferation and amenability 

to genetic manipulation to produce human recombinant proteins as therapeutics.  Today 

they are widely used in the biopharmaceutical industry. With an ever increasing demand 

on the supply of protein based therapeutics and the ever increasing cost of research and 

development the maximising of yield of protein based biopharmaceuticals is of great 

interest to the biopharmaceutical industry. While the optimisation of cell culture and 

bioreactor operation has been an area of optimisation for several decades there is now a 

move toward more molecular based techniques to maximise biopharmaceutical 

production from Chinese hamster ovary cells. Despite their huge industrial relevance the 

molecular mechanisms underlying Chinese hamster ovary cell functions are under 

studied.  
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1.2 Chinese hamster ovary cells 

Over the course of several decades the biopharmaceutical industry has utilised several 

different cellular expression systems to produce recombinant proteins for therapeutic 

applications. The first recombinant therapeutic made in 1982 was insulin using 

Escherichia coli for diabetes mellitus (Berger, Lowe and Tesar 2015). Other non 

mammalian expression systems include yeast and insect cells. Mammalian cells 

however are required for protein biopharmaceuticals that require protein folding and 

post translational modifications (PTM) that can only be performed by mammalian cells 

(Jenkins, Parekh and James 1996). This is a particular advantage of mammalian 

expression  systems over non mammalian systems to produce proteins with consistent 

glycosylation and prevent an immune response in the end user of the recombinant 

protein (Walsh and Jefferis 2006) Among the most widely used mammalian expression 

systems are baby hamster kidney (BHK) and human embryonic HEK-293 cells. Chinese 

hamster ovary (CHO) are the most popular of these expression systems. 

CHO cells were first isolated in 1957 (Puck et al. 1958, Gamper, Stockand and Shapiro 

2005). In the decades that followed CHO cells were found to be well suited to genetic 

mutagenesis and cellular function experiments in culture (Schneiderman, Dewey and 

Highfield 1971, Hieber, Beck and Lucke-Huhle 1981, Rajaraman and Faulkner 1984). 

The large amount of studies established CHO cells as ideal candidates for 

biopharmaceutical production having high proliferation rates, capable of growing in 

large scale capacities, easily manipulated in culture and also perform the necessary 

glycosylation PTMs and protein folding for recombinant proteins to be suitable for 

human use. By 1986 recombinant protein production research culminated in the first 

FDA approved recombinant therapeutic protein in Activase®, a recombinant form of 

tissue plasminogen activator (TPA) produced by Genentech (Wurm 2004). Increasing 

the recombinant protein yield in CHO has been a focus for industrial research in the 

decades that followed the approval of Activase® and the many other FDA approved 

recombinant proteins that followed (Figure 1.2.1).  

In order to increase recombinant protein yield from CHO cells several culture 

environment based methods such as temperature shift (Butler 2005), chemical 

supplements and more targeted genetic engineering approaches to modify industrially 

desirable characteristics such as apoptosis (Lee et al. 2013) and metabolic rate (Jeon, Yu 

and Lee 2011) have been routinely used. Using these methods recombinant protein 
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yields are now in a 5-10 g/litre range compared to 50 mg/litre in the 1980s.. More 

recently however the publication of the CHO genome has made the prospect of even 

more targeted approaches possible (Xu et al. 2011). This in turn has allowed 

transcriptomic data to be made available for proteomic profiling (Becker et al. 2011). 

Using these "omics" platforms the profiling of CHO cell lines with desirable phenotypic 

characteristics is now more detailed than ever. Profiling of characteristics such as high 

productivity (Kelly et al. 2015) or proliferation (Doolan et al. 2010) now allows for the 

targeted screening of potential gene or protein candidates to optimise CHO cell 

behaviour for biopharmaceutical production. This will invariably lead to far more 

focused CHO cell engineering in the future compared to typical mutagenic selection 

methods in the past and will also improve current methods such as the utilisation of 

endogenous CHO promoters (Pontiller et al. 2008) that will benefit from CHO "omics" 

profiling. 

 

1.2.1 Biopharmaceutical uses 

Currently CHO cells account for approximately 70% of all recombinant 

biopharmaceutical production (Jayapal et al. 2007, Huggett and Lahteenmaki 2012). 

The largest specific categories of biopharmaceuticals are monoclonal antibodies (mAbs) 

followed by growth factors and hormones (Figure 1.2.1). A selection of FDA 

commercially approved biopharmaceuticals can be seen in Table 1.2.1. The complexity 

of mAbs compared to more simple protein molecules such as growth factors makes 

them expensive to produce but due to their specific binding to protein targets they are 

set to gain wider use in diagnostics as well as for disease treatments (Nelson, Dhimolea 

and Reichert 2010, Jayapal et al. 2007). This further emphasises the requirement for 

CHO cell optimisation for industrial applications. 

Furthermore the emergence of antibody drug conjugates (ADC), which are antibodies to 

specific disease associated protein targets coupled to a cytotoxic agent, are set to 

increase the requirement for mABs in the future (Reichert 2013). This may see CHO 

moving away from its original role in other biopharmaceutical categories and further 

towards mAbs. A move toward biosimilars (Beck and Reichert 2013) also means that 

less difficult to produce non mAb biopharmaceuticals may become less profitable 

further increasing the use of CHO for mAb production.  
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Figure 1.2.1 Top 8 biopharmaceutical product approval categories from 1982-2014 

(cumulative) and 2010 to 2014.. Adapted from (Walsh 2014). 

Product Manufacturer Used for Protein/mAb Year of FDA 
approval 

Activase Genetech Acute myocardial 

infarction 

TPA 1987 

Epogen Amgen Anemia EPO 1989 

Pulmozyme Genetech Cystic fibrosis DNase1 1993 

Rituxan Genentech Non-Hodgkin•fs 

lymphoma 

CD20 1997 

Benefix Wyeth Hemophilia B Factor IX 1997 

Herceptin Genentech Breast cancer ErbB2 1998 

Campath-

1H 

Genzyme Lymphocytic 

leukemia 

CD52 2001 

Zevalin Spectrum 

Pharmaceuticals 
Non-Hodgkin•'s 

lymphoma 

CD20 2002 

Humira Abbott Rheumatoid 

artheritis/Crohn's 

disease 

TNF-ð¢ 2002 

Xolair Genentech Asthma IgE 2003 

Raptiva Genentech Psoriasis  CD11a 2003 

Luveris Serono Infertility FSHB 2004 

Avastin Genentech Colon or rectum 

cancer 

VEGF 2004 

Vectibix Amgen Colorectal cancer EGFR 2006 

Simponi Centocor Rheumatoid and 

psoriatic arthritis 

TNF-α 2009 

Arzerra GSK/Genmab Chronic lymphocytic 

leukemia 

CD20 2009 

Elonva Howmedica Ovarian stimulation FSHB 2010 

 

Table 1.2.1 Selection of biopharmaceutical products produced from 1987 to 2010 

in Chinese hamster ovary cells. 
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1.2.2 Cell factory optimisation 

1.2.2.1 CHO cell productivity optimization 

Increasing the productivity of recombinant CHO cell lines has been one of the key goals 

of the biopharmaceutical industry for many years and has largely focused on the  

transfection of selection methods associated with dihydrofolate reductase (DHFR), 

methotrexate (MTX) and glutamine synthase (GS). 

DHFR is required for the catalytic production of glycine and purines from folic acid and 

tetrahydrofolate. CHO cells deficient in DHFR are transfected with a plasmid 

containing a gene of interest (GOI) which codes for the recombinant protein to be 

produced and a functional DHFR gene (Cacciatore, Chasin and Leonard 2010). Without 

glycine, hypoxyanthine and thymidine media supplementation transfected high 

producing cells with the GOI are selected for. High DHFR producers can also be 

selected using MTX which is a chemotherapeutic drug with a long standing association 

with acquired resistance in cancer and cancer cells via the amplification of DHFR gene 

(Goker et al. 1995). GS has been another exploited productivity gene. By using a GS 

inhibitor CHO cells containing extra copies of the glutamine synthase gene along with 

the GOI are selected (Cacciatore, Chasin and Leonard 2010). 

More labour intensive approaches like single cell clonal selection still remain a 

powerful method for obtaining a high producing cell line (Jun et al. 2005). The 

inclusion of cell sorting methods has made cloning somewhat faster. Fluorescent-

activated cell sorters (FACS) has been used to select for high producers via antibody 

binding to secreted product on the cell surface (Manz et al. 1995, Borth et al. 2000). 

Another method ultizes fluorescent MTX to bind to high DHFR producing cells which 

can then be selected using FACS (Yoshikawa et al. 2001). 

 

1.2.2.2 Media formulation and waste management 

Culture media can broadly be divided into serum containing and serum free 

formulations. Serum containing cultures are mostly advantageous in providing a 

complete nutrient profile for the large scale clinical use of stem cells. It has been 

reported that both human mesenchymal stem cells (hMSC) and human embryonic stem 

cells show a greater than 3 fold difference in expression in 600 genes and greater than 2 
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fold difference in expression of 95 genes respectively when grown in serum free media 

(Chase et al. 2010, Skottman et al. 2006). Use of serum free media at least with stem 

cell production poses problems for the consistency of cell and cell products. Conversely 

the presence of pathogens and batch to batch variation is a major problem inherent to 

using serum. For this reason in large scale bioprocessing a chemically defined serum 

free medium is favoured for quality control, safety and downstream processing 

purposes. Media formulation consists of specific vitamins, minerals, amino acids and 

hormones the quantities of which have differing effects on different CHO cell lines 

(Kim et al. 2005). The requirements of the specific cell line and it's recombinant product 

have to be taken into consideration when optimising media components and has in turn 

led to many specific findings related to many recombinant CHO cell lines.  

For example a CHO glutamine synthetase producing cell line found that the addition of 

glutamine at 8 mM reduced the requirement of base buffers and improved antibody 

yield with no adverse effects (Xu et al. 2014). Conversely with an IgG producing CHO 

cell line it was found that low concentrations of 2 mM glutamine was optimal for 

improved titres of antibody production (Rajendra et al. 2011, Parampalli et al. 2007). As 

glutamine metabolism produces ammonia as a waste product both of these studies show 

that the cell lines tolerance to the growth inhibitory effects of ammonia play a large part 

on glutamine supplementation concentration. The large scale culture and manufacture of 

hMSC has in recent years opened the way for further development of biological 

supplementation. Humanised media containing human platelet lysate has been shown to 

expand hMScs in culture (Lange et al. 2007, Gruber et al. 2004). While these methods 

are successful in some bioprocessing regimes the use of biological material, like with 

serum use, still poses pathogenic risks that require screening and pathogen inactivation 

if they are to be viable for large scale approved bioprocessing (Castiglia et al. 2014). 

Synthetically derived peptides and other synthetic additives as part of a chemical 

defined medium do not pose these risks. 

Synthetic additives also show similar variable effects and require optimisation. One of 

the most common and earliest used supplements is sodium butyrate (NaBu) (Kruh 

1982) which arrests cell growth by the inhibition of histone deactylase 1 (HDAC1) 

(Davie 2003) and simultaneously enhances CMV promoters ultimately resulting in 

increased specific productivity (Kim et al. 1999). NaBu has recently been found to have 

an additive positive effect on specific productivity of CHO cells when used with other 

synthetic additives caffeine and hexamethylene bisacetamide (HMBA) (Fomina-Yadlin 
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et al. 2015) showing that even an additive with a long history of use may require further 

optimisation. In this study it was also shown that caffeine supplementation displayed 

specific productivity and gene expression similar to that of the no additive control group 

despite caffeine being known to have a dramatic effect on other cell types (Fredholm et 

al. 1999). The effect of synthetic additives can be recombinant product specific also 

such as with the steroid hormone dexamethasone which has been shown to reduce CHO 

cell death (Jing et al. 2012) and also increases recombinant glycoprotein stability 

through increased sialylation (Jing, Qian and Li 2010). 

Waste products produced by host cell metabolism can be problematic for 

biopharmaceutical production. Acetate, ammonia, lactate, formate, nitrate and urea are 

typical waste products produced in culture leading to reduced yield of product, reduced 

cell growth and reduced cell viability. Each waste product is more often associated with 

specific expression systems. Acetate accumulation is a particular problem in bacterial 

fermentation. Acetate accumulation in E. coli fermentations has long been known to 

reduce recombinant protein output (Jensen and Carlsen 1990). While the generation of 

low acetate producers and acetate tolerant E. coli strains has improved yields (Eiteman 

and Altman 2006) it has been found that an alkaline pH shift to 7.5 reduced acetate up 

take by 50% and improved cell growth by 71% in an acetate high containing media 

(Wang et al. 2014). Waste products in culture therefore can be managed by increasing 

the tolerance of the host organism to the waste products not just be reducing the 

accumulation of waste products or their removal. 

 

1.2.2.3 Bioprocess optimisation 

Increased product yields have mostly been attributed to changes in media formulation 

(De Jesus and Wurm 2011). Limited batch cultures in large scale is suitable where the 

desired product is the cells themselves or the cells are unsuitable to be maintained for a 

long period of time in culture otherwise high product yield is achieved through fed 

batch systems which typically increase life in culture. This leads to a significant build 

up of waste metabolites and several modifications to the fed batch system exist such as  

perfusion culture which allows waste products to be removed from the culture media 

and maintain cell viability (Bleckwenn and Shiloach 2004). Other physical 

characteristics such as sheer, pH and temperature are vital in the bioprocess. 
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The physical apparatus varies depending on the type of culture used. These can 

classified into two categories with batch and fed batch. Batch cultures consist of 

growing the culture and harvesting the culture such that the cells are destroyed at the 

end of the bioprocessing. The culture is then started again and the process repeated. For 

stem cells and stem cell related products this type of culture is more suitable than 

continuous culture as stem cells differentiate over time in culture and stem cells are 

themselves the culture product. Cell line and cell product specific alterations to large 

scale bioprocessing are required, as with mouse embryonic stem cells (mESC) various 

strategies such as encapsulation in poly-L-lysine have been shown to reduce 

aggregation in large scale agitated culture and improve yield of cardiac cell markers for 

heart cell generation (Jing, Parikh and Tzanakakis 2010). Stirred suspension large scale 

bioreactor production of human embryonic stem cells (hESC) however is more 

challenging than mESC as hESC require some level of aggregation to prevent 

uncontrolled differentiation (Kehoe et al. 2010). Agitation and aggregation therefore 

play a critical role in the scale up and differentiation during the culture of these cells. 

Dissolved oxygen has also been shown to be critical in the generation of cardiac cells in 

both mESC and hMSC (Kehoe et al. 2010, Niebruegge et al. 2009, Bauwens et al. 

2005). 

The same parameters are important in fed batch cultures. Fed batch culture maintain the 

cells in culture for as long as applicable to produce the desired product. This can often 

be a far more complex process in terms of instrumentation involving the continuous 

monitoring and management of nutrient composition and waste metabolite build up. Bio 

reactors designed for this type of culture contain many inlet and outlet channels to 

regulate parameters other than nutrient supply (Figure 1.2.2). The life of the culture can 

be prolonged by the manipulation of many of these parameters. For example, pH control 

is used to achieve high biomass in Bifidobacterium large scale cultures. It has been 

reported that at a controlled pH 7 it was the concentrations of acid anions at this neutral 

pH that significantly affected the growth rate of various Bifidobacterium strains (Cui et 

al. 2016). This has also been demonstrated in CHO cell bioprocessing with CO2 

concentration, ammonia and lactate all producing CHO cell line and recombinant 

product specific effects (Zhou et al. 2010). Gas composition can also prolong culture 

stages as seen with hESC where increased dissolved oxygen prolonged their 

undifferentiated culture stage and decreased dissolved oxygen promoted differentiation 

toward cardiac cell types (Niebruegge et al. 2009). Temperature is another well 

established parameter to maintain cells at a high biomass for an extended period of time 
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(see Section 1.3) by arresting cell growth and subsequently reducing nutrient 

requirements, dissolved oxygen for high density cultures (Zimmer et al. 2014) and 

increasing apoptosis resistance (Kaufmann et al. 1999) 

 

Figure 1.2.2 Bioreactor schematic. Inlets and outlets labelled above allow the culture 

environment to be controlled. Adapted from (Ismail et al. 2008). 

A key contributor to recombinant protein loss is shear stress. Shear stress is an essential 

parameter in keeping suspension host cells agitated in culture media but can be 

problematic at high levels. With CHO cells producing recombinant tPA it was found 

that high shear stress causes significant cell death but also at sublytic levels it can cause 

recombinant tPA to be only partially glycosylated (Senger and Karim 2003). Similarly 

in the production of human growth hormone (hGH) it was found that sheer stress at high 

levels using an anti sheer stress protectant resulted in reduced specific activity of hGH 

(Keane, Ryan and Gray 2003). In recent years computational fluid dynamics 

simulations is used to optimise rotor design to deliver the appropriate shear stress to 

agitate cells while also producing uniform turbulence (Francis et al. 2006, Szymczak 

and Cieplak 2007). Shear can also occur in equipment further downstream of the 

bioreactor in the clarification and purification steps. Bioprocessing and its optimisation 

also includes upstream and downstream operations from the bioreactor (Figure 1.2.3). 
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Figure 1.2.3 Bioprocess schematic including upstream and downstream of the 

bioreactor. Colure and product specific considerations related must be optimised 

upstream and downstream of the bioreactor. Some of these parameters are shared with 

bioreactor optimisation such as media formulation upstream and shear damage 

downstream. Figure adapted from  (Shukla and Thömmes 2010). 

Clarification is typically employed to remove cell debris and insoluble matter after cell 

lysis. This is achieve through the use of various pumps to deliver the lysate to the 

chosen filtration or centrifugation system. Sudden changes in pressure and flow rate 

during the transportation of the media can adversely affect the protein product leading 

to aggregation (Gomme et al. 2006) and product loss. In a study investigating the effects 

of high shear on recombinant hGH and recombinant hDNase it was found that 

aggregation did not occur but the presence of low molecular weight fragments of hGH 

suggested peptide breakage occurred (Maa and Hsu 1996).  

Contrary to this other proteins studied under high shear conditions such as horse 

cytochrome c were found to not unfold in response to shearing (Jaspe and Hagen 2006). 

The negative impact of shear force on the final recombinant product is therefore reliant 

on a complex relationship between the agitation required, tolerance of the cells to shear 

force and also the tolerance of the recombinant protein product to shear. 
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1.3 Temperature Shift 

In order to increase the yield of product produced by CHO cells over time the cells are 

grown at a suboptimal temperature. This is achieved typically by growing CHO cells to 

a high density biomass at the end of exponential phase before being shifted to 31
 o

C 

which reduces and almost arrests cell cycle progression. This high density biomass of 

CHO cells can then spend a longer time in culture before declining due to nutrient 

depletion or waste metabolite build up resulting in increased product yield. This is a 

very well established method in achieving increased productivity and low to severe 

hypothermic conditions are well documented as inducing cell survival longevity in 

different cell types (Schultheiss et al. 2016, Chiou et al. 2013). 

Lowering temperature in culture with recombinant CHO cells, however, has long been 

shown to produce different effects in different producers (Barnabe and Butler 1994, 

Yoon, Song and Lee 2003) and has varying effects on recombinant antibodies produced 

(Sou et al. 2015, Kishishita et al. 2015). It is therefore important to assess the molecular 

effects of temperature shift on specific cell lines to better understand how it produces an 

industrially desirable phenotype, if any, and how cellular mechanisms may alter 

antibody production. The identification and subsequent manipulation of key regulators 

of the temperature shift phenotype will also be valuable in the targeted design of CHO 

cell lines suited for industry.  

 

1.3.1 Temperature shift mechanism 

The phenotype induced by temperature shift and mild hypothermia has long since been 

observed as reduced cell growth and metabolic activity in mammals (Van Breukelen 

and Martin 2002). The molecular reasons for this can also be divided into several gene 

and protein classes attributed with a reduction in transcription and translation, inhibition 

of RNA degradation, increased transcription of specific gene promoters, alternative 

mRNA splicing and the differential expression of cold/heat shock proteins (Sonna et al. 

2002).  
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Figure 1.3.1 Temperature shift mechanism (Al-Fageeh and Smales 2006) 

A comprehensive review by Al-Fageeh and Smales details what is currently understood 

about mild hypothermic (25-35
 o

C) response of cells in culture (Figure 1.3.1). They 

have proposed that a co-ordinated response occurs between the up regulation of CSPs 

such as cold inducible RNA binding protein (CIRP) and RNA-binding motif protein 3 

(Rbm3) result in the stabilisation of mRNA directly and inhibition of microRNA 

(miRNA) degradation of mRNA which also leads to increased mRNA levels. 

Simultaneously there is decrease in mRNA translation in the cytoplasm due to 

phosphorylation of initiation factors. Initiation factor phosphorylation also allows 

specific mRNA to be processed into stress granules which contain transcripts necessary 

for cold shock recovery upon warming. The phosphorylation of elongation initiation 

factor alpha (eIF2α) specifically also mediates ribosome recruitment to internal 

ribosome entry segment (IRES) containing mRNA which are possibly mRNA that are 

required for cold shock adaptation as normal cap dependant translation is reduced 

during mild hypothermia. Further disruption to the cellular translational machinery is 

caused by microtubule disassembly associated with the cytoskeleton. The exact 

mechanism of action of these hypothermia induced genes and proteins still remains 

poorly understood (Zhu, Buhrer and Wellmann 2016). 
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1.3.2 Temperature shift and CHO 

Despite the exact mechanism behind temperature shift not being known it has seen wide 

use in CHO cell culture and bioprocessing optimisation. Many studies have shown 

increased production yields of recombinant protein across various CHO cell lines.  

rCHO product Temperature 

(
 o

C) 

Fold increase in 

rProtein yield 

Source 

Antibody-IL-2-fusion 30 3.4 (Shi et al. 2005) 

Chimeric Fab 28 38 (Schatz et al. 2003) 

Colony stimulating 

factor 

33 2.3 (Fogolin et al. 2004) 

C-terminal amidating 

enzyme 

30 4.3 (Furukawa and 

Ohsuye 1998) 

Erythropoietin 33 2.5 (Yoon, Song and Lee 

2003) 

Interferon-y 32 1.9 (Fox et al. 2004) 

IgG 33 2 (Kantardjieff et al. 

2010) 

SEAP 30 3.4 (Kaufmann et al. 

1999) 

SEAP 33 8 (Nam, Ermonval and 

Sharfstein 2009) 

Tissue Plasminogen 

Activator 

32 1.7 (Hendrick et al. 2001) 

 

Table 1.3.1 Increased recombinant protein yield in temperature shifted CHO cells. 

The specific mechanism behind temperature shift in CHO is even less widely studied 

than in other cell types but it has been reported that miRNA expression (Gammell et al. 

2007), promoter expression (Al-Fageeh and Smales 2013, Thaisuchat et al. 2011) and 

protein PTMs such as phosphorylation (Kaufmann et al. 1999) all display differential 

expression patterns in response to temperature shift in CHO cells. As Table 1.3.1 shows 

it is also well observed that temperature shift increases recombinant production yield in 

CHO cells (Al-Fageeh et al. 2006). By indentifying genes and proteins that may be 
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responsible for this industrially desirable phenotype it would be possible to design a 

CHO cell line with the same properties as temperature shifted CHO cells.  

The temperature shift phenotype in CHO cells has been investigated both at the 

transcriptional and proteomic level. CHO cells grown at 31
 o

C were found to 

differentially express 26 miRNAs (Gammell et al. 2007). Of these it was found that 

miR-7 up regulation was found to induce a temperature shift like phenotype (Barron et 

al. 2011a). A more recent study compared a non producing CHO cell line with a high 

producer and low producing CHO cell line under temperature shift conditions. In this 

study 19 miRNA were validated as producing industrially relevant phenotypes (Stiefel 

et al. 2016). 

Transcriptional studies have also identified key candidates involved in CHO 

temperature shift with 237 genes transcripts having been reported as being between 1.4 

and 2 fold differentially regulated in temperature shifted CHO cells (Yee, Gerdtzen and 

Hu 2009). These transcripts were found to be associated with glycolosis, TCA cycle, 

pentose phosphate pathway, lipid/cholesterol metabolism,  the electron transport chain, 

protein synthesis and cytoskeletal elements.  

Proteomic profiling has been used to identify 53 proteins differentially regulated in 

CHO as a result of temperature shift (Kumar et al. 2008). Among these identifications 

were some well known hypothermia associated proteins such as elongation initiation 

factors and IRES interacting proteins such as heterogeneous ribonucleoprotein C 

(HNRPC), the knockdown of which has been found to inhibit cell growth (Schepens et 

al. 2007).  

Potential targets for cell line engineering derived from the temperature shift phenotype 

in CHO cells have therefore already emerged. Individual rate limiting targets in 

transcriptomic and proteomic data as well have been identified. Potential miRNA 

effectors of temperature shift have also been identified. These may prove more 

promising in determining how the mechanism of temperature shift in CHO and also in 

inducing a temperature shift phenotype as the large amount of transcript and protein 

dysregulation suggests that a complex multitude of genes and proteins are affected by 

temperature shift. 
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1.4 microRNA interference  

In 1993 the first miRNA, lin-4, was discovered in C. Elegans. (Lee, Feinbaum and 

Ambros 1993). A 22 nucleotide non coding RNA it was found to negatively regulate the 

expression of LIN-14 protein by binding to the 3'UTR of lin-4 mRNA. Since their initial 

discovery the processing of miRNA is now well understood with the identification and 

functional role of many determined and well established prediction algorithms to 

determine the direct targets of miR. 

The post transcriptional regulatory effect of miRNA are now known to potentially affect 

~30% of all protein coding genes (Filipowicz, Bhattacharyya and Sonenberg 2008). As 

miRNA in mammalian systems do not require full complementarity to their mRNA 

targets and considering target mRNA binding is largely dependent on complementarity 

of the miRNA seed sequence (first 2-8 nucleotides) each miRNA can potentially 

recognise hundreds of targets (Chi, Hannon and Darnell 2012, Hata and Kashima 2015).  

This specific but multiple targeting function of miRNA has implicated their 

involvement in a wide variety of physiological processes and dysfunctions such as 

insulin secretion and pancreas development (Poy et al. 2004, Correa-Medina et al. 2009) 

as well as pancreatic cancer phenotypes and diabetes (Park et al. 2009, Pandey et al. 

2009). The association between miRNA and phenotype can therefore be exploited as a 

useful tool for disease diagnosis (Li et al. 2011), treatment (Iorio and Croce 2012) and 

to improve the production of biopharmaceuticals through the manipulation of specific 

phenotypes (Cheng et al. 2005, Barron et al. 2011b). 

 

1.4.1 microRNA formation 

The biogenesis of miRNA begins with RNA polymerase II/III transcription into a 

hairpin looped pri-miRNA (primary) several thousand bases in length. The Drosha 

RNase type III enzyme together with an RNA-binding adaptor protein DGCR8 

(DiGeorge Syndrome Critical Region 8) processes the pri-miRNA into a short hairpin 

loop of approximately 70 nucleotides. The resulting pre-miRNA (preliminary) is then 

exported across the nuclear membrane into the cytoplasm by Ran-GTP activated 

Exportin-5 (Bohnsack, Czaplinski and Gorlich 2004). Once localised to the cytoplasm 

pre-miRNA is further processed by another RNase type III enzyme Dicer together with 

RNA- binding protein TRBP (TAR RNA binding protein) to produce a double stranded 

~22 nucleotide mature miRNA. Argonaute protein family members then load the 
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miRNA-Dicer-TRBP complex into the RNA induced silencing complex (RISC). In its 

double stranded form the miRNA is still not active. Thermodynamic stability of the 

complex largely determines which strand of the duplex will remain in the RISC and 

become an active miRNA and which strand (passenger/guide strand) will be degraded 

(Schwarz et al. 2003, Cai et al. 2009). 

 

 

 

Figure 1.4.1 The biogenesis and processing of microRNA in eukaryotes. Figure 

sourced from (Hata and Kashima 2015). 
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1.4.2 microRNA utility and target prediction 

The ability of miRNA to inhibit the translation of mRNA is widely recognised as a 

powerful tool in influencing cell behaviour. In order to understand the targets upon 

which miRNA act on several algorithms have been developed which predict potential 

targets. As mentioned previously a single miRNA can have many targets (Chi, Hannon 

and Darnell 2012). Target prediction allows for more guided approach in determining 

the most likely targets of a given miRNA. This not only allows study of the phenotype 

induced by a miRNA but can also identify protein candidates for knock down/out to 

achieve a phenotype. 

The most common way a potential target is found is by searching for complementary 

base pairing between the 5' 6-8 nucleotide seed sequence of the miRNA and  the 3'UTR 

of potential targets (Peterson et al. 2014, Clarke et al. 2012). Using several prediction 

algorithms is generally accepted as good practice (Clarke et al. 2012) as output from 

each can be scored differently. In Table 1.4.1 are listed some of the most widely used 

miRNA target searching algorithms. 

With that said wet lab validation of miRNA targets and associated targets is always 

necessary. Recently experimental data has been included in some prediction methods 

particularly high throughput sequencing technologies capable of analysing miRNA-

mRNA complexes (Lu and Leslie 2016). With 28,645 miRNA sequences in the miRNA 

database miRBase (Kozomara and Griffiths-Jones 2014) target prediction and 

prediction validation will only become more prominent in the future. 
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Program Species 

specificity 

Algorithm description Web server 

miRNA target EMBL Drosophila Complementarity with 3′UTR http://www.russell.

embl-heidelberg.de/

miRNAs/  

miRNAanda Flies, 

vertebrates 

Complementarity with 3′UTR, 

thermodynamic stability, duplex 

species conservation 

http://www.

microrna.org/

microrna/home.do 

RNAhybrid Any Complementarity with 3′UTR, 

thermodynamic stability, binding 

conservation 

http://bibiserv.

techfak.uni-

bielefeld.de/

rnahybrid/  

TargetBoost Worm and 

fruit fly 

miRNA-mRNA binding site 

characteristics 

https://demo1.

interagon.com/

targetboost/  

miTarget Any Thermodynamic stability and 

sequence complementarity 

http://cbit.snu.ac.kr/

~miTarget/  

Pictar Flies 

Vertebrates 

Worm 

Perfect and partial 

complementary sequence with 

3′UTR, Thermodynamic stability 

http://pictar.mdc-

berlin.de/  

RNA22 Any miRNA-mRNA binding sites 

characteristics, Complementarity 

with 3′UTR, no cross-species 

conservation 

http://cbcsrv.

watson.ibm.com/

rna22.html  

MicroTar Any Complementarity with 3′UTR and 

thermodynamic stability 

http://tiger.dbs.nus.

edu.sg/microtar/  

EIMMo Humans, 

mice, fish, 

flies, worms 

miRNA binding sites 

conservation 

http://www.mirz.

unibas.ch/ElMMo3/  

GenMiR++ Any Sequence complementarity, based 

on expression data sets 

http://www.psi.

toronto.edu/genmir/  

PITA Any Target site accessibility 

thermodynamic 

http://genie.

weizmann.ac.il/

pubs/mir07/mir07_

data.html  

NBmiRNATar Any Sequence and duplex 

characteristics, no sequence 

conservation 

http://wotan.wistar.

upenn.edu/

NBmiRTar/login.

php  

Sylamer Any Based on microarray data to 

identify 3′UTR sites 

http://www.ebi.ac.

uk/enright/sylamer/  

MiRTarget2 Vertebrates Based on microarray data to 

identify 3′UTR sites 

http://mirdb.org/

miRDB/ 

TargetScan TargetScan 

S 

Vertebrates Complementarity with 3′UTR, 

thermodynamic stability, duplex 

species conservation 

http://www.

targetscan.org/ 

DIANA-microT Any Complementarity with 3′UTR, 

thermodynamic stability, duplex 

species conservation, combined 

experimental data sets 

http://diana.cslab.

ece.ntua.gr/microT/ 

 

Table 1.4.1 List of online prediction tools for miRNA targets. (Barron et al. 2011b) 
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http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/
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http://cbit.snu.ac.kr/~miTarget/
http://pictar.mdc-berlin.de/
http://pictar.mdc-berlin.de/
http://cbcsrv.watson.ibm.com/rna22.html
http://cbcsrv.watson.ibm.com/rna22.html
http://cbcsrv.watson.ibm.com/rna22.html
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1.4.3 CHO and microRNA 

The potential use of microRNA as a tools to manipulate CHO cell phenotypes was only 

recently considered (Barron et al. 2011b). In the last few years it has been demonstrated 

that it is possible to manipulate several industrially relevant characteristics of CHO cells 

using miRNA. 

Several studies have used miRNA to successfully target bioprocess relevant phenotypes 

such as apoptosis, cell cycle  and metabolism (Lee et al. 2013, Kelly et al. 2015, Sunley 

and Butler 2010, Kim and Lee 2007). Currently there are a number of miRNA that have 

been shown to have potential industrial utility in CHO cells. 

miRNA (↑ or ↓) Effect (↑ or ↓) Source 

miR-7 ↑ Proliferation ↓, Productivity ↑ (Sanchez et al. 2013) 

miR-466h-5p ↓ Apoptosis ↓, Productivity ↑, Product 

yield ↑ 

(Druz et al. 2013) 

miR-577 ↑ Proliferation ↑ (Strotbek et al. 2013) 

miR-1287 ↑ Productivity ↑ (Strotbek et al. 2013) 

miR-17 ↑ Proliferation ↑, Productivity ↑, 

Product yield ↑ 

(Jadhav et al. 2014) 

miR-30 ↑ Proliferation ↑, Productivity ↑ (Fischer et al. 2014) 

miR-2861 ↑ Productivity ↑ (Fischer et al. 2015) 

Table 1.4.2 List of miRNA shown to produce industrially desirable phenotype 

changes in CHO cells. "↑" denotes increase, "↓" denotes decrease 

Combining industrially relevant culture methods with miRNA screening has also 

provided many potential candidates for follow-up validation. Differentially expressed 

miRNAs were identified in nutrient depleted conditions (Druz, Betenbaugh and 

Shiloach 2012), temperature shift (Gammell et al. 2007, Barron et al. 2011a) and in 

different growth phases of batch culture (Hernandez Bort et al. 2012). The miRNA 

identified from these studies can then be used to understand key regulators in CHO cell 

phenotypes allowing for targeted CHO cell engineering. 
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1.4.4 microRNA-7 for CHO cell engineering 

One such microRNA which has shown a phenotypic effect on CHO cell function is 

miR-7. As a potential target for CHO cell engineering miR-7 was found to be associated 

with the temperature shift phenotype in CHO (Barron et al. 2011a). An 8 fold decrease 

in miR-7 expression after 24 hr at 31
 o

C indicated that down regulation of miR-7 was 

associated with reduced cell density and increased productivity phenotype of 

temperature shifted CHO cells. Upon transient over expression of miR-7 it was found 

that CHO cell growth was arrested and specific productivity increased. 

A subsequent study investigating the transciptomic effect of miR-7 over expression in 

CHO revealed potential key targets of miR-7 (Sanchez et al. 2013). In this study it was 

determined that proteasome activator subunit 3 (PSME3), RAD54-like (RAD54L) and 

S-phase kinase associated protein 2 (SKP2) were potential direct targets of miR-7. It 

was proposed that miR-7 binds to SKP2 causing an up-regulation of p27 protein 

initiating cell cycle arrest. It was also suggested that miR-7 inhibits PSME3 thereby 

reducing p53 protein and increasing apoptosis resistance. The result from this 

hypothesis is that these may induce a temperature shift like phenotype in CHO cells. 

Several problems are present though in the model. In particular HDAC1 was not 

confirmed conclusively to be up-regulated which the model suggests as being another 

potential source of apoptosis resistance. Furthermore the CHO cell line used in the 

study was not confirmed to express p53. Further study and validation is required to 

determine the effects of miR-7 and identifying the regulators of the industrially relevant 

phenotype it produces. 
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1.5 Proteomics 

Proteins form an integral part of cellular function. Their localisation, post translational 

modification, thermodynamic stability, binding partners and abundance all play a role in 

their ability to modulate cell function. They study of all of these states in relation to 

protein is known as "proteomics". Compared to large scale genetic profiling high 

throughput technologies for proteomic studies are relatively young. As proteomic 

profiling techniques mature it is becoming clearer that proteins have just as influential a 

role in cell behaviour as gene expression and in many cases have powerful overriding 

regulation on cell phenotype (Tsujimoto 2003). A comprehensive profile of protein 

expression within a cell can therefore provide much information about the driving 

forces of a given phenotype (Matejovic et al. 2016). The following section will give a 

brief overview of the current state of proteomic analysis. 

 

1.5.1 Sample preparation 

Sample preparation is dependent on the sample source and the method of analysis. 

There are general and situational considerations when dealing with tissue compared to 

cells and also the nature of the protein derived from those samples together with the 

downstream analysis to be carried out. 

Clinical or in vivo derived sample tissue requires mechanical or chemical breakdown to 

access and solubilise protein. In circumstances where a heterogeneous tissue sample is 

used careful isolation of homogenous tissue samples may be required. This depends on 

the nature of the experiment but generally the contamination of tissue samples with 

blood serum is undesirable as high abundant protein such as albumin can mask the 

detection of lower abundant proteins (Liu et al. 2011a). The overall goal in preparing 

these samples is to solubilise the desired tissue. 

For cultured cell sample preparation there are less concerns about sample homogeneity. 

What can be challenging with cell samples however is achieving high concentrations of 

protein for analysis. In growth rate limiting experiments it may be necessary to perform 

replicates to achieve enough protein. As with tissue analysis this can be aided 

significantly by achieving a high degree of protein solubilisation and cell disruption. 
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Cellular disruption and protein solubilisation is carried out for both tissue and cell 

culture samples. Mechanical disruption of cells often includes sonication or narrow 

gauge syringe disruption in a chemical solvent. Sodium dodecyl sulphate (SDS) is 

commonly used to both destabilise the cell membrane and solubilise protein (Xu and 

Keiderling 2004). Other solvents such as 3-[(3-cholamidopropyl)dimethylammonio]-1-

propanesulfonate (CHAPS) and urea are also used to solubilise protein (Fountoulakis 

and Takacs 2001). Specific considerations may be required for hydrophobic protein 

solubilisation. Membrane proteins are notoriously difficult to solubilise and as such 

many protocols focus on increasing their recovery (Duquesne and Sturgis 2010) as well 

as enriching for them (Section 1.5.2.2) 

Sample preparation is therefore primarily focused on obtaining as much protein or 

proteins of interest form a given sample. Secondary to this the downstream analysis 

needs to be considered as solvent exchange maybe be required to remove solvents that 

interfere with gel based separation methods and liquid chromatography/mass 

spectrometry (LC/MS) based methods. With sufficient extraction of protein from the 

sample however sample processing methods are easily performed. If sample material 

and subsequent protein concentrations are limited then compatible solvents may be 

more suitable from the beginning to avoid protein loss with many purification and 

processing steps before analysis. 

 

1.5.2 Sample separation 

The complexity of a protein sample can be vast. Differential gene splicing, RNA editing 

and posttranslational modifications of proteins mean that there are >1,000,000 different 

proteins in the human genome which contains 20,000 - 25,000 genes (Figure 1.5.1) 

(Jensen 2004). This sheer magnitude of complexity results in protein identifications 

being obscured by more abundant proteins. Separating proteins out based on physical 

and/or chemical properties allows more identifications to be achieved in a given protein 

sample.  
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Figure 1.5.1 Proteome complexity in humans. There are an estimated >1x10
6
 proteins 

produced from only ~2.5x10
4
 protein coding genes. 

 

1.5.2.1 Gel based separation 

Sample separation was utilised early on in proteomic analysis to allow for proteins to be 

analysed (Shaw and Prasad 1970). Traditionally this consist of gel based separation 

techniques such as two dimensional Polyacrylamide Gel Electrophoresis (2D PAGE). 

This method consists of separation of proteins based on pH on a gel strip followed by 

the separation of these pH resolved proteins by mass - 2D separation. The result is 

thousands of resolved proteins on a gel which can be picked individually and processed 

for mass spectrometry identification. Spots are visualised with either fluorescent dyes or 

colourmetric such as coomassie or silver stain. Fluorescent labels can be used to 

perform differential protein analysis known as differential in-gel electrophoresis 

(DIGE). The various dyes required for DIGE however can be expensive as well as 

requiring a fluorescent scanner and special quantitative software. Coomassie and silver 

stain are cheaper but less sensitive alternatives (Winkler et al. 2007). Coomassie is 

compatible with downstream mass spectrometry analysis but silver stain is not 

compatible. Silver stain gels require a separate spot picking gel to be run for mass 

spectrometry analysis and therefore availability of sample material may require 
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consideration with this method. Ultimately however 2D PAGE techniques, while 

offering a high degree of separation, are time consuming and expensive and cheaper gel 

staining alternatives lack the sensitivity of 2D PAGE. 

One dimensional gels that only separate by mass are also routinely used but are usually 

reserved for proteomic technique that do not require high levels of protein separation. 

Western blot analysis and immuno-precipitation are two immunological based 

techniques using specific antibodies to bind to a specific protein. Separation on a 1D gel 

therefore is used to determine a resolved molecular weight relative to a molecular 

weight standard in order to confirm the specificity of the antibody binding on the gel. A 

high degree of separation may not be required if the protein of interest has a known 

molecular weight. A one dimensional gel in this case can be used to isolate proteins 

within a given weight, cutting out the gel in the correct area of the gel and preparing it 

for mass spectrometry analysis. Several studies even use this technique to maximise 

identifications by cutting up a protein lane into multiple bands, analysing each band and 

combining the resulting data (Petushkova et al. 2015). This has been met with relative 

success but one dimensional approaches are still more labour intensive and less high 

throughput than gel-free methods. 

 

1.5.2.2 Fractionation and enrichment 

The heterogonous properties of proteins are a characteristic that make them hard to 

analyse in a high throughput fashion like genes and RNA. This feature of proteins 

however can be exploited to achieve separation of protein sub populations. 

Characteristics of proteins are often spread across a variable range such as highly 

hydrophobic all the way up to highly hydrophilic (Sengupta and Kundu 2012). The 

word "fraction" usually refers more to the experimental parameters (e.g. Hydrophobic 

fraction) when in fact the proteins in the fraction have been preferentially enriched (e.g. 

hydrophobic protein enriched sample). This is an important distinction to clarify as 

many studies use this term interchangeably (Ly and Wasinger 2008). Some of the most 

common attributes exploited for fractionation or enrichment are protein mass, protein 

charge, PTM, differential solubilisation and cellular localisation. 

Fractionation by mass can be performed by size exclusion chromatography. These 

techniques utilise a porous agarose bead matrix within a vertical column. Protein sample 



 

27 
 

is added to the column with the highest mass proteins eluting at the bottom first. The 

smallest proteins are the last to elute from the column taking a more convoluted path 

through the pores in the matrix. Pore size can be used to preferentially separate proteins 

based on size (Irvine 2001). 

Proteins can also be separated based on charge. Similar to size exclusion a charged resin 

can be used to bind proteins with strong cation exchange resins binding positively 

charged proteins and strong anion exchange binding negatively charged proteins 

(Nakatani et al. 2012). Furthermore the proteins bound to the resin can be eluted off the 

column with increasing salt concentrations achieving greater separation between weak 

and strongly charged bound proteins (Schmidt, Hafner and Frech 2014). 

Charge state can also be exploited in relation to separation of specific post 

translationally modified proteins. Phoshopeptides carry a positive charge and can 

therefore be preferentially enriched using cation exchange methods. Specifically 

titanium dioxide is one of the main resins used for phosphopeptide enrichment 

(Ruprecht et al. 2015). 

Another characteristic often exploited is differential solubilisation. Most solubilisation 

buffers used in protein sample preparations are aqueous based. These solvents do not 

facilitate the solubilisation of hydrophobic proteins such as membrane proteins (Devraj 

et al. 2009). To solubilise these proteins organic non aqueous buffers can be used to 

solubilise hydrophobic proteins. Membrane proteins in particular don't represent a large 

proportion of the proteome in the cell which makes these techniques even more 

important for enrichment. Hydrophobic proteins represent a major class of proteins 

often associated with cell membranes and often mediate important cell signalling and 

therapeutic targets (Cho and Stahelin 2005). 

Cellular membranes, cytoplasmic and nuclear structures and organelles represent large 

structures in terms of proteins. As these structures are made of proteins it is possible to 

isolate them based on their cellular localisation. These methods usually involve 

centrifugation combined with some of the principles already mentioned such as 

differential solubility and differential mass of organelles. Gentle buffers are used to first 

disrupt the cell structure. Low speed centrifugation is then used to isolate the heaviest 

organelles such as the nucleus, ribosomes, endoplasmic reticulum, mitochondria, 

membrane (Graham 2015). With heavier organelles removed the retrieval of membrane 

proteins can be achieved by using differential solubility by using a non aqueous buffer 



 

28 
 

to enrich for hydrophobic proteins with a final centrifugation step to remove any 

remaining cell debris. These methods in particular are better described as enrichment as 

contamination with proteins from other cell structures commonly occurs (Murray, 

Barrett and Van Eyk 2009).  

 

1.5.2.3 Liquid Chromatography 

The separation methods discussed in Section 1.5.2.2 are often performed in relatively  

large volumes compared to liquid chromatography (LC). LC can encompass the 

principles of many of these methods including size exclusion, differential solubility, 

charge and PTMs but using smaller µl volumes of sample. This can prove particularly 

advantageous with limited sample material. The physical principles are the same as 

benchtop chromatography but on a smaller scale with sample passing through a resin 

(stationary phase) in a liquid (mobile phase).  

The nature of the stationary and mobile phases is dependent on the desired separation. 

Varying the flow rate of mobile phase and the organic solvent composition of the 

mobile phase over time is often used to manipulate the elution of peptide fragments. 

The degree of separation therefore can be finely tuned and optimised. Furthermore LC 

can be used in conjunction with mass spectrometry (MS) achieving in line separation 

before analysis. Multiple different columns can also be used to achieve even greater 

separation (Shen et al. 2001). 

 

1.5.3 Mass spectrometry 

Mass spectrometry (MS) has become the method of choice for most protein 

identification and quantification analysis. MS allows for a large number of proteins to 

be identified in a given sample based on the behaviour of their peptide fragments in a 

magnetic field. It is compatible with gel based, liquid based and LC based protein 

separation techniques. The following will outline the steps required to prepare protein 

samples for MS and analyse the resulting data. 
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1.5.3.1 Mass spectrometry sample preparation 

Sample preparation for MS proteomic analysis encompasses two approaches - "top 

down" and "bottom up". Top down approaches involve the analysis of whole proteins in 

their native structural form (Scheffler 2014). Bottom up approaches involve 

enzymatically digesting the proteins into peptide fragments and then analysing the 

fragments with MS. The data associated with each peptide fragment can then used to 

identify the protein and it's abundance. While top down approaches require less sample 

preparation it is the bottom up approaches which have shown to produce greater number 

of identifications when dealing with complex protein samples such as cell lysates and 

tissue (Resing and Ahn 2005). 

Protein samples for bottom up proteomics are typically denatured, reduced, alkylated 

and then finally enzymatically digested. Each step is performed to allow the protease 

enzyme access to the protein polypeptide chain and facilitate cleavage. Denaturation at 

95
 o

C and reduction in the presence of dithiothreitol breaks weak hydrogen bonds and 

strong disulfide bonds respectively. Alkylation, by iodoacetamide, inhibits the activity 

of cysteine peptidase preventing disulphide bonds to reoccur in a random manner (Boja 

and Fales 2001). The last step involves the denatured protein being digested with 

protease enzymes. Trypsin and Lys-C are some of the most commonly used enzymes 

with trypsin cleaving proteins at lysine and argenine residues (except after a proline) 

generating peptides 7-20 peptides in length (Siepen et al. 2007) while Lys-C cleaves at 

the C-terminal side of lysine residues (Gershon 2014). Enzymes that cleave at different 

residues can also be used in tandem to increase the number of cleavages and produce 

smaller peptide fragments and ultimately increase the amount of a identified sequence in 

a given protein (Gauci et al. 2009). The cleavage patterns are predicable and therefore 

can be used to determine the identity of the protein it belongs to hence the term "bottom 

up" analysis. 

 

1.5.3.2 Nano-liquid chromatography coupled to mass spectrometry 

Protein identification using MS is largely dependent on separation methods. As outlined 

in Section 1.5.2 there are various separation methods that can be used to process protein 

samples before MS preparation. As also mentioned the proteome is estimated to contain 

>1x10
6
 different proteins. Peptide digestion results in multiple fragments often up to 20 
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peptides in length and with hundreds of peptides in contained in some proteins the 

peptide fragmentation produces an even more complex sample by numbers than the 

protein source sample. Separation of peptides is therefore essential in allowing the MS 

analyser time to detect as many peptides as possible. High pressure liquid 

chromatography (HPLC) coupled with a reverse phase column is the most commonly 

used form of separation coupled with the MS instrumentation. Reverse phase columns 

achieve separation by exploiting peptide hydrophilic/hydrophobic (polarity) interactions 

with an inert C18 stationary phase and a charged aqueous/organic solvent mobile phase. 

By altering the composition of the mobile phase peptides can be retained and eluted 

over time. Solvent ratio gradients over long periods of time have been shown to increase 

peptide separation and hence increase the number of protein identifications achieved 

(Ma et al. 2011). A low flow rate of 200-400 nL/min is also desirable to achieve greater 

separation (Luo et al. 2006).  

The peptides that elute from the HPLC are then submitted to the MS. In order to be 

suitable for analysis the peptides need to be ionised. The most common ionisation 

methods are matrix assisted laser desorption ionisation (MALDI) and electron spray 

ionisation (ESI). MALDI involves mounting peptides onto a plate before they are 

irradiated by a laser. The resulting ablated gas ionises the peptides which then can be 

accelerated into the MS instrument. ESI can be easily applied to the terminal end of the 

HPLC column where an applied voltage disperses the peptides and solvent into an 

ionised aerosol that is drawn into the vacuum of the MS instrument (Ho et al. 2003). 

Mass analysers within the MS instrument operate on various principles all involving the 

migration of peptides based on their mass and charge through a magnetic field. Time of 

flight, ion trap, quadrupole and orbitrap mass analysers are all based on this principle. 

The clearest way to describe this principle is in a quadrupole mass analyser, which 

contains four rods. Two rods on the same plane (horizontal or vertical) have a direct 

current positive voltage while the other two rods have a negative direct current voltage 

applied (Figure 1.5.2). On top of this direct current an alternating current is also applied 

to all four rods. This means that all four rods switch between positive and negative 

voltages with two on the same plane having a stronger positive charge and the two rods 

on the opposite plane having a stronger negative charge.  
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Figure 1.5.2 Quadrupole mass analyser schematic. A direct and alternating current is 

applied to four rods. The oscillation of the generated magnetic field allows ionised 

peptides of a specific mass to charge (m/z) ratio to pass through to the detector 

(resonant ions) while those with an m/z ratio too high or too low collide with the rods or 

are expelled from the system (non-resonant ions).  

This oscillation perturbs the migration of the charged peptides and impedes their 

migration through the mass analyser to the detector. The overall mass of the peptides 

also dictates how they migrate through the magnetic field of the mass analyser. In the 

case of the quadrupole instrumentation the heavier the mass of the peptide the less 

influenced it will be by weak electromagnetic forces. Conversely strong magnetic forces 

mean that heavy peptide fragments have a tendency to crash into the rods and cannot 

readjust their path through the mass analyser as quickly as lighter fragments with the aid 

of the magnetic repulsion from the voltage switching.  

The end result is that the mass analyser acts like a filter for peptides of specific mass 

(m) and charge (z) states, Anything below a certain mass/charge (m/z) ratio ends up 

crashing into one set of rods and anything above a certain m/z ratio crashes into the 

other set of rods. This leaves only a small m/z ratio window that peptides are allowed 

through the analyser to the detector. By varying the voltage over time this window can 

be shifted to higher or lower m/z ratios allowing the detector greater time to analyse 

each m/z ratio subset of peptides effectively amplifying detection sensitivity (Douglas 

and Konenkov 2014). A linear ion trap mass analyser is a modification of the 
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quadrupole which allows ions to be trapped and focused tightly before being released 

through an opening to a detector. This ability to filter ions means that quadrupole mass 

analysers are now often used in conjunction with other mass analysers and instead of 

being released to a detector are coupled with other mass analysers. 

The orbitrap mass analyser in recent years has been coupled with the linear ion trap to 

produce a "hybrid" system, "hybrid" referring to the coupling of two different mass 

analysers in the same instrument. The orbitrap mass analyser can accurately measure 

mass as low as 2 ppm and has a much higher resolution at 100,000 FWHM (full width 

at half maximum) compared to quadrupole ion trap instruments at 50 ppm mass 

accuracy and 10,000 FWHM (Krauss, Singer and Hollender 2010). Orbitrap mass 

analysers work on a similar principle to quadrupole instruments in that a direct current 

is applied to a central electrode which is surrounded by a vacuum and enclosed in the 

excitation electrode. The application of voltage across the external electrode allows for 

the excitation and expulsion of the ions from the orbitrap towards the detector.  

In a linear-trap-quadrupole/orbitrap (LTQ-Orbitrap) hybrid such as the Thermo LTQ-

Orbitrap XL
TM

 the linear trap serves to trap and focus peptide ions and selectively 

deliver focused packets of ions to the orbitrap. Ion fragmentation occurs at a faster rate 

within the linear ion trap than in the orbitrap while the orbitrap has much higher 

resolving power than the linear ion. High fragmentation and resolution are essential in 

achieving a high degree of protein sequence coverage and increasing the number of 

protein IDs. 

 

Figure 1.5.3 Thermo Hybrid LTQ-Orbitrap XL
TM

 schematic. Peptide ions enter 

from the ion source, are filter based on m/z ratio in the ion trap and c-trap, analysed at 

high resolution in the orbitrap and further fragmented before detection for peptide 

fragmentation data. Figure adapted from (Rumachik et al. 2012). 
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This first round of MS can also be followed by further MS analysis. This is referred to 

as tandem mass spectrometry (MS/MS) (Figure 1.5.3). The peptides of a specific m/z 

ratio from the first MS are submitted to the second MS where they are fragmented 

further. Fragmentation is typically achieved using one of several methods such as 

electron transfer dissociation (ETD), collision induced dissociation (CID), high collision 

dissociation (HCD) or electron capture dissociation (ECD). CID is one of the most 

common methods and results in fragmentation of the peptide backbone by an inert gas 

resulting in different N terminal and C-terminal fragments. Instruments such as the 

triple quadrupole mass spectrometer perform this type of analysis with an initial m/z 

sorting quadrupole MS followed by a collision chamber for fragmentation and then a 

final quadrupole MS. The resulting MS/MS data provides further information on the 

MS ions, strengthing the quantification and providing more specific IDs. 

 

Figure 1.5.4 Work flow of tandem mass spectrometry (MS/MS) analysis (Boja et al. 

2010). Q1 involves MS separation of peptide ions, Q2 contains the fragmentation 

chamber where peptides are further fragmented and Q3 contains the MS that provides 

the final mass to charge ratio data on the fragmented peptide ions. 

 

1.5.3.3 Mass spectrometry data output 

At its most fundamental level MS/MS fragmentation allows the mass of each peptide in 

a peptide ion to be determined. As the peptide ion is fragmented it loses mass and this 

loss in mass can be used to determine the mass of each peptide (Table 1.5.1). Charge 

state of the peptide ion needs to also be considered as this shifts the mass of the peptide 

from the first MS m/z ratio. The MS/MS data however for each peptide will produce the 

same peptide fragmentation peak pattern for the same isotopes. The distance between 

peaks chromatographic peaks relating to the different masses of fragmented peptides 

can then be used to determine each amino acid in sequence (Figure 1.5.4). 
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Amino Acid Letter Average Mass (Da) 

Glycine G 57.0519 

Alanine A 71.0788 

Serine S 87.00782 

Proline P 97.1167 

Valine V 99.1326 

Threonine T 101.1051 

Cycteine C 103.1388 

Isoleucine I 113.1594 

Leucine L 113.1594 

Aspargine N 114.1038 

Aspartic acid D 115.0886 

Glutamine Q 128.1307 

Lysine K 128.1741 

Glutamic acid E 129.1155 

Methionine M 131.1926 

Histidine H 137.1411 

Phenylalanine F 147.1766 

Arginine R 156.1875 

Tyrosine Y 163.176 

Tryptophan W 186.2132 

Table 1.5.1 Amino acids and their average mass in daltons (Da) as determined by 

MS/MS analysis. 
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Figure 1.5.5 MS/MS spectrum of peptide fragments for Albumin (Ahn et al. 2008). 

The peptide sequence QNCELFEQLGEYK is fragmented from the N-terminal end 

producing "b" ions and from the C-terminal producing "y" ions. Distance between "b" 

ions or "y" ions which are used to determine the amino acids in the peptide sequence. 

The "b" ions provide an N to C terminus sequence while the "y" ions provide a C to N 

terminus sequence. Combining both provides a more confident peptide sequence to 

determine the protein identification. Unfragmented peptide m/z ratio is also used to 

obtain the identification with the MS/MS fragmentation data above. 

All of this data is collected in a proprietary mass spectrometry computer file. Thermo 

Scientific software for example outputs a RAW file where as Ab Sciex produce WIFF 

files. This means that proprietary software is usually required from the same vendor to 

access the data for further analysis. The overall file sizes can also vary depending on the 

complexity of the samples. 

 

1.5.3.4 Bioinformatics processing 

At the end of the LC-MS/MS analysis there is several pieces of data that are obtained 

for each protein. From the bottom up there is m/z ratio of fragmented peptide ions, m/z 

ratio of peptide ions, the abundance of both peptide fragment and peptide ions and 

finally the retention time associated with the peptides as they emerge from the HPLC. 

For the purposes of identifying proteins the m/z information is required. This is all 

contained within the resulting file output from the MS software.  

The data from these files can then be used to search spectral libraries and assign protein 

identifications. Search algorithms such as MASCOT and SEQUEST are commonly 

used. These algorithms are used to determine if peptide fragmentation patterns and 

sequences match that of proteins contained in an annotated spectral library (Sadygov, 
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Cociorva and Yates 2004). By inputting the enzyme used to facilitate protein cleavage 

the peptides can be predicted for every protein in the protein database. These theoretical 

fragments can then be searched against the fragment data obtained from the experiment. 

The experimental conditions have to be accounted for when processing the peptide data. 

Trypsin, for example, only cleaves at lysine and arginine residues except after a proline. 

Missed cleavages can also occur due to various amino acid sequence combinations after 

or before the lysine-arginine cleavage site (Schechter and Berger 1967, Monigatti and 

Berndt 2005, Yen et al. 2006). These missed cleavage events can be accounted for in 

MASCOT and SEQUEST allowing more of the experimental peptide data to be 

compared to the peptide database. Other modifications to in the peptides from the 

digestion and separation can also be accounted for such as the fixed 

carbamidomethylation of cysteine due to iodoacetamide in digestion procedure and the 

variable oxidation of methionine. For example the oxidation of methionine can be 

detected by a neutral loss of 64 kDa in the MS/MS data attributed to CID fragmentation 

removing the methanesulfenic acid (CH3SOH) group of oxidised methionine (Griffiths 

and Cooney 2002). These experimental parameters can be accounted for in MASCOT 

and SEQUEST with the users input but the way in which each algorithm  scores the 

matching between theoretical and experimental peptides differs. MASCOT calculates 

the probability that each peptide ion mass or MS/MS fragment ion mass from the 

experimental data is a match with the calculated peptide masses in the protein database 

(Perkins et al. 1999). SEQUEST compares fragment ions to the MS/MS spectrum and 

performs a cross correlation analysis against the top 500 scoring peptides (Sadygov 

2015). Scoring algorithms are however reliant on input for statistical cut offs from the 

user, therefore the level of stringency in scoring is user dependant. 

 

1.5.3.5 CHO database 

While automated database searching using search algorithms is high throughput it is 

dependent on the quality of the protein database used to search for theoretical peptides. 

Up until 2011 there was no genomic or proteomic database available for CHO with 

studies relying on sequence homology between Chinese hamster and well annotated 

mouse and rat databases (Doolan et al. 2010, Pontiller et al. 2008, Carlage et al. 2009).  
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With the release of the CHO genome by Xu et al (Xu et al. 2011) this changed allowing 

the generation of a CHO specific database. Subsequent additions to this including a 

cDNA library produced by Meleady et al and a transcriptomic study by Becker et al 

(Becker et al. 2011, Meleady et al. 2012a) have resulted in a reliable and tested database 

of identifications that can be used for proteomics. Access to the CHO genome presents 

numerous possibilities in the way of CHO cell engineering and understanding CHO 

phenotypes through profiling (Kildegaard et al. 2013). 

  

1.5.3.6 Quantitative label-free LC-MS/MS 

Previous sections (Section 1.5.1.2 and 1.5.1.3) have discussed how proteins are 

identified, however the quantification of protein involves further steps. Protein labelling 

methods have been used over many years producing a great deal of information on 

cellular physiology. The most widely used labelling methods include iTRAQ, iCAT and 

SILAC. Labelling strategies are capable of producing very low inter sample variation 

(Piehowski et al. 2013) but are subject to many limitations such as labelling 

inefficiency, poor dynamic range and a limit to the number of comparisons that can be 

made (Chandramouli and Qian 2009). 

With the increased capabilities of software analysis and LC-MS/MS separation it is now 

possible to use a label-free approach (Patel et al. 2009). This method uses spectral 

counting or ion peak intensity measurements (area under peak curve) as well as the 

retention time from the LC separation (Figure 1.5.6). Spectral counting is calculated 

from the linear relationship between MS spectra and peptide abundance. Peak ion 

intensity uses the chromatographic peak intensity of peptide precursors to calculate 

protein abundance (Neilson et al. 2011, Wong, Sullivan and Cagney 2008). 

Label-free methods are more susceptible to sample variation as there is no label used 

and variation in calculated abundance can be as a result of poor quantification in sample 

preparations. Label-free data analysis therefore relies heavily on computational data 

normalisation to minimise sample variation effects leading to inaccurate differential 

identifications (Listgarten and Emili 2005). As label-free analysis simultaneously 

identifies and quantifies proteins the balance between MS and MS/MS mode must also 

be considered. A separate analysis excluding (Hodge et al. 2013) or including  (Jaffe et 

al. 2008) specific m/z ratio peptides for MS/MS spectra analysis can be conducted if 
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proteins of a specific m/z are being looked for by the user i.e. biomarker discovery, 

increase sequence coverage. This can serve to improve quantitation or identify low 

abundant proteins. Overall though these limitations mean that confirmation of 

differential expression at the protein level or RNA level is routinely performed to 

validate label-free data. 

 

Figure 1.5.6 Schematic of label-free LC-MS/MS peptide and proteins quantitation. 

The peak represents a m/z ratio and retention time matched between two samples, A and 

B. Sample A has greater abundance than B for this particular peptide feature (left) or 

using the spectral count method Sample A has more MS/MS spectra associated with the 

particular peptide feature than B (right). Figure adapted from (Neilson et al. 2011) 

While comparatively new when compared to labelled quantification methods the label-

free LC-MS/MS method has now gained considerable popularity mostly due to the large 

experimental comparisons possible and the reduced sample preparation steps. Studies 

incorporating label free analysis range from cell studies (Ahn et al. 2008, Van Dyk et al. 

2003, Chong et al. 2012) all the way up to the analysis of tissues (Christin, Bischoff and 

Horvatovich 2011, Maltman et al. 2011, Katz et al. 2010, Piovesana et al. 2016) with 

associated optimised sample preparations. The limitations, as mentioned in the previous 

paragraph, require that experimental design considerations are crucial in generating 

useful and statistically accurate data. 
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1.6 General introduction - Novel breast cancer proteins 

Breast cancer is the most commonly diagnosed cancer in women accounting for 14% of 

all female cancer deaths worldwide (Jemal et al. 2011). Risk factors include, but are not 

limited to, age, ethnicity, obesity and lifestyle. The incidence of breast cancer is more 

common in women over 50 and those with a strong family history of breast cancer. In 

the last twenty years mortality rates related to breast cancer have decreased sharply due 

mostly to the implementation of screening and early detection. Administering 

treatments early on has proven to reduce mortality rates as well and also increase 5 year 

and 10 year disease free survival (DFS).  

Overtime these treatments have become more targeted based on profiling of breast 

cancer subtypes. The classic subtypes of human epidermal growth factor receptor 2 over 

expression (HER2+), oestrogen receptor positive (ER+) and progesterone receptor 

positive (PR+) have been exploited since the early 1990s and remain strong prognostic 

markers combined with histological grading, node involvement and tumour size 

(Simpson et al. 2005). While these breast cancers now have several targeted therapies 

and hormone based therapeutic options available there are still considerable unmet 

needs associated with triple negative breast cancers (TNBC) which lack expression of 

HER2, ER and PR and chemoresistant HER2+ disease. 

In recent years however both HER2+ and TNBC breast cancers have been further 

classified into subcategories such as Luminal A and Luminal B subtypes in HER2- and 

HER2+ breast cancer respectively and Basal like 1 (BL1) Basal like 2 (BL2) subtypes 

in TNBC (Lehmann, Pietenpol and Tan 2015). Further to this high Ki-67 expression in 

Luminal B breast cancer has been associated with increased auxiliary lymph node 

involvement compared to Luminal A subtype (Inic et al. 2014). Another tumour subtype 

classified as claudin-low expressing are a less common subtype within TNBC breast 

cancers although not all TNBC breast cancers are claudin-low (Prat et al. 2010). 

Specific clinical outcomes are also associated with the expression of Cytokeratin 5/6 

(CK5/6) (Nielsen et al. 2004), Epithelial growth factor receptor (EGFR) and Vimentin 

in Basal-like breast cancer (Livasy et al. 2006). Molecular profiling has therefore 

emerged as an effective tool to unravel the complexity of this disease. With an ever 

increasing number of breast cancer subtypes there is also a growing need to identify 

new therapeutic targets. 
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These relatively recent developments in profiling produced by the fields of genomics, 

transcriptomics, proteomics and metabolomics have become immense. The omics 

sciences have since become extremely useful in the field of breast cancer and have 

given rise to a growing field of computational biology surrounding breast cancer target 

prediction and discovery (Wirapati et al. 2008, Volinia et al. 2006). With highly 

successful targeted therapies already available for subtypes such as HER2+ breast 

cancer there is now a push to identify and exploit more breast cancer specific targets 

(Vanneman and Dranoff 2012). Acquired drug resistance in HER2+ tumors also means 

that these subtypes too require further target specific treatments (Vrbic et al. 2013). 

Identifying a single agent such HER2 that has a dramatic effect on cancer phenotypes is 

uncommon therefore antibody drug conjugates (ADCs) have been proposed as method 

to exploit cancer specific antigens that lack therapeutic activity (Sassoon and Blanc 

2013). This involves using an antibody against a cancer associated membrane protein 

for the targeted delivery of drugs to cancer cells. Profiling data will become invaluable 

in allowing researchers to mine large profiling data sets associated with the many 

varying breast cancer subtypes and establish subtype specific novel ADC targets. 

 

1.7 Breast cancer subtypes 

Breast cancer classification is achieved through several methods from grading according 

to immuno-histology observations and staging according to the local or metastatic 

development of the cancer. This is often referred to as the TNM method, tumor size (T), 

involvement of nearby lymph nodes (N) and presence or absence of metastatic tumors 

(M) and has been an established and standardised method for decades (Printz 2010). 

Molecular sub-typing has however also proven to hold great predictive and prognostic 

value (Carlson et al. 2009) with the use of multi-gene expression arrays and biomarkers 

(Rakha, Reis-Filho and Ellis 2010, Buyse et al. 2006) The following section will outline 

some of these subtypes and their clinical relevance. 

 

1.7.1 ER positive 

Estrogen receptor (ER) is one of the earliest molecular clinical markers being used since 

the mid 1970s. It is widely known as a key indicator for early reoccurrence and 

responsiveness to endocrine treatment (Rakha, Reis-Filho and Ellis 2010). The presence 
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of ER in breast cancer has now become a key component of much larger gene 

expression profiles defining the molecular profile of breast cancer (Dai, Chen and Bai 

2014). ER over-expressing tumors have been reported to comprise 75% of breast 

cancers with a higher percentage of 80% associated with patients over 50 (Anderson et 

al. 2002). Despite its high prevalence ER+ tumors are associated with less aggressive 

pathologies and have a far better outcome from surgery (Dunnwald, Rossing and Li 

2007) than ER- tumors (Putti et al. 2005). Furthermore ER+ tumors have been proven to 

be responsive to hormone therapies with 50% of ER+ responding to eostrogen inhibitors 

(Tamoxifen for early breast cancer: An overview of the randomised trials. early breast 

cancer trialists' collaborative group. 1998) and only a small documented number of ER- 

responding to hormone therapy (Dowsett et al. 2006). This variability clearly points to 

other key regulators within the ER subtype. ER status on its own while powerful in 

predicting breast cancer has only limited use in stratifying patient survival due to high 

rates of long term survival. It has also been reported that ER tumors differ greatly at the 

transcriptional and gene level (Farmer et al. 2005, Natrajan et al. 2010). With the 

application of molecular profiling ER+ breast cancers are often classified as belonging 

to the luminal subtype.  

 

1.7.2 PR positive 

Progesterone receptor (PR) is another endocrine activated protein like ER. It has been 

reported that up to 75% of breast cancers are PR+ (Colomer et al. 2005). Its clinical 

relevance has been questioned in the past with ER status being a stronger predicting 

factor in hormone treatment response rates (Olivotto et al. 2004). It has been shown 

however that up to 10% of all PR+ tumors are ER- (Rakha, Reis-Filho and Ellis 2010) 

making the vast majority of PR+ tumors also ER+. In contrast to this approximately 

40% of ER+ tumors are PR- (Rakha et al. 2007b). These ER+PR- tumors in turn are less 

responsive to hormone therapy than ER+PR+ tumors (Arpino et al. 2005). Lack of PR 

expression in ER+ breast tumors may therefore be linked to hormone therapy resistance 

(Bardou et al. 2003). PR and ER expression have become highly connected and as such 

ER and PR are often reported together in their respective combinations. The double 

positive group ER+PR+ accounts for 55 to 65% of breast tumors (Dunnwald, Rossing 

and Li 2007) with approximately 80% of these being responsive to hormone treatment 

(Dowsett et al. 2006). Double negative PR-ER- breast cancers on the other hand account 
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for approximately 25% of tumors and are associated with higher reoccurrence, no 

response to hormone therapy and poorer overall survival (Bardou et al. 2003). Single 

positive tumors such as PR+ER- or PR-ER+ groups respond less well to hormone 

treatment than double positive tumors and show increased expression of other 

proliferative markers such as epidermal growth factor (EGFR) and HER2 (Bardou et al. 

2003). The complex relationship between ER and PR have more recently been given 

further levels of sub classification. Categorising PR and ER in terms of percentage has 

shown clinical significance. Over-expressers defined as ER>50%, PR>50% have been 

shown as highly responsive to hormone therapy, ER/PR<10%, PR/ER>50% are less 

responsive to hormone therapy and finally ER<10%, PR<10% tumors show no benefit 

from hormone therapy (Goldhirsch et al. 2007).  Both PR and ER then, taken together, 

represent powerful prognostic markers for patient treatment. Still, poor outcome 

combinations such as PR-ER- still require further treatment options and classification. 

 

1.7.3 HER2 positive 

Human epithelial growth receptor 2 (HER2) has been identified as clinically significant 

in breast cancer since the late 1980s when it was observed to be 2 to 20 fold amplified 

in 30% of breast tumors (Slamon et al. 1987). HER2 tumors are now known to account 

for approximately 50% of invasive ductal breast cancers which are ER-PR- (Dandachi, 

Dietze and Hauser-Kronberger 2002, Quenel et al. 1995) and therefore do not respond 

well to ER and PR associated hormone therapies. There are however a number of other 

solutions such as antibody mediated inhibition of HER2 (Piccart-Gebhart et al. 2005), 

tyrosine kinase inhibitors (Wang 2014) and aromatase inhibitors (Rasmussen et al. 

2008) which are effective against HER2 over-expressing tumors as well as or in 

conjunction with chemotherapy treatments (Pritchard et al. 2008). While there are a 

number of treatment options available for this molecular subtype, specific combinations 

of HER2, PR, ER have more favourable clinical results than others with specific 

treatments. ER+, PR+, HER2+ for example show very little benefit from single 

hormone therapy and often benefit more from an anti-HER2 therapy (Cuzick et al. 

2011). Combinations with the worst outcome have been shown as ER-, PR-, HER2+ 

and ER-, PR-, HER2- (Lehmann et al. 2011). Taken together then ER+, PR+, HER2- 

have tumors have the best outcome while ER-, PR-, HER2- has the poorest outcome 

with the fewest targeted treatment options. 
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1.7.4 TNBC and Basal-like 

Triple negative breast cancers (TNBC) by definition do not express ER, PR and HER 

and are resistant to hormone therapies involving these molecular receptors. In reality 

however these tumors can lowly express these molecular markers depending on the 

methodology used (Dowsett et al. 2005, Regitnig et al. 2002, Stendahl et al. 2006). This  

lead to a TNBC false positive or negative diagnosis (Regitnig et al. 2002, Stendahl et al. 

2006). While this subtype is attributed to only approximately 15% of all breast cancers 

its poor prognosis disproportionately makes up a large portion of meta-studies on breast 

cancer deaths (Boyle 2012, Harris et al. 2006). As with other breast cancer subtypes 

there are several reported subtypes within TNBC.  

While "Basal-like" is sometimes used interchangeably with "TNBC" it has been 

reported that 77% of Basal-like breast cancers, as defined by phenotype and gene 

expression signature, are TNBC (Bertucci et al. 2008). Basal-like encompasses a 

expanding number of immunhistochemistry based markers from the cytokeratin family 

and epithelial growth factor receptor (Rakha et al. 2009, Cheang et al. 2008) but the 

most widely accepted definition is ER-, PR-, HER2- with positive expression of EGFR 

and cytokine 5 and 6. It has even been reported that cytokine expression profiling alone 

can identify carcinomas that display typical basal morphology (Rakha et al. 2007a, 

Fulford et al. 2006). Other markers of the basal subtype include several proteins 

involved in adhesion and metastasis such as vimentin and P-cadherin (Pan et al. 2010). 

The basal subtype, while included in the TNBC subtype, have a distinctly worse 

prognosis than ER-, PR-, HER2- TNBC (Perou 2011) with a poorer response to 

neoadjuvent chemotherapy (Fan et al. 2006). It is therefore important to have robust 

clinical markers to distinguish between these closely related subtypes. The BRCA1 

mutation has been suggested as one potential marker to make this distinction as this 

mutation has been repeatedly associated with basal type keratins (Turner et al. 2007). 

To further complicate basal identification a small percentage (1% to 18%) of these 

tumors exhibit ER+, PR+ activity (Rakha, Reis-Filho and Ellis 2010). Similarly HER2+ 

has been observed in a small number of basal marker defined tumors which show 

resistance to trastuzumab anti-HER2 antibody treatment (Harris et al. 2007). Taking all 

of this into consideration TNBC and its associated subtypes are often hard to identify. 

Identifying the specific type of TNBC breast cancer is crucial for individualised 

treatment, treatments of which are very limited with only modest advances in targeted 
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therapies compared to hormone receptor positive breast cancers (Crown, O'Shaughnessy 

and Gullo 2012). 

Effective treatment choices are currently limited to chemotherapy (anthracycline) which 

has proven to be quite effective and surgery. Anti-angiogenesis, such as anti-VEGF, 

therapy has also shown to be successful in triple negative groups in some data sets as 

well as in other subtypes. VEGFR inhibition is also emerging as successful. Suggested 

BRCA1 driven therapy. BRCA1"ness" has also recently been proposed as a method to 

stratify TNBC into further subcategories for PARP inhibitor therapies (Severson et al. 

2015). To date there are no approved targeted therapies for TNBC 

 

1.8 Breast cancer treatment 

1.8.1 Conventional therapy 

The first line of cancer treatment is usually surgical removal but this depends on a 

number of factors such as multicentricity and tumor size where larger tumors may first 

be subjected to chemotherapy (neoadjuvant) in order to save breast tissue (Carey et al. 

2007, Liedtke et al. 2008). For small tumors however surgery has proven the most 

successful and is usually combined with post operative chemotherapy, radiation or 

targeted drug therapy (Ruiterkamp and Ernst 2011). 

 

1.8.2 Chemotherapy 

Chemotherapeutic agents consist of a variety of chemical compounds that cause 

cytotoxicity. Ideally these have the effect of shrinking tumors, inhibiting tumor growth 

and ultimately destruction of tumor tissue. These agents can also be used as an adjuvant 

(after first presentation) therapy to prevent reoccurrence and metastasis. It is particularly 

useful in treating metastatic tumors as chemotherapeutic agents are delivered 

intravenously or orally. This however also means that chemotherapeutic agents can have 

a great have cytotoxic effects on healthy cells leading to the characteristic symptoms of 

hair loss, nausea and vomiting as well as many other side effects (Tao, Visvanathan and 

Wolff 2015). 
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Chemotherapeutics can be classified into several groups depending on their mechanism 

of action. The platinum group of which cisplatin is a commonly used agent cause DNA 

damage by the addition of a platinum adduct (Dasari and Tchounwou 2014). The 

alkylation agents of which cyclophosphamide is a member damage cellular DNA by 

addition of alkyl groups (McCarroll et al. 2008). Another mechanism is through the 

inhibition of pyramiding and purine production is by the anti-metabolites group of 

which methotrexate is a member (Tian and Cronstein 2007). DNA intercolators such as 

those of the anthracycline group function inhibit replication and DNA repair (Szulawska 

and Czyz 2006). 

 

1.8.3 Targeted therapy 

As mentioned in Section 1.7 various subtypes of breast cancer are successfully treated 

using targeted therapies. These therapies target clinically relevant proteins associated 

with the specific phenotype of a breast cancer subtype inhibiting growth and tumor 

progression. Most of these targets consist of hormone receptors meaning TNBC breast 

cancer subtypes do not respond to these treatments. 

HER2 positive breast cancer treatment shows some of the greatest examples of 

sucessful targeted therapies. These therapies act on several members of the epithelial 

growth factor receptor family including EGFR, HER2, HER3 and HER4. The first of 

these therapeutics developed was trastuzumab which is a humanised mAb. The antibody 

binds to the extracellular domain of HER2 receptor which inhibits downstream 

pathways such as PI3K-AKT-mTOR resulting in inhibition of proliferation (Slamon et 

al. 2001). While using trastuzumab on its own has proven successful it has also been 

shown that using it in conjunction with chemotherapy significantly reduces relapse 

(Piccart-Gebhart et al. 2005). Another highly effective targeted HER2 treatment called 

lapatinib (a small molecule reversible inhibitor) which targets both HER2 and EGFR 

(Burris et al. 2005). Lapatinib prevents the activation of pro cancer pathways such as 

Erk/MAPK (extracellular-signal-regulated kinase/mitogen-activated protein kinase). 

Afatinib works in a similar manner but has been shown to be more potent than lapatinib 

(Khelwatty et al. 2011). 

While all these therapies are useful they only relate to a sub categories of hormone 

receptor positive tumors. Tumor resistance associated with trastuzumab treatment has 
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necessitated its conjugation with a cytotoxic agent emtansine 1 to produce 

Trastuzumab-maytansinoid emtansine (T-DM1) an ADC (Lu et al. 2013). This 

approach of conjugating an antibody that targets a cancer specific antigen to a cytotoxic 

agent is now emerging as a viable targeted therapy strategy known as antibody drug 

conjugates (ADC) (Figure 1.8.1). While the targeted therapies mentioned related to 

antigens that have a significant role in cell function an ADC target antigen does not 

necessarily need to have such a function. The requirements for a useful ADC target the 

antigen must be present on the outside of the cell, ideally be cancer specific to minimise 

any toxicity to healthy tissue and lastly the antigen will internalise bound antibody 

thereby incorporating the antibody-drug conjugate into the cell. 

 

Figure 1.8.1 Delivery of cytotoxic drugs conjugated to a monoclonal antibody 

(ADC). Binding of cell surface antigen (green) causes internalisation of ADC. Upon 

internalisation the linker (light blue) is cleaved from ADC releasing the cytotoxic agent 

(red) (Panowski et al. 2014) 

Identifying novel target antigens will be important in developing these new targeted 

methods. 
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As well as T-DM1 there are several other targeted therapies available based on 

monoclonal antibody specificity to cancer specific membrane antigens (Table 1.8.1). 

ADC (market name) Lead Application Target Payload 

T-DM1 (Kadcyla) Roche Breast cancer HER2 Maytansinoid DM1 

Brentuximab vedotin 

(Adcertis) 

Seattle 

Genetics 

Hodgkin 

lymphoma 

CD30 Monomethyl auristatin E 

Gemtuzumab 

ozogamicin 

(Mylotarg)
*
 

Pfizer Acute 

myeloid 

leukemia 

CD33 Calicheamicin cytotoxin 

 

Table 1.8.1 ADCs approved for therapeutic use as of January 2016. The use of 

ADCs is relatively novel with far more ADCs currently awaiting further clinical trial 

results (see Table 1.8.2).
*
Mylotarg was approved but has since been removed from 

market by Pfizer after it was shown to have no therapeutic benefit (Petersdorf et al. 

2013). 

There are also many more currently in the clinical trial pipeline. As of 2013 there were 

30 ADCs of varying applications, targets and cytotoxic payload (Table 1.8.2). Many of 

the cytotoxic agents used in these new ADCs are P-glycoprotein substrates such as 

monomethyl auristatin E (MMAE) and calicheamicin. MMAE and other auristatins 

inhibit tubulin assembly causing cell cycle arrest at G2/M phase (Sapra and Shor 2013). 

Calicheamicin agents causes double-strand DNA breaks in cancer cells by binding to 

DNA's minor groove and can be useful for cancer types with low proliferation rates as 

cytotoxicity is independent of cell cycle progression (Sissi, Moro and Crothers 2015). 

The maytansinoid class tubulin inhibitors emtasine (DM1) and ravtansine (DM4) are 

also used in some clinical trial ADCs. 

As with many targeted therapies acquired drug resistance can develop through reduced 

expression of the target antigen which has been observed with T-DM1 treatment 

(Barok, Joensuu and Isola 2014). There is also evidence that activation of the 

P13K/AKT, MEK/ERK and JAK/STAT pathways increases ADC resistance and 

combination therapies may still be important with ADC treatment  (Shefet-Carasso and 

Benhar 2015). 
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Table 1.8.2 ADCs for solid tumors in clinical trial phases I, II and III. Some ADC 

targets were not disclosed as denoted by N/D. Most payload agents are maytaninoid 

(DM1, DM4), auristatin (MMAE, MMAF) or caliceamicin class molecules. Data 

adapted from (Mullard 2013). 

 

ADC Lead Application Target Payload Phase

Inotuzumab ozogamicin 

(CMC-544)

Pfizer Aggressive non-Hodgkin's 

lymphoma; acute 

lymphoblastic leukaemia

CD22 Calicheamicin III

RG-7596 Genentech DLBCL and follicular non-

Hodgkin's lymphoma

CD79b MMAE II

Pinatuzumab vedotin (RG-

7593)

Genentech DLBCL and follicular non-

Hodgkin's lymphoma

CD22 MMAE II

Glembatumumab vedotin Celldex Breast cancer GPNMB MMAE II

SAR-3419 Sanofi DLBCL; acute lymphoblastic 

leukaemia

CD19 DM4 II

Lorvotuzumab mertansine 

(IMGN-901)

ImmunoGen Small-cell lung cancer CD56 DM1 II

BT-062 BioTest Multiple myeloma CD138 DM4 II

PSMA-ADC Progenics Prostate cancer PSMA MMAE II

ABT-414 AbbVie Glioblastoma; non-small-cell 

lung cancer; solid tumour

EGFR N/D I/II

Milatuzumab doxorubicin Immunomedics Chronic lymphocytic 

leukaemia; multiple myeloma; 

non-Hodgkin's lymphoma

CD74 Doxorubicin I/II

IMMU-132 Immunomedics Solid tumour TACSTD2 (TROP2/ 

EGP1)

Irinotecan 

metabolite

I

Labetuzumab-SN-38 Immunomedics Cancer; colorectal cancer CEA (CD66e) Irinotecan 

metabolite

I

IMGN-853 ImmunoGen Ovarian tumour; solid tumour Folate receptor 1 DM4 I

IMGN-529 ImmunoGen B cell lymphoma; chronic 

lymphocytic leukaemia; non-

Hodgkin's lymphoma

CD37 DM1 I

RG-7458 Genentech Ovarian tumour Mucin 16 MMAE I

RG-7636 Genentech Melanoma Endothelin receptor 

ETB

MMAE I

RG-7450 Genentech Prostate cancer STEAP1 MMAE I

RG-7600 Genentech Ovarian tumour; pancreatic 

tumour

N/D N/D I

RG-7598 Genentech Multiple myeloma N/D N/D I

RG-7599 Genentech Non-small-cell lung cancer; 

ovarian tumour

N/D N/D I

SGN-CD19A Seattle Genetics Acute lymphoblastic 

leukaemia, aggressive non-

Hodgkin's lymphoma

CD19 MMAE I

Vorsetuzumab mafodotin Seattle Genetics Non-Hodgkin's lymphoma; 

renal cell carcinoma

CD70 MMAF I

ASG-5ME Agensys Pancreatic tumour; stomach 

tumour

SLC44A4 (AGS-5) MMAE I

ASG-22ME Agensys Solid tumour Nectin 4 MMAE I

AGS-16M8F Agensys Renal cell carcinoma AGS-16 MMAF I

MLN-0264 Millennium Gastrointestinal tumour; solid 

tumour

Guanylyl cyclase C MMAE I

SAR-566658 Sanofi Solid tumour Mucin 1 DM4 I

AMG-172 Amgen Cancer; renal cell carcinoma CD70 N/D I

AMG-595 Amgen Glioma EGFRvIII DM1 I

BAY-94-9343 Bayer Mesothelioma Mesothelin DM4 I
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1.9 Aims of thesis 

The overall aim of the Chinese hamster ovary (CHO) proteomic profiling is to identify 

proteins involved in CHO cell phenotypes and potentially identify those which could be 

used as targets for CHO cell engineering in industry. The following are the specific 

aims for each CHO study. 

 To investigate the effect of microRNA-7 on the CHO proteome 

Previous work in our laboratory revealed several microRNAs, e.g. miR-7, to be 

differentially regulated in temperature shifted CHO cells. Growing cells at a lower 

temperature (temperature shift) produces a phenotype that prolongs growth in culture, 

reduces proliferation and overall increases productivity over time.  

Transient miR-7 over expression in cells grown at 37 
o
C was found to produce a 

temperature shift phenotype (Barron et al. 2011a). As microRNA regulate protein 

translation we proposed using quantitative label-free LC-MS/MS analysis to identify 

proteins differentially regulated in response to miR-7 over expression. The resulting 

data would allow us to investigate predicted miR-7 direct targets from bioinformatics 

tools and to determine the specific effect of miR-7 using pathway analysis. Also since 

microRNAs negatively regulate protein translation it would allow us to identify 

potential knock down targets in the down-regulated proteins to potentially induce a 

temperature shift phenotype. 

 To investigate the deeper proteome of temperature shifted CHO cells 

In the last number of years in our laboratory we have developed a quantitative label-free 

LC-MS/MS platform for proteomic research. The principal method used previous to this 

was 2 dimensional gel electrophoresis (2D-DIGE) (Kumar et al. 2008). Quantitative 

label-free LC-MS/MS methods have a higher throughput than methods such as 2D 

DIGE. One of the key disadvantages of quantitative label-free LC-MS/MS however is 

the volume of peptide data that the mass analyser has to process compared to labelled 

methods. Highly abundant peptides can mask the identification (ID) of less abundant 

peptides and ultimately reduces the number of and quality of the resulting protein IDs. 

We proposed using simple benchtop cellular component enrichment kits to reduce 

sample complexity. This should lead to a larger number of IDs overall between enriched 

fractions compared to the unfractionated sample. It is also expected to produce a 

number of IDs that are unique to the enriched fractions compared to the unprocessed 

sample. The functional effect of these proteins on CHO cell phenotype was investigated 

with the aim to replicate the characteristics of temperature shift. 
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The breast cancer study was conducted with the overall aim of identifying novel 

membrane expressed protein targets showing high differential tumor/normaltissue 

expression and also to confirm these targets suitability as potential antibody drug 

conjugate (ADC) candidates. The following were the specific aims of the novel breast 

cancer target study presented in this thesis. 

 To identify potential membrane proteins differentially expressed in breast 

cancer versus normal breast tissues.  

(A)  Using bioinformatics profiling of publicly available, differentially expressed, 

transcriptomic data on various breast cancer subtypes to identify potential membrane 

proteins highly expressed in breast cancer sub-types with respect to normal breast 

tissue; (i) triple negative breast cancer (TNBC),  (ii) oestrogen receptor positive (ER+), 

(iii) lymph node positive (LN+) and (iv)  human epidermal growth factor positive 

(HER2+) sub types.  

(B) Using uniprot database information to predict potential  membrane localised 

proteins. We wished to identify proteins that were, ideally, novel breast cancer 

candidate targets, i.e. protein targets which previously had not been  documented to 

have a functional role in breast cancer and furthermore could be demonstrated to be 

present in the membrane. The approach was to validate their expression across a large 

panel of breast cancer cell lines (whole cell and membrane enriched extracts) 

representing the above subtypes. 

 To investigate the expression of these potential novel membrane protein 

targets in  breast cancer sub-types, and normal breast tissues. 

With new breast cancer subtypes and profiles being generated with better profiling and 

computational techniques as well as resistance to certain treatments there is still a 

constant search for potential drugable targets to widen treatment options.  

The overall aim was to validate the expression of potential targets that could be used for 

antibody drug conjugate treatment (ADC) as targeted delivery method for cytotoxic 

drugs. Such a target will ideally be present at high levels in the membrane of breast 

cancer cells so as to be accessible to the ADC and have low to negligible  expression in 

other healthy tissues. The work presented in this thesis aimed to investigate a panel of 

membrane associated targets in specific breast cancer sub-types to address if these 

candidate proteins may have the potential to be further investigated as ADC molecular 

targets for breast cancer.  
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2.1 Cell culture techniques 

2.1.1 Preparation of culture media 

Glassware used for cell culture was soaked in a 2% RBS-25 (Chemical Products R. 

Borghgraef S.A.) for 1 hr and washed in an industrial dishwasher with Neodisher 

detergent and rinsed twice with UHP. Ultrapure water (UHP) was purified with a 

reverse osmosis system (Millipore MillI-RO 10 Plus, Elgastat UHP) to a standard of 12-

18 MΩ/cm resistance. Autoclave sterilisation was carried out at 121
 o
C for 20 min at 15 

bar (Thermolabile solutions were filtered through 0.22 μm sterile filters (Millipore, 

Millex-GV SLGV025BS)).  

 

2.1.2 Suspension culture 

Cell culture was carried out in a class II down flow re-circulating laminar flow cabinet 

(Nuaire Biological Cabinet). Laminar flow cabinets are swabbed with 70% industrial 

methylated spirits (IMS) before and after use. A 15 min clearing step was observed in 

between working with different cell lines. Operation of laminar flow cabinets was done 

under strict aseptic techniques. Cell culture cabinets and incubators were also cleaned 

with industrial detergents (Virkon) and IMS on a weekly rota cleaning schedule 

Suspension cultures were grown in either sterile disposable 250 ml vented cap flasks 

(Corning, cat. 431144) with a 30-50 ml working media volume or a disposable 50 ml 

vented cap spin-tube (Sartorius, DF-050MB-SSH) with a 2-5 ml working media 

volume.  

Suspension adapted CHO-K1-SEAP cell cultures were maintained at 37
 o

C in an 

atmosphere with 5% CO2 with 80% humidity in an ISF1-X (Climo-Shaker) Kuhner 

incubator at 170 rpm. Cells were passaged every 3 days, spun down at 170 x g (1000 

rpm) for 5 min and the pellet resuspended in 10 ml fresh media for a new flask. 

Suspension CHO-K1-SEAP were grown in serum-free medium in CHO-S-SFM II 

(Gibco, 12052114), a complete, serum free, low protein (<100 μg/ml). Media was 

supplemented with geneticin (Sigma-Aldrich, A7120) selection agent at 1000μg/ml. 

Cells were counted as in Section 2.2.1 and seeded at a concentration of 2x10
5
cells/ml. 
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2.1.3 Adherent culture 

A total of 10 adherent breast cancer cell lines were used. As listed in Table 2.1.1 cells 

were grown in RPMI 1640 (Gibco, 52400025), Dulbeco's minimum essential medium 

(DMEM) (Gibco, 52400-025) or high glucose media DMEM GlutaMAX™ (Gibco, 

61965-026) as required. Media was supplemented with 10% (v/v) foetal calf serum 

(FCS) (PAA, GE Healthcare BioScience Corp), 2% (v/v) L-Glutamine (L-Glut) (Gibco, 

11140-0350) and/or 0.5% (v/v) insulin (Thermo, 41400045) as required and detailed in 

Table 2.1.1. Cells were grown in vented 75 cm
2
 (Costar, 3276) or vented 175 cm

2
 flasks 

(Costar, 431466) as required at 37
 o

C in an atmosphere with 5% CO2. Specifically 

MDA-MB-157 required 175 cm
2
 flasks for cell lysate preparations due to low protein 

concentrations in this cell line. 

As with suspension culture in Section 2.1.2 cell culture was carried out in a class II 

down flow re-circulating laminar flow cabinet (Nuaire Biological Cabinet). Laminar 

flow cabinets are swabbed with 70% industrial methylated spirits (IMS) before and after 

use. Only one cell line at a time was manipulated inside the laminar flow cabinet with a 

15 min clearing step observed in between working with different cell lines to avoid 

cross contamination. 

Cell line Basal media Supplementation Source 

BT20 DMEM 10% FCS NICB 

BT474 RPMI 1640 10% FCS, 2% L-Glut NICB 

HS578T DMEM 10% FCS, 2% L-Glut, 0.5% insulin NICB 

MCF7 DMEM 10% FCS, 2% L-Glut NICB 

MDA-MB-157 DMEM GlutaMAX™ 10% FCS NICB 

MDA-MB-231 RPMI 1640 10% FCS NICB 

MDA-MB-361 RPMI 1640 10% FCS NICB 

MDA-MB-468 RPMI 1640 10% FCS NICB 

SKBR3 RPMI 1640 10% FCS NICB 

T47D RPMI 1640 10% FCS, 2% L-Glut NICB 

 

Table 2.1.1 Breast cancer cell lines used in Chapter 6. All were grown in vented 75 

cm
2
 or vented 175 cm

2
 flasks at 37

 o
C in a 5% CO2 atmosphere. 
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Once media exhaustion was observed the flask was rinsed with 2 ml PBS solution to 

remove spent medium. Depending on the size of the flask, 2-5 ml of trypsin solution 

(0.25% (v/v) of trypsin (Gibco, 043-05090) and 0.01% (v/v) of EDTA (Sigma, E9884) 

solution in PBS (Oxoid, BRI4a)) was then added. Cells were incubated at 37
 o

C for 

approximately 2-5 min or until all of the cells detached from the inside surface of the 

flask. To deactivate trypsin an equal volume of complete media (containing FCS) was 

added to the flask. 

For membrane protein isolation preparations of adherent cells we used Cell Dissociation 

Buffer (Gibco,13151-014) instead of trypsin due to the likely hood of membrane protein 

cleavage by trypsin (See Section 3). Detachment was monitored by microscope.  

Cells were then spun at 170 x g for 5 min in a sterile universal container (Sterilin, 128a). 

The supernatant was removed and the cell pellet was resuspended in fresh medium. A 

cell count was performed as described in Section 2.2.1 with an aliquot taken to seed a 

new flask. Waste media and cells were sent for autoclave inactivation. 

 

2.1.4 Cryopreservation of cells 

Cells for cryopreservation were harvested in mid-log phase of growth and were counted 

as described in Section 2.2. Cell pellets were resuspended in a suitable volume of serum 

and an equal volume of an ice cold filter sterilized (0.22 μm) solution of 10% (v/v) 

DMSO (Sigm-Aldrich, D5879) in serum was added dropwise while mixing the cell 

suspension. 1 ml of cell suspension was aliquoted into the cryovials (Greiner, 122278) 

and stored on ice during immediate transport to the -20
 o

C freezer for 1 hr. Cryovials 

were then placed in a -80
 o

C freezer for four hr or overnight followed by transfer to 

liquid nitrogen tank for long term storage  at -196 
 o
C. 

 

2.1.5 Thawing cells 

Upon removal from liquid nitrogen the cryovial was thawed in warm water. Following 

observed thaw, pre-warmed media (37 °C) was added to thaw the pellet fully. The cell 

suspension was centrifuged at 170 x g for 5 min, the supernatant removed and the 

resulting pellet resuspended in warmed fresh media. To remove any remaining DMSO 

the suspension cells were grown in 5 ml suspension spin tubes for 24 hr and the media 
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replaced. Similarly adherent cells were grown for 24 hr in 75 cm
2
 vented culture flask 

and media replaced. 

 

2.1.6 Mycoplasma testing 

Routine screening for Mycoplasma was carried out every 4 months on cell lines using 

the Fluorescent Hoechst stain method by Mr. Michael Henry. Mycoplasma-negative 

NRK (Normal rat kidney fibroblast) cells were used as indicator cells for this analysis. 

NRK cells were incubated with a sample of supernatant from the cell lines being tested 

for the presence of mycoplasma and then stained. 

 

2.2 Cell counting and viability 

2.2.1 Trypan blue 

Trypan blue (Gibco, 525) is a dye exclusion technique that penetrates and stains dead 

cells blue, excluding live cells with intact membranes. This was the most routine 

counting method used for cell culture experiments. Equal amount of cells and trypan 

blue were mixed. 10 μl of this mixture was transferred to a haemocytometer (Neubauer) 

and covered with a coverslip. Live cells and dead cells were counted in four corner grids 

(Figure 2.2.1) in the haemocytometer and the average calculated.  

 

Figure 2.2.1 Haemocytometer grid. Four corner grids are counted and the average 

viable (non dyed) and dead (dyed) cell number is determined. 
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The cells/ml concentration was calculated by multiplying by 10
4
 (the volume of the 

grid) and the dilution factor used when mixing with trypan. Percentage viable cells were 

calculated by counting the number of non dyed live cells and dyed dead cells to get the 

total cell number. Viable cells percentage is then expressed as ("dead cell number"/"live 

cell number") x 100). 

  

2.2.2 Cedex automated cell counter 

The Cedex Automated Cell Counter (Roche Innovatis AG) is an automated cell 

counting system based on the Trypan Blue exclusion method. As well as cell counts and 

viability it also determines cell size. It was employed in the cell density, cell viability 

and cell size measurements in Section 4.4. 

Each Cedex XS Smart Slide contains 8 chambers that can hold 10 μl. Cells were diluted 

with Trypan Blue below 1 x 10
7
 cells/ml in order to obtain an accurate cell count. Four 

chambers on each slide can be read after insertion into the slide carrier of the 

instrument. To read the 4 chambers at the other side the slide is removed from the slider 

and positioned in the opposite direction. The slide can be pushed into the instrument 

into four positions to read each chamber.  

To avoid cell stress 4 samples were prepared at a time. Initially 5 μl of cells was mixed 

with 5 μl of Trypan blue in an eppendorf tube. Following Cedex XS readings dilutions 

were performed as necessary to achieve a countable cell number. 

 

2.2.3 Flow cytometry 

Guava Viacount
® 

reagent (Merck-Millipore) uses two DNA dyes to count cell through 

the EasyCyte flow cytometry system. The membrane permeable-dye (LDS-751) stains 

all nucleated cells and is detected by photomultipler tube 2. The membrane impermeant-

dye (propidium iodide) stains only damaged cells distinguishing viable, apoptotic, and 

dead cells and is detected by photomultiplier 1. Furthermore viable cell fluorescence is 

accompanied by a forward light scattering measurement. If the forward light scattering 

is appropriately large then the event is counted as a live cell but if it is too small it is 

counted as cell debris. 
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Cell counting was performed in a round bottom 96 well plate format (Costar, 10308005) 

which was loaded into the sample tray. No less than 100 μl should be used per well to 

allow the sample syringe to acquire. Cell count must also be >10 cells/μl and <500 

cells/μl to obtain an accurate reading.  

 

Guava Viacount
® 

reagent was allowed to reach room temperature in the dark before 

aliquoting the required amount into a sterilin (100 μl per sample). Cells in serum free 

media were then diluted to 100 μl to achieve a >10 cells/μl and <500 cells/μl 

concentration of cells. The 100 μl volume of diluted cells were then added to the 96 

well round bottom plate followed by the room temperature Guava Viacount
®. 

Cells and 

dye were left to complex for 10 min before reading on the Guava flow cytometer. 

WorkEdit™ Software was used to acquire the data with care taken to enter the correct 

cell dilution factor. EasyFit software analysis processes the data and reports viable cells/ 

dead/apoptotic cells and cellular debris.  

 

This counting method is capable of counting very low cell concentrations and was 

employed in Section 3.1 as this experiment resulted in cell cycle arrest and low seed 

concentrations of cells (1 x 10
5 

cells/ml). These would have been impossible to count 

using the Trypan Blue methods in Section 2.2.1 and Section 2.2.2 and have sample 

remaining for proteomic analysis. 

 

2.3 Molecular techniques 

2.3.1 Transfection with miRNA/siRNA 

CHO-K1 SEAP cells seeded at 1 x 10
5
 cells/ml with a viability at minimum 90%, were 

transiently transfected with a total concentration of 50 nM double stranded miRNA 

mimic molecules (GenePharma #M-01-D), non specific double stranded controls 

(GenePharma, #M-03-D, double stranded microRNA mimic negative control, 

GenePharma) or siRNAs (Custom design, Integrated DNA Technologies). Both miRNA 

and siRNA were purchased in a lyophilised form and reconstituted using nuclease-free 

water (Ambion®, AM9932) in a laminar flow cabinet. miRNAs and siRNAs were made 

up to a final stock concentration of 50 μM. Reconstituted miRNA/siRNA were vortexed 

for 1 min, centrifuged briefly and stored at -20
 o
C. Sequences for miRNA can been seen 

in Table 2.3.1 and siRNA in Table 2.3.2 below. 
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Transfections were carried out using SiPORT
®
 NeoFx™ transfection reagent (Ambion, 

AM4510), a lipid based transfection reagent. The following describes a typical 

transfection using a final concentration of 50 nM miRNA/siRNA. In all subsequent 

volumes 10% extra is included to account for potential pipetting errors. To start 2.2 μl 

of 50 μM siRNA/miRNA stock was added to 110 μl warmed (37
 o

C) serum free CHO-

S-SFM II media. NeoFX™ was allowed to reach room temperature before adding 2.2 μl 

to a separate pre warmed (37
 o

C) 110 μl volume of CHO-S-SFM II. To complex the 

miRNA/siRNA with the NeoFX™ both 112.2 μl mixtures are added together. The 

resulting 224.4 μl siRNA/miRNA/NeoFX™/Media complex was allowed to incubate 

for 10 min at room temperature. Inoculation of 1.8 ml of cells at 1.1 x 10
5
 cells/ml (2 x 

10
5
 cells) with 200 μl of the 224.4 μl siRNA/miRNA/NeoFX™/Media complex results 

in 2 x 10
5
 cells/ml transfected either an miRNA/siRNA concentration of 50 nm. Care 

was taken to add the 200 μl complex drop wise to the cells with constant swirling 

agitation to minimise transfection cell stress. All transfections were performed in 

triplicate and for relevant controls. Volumes above were multiplied accordingly 

depending on the number of samples required.  

 

hsa-mir-7 mimic 

(functional strand) 

5'
uggaagacuagugauuuuguugu

3'
 

Double stranded non 

specific control 

5'
uucuccgaacgugucacgutt

3'
 

5'
acgugagacguucggagaatt

3
' 

Table 2.3.1 Sequence of miRNA mimic and control used in Chapter 3. Shown are 

the functional strand of the double stranded pre-miR-7 mimic (Genepharma, #M-01-D) 

and sequence of  non specific double stranded control (Genepharma, #M-03-D). 
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Target Sequence 

  

Negative Control  

(NC5 - IDT premade 

nonspecific sequence) 

 

CAUAUUGCGCGUAUGUCGCGUUAG 

CUAACGCGACUAUACGCGCAAUAUGGU 

    

Cyclon (Oligo 1) AGAGACGUCAUCCAAAUCUCUUCCC 

  GGGAAGAGAUUUGGAUGACGUCUCUCG 

Cyclon(Oligo 2) CACCGUGUCUGAAACAGGAAGCAGG 

  CCUGCUUCCUGUUUCAGACACGGUGAU 

Cyclon (Oligo3) CUGGACUCAGAGGUGGUACACGCTA 

  UAGCGUGUACCACCUCUGAGUCCAGUU 

    

Ezrin (Oligo 1) CUUUUUGAUCAGGUAGUAAAGACTA 

  UAGUCUUUACUACCUGAUCAAAAAGCU 

Ezrin (Oligo 2) CGCUAUGUUGGAAUACCUGAAGATT 

  AAUCUUCAGGUAUUCCAACAUAGCGCU 

Ezrin (Oligo 3) GGACUUAAUAUUUAUGAGAAAGATG 

  CAUCUUUCUCAUAAAUAUUAAGUCCAA 

    

Moesin (Oligo 1) GAAUGAGCGUGUGCAGAAGCAUCTT 

  AAGAUGCUUCUGCACACGCUCAUUCUU 

Moesin (Oligo 2) GCAGAUUGAAGAGCAGACUAAGAAG 

  CUUCUUAGUCUGCUCUUCAAUCUGCUU 

Moesin (Oligo 3) AGCGUCAAGAAGCUGAAGAAGCCAA 

  UUGGCUUCUUCAGCUUCUUGACGCUCU 

    

Lamin A (Oligo 1) GACUUGGUGUGGAAGGCACAGAACA 

  UGUUCUGUGCCUUCCACACCAAGUCAG 

Lamin A (Oligo 2) AGGCUAAGAAGCAACUUCAGGAUGA 

  UCAUCCUGAAGUUGCUUCUUAGCCUCA 

Lamin A (Oligo 3) GAACUGGACUUCCAGAAGAACAUCT 

  AGAUGUUCUUCUGGAAGUCCAGUUCCU 

 

Table 2.3.2 Sequences of custom CHO double stranded siRNA. A pre made negative 

control was supplied (IDT, NC5). For each target Cyclon, Ezrin, Moesin and Lamin A 

there were 3 alternative oligomers designed based on the CHO sequence submitted. 
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2.3.2 RNA extraction 

Tri Reagent
®
 is a mixture of guanidine thiocyanate and phenol in a monophase solution 

that separates DNA, RNA and proteins into 3 phases: an aqueous phase (RNA), the 

interphase (DNA), and an organic phase (proteins). 1ml is capable of lysing  5-10 x 10
6 

cells in accordance with manufacturer's instructions.  

 

To achieve this 1 x 10
7
 cells were counted (see Section 2.2.1), centrifuged and the 

supernatant removed. Lysis was preformed with the addition of 1ml of Tri Reagent
®
. 

Cells were incubated at room temperature for 5 min. Phase separation was achieved 

with the addition of 200 μl chloroform (Sigma-Aldrich, C2432). The sample was then 

vortexed for 15 sec and allowed to stand for 10 min. Subsequent centrifugation at 

13,709 x g (12,000 rpm) for 15 min at 4
 o
C separated the solution into 3 visibly distinct 

phases - red organic layer containing proteins, intermediate phase containing DNA and 

the upper aqueous phase containing RNA. The aqueous phase is removed and 

transferred to a fresh tube. A 500 μl volume of isopropanol was added the aqueous 

phase. The mixture is allowed to stand for 10 min, centrifuged for 10 min at 13,709 x g 

at 4
 o
C and the supernatant was removed. Precipitated RNA may be observed at the side 

of the tube. RNA was then washed with 1 ml 75% ethanol. Sample was mixed 

thoroughly by vortex before being centrifuged at 5,355 x g (7,500 rpm) for 10 min at 4
 

o
C. The ethanol was then poured off and the RNA pellet allowed to air dry for 10 min. 

Before becoming totally dry the RNA pellet was resuspended in nuclease-free water. 

The resulting isolated RNA was resuspended in appropriate volume (20 μl) in nuclease-

free water. 

 

2.3.3 RNA quantitation 

A NanoDrop 2000 (Thermo scientific), a spectrophotometer for nucleic acid and protein 

quantitation, was used for DNA/RNA quantitation. The instrument arm was cleaned 

with a lint free wipe and UHP before sample analysis. An RNA/DNA sample solution 

of 1.5 μl was applied to the pedestal of the NanoDrop. The upper arm was lowered until 

a column of liquid was observed to from the DNA/RNA solution and the upper arm 

making contact. Light absorbance at 260 nm was measured and sample purity 

determined 260/280 nm with a reading of ~1.8-2.2 being indicative of pure RNA/DNA. 
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2.3.4 RNA to cDNA synthesis 

Total RNA was extracted as in Section 2.3.2 and isolation confirmed by RNA 

quantitation as in Section 2.3.3. Reverse transcription was performed to convert RNA 

into complementary DNA (cDNA). RNA samples were reverse transcribed into cDNA 

using Taqman microRNA Reverse Transcription kit (Applied Biosystems, 4366596). 10 

μl of master mix, containing 10x reverse transcription buffer, 25x dNTP Mix (100 mM), 

10x Random primers, 1 μl of Multiscribe
®
 Reverse Transcriptase (50 U/μl) and 1 μl of 

RNase Inhibitor, was added to 2 μg of RNA in 5 μl volume into a 500 μl eppendorf 

tube. 

 

Component Master Mix single reaction (μl) 

100mM dNTPs (with dTTP) 0.15 

MultiScribe® Reverse Transcriptase, 50 U/μl 1.00 

10x Reverse Transcriptase, 50 U/μl 1.5 

5x Reverse Transcriptase Primer 3 

RNase Inhibitor, 20 U/μl 0.19 

Nuclease -free water  4.16 

Total Volume 10 

 

Table 2.3.3 Reverse transcription master mix volumes for a single reaction. 

The final volume of 15 μl (10 μl Master Mix and 5 μl RNA) was then submitted to the 

thermocycler to undergo amplification. Step one was run at 25 °C for 10 min, step 2 at 

37 °C for 120 min, step 3 at 85 °C for 5 min and temperature was held at 4 °C after the 

end of the reverse transcription cycle. 

 

2.3.5 Real-time PCR 

PCR reaction for miRNA was performed with TaqMan® Small RNA Assay 20x 

(Applied Biosystems, 4440418) and TaqMan®  Universal PCR Master Mix 2x (Applied 

Biosystems, 4324018). A single reaction was prepared with the following volumes 

(Table 2.3.4). 
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Component Single reaction (μl) 

TaqMan® Small RNA assay (20x) 1.00 

Reverse transcription cDNA product  

(1/15 dilution minimum) 

1.33 

TaqMan® Universal Master Mix 2x 10.00 

Nuclease-free water  7.67 

Total Volume 20 

Table 2.3.4 Real-time PCR single reaction mix. Included is the reverse transcription 

product from Section 2.3.4 

The reaction was mixed by pipetting and applied to a well of the reaction plate with hsa-

miR-7 primer (Applied Biosystems, 4427975). The plates were run in the PCR thermal 

cycler (HT7600) at 95
 o

C for 10 min in the first step for enzyme activation then 95
 o

C 

for 15 sec in the second step and 40 cycles at 95
 o
C for 15 sec for the denaturation step 

and 60
 o
C for 60 sec for the annealing step. Figure 2.3.1 shows how transcription occurs 

in the PCR reaction and Figure 2.3.2 shows how amplification is reported. 

 

Figure 2.3.1 Real-time PCR using miRNA-specific primer. CT values are used to 

quantify miRNAs. MGB: Minor Groove Binding. NFQ: Non-Fluorescent Quencer. R: 

Reporter dye (FAM™). 
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Figure 2.3.2 Diagram of 5' nuclease reporter process. Polymerisation (A), strand 

displacement (B), cleavage (C) and the final completion of polymerization (D) cleaves 

the reporter (R) from the quencher (NFQ). 

 

2.4 Proteomic Techniques 

2.4.1 Cell lysate preparation 

Cells were pelleted by centrifugation at 170 x g for 5 min and the media was removed. 

Cells were washed with ice cold 50 mM HEPES. The cell suspension was then 

transferred to an eppendorf and centrifuged at 14000 x g for one minute in a 4
 o

C pre-

cooled micro-centrifuge. HEPES was then decanted, the eppendorf containing the cell 

pellet was submersed in liquid nitrogen for 30 sec before being stored at -80 
o
C until 

required. All procedures from this point forward were performed on ice. Cells were 

lysed using an appropriate volume of lysis buffer (7 M Urea, 2 M Thiourea, 4% 

CHAPS, 30 mM Tris, pH 8.5) and incubated on ice for 20 min with occasional 
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vortexing. Halt protease inhibitor (PI-78415 Thermo Scientific), Halt phosphatase 

inhibitor (78428 Thermo Scientific) and Nuclease mix (80-6501-42  GE Healthcare) 

were also added to the lysis buffer to form a final concentration of 1x for each inhibitor. 

Cells were lysed by pipetting up and down and by vortexing. Sample lysates were 

centrifuged at 19,000 x g for 15 min at 4 
o
C. Supernatant containing extracted protein 

was transferred to a fresh chilled eppendorf tube and stored in aliquots at -80 ˚C if they 

were not going to be used immediately. 

 

2.4.2 Nuclear/Cytoplasmic enrichment 

The nuclear/cytoplasmic extraction kit works on the principle of swelling the cell 

membrane with a hypotonic buffer to increase its fragility. Addition of detergent causes 

cytoplasmic proteins to leak out into the supernatant which can then be collected and 

stored. The remaining nuclei are then lysed and solubilised in a detergent free lysis 

buffer. 

Nuclear/cytoplasmic enrichment was carried out as per the manufacturer's instructions 

(Active Motif, 40410). The kit includes 10x PBS, Protease Inhibitor Cocktail, 10x 

Hypotonic Buffer, Phosphatase Inhibitor, 10 mM DTT, Lysis Buffer AM1 and 

Detergent which were used in the nuclear/cytoplasmic protein enrichment. Table 2.4.1 

details volumes required for solutions mentioned in the protocol. The following 

protocol was used to extract nuclear and cytoplasmic enriched fractions from 2 x 10
7
 

CHO-K1-SEAP suspension cells. Note all reagents are kept on ice. 

Cells were counted using the trypan blue exclusion method (Section 2.2.1) and a 

volume of cells was taken representing 2 x 10
7
 cells. Cells were centrifuged at 170 x g 

for 5 min. Meanwhile 1.6 ml of 10x PBS was diluted with 13.6 ml UHP and 0.8 ml of 

Phosphatase Inhibitor was added making a final volume of 16 ml 1x PBS/Phosphatase 

Inhibitor solution. The supernatant was removed from the centrifuged cells and the cell 

pellet washed in 8 ml of 1x PBS/Phosphatase Inhibitor. Cells were centrifuged once 

more as above and washed in the final 8 ml volume of  1x PBS/Phosphatase Inhibitor. 

The cell pellet was then resuspended in 1 ml of 1x Hypotonic buffer and incubated on 

ice for 15 min. After this 50 μl of Detergent was added and the sample was vortexed at 

high speed for 10 sec. Samples were then added to eppendorf tubes and centrifuged in a 

4
 o
C pre-cooled microcentrifuge at 14,000 x g  for 30 sec. The resulting supernatant was 

removed and stored. This is the cytoplasmic enriched fraction. 
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For the nuclear fraction the pellet was resuspended in 100 μl complete lysis buffer. 

Complete lysis buffer contains 10 μl of 10 mM DTT, 89 μl Lysis Buffer AM1 and 1 μl 

Protease Inhibitor Cocktail. The sample was incubated shaking and on ice for 30 min. 

After incubation the sample was vortexed at high speed for 30 sec and centrifuged in a 4
 

o
C pre-cooled microcentrifuge at 14,000 x g  for 10 min. The final supernatant was 

removed and stored as the nuclear enriched fraction. 

Reagent Kit Component  Volume required for 

2 x 10
7
 cells 

1x PBS/Phosphatase 

Inhibitor 

10x PBS 1.6 ml 

UHP 13.6 ml 

Phosphatase Inhibitors 0.8 ml 

Total Required 16 ml 

1x Hypotonic Buffer 10x Hypotonic Buffer 0.1 ml 

Distilled Water 0.9 ml 

Total Required 1.0 ml 

Complete Lysis 

Buffer 

10 mM DTT 10.0 μl 

Lysis Buffer AM1 89.0 μl 

Protease Inhibitor Cocktail 1.0 μl 

Total Required 100.0 μl 

Table 2.4.1 Volumes required for nuclear/cytoplasmic extraction of 2 x 10
7
 cells. 

 

2.4.3 Membrane enrichment 

Membrane enrichment was carried out using CALBIOCHEM® ProteoExtract™ Native 

Membrane Protein Extraction Kit (Merck Millipore, 444-810KIT). The extraction 

buffers within the kit are proprietary. The mechanism however has been described as 

being gentle enough to retrieve membrane proteins in their native conformation. 

Membrane proteins are first pelleted and then subsequently solubilised resulting in a 

membrane protein rich supernatant (Figure 2.4.1). It has been shown that this kit when 

compared to 5 other membrane protein extraction kits produced the highest enrichment 

of membrane associated proteins and at the second highest concentration (Bunger, 

Roblick and Habermann 2009). 
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Figure 2.4.1 Schematic of the membrane enrichment methodology. Lysis and 

differential centrifugation steps carried out using CALBIOCHEM® ProteoExtract™ 

Native Membrane Protein Extraction Kit (Merk Millipore, 444-810KIT) result in a 

membrane protein enriched sample. 

Membrane enrichment was carried out as per manufacturer's recommendations (Merck 

Millipore, 444-810KIT) for suspension cells and with some modifications for adherent 

cells. The components of the kit were as follows: Wash Buffer, Extraction Buffer I, 

Extraction Buffer II and Protease Inhibitor Cocktail. The following protocol outlines the 

steps taken to obtain a 500 μl membrane protein enriched fraction from ~90% confluent 

75 cm
2
 adherent culture flask or 8 x 10

6 
suspension cells. All reagents were kept on ice 

except Protease Inhibitor Cocktail which was stored in DMSO and was allowed to come 

to room temperature to thaw. 

For adherent cells conditioned media was removed and 5 ml of ice cold PBS was used 

to wash the cells. Cells were washed two more times in PBS. Extraction Buffer I was 

prepared by taking 2 ml and adding 10 μl of Protease Inhibitor Cocktail. 2 ml of 

Extraction Buffer I/Protease Inhibitor Cocktail was added to the washed cells in the 

flask. The cells were then scraped into the buffer using a sterile disposable cell scraper.  
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Suspension cells were counted using the trypan blue exclusion method (Section 2.2.1) 

and a volume of cells was used to obtain a cell pellet containing 6 x 10
8 
cells. Cells were 

washed three times in ice cold PBS with centrifugation at 1000 x g for 5 min in-between 

each wash. The last PBS wash was decanted and cells are resuspended in 2 ml of 

Extraction Buffer I/Protease Inhibitor Cocktail (2 ml of Extraction Buffer I and 10 μl of 

Protease Inhibitor Cocktail). 

From here both adherent and suspension cells are treated the same. 2 ml samples were 

divided into two 1 ml volumes in eppendorf tubes and incubated at 4 
o
C for 10 min. 

Samples were then centrifuged in a 4
 o
C pre-cooled microcentrifuge at 16,000 x g for 5 

min. Following this the supernatant was discarded. Sample pellets were carefully 

resuspended in 500 μl Extraction Buffer II/Protease Inhibitor Cocktail (500 μl of 

Extraction Buffer II and 2.5 μl of Protease Cocktail Inhibitor). Samples were incubated 

and agitated at 4
  o

C for 30 min. To remove any remaining debris the samples were then 

centrifuged in a 4
 o

C pre-cooled microcentrifuge at 16,000 x g for 15 min. The 

supernatant containing solubilised membrane proteins was removed and stored. 

 

2.4.4 Protein quantitation 

Protein was quantified using the Bio-Rad Quick Start™ Bradford Dye Reagent (Bio-

Rad, 500-0205) as follows. The required volume of Bio-Rad Quick Start™ Bradford 

Dye Reagent (250 μl/sample) was aliquoted into a sterilin tube and allowed to reach 

room temperature in the dark. A 2 mg/ml bovine serum albumin (BSA) stock solution 

(Sigma, A9543) was prepared in lysis buffer. A protein standard curve (0, 0.125, 0.25, 

0.5, 0.75 and 1.0 mg/ml) was prepared from the BSA stock with dilutions made in lysis 

buffer. An aliquot of the protein samples were diluted as appropriate with lysis buffer to 

fit the linear range detection limits of the assay (125 - 1000 μg/μl). 5 μl of standards and 

samples were added to a minimum of three separate wells in a 96-well plate. 250 μl of 

the Bio-Rad dye solution was added to each well. After 5 min incubation, the 

absorbance was measured at 595 nm and the concentration of the protein samples was 

determined from the plot of the absorbance at 595 nm versus concentration of the 

protein standard. 
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2.4.5 Brilliant Blue G Colloidal Coomassie staining 

After gel electrophoresis gels containing separated proteins were placed in a fixation 

solution which contained 7% glacial acetic acid in 40% (v/v) methanol. To prepare a 1X 

working solution of Brilliant Blue G colloidal coomassie (Sigma, B2025) 800 ml UHP 

was added to the stock bottle. Following the fixing step of 30 min, a dye solution 

containing 4 parts of 1x working colloidal coomassie solution and 1 part methanol was 

made, mixed by vortexing for 30 sec. Fixing solution was removed from the gels and 

then the dye solution was placed on top of the gels. The gels were left to stain for 2 hr. 

Following this the dye solution was poured off and the gels were destained to remove 

background dye. Destain solution containing 10% acetic acid in 25% methanol was 

poured over the gels on a shaker for 60 sec. The gels were then rinsed with 25% 

methanol for 30 sec and then destained with 25% methanol for 24 hr. 

 

2.5 LC-MS/MS protein identification 

2.5.1 Protein sample cleanup 

Sample clean up was performed using ReadyPrep™ 2-D Cleanup Kit (Bio-Rad, 

1632130). The end product was a washed and precipitated protein sample which was 

resuspended in a buffer compatible for mass spectrometry analysis. The clean up kit can 

process a maximum of 500 μg of protein in one sample preparation and a maximum 

sample volume of 100 μl as this method is performed in 1.5 ml eppendorf tubes. The 

following protocol details the steps taken to process whole lysate samples (Section 

2.4.1) and the subcellular enriched samples (Section 2.4.2 and 2.4.3) . Note all steps are 

carried out on ice unless stated otherwise. Also Wash Reagent 2 must be pre chilled to -

20 
o
C. 

A 100 μl volume of protein sample was clean up which was previously quantified using 

the Bradford method (Section 2.4.4). For low volume samples (Nuclear enrichment 

fractions) volume was made up to 100 μl with mass spec grade water. To 100 μl of 

protein sample was added 300 μl of Precipitating Agent 1. Samples were mixed 

thoroughly for 1 min by vortexing. Samples were then incubated on ice for 15 min. 

Following this 300 μl of Precipitating Agent 2 was added to each sample and mixed for 

1 min by vortexing. The samples were then centrifuged in a 4
 o

C micro-centrifuge at 

12,000 x g for 5 min. The orientation of the tube in the centrifuge was noted as to repeat 

the same orientation for further spins and minimise sample loss. The supernatant was 
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carefully pipetted off and discarded. The tube was centrifuged for an additional 15 sec 

to remove any remaining precipitating agent which was then discarded.  

A 40 μl aliquot of Wash Reagent 1 was applied over the pellet and the tubes were 

returned to the microcentrifuge in the same orientation and spun at 12,000 x g for 5 min. 

The wash reagent was then pipetted off and discarded. 25 μl of mass spec grade water 

was added to each sample and the samples were then mixed by vortexing. After this 5 μl 

of Wash 2 Additive and 1 ml of pre chilled -20 
o
C Wash Reagent 2 was added to each 

sample. They were then incubated overnight at -20 
o
C. 

Following overnight incubation samples were centrifuged at 12,000 x g for 5 min in a 4 
 

o
C micro-centrifuge, the supernatant was removed and discarded with additional spin 

for 15 sec to remove and discard any remaining supernatant. The resulting pellet was air 

dried at room temperature for a maximum of 5 min until its edges appear translucent. 

Pellets were then resuspended in an appropriate volume of MS suitable solubilisation 

buffer (See Section 2.5.2) and quantified (Section 2.4.1) for further applications. 

 

2.5.2 In solution digest for mass spectrometry 

As outlined in Section 2.5.1 a 100 µl of volume of whole cell lysate or cell enrichment 

fraction was cleaned to remove any agents that could interfere with mass spectrometry 

analysis. The resulting protein pellets were resuspended in label-free lysis buffer (6 M 

Urea, 2 M Thiourea, 10 mM Tris, pH 8), quantified using Bio-Rad Quick Start™ 

Bradford Dye Reagent (Section 2.4.4) and volume of cleaned up protein representing 5 

μg of protein was taken for digestion. All volumes were brought up to 15 µl with label-

free lysis buffer and 15 µl of 8 M urea was added to further solubilise samples. 

A 20 μl volume of 0.2% ProteaseMax (Promega V2071) solution (1 part 1% 

ProteaseMax to 4 parts 50 mM ammonium bicarbonate) was added to each sample. 

ProteaseMax is a surfactant which increases protein solubilisation thereby increasing 

protein digestion. Samples were mixed by vortexing for 3 min. 58.5 μl of 50 mM 

ammonium bicarbonate was added to each sample. 

Protein samples were denatured by the addition of 1 μl 0.5 M DTT (5mM DTT final 

concentration required). Samples were incubated for 20 min at 60 
o
C. After this 2.7 µl 

of 0.55 M iododacetamide was added to each sample (15 mM final concentration 

required) and incubated in the dark at room temperature for 15 min. 
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For the digestion step 1 μl of 1% ProteaseMax was added to each sample along with 2.5 

μl of 0.1 μg/μl trypsin (Promega, V5111). A 1:20 ratio of Trypsin: Protein was required. 

Samples were then incubated for 6 hr at 37
 o

C. Samples were then quickly spun in a 

microcentrifuge for 10 sec to collect any condensation. Digestion reaction was then 

stopped with the addition of 5 μl trifluoroacetic acid (TFA) for a final required 

concentration of 0.5% TFA. 

This method was used in Chapter 4 for the preparation of whole cell lysates and 

subcellularly enriched protein fractions. An alteration to this method was used for 

Chapter 3 and the analysis of the effects of miR-7 on the CHO cell proteome. Instead 

of a trypsin and ProteaseMax method a double digestion was used with trypsin and Lys-

C. Briefly the alterations in this protocol were as follows. 

10 μg of protein sample was resuspended in 50 μL of 50 mM ammonium bicarbonate. 

Reduction was performed by adding 1 μL of 100 mM DTT and incubated at 60 °C for 

30 min. Samples were then alkylated by adding 5 μL of 0.3 mM Iodoacetamide and 

then incubated in the dark at room temperature for 30 min.  

Digestion was carried out with sequence grade Lys-C (Promega, V1071) at a ratio of 

1:20 Lys-C:Protein at 37 °C for 4 hr, followed by a second digestion with sequence 

grade Trypsin (Promega, V5111) at a ratio of 1:25 Trypsin: Protein. Incubation was 

carried out overnight at 37 °C. After 24 hr the digestion reaction was terminated by the 

addition of TFA to a final required concentration of 0.5% . 

 

2.5.3 C18 peptide cleanup 

Using C18 resin based centrifuge columns (Thermo, 89870) the peptides from 

enzymatic digestion (Section 2.5.2) were purified for MS analysis. A number of buffers 

required preparation involving methanol, TFA and acetonitrile (ACN). These were as 

follows: Activation Solution - 50% Methanol, Equilibrium Buffer - 0.5% TFA in 5% 

ACN, Sample Buffer - 2% TFA in 20% ACN, Wash Solution - 0.5% TFA in 5% ACN, 

Elution Buffer - 70% ACN. 

Columns were prepared by tapping until the resin was collected at the bottom end and 

then placed into a collection tube. The top and bottom cap of the C18 column was 

removed and 200 μl of Activation Solution was added. Samples were then centrifuged 

at 1,500 x g for 1 min and flow through discarded. This step was repeated once more. 
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Following this 200 μl of Equilibration Buffer was added and the samples centrifuged at 

1,500 x g for 1 min with flow through discarded. This step was repeated once more. 

Peptide sample was then added to the column. C18 columns were placed into fresh 

collection tubes and centrifuged at 1,500 x g for 1 min. The flow through was then 

added to the column again and centrifuged at 1,500 x g for 1 min. The flow through was 

stored in case of insufficient peptide binding and the collection tubes for the C18 

columns replaced. 200 μl Wash Buffer was added to the column and tubes were again 

centrifuged at 1,500 x g for 1 min with the flow through discarded. The wash step was 

repeated once more. Finally the collection tube was replaced and 20 μl of Elution Buffer 

was added to the C18 column, centrifuged at 1,500 x g for 1 min and repeated once 

more resulting in 40 μl of purified peptides. Samples were then dried using a vacuum 

centrifuge. 

 

2.5.4  LC/MS analysis 

Samples were resolubilised in a volume of LC-MS grade water with 0.1% TFA and 2% 

ACN such that 5 μl contained 1 μg of peptides i.e. 50 μl suspension for 10 μg of 

peptides (digested protein).  12.5 l was transferred to glass vials and the remaining 

reconstituted sample stored at -80 
o
C. Mass spectrometry was performed by Mr. 

Michael Henry. Nano LC–MS/MS analysis was carried out using an Ultimate 3000 

nano LC system (Dionex) coupled to a hybrid linear ion trap/Orbitrap mass 

spectrometer (LTQ Orbitrap XL; Thermo Fisher Scientific). Nano electrospray tips used 

were SilicaTip™ Standard Coating Tubing OD/ID 360/20 µm Tip ID 10 µm  Length 

5cm,  (NewObjective, FS360-20-10-CE-5). 

A 2.5 l injection volume of digested sample were picked up using an Ultimate 3000 

nano LC system (Dionex) auto sampler using direct injection pickup onto a 20 

microlitre injection loop. The sample was loaded onto a C18 trap column (C18 PepMap, 

300 μm ID × 5 mm, 5 μm particle size, 100 Å pore size; Dionex) and desalted for 10 

min using a 25 μl/min flow rate in 0.1% TFA containing 2% acetonitrile. The trap 

column was switched online with the analytical column (PepMap C18, 75 μm ID × 250 

mm, 3 μm particle and 100 Å pore size; (Dionex)) using a column oven at 35 °C and 

peptides were eluted with the following binary gradients. 

Peptides were eluted in a binary gradient of Mobile Phase Buffer A and Mobile phase 

buffer B: 0–25% solvent B in 120 min and 25–50% solvent B in a further 60 min, where 



 

72 
 

solvent A consisted of 2% acetonitrile (ACN) and 0.1% formic acid in water and 

solvent B consisted of 80% ACN and 0.08% formic acid in water. Column flow rate 

was set to 350 nl/min.  Data were acquired with Xcalibur software, version 2.0.7 

(Thermo Fisher Scientific).  

The Hybrid linear ion trap/Orbitrap mass spectrometer (LTQ Orbitrap XL; Thermo 

Fisher Scientific) was run in data-dependent mode and externally calibrated. Survey MS 

scans were acquired in the Orbitrap in the 300–2000 m/z range with the resolution set to 

a value of 60,000 at m/z 400. Up to seven of the most intense ions (1+, 2+ and 3+) per 

scan were CID fragmented in the linear ion trap. All tandem mass spectra were 

collected using a normalised collision energy of 35%. 

 

2.5.5 Mass spectrometry generated protein identifications 

Mass spectrometry data is generated as .RAW files from LTQ XL instruments.  Data 

was analysed using the search algorithms TurboSequest (Thermo Fisher Scientific) and 

MASCOT (v2.3.01, Matrix Science, London, UK) through Proteome Discover 1.4 

(Thermo Fisher Scientific) against Bielefeld-BOKU-CHO database (BBCHO) (Meleady 

et al. 2012a) and CHO-K1 genomic data as published by Xu et al. (Xu et al. 2011) for 

all LC-MS analysis of samples originating from CHO cultures. For samples searched 

against other species, Swissprot-uniprot Human, Mouse or Rat databases (fasta file Jan 

2014) were used. All data base searches were performed through Proteome Discoverer 

1.4 software. This method was used to obtain qualitative identifications and 

identifications of proteins after quantitative differential analysis (Section 2.5.6).  

The following search parameters were used: Allowed two missed cleavages, fixed 

modification of cysteine (carbamidomethyl-cysteine), variable modifications of 

methionine (oxidised), The Hybrid linear ion trap/Orbitrap mass spectrometer used a 

peptide tolerance of 20 ppm and the MS/MS tolerance set at 0.5 Da. 

Statistical criteria used for peptide filtering were as follows: A MASCOT criteria of 

95% confidence interval threshold (p<0.05), with a minimum MASCOT score of ≥30 

while the following TurboSequest filters were applied: for charge state 1, XCorr > 1.9; 

for charge state 2, XCorr > 2.2; for charge state 3, XCorr > 3.75 and a delta CN of 0.1. 
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2.5.6 Label-free LC-MS data analysis 

Quantitative analysis was performed using Progenesis QI for proteomics software form 

Non-Linear Dynamics by importing the Raw MS data file into the software package. 

The software graphically represents retention time and m/z ratio in spot map format. 

Automatic alignment was performed which aligns all the samples with the sample that 

contains most peptide features. This allows the corresponding peptide identifications to 

be carried across samples in the experiment regardless of slight differences in retention 

time. Manual alignment correction was performed to improve overall alignment which 

is reported as a percentage.  

Upon satisfactory alignment of all sample runs (>80% for each sample) peptide features 

were filtered based on an Anova p-value of less than 0.05 between experimental groups. 

A principal component analysis was generated from this filter feature list to ensure 

separation between sample groups. The MS/MS data from the filtered peptide feature 

list was exported in and searched using MASCOT or SEQUEST through Proteome 

Discoverer 1.4 (Section 2.5.5). Once identifications were assigned to each peptide they 

were imported back into Progenesis. Identification conflicts were inspected and 

resolved manually by looking at the peptide sequence and strength of overall protein 

identification (higher ion scores were selected over lower ion scores). Conflicts occur 

when one peptide is incorrectly assigned to two or more protein identifications. A fold 

change cut off in differential expression of 1.2 fold between sample groups was used 

with an Anova p-value less than 0.05. 

 

2.6 Western Blot analysis  

2.6.1 Gel electrophoresis 

Proteins for analysis by Western blotting were separated using SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) with precast 4-12% Bis-Tris gels (Life Technologies, 

NP0322BOX (12 well) or NP0321BOX (10 well)). Protein was quantified using the 

Bradford method (Section 2.4.4) and 5-20 µg of protein was diluted in 2x Laemmli 

loading buffer (Sigma, S3401-1VL). A 2 μl volume of Pageruler™ Plus prestained 

protein ladder (Pierce, 26619) was loaded alongside samples. The gels were run at 
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constant voltage (200 V) until the Bromophenol blue dye contained in the 2x laemmli 

loading buffer reached the end of the gel. This was typically achieved after 55 min at 

which time sufficient separation resolution of the molecular weight markers was 

achieved.  

 

2.6.2  Western blot transfer 

After electrophoresis had been completed, the gel was removed from the precast casing, 

rinsed in distilled water and was equilibrated in 10 ml of 1x tris-glycine transfer buffer 

(Bio-Rad, 161-0734) containing 20% methanol for 15 min. Approximately 50 ml of 

prepared transfer buffer was required for one Western Blot. Two sets of five sheets of 

Whatman 3 mm filter paper (Whatman, 1001824) were each soaked in 10 ml freshly 

prepared transfer buffer. PVDF membrane (GE Healthcare, 10600021) was cut to filter 

paper size, activated for 5 sec with 100% methanol, rinsed with distilled water and 

equilibrated in 10 ml of prepared transfer buffer for 10 min.  

Following this the transfer unit was set up. One set of soaked filter papers were placed 

on the cathode plate of a semi-dry blotting apparatus (Bio-Rad), followed by the PVDF, 

then the gel and then the final set of soaked filter paper.. Air pockets were then removed 

from between the sandwiched layers with gentle rolling using a disposable 10 ml pipette 

taking care not to disturb the layers.. All proteins were transferred from the gel to the 

membrane at a current of 340 mA at 15 V for 23 min. Lower molecular weight proteins 

such as Histone H3 and Histone H4 (~15 kDa) were transferred for 18 min to avoid 

transfer off of the PVDF . 

The membranes were then blocked for 1 hr using 5% blocking grade blocker (Bio-Rad 

1706404) in pre-prepared TBS-T (1X tris-buffered saline (TBS) (Sigma, t5912) 

containing 0.05% Tween 20 (Sigma, P5927)). The membranes were washed with TBS-

T prior to the addition of the primary antibody, prepared in 5% blocker in TBS-T at 

recommended dilutions. Membranes were then incubated overnight at 4 °C on a shaker 

ensuring membrane was adequately covered with primary antibody solution. After 

incubation the membranes were rinsed 3 times with TBS-T for a total of 30 minutes. 

Relevant secondary antibody (1/2000 dilution of anti-mouse (Dako, P0260) or anti-

rabbit (Dako, P0448) or anti-rat (Dako, P0450) or anti-goat (Santa Cruz Biotechnology, 

Sc2098) IgG peroxidase conjugate in 5% blocking grade blocker/TBS-T) was added for 

1 hr at room temperature. Membranes were wash again in TBS-T three times to ensure 

unbound secondary was washed off. The following primary antibodies were used. 
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Protein target CHO Symbol Supplier Product #  Host  Dilution 

Histone H3 HISTH3 Cell 

Signalling 

4499 Rabbit 1/2000 

Acetyl Histone H3 HISTH3 Millipore 17-245 Rabbit 1/2000 

Histone H4 HISTH4 Cell 

Signalling 

13919 Rabbit 1/2000 

Acetyl Histone H4 HISTH4 Cell 

Signalling 

2594 Rabbit 1/2000 

Protein disulfide isomerase A6 PDIA6 Abcam ab11432 Rabbit 1/1000 

78 kDa glucose-regulated 

protein 

GRP78  Sigma 4501452 Rabbit 1/750 

Heat shock protein family 

(Hsp70) member 8 

HSPA8 Abcam ab19136 Rat 1/1000 

14-3-3 protein epsilon YWHAE Abcam ab40117 Rabbit 1/2000 

Glyceraldehyde 3-phosphate 

dehydrogenase  

GAPDH Abcam ab8245 Mouse 1/10000 

Catalase CAT Abcam ab1877 Rabbit 1/2000 

Stathmin STMN1 Abcam ab52630 Rabbit 1/50000 

Ezrin  EZR Invitrogen 357300 Mouse 1/2000 

Moesin  MSN Thermo 38/87 Mouse 1/200 

Cyclon CYC SantaCruz sc-82568 Goat 1/1000 

Lamin A/C LMNA Abcam ab26300 Rabbit 1/1000 

      

Protein target breast 

cancer  

     

Immunoglobulin Superfamily 

Member 9 

IGSF9 Atlas HPA037753 Rabbit 1/50 

Killer cell lectin like receptor 2 KLRG2 Abcam ab121563 Rabbit 1/200 

       

Table 2.6.1 List of primary antibodies used for Western blot analysis. Antibodies in 

the "Protein targets used for CHO" list were used in Chapter 3 and 4 while IGSF9 and 

KLRG2 antibodies were used on breast cancer samples in Chapter 5. 

 

2.6.3 Enhanced chemiluminescent detection 

To develop the immunoblots an enhanced chemiluminescence (ECL) kit (GE Life 

Sciences, RPN2106) was used, which allowed for the detection of bound peroxidase-

conjugated secondary antibody. After the final wash in TBS-T the blots were placed on 

a transparent plastic sheet and 3 ml of a freshly prepared 1:1 (v/v) mixture of ECL 

reagent A and B was applied ensuring full coverage the membrane. Chemiluminescence 

reaction was allowed to develop for 5 min in the dark. Following this Another clear 

plastic sheet was applied over the blot and excess ECL reagent mixture was completely 
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removed as well as any bubbles that formed. The membrane was then exposed to 

autoradiographic film (GE Life Sciences, 95017-681) for various times (from 10 sec to 

30 min depending on the intensity of the signal). The exposed autoradiographic film 

was developed for 3 min in developer solution (Kodak, LX24, diluted 1:5 in water) or 

until clear band development in the predicted area could be seen. The film was then 

washed in water for 15 sec and transferred to a fixative solution (Kodak, FX-40, diluted 

1:5 in water) for 5-10 min. The film was washed with water for 5-10 min and allowed to 

dry at room temperature. 

 

2.7 Bioinformatics and statistical analysis 

2.7.1 Pathway analysis 

Three separate pathway analysis tools were used in the analysis of qualitative lists and 

quantitative differential lists in Chapter 3 and Chapter 4. The following will explain 

how this was performed for each tool. 

In preparation for pathway analysis the protein identifications obtained from the 2 CHO 

specific databases (BBCHO and NCBI see Section 2.5.5) was changed to corresponding 

human gene symbols. Protein identifications were in a format unsuitable for pathway 

analysis tools to recognise BBCHO identifiers were in a transcript isotig labelled format 

while the NCBI database produced ChiTaRS (Chimeric Transcripts and RNA-seq 

database) identifiers. Labels within each database were not consistent which severely 

limited the amount of automated parsing of labels. Each protein identified had its 

peptide sequences BLAST searched through  UniProt (http://www.uniprot.org/blast/) to 

confirm its correct protein name and associated mouse gene name. Annotated proteins 

were added to a reference list for increasingly automated searching by matching the 

unique CHOisotig number of each identification in the BBCHO database or the NCBI 

accession number of the NCBI database with that of already annotated proteins. 

When gene names were assigned to the relevant list the pathway analysis tool DAVID 

(https://david.ncifcrf.gov/home.jsp) was used. Gene names were pasted into the 

submission window, identifier selection was "OFFICIAL_GENE_SYMBOL", list type 

selection was "Gene List" and then the list was submitted. Next the "Mus musculus" 

species background was selected. The drop down menu for "Gene_Ontology" was 

selected. From here three categories of enrichment groupings were obtained in 
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molecular function (GOTERM_MF_FAT), biological process (GOTERM_BP_FAT) 

and cellular component (GOTERM_CC_FAT). It the reported chart view for the data a 

dropdown menu for options was selected and "Bonferroni" was selected followed by 

"Rerun using options". The resulting data was copied into Excel and sorted according to 

the Bonferroni significance value p<0.05. DAVID also allowed KEGG pathway 

analysis by selecting "Pathways" and selecting "KEGG_PATHWAY". Again 

Bonferroni significance values were used. By selecting the "Term" in the data table (e.g. 

Glutathione metabolism, Ribosome, etc.) a graphical representation of the protein 

pathway was obtained. 

For PANTHER analysis (pantherdb.org) the gene list was pasted into the submission 

box, "Mus musculus" organism was selected and "Statistical overrepresentation test" 

was chosen with default settings. Again the three categories of annotation were chosen 

molecular function (PANTHER GO-Slim Molecular Function), biological process 

(PANTHER GO-Slim Biological Process) and cellular component (PANTHER GO-

Slim Cellular Component), Bonferroni significance of p<0.05 was used to sort enriched 

terms in Excel. 

 

2.7.2 Statistical significance 

Statistical significance was calculated where indicated throughout the results section 

using an unpaired t-test. This assesses the difference between population means (type 2 

t-test in Excel).  

High variance between runs in the miR-7 PCR experiment meant that there was not 

enough data to perform such a stringent test on this data.  

 

2.7.3 Bioinformatic dataset analysis 

Gene lists of potentially novel membrane expressed proteins associated with breast 

cancer were generated by Dr. Stephen Madden and Dr. Padraig Doolan, NICB. The 

following procedure was applied to produce this data. 

 

Publicly available datasets containing both normal tissue and breast cancer tissue 

together with gene profiling were obtained from Sircoulomb et al. (Sircoulomb et al. 
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2010), Pau et al. (Pau Ni et al. 2010) and Tollet-Egnell et al. (Tollet-Egnell et al. 2001) 

as well as this an in house data set of breast cancer vs normal tissue was also used 

resulting in the comparisons and differential gene expression numbers in  Table 2.7.1. 

 

 In-house breast cancer dataset Publically available breast 

cancer datasets 

Genes 1.3 

fold  

UP 

Genes 1.3 fold 

DOWN 

Genes 1.3 

fold 

UP 

Genes 1.3 fold 

DOWN 

Norm vs ER+ 8103 8313 122 144 

Norm vs 

HER2+ 

6870 7333 1718 3060 

Norm vs LN+ 8364 8127 314 169 

Norm vs. Triple 

Neg. 

4236 3368 2248 4918 

Table 2.7.1 Number of genes ≥1.3 fold increased in ER+, HER2+, LN+ or triple 

negative breast cancer compared to normal breast tissue. These were generated 

using an in house transcript profiling dataset and 3 publicly available transcript profiling 

datasets. 

Predicted protein localisation was then assessed using a uniprot subcellular location 

batch search. As an over-expressed target was required only the UP gene lists were 

assessed further for commercial antibody availability, high fold change, no literature 

association with breast cancer functional studies and strong association with the cell 

membrane.  

 

2.8 Immunohistochemistry 

All immunohistochemical (IHC) staining was performed using the DAKO Autostainer 

(DAKO, S3800) (table 2-4). Deparaffinisation and antigen retrieval was performed 

using Epitope Retrieval 3-in-1 Solution (pH 6) (DAKO, S1699) or the Epitope Retrieval 

3-in-1 Solution (pH 9) (DAKO, S2375) and the PT Link system (DAKO, PT101).  

For epitope retrieval, slides were heated to 97 °C for 20 min and then cooled to 65 °C. 

The slides were then immersed in wash buffer (DAKO, S3006). On the Autostainer 

slides were blocked for 10 min with 200 μL HRP Block (DAKO, S2023). Cells were 

washed with 1x wash buffer and 200 μL of antibody (KLR2 or IGSF9 antibody) added 

to the slides for 27 min. Slides were washed with 1x wash buffer and then incubated 

with 200 μL Real EndVision (DAKO, K4065) for 30 min. All slides were 
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counterstained with haematoxylin (DAKO) for 5 min, and rinsed with deionised water, 

followed by wash buffer.  

Slides were then dehydrated in graded alcohols (2 x 3 min each in 70% IMS, 90% IMS 

and 100% IMS), and cleared in xylene (2 x 5 min), and finally mounted with coverslips 

using DPX mountant (Sigma, 44581). 

 

2.8.1 Scoring guidelines  

Immunoreactivity was measured based on the staining intensity as outlined by DAKO 

"Guidlines for Scoring HercepTest
TM 

- Breast" which used criteria outlined by Wolff et 

al (Wolff et al. 2007). These guidelines were established using HER2 immunoreactivity 

as a scoring model in patients with invasive breast cancer. Immunoreactivity was 

designated as absent (0), weak (1), moderate (2) or strong (3) (Figure 2.8.1). The 

guideline IHC images also show clear examples of membrane staining as HER2 is 

expressed in the cell membrane. 

Staining intensity was scored for individual tissue sections and tissue matrix array 

(TMA) cores. The TMA cores were also scored for percentage coverage of staining and 

the data was graphed in an x, y, z scatter plot.  
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Figure 2.8.1 Immunoreactivity guidelines used for staining intensity. Strength of 

staining was marked based on the examples above as provided by DAKO. Absent, 

weak, moderate and strong immunoreactivity was denoted by 0, 1, 2 and 3 respectively. 
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CHAPTER 3 

3. Effect of miR-7 on CHO cells 
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3.1 Impact of miR-7 on CHO cells 

Micro RNA (miR) are a potential tool for the manipulation of Chinese hamster ovary 

(CHO) cells in industry. They do not impose any translational burden on cellular 

processes and can be used to manipulate a wide variety of phenotypes. In previous work 

conducted in our lab miR-7 was found to dramatically reduce cell proliferation without 

affecting viability in CHO-K1 SEAP cells ultimately leading to increased productivity 

over time (Barron et al. 2011a). This is a phenotype that holds industrial relevance, 

therefore miR-7 could be used as a potential target for cell line engineering or by 

targeting the proteins that it affects. The objective of this study is to identify these 

potential targets of miR-7 and what molecular mechanisms miR-7 affects. 

A model producer CHO cell line which produces secreted alkaline phosphatase (CHO-

K1 SEAP) were previously adapted to suspension culture in our lab and optimised for 

transfection with miR-7 ((Barron et al. 2011a)). The resulting growth conditions were 

similar to those used in industry with cells being grown in serum free CHO-S-SFM II 

(Gibco) media, 37
  o

C and 5% CO2. Suspensions were maintained at 170 rpm for 

cultures ranging from 2 - 50 ml.  

To investigate the effect of miR-7 on the phenotype of CHO-K1 SEAP cells we 

transfected 2x10
5 

cells in a 2ml volume (1 x 10
5
 cells/ml) with a double stranded pre-

miR-7 (Genepharma). The effect on cell growth (Figure 3.1.1) was confirmed using an 

automated cell counter (Guava Technologies). As cell growth is reduced it led to a 

number of challenges including the accurate counting of cells and low protein yields in 

the pre-miR-7 transfected samples. For sufficient protein yield for both nano LC-

MS/MS  and Western blot analysis the transfections were performed in technical 

duplicate and then pooled for lysates. To further validate the transfection we used 

RTPCR to confirm miR-7 up regulation following transfection with pre-miR-7 (Figure 

3.1.2). These were the conditions that were used going forward for further mass 

spectrometry and Western blot protein profiling. 
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A 

 

B 

 

Figure 3.1.1 Impact on growth and viability in CHO K1 SEAP cells at 48 and 96 hr 

after transfection with pre-miR-7. Exogenous pre-miR-7 is incorporated into the 

RISC complex and processed into mature miR-7. The resulting phenotype in CHO-K1 

SEAP cells is that of reduced cell proliferation (A) with no effect on viability (B). Error 

bars represent the standard deviation from three biological replicates. Neofx was the 

transfection reagent used and VCP (valosin containing protein) knockdown was used as 

a positive control as it was shown in our lab previously to reduce cell viability (Doolan 

et al. 2010). Scramble miR control is represented on the far right (Control). * = p≤0.05, 

** = p≤0.01, *** = p≤0.001 when compared to Control. All samples groups n=3. 
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Figure 3.1.2  Relative expression of miR-7 at 48 and 96 hr after transfection with 

pre-miR-7 compared to endogenous miR-7 in pre-miR negative control (PM-Neg). 

It was confirmed with RT-PCR that exogenous pre-miR-7 increased miR-7 in CHO 

cells. As the transfection is transient it was particularly important to confirm if miR-7 

was increased at the later time point of 96 hr. One replicate is shown (n=1). 
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3.2 Quantitative proteomic profiling of pre-miR-7 transfected CHO-K1 SEAP 

To identify what proteins were involved in the phenotype observed from up-regulation 

of miR-7 we used a quantitative label-free LC-MS/MS proteomics approach. This 

method is capable of simultaneously identifying and quantifying hundreds or thousands 

of proteins as opposed to older methods such as labelled methods such 2D DIGE which 

are not as high throughput and more labour intensive. As unlabelled peptide fragments 

are submitted directly to the LC-MS/MS the resulting MS/MS data is mapped to protein 

databases allowing for protein identification and quantification. This proved particularly 

challenging with CHO as database annotations required further processing (See Section 

2.5.6 for further details) 

The resulting IDs were used for further analysis using with miR-7 target prediction 

software and pathway tools such as DAVID to determine the effect of miR-7 on the 

cellular processes both of which required official UniProt accession numbers or gene 

names. Many of these identifications therefore required manual annotation. This in itself 

required a significant amount of time in particular for the CHO database. The results 

from the miR-7 target prediction, manual protein ID annotation and pathway analysis 

can be seen in detail below in Section 3.4. 

 

3.2.1 Label-free analysis 

Cells were grown in biological triplicate and lysed 48 and 96 hr after transfection with 

pre-miR-7 or pre-miR-7 scramble negative control (PMNeg). Cell lysates were taken 

and processed for MS analysis by using a Ready Prep 2-D clean up kit (Biorad) to 

remove incompatible solvents for enzymatic digestion and a double digestion strategy 

using Trypsin (Promega) and Lys-C (Promega). This respectively extracts the proteins 

from the cells, removes incompatible buffers from the lysate, cleaves the proteins at 

specific amino acids into peptides ready to be extracted and concentrated. Cleaning and 

concentration of peptides was performed with C-18 resin based micro centrifuge 

columns, lyophilised and rehydrated for submission to the LC-MS for analysis.  

Peptides were separated over a 3 hr reverse phase gradient. Peptide features with +1, +2 

and +3 charge state and ANOVA <0.05 were then searched using Mascot with UniProt-

Swissprot human, mouse and rat databases and CHO specific database searched with 

Mascot and Sequest. Principal component analysis (PCA) was used to assess the 
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separation between protein IDs selected with these cut offs (Figure 3.2.1).Distinct 

separation between groups showed that differentially expressed IDs were selected. 

 

 

 

Figure 3.2.1 Principal component analysis (PCA) of differentially regulated 

proteins with statistical cut off of ANOVA <0.05 and features with +1, +2 and +3 

charge state using the CHO database. Large separation shows the criteria used has 

resulted in differentially expressed proteins identified between the scramble control 

group on the left and the pre-miR-7 up-regulated group on the right (n=3). 

 

During the time of the initial published study there was no CHO specific protein 

database available so a multi-species approach was taken() (Table 3.2.2 and 3.2.3). 

More recently the data was reanalysed with Mascot and Sequest search algorithms with 

a CHO specific database (Meleady et al. 2012a) developed in partnership with Professor 

Nicole Borth at BOKU in Vienna and using an NCBI non redundant CHO sequence 

database (Table 3.2.4 and 3.2.5). Statistically significant differentially expressed 

protein identifications were considered as having an ANOVA score ≤0.05 and a fold 

change >1.2 between experimental groups. A relatively low fold change cut off was 

chosen based on the previous work in our lab showing the effect of miR on protein 

dysregulation (Muniyappa et al. 2009). The only criteria that was used differently in 

both was the minimum peptide number. For the mammalian IDs one peptide hits were 

excluded but for the CHO database 1 hit peptide IDs were included resulting in 217 and 

48hr CHO Database 

96hr CHO Database 

Scramble control 

Scramble control 

miR-7 overexpressing 

miR-7 overexpressing 
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265 differentially regulated proteins respectively (Table 3.2.1). A comparison between 

the resulting identifications can be found in Section 3.2.2 

   ↓ regulated ↑ regulated   

Database 

Includes  1 

peptide IDs 48 hr 96 hr 48 hr 96 hr TOTAL 

Mammalian No 48 73 29 67 217 

Chinese hamster ovary Yes 63 98 38 66 265 

 

Table 3.2.1 Overview of the number of down-regulated (↓) and up-regulated (↑) 

proteins 48 and 96 hr after miR-7 over-expression compared to scramble negative 

control in CHO-K1-SEAP cells using a mammalian database search and a custom 

Chinese hamster ovary database search. Relying on sequence homology between 

species the 1 peptide IDs are often ignored however with reduced sequence coverage in 

the CHO database and  the presence of a high number of CHO 1 peptide identifications 

being present with greater than one peptide in the mammalian list (see Section 3.2.3 for 

comparison) these CHO 1 peptide IDs were included.  
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Accession a Gene name b Protein description Peptide Fold change c ANOVA Peptide Fold change c ANOVA

Q3T0F4 RPS10 40S ribosomal protein S10 3 1.25 0.05

Q3T0V4 RPS11 40S ribosomal protein S11 2 3.8 1.94 × 10
-3

P25398 RPS12 40S ribosomal protein S12 2 1.32 0.03

Q9WVH0 RPS13 40S ribosomal protein S13 3 17.21 3.16 × 10-3

P62265 RPS14 40S ribosomal protein S14 2 1.68 0.04 2 1.71 0.01

Q5R938 RPS15A 40S ribosomal protein S15a 3 13.21 0.01

Q3T0X6 RPS16 40S ribosomal protein S16 2 5.09 7.10 × 10
-3

2 5.43 1.04 × 10
-3

P63274 RPS17 40S ribosomal protein S17 2 2.67 0.05

Q3T0R1 RPS18 40S ribosomal protein S18 3 2.97 5.12 × 10
-3

5 5.69 2.03 × 10
-3

Q5R8M9 RPS19 40S ribosomal protein S19 3 1.54 0.02 6 1.27 4.13 × 10
-4

P25444 RPS2 40S ribosomal protein S2 3 5.81 0.03

Q3ZBH8 RPS20 40S ribosomal protein S20 3 1.83 6.09 × 10-4

Q3T199 RPS23 40S ribosomal protein S23 3 3.21 6.50 × 10-3

Q6Q311 RPS25 40S ribosomal protein S25 2 4.22 0.04

Q0Z8U2 RPS3 40S ribosomal protein S3 4 1.49 0.03

P49242 RPS3A 40S ribosomal protein S3a 5 2.25 0.04

P47961 RPS4 40S ribosomal protein S4 2 4.12 5.74 × 10-3

P38982 RPSA 40S ribosomal protein SA 7 1.7 0.02 7 1.4 0.05

P05388 RPLP0 60S acidic ribosomal protein P0 5 1.46 0.05

Q5R931 RPL10 60S ribosomal protein L10 2 2.93 0.05

Q3T087 RPL11 60S ribosomal protein L11 4 1.39 0.02

Q6QMZ7 RPL12 60S ribosomal protein L12 2 1.69 0.02

Q5EAD6 RPL15 60S ribosomal protein L15 2 2.55 0.04

P35980 RPL18 60S ribosomal protein L18 3 5.25 0.02

Q3T0W9 RPL19 60S ribosomal protein L19 2 6.36 0.02

Q4R5I3 RPL22 60S ribosomal protein L22 3 1.74 0.01 3 1.73 2.74 × 10
-3

P21531 RPL3 60S ribosomal protein L3 3 1.79 0.04

Q6QMZ4 RPL6 60S ribosomal protein L6 2 11.97 0.01

Q2TBQ5 RPL7A 60S ribosomal protein L7a 3 3.47 6.46 × 10
-3

Q4R596 AHCY Adenosylhomocysteinase 3 2.89 3.53 × 10-3

Q8SQH5 SLC25A5 ADP/ATP translocase 2 4 2 0.04 4 4.83 1.92 × 10-3

Q5R874 DHX9 ATP-dependent RNA helicase A 2 2.32 0.01

Q9CWJ9 ATIC Bifunctional purine biosynthesis protein PURH 2 2.55 4.52 × 10
-3

2 1.84 1.55 × 10
-3

P24270 CAT Catalase 4 4.07 4.34 × 10-3 4 3.14 8.43 × 10-3

Q5R6X7 CBX3 Chromobox protein homolog 3 3 2.05 0.04

P62629 EEF1A1 Elongation factor 1-alpha 1 11 1.43 0.04 13 1.26 3.81 × 10-3

Q9D8N0 EEF1G Elongation factor 1-gamma 4 1.37 0.03 6 1.26 0.01

Q3SZC0 ERH Enhancer of rudimentary homolog 2 3.5 0.02

Q3SZ54 EIF4A1 Eukaryotic initiation factor 4A-I 13 1.37 8.01 × 10-3

Q99PF5 KHSRP Far upstream element-binding protein 2 2 4.87 5.07 × 10
-3

Q14444 CAPRIN1 Caprin-1 3 2.41 4.45 × 10-3

Q3T054 RAN GTP-binding nuclear protein Ran 6 1.3 0.01

Q4R7Y4 GNB2L1 Guanine nucleotide-binding protein subunit beta 2-like 1 4 1.57 0.03 4 1.48 0.01

Q9N1U2 HSPA6 Heat shock 70 kDa protein 6 3 1.2 0.01

P19378 HSPA8 Heat shock cognate 71 kDa protein 18 1.47 4.32 × 10
-3

P46633 HSP90AA1 Heat shock protein HSP 90-alpha 8 1.32 0.024

Q4R4T5 HSP90AB1 Heat shock protein HSP 90-beta 8 1.64 7.11 × 10-3

Q9Z2X1 HNRNPF Heterogeneous nuclear ribonucleoprotein F 5 1.48 6.21 × 10-3

Q00839 HNRNPU Heterogeneous nuclear ribonucleoprotein U 4 1.73 0.01 9 1.66 1.94 × 10-3

P02253 Histone H1.1 6 4.48 3.90 × 10-3

P0C0S8 Histone H2A type 1 3 2.78 1.27 × 10-3

Q96QV6 HIST1H2AA Histone H2A type 1-A 3 2.85 1.53 × 10
-3

P0C169 Histone H2A type 1-C 3 2.78 1.48 × 10-3

P0C0S4 H2AFZ Histone H2A.Z 4 3.06 6.79 × 10-4

Q2M2T1 HIST1H2BK Histone H2B type 1-K 4 2.76 4.34 × 10-4

Q32L48 HIST1H2BN Histone H2B type 1-N 3 2.09 0.04 3 2.81 4.59 × 10-4

PM-7 v PM-Neg 48 h PM-7 v PM-Neg 96 h
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Table 3.2.2 List of proteins derived from human, mouse and rat UniProt-SwissProt 

databases with decreased expression following transient tansfection of miR-7.  

CHO cells transiently over expressing miR-7 were compared to scramble negative 

control transfected cells with ANOVA ≤0.05 and fold change >1.2 and >1 peptide 

between experimental groups being deemed significant. 

 

 

 

 

 

 

 

P00494 HPRT1 Hypoxanthine-guanine phosphoribosyltransferase 8 1.6 0.04

Q14974 KPNB1 Importin beta-1 subunit 8 1.44 0.04

P12269 IMPDH2 Inosine-5?-monophosphate dehydrogenase 2 8 5.2 4.76 × 10
-5

Q5R1W9 LDHA L-lactate dehydrogenase A chain 5 2.01 0.05 8 2.06 7.69 × 10
-3

Q09666 AHNAK Neuroblast differentiation-associated protein AHNAK 2 2.96 8.07 × 10
-3

Q63525 NUDC Nuclear migration protein nudC 3 1.59 4.33 × 10-3 3 1.43 0.01

Q28618 YBX1 Nuclease sensitive element-binding protein 1 3 1.36 7.84 × 10
-3

3 1.25 0.04

P08199 NUCL Nucleolin 12 1.76 6.51 × 10-3 16 1.3 3.74 × 10-3

P06748 NPM1 Nucleophosmin 6 1.82 5.65 × 10
-3

P28656 NAP1L1 Nucleosome assembly protein 1-like 1 2 1.92 0.05

Q8NC51 SERBP1 Plasminogen activator inhibitor 1 RNA-binding protein 7 1.44 4.36 × 10-3

Q5E9A3 PCBP1 Poly(rC)-binding protein 1 2 2.31 4.92 × 10
-3

Q9EPH8 PABPC1 Polyadenylate-binding protein 1 7 1.45 0.03 9 1.34 0.01

Q2NL22 EIF4A3 Eukaryotic initiation factor 4A-III 2 1.36 5.85 × 10
-4

P57761 PCNA Proliferating cell nuclear antigen 2 1.88 3.04 × 10
-3

6 1.41 1.40 × 10
-3

Q9UQ80 PA2G4 Proliferation-associated protein 2G4 4 1.8 0.02 7 1.5 3.80 × 10-3

Q9JIF0 PRMT1 Protein arginine N-methyltransferase 1 6 1.39 0.02

Q9EQU5 SET Protein SET (Phosphatase 2A inhibitor I2PP2A) 5 1.3 7.21 × 10-3

P26350 PTMA Prothymosin alpha 3 36.14 6.96 × 10-3

P14618 PKM2 Pyruvate kinase isozymes M1/M2 3 1.4 0.01

P43487 RANBP1 Ran-specific GTPase-activating protein 2 1.68 1.58 × 10-3

Q2HJ58 PRPS1 Ribose-phosphate pyrophosphokinase I 2 2.57 0.03

Q5RE47 BAT1 Spliceosome RNA helicase BAT1 2 1.37 0.05

Q3YLA6 SRSF1 Splicing factor, arginine/serine-rich 1 4 2.01 5.45 × 10-3

Q3MHR5 SRSF2 Splicing factor, arginine/serine-rich 2 3 2.89 4.67 × 10
-4

Q8VIJ6 SFPQ Splicing factor, proline- and glutamine-rich 3 3.29 0.03

Q3T0C7 STMN1 Stathmin 2 6.88 0.04

P80318 CCT3 T-complex protein 1 subunit gamma 3 1.63 3.25 × 10-3

Q86V81 THOC4 THO complex subunit 4 2 2.03 0.02 2 1.61 0.01

P37802 TAGLN2 Transgelin-2 6 1.35 0.02

Q2XVP4 TUBA1B Tubulin alpha-1B chain 13 1.67 7.24 × 10-3 14 1.3 0.02

Q3MHM5 TUBB2 C Tubulin beta-2 C chain 12 1.91 7.95 × 10
-3

14 1.21 0.05

Q3ZBU7 TUBB4 Tubulin beta-4 chain 9 1.85 0.02 9 1.29 7.41 × 10-3

Q922F4 TUBB6 Tubulin beta-6 chain 7 1.68 0.04

P69893 TUBB5 Tubulin beta-5 chain 2 1.96 4.91 × 10-3 16 1.27 0.03

a

Uniprot accession number from MASCOT search of UniProtKB-SwissProt, taxonomy Mammalia.
b

Official recommended gene name taken from UniProtKB-SwissProt (in some cases there is no official gene name available so it has not been included).
c

Fold change showing decreased protein expression in PM-7 transfected cells compared to PM-Neg transfected cells at 48 and at 96

Further information on MASCOT scores, numbers of peptides matched and molecular weight for each protein can be found in Supplementary Table 1A.
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Accession a Gene name b Protein description Peptide Fold change c ANOVA Peptide Fold changec ANOVA

Q4R572 YWHAB 14-3-3 protein beta/alpha 8 1.3 0.03

P62258 YWHAE 14-3-3 protein epsilon (14-3-3E) 15 1.44 7.37 × 10
-4

Q5RC20 YWHAG 14-3-3 protein gamma 5 1.41 0.02

Q3SZI4 YWHAQ 14-3-3 protein theta 6 1.32 0.02

Q5R651 YWHAZ 14-3-3 protein zeta/delta 6 1.32 0.04

P17980 PSMC3 26S protease regulatory subunit 6A 3 1.35 0.04

P07823 HSPA5 78 kDa glucose-regulated protein 18 1.58 0.02 20 2.06 2.48 × 10
-4

P60712 ACTB Actin, cytoplasmic 1 4 1.42 0.05

Q4R4I6 CAP1 Adenylyl cyclase-associated protein 1 3 2.2 0.02

P14550 AKR1A1 Alcohol dehydrogenase [NADP+] 3 1.72 0.05

O60218 AKR1B10 Aldo-keto reductase family 1 member B10 2 2.55 2.74 × 10
-5

P16116 AKR1B1 Aldose reductase 4 1.49 6.39 × 10-3 4 1.93 7.93 × 10-4

O08782 AKR1B8 Aldose reductase-related protein 2 5 1.73 0.05 7 2.3 2.02 × 10-3

Q9XSJ4 ENO1 Alpha enolase 2 1.34 0.02

P12763 AHSG Alpha-2-HS-glycoprotein 3 7.01 1.12 × 10-3

P07150 ANXA1 Annexin A1 5 1.66 0.03 5 1.49 8.26 × 10-3

P07356 ANXA2 Annexin A2 10 1.72 2.89 × 10-3

Q4R4H7 ANXA5 Annexin A5 3 2.01 6.95 × 10
-3

6 3.41 8.44 × 10
-4

Q03265 ATP5A1 ATP synthase subunit alpha, mitochondrial 4 1.43 2.56 × 10-3

P56480 ATP5B ATP synthase subunit beta, mitochondrial 14 1.37 0.02

Q5RAD2 CALM Calmodulin 4 2.2 0.04

Q8K3H7 CALR Calreticulin 4 1.74 3.18 × 10
-3

Q5R957 CLIC4 Chloride intracellular channel protein 4 2 5.46 2.56 × 10-3

Q68FD5 CLTC Clathrin heavy chain 1 6 1.77 8.83 × 10-3

Q9D1A2 CNDP2 Cytosolic nonspecific dipeptidase 2 2.19 7.61 × 10-3

P00639 DNASE1 Deoxyribonuclease-1 5 8.15 1.83 × 10-3

P08113 HSP90B1 Endoplasmin 21 1.49 8.15 × 10
-3

P15311 EZR Ezrin 6 1.77 1.95 × 10-3

P29389 FTH1 Ferritin heavy chain 6 2.51 4.5 × 10-
3

O46638 FKBP3 Peptidyl-prolyl cis-trans isomerase FKBP3 2 1.48 5.99 × 10-5 2 1.42 0.01

Q923D2 BLVRB Flavin reductase 4 2.06 1.64 × 10-3

P05064 ALDOA Fructose-bisphosphate aldolase A 7 1.26 0.05 8 1.45 6.33 × 10-3

P48538 LGALS1 Galectin-1 3 1.94 6.75 × 10-3 3 1.64 2.28 × 10-3

P30116 Glutathione S-transferase 3 1.54 7.62 × 10-3

P08263 GSTA1 Glutathione S-transferase A1 2 5.12 1.29 × 10-3

P30115 GSTA3 Glutathione S-transferase A3 3 3.14 0.02 4 4.94 1.12 × 10-3

P04905 GSTM1 Glutathione S-transferase Mu 1 3 1.57 0.03

P08010 GSTM2 Glutathione S-transferase Mu 2 4 1.79 7.00 × 10
-3

O35660 GSTM6 Glutathione S-transferase Mu 6 4 1.56 0.02

P46424 GSTP1 Glutathione S-transferase P 7 2.02 6.85 × 10-7 8 2.93 3.59 × 10-4

Q00285 Glutathione S-transferase Y1 5 2.16 0.03 5 1.71 9.47 × 10-3

P08009 GSTM3 Glutathione S-transferase Yb-3 4 1.62 0.02

P46413 GSS Glutathione synthetase 2 3.16 0.03

P15991 HSPB1 Heat-shock protein beta-1 4 1.53 0.01 7 1.5 1.93 × 10
-3

Q9Z2K8 IDH1 Isocitrate dehydrogenase [NADP] cytoplasmic 2 2.63 0.04

P48678 LMNA Prelamin-A/C 18 1.91 5.87 × 10
-4

P49129 LAMP1 Lysosome-associated membrane glycoprotein 1 2 2.25 8.14 × 10
-3

2 3.23 6.45 × 10
-4

P24452 CAPG Macrophage capping protein 2 2.28 9.77 × 10-5 2 1.62 0.02

Q2HJ49 MSN Moesin 10 1.92 4.04 × 10-5

Q9JKY1 PRDX1 Peroxiredoxin-1 11 2.21 7.43 × 10-4

Q9BGI2 PRDX4 Peroxiredoxin-4 3 2.02 7.34 × 10-3

Q5RFB8 PGAM1 Phosphoglycerate mutase 1 4 1.29 4.38 × 10-3

P11598 PDIA3 Protein disulfide-isomerase A3 12 1.89 1.98 × 10-3 13 2.4 1.75 × 10-4

PM-7 v PM-Neg 48 h PM-7 v PM-Neg 96 h
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Table 3.2.3 List of proteins derived from human, mouse and rat UniProt-SwissProt 

databases with increased expression following transient tansfection of miR-7. CHO 

cells transiently over expressing miR-7 were compared to scramble negative control 

transfected cells with ANOVA ≤0.05 and fold change >1.2 and >1 peptide between 

experimental groups being deemed significant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q5R6T1 PDIA6 Protein disulfide-isomerase A6 2 2.15 1.16 × 10
-3

5 2.88 6.37 × 10
-3

P04785 P4HB Protein disulfide-isomerase 14 1.46 4.48 × 10-3 15 2.19 4.03 × 10-6

P05964 S100A6 Protein S100-A6 2 1.4 0.01

P11980 PKM2 Pyruvate kinase isozymes M1/M2 10 1.28 0.02

P50399 GDI2 Rab GDP dissociation inhibitor beta 2 1.51 0.01

Q5R9L3 G3BP2 Ras GTPase-activating protein-binding protein 2 2 44.11 0.01

Q8BH97 RCN3 Reticulocalbin-3 3 1.7 0.02

P02787 TF Serotransferrin 8 4.99 1.56 × 10-3

P19324 SERPH Serpin H1 7 1.64 0.02

Q9BYN0 SRXN1 Sulfiredoxin-1 2 5.28 9.02 × 10-4 2 21.9 1.47 × 10-4

P08228 SOD1 Superoxide dismutase [Cu-Zn] 2 2.78 2.91 × 10-3

Q62465 VAT1 Synaptic vesicle membrane protein VAT-1 homolog 2 3.96 1.19 × 10
-3

Q2IBA3 TES Testin 2 3.61 8.29 × 10-4

P10639 TXN Thioredoxin 2 1.78 4.54 × 10-4

Q9JMH6 TXNRD1 Thioredoxin reductase 1, cytoplasmic 5 2.43 0.01 6 2.84 2.80 × 10-3

P37802 TAGLN2 Transgelin-2 6 1.43 2.47 × 10-4

Q01853 VCP Transitional endoplasmic reticulum ATPase 7 2.01 4.86 × 10-4 12 2.08 1.75 × 10
-3

P40142 TKT Transketolase 10 1.57 0.03 11 2.16 6.93 × 10
-4

P48500 TPI1 Triosephosphate isomerase 3 1.26 0.04 3 1.65 3.43 × 10-3

P02544 VIM Vimentin 24 1.32 0.04

Q2KJH4 WDR1 WD repeat protein 1 4 3.81 0.02

a

Uniprot accession number from MASCOT search of UniProtKB-SwissProt, taxonomy Mammalia.
b

Official recommended gene name taken from UniProtKB-SwissProt (in some cases there is no official gene name available so it has not been included).
c

Fold change showing increased protein expression in PM-7 transfected cells compared to PM-Neg transfected cells at 48 and at 96 h.

Further information on MASCOT scores, numbers of peptides matched and molecular weight for each protein can be found in Supplementary Table IB.
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Gene name Description Peptide Anova (p) Fold Change 
b

Peptide Anova (p) Fold Change 
b

YWHAB 14-3-3 protein beta/alpha 1 3.64E-02 2.26

YWHAH 14-3-3 protein eta 1 1.54E-02 317.64

PSMC1 26S protease regulatory subunit 4 1 3.93E-02 1.70

RPS10 40S ribosomal protein S10 1 1.95E-04 1.63

RPS11 40S ribosomal protein S11 1 3.80E-03 3.96

RPS12 40S ribosomal protein S12 1 7.17E-03 1.48

RPS13 40S ribosomal protein S13 1 3.30E-03 27.99

RPS14 40S ribosomal protein S14 1 1.36E-03 2.42

RPS15A 40S ribosomal protein S15a 1 9.22E-04 5097.92 2 1.12E-03 24.21

RPS16 40S ribosomal protein S16 1 5.33E-03 3.90 1 1.35E-02 6.22

RPS17 40S ribosomal protein S17 1 4.51E-02 3.89

RPS18 40S ribosomal protein S18 2 9.91E-03 2.62 2 8.41E-03 6.41

RPS19 40S ribosomal protein S19 1 3.74E-02 1.42

RPS2 40S ribosomal protein S2 1 4.76E-02 4.96 1 4.17E-03 4.69

RPS20 40S ribosomal protein S20 1 6.88E-04 2.26

RPS21
a

40S ribosomal protein S21 2 1.31E-02 2.10

RPS23 40S ribosomal protein S23 2 4.93E-02 46.65 1 2.23E-02 2.74

RPS28 40S ribosomal protein S28 1 4.55E-02 1.65

RS3A 40S ribosomal protein S3a 1 6.57E-03 Infinity 2 1.97E-02 2.40

RPS7 40S ribosomal protein S7 1 1.33E-02 2.63

RPSA 40S ribosomal protein SA 4 5.92E-03 2.01 4 4.03E-03 1.51

CH60 60 kDa heat shock protein, mitochondrial 1 4.57E-02 1.88

RLA0 60S acidic ribosomal protein P0 2 3.14E-03 1.58

RPL10 60S ribosomal protein L10 1 4.47E-02 2.46

RPL10A 60S ribosomal protein L10a 1 4.33E-04 9.03

RPL11
a

60S ribosomal protein L11 1 2.75E-02 1.34

RPL13 60S ribosomal protein L13 2 4.86E-03 4.08

RPL13A 60S ribosomal protein L13a 1 1.12E-02 4.98

RPL14 60S ribosomal protein L14 2 2.93E-03 6.50

RPL15 60S ribosomal protein L15 1 7.15E-04 Infinity

RPL18 60S ribosomal protein L18 1 1.75E-02 5.44

RPL19 60S ribosomal protein L19 1 4.71E-02 3.53 1 2.24E-02 6.89

RPL21 60S ribosomal protein L21 2 1.36E-02 2.65

RPL22 60S ribosomal protein L22 2 6.86E-03 1.76 2 9.83E-03 1.83

RPL24 60S ribosomal protein L24 1 4.06E-02 30.06

RPL26L1 60S ribosomal protein L26-like 1 1 2.96E-03 Infinity 3 7.52E-03 9.33

RPS27A 60S ribosomal protein L27a 1 3.82E-02 52.06

RPL35 60S ribosomal protein L35 1 1.92E-03 18.76

RPL38 60S ribosomal protein L38 1 4.45E-02 1.55 1 5.86E-03 1.31

RPL6 60S ribosomal protein L6 1 3.42E-02 16.78

RPL7 60S ribosomal protein L7 1 3.85E-02 12.15

RPL7A 60S ribosomal protein L7a 1 7.74E-03 2.49

RPL9 60S ribosomal protein L9 1 3.08E-02 82.76

ACTB ACTB Actin, cytoplasmic 2 1 8.47E-03 1.81

SUB1 Activated RNA polymerase II transcriptional coactivator p15 1 3.33E-04 Infinity

AHCY Adenosylhomocysteinase 2 1.01E-03 2.60

SLC25A5 ADP/ATP translocase 2 1 5.66E-03 11.44 1 6.07E-03 3.52

ATP5B ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide 1 2.29E-02 101.90

DDX3Y ATP-dependent RNA helicase 1 4.63E-03 2.43

EIF4A1 ATP-dependent RNA helicase eIF4A 1 4.82E-02 1.23 2 1.52E-02 1.54

DDX39B BAT1 HLA-B associated transcript 1 1 1.19E-04 Infinity

CAT Catalase 1 3.39E-03 4.15 3 1.16E-02 3.11

CS Citrate synthase 1 1.18E-02 2.30

CDA Cytidine deaminase 1 1.68E-03 1.56

DDX17 DDX5 DEAD (Asp-Glu-Ala-Asp) box polypeptide 17 1 2.58E-03 1.40

TOP2 DNA topoisomerase II 1 2.60E-07 Infinity

PM-7 v PM-neg 96hrPM-7 v PM-neg 48hr
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TADBP DNA-binding protein 43 1 1.36E-02 2.00

EF1G Elongation factor 1-gamma 1 8.42E-04 1.30

EEF2
a

Elongation factor EF-2 2 6.24E-03 1.59 3 9.55E-03 2.55

EEF1A1 Eukaryotic translation elongation factor 1 alpha 1 1 4.54E-02 1.50 3 1.03E-04 1.45

EIF3I Eukaryotic translation initiation factor 3 subunit I 1 2.14E-02 3.59

EIF4A3 Eukaryotic translation initiation factor 4A3 1 4.89E-02 1.45

CSE1L Exportin-2 1 1.17E-02 10.03

FUBP2 Far upstream element-binding protein 2 1 4.76E-02 3.04

FKBP4 FK506 binding protein 4, 59kDa 1 6.00E-03 1.70 1 9.54E-03 1.42

GSR Glutathione reductase (NADPH) 1 1.36E-03 Infinity

RANa GTP-binding nuclear protein Ran 3 2.83E-03 1.62

GNB2L1a Guanine nucleotide-binding protein subunit beta-2 1 2 1.47E-02 1.64

HSPA8 Heat shock 70kDa protein 1/8 4 8.77E-04 1.73

HSP90A
a

Heat shock protein HSP 90-alpha 3 2.05E-03 1.46

HSP90AB1 Heat shock protein HSP 90-beta 2 2.23E-03 1.72 1 9.86E-03 2.06

HNRNPH2 Heterogeneous nuclear ribonucleoprotein A/B 1 4.60E-03 1.51 1 7.38E-03 3.99

HNRNPA1 Heterogeneous nuclear ribonucleoprotein A1 2 2.43E-02 1.72

HNRNPCL1 Heterogeneous nuclear ribonucleoprotein C-like 1 1 3.82E-02 1.50

HNRNPF Heterogeneous nuclear ribonucleoprotein F 1 3.68E-02 1.41 1 4.46E-03 1.63

HNRPK Heterogeneous nuclear ribonucleoprotein K 1 1.62E-02 1.67

HNRNPU Heterogeneous nuclear ribonucleoprotein U (scaffold attachment factor A) 2 3.35E-02 1.96

RIR2 High mobility group protein B1 1 2.56E-02 1.27

HIST1H1C Histone H1.2 1 1.42E-02 1.91 4 1.02E-04 8.02

HIST1H2AGa Histone H2A type 1 6 4.28E-05 4.85

H2AFV Histone H2A.V 3 3.16E-04 3.86

H2AZa Histone H2A.Z 1 1.64E-03 3.12

HIST1H2BM Histone H2B type 1-M 1 3.58E-02 17.66

HIST3H3a Histone H3.1t 3 9.65E-05 11.28

H33 Histone H3.3 1 3.91E-02 4.36

H3F3A Histone H3.3 2 9.67E-05 11.28

HISTH4A Histone H4 1 1.35E-03 65.80

N/A
a

Hypothetical protein LOC100766349 1 8.56E-03 1.68

HPRT1 Hypoxanthine phosphoribosyltransferase 1 1 3.75E-02 1.62

IMPDH1 IMP dehydrogenase 2 9.57E-03 2.87 1 2.77E-04 4.08

IMB1 Importin subunit beta-1 2 8.94E-04 2.98

IMDH2
a

Inosine-5'-monophosphate dehydrogenase 2 2 9.57E-03 2.87

KRT10a Keratin, type I cytoskeletal 10 1 7.59E-04 1.84

LDHA Lactate dehydrogenase A 2 2.26E-02 2.08 2 4.13E-03 2.01

MIF Macrophage migration inhibitory factor 1 1.24E-06 Infinity

MAP6 Microtubule-associated protein 6 1 7.40E-03 3.91

MAPRE1 Microtubule-associated protein RP/EB family member 1 1 6.07E-04 Infinity

HTPG Molecular chaperone HtpG 3 4.44E-03 1.49

MYL9 Myosin regulatory light polypeptide 9 1 2.89E-03 Infinity

AHNAK Neuroblast differentiation-associated protein AHNAK 2 6.06E-03 3.02

NUDC Nuclear migration protein nudC 1 7.27E-03 1.98 1 2.20E-04 1.48

NUCL Nucleolin 5 1.03E-03 1.81 4 4.78E-03 1.38

NPM1 Nucleophosmin 1 3.77E-03 2.91

NAP1L4 Nucleosome assembly protein 1-like 1 1 2.03E-02 1.55

ATIC Phosphoribosylaminoimidazolecarboxamide formyltransferase / IMP cyclohydrolase 2 8.41E-03 2.64

PCBP1 Poly(rC)-binding protein 1 1 3.31E-02 1.99

PABP1 Polyadenylate-binding protein 1 2 7.25E-04 1.52 3 1.17E-02 1.50

PA2G4 Proliferation-associated protein 2G4 1 8.27E-03 1.87 1 2.61E-02 1.77
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Table 3.2.4 List of proteins derived from CHO database with decreased expression 

following transient tansfection of miR-7. CHO cells transiently over expressing miR-

7 were compared to scramble negative control transfected cells with ANOVA ≤0.05 and 

fold change >1.2 and >1 peptide between experimental groups being deemed 

significant. 

PSME3 Proteasome (prosome, macropain) activator subunit 3 (PA28 gamma) 1 1.21E-02 11.31 1 4.19E-04 32.13

PRMT1 Protein arginine methyltransferase 1 2 4.61E-02 1.70

RANBP1 Ran-specific GTPase-activating protein 2 5.13E-04 1.72 1 1.04E-02 1.94

RBMX RNA binding motif protein, X-linked 1 1.20E-03 1.69

STRAP Serine-threonine kinase receptor-associated protein 1 3.48E-02 5.92 1 1.27E-02 2.61

PTMA Similar to prothymosin, alpha (gene sequence 28) 4 3.19E-04 95.19

SNRP70a Small nuclear ribonucleoprotein polypeptide F, isoform CRA_b 1 1.54E-02 1.59

SNRPD3 Small nuclear ribonucleoprotein Sm D3 1 2.42E-02 1.34

SUMO2 Small ubiquitin-related modifier 2 1 4.80E-02 1.35

SRSF1 Splicing factor, arginine/serine-rich 1 2 2.05E-03 2.02

SRSF7 Splicing factor, arginine/serine-rich 7 1 3.21E-02 9.22

STMN1 Stathmin 1 1.18E-04 22.20

CCT3 T-complex protein 1 subunit gamma 1 1.89E-03 3.95

CCT6A T-complex protein 1 subunit zeta 1 1.08E-03 Infinity 1 3.23E-02 7.35

BTF3 Transcription factor BTF3 1 2.11E-02 1.53

RHOA Transforming protein RhoA 1 1.12E-03 2.35

TPM4 Tropomyosin alpha-4 chain 1 6.04E-03 2.34

TUBA1C Tubulin alpha-1C chain 2 1.77E-04 1.91

TUBB Tubulin beta 4 2.01E-02 2.01

TUBB2Ca Tubulin beta-2C chain 4 2.01E-02 2.01

TUBB4 Tubulin beta-4 chain 5 3.37E-03 1.90

FAU Ubiquitin-like protein FUBI 1 4.48E-02 5.98

a

Protein identification obtained from NCBI nonredudant database which was not present in BBCHO or had a higher confidence score  compared to BBCHO database
b

Fold change showing increased protein expression in PM-7 transfected cells compared to PM-Neg transfected cells at 48 and at 96 h.
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Gene name Description Peptide Anova (p) Fold Change b Peptide Anova (p) Fold Change b

YWHAB 14-3-3 protein beta/alpha 1 4.98E-02 1.29

YWAHE 14-3-3 protein epsilon 2 5.84E-03 1.62

YWHAH 14-3-3 protein eta 1 3.46E-02 25650.97

YWHAG 14-3-3 protein gamma 1 2.68E-03 1.77 1 4.91E-03 2.01

YWHAZ 14-3-3 protein zeta/delta 1 1.69E-02 1.31

PSMD4 26S proteasome non-ATPase regulatory subunit 4 1 2.50E-02 1.74

MRPL12 39S ribosomal protein L12, mitochondrial 1 4.58E-04 Infinity

GRP78 78 kDa glucose-regulated protein 5 1.05E-02 2.17 8 6.40E-04 2.64

CAP1 Adenylyl cyclase-associated protein 1 2 3.74E-03 2.21

AKR1A1 Aldehyde reductase 1 8.03E-05 1.28

AKR1B8 Aldo-keto reductase family 1, member B8 1 7.56E-03 1.78 1 6.72E-05 2.56

FBAA Aldolase A, fructose-bisphosphate 1 4.40E-02 1.21

ACTN1 Alpha-actinin-1 1 3.86E-02 3.75

ANXA1 Annexin A1 2 5.69E-03 1.58

ANXA2 Annexin A2 2 1.19E-02 1.81

ANXA5 Annexin A5 1 2.37E-02 1.51 3 7.67E-04 3.02

BLVRB Biliverdin reductase B (flavin reductase (NADPH)) 1 2.89E-02 2.38 4 5.98E-04 1.99

CALR Calreticulin 1 3.92E-02 7.54 2 1.54E-02 1.80

CES1 Carboxylesterase 1 (monocyte/macrophage serine esterase 1) 1 1.84E-07 Infinity

CLTC Clathrin heavy chain 1 1 2.45E-02 2.19

CLU Clusterin 2 2.07E-04 16.60 3 1.75E-03 23.74

ENPL Endoplasmin 1 3.51E-02 1.71 4 8.01E-04 1.68

ERP57a ERP57 protein 9 3.66E-04 2.45

ESD Esterase D/formylglutathione hydrolase 1 2.56E-02 1.69 2 2.46E-02 1.84

EIF5A Eukaryotic translation initiation factor 5A-1 1 4.06E-02 110.86

FTH1 Ferritin, heavy polypeptide 1 1 1.01E-02 1.96

ATP5B F-type H+-transporting ATPase subunit beta 3 2.49E-02 1.65

LEG3 Galectin-3 1 1.50E-02 3.53

GAA Glucosidase, alpha 1 5.13E-03 6.37 1 5.05E-06 24.18

GCLM Glutamate-cysteine ligase, modifier subunit 1 1.22E-02 1.62 1 2.55E-02 2.37

GSTA3 Glutathione S-transferase alpha 3 1 2.56E-03 7.91

GSTM1 Glutathione S-transferase mu 1 2 3.91E-02 1.93 1 2.25E-03 1.90

GSTP1 Glutathione S-transferase P 5 3.24E-04 2.83 5 4.89E-04 3.60

GSTP2a Glutathione S-transferase P 2 3 1.18E-03 173.37

GSSa Glutathione synthetase 1 1.88E-02 2.25

G3Pa Glyceraldehyde-3-phosphate dehydrogenase 1 1.22E-02 Infinity

GAPDH Glyceraldehyde-3-phosphate dehydrogenase pseudogene 1 1.22E-02 Infinity

HSPB1 Heat shock protein beta-1 1 1.11E-02 1.53

ROA1 Heterogeneous nuclear ribonucleoprotein A1 1 2.23E-02 132.87

HNRNPA1
a

Heterogeneous nuclear ribonucleoprotein A1 isoform a 1 2.23E-02 132.87

HNRDL Heterogeneous nuclear ribonucleoprotein D-like 1 1.36E-02 1.40

ROA2 Heterogeneous nuclear ribonucleoproteins A2/B1 1 3.37E-03 18.72

CDC37 Hsp90 co-chaperone Cdc37 1 4.31E-02 21.57

IDH1 Isocitrate dehydrogenase 1 (NADP+), soluble 1 3.76E-04 1.87

KRT77
a

Keratin, type II cytoskeletal 1b 1 4.66E-02 1.94

MFGE8 Lactadherin 1 8.95E-05 10.83

LMNA Lamin-A/C 6 2.18E-03 1.94

LGMN LGMN Legumain 1 5.61E-03 60.91

LAMP1 Lysosome-associated membrane glycoprotein 1 2 1.07E-03 3.20

LAMP2 Lysosome-associated membrane glycoprotein 2 1 9.61E-03 10.42

MIF Macrophage migration inhibitory factor 1 3.92E-03 1.28

MOES Moesin 3 8.32E-04 2.42

NME1 NME1 non-metastatic cells 1, protein (NM23A) expressed in 1 4.30E-02 61.52

PRDX1 Peroxiredoxin 1 3 4.53E-03 2.14

PGAM1 Phosphoglycerate mutase 1 2.17E-02 88.19 1 7.48E-04 1.40

P4HB Prolyl 4-hydroxylase, beta polypeptide 2 1.80E-04 1.57 9 3.71E-04 2.45

PM-7 v PM-neg 48hr PM-7 v PM-neg 96hr
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Table 3.2.5 List of proteins derived from CHO database with  increased expression 

following transient tansfection of miR-7. CHO cells transiently over expressing miR-

7 were compared to scramble negative control transfected cells with ANOVA ≤0.05 and 

fold change >1.2 and >1 peptide between experimental groups being deemed 

significant. 

 

 

 

 

 

 

 

PDIA6 Protein disulfide isomerase family A, member 6 4 2.70E-03 2.29

S100A13 Protein S100-A13 1 2.32E-02 2.51 1 4.38E-02 2.85

PKLR Pyruvate kinase 2 1.32E-02 1.25

GDI2 Rab GDP dissociation inhibitor beta 1 7.74E-03 1.40

G3BP2 Ras GTPase-activating protein-binding protein 2 1 2.90E-02 38.04

GDI1 Rho GDP-dissociation inhibitor 1 1 1.29E-04 1.71

RPL37A Ribosomal protein L37a 1 1.38E-02 158.89

SERPH Serpin H1 1 1.55E-02 1.79

SOD2 SOD2 superoxide dismutase 2, mitochondrial 1 2.09E-02 5.26

SRSF3 Splicing factor, arginine/serine-rich 3 1 4.45E-04 40989.80

STIP1 Stress-induced-phosphoprotein 1 1 7.38E-04 Infinity

SRXN1 Sulfiredoxin 1 1.18E-03 4.59 1 2.44E-04 18.07

SOD1 Superoxide dismutase 1, soluble 2 3.15E-03 2.78

TXN Thioredoxin 1 2.03E-02 4.40

TXNRD1 Thioredoxin reductase 1 2 1.60E-04 2.15 4 5.56E-03 2.59

TYMS Thymidylate synthase 1 4.56E-04 Infinity

TPI1 TPI1 Triosephosphate isomerase 1 2 2.90E-03 1.69

TAGLN2 Transgelin-2 3 4.74E-05 1.46

VCP Transitional endoplasmic reticulum ATPase 1 1.23E-02 1.71 4 1.69E-04 1.90

TKTL2 Transketolase-like 2 3 6.16E-03 1.76 5 1.50E-03 2.35

WARS Tryptophanyl-tRNA synthetase 1 2.88E-03 2.34

UMA1 Ubiquitin-like modifier activating enzyme 1 3 1.98E-04 1.66

UAP1L1 UDP-N-acteylglucosamine pyrophosphorylase 1-like 1 1 4.53E-02 2.18

UBE2N Uubiquitin-conjugating enzyme E2 N 1 4.48E-02 1.31

WDR1 WD repeat-containing protein 1 1 2.51E-02 16.26

a

Protein identification obtained from NCBI nonredudant database which was not present in BBCHO or had a higher confidence score  compared to BBCHO database
b

Fold change showing increased protein expression in PM-7 transfected cells compared to PM-Neg transfected cells at 48 and at 96 h.
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3.2.2 Mammalian vs CHO databases  

Having completed the differential analysis with both the BBCHO combined with NCBI 

Chinese hamster databases and also the multi species human, mouse and rat database 

(mammalian) the two could be compared. Standard statistical cut offs were used for 

both searches with ANOVA ≤0.05 and fold change >1.2. The mammalian database 

search resulted in 217 differentially expressed proteins, excluding 1 hit peptide IDs, 

while the CHO database search resulted in 265 differentially expressed proteins, 

including 1 hit peptides. Due to the large number of 1 peptide hits from the CHO 

database search (66%) we decided to include them and investigate overlap with the 

mammalian list. 

This resulted in four comparisons between 48 hr up-regulated, 48 hr down-regulated, 96 

hr up-regulated and 96 hr down-regulated lists. As the 1 peptide IDs were included for 

the BBCHO and not the mammalian list we were more interested in the overlaps rather 

than comparing total numbers. There were 12, 21, 33 and 40 overlapped identifications 

found between the BBCHO and mammalian databases (see Chapter 3) in the 48 hr up, 

48 hr down, 96 hr up and 96 hr down lists respectively (Figure 3.2.2). In all cases there 

were more peptides identified in each of the overlapping IDs with the mammalian list 

than in the CHO database list (Figure 3.2.3 - 3.2.6). This strengthens the 1 hit 

identifications found in the CHO database with the presence of multiple peptides in the 

mammalian search.  

 

Figure 3.2.2 Overlap between gene name identifications associated with 

differentially expressed proteins in CHO-K1_SEAP cells over expressing miR-7 

IDs were derived from a mammalian (human, mouse and rat) and Chinese hamster 

(BBCHO and NCBI non redundant) databases. 
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3.2.3 Western blot identification validation 

Having completed the differential analysis with both the BBCHO/NCBI Chinese 

hamster databases and the multi species databases (human, mouse, rat) a number of 

proteins were chosen for validation by Western blot analysis. Often commercially 

available antibodies raised against proteins of interest derived from a different species to 

Chinese hamster will not react with CHO samples. The targets therefore were chosen 

first from the multi-species list as these were likely highly conserved sequences that 

commercial antibodies would possibly have immunoreactivity to and then followed up 

if that the same protein was reported dysregulated in the CHO database output. 

We chose 4 proteins that were reported to be >2 fold differentially regulated with 

ANOVA p<0.05 according to the mammalian list and 2 protein that was <2 fold 

dysregulated in the miR-7 transfected group compared to the scramble negative control 

group (Table 3.2.6).  

  Mammalian fold change BBCHO/NCBI fold change 

Target  48 hr 96 hr 48 hr 96 hr 

Histone H3 3.83↓ 9.13↓ 4.36↓ 11.28↓ 

Histone H4 3.62↓ 8.07↓ - 65.08↓ 

PDIA6  2.15↑ 2.88↑ - 2.29↑ 

GRP78 1.58↑ 2.06↑ 2.17↑ 2.64↑ 

HSPA8 18↓ - 1.73↓ - 

14-3-3 epsilon - 1.44↑ - 1.62↑ 

 

Table 3.2.6 Label free LC-MS fold change of proteins chosen for Western blot 

validation. Targets were chosen initially from the mammalian list to maximise 

commercial antibody immunoreactivity and then follow up with their presence in the 

CHO list (BBCHO/NCBI). Down regulation is denoted by "↓" and up regulation is 

denoted by "↑". 

 

All the proteins chosen for Western blot validation displayed the same differential 

expression pattern observed in the label free fold change data for miR-7 transient up 

regulation using the CHO database. The most pronounced differential expression was 

seen with Histone H3 and H4 (Figure 3.2.7 and 3.2.8). The other 4 proteins PDIA6, 

GRP78, HSPA8 and 14-3-3 epsilon were less prominently dysregulated according to 

Western blot results (Figure 3.2.9 - 3.2.12) but did still follow the same expression 

trend observed in the label free data. Equal loading was also observed with all samples 

(Figure 3.2.13). 
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Western Blot      

 

 

Quantitative label free protein expression 96 hr 

 

Figure 3.2.7 Western blot analysis showing down regulation of Histone H3 in 

CHO-SEAP cells over expressing miR-7 (PM-7) compared to a transfected 

negative control (PM-Neg). Quantitative label-free LC-MS/MS data using CHO 

database also shows reduced expression at 96 hr after transfection in the miR-7 up-

regulated group (right) compared to the negative control (left) (n=3). As seen in Table 

3.2.4 Histone H3 is down-regulated 4.36 fold at 48 hr (p=3.91 x 10
-2

). 
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Western Blot      

 

 

Quantitative label free protein expression 96 hr 

 

Figure 3.2.8   Western blot analysis showing down regulation of Histone H4 in 

CHO- SEAP cells over expressing miR-7 (PM-7) compared to a transfected 

negative control (PM-Neg). Quantitative label-free LC-MS/MS data using CHO 

database also shows reduced expression at 96 hr after transfection in the miR-7 up-

regulated group (right) compared to the negative control (left) (n=3). As seen in Table 

3.2.4 Histone H3 is down regulated 65.8 fold at 48 hr (p=1.35 x 10
-3

). 
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Western Blot      

 

 

Quantitative label free protein expression 96 hr 

 

Figure 3.2.9 Western blot showing up regulation of PDIA6 in CHO-SEAP cells 

over expressing miR-7 (PM-7) compared to a transfected negative control (PM-

Neg). Quantitative label-free LC-MS data using CHO database also shows increased 

expression at 96 hr after transfection in the miR-7 up-regulated group (right) compared 

to the negative control (left) (n=3). From Table 3.2.5 PDIA6 is up-regulated 2.29 fold 

at 96 hr (p=2.7 x 10
-3

). 
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Western Blot      

 

 

Quantitative label free protein expression 96 hr 

 

Figure 3.2.10   Western blot showing up regulation of GRP78 in CHO-SEAP cells 

over expressing miR-7 (PM-7) compared to a transfected negative control (PM-

Neg). Quantitative label free LC-MS data using CHO database also shows increased 

expression at 96 hr after transfection in the miR-7 up-regulated group (right) compared 

to the negative control (left) (n=3). From Table 3.2.5 GRP78 is up-regulated 2.64 fold 

at 96 hr (p=6.4 x 10
-4

). 
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Western Blot      

 

 

Quantitative label free protein expression 48 hr 

 

Figure 3.2.11 Western blot analysis showing down regulation of HSPA8 at 48 hr in 

CHO-SEAP cells over expressing miR-7 (PM-7) compared to a transfected 

negative control (PM-Neg). Quantitative label-free LC-MS data using CHO database 

also shows reduced expression at 48 hr after transfection in the miR-7 up-regulated 

group (right) compared to the negative control (left) (n=3). As seen in Table 3.2.4 

HSPA8 is down-regulated 1.73 fold at 48 hr (p=8.77 x 10
-4

). 
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Western Blot      

 

 

Quantitative label free protein expression 48 hr 

 

Figure 3.2.12 Western blot analysis (left) showing up regulation of 14-3-3 epsilon in 

CHO-SEAP cells over expressing miR-7 (PM-7) compared to a transfected 

negative control (PM-Neg). Quantitative label-free LC-MS data using CHO database 

also shows increased expression at 48 hr after transfection in the miR-7 up-regulated 

group (right) compared to the negative control (left) (n=3). As seen in Table 3.2.5 14-3-

3 epsilon is up-regulated 317 fold at 48 hr (p=1.54 x 10
-2

) 

 

Western Blot GAPDH 

 

  

Figure 3.2.13 Western blot analysis for GAPDH showing equal loading for Figure 

3.2.7 to 3.2.12. 
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3.3 Predicted miR-7 target analysis using miRWalk 

The targets for translational inhibition by miR-7 in CHO cells were investigated using 

the quantitative label-free LC-MS data in Table 3.2.2. Specifically we focused on 

down-regulated proteins as miRNA inhibits translation of its target mRNA with one 

miRNA potentially having several mRNA targets while up regulation is often a by-

product of miRNA mediated negative regulation. An online tool miRWALK 

(http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/index.html) was used to 

determine if any of the down-regulated proteins in miR-7 over expressing cells were 

significant direct targets of miR-7. These direct complementary targets of miR-7 may 

have a domino effect resulting in the observed proteomic profile of miR-7 up 

regulation. The miRWALK bioinformatics tool combines the output of several miRNA 

target prediction algorithms (Dweep et al. 2011). We searched RNA22, miRanda, 

miRDB, TargetScan and RNAhybrid across mouse, rat and human species (Section 

1.4.2). The most probable direct targets of miR-7 were those that appeared across as 

many of the 5 algorithms used which is generally regarded as best practice and also 

across as many of the three species that were searched (Table 3.3.2). Following 

confirmation that these proteins were present in the differentially expressed lists two 

were chosen for validation, catalase and stathmin. 

According to the label-free LC-MS data in  for the mammalian database (Table 3.2.2) 

and for the CHO database (Table 3.2.4) catalase was down-regulated at 48 and 96 hr 

while stathmin was at 96 hr in miR-7 over expressing cells (Table 3.3.1). 

  Mammalian fold change BBCHO/NCBI fold change 

Target  48 hr 96 hr 48 hr 96 hr 

Catalase 4.07↓ 4.34↓ 4.15↓ 3.11↓ 

Stathmin - 6.88↓ - 22.2↓ 

          

Table 3.3.1 Catalase and stathmin down regulation (↓) in miR-7 over expressing 

CHO-K1-SEAP cells according to label free LC-MS data from mammalian and 

CHO (BBCHO/NCBI) databases. (Table 3.3.2). 

 The down regulation of stathmin and catalase was further validated by Western blot 

(Figure 3.3.1 and 3.3.2). Interestingly these predicted targets were identified as 

differentially expressed from one peptide in the CHO database while the multi-species 
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search yielded 4 peptides for catalase and 2 peptides for stathmin. Going forward with 

this information and observing the large amount of overlap between the mammalian 

multi-species list and the CHO database (Figure 3.2.2) the CHO database was used as 

follow up pathway analysis and for the CHO temperature shift analysis (Chapter 4). 

 

Table 3.3.2 Predicted direct targets of mir-7 using miRWALK across mouse, rat 

and human species. In total 5 search algorithms were used to search the down-

regulated label-free LC-MS mammalian protein data associated with miR-7 over 

expression (Table 4.2.2). Catalase and stathmin were chosen for follow up based on the 
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high number of hits across multiple databases in both rat and mouse species as well as 

appearing down-regulated in label-free LC-MS for both the mammalian and CHO 

database lists.  

 

Catalase 

 

 

Figure 3.3.1 Normalised abundance of peptides associated with predicted direct 

target of miR-7 catalase from the quantitative label-free LC-MS/MS data using the 

CHO database (Table 4.2.4). Each line represents a peptide while each point 

represents a sample. Expression of catalase is reduced on the right in pre-miR-7 

transfected cells compared to scramble control cells on the left. Catalase expression was 

reduced 4.15 fold (p=3.39 x 10
-3

) at 48 hr and catalase expression was reduced 3.11 fold 

(p=1.16 x 10
-2

) at 96 hr (n=3). 
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Stathmin 

 

 

Figure 3.3.2 Normalised abundance of peptides associated with predicted direct 

target of miR-7 stathmin from the quantitative label-free LC-MS/MS data using 

the CHO database (Table 4.2.4). Expression of stathmin is reduced (on the right) in 

pre-miR-7 transfected cells compared to scramble control cells on the left. stathmin 

expression was reduced 22.2 fold (p=1.18 x 10
-4

) at 96 hr with no significant change at 

48 hr (n=3). 
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3.4 Pathway analysis 

In proteomics and other "omics" fields large amounts of identification data is produced. 

In an effort to contextualise these large lists of identifications, pathway analysis tools 

are used. Generally these comprise of evidence-based and literature mining associated 

links between genes and/or proteins and their relationships to each other. In order to use 

these tools to search identification data, the data must be in a usable form for the 

pathway tool. As the protein identifiers from the Chinese hamster proteomic databases 

are not in a form that is usable for pathway analysis the annotation had to be conducted 

manually (Section 3.4.1). Once the identifications were converted to corresponding 

gene names they were submitted to pathway analysis tools. Since different pathway 

tools have different hierarchical ways of assigning these relationships and determining 

what relationships are significant, three different pathway analysis tools were used  

 DAVID  - Database for Annotation, Visualisation and Integrated Discovery)                                                                                                    

(Section 3.4.2) 

 PANTHER - Protein Analysis Through Evolutionary Relationships                                                

(Section 3.4.3) 

 KEGG (Kyoto Encyclopaedia of Genes and Genomes                               

(Section 3.4.4)  

The output from each pathway tool is different but each is complementary to the other 

giving a greater insight to the processes, functions, components and pathways affected 

by increased miR-7 expression in CHO cells. 

 

3.4.1 Protein annotation 

In order to use the protein identifications for pathway analysis and predict functional 

effects of the differentially expressed proteins, the protein identifications must be in a 

suitable format. For lists such as the human, mouse and rat multi-species analysis 

(Table 3.2.2 and 3.2.3) these databases have well annotated protein accession numbers 

associated with each identification making them immediately ready for pathway 

analysis tools. The BBCHO and NCBI Chinese hamster ovary protein identifications do 

not have the same identifiers.  
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The BBCHO database being derived from transcriptomic data has "isotig" number 

identifiers for each protein identification as well as other information as part of the text 

string that is the protein identification, while the NCBI non-redundant CHO list consists 

of a protein name and unofficial gene name derived from ChiTaRS database (Figure 

3.4.1). In order to use these lists the identifications had to be converted to official gene 

names or uniprot accession numbers (see Section 1.5.1.4). This required significant 

manual searching and required each peptide identification to be searched using BLAST 

to validate the correct protein identification. This was an extremely time-consuming 

process spanning 4 differential lists for the miR-7 study (Table 3.2.4 and 3.2.5). 

BBCHO

 

NCBI

 

Annotation summary 

                   

Figure 3.4.1  Examples of typical text strings from the BBCHO in house CHO 

database (top) and the NCBI non redundant CHO database (bottom) requiring 

annotation. A combination of text mining, manual parsing and blast search of peptide 

sequences through UniProt resulted in 1135 gene names and 746 protein assigned to 

CHO IDs. 

In summary, for the BBCHO protein identification text string, the name was isolated 

from between "RecName: Full=" and "; Short=". For the NCBI text string the name was 

isolated from between "product=" and "homologue to=". Multiple names occurred in the 

same text string therefore the peptide sequences associated with each protein was then 

blast searched using UniProt, the full name confirmed and the gene name added. 

Frequent manual parsing was also required for text strings that followed different 

patterns. A master reference list was compiled for the miR-7 study and the temperature 

shift study in Chapter 4 resulting in 1135 gene names and 746 protein names being 

manually assigned across the differential lists using the above method. 
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3.4.2 DAVID analysis 

The database for annotation, visualisation and integrated discovery (DAVID)( 

https://david.ncifcrf.gov/home.jsp)  is a computational tool combining several publicly 

available gene databases to assess the functional and biological patterns associated with 

a list of submitted identifications (Huang da, Sherman and Lempicki 2009a, Huang da, 

Sherman and Lempicki 2009b). For this analysis we looked at molecular function (MF), 

biological process (BP) and cellular component (CC) which uses the gene ontology 

(GO) database through DAVID. On its own, GO is an encyclopaedic database of gene 

functions and their relationships. These three contexts of MF, BP and CC are defined by 

GO (Ashburner et al. 2000). DAVID further categorises this information into 5 levels 

based on order of complexity with level 1 being general fundamental categories up to 

level 5 which encompasses immune response terminology. To understand the 

fundamentals of our observed phenotype we used the FAT category which includes the 

lower 3 levels of organisation in DAVID.  

A  process was deemed to be significantly enriched when adjusted Bonferroni p-value 

was ≤0.05. The analysis was divided into four lists based on 48 and 96 hr time points 

and increased or decreased protein abundance in response to transient transfection 

mediated over expression of miR-7. As an initial comparison the BP enriched from the 

multi-species human, mouse, rat list at 48 hr (Figure 3.4.1A) and 96 hr (Figure 3.4.2A) 

were compared to the enriched BP from corresponding CHO database lists at 48 hr 

(Figure 3.4.1B) and 96 hr (Figure 3.4.2B) after miR-7 up-regulation. The following 

observations were made on this comparison: 

 At 48 hr, cell redox homeostasis was associated with up-regulated proteins in 

both the multi species and Chinese hamster lists with additional processes in the 

CHO list related to homeostasis and apoptosis. 

 At 48 hr, down-regulated proteins in the multi-species list were associated with 

translational elongation, macromolecule, chromatin and nucleosome assembly 

with the CHO list showing translation and translational elongation enrichment.  

 At 96 hr, up-regulated proteins in the multi-species were associated with cellular 

homeostasis and regulation of apoptosis processes which was also seen in the 

CHO list enriched BP output.  
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 At 96 hr down-regulated proteins in the multi-species list were related to BP 

terms translation, RNA processing and assembly of the nucleosome, chromatin 

and macromolecule complex, similar output was also observed for the 

corresponding CHO list.  

Due to the high similarity between the output for BP between the two different database 

lists it was decided that the CHO database list would be used for all subsequent pathway 

analysis. 

Analysing MF (Table 3.4.3) with the differentially expressed proteins derived from the 

CHO database in response to miR-7 over expression we observed the following: 

 At 48 hr, up-regulated proteins were not significantly associated with any MF. 

 At 48 hr, down-regulated proteins were associated with structural constituent of 

the ribosome, structural molecule activity and RNA binding.  

 At 96 hr, protein up regulation was associated with intramolecular 

oxidoreductase activity, antioxidant activity and glutathione transferase activity. 

 At 96 hr, down regulation of proteins was related to structural constituent of the 

ribosome, structural molecule activity and RNA binding.  

The greater degree of enrichment of functions associated with down regulation 

potentially highlights the negative regulation of miR-7 on cellular activities. This is 

most evident at 48 hr, but interestingly it is in up regulation and glutathione transferase 

activity which we see more references to in KEGG pathway analysis output. 

Finally with CC (Table 3.4.4) analysis on the differentially expressed proteins derived 

from the CHO database in response to miR-7 over expression we observed the 

following: 

 At 48 hr, up regulation of proteins were associated with the cytosol. 

 At 48 hr, down-regulated proteins were associated with a larger number of 

components including the cytosol, ribosome, intracellular non-membrane-

bounded organelle, non-membrane bounded organelle, melanosome and pigment 

granule. 
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 At 96 hr, up-regulated proteins were associated with the melanosome, cytosol, 

soluble fraction and vesicle. 

 At 96 hr, the down-regulated proteins were associated with the ribosome, 

cytosol, intracellular non-membrane bound organelle. 

Again, this emphasis on negative regulatory effect of miRNA with a large number of 

CC terms enriched in the down-regulated proteins. By 96 hr the enriched CC terms are 

more balanced in number between up and down-regulated proteins. 

To take BP, MF and CC into consideration together the following conclusions can be 

made regarding up and down regulation of proteins in response to miR-7 up regulation 

in CHO-K1-SEAP cells 

 Up regulation of proteins are related to homeostasis processes related to 

antioxidant activity at 48 hr which are localised in the cytosol. This carries over 

to 96 hr with added up-regulation of anti-apoptotic and apoptotic regulation 

processes that are functionally linked to oxidoreductase activity and glutathione 

transferase activity and associated with the melanosomal, cytosolic  and vesicle 

components. This suggests that early 48 hr stage oxidative stress homeostasis is 

activated with antioxidant proteins such as thioredoxin, thioredoxin reductase 

and superoxide dismutase being enriched in this pathway. The maintaining of 

oxidative stress response proteins may in turn be related to cell survival with the 

addition of anti-apoptotic up regulation at 96 hr. In that regard homeostasis 

process up regulation may be related to regulatory and inhibitory elements of 

homeostasis rather than an up regulation of homeostasis activity.  

 Down-regulated proteins at 48 hr are involved in translation processes, 

functionally linked with RNA binding and structural molecule activity and most 

significantly localised to the ribonucleo complex, cytosol, ribosome and 

melanosome. Similarly at 96 hr there was down regulation of translational, 

chromatin and ribosomal process proteins which were functionally related to 

structural constituent of the ribosome, structural molecule activity and RNA 

binding with localisation associated with the ribosome and cytosolic 

components. 
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A     

 

B       

 

Table 3.4.1 GO biological process (BP) analysis through DAVID of up or down-

regulated proteins 48 hr after transient over expression of miR-7 in CHO-K1-

SEAP cells. The multi-species (A) and CHO databases (B) were both used and enriched 

BP compared in both. The number of proteins from the submitted list associated with 

each GO term is represented by the count value. Enrichment was deemed significant 

with a Bonferroni adjusted p-value ≤0.05. 
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A 

                

B  

                 

Table 3.4.2 GO biological process (BP) analysis through DAVID of up or down-regulated 

proteins 96 hr after transient over expression of miR-7 in CHO-K1-SEAP cells. The multi-

species (A) and CHO databases (B) were both used and enriched BP compared in both. The 

number of proteins from the submitted list associated with each GO term is represented by the 

count value. Enrichment was deemed significant with a Bonferroni adjusted p-value ≤0.05. 



 

120 
 

A 

 

B 

 

Table 3.4.3 GO molecular function (MF) analysis through DAVID of up or down-

regulated proteins from the CHO protein database 48 hr (A) and 96 hr (B) after 

transient over expression of miR-7 in CHO-K1-SEAP cells. The number of proteins 

from the submitted list associated with each GO term is represented by the count value. 

Enrichment was deemed significant with a Bonferroni adjusted p-value ≤0.05.  
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Table 3.4.4 GO cellular component (CC) analysis through DAVID of up or down-

regulated proteins from the CHO protein database 48 hr (A) and 96 hr (B) after 

transient over expression of miR-7 in CHO-K1-SEAP cells. The number of proteins 

from the submitted list associated with each GO term is represented by the count value. 

Enrichment was deemed significant with a Bonferroni adjusted p-value ≤0.05. 
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3.4.3 PANTHER analysis 

The second online pathway tool used was PANTHER (Protein Analysis Through 

Evolutionary Relationships)( http://pantherdb.org/). Much like DAVID (Section 3.4.2) 

this tool also uses Gene Ontology (GO) terms that have been associated with genes and 

proteins for their functions and relationships to each other based on biological processes 

(BP), molecular function (MF) and cellular component (CC). PANTHER classifies 

function related to evolutionary family trees through statistical analysis before 

annotating each node through manual review into three types of grouping associated 

with UniProt for "subfamily membership" and GO terms for "protein class" and "gene 

function" (Thomas et al. 2003, Mi et al. 2005). These have been continually revised and 

defined since the conception of PANTHER over the last 17 years and is constantly 

revised and currently on version 10.0 since April 2015.  

Several tools are available through PANTHER including an over-representation tool 

and enrichment analysis tool for gene list analysis with both analyses being processed 

differently. For our differential lists which are proteins that are positively or negatively 

enriched for with respect to a given comparison the overrepresentation analysis was 

used. This analysis compares a differential protein list to a reference gene set. As human 

gene names were chosen for the corresponding CHO protein IDs a reference list of 

20,814 human genes were used to assess overrepresentation within each differential list.   

The first analysis focused on searching BP using PANTHER on the up and down-

regulated proteins 48 hr (Table 3.4.5A)  and 96 hr (Table 3.4.5B) after transient over 

expression of miR-7 in CHO-K1-SEAP cells. The following key findings were 

observed: 

 At 48 and 96 hr PANTHER shows up-regulated proteins from the CHO database 

lists to be associated with protein folding, protein metabolic process and 

metabolic process. 

 At 48 and 96 hr PANTHER shows down-regulated proteins from the CHO 

database lists to be associated with translation, protein metabolic process, 

metabolic process, mRNA splicing, cellular component biogenesis and nuclear 

transport are down-regulated at 48 and 96 hr  

Of note is that metabolic processes are both up and down-regulated suggesting a non 

linear relationship between the proteins associated with that process. This may point 
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toward a level of sub categorisation of processes that PANTHER is pointing to but 

unable to formally identify. 

Enriched MF in the up and down-regulated proteins 48 hr (Table 3.4.6A) and 96 hr 

(Table 3.4.6B) after transient over expression of miR-7 in CHO-K1-SEAP cells shows 

a similar trend to BP with many of the same functions being affected at 48 hr as at 96 

hr. The key observations were as follows: 

 At 48 and 96 hr up-regulated proteins a linked to oxidoreductase activity, 

catalytic activity and translocase with glucosidase activity specifically associated 

with 48 hr and protein disulfide isomerase activity specifically associated with 

96 hr.  

 At 48 and 96 hr down-regulated proteins are linked to terms related to structural 

constituent of the ribosome, structural molecule activity, nucleic acid binding, 

RNA binding, translational initiation, elongation and translational regulator 

activity. 

Using CC analysis it was possible to see what components the BP and MF were 

associated with. As with the other analyses CC enrichment was assessed with the up and 

down-regulated proteins 48 hr (Table 3.4.7A) and 96 hr (Table 3.4.7B) after transient 

over expression of miR-7 in CHO-K1-SEAP cells. The key observations: 

 At 48 and 96 hr up-regulated proteins were not significantly overrepresented in 

any CC terms. 

 At 48 and 96 hr down-regulated proteins were associated with the 

ribonucleoprotein complex, ribosome, macromolecular complex and cytosol 

with additional CC of the macromolecular complex, organelle, intracellular and 

cell part being overrepresented at 48 hr. 

Taking BP, MF and CC obtained through PANTHER into account as a whole there is a 

clear effect on metabolic, ribosomal and nuclear processes specifically related to down 

regulation of translational functions with an up regulation of enzymatic functions. This 

activity is localised to a wider range of cellular components at 48 hr than at 96 hr. 

Overall BP and MF was down-regulated more than up-regulated in response to miR-7 

over expression at 48 and 96 hr which was a trend also seen with DAVID analysis in the 

previous section. 
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Table 3.4.5 PANTHER biological process (BP) enrichment of up or down-

regulated proteins from the CHO protein database 48 hr (A) and 96 hr (B) after 

transient over expression of miR-7 in CHO-K1-SEAP cells. The number of proteins 

from the submitted list associated with each GO term is represented by the count value. 

Enrichment was deemed significant with a Bonferroni adjusted p-value ≤0.05.        
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Table 3.4.6 PANTHER molecular function (MF) enrichment of up or down-

regulated proteins from the CHO protein database 48 hr (A) and 96 hr (B) after 

transient over expression of miR-7 in CHO-K1-SEAP cells. The number of proteins 

from the submitted list associated with each GO term is represented by the count value. 

Enrichment was deemed significant with a Bonferroni adjusted p-value ≤0.05.       
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Table 3.4.7 PANTHER cellular component (CC) enrichment in up or down-

regulated proteins from the CHO protein database 48 hr (A) and 96 hr (B) after 

transient over expression of miR-7 in CHO-K1-SEAP cells. The number of proteins 

from the submitted list associated with each GO term is represented by the count value. 

Enrichment was deemed significant with a Bonferroni adjusted p-value ≤0.05. 
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3.4.4 KEGG analysis 

KEGG (Kyoto Encyclopaedia of Genes and Genomes)( http://www.genome.jp/kegg/) is 

a database of 472 pathways totalling 372,728 genes which are searched against a 

submitted list of identifiers. A number of search functions are available including 

pathological associations and ligands (Kanehisa et al. 2002). The basic pathway search 

was used for the purposes of this experiment. The lists were searched against the KEGG 

pathway human database through DAVID and then the corresponding significant 

pathway chart was obtained from KEGG. 

Using KEGG with the differentially expressed proteins derived from the CHO database 

in response to miR-7 over expression the following was observed ; 

 At 48 and 96 hr up-regulated proteins were significantly associated with 

Glutathione metabolism (Figure 3.4.2 and 3.4.4). Specifically these proteins 

were Glutamate-cysteine ligase, modifier subunit (GCLM), Glutathione 

Synthase (GSS), Glutathione S-transferase mu (GSTM1), Glutathione S-

transferase pi (GSTP1) at 48 hr. The same proteins were also unregulated at 96 

hr in Glutathione metabolism with the exception of GSS and the addition of 

Isocitrate dehydrogenase 1 (NADP+), soluble (IDH1), Glutathione S-transferase 

alpha 3 (GSTA3). These proteins are indicated in the pathway as being involved 

in  enzymatic reduction (RX) of  glutathione which is important in detoxifying 

functions in the cell. 

 At 48 and 96 hr down-regulated proteins were associated with the ribosome 

pathway (Figure 4.4.3 and 4.4.5). There are a large number of ribosomal 

proteins down-regulated in the ribosomal pathway, 18 at 48 and 33 at 96 hr 

respectively. Due to the highly co-operative nature of ribosomal proteins as well 

as some ribosomal proteins involved only in the formation of the ribosome itself 

it may be difficult to determine the role of this pathway. Generally however with 

so many proteins in this pathway down-regulated and the reduced growth 

phenotype observed in the miR-7 transfected cells it may indicate a large scale 

down regulation of protein synthesis reducing proliferation. This again would be 

consistent with the findings in DAVID and PANTHER related down regulation 

of proteins involved in ribosomal structural subunit formation, RNA synthesis, 

translation and down regulation related to proteins localised to the ribosome. 
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Figure 3.4.2 Diagram representing protein up-regulation in the Glutathione 

Metabolism pathway using DAVID and KEGG analysis. Four proteins (highlighted 

in orange above with two proteins represented by "2.5.1.18") were up-regulated in CHO 

cells at 48 hr after transfection with miR-7. The KEGG diagram denotes Glutamate-

cysteine ligase, modifier subunit (GCLM) and Glutathione Synthase (GSS) as 6.3.2.2 

and 6.3.2.3 respectively. Glutathione S-transferase  mu (GSTM1) and Glutathione S-

transferase pi (GSTP1) are denoted by 2.5.1.18 where a number of enzymes reduce 

(RX) glutathione in performing important detoxifying functions in the cell. Contrary to 

DAVID and PANTHER this analysis shows the exact locations of proteins in enriched 

pathways. 
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Figure 3.4.3 Diagram representing protein down-regulation in the ribosome 

pathway using DAVID and KEGG analysis. From the differential list of down-

regulated proteins at 48 hr in miR-7  over expressing CHO cells 18 ribosomal members 

(highlighted in orange above, some contain more than one ID) were found to enrich for 

the ribosomal KEGG pathway (Bonferonni p<0.05). The above KEGG diagram 

represents the large ribosomal (50S) and small (30S) ribosomal subunit.  
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Figure 3.4.4 Diagram representing protein up-regulation in the Glutathione 

Metabolism pathway using DAVID and KEGG analysis. Six proteins (highlighted in 

orange above with "2.5.1.18" representing 3 proteins) were up-regulated in CHO cells at 

96 hr after transfection with miR-7. The KEGG diagram denotes Glutamate-cysteine 

ligase, modifier subunit (GCLM) as 6.3.2, Isocitrate dehydrogenase 1 (NADP+), soluble 

(IDH1) as 1.1.1.42 and the remaining four proteins Glutathione S-transferase alpha 3 

(GSTA3), Glutathione S-transferase alpha 2 (GSTA2), Glutathione S-transferase, mu 1 

(GSTM1) and Glutathione S-transferase P (GSTP1) are denoted by 2.5.1. 
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Figure 3.4.5 Diagram representing protein down-regulation in the ribosome 

pathway using DAVID and KEGG analysis. All 33 members of the ribosomal 

members down-regulated in CHO cells 96 hr after miR-7 transfection are labelled 

(highlighted in orange above) in the KEGG diagram representing the large ribosomal 

(50S) and small (30S) ribosomal subunit. 
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3.5 Proteomic and microarray overlap of targets associated with miR-7  

By comparing both proteomic and microarray differential expression data from miR-7 

over expressing CHO cells additional potential targets of miR-7 can be found. The 

proteomic down-regulated differential data in Table 3.2.2 was overlapped with down-

regulated microarray data generated by Dr. Noelia Sanchez (Sanchez et al. 2013). Part 

of her work involved gene profiling of miR-7 transfected CHO cells.. The proteomic 

data profiles differential protein abundance at 48 and 96 hr while the differential 

transcript data from the microarray relates to a 72 hr time point after transfection with 

miR-7. In both the microarray and proteomic data differential expression was 

considered as being >1.2 fold increased or decreased when compared to a miRNA 

scramble control with significance of p ≤0.05. Such a low fold change in protein levels 

was previously observed in our lab as being associated with miR29a regulation of 

invasion and proliferation (Muniyappa et al. 2009). The gene names from the proteomic 

data and the microarray data were then overlapped. It was found that 6 gene names 

overlapped and all of these had the same up or down differential regulation at the 

transcript and protein level (Table 3.5.1). Further to this catalase (CAT), a predicted 

direct target of miR-7, was found to be differentially regulated in the microarray and 

proteomic data.  

 

Table 3.5.1 Gene names associated with both transcriptional and proteomic 

differential regulation in response to miR-7 over expression compared to a miR 

Scramble control. The direction of differential regulation is the same for all 

overlapping targets suggesting direct association between transcriptional and 

translational regulation with these proteins. The presence of catalase (CAT) in the list 

also strengthens the overlap and the association of catalase with miR-7 as it was 

predicted as one of the direct targets of miR-7. 

Among the differentially regulated transcripts in the microarray was Histone 

deacetylase 1 (HDAC1) which was down-regulated in miR-7 over expressing CHO 

cells compared to negative transfected control (Figure 3.5.1A). We had previously 

Gene name

PRPS1 2.15 (p=8.25E-04) - 2.57 (p=3.0E-02)

CAT 1.96 (p=2.07E-02) 4.07 (p=4.34E-03) 3.14 (p=8.43E-03)

AHCY 1.61 (p=2.86E-02) 2.89 (p=3.53E-03) -

ATIC 1.36 (p=1.61E-04 2.55 (p=4.52E-03) 1.84 (p=1.55E-03)

FTH1 1.67 (p=4.5E-03) - 2.51 (p=4.5E-03)

CLIC4 1.39 (p=1.43E-02) - 5.46 (p=2.56E-03)

72hr Microarray 48hr Label Free 96hr Label Free

Down in pre-miR7

Up in pre-miR7

Fold change and signaicance (p=-value) across 3 datasets
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observed through Western blot analysis that acetylation of Histones was reduced in 

miR-7 over expressing CHO cells (Figure 3.5.1B). As a result we decided to investigate 

if HDAC1 was down-regulated in miR-7 over expressing CHO cells. Our results show 

down-regulation of HDAC1 in miR-7 transiently over expressing CHO-K1-SEAP with 

Coomassie loading stain control (Figure 3.5.1C).  

A        

B            C 

 

 

Figure 3.5.1 Transcriptional expression of HDAC1 (A) and Western blot analysis of 

Histone/Acetyl Histone (B) and of HDAC1 expression (C). Transcriptional down-regulation 

of Histone Deacetylase 1 (HDAC1) from microarray (A) showing a 2.53 fold decrease 72 hr 

after transient over expression of miR-7 together with Western blot for total Histone H3, Acetyl 

Histone H3, total Histone H4 and Acetyl Histone H4 (B) showing acetylation of Histone H3 is 

reduced at 96 hr and Histone H4 is reduced at 48 and 96 hr in premiR-7 transfected CHO cells. 

Western confirms down-regulation of HDAC1at 48 and 96 hr after miR-7 over expression (C). 

4.  

From the Western blot analysis and acetylated histones it would be expected that 

HDAC1 would be increased in transfected cells. Therefore deacetylation of Histones H3 

and H4 may be occurring without the interaction of HDAC1 or alternatively the histone 

acetylation is reduced in miR-7 over expressing cells and the reduction in acetylation is 

passive in that histones aren't being acetylated rather than increased deacetylation 

occurring. 

Fold change p-value adj. p-value

HDAC1 -2.53 1.56E-07 3.08E-03

Transcriptional downregulation in PM-7 transfected cells 
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Results summary 

In order to determine the effect of miR-7 on the CHO cell proteome we conducted a 

quantitative label-free LC-MS/MS analysis on CHO-K1-SEAP cells 48 and 96 hr after 

transient over expression of miR-7 and compared them to a negative scramble miR 

control. Protein identifications were assigned using a species homology approach, 

searching peptide sequences against a human, mouse and rat database, as a CHO 

specific one was not available. Using miRWALK software we identified a number of 

potential miR-7 direct targets with the two strongest candidates, stathmin and catalase, 

being validated by Western blot. This work was published (Meleady et al. 2012b) and 

has since included further validative Western blot analysis and pathway analysis using 

DAVID, PANTHER and KEGG. 

Following this we gained access to two CHO specific protein databases (See Chapter 

1) and the analysis was conducted again. After the manual correction and annotation of 

the identifiers from the resulting differential protein lists was completed (combined with 

annotation from Chapter 4) a reference list of 1135 gene name annotated CHO protein 

identifications were generated. This allowed a larger pathway analysis investigation 

using 3 pathway analysis tools, DAVID, PANTHER and KEGG. The combination of all 

three confirmed that translational inhibition, anti-apoptotic activity and heat shock were 

all responsible for the miR-7 over expression phenotype. Novel findings suggested that 

glutathione metabolism was also involved in this phenotype. 

Overlapping proteomic identifications with transcriptomic from a previous study in our 

lab (Sanchez et al. 2013) re-established catalase as a target of miR-7. It was also 

observed that Histone deacetylase 1 (HDAC1) was  transcriptionally down-regulated in 

miR-7 over expressing CHO cells and simultaneously acetylation of Histones H3 and 

H4 was reduced at the protein level as seen by Western blot in miR-7 over-expressing 

CHO cells. HDAC1 was then confirmed to be down-regulated at the protein level by 

Western blot suggesting a more complex mechanism involving miR-7 and Acetylation 

in CHO cells. 
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    CHAPTER 4 

4. Effect of temperature shift on CHO-K1-SEAP cells using 

subcellular fractionation 
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4.1 Effect of temperature shift and deep proteome target discovery 

Temperature shift is a technique used to increase the life span and productivity of cells 

in culture but also decreases cell proliferation. The technique involves lowering culture 

temperature from 37
 o

C to 31
 o

C and maintaining cells at this lower temperature. The 

molecular basis for this phenotype is still poorly understood in CHO cells but is of great 

interest for industrial applications. Previous work in our lab has shown differential 

micro RNA expression (Gammell et al. 2007) and differential protein expression linked 

to the temperature shift phenotype (Kumar et al. 2008). In this study a large scale global 

proteomic analysis was used to investigate the molecular mechanisms involved in 

temperature shift. CHO K1-SEAP cells were grown at 37
 o
C for 72 hr before one of two 

sets was transferred to 31
 o

C. Cells were cultured for an additional 8 and 24 hr before 

being pelleted and processed for analysis.  

To obtain more detailed information on the processes involved in temperature shift each 

sample was fractionated into membrane, cytoplasmic and nuclear fractions. This 

reduces sample complexity and allows for more protein identifications. It also allows 

the analysis of various pathways associated with each fraction to be analysed and 

determine the localisation of activity. Additionally it was possible to identify proteins 

differentially regulated over time between the 8 and 24 hr time points as well as 

between 37
 
and 31

 o
C. Therefore a temperature shift comparison at 8 and 24 hr was 

possible and also a time course comparison of proteins differentially regulated between 

8 and 24 hr at 37 and 31
 o

C was possible. These multiple comparisons allowed the 

identification of proteins that were differentially regulated in cells grown at 31
 o

C and 

also over time in cells grown at 31
 o
C that aren't differentially regulated over time at 37

 

o
C. 

Most of the proteins differentially regulated were found to be unique to each 

fractionation and so can be considered that of "deep proteome identifications" (see 

Section 1.5.2). Four of these proteins Ezrin, Moesin, Lamin A/C and Cyclon were 

chosen for siRNA knockdown in an attempt to induce a temperature shift-like 

phenotype. Of these Cyclon and Moesin were found to have a significant effect on cell 

proliferation as well as average cell perimeter and average cell area. 
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4.2 Fractionation validation 

We used simple benchtop fractionation kits to enrich for proteins localised to the 

membrane, cytoplasm and nucleus in CHO-K1 SEAP cells. For membrane enrichment 

we used ProteoExtract® Native Membrane Protein Extraction Kit (Calbiochem) and for 

cytoplasmic and nuclear enriched fractions we used a Nuclear Extract Kit (Active 

Motif). 

These kits were used in other fractionation studies in our laboratory using human cancer 

cell lines and were demonstrated to be user friendly, high throughput and result in 

reducing sample complexity. By reducing sample complexity for mass spectrometry 

analysis, more IDs as well as more sequence coverage for low abundant protein IDs 

could be achieved. As these kits had not been previously applied to CHO cells 

enrichment was validated by Western blot, protein identification overlapping and 

annotated enrichment analysis before a larger scale temperature shift experiment. 

 

4.2.1 Western blot validation of enrichment 

CHO-K1-SEAP cells were grown for 72 hr at 37 
o
C and an aliquot was taken for  

membrane enrichment and for nuclear/cytoplasmic enrichment. This resulted in a 

membrane, cytoplasmic and nuclear enriched sample for Western blot as well as the 

unfractionated "whole" sample. The four samples were then probed for proteins that are 

primarily associated with each subcellular fraction according to COMPARTMENTS, an 

open source tool which uses text mining and protein curation information for 

visualisation of protein localisation (Binder et al. 2014).  

Expression of PDIA3, which is known to be associated with the endoplasmic reticulum 

and known to translocate to the nucleus (Wu et al. 2010b)(), was used to assess nuclear 

enrichment. HSP90 was used to assess cytoplasmic enrichment and is mostly associated 

with cytoplasm localisation (Langer, Rosmus and Fasold 2003). IGF1R is well 

established in the literature to promote cell-cell adhesion and cellular cross talk in 

cancer (Guvakova and Surmacz 1997, Hellawell et al. 2002) therefore IGF1Rβ was 

used  to assess membrane enrichment. All three proteins showed a marked increase in 

abundance in their associated enriched fraction (Figure 4.2.1). PDIA3 and IGF1Rβ in 

particular showed higher abundance in  nuclear and membrane fractions respectively 

compared to corresponding un-fractionated whole samples. This demonstrated that 
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enrichment had occurred across all three fractions compared to the un-fractionated 

sample. It also showed that each fraction was enriched for proteins that are heavily 

associated with the corresponding subcellular localisation of each enrichment (e.g. 

membrane fraction contains membrane proteins). Following this enriched samples were 

analysed using LC-MS/MS to assess the enrichment using pathway analysis on the 

qualitative IDs. 

                                      

 

Figure 4.2.1 Validation of membrane, cytoplasmic and nuclear enrichment in 

CHO-K1 SEAP cells at 72 hr using commercially available benchtop fraction kits. 

The Western blot analysis shows that PDIA3, HSP90 and IGF1Rβ are enriched in 

nuclear, cytoplasmic and membrane fractions respectively. All three proteins are known 

to be localised in these corresponding fractions demonstrating that enrichment of the 

samples was achieved with these three proteins. 
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4.2.2 Mass spectrometry validation of enrichment 

CHO-K1 SEAP cells were grown at 37
 o
C for 72 hr and processed for whole cell lysates 

and for membrane, cytoplasmic and nuclear enriched fractions. These samples were 

then submitted for LC-MS/MS analysis.  

As well as generating the necessary quantitative data for differential expression 

information the LC-MS also generates qualitative identifications. For the purposes of 

this experiment these identifications were used to further investigate the extent of 

enrichment of each fraction. This was achieved by identifying the number of 

overlapping identifications between fractions and also assessing enrichment through 

pathway analysis tools. 

While GI numbers are unique to each protein and overlap comparison is possible using 

them, they are not a usable format for pathway analysis. As mentioned in Section 3.4.1 

the manual annotation is extremely time-consuming and as such was not justified for 

this qualitative analysis which would require the annotation of 2197 unique GI taking 

into account overlaps between fractions (Figure 4.2.2) with 4546 including overlapping 

IDs. Of these 2197 unique GI numbered proteins 757 (33%) had gene names 

automatically assigned (Table 4.2.1). These proteins with gene name identifiers were 

used for GO analysis through DAVID to show the localisation of the proteins associated 

with each list (Table 4.2.2) and the top 10 significant terms (p≤0.05) were graphically 

represented in pie charts for each fraction (Figure 4.2.3).  
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4.2.2.1 Protein identification overlap 

The qualitative IDs were searched against the BBCHO protein identification database. 

This resulted in 960 proteins identified from the un-fractionated lysate, 953 from the 

nuclear, 1295 from the cytoplasmic and from the 1335 membrane enrichment based on 

gene index numbers (GI) (Table 4.2.1). The number of proteins that were identified that 

contained gene names (No. Accession) were also counted as these would be used later 

for enrichment analysis which requires these identifiers. 

As all the protein IDs had GI numbers these were then overlapped from each fraction to 

determine the number of unique IDs associated with each fraction. The overlap showed 

that there were 241 proteins that were unique to nuclear fraction, 309 proteins unique to 

the cytoplasmic fraction and 412 proteins unique to the membrane fraction (Figure 

4.2.2). These proteins could not be identified without using the enrichment. Conversely 

there were 137 proteins uniquely associated with the un-fractionated protein lysate. 

 

Figure 4.2.2 Venn diagram showing the overlap of protein IDs using gene index 

(GI) identifiers from the BBCHO database using CHO-K1-SEAP cells grown for 

72 hr at 37 
o
C. The sum total of IDs between whole un-fractionated, nuclear, 

cytoplasmic and nuclear samples was 4546, while removing repeat IDs resulted in 2298 

unique IDs which is evident from the high number of overlaps between fractions. 

Larger number of proteins unique to each enriched fraction (412, 309 and 241 in 

membrane, cytoplasmic and nuclear respectively) compared to those unique to the un-

fractionated (whole) lysate (137) shows that the sample complexity of the un-

fractionated sample has been reduced and enrichment has occurred. If there were no 

IDS unique to each fraction and all could be accounted for in the un-fractionated sample 

then enrichment would not have occurred. 
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4.2.2.2 Annotated enrichment analysis 

The BBCHO database generated a total of 2298 unique protein IDs from combining the 

nuclear, cytoplasmic and membrane enriched fractions along with the un-fractionated 

lysate. These IDs from the BBCHO database are derived from transcript IDs which are 

not suitable for use with pathway analysis tools. As detailed in Section 3.4 these IDs 

require manual annotation involving a BLAST search of the peptides for each ID, 

acquiring the exact protein ID and assigning a protein accession number or gene name 

for pathway analysis. With a total of 2298 unique identifications according to the 

assigned gene index (GI) number from transcriptomic information, this annotation 

would take unjustifiably long for a qualitative assessment of enrichment. Therefore the 

IDs that had gene names that could be automatically parsed from the transcript label 

were verified and included in the pathway analysis. 

Of the unique pool of 2298 identifications 33% had correct verified gene names with 

48% containing correct gene names in the pool when including repeat IDs (Table 

4.2.1). The relative percentage for each fraction was different, however, with 42%, 

37%, 51% and 46% of un-fractionated, nuclear, cytoplasmic and membrane IDs 

containing correct gene names respectively. 

 

 

Table 4.2.1 Summary of the number of qualitative IDs obtained from the BBCHO 

database and the relative number that contained verified gene names (% 

accession) that were automatically parsed from the transcript identifier. The 

samples included the un-fractionated lysate, nuclear, cytoplasmic and membrane 

enriched fractions from CHO-K1 SEAP cells after 72 hr at 37
 o

C. All protein IDs 

contained a gene index (GI) with a smaller number indicated that had a clearly assigned 

gene name (Accession). Sum totals of IDs across the four fractions was calculated as 

"Total Pool". "Unique Pool" was the total after removing replicate IDs based on the GI 

number in the "Total Pool". The percentage values on the far right denote the number of 

GI numbers that were converted to gene names. 



 

142 
 

These gene names for each ID list were analysed with GO analysis through DAVID as 

in Section 3.4.2 with a cut-off Bonferonni p<0.05 using the cellular component (CC) 

category to assess enrichment. We found 11 localisation terms are significantly enriched 

in the un-fractionated lysate (whole) compared to 28, 22 and 17 in the membrane, 

cytoplasmic and nuclear fractions respectively as well as bias for specific terms that 

would have been expected for each fraction (Table 4.2.2). This shows more CC are 

enriched and that sample complexity has been reduced. Visualising the top ten most 

significant of these terms it was found that each fraction has a unique enrichment profile 

which is unlike the un-fractionated sample, showing again the high degree of 

enrichment (Figure 4.2.3). 

A        B 

 
 

 

 

            

 

 

 

 

Table 4.2.2 Significant (Bonferroni adjusted p≤0.05) Cellular Component GO 

terms associated with each fraction. The unfractionated lysate (A), membrane (B), 

cytoplasmic (C) and nuclear (D) fractions all show bias for terms that would be 

expected to be associated with each fraction such as mitochondrial, envelope and 

organelle membrane for the membrane fraction, cytosol, mitochondrion and ribosome 

for the cytoplasmic fraction and ribonucleoprotein and spliceosome for the nuclear 

fraction as well as a larger number of enriched terms in the enriched samples. 

C 

D 



 

143 
 

Membrane Fraction Cellular Component Analysis 

Mouse Background: Relative top 10 p<0.05 terms

11%

18%

8%

8%

9%
8%

9%

9%

9%

11%
mitochondrial part

mitochondrion

mitochondrial inner membrane

organelle inner membrane

mitochondrial envelope

mitochondrial membrane

ribonucleoprotein complex

organelle envelope
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organelle membrane

Nuclear Fraction Cellular Component Analysis Mouse 

Background: Relative top 10 p<0.05 terms

13%

20%

20%7%

4%

3%

10%

4%

10%

9%
ribonucleoprotein complex

intracellular non-membrane-bounded

organelle
non-membrane-bounded organelle

ribosome

spliceosome

ribosomal subunit

membrane-enclosed lumen

cell cortex

organelle lumen

cytoskeleton

A                 B 

 

C                 D 

 

 

Figure 4.2.2 Representation of the top ten significant (Bonferroni adjusted p≤0.05) 

Cellular Component GO terms associated with each fraction from Table 4.2.3. This 

shows that each enriched samples (B, C, D) show a bias for specific sub-cellular 

components compared to the unfractionated lysate (A) and confirms enrichment in the 

fractionated samples. Specifically, it shows more clearly the differing profiles of each 

fraction and the unfractionated sample compared to each other. 

 

 

 

 

 

 

 

 

Whole Lysate Cellular Component Analysis Mouse 

Background: Relative top ten p<0.05 terms

16%

9%

24%
24%

5%

9%

2%

3%

4%
4% ribonucleoprotein complex

ribosome

intracellular non-membrane-bounded

organelle
non-membrane-bounded organelle

proteasome complex
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Cytoplasmic Fraction Cellular Component Analysis  
Mouse Background: Relative top 10 p<0.05 terms 
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4.3 Quantitative label-free LC-MS/MS analysis 

Having confirmed enrichment through Western blot analysis (Figure 4.2.1) and 

pathway analysis which indicated a bias towards the expected cellular components in 

each enriched fraction (Table 4.2.2 and Figure 4.2.3) a quantitative label free 

experiment was conducted on CHO-K1-SEAP cells subjected to temperature shift. 

Combined with enrichment, the label free analysis would allow for a detailed insight 

into the subcellular processes involved in temperature shift and identify potential 

functional targets to induce a similar phenotype. 

Cells were grown at 37
 o

C for 72 hr before half of the culture flasks were transferred to 

31
 o
C for temperature shift. This resulted in 2 identical sets of flasks grown at 37

 o
C and 

31
 o
C. Samples were taken at 8 and 24 hr time point after temperature shift which were 

subsequently fractionated with three biological replicates of the experiment conducted. 

Two large analyses were possible by comparing each temperature at a given time point 

(Section 4.4.2) and also comparing differentially expressed proteins over time (Section 

4.4.4). The resulting comparisons led to multiple lists of up and down-regulated proteins 

at different time points and for each fraction with different numbers of proteins 

differentially regulated with each list (Table 4.3.1). These were the 24 final lists 

(Figure 4.3.1) but from using the NCBI and BBCHO database there were 48 lists for 

annotation before these were overlapped (Section 3.4.1) and used for subsequent 

pathway analysis (Section 4.3.3 and 4.3.5). 

Temp Fraction 
↑ at 

8hr 

↑ at 

24hr 

↓ at 

8hr 

↓ at 

24hr 

↑ over 

16hr 

↓ over 

16hr 

31
 o
C 

Membrane 22 49 36 12 82 55 

Cytoplasm 11 46 16 66 80 130 

Nuclear 6 16 68 69 52 27 

37
 o
C 

Membrane     59 65 

Cytoplasm     78 98 

Nuclear     57 62 

 

Table 4.3.1 Number of proteins differentially expressed at 8 and 24 hr after 31
 o

C 

temperature shift and over 16hr at 31
 o

C and 37
 o

C in each of the three enriched 

fractions membrane, cytoplasm and nuclear. Up-regulated proteins are denoted by 

"↑" and down-regulated proteins by "↓"(Appendix i., ii., ix., x. for full tables). 
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Figure 4.3.1 Overview of the experimental workflow of temperature shift study 

with subcellular fractionation. With the above number of variables (temperature, time 

and fractions) there are 24 differential comparisons possible; up-regulation in 31 
o
C 

temperature shift at 8 hr in each fraction (3 lists), down-regulation in 31 
o
C temperature 

shift at 8 hr in each fraction (3 lists), up-regulation in 31 
o
C temperature shift at 8 hr in 

each fraction (3 lists), down-regulation in 31 
o
C temperature shift at 8 hr in each fraction 

(3 lists), up regulation between 8 and 24 hr at 37 
o
C in three fractions (3 lists), down 

regulation between 8 and 24 hr at 31 
o
C in three fractions (3 lists), down regulation 

between 8 and 24 hr at 31 
o
C in three fractions (3 lists). 
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4.3.1 Database comparison BBCHO vs NCBI 

Two  databases were used in order to obtain the CHO peptide identifications. BBCHO 

database is an in house database derived from CHO transcript data in collaboration with 

Professor Nicole Borth of BOKU University, Vienna. The NCBI database is derived 

from non-redundant Chinese hamster identifications submitted to NCBI. Both databases 

were searched using the same criteria and the output was overlapped to assess any large 

difference in the output between the two. Specifically the time course analysis of the 

fractionation label free experiment was used as the larger differential lists allowed for 

an assessment of a larger number of protein IDs compared to the smaller differential 

lists from the miR-7 study in Chapter 3. It also allowed for a comparison between the 

multiple sample preparations of fraction, experimental variables of different growth 

temperatures and the differential identifications over time in culture.  

The comparisons show that most of the differential identifications between the 

databases overlap with slightly more identifications unique to the BBCHO than the 

NCBI database (Figure 4.3.2). As differential lists are in and of themselves small the 

relatively small number of identifications that were unique to each database justifies this 

output merging method for more thorough searching using our CHO specific databases. 

 

Figure 4.3.2 Venn diagram showing the overlap in CHO IDs between the up and 

down-regulated IDs of the BBCHO and non redundant NCBI databases using the 

16hr time course of CHO-K1-SEAP cells grown at 37
 o

C and 31
 o

C. The large 

numbers of proteins and multiple fractions show the clear overlap between the two with 

a slight bias for unique identifications in the BBCHO database. 
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4.3.2 Differentially expressed/abundant proteins at 31
 o

C temperature shift 

The first comparison within the quantitative label-free experiment was between 37
 o

C 

and 31
 o
C at 8 and 24 hr temperature shift. As previously mentioned in Section 3.3 the 1 

peptide hit differential identifications were included. Proteins were considered 

differentially expressed with a fold change ≥1.2 fold and a significance of p≤0.05 

between experimental groups. In total there were 12 individual lists. These were split 

between the 8 and 24 hr time point (6 each) with up-regulated at 31
 o

C and down-

regulated at 31
 o

C lists for each of the three fractions membrane, cytoplasmic and 

nuclear (Table 4.3.1). 

To better interpret the numerous lists the total number of identifications (Figure 4.3.2) 

and the overlap between fractions (Figure 4.3.3 and 4.3.4) were graphed.  The observed 

trend is that of a steady increase in protein up regulation in each fraction from 8 to 24 hr 

with an overall larger number of proteins down-regulated in response to temperature 

shift. The response in down regulation is less linear in nature with a sharp down 

regulation of proteins associated with the nuclear enriched fraction observed at 8 hr 

which is reduced at 24 hr. At 24 hr the majority of down-regulated proteins shifts to the 

cytoplasmic enriched fraction. This shows that the initial response to temperature shift 

(8 hr) could be associated with the down regulation of nuclear proteins which may be a 

precursor for cytoplasmic protein down regulation with a steady increase in proteins 

associated with each fraction over time. Conversely there cytoplasmic proteins are up 

regulated which may indicate the reorganisation of cytoplasmic proteins by the later 

time point (24 hr) 

The overlap between the differential proteins in each fraction was compared to further 

assess the enrichment and to determine if the trend observed was represented by unique 

IDs in each fraction. Comparing the fractions in up and down-regulated proteins 

(Figure 4.3.3 and 4.3.4) respectively there is a distinct separation between fractions 

with very little overlap. This further strengthens that each fraction is enriched for 

specific proteins.  

The trend observed can be said to represent the response of the CHO cells to 

temperature shift relative to the enriched fractions as there is very little overlap between 

each fraction. The number of proteins changing in each fraction is then strongly 

associated with each enrichment. 
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Figure 4.3.3 Up-regulated proteins (A) and down-regulated proteins (B) in CHO-

K1 SEAP cells at 31
 o

C after 8  and 24 hr in membrane, cytoplasmic and nuclear 

fractions. Up-regulated proteins can be seen to have an increase in all fractions between 

8 and 24 hr while down regulation shows a larger number in the membrane and nuclear 

fraction at 8 hr compared to 24 hr. The large degree of differential regulation (up and 

down) within the cytoplasm may indicate a shift a re-organising of the cytosolic 

proteome in response to temperature shift e.g. Heatshock proteins which are localised in 

the cytoplasm. 

 

 

 

 

 

 

 

 

A 

B 
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A       B 

  

Figure 4.3.4 Overlapping up-regulated proteins in CHO-K1 SEAP cells at 31
 o

C 

after 8 (A) and 24 hr (B) between membrane, cytoplasmic and nuclear fractions. 

This shows that distinct proteins are differentially expressed in each enriched fraction, 

further indicating that as well as the qualitative distribution the differential distribution 

also shows the strong specificity of the enrichment. 

A      B 

   

Figure 4.3.5 Overlapping down-regulated proteins in CHO-K1 SEAP cells at 31
 o
C 

after 8 (A) and 24 hr (B) between membrane, cytoplasmic and nuclear fractions. 

This shows that, as well as the qualitative distribution, the differential distribution also 

displays the strong specificity of the enrichment. 

 

 

8hr 24hr 

8hr 24hr 
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4.3.3 Pathway analysis of temperature shift 

In order to determine significant enrichment of biological processes, molecular function, 

cellular components associated with the differential lists GO analysis through DAVID, 

PANTHER analysis and KEGG analysis were used as in Chapter 3. Significant 

enrichment was considered for adjusted Bonferroni  p≤0.05. From the temperature shift 

experiment combined with membrane, cytoplasmic and nuclear enrichment there were 

multiple comparisons possible and resulted in multiple differentially expressed lists of 

proteins associated with temperature shift (time point analysis) and associated with the 

growth of CHO cells over time (time course analysis) at 31 and 37
 o
C. In the following 

three sections (Section 4.3.3.1 - 4.3.3.3) will deal with the time point analysis, 

differentially regulated proteins 8 and 24 hr after temperature shift. The top five terms 

that are deemed significant are included in the following results (see Appendix iii.-viii.) 

for shortened tables). 

 

4.3.3.1 DAVID temperature shift 

As in Chapter 3 pathway analysis the three categorisations in DAVID for the GO 

analysis of Biological Process (BP), Molecular Function (MF) and Cellular Component 

(CC) were used. Taking each of these categories into account we can see what functions 

of the CHO cells are being affected 8 and 24 hr after temperature shift in the 31
 o
C cells. 

The significant (adjusted Bonferroni  p≤0.05) key findings using DAVID are shown in 

Table 4.3.2 (more expanded table found in Appendix iii.-v.). 

Taking BP, MF and CC into account together the down regulation of proteins is 

associated with protein localisation, protein transport and translation processes with 

these proteins functionally associated with the ribosome, RNA binding and structural 

activity. These down-regulated proteins are largely associated with the cytosol and 

ribosome components. While up-regulated proteins were significantly associated with 

specific CC they were not significantly associated with any BP or MF. This suggest that 

metabolic activity and differential translation is occurring but also that structural 

activities are also being significantly affected. The fractionation also indicates that these 

changes start at the 8 hr time point in the nuclear enriched sample and by 24 hr there are 

proteins associated with various components (CC) down-regulated in the membrane 

fraction. The fractionation therefore allows for some insight into localisation events 

related to temperature shift. 
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4.3.3.2 PANTHER temperature shift 

Using over representation analysis with PANTHER it was possible to compare the 

differentially regulated proteins in each fraction against the reference human database. 

Each differential list from each of the three fractions membrane, cytoplasmic and 

nuclear at both 8 hr and 24 hr after temperature shift were analysed for enriched 

biological process (BP), molecular function (MF) and cellular component (CC).  

The overall PANTHER output is consistent with that of GO through DAVID in Section 

4.3.3.1 showing a small number of BP and MF linked to translational and structural 

protein down regulation and an even larger emphasis on cytoskeletal elements, 

translational regulation and metabolic activity at 24 hr post temperature shift (Table 

4.3.3). The same trend is also observed with enriched terms in each fraction. At 8 hr 

there is a large emphasis on protein down regulation in the nucleus related to translation 

and cytoskeletal elements. At 24 hr a larger number of enriched terms were found 

overall with significant up regulation of specific terms now taking place in the 

membrane and cytoplasmic fraction. Interestingly many of the same terms enriched in 

the nucleus at 8 hr are also enriched at 24 hr indicating that the cells are still being 

driven by the same process of metabolic, translational and cytoskeletal regulation from 

the nuclear enriched fraction. It is also worth noting that these up regulated terms at 8 hr 

are not enriched for using DAVID potentially showing the merit of using different 

pathway analysis tools to identify significant cellular functions (see Appendix vi.-viii. 

for expanded tables). 
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4.3.3.3 KEGG temperature shift 

Enrichment of specific pathways was assessed using KEGG. Unlike the KEGG analysis 

in Chapter 3 where unfractionated samples were used, here it was possible to assess in 

membrane, cytoplasmic and nuclear enriched fractions. Significance of an adjusted 

Bonferroni  p≤0.05 was chosen and showed one pathway to be affected by temperature 

shift at 8 hr and 2 affected at 24 hr.  

At 8 hr there were 7 ribosomal proteins significantly (p=1.64x10
-4

) associated with the 

ribosomal pathway (Figure 4.3.6) . These were linked with down-regulated proteins in 

the nuclear enriched fraction implying that ribosomal elements were being differentially 

regulated in response to temperature shift. At 24 hr 5 proteins were significantly 

(p=7.72 x 10
-4

)
 
associated with DNA replication (Figure 4.3.7) in the up-regulated 

proteins of the cytoplasmic enriched fraction and again 8 ribosomal proteins 

significantly (p=1.02 x 10
-6

) associated with the ribosomal pathway (Figure 4.3.8) in 

the down-regulated proteins of the nuclear enriched fraction. 

Overall, when the reduced proliferative phenotype at 31
 o

C is taken into consideration, 

the same ribosomal proteins differentially regulated at each time point may imply an 

overall down regulation of ribosomal activity or specific ribosomal activities rather than 

different ribosomal activities being altered at each time point. Looking at specific up-

regulated proteins in the DNA replication pathway such as PCNA, FEN1 and MCM 

proteins there is a strong implication that DNA replication initiation is surprisingly 

increased which may be in response to proteins required by other BP and MF seen in 

pathway analysis in Section 4.3.3.1 and 4.3.3.2. 
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Figure 4.3.6 KEGG pathway diagram representing nuclear enriched protein 

down-regulation in the ribosome pathway 8 hr after temperature shift. Seven of the 

ribosomal proteins (highlighted in orange above) found in the nuclear protein enriched 

fraction that were down-regulated at  31
 o
C in CHO cells 8 hr after temperature shift  are 

labelled in the KEGG diagram representing the large ribosomal (50S) and small (30S) 

ribosomal subunit.  Similar proteins are seen at 24 hr in the same pathway indicating 

that the same processes within the ribosome or related to the ribosome are affected at 

both time points. 
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Figure 4.3.7 KEGG pathway diagram representing cytoplasm enriched protein up-

regulation in the DNA replication pathway 24 hr after temperature shift. Five 

proteins (7 highlighted in orange above with enrichment of PCNA and FEN1 in 

Archaea replication complex and all 5 enriched in Eukaryote replication complex) were 

found to be significantly associated with DNA replication from the list of proteins 

which were found significantly up implying that DNA replication initiation maybe 

increased to compensate for processes and functions highlighted by the pathway 

analysis. 
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Figure 4.3.8 KEGG pathway diagram representing nuclear enriched protein 

down-regulation in the ribosome pathway 24 hr after temperature shift. Eight of 

the ribosomal proteins (highlighted in orange above) found in the nuclear protein 

enriched fraction that were down-regulated at 31
 o
C in CHO cells 8 hr after temperature 

shift  are labelled in the KEGG diagram representing the large ribosomal (50S) and 

small (30S) ribosomal subunit. Similar proteins are seen at 8 hr in the same pathway 

indicating that the same processes within the ribosome or related to the ribosome are 

affected at both time points. 
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4.3.4 Differentially expressed/abundant proteins over time at 37 and 31
 o

C 

As well as comparing temperature at each time point the proteins differentially 

regulated over time were also determined by comparing the 8 hr time point to the 24 hr 

time point at each temperature. Time point analysis, while powerful for determining  

differential expression, are often limited in scope. Analysing change over time can show 

a more dynamic profile of change in the cell. By looking at the cellular functions 

changed over a 16 hr time period time (8 hr vs 24 hr) it may be possible to observe 

changes to the cells over time at 37 and 31 
o
C instead of at a single moment in time. As 

with the previous CHO database identification lists 1 peptide hit differential 

identifications were included. Proteins were considered differentially expressed with a 

fold change ≥1.2 fold and a significance of p≤0.05. 

In total there were 12 individual lists summarised in the table below. These were split 

between the two temperatures 37
 o

C and 31
 o

C (6 each) with down-regulated at 24 hr 

and up-regulated at 24 hr lists for each of the three fractions membrane, cytoplasmic 

and nuclear (Table 4.3.4) . The aim of this comparison was to identify proteins that 

potential didn't yield a significant result with 31
 o

C vs 37
 o

C comparison but were 

significantly differentially regulated over time from 8 to 24 hr at 37 or 31
 o
C only. Such 

a protein could be said to be associated with the proliferation related to a specific 

temperature over time as opposed to at a specific time point as with the 31
 o

C vs 37
 o

C 

comparison. 

 

Temperature Fraction ↑ over 16hr ↓over 16hr 

31
 o
C 

Membrane 82 55 

Cytoplasm 80 130 

Nuclear 52 27 

37
 o
C 

Membrane 59 65 

Cytoplasm 78 98 

Nuclear 57 62 

Table 4.3.4 Number of proteins differentially expressed at 8 and 24 hr after 31
 o

C 

temperature shift and in each of the three enriched fractions membrane, 

cytoplasm and nuclear. Up-regulated proteins are denoted by "↑" and down-regulated 

proteins by "↓" (See Appendix ix. and x. for expanded tables). 
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To assess the number of identifications in the lists the total numbers of proteins 

differentially regulated over time between 8 and 24 hr (16 hr) were graphed for 31 and 

37
 o

C (Figure 4.3.9) and shows that there are a greater number of membrane enriched 

fraction proteins up-regulated over time in the 31
 o
C and there are also a greater number 

of proteins associated with the cytoplasmic enriched fraction and a reduced number of 

proteins associated with the nuclear fraction down-regulated at 31
 o

C. These profiles 

show that there is a clear difference in the localisation of protein differential regulation 

occurring over time between the two temperatures. By assessing if the trend was 

represented by unique IDs per fraction (Figure 4.3.10 and 4.3.11) it was found that 

there is very little overlap between fractions and that the trend observed in each fraction  

is representative of a trend associated with localisation.  

 

 

Figure 4.3.9 Up (A) and down (B) regulated proteins in CHO-K1 SEAP cells at 24 

hr compared to 8 hr time point at 31 and 37
 o

C in membrane, cytoplasmic and 

nuclear fractions. This shows that the total number of up-regulated proteins overtime 

at each temperature is particularly different in the membrane fraction while down-

regulation is particularly dissimilar in the cytoplasmic and nuclear fractions. 

A 

B 
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A 

 

B 

 

Figure 4.3.10 Up-regulated proteins overlap in CHO-K1 SEAP cells over 16hr at 

24 hr compared to 8 hr time point at 31 (A) and 37
 o

C (B) between membrane, 

cytoplasmic and nuclear fractions. This shows that differentially expressed 

identifications are largely associated with each specific enriched fraction. 

 

37 oC 

31 oC 
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A 

 

B 

 

Figure 4.3.11 Down-regulated proteins overlap in CHO-K1 SEAP cells over 16hr 

at 24 hr compared to 8 hr time point at 31 (A) and 37
 o

C (B) between membrane, 

cytoplasmic and nuclear fractions. This shows that differentially expressed 

identifications are largely associated with each specific enriched fraction. 

 

31 oC 

37 oC 
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Further to this the uniqueness of IDs between the two temperatures was also assessed 

(Figure 4.3.12). This showed that while there are a similar number of proteins 

differentially regulated in certain fractions between the two temperatures over time the 

proteins that are differentially regulated are distinct from each other.  

 

  

Figure 4.3.12 Overlapping identifications up or down-regulated over time between 

31 and 37
 o

C. This shows that the population of proteins differentially regulated at a 

given temperature (37 or 31
 o

C) in a given direction (UP or DOWN) are distinct 

between the two temperatures over time. 

In summary this analyses showed that there were a large pool of potential targets to 

choose from for functional validation. The overlap between fractions at each 

temperature also showed that differentially regulated proteins were distinctly associated 

with each subcellular fraction (Figure 4.3.10 and 4.3.11). The overlap between each 

fraction at both temperatures over time also showed that proteins dysregulated at each 

temperature had very little overlap (Figure 4.3.12). This indicates that the dysregulation 

of protein expression over time at both temperatures relates to different subsets of 

proteins. More specifically the comparison managed to highlight several proteins that 

were not significantly differentially regulated due to temperature shift but were 

differentially regulated over time at one temperature. Cyclon (CCDC86) was one such 

protein chosen for functional analysis. Cyclon was down-regulated 25 fold at 31
 o

C 

temperature shift in the Nuclear fraction of CHO-K1-SEAP cells over 16 hr between the 

8 and 24 hr time point. 
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4.3.5 Pathway analysis of temperature shift over time at 31 and 37
 o

C 

Three pathway tools DAVID, PANTHER and KEGG were used to assesses 

significantly enriched (Bonferroni  p≤0.05) enriched biological process (BP), molecular 

functions (MF), cellular components (CC) and pathways over time between 8 and 24 hr 

after temperature shift in CHO-K1-SEAP cells grown at 37
 o

C and at 31
 o

C. This is 

different from Section 4.3.3 where different temperatures were compared at a given 

time point. From this analysis the differential effect on BP, MF, CC and pathways can 

be determined over 16hr time period at 31
 o

C (temperature shift) and at 37
 o

C. As with 

Section 4.3.3 the  membrane, cytoplasmic and nuclear enrichment resulted in multiple 

differentially expressed lists of proteins for analysis associated with the 16hr growth. 

 

4.3.5.1 DAVID analysis time course 

DAVID analysis for CHO cells grown over 16 hr at 31 and 37
 o

C was conducted 

similarly to previous sections with differentially regulated protein lists being submitted 

and significant (Bonferroni p≤0.05) GO terms for biological process (BP), molecular 

function (MF). The three enriched fractions at both the 31 and 37
 o
C temperatures for up 

and down-regulated proteins over 16hr were processed through these enrichment 

categories. This resulted in enriched terms associated with up-regulated  and down-

regulated proteins at 31
 o

C and at 37
 o
C 

 
in the three enriched fractions. Those terms that 

were enriched specifically to either 31 or 37
 o

C were of most interest to determine the 

effects of temperature shift (Table 4.3.5). Key findings included: 

 At 31
 o

C protein up regulation is associated with MF related to cytoskeletal 

binding and actin binding while down-regulated proteins are associated with BP 

related to both posttranscriptional regulation and initiation of translation with MF 

linked to binding of ATP, mRNA binding and initiation of translation.  

 At 37
 o

C MF linked to up regulation included RNA-dependant ATPase and 

purine NTP-dependant helicase activity and MF linked to down regulation at 37
 

o
C of purine binding and actin binding are not enriched for in the corresponding 

differential lists for 31
 o
C.  

Temperature shift therefore is shown to potentially have the opposite effect on structural 

elements of CHO cells grown at 37
 o

C, suppress proteins involved in translation while 

also stabilising helicase activities related to proteins that are normally differentially 

expressed over time at 37
 o
C. (See Appendix xi.-xiii. for expanded tables). 
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4.3.5.2 PANTHER analysis time course 

As with previous temperature shift analysis using PANTHER in Section 5.4.3.2 the 

analysis of significantly (Bonferroni p≤0.05) enriched biological process (BP), 

molecular function (MF) were analysed across three enriched fractions membrane, 

cytoplasmic and nuclear. Unlike the time point analysis however differential lists 

between 8 and 24 hr for each temperature of 31 and 37
 o
C were analysed. This showed 

BP and MF that were enriched over the course of 16hr at both temperatures. 

Panther analysis for CHO cells grown over 16 hr at 31 and 37
 o

C was conducted 

similarly to previous sections with differentially regulated protein lists being submitted 

and significant (Bonferroni p≤0.05) GO terms for biological process (BP), molecular 

function (MF) and cellular component (CC) being retrieved. The analysis was 

conducted for each of the three enriched fractions at both the 31 and 37
 o

C temperatures 

for up and down-regulated proteins over 16hr (Table 4.3.6) . This resulted in enriched 

terms associated with up-regulated proteins at 31 and 37
 o

C in membrane, cytoplasmic 

and nuclear enriched fractions and enriched terms associated with down-regulated 

proteins at 31 and 37
 o
C in membrane, cytoplasmic and nuclear enriched fractions. Key 

findings are listed below (Appendix xiv.-xvi. for expanded tables). 

 Up regulation at 31
 o
C is observed to be linked to MF and CC oxidoreductase 

activity and cytoskeletal structure and other structural elements respectively. 

 Down regulation at 31
 o
C is associated with BP linked to chromosome 

segregation, translation and CC linked to ribonucleoprotein and 

macromolecular complex affected.  

 Actin cytoskeleton is the only term, which is found in CC down-regulated 

proteins, that doesn't appear with down-regulated proteins at 31
 o
C 

 Most of the terms enriched at 37
 o
C are also enriched at 31

 o
C with only 

cytoskeleton CC being uniquely associated with protein down regulation at   

37
 o
C. 

The results indicate that at 31
 o

C protein up regulation may be associated with 

reappropriation of MF within the same BP as at 37
 o
C while down-regulated proteins at 

31
 o

C related to the same MF as 37
 o

C but within different BP. All of these differential 

changes found at 31
 o

C relate to the cytoskeleton with additional dysregulation in the 

chromosomes and oxidoreductase activity and point to structural changes in the cell. 
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4.3.5.3 KEGG analysis time course 

Enrichment of specific pathways at 31 and 37
 o

C over 16hr was assessed using KEGG. 

As with the KEGG analysis in Section 5.4.3.3 involving comparing the same time 

points enrichment of KEGG pathways was deemed to be significant with Bonferonni 

p<0.05 and assessed across the membrane, cytoplasmic and nuclear fractions. 

KEGG shows that the same pathways are significantly dysregulated in the same 

fractions  at 31 and 37
 o
C. Up-regulated proteins in the membrane enriched fraction  are 

associated with the spliceosome (Figure 4.3.13 and 4.3.17), down-regulated proteins in 

the cytoplasm are associated with the ribosome pathway (Figure 4.3.14 and 4.3.18) and 

conversely up-regulated proteins in the nuclear enriched fraction were linked to the 

ribosome pathway also (Figure 4.3.16 and 4.3.19). The only exception was the 

ribosomal pathway being significantly linked to the up-regulated in the membrane 

fraction at 37
 o
C only. 

Interestingly, despite the same processes being dysregulated at both temperature points 

over time, the proteins involved in the enrichment of each process are different at each 

temperature. For example up regulation of proteins are associated with the spliceosome 

pathway which in turn  includes up regulation of SNRAP1, MAGOH, HNPNPC, 

SNRNP70, DDX5, HNRNPA1 at 37
 o

C and up regulation of EIFA3, HNRNPK, 

SNRPD2, SNRNP70, RBMX, PUF60, HNRNPU, PRPF6. This would suggest that 

while the same pathways are dysregulated over time as the pathways are altered 

between 31
 o

C temperature shift. This is also consistent with findings from DAVID 

(Section 4.3.5.1) and PANTHER (Section 4.3.5.2) where molecular functions were 

seen to be dysregulated more than biological processes and highlights the subtle effect 

of temperature shift on CHO cells over time in culture. Rather than differential 

regulation of large bioprocesses temperature shift is controlled by multiple smaller 

changes in molecular functions. Another interesting observation is the increase in 

ribosomal proteins in the nuclear enriched fraction. While ribosomes are found in the 

cytoplasm the importation of ribosomal proteins from the cytoplasm back into the 

nucleus, as well as assembly of other ribosomal proteins in the nucleolus, is a key step 

in ribosomal subunit maturation in eukaryotes and extensively studied in yeast (Moy 

and Silver 1999). It has also been reported that this can be a temperature dependant 

process in protozoa (Moy and Silver 1999, Giese and Wunderlich 1983) and may mark 

the first reports of occurring in CHO. 
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Figure 4.3.13 KEGG pathway diagram representing membrane enriched protein 

up-regulation in the spliceosome pathway over 16 hr at 37 
o
C. By comparing 37

 o
C 8 

vs 24 hr membrane enriched up-regulated proteins (16hr), highlighted in orange above, 

the spliceosome pathway was shown to be significantly (p=1.16 x 10
-3

) differentially 

regulated containing 7 identifications SNRP70 (U1-70K), SNRPA1 (U2A'), DDX5 

(p68), Magoh (magoh) and HNRNPC, HNRNPA1 and HNRNPU (hnRNPs). 
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Figure 4.3.14 KEGG pathway diagram representing membrane enriched protein 

down-regulation in the ribosome pathway over 16hr at 37 
o
C. By comparing 37

 o
C 8 

vs 24 hr membrane enriched down-regulated proteins (16 hr), highlighted in orange 

above, the ribosome pathway was shown to be significantly (p=5.17 x 10
-3

) 

differentially regulated containing 6 identifications. 
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Figure 4.3.15 KEGG pathway diagram representing cytoplasm enriched protein 

down-regulation in the ribosome pathway over 16hr at 37 
o
C. By comparing 37

 o
C 8 

vs 24 hr cytoplasmic enriched down-regulated proteins (16 hr), highlighted in orange 

above, the ribosome pathway was shown to be significantly (p=7.31 x 10
-9

) 

differentially regulated containing 12 identifications. 
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Figure 4.3.16 KEGG pathway diagram representing nuclear enriched protein up-

regulation in the ribosome pathway over 16 hr at 37 
o
C. By comparing 37

 o
C 8 vs 24 

hr nuclear enriched up-regulated proteins (16 hr), highlighted in orange above, the 

ribosomal pathway was shown to be significantly (p=1.25 x 10
-5

) differentially 

regulated containing 8 identifications. 
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Figure 4.3.17 KEGG pathway diagram representing membrane enriched protein 

up-regulation in the spliceosome pathway over 16 hr at 37 
o
C. By comparing 31

 o
C 8 

vs 24 hr membrane enriched up-regulated proteins (16 hr), highlighted in orange above, 

the spliceosome pathway was shown to be significantly (p=3.39 x 10
-3

) differentially 

regulated containing 8 identifications SNRPD1, SNRPD2 (Sm), PRPF6 (Prp6), PUF60 

(PUF60), EIF4A3 (eIFA3), RBMX, HNRNPK and HNRNPK (hnRNPs). 
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Figure 4.3.18 KEGG pathway diagram representing cytoplasm enriched protein 

down-regulation in the ribosome pathway over 16 hr at 31 
o
C. By comparing 31

 o
C 

18 vs 24 hr cytoplasmic enriched down-regulated proteins (16 hr), highlighted in orange 

above, the ribosome pathway was shown to be significantly (p=7.39 x 10
-16

) 

differentially regulated containing 18 identifications. 

 

 

 

 

 

 



 

174 
 

 

 

Figure 4.3.19 KEGG pathway diagram representing nuclear enriched protein up-

regulation in the ribosome pathway over 16 hr at 31 
o
C. 31

 o
C 6 vs 24 hr nuclear 

enriched up-regulated proteins highlighted in orange above show the ribosome pathway 

to be significantly (p=6.85 x 10
-3

) differentially regulated containing 8 identifications.  
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4.4 Functional Validation 

From the differential lists, four proteins were chosen for functional validation Cyclon 

(CCDC86 [coiled-coil domain containing protein]), Ezrin (EZR), Moesin (MSN) and 

Lamin A/C (LMNA). EZR, MSN and LMNA were highly differentially expressed at 

each time point at 31
 o
C in the temperature shifted comparison (Section 4.3.2) with EZR 

and LMNA being differentially regulated over time also. CCDC86 was also highly 

differentially expressed being 25.96 fold down-regulated at 31
 o
C over a period of 16hr 

between 8 and 24 hr after temperature shift but not at 37
 o
C in the time course analysis 

(Section 4.3.4). Western blot analysis of samples grown for 24 hr after temperature shift  

confirmed that enrichment of the targets had occurred at both temperatures with Ezrin, 

Moesin and Lamin A up-regulated at 31
 o
C and Cyclon down-regulated at 31

 o
C (Figure 

4.4.1). 

 

Figure 4.4.1 Western blot analysis showing the expression intensity of targets in 

CHO-K1-SEAP cells grown over 24 hr (A) with corresponding label-free LC-

MS/MS data (B). Targets were picked for functional validation which displayed high 

fold change dysregulation between 31 and 37 
o
C and over a 16 hr time period.  

5. As well as fold change, each target was also picked for re-occurrence in previous 

profiling studies in our lab and novelty in relation to CHO phenotypes. Specific reasons 

also included the close relationship between Ezrin and Moesin in the Ezrin-Moesin-

A 

B 
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Radixin complex of proteins (Adada et al. 2014) and the strong association of LMNA 

and CCDC86 to pathology research related to proliferation and cell survival(Lamberti et 

al. 2004, Politano et al. 2013, Emadali et al. 2013, Shishkov et al. 2013b). CCDC86 in 

particular was chosen as it only appeared differentially regulated in the time course 

analysis.  

To assess the functional role of these proteins custom siRNA against the CHO sequence 

(http://CHOgenome.org) were supplied by Integrated DNA Technologies 

(http://eu.idtdna.com). Knockdown was assessed by Western blot using the negative 

siRNA control and three siRNA to each target. Cyclon showed almost complete 

knockdown for all three siRNA (Figure 4.4.2 A), Ezrin showed knockdown in 2 of 3 

(siRNA1 and siRNA3) of the siRNA used (Figure 4.4.3 A), Moesin knockdown was 

not confirmed by Western blot but a phenotypic effect was observed (Figure 4.4.4) and 

Lamin A/C showed reduced expression in all three siRNA molecules used (Figure 4.4.5 

A). From previous pathway analysis data in section 5.2 and 5.4 enriched terms 

suggested that cytoskeletal elements were differentially regulated as well as 

proliferation from temperature shift therefore the cell size and cell number was assessed 

after knockdown of each target (Figure 4.4.2-4.4.5). The following table (Table 4.4.1) 

lists the key findings and the significance of each of the three siRNA using 2 tailed 

students-t test compared to siRNA negative control (See Appendix xviii. for values).  

Target 

Total 

viable 

cells/ml 

Cell 

viability 

Cell 

average 

diameter 

Cell 

average 

area 

Cell 

average 

perimeter 

Cyclon - / * / * - / - / - - / - / - - / * / * - / * / * 

Ezrin - / - / - - / - / - - / - / - - / - / - - / - / - 

Moesin - / * / * - / - / - - / - / - * / * / 

*** 

* / * / 

*** 

Lamin 

A/C 

- / * / - - / - / - - / - / - - / */ - - / - / - 

- = p>0.05, * = p≤0.05, ** = p≤0.01, *** = p≤0.001 

Table 4.4.1 Cyclon and Moesin were shown to have a significant effect on cell 

proliferation as well as cell perimeter and cell area. Moesin knockdown was not 

confirmed by Western blot but may be complicated by cross reactivity between Ezrin, 

Radixin and Moesin. It is also worth noting that all the commercial antibodies used are 

against human analogues of these proteins which may complicate Western blot results. 
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Cyclon 

A                  B 

              

C                  D 

     

E                  F 

      

Figure 4.4.2 Effect of Cyclon knockdown after 72 hr on target expression using 

Western blot (A), total cells/ml (B), cell viability (C), cell average diameter (D), cell 

average area (E), cell average perimeter (F). * = p≤0.05 compared to neg control. 
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Ezrin 

A                       B 

                      

C                      D 

          

E                      F 

            

  

Figure 4.4.3 Effect of Ezrin knockdown after 72 hr on target expression using 

Western blot (A), total cells/ml (B), cell viability (C), cell average diameter (D), cell 

average area (E), cell average perimeter (F). Knockdown of Ezrin was demonstrated 

by Western blot anlaysis but no significant effect was observed. 

 

 

 

 

 

 



 

179 
 

Moesin 

A                   B 

           

C                 D 

    

E                 F 

    

Figure 4.4.4 Effect of Moesin knockdown after 72 hr on target expression using 

Western blot (A), total cells/ml (B), cell viability (C), cell average diameter (D), cell 

average area (E), cell average perimeter (F). Due to inconclusive Western blot results 

the observed significant parameters are likely to be independent of Moesin. * = p≤0.05, 

*** = p≤0.05 compared to neg control. 
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Lamin A/C 

A               B 

       

C               D 

    

E                        F 

  

 

Figure 4.4.5 Effect of Lamin A/C knockdown after 72 hr on target expression 

using Western blot (A), total cells/ml (B), cell viability (C), cell average diameter 

(D), cell average area (E), cell average perimeter (F). * = p≤0.05 compared to neg 

control. 
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4.5 Results Summary 

Quantitative LC-MS/MS analysis was combined with subcellular fractionation  to 

determine the deeper mechanisms behind 31
 o

C temperature shifted CHO-K1-SEAP 

cells. Using commercially available subcellular fractionation kits we obtained a 

membrane, cytoplasmic and nuclear fraction for CHO cells. We confirmed that through 

overlapping IDs, pathway analysis and Western blot analysis that each fraction had 

enrichment for the expected sub cellular components and that a large number of IDs 

were unique to each fraction compared to an unfractionated sample. CHO-K1-SEAP 

cells were grown for 72 hr then one set was shift to 31
 o
C while one set remained at 37

 

o
C. Cell culture was continued for a further 8 and 24 hr at which point samples were 

taken and subcellularly fractionated..  

The first analysis compared cells grown at 31
 o

C to 37
 o

C at 8 hr and at 24 hr after 

temperature shift. This was known as the time point analysis. Abundance of IDs showed 

the expression pattern of temperature shifted CHO cells across sub cellular fractions. 

Pathway analysis confirmed the high degree of translational repression and anti-

apoptotic process but also surprisingly showed detailed information on the DNA 

replication pathway being up-regulated. The second analysis compared 8 and 24 hr time 

points within each temperature allowing for proteins differentially regulated over time 

at each temperature to be identified. This revealed that over time a similar total of 

number of proteins are differentially regulated at each temperature and that there is little 

overlap between these protein IDs. Pathway analysis shows at the biological process 

and molecular function level translation and structural proteins are down-regulated over 

time in temperature shifted cells but surprisingly at the higher pathway level ribosomal 

activity is dysregulated in both directions and the spliceosome pathway is up-regulated 

at both temperatures but with different proteins enriched at each temperature. 

From the both analysis 4 targets were chosen for functional knockdown follow up 

Ezrin, Moesin, Cyclon and Lamin 1 experiments. Cyclon knockdown significantly 

reduced cell number by a mean of 66% (n=2) while Moesin knockdown significantly 

reduced cell number by a mean of 50% (n=2). Knockdown also reduced cell size and 

had no negative impact on cell viability. While this effect is promising more work will 

be required to assess their ability to induce a temperature shift phenotype - reduced 

proliferation and increased productivity over time which is the one of the goals for 

selecting these targets for functional validation. 
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5. CHAPTER 5 

Identification of novel membrane protein targets in breast 

cancer 
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5.1 Identifying potential membrane proteins over expressed in breast cancer 

Breast cancer is a complex heterogeneous disease with an ever-increasing number of 

subtypes emerging.  In this study we aim to identify membrane proteins that are over-

expressed in aggressive breast cancer subtypes ER+, LN+, HER2+ and TNBC breast 

cancer that could be validated as potential candidate targets for therapeutic targeting 

using ADCs (see introduction Section 1.8.3). 

To achieve this we combined a number of publicly available transcriptomic datasets     

(Sircoulomb et al. 2010, Pau Ni et al. 2010, Tollet-Egnell et al. 2001, Skrzypczak et al. 

2010, Neve et al. 2006, LaBreche, Nevins and Huang 2011). These were of only a 

handful of suitable datasets chosen from 29,357 publically available breast cancer gene 

lists. Datasets below the top 150 dropped off dramatically below 25 samples. The 

datasets in the literture presented above were suitable due to their experimental design, 

they contained tissue rather than cell line data, they contained gene expression data and 

the most limiting factor was that these lists contained normal breast tissue data.We also 

had an in house dataset consisting of 62, 25, 60 and 8 samples of ER+, HER2+, LN+ 

and TNBC subtypes respectively with 17 normal samples for comparison.  

Datasets were processed using ebayes function of the limma package (Smyth 2004) 

from Bioconductor (See materials and methods Section 2.7.3). A shortlist of 

differrentially expressed genes was generated between normal breast tissue and breast 

cancer subtypes of HER2+, TNBC, ER+ and LN+. The criteria used to generate the 

gene candidates for further protein validation and investigation as potential ADC targets 

can be summarised as follows: 

− Over expressed in breast cancer compared to normal breast 

− High fold change in breast cancer compared to normal breast 

− Predicted membrane localisation in breast cancer 

Using the above criteria there were 238 differentially expressed proteins across 4 

different breast cancer subtypes  (Table 5.1.1) which were all reported to be membrane 

localised according to corresponding protein data on the UniProt database.  
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No of identifications 

ER+ vs normal  
20 

HER2+ vs normal  
123 

LN+ vs normal  
37 

TNBC vs normal  
58 

Table 5.1.1 Summary of number of potential membrane expressed targets for 

follow up. The above numbers relate to transcripts that were ≥1.2 fold over expressed 

significantly (adj p≤0.05) over expressed in breast cancer subtypes ER+, HER2+, LN+ 

or TNBC. 

 

Manual searching of targets within these lists for evidence of functional analysis in 

breast cancer and other cancers further reduced the number of candidates down to 40 

proteins (Table 5.1.2). 

− High fold change in breast cancer compared to normal breast 

− Previously unexploited (to our knowledge) in breast cancer 

− Availability of commercial antibodies 

This ultimately resulted in the selection of 5 candidate targets for follow up namely 

Immunoglobulin superfamily, member 9 (IGSF9), Killer cell lectin-like receptor 

subfamily G, member 2 (KLRG2), SLAM family member 8 (SLAMF8), Tetraspanin 13 

(TSPAN13), Low density lipoprotein receptor-related protein 8, apolipoprotein e 

receptor (LRP8) (Table 5.1.3). 
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Table 5.1.2 Candidate targets satisfying criteria for protein validation follow up. 

All targets were reported as being membrane expressed and >1.2 fold over expressed in 

breast cancer. The final targets chosen for validation are highlighted TSPAN13, IGSF9, 

SLAMF8, KLRG2 and LRP8 

ER+ vs normal

Gene Name Full name Fold change

CA12 Carbonic anhydrase XII 7.21

CD24 CD24 molecule 9.82

CD24 CD24 molecule 8.76

EFR3A EFR3 homolog A (S. cerevisiae) 1.38

SPINT2 Serine peptidase inhibitor, Kunitz type, 2 10.72

TACSTD2 Tumor-associated calcium signal transducer 2 11.15

TSPAN13 Tetraspanin 13 2.20

LN+ vs normal

Gene Name Full name Fold change

CA12 Carbonic anhydrase XII 6.49

PTPRK Protein tyrosine phosphatase, receptor type, K 2.59

SLC39A6 Solute carrier family 39 (zinc transporter), member 6 2.90

SLC39A6 Solute carrier family 39 (zinc transporter), member 6 2.44

SPINT2 Serine peptidase inhibitor, Kunitz type, 2 11.62

TACSTD2 Tumor-associated calcium signal transducer 2 11.74

TSPAN13 Tetraspanin 13 2.09

HER2+ vs normal

Gene Name Full name Fold change

CELSR1 Cadherin, EGF LAG seven-pass G-type receptor 1 9.22

FCGR1B Fc fragment of IgG, high affinity Ib, receptor (CD64) 5.59

GPRC5A G protein-coupled receptor, family C, group 5, member A 11.68

IGSF9 Immunoglobulin superfamily, member 9 18.87

LSR Lipolysis stimulated lipoprotein receptor 8.36

RAB15 RAB15, member RAS onocogene family 7.24

SLAMF8 SLAM family member 8 2.71

SLC4A8 Solute carrier family 4, sodium bicarbonate cotransporter, member 8 16.26

STRA6 Stimulated by retinoic acid gene 6 homolog (mouse) 8.48

TNBC vs normal

Gene Name Full name Fold change

ADAM19 A disintegrin and metalloproteinase domain 19 (meltrin beta) 1.65

ATP13A3 ATPase type 13A3 17.92

CXADR Coxsackie virus and adenovirus receptor 12.37

DSC2 Desmocollin 2 7.82

EPT1 Ethanolaminephosphotransferase 1 5.24

FCGR1B Fc fragment of IgG, high affinity Ia, receptor (CD64) 6.83

FLVCR1 Feline leukemia virus subgroup C cellular receptor 5.41

GJB2 Gap junction protein, beta 2, 26kDa (connexin 26) 11.60

HMMR Hyaluronan-mediated motility receptor (RHAMM) 9.40

KLRG2 Killer cell lectin-like receptor subfamily G, member 2 5.10

KRTCAP3 Keratinocyte associated protein 3 26.45

LRP8
Low density lipoprotein receptor-related protein 8, apolipoprotein e 

receptor
9.82

LRRC15 Leucine rich repeat containing 15 24.66

LSR Liver-specific bHLH-Zip transcription factor 7.74

PCDH17 Procadherin 17 1.72
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Table 5.1.3 Summary of 5 potential membrane expressed breast cancer candidate 

targets for validation. The above 5 gene transcripts were ≥1.2 fold over expressed 

significantly (adj p≤0.05) in breast cancer subtypes ER+, HER2+, LN+ or TNBC 

compared to normal breast, did not have functional work related to breast cancer in the 

literature and commercial antibodies were available for validation by IHC analysis and 

Western blot analysis. 
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5.2 Validation of expression in cell lines 

Having chosen 5 targets for validation from the bioinformatics data in Section 5.1 

namely KLRG2, LRP8, TSPAN13, IGSF9 and SLAMF8 (Table 5.1.2) it was necessary 

to validate their expression in breast cancer cell lines representative of breast cancer 

subtypes as these targets were chosen based on micro array data and their expression at 

the protein level required confirmation. Furthermore the localisation of these targets to 

the membrane was initially predicted from UniProt. For this reason representative cell 

lines were also enriched for membrane proteins using a commercial kit method 

involving differential solubility and centrifugation to determine if these 5 target proteins 

were associated with the membrane (see materials and methods Section 2.4.3). 

A panel of 9 cell lines (n=2) (Table 5.2.1) along with their corresponding membrane 

enriched fractions (n=2) were chosen to investigate the expression of each of the five 

targets. Initial Western blot analysis showed the LRP8 expression to be unsuitable for 

Western blot analysis resulting in smeared non-specific binding. TSPAN13 and 

SLAMF8 did not show expression in membrane enriched fractions of the cell lines 

used. As membrane expression was predicted using UniProt Western blot analysis 

conformation of membrane expression was not guaranteed.  The remaining targets 

IGSF9 and KLRG2 showed expression in whole cell lysates of the cell lines (Figure 

5.2.1 A) and also showed expression in the membrane enriched fractions (Figure 5.2.1 

B).  

Specifically IGSF9 was expressed in the MDA-MB-157, T47D and BT474 cell lines 

and in the membrane enriched fraction of MDA-MB-157 and BT474. KLRG2 was 

expressed in a wider number of cell lines tested appearing in all except MDA-MB-361 

in the whole lysate preparations and also not being expressed in the membrane fraction 

of the MDA-MB-361, MDA-MB-157 and BT20 cell lines. While these did not totally 

align to the subtypes we expected from the bioinformatic data the targets did at least 

show higher expression in a select number of breast cancer cell lines and were also 

associated with the membrane enriched fractions of a subset of these breast cancer cell 

lines with KLRG2 showing expression across a greater number of the cell lines tested 

than IGSF9. 
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   IGSF9 KLRG2 

Cell line Subtype 

Hormone 

status
*
 

(Chavez, 

Garimella and 

Lipkowitz 

2010)(Chavez, 

Garimella and 

Lipkowitz 

2010)(Chavez, 

Garimella and 

Lipkowitz 

2010) 

Whole 

cell 

lysate 

Membrane 

enriched 

fraction 

Whole 

cell 

lysate 

Membrane 

enriched 

fraction 

BT20 

Basal A 

TNBC NO NO YES NO 

MDA-MB-

468 
TNBC NO NO YES YES 

HCC-1954 HER2+ - - YES YES 

MDA-MB-

231 

Basal B 

TNBC NO NO YES  

MDA-MB-

157 
TNBC YES YES YES NO 

HS578T TNBC NO - YES YES 

T47D 

Luminal 

ER+, PR+ YES NO YES YES 

MCF7 ER+, PR+ NO NO YES YES 

MDA-MB-

361 
ER+, HER2+ NO NO NO NO 

BT474 
ER+, PR+, 

HER2+ 
YES YES YES YES 

SKBR3 HER2+ NO - YES YES 

Table 5.2.1 Cell lines used for validation of target expression with IGSF9 and KLRG2 

expression indicated. 11 cell lines representing the TNBC, HER2+, ER+ and PR+ subtypes 

were chosen to validate the  expression of the 5 targets chosen KLRG2, LRP8, TSPAN13, 

IGSF9 and SLAMF8. A whole cell lysate (n=2) and membrane enriched lysate (n=2) were 

analysed for each cell line. Cell lines are outlined above together with their reported subtype. 

(Neve et al. 2006, Chavez, Garimella and Lipkowitz 2010)
*
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B 

 

 

Figure 5.2.1 Western blot analysis showing differential protein expression of 

IGSF9 and KLRG2 across a panel different breast cancer cell lines (A) whole cell 

preparation and (B) membrane enriched fractions. IGSF9 was shown to be 

expressed in fewer cell lines in both whole cell lysates (5/11) and membrane enriched 

fractions (2/9) compared to KLRG2 which showed expression in almost all the whole 

cell preparations (10/11) and over half the membrane enriched fractions (6/9).  
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5.3 Preliminary IHC analysis 

Having confirmed the expression of two potential over expressed breast cancer targets 

IGSF9 and KLRG2 in a panel of breast cancer cell lines it was necessary to determine 

their expression in normal breast compared to breast cancer tissues. Optimisation of 

initial five targets KLRG2, LRP8, TSPAN13, IGSF9 and SLAMF8 using invasive 

breast tissue samples indicated that IGSF9 and KLRG2 produced strong reproducible 

staining, SLAMF8 produced inconsistent staining and TSPAN13 and LRP8 did not 

produce strong staining in the small number of tissues used for optimisation. As tissue 

samples were limited and due to the consistent and highly prevalent staining observed 

with IGSF9 and KLRG2 it was decided to carry out further IHC analysis of these two 

targets. Note that all samples were obtained from Prof. Susan Kennedy with ethical 

approval.  

 

5.3.1 Normal breast vs breast tumor 

Using invasive (HER2 and TNBC status unknown) breast tumor (n=4) sections and 

normal breast tissue (n=3) sections we showed that IGSF9 produced membrane staining 

as well as granular cytoplasmic staining in these tumors which compared observed 

weak immunoreactivity in the normal breast tissue stained (Figure 5.3.1). KLRG2 was 

found to produce membrane (and some nuclear staining) in tumor sections compared to 

weak to negative staining in normal breast tissue (Figure 5.3.2). In summary the 

invasive breast tumors stained produced strong positive staining for both targets 

compared to normal breast tissue. 
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Figure 5.3.1 Representative normal (A, B) and invasive breast tissue (C, D) 

(subtype unknown) images of IHC analysis of IGSF9. Strong cytoplasmic and 

possible membrane immunoreactivity (red arrows) can be observed in both invasive 

breast cancer sections compared to the normal breast. (original magnification 40x). 
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Figure 5.3.2 Represenative normal breast tissue (A, B) and invasive breast cancer 

tissue (C, D) (subtype unknown) images of IHC analysis of KLRG2.. Some weak 

KLRG2 immunractivity in some areas can be seen in normal breast (40x original 

magnification). Clear KLRG2 membrane immunoreactivity is observed in images C & 

D (red arrow).  
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5.3.2 Candidate target  expression in proliferative tissues 

Comparing the immunoreactivity of IGSF9 and KLRG2 in normal breast to invasive 

breast we found that that breast cancer tissue exhibited intense staining while normal 

tissue was found to show very limited staining. To further test the specific 

immunoreactivity of IGSF9 and KLRG2 we stained normal colon sections for Ki67, a 

widely used IHC marker for proliferating cells. Ideally a target used as an antibody drug 

conjugate  (ADC) or for any targeted treatment will not target proliferative cells and 

potentially cause unwanted side effects. By comparing the same area of the section 

stained with IGSF9 or KLRG2 we could determine if either target had an affinity for 

proliferative cells. An ideal ADC target will have limited expression in highly 

proliferating cells. 

Using normal colon cells tissue sections (n=3) we showed that both KLRG2 and IGSF9 

were not expressed in Ki-67 proliferating positive cells (i.e. highly proliferating cells) in 

the photographed location of the tissue section (Figure 5.3.3).  
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Figure 5.3.3 Normal colon images showing IHC analysis of IGSF9 (A) and 

KLRG2(B) in normal colon tissue sections stained with the Ki-67 proliferation 

marker. IGSF9 and KLRG2 show negligible immunoreactivity in Ki-67 positive cells. 

(original magnification 40x). 

 

 

 

 

 

KLRG2 

IGSF9 

Ki-67 

Ki-67 

 200µm 

______ 

 200µm 

______ 

 200µm 

______ 

 200µm 

______ 



 

195 
 

5.3.3 Normal tissue expression 

We next validated the expression of IGSF9 and KLRG2 in a panel of available normal 

tissues. A panel of normal tissues including normal breast (See Figure 5.3.1 and 5.3.2 

compared to invasive breast) cervix, colon, duodenum, gastric, lung, oesophagus, 

prostate, salivary gland, spleen, tonsil were stained with anti-IGSF9 (Figure 5.2.4 and 

5.2.5) or anti-KLRG2 (Figure 5.2.6 and 5.2.7). Overall, weak to no immunoreactivity 

was observed in all the of the normal tissues stained for both IGSF9 and KLRG2 (Table 

5.3.1 and 5.3.2). Strong IGSF9 immunoreactivity was observed in duodenum but in 

<10% of the tissue. Only analysis of IGSF9 in the digestive tissues (duodenum, 

oesophagus and salivary gland) produced moderate staining similar to that seen in 

Figure 5.2.2 with invasive breast. 
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Figure 5.3.4 IGSF9 immunoreactivity across representative normal tissues. Breast 

(A) cervix (B), colon (C), prostate (F) all show negligible immunoreactivity with gastric 

(D) and lung (E) showing weak immunoreactivity. (Original magnification 40x). 
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Normal Tissue  KLRG-2 membrane immunoreactivity  

Breast  Negative (4/4)  

Colon  Weak 20% of tissue (2/2)  

Gastric  Negative (1/1)  

Tonsil  Negative (2/2)  

Prostate  Negative (2/2)  

Spleen  Weak 20% of tissue (2/2)  

Duodenum  Strong staining <10% of tissue (1/1)  

Lung  Moderate staining 10% of tissue (3/3)  

Kidney  Negative (1/1)  

Liver  Negative (1/1)  

 

Table 5.3.1 IGSF9 immunoreactivity across a cohort of 18 available normal tissues. 

Overall observed immunreactivity was mostly negative, weak with low coverage (Colon, 

Spleen). Moderate and strong immunoreactivity was observed in lung and duodenum at 10% 

and <10% coverage respectively. This data demonstrates overall that IGSF9 is not highly 

expressed in thenormal tissue. 
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Figure 5.3.5 KLRG2 immunoreactivity across representative normal tissues. Breast 

(A) cervix (B), gastric (D), lung (E), all show negligible immunoreactivity. Colon (C) 

and prostate (F) show weak immunreactivity. (Original magnification 40x). 
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Normal Tissue  KLRG-2 membrane immunoreactivity  

Breast  Negative (4/4) 

Gastric Weak <10% of tissue (1/1) 

Tonsil Negative (2/2) 

Prostate Negative (5/5) 

Spleen Negative (1/1) 

Duodenum Moderate 10% of tissue (1/1) 

Lung Negative (2/2) 

Kidney Weak 60% of tissue (1/2) 

Liver Negative (2/2) 

Cerebellum  Negative (1/1)  

Cerebrum  Negative (1/1)  

Colon  Weak 20% of tissue (4/4)  

Muscle skeletal  Negative (1/1)  

Ovary  Negative (2/2)  

Pancreas  Negative (1/1)  

Skin  Negative (2/2)  

Small inrestine  Negative (1/1)  

Stomach  Weak 60% of tissue (1/1)  

Spleen  Negative (1/1)  

Thyroid gland  Negative (1/1)  

 

Table 5.3.2 KLRG2 immunoreeactivity across a cohort of 36 available normal 

tissues. The highest coverage of staining was observed in stomach and kideny at 

60% but consisted of weak immunoreactivity. Moderate immunoreactivity was only 

seen in duodenum in 10% of the tissue. From these numbers KLRG2 was observed 

to not be highly associated with normal tissue. 
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5.4 IGSF9  

As one of the five short listed potential membrane targets from the bioinformatics 

transcript lists IGSF9 was found to be 18 fold up-regulated in HER2+ breast cancer 

compared to normal breast tissue (Table 6.1.2). Using a panel of breast cancer cell lines 

we confirmed IGSF9 expression by Western blot analysis in the membrane enriched 

fractions and unfractionated whole cell lysates of MDA-MB-157 and BT474 cell lines 

(Figure 5.2.1). Initial IHC results revealed that IGSF9 showed strong cytoplasmic and 

membrane expression in invasive breast cancer (Figure 5.3.1), showed overall low 

immunoreactivity across normal tissues (Figure 5.3.3) with moderate staining staining 

in only 3 of the normal tissues investigated (Figure 5.3.4 and 5.3.5). Negligible 

staining was observed in normal breasttissues analysed. This differential cancer/normal 

tissue expression i.e. weak immunoreactivity in normal breast (and other normal tissues) 

with strong specificity for breast cancer tissue and visible membrane expression 

validated IGSF9 for further IHC analysis using a larger cohort of breast cancer tissues 

wiht clincopathological information available (courtesy of our clinical collaborators). 

This preliminary study showed that IGSF9 had moderate to strong cytoplasmic and 

membrane immunoreactivity in a panel of HER2+ breast cancer sections (n=6) (Figure 

5.4.1 A,B,C). We also tested IGSF9 expression in triple negative breast cancer (TNBC) 

(n=11)  and found that it also produced moderate to strong cytoplasmic and membrane 

staining (Figure 5.4.1 D,E,F). We also stained several other cancer tissues (Figure 

5.4.2) and observed moderate staining in primary melanoma (n=1) compared to 

metastatic melanoma (n=1) and showed weak to moderate immunoreactivity in one 

pancreatic tumor (n=1). 

As IGSF9 appeared to be expressed in all of the HER2+ sections teasted, analysisof a 

larger patient cohort was conducted using a tissue matrix array (TMA) (Figure 5.4.3 - 

5.4.6) containing 102 sample cores and a separate TMA containing a cohort of 70 

HER2+ patient sample cores (Figure 5.4.7 - 5.4.11).  (Prof. Susan Kennedy and Prof. 

Joe Duffy, St Vincents University Hospital) 
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5.4.1 IGSF9 expression in HER2+ and TNBC tumors 

IGSF9 was found to produce moderate to strong staining in both HER2+ breast cancer 

tissues and TNBC tissues (Figure 5.3.1). Membrane staining was observed in both 

HER2+ and TNBC tissues but punctuate cytoplasmic staining was also observed. 

Furthermore increased staining intensity was observed in tumors with a Her2+ score of 

0 (A) up to score of +2 (B) and +3 (C). This is consistent with IGSF9 being up-

regulated in HER2+ breast cancer indicated by the initial bioinformatics list it was 

derived from. It did not however appear as up-regulated in the TNBC bioinformatics list 

despite IGSF9 showing very strong immunoreactivity in TNBC. The following table 

(Table 5.3.1) summarises the number of tissues stained and the intensity of staining 

produced: 

Breast Cancer Subtype No. producing staining Localisation of staining 

HER2+ 4/6 (moderate-strong) Membrane, Cytoplasmic 

TNBC 9/11 (moderate-strong) Membrane, Cytoplasmic 

Table 5.4.1 Summary of numbers of HER2+ and TNBC tissues producing staining 

with IGSF9 and their localisation. While IGSF9 was identified as over expressed in 

HER2+ breast cancer compared to normal tissue from the initial bioinformatics data it 

also showed similar staining in 9/11 TNBC tissues stained. 
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Figure 5.4.1 IGSF9 staining of HER2+ breast tumors. The top image shows a tissue 

section with HER2+ score of 0 (A) showing and weak IGSF9 immunoreactivity with 

while tumors with a HER2+ score of +2 (B) and +3 (C) respectively show strong IGSF9 

immunoreactivity. IGSF9 staining of TNBC breast cancer tissue samples (D,E,F) show 

strong "punctuate" like) immunoreactivity in the cytoplasm as well as membrane 

straining (examples shown) in all samples stained. (original magnification 40x). 
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5.4.2 IGSF9 expression in other  cancer tissues 

IGSF9 was observed to be expressed in TNBC tissues despite only being predicted to be 

over expressed in HER2+ breast cancer. For this reason and it's novel status in the 

literature in relation to cancer functional work we tested a small number of available 

cancer tissues (Figure 5.4.2). 

We observed that IGSF9 showed strong membrane staining in primary melanoma (B) 

compared to paired metastatic melanoma. We also found that it had weak to moderate 

membrane and cytoplasmic immunoreactivity in pancreatic cancer (C,D). IGSF9 has 

been identified in mice to play a positive role in cell adhesion through synapse 

maturation and outgrowth (Mishra et al. 2008, Mishra et al. 2014). This may explain 

why the metastatic melanoma shows no staining for IGSF9 as metastatic cells are 

known to have reduced adhesion properties (Bendas and Borsig 2012). 
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Figure 5.4.2 IGSF9 staining of metastatic (A), primary melanoma (B) and 

pancreatic cancers sections (C, D). The metastatic melanoma section shows negligible 

immunoreactivity compared to the strong membrane and cytoplasmic staining observed 

in the primary section melanoma. Pancreatic cancer sections show varying 

immunoreactivity from weak (C) to moderate membrane staining (D). (Original 

magnification 40x) 
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5.4.3 TMA IHC analysis of IGSF9 

TMAs contain many cores of separate paraffin fixed tissue blocks allowing for multiple 

samples to be analysed at once. TMAs (constructed at St Vincents University Hospital 

with respective cores from HER2+ patients and TNBC patients) were used for further 

IHC analysis of IGSF9 with ethical approval from St Vincents University hospital. The 

first TMA consisted of a selection of breast cancer types including HER2 positive, 

TNBC and normal breast tissue (Table 5.4.2), both TMAs containing clinical data such 

as tumour size and receptor status. The following table summarises the constituents of 

each TMA: 

No. Patients Normal Breast HER2+ ER+ PR+ TNBC 

102 2 23 59 48 16 

Table 5.4.2 Tissue matrix array sample numbers for normal breast and HER2+, 

ER+, PR+ and TNBC tumor tissue. 

The TMA was stained using an IGSF9 antibody and resulted in the characteristic 

membrane and cytoplasmic staining observed in the preliminary IHC analysis. The 

stained TMA who scored according to intensity (+1 to +3 from weak to strong) and for 

coverage of staining (% area of tumor tissue) graphed in as x y z plots (Figure 5.4.3 to 

5.4.6) the HER2+ and TNBC group showed the highest relative number of stained 

samples. 

The second TMA consisted of a large cohort (n=70) of HER2+ archival breast cancer 

samples (Table 5.4.3) with ER+/ER- and LN+/LN- status known for each sample. 

No. 

Patients 

HER2+ HER2+, 

ER+ 

HER2+, 

ER- 

HER2+, 

LN+ 

HER2+, 

LN- 

69 69 43 26 33 35 

Table 5.4.3 HER2+ breast tumor tissue matrix array sample numbers with ER2+, 

ER-, LN+ and LN- tumor status. 

Both TMAs allowed us to determine if IGSF9 expression is biased towards a particular 

breast cancer subtype. The multi breast cancer TMA suggests that IGSF9 exhibits 

higher staining intensity associated with HER2+ and TNBC tumors ompared to ER+ 

and PR+ tumors which show a higher frequency of a negative staining score. The 

HER2+ TMA shows that a similar trend of mostly moderate staining associated with 

HER2+ tumors regardless of ER or LN expression. The association between IGSF9 and 
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strong staining in HER2+ tissues and TNBC tissues was in agreement with that 

observed in preliminary IHC analysis (Table 5.4.1). 

 

Figure 5.4.3 HER2+ TMA tissue cores (n=19) stained for IGSF9 expression. 

Staining intensity was scored as weak (1), moderate (2) or high (3). Characteristic 

membrane and cytoplasmic staining was observed in all IGSF9 positive tissues. Low 

numbers of negatively stained tissues (n=3) and a high number of moderately stained 

tissues suggest that IGSF9 expression may be associated with HER2+ breast cancer. 

 

Figure 5.4.4 TNBC TMA tumor cores (n=16) stained for IGSF9 expression. 

Staining intensity was scored as weak (1), moderate (2) or high (3). Characteristic 

membrane and cytoplasmic staining was observed in all IGSF9 positive tissues. Low 

numbers of negatively stained tissues (n=2) and a high number of moderately stained 

tissues suggest IGSF9 expression may be associated with TNBC breast cancer. 
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Figure 5.4.5 ER+ TMA tumor cores (n=59) stained for IGSF9 expression. Staining 

intensity was scored as weak (1), moderate (2) or high (3). Characteristic membrane and 

cytoplasmic staining was observed in all IGSF9 positive tissues. High numbers of 

negative stained tissues (n=16) and a bias toward weak stained tissues suggest IGSF9 

expression may not be associated with ER2+ breast cancers. 

 

Figure 5.4.6 PR+ TMA tumor cores (n=48) stained for IGSF9 expression. Staining 

intensity was scored as weak (1), moderate (2) or high (3). Characteristic membrane and 

cytoplasmic staining was observed in all IGSF9 positive tissues. High numbers of 

negative stained tissues (n=10) and with only a bias toward moderate stained tissues 

suggest IGSF9 expression may be weakly associated with PR+ breast cancers. 
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Figure 5.4.7 HER2+ TMA tumor cores (n=69) stained for IGSF9 expression. 

Staining intensity was scored as weak (1), moderate (2) or high (3). Characteristic 

membrane and cytoplasmic staining was observed in all IGSF9 positive tissues. High 

moderately stained tissues and high percentage of staining coverage suggest IGSF9 

expression may be associated with HER2+ breast cancers. 

 

Figure 5.4.8 HER2+, ER+ TMA tumor cores (n=43) stained for IGSF9 expression. 

Staining intensity was scored as weak (1), moderate (2) or high (3). Characteristic 

membrane and cytoplasmic staining was observed in all IGSF9 positive tissues. 

Exhibiting a similar distribution in staining intensity and staining coverage to the 

HER2+ mixed population (Figure 5.4.7) suggest IGSF9 is not specifically associated 

with ER+ expression in HER2+ breast cancer. 
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Figure 5.4.9 HER2+, ER- TMA tumor cores (n=26) stained for IGSF9 expression. 

Staining intensity was scored as weak (1), moderate (2) or high (3). Characteristic 

membrane and cytoplasmic staining was observed in all IGSF9 positive tissues. 

Exhibiting a similar distribution in staining intensity and staining coverage to the 

HER2+ mixed population (Figure 5.4.7) suggest IGSF9 is not specifically associated 

with ER- expression in HER2+ breast cancer. 

 

Figure 5.4.10 HER2+, LN+ TMA tumor cores (n=33) stained for IGSF9 

expression. Staining intensity was scored as weak (1), moderate (2) or high (3). 

Characteristic membrane and cytoplasmic staining was observed in all IGSF9 positive 

tissues. Exhibiting a similar distribution in staining intensity and staining coverage to 

the HER2+ mixed population (Figure 5.4.7) suggest IGSF9 is not specifically 

associated with LN+ expression in HER2+ breast cancer. 
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Figure 5.4.11 HER2+, LN- TMA tumor cores (n=35) stained for IGSF9 expression. 

Staining intensity was scored as weak (1), moderate (2) or high (3). Characteristic 

membrane and cytoplasmic staining was observed in all IGSF9 positive tissues. 

Exhibiting a similar distribution in staining intensity and staining coverage to the 

HER2+ mixed population (Figure 5.4.7) suggest IGSF9 is not specifically associated 

with LN- expression in HER2+ breast cancer. 
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5.5 KLRG2  

The second target chosen for follow up from the five short listed potential membrane 

targets from the bioinformatic transcript lists was  KLRG2. It was found to be 5 fold up-

regulated in TNBC compared to normal breast tissue (Table 5.1.2). Our panel of breast 

cancer cell lines confirmed IGSF9 expression by Western blot analysis in whole cell 

lysates as well as in membrane enriched fractions of MCF7, T47D, BT474, MDA-MB-

468, MDA-MB-231 and HS578T cell lines (Figure 5.2.1). Initial IHC results showed 

that KLRG2 had strong cytoplasmic and membrane expression in two out of four 

invasive breast cancer tissues tested (Figure 5.2.3), was not preferentially associated 

with binding to proliferative tissue (Figure 5.2.4) and only showed low/negligible 

staining in all normal tissue types tested (Figure 5.2.6) with negligible staining in 

normal breast. From these results KLRG2 exhibited promising characteristics as a 

molecular ADC target exhibiting with low immunoreactivity in normal tissues and 

strong specificity for breast cancer tissue with visible membrane expression. 

Using available breast cancer tissues (subtype known) we analysed the expression of 

KLRG2 in TNBC and  HER2+ breast cancer. As KLRG2 was derived from the TNBC 

vs normal list we anticipated that it's expression would by particularly high in TNBC 

tissue sections. We found that KLRG2 displayed strong immunoreactivity in TNBC 

tissue sections with distinct membrane and nuclear staining visible (Figure 5.5.1 

D,E,F). We also found that KLRG2 had low to negligible  membrane and nuclear 

immunoreactivity to HER2+ breast cancer sections (Figure 5.5.1 A,B,C). We also 

stained a small no. of other cancer tissues (Figure 5.4.2) and found it showed low to 

negligible staining in primary melanoma (n=1) compared to metastatic melanoma (n=1) 

and it also showed weak to moderate immunoreactivity in pancreatic cancer (n=1). 

As in Section 5.4 with IGSF9 we conducted a larger sample analysis with a multiple 

breast cancer subtype TMA (Figure 5.5.4) containing 102 sample cores.  
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5.5.1 KLRG2 expression inHER2+ and TNBC tumors 

KLRG2 was shown to produce negative to low staining in HER2+ breast cancer tissues 

from the tumors with a HER2+ score of 0 (A) up to score of +2 (B) and +3 (C) (Figure 

5.5.1 A, B, C). As expected we observed strong staining in TNBC tissues (Figure 5.5.1 

D, E, F). Membrane staining was clearly observed in TNBC tissues and often 

accompanied by strong nuclear staining. The individual clinical tissue samples 

illustrated that KLRG2 showed an affinity toward strong membrane staining of TNBC 

tissues which is in agreement with the bioinformatics list that the target was derived 

from. The following table (Table 5.5.1) summarises the tissues stained and the intensity 

of staining produced. 

Breast Cancer Subtype No. producing staining Localisation of staining 

HER2+ 2/9 (moderate) Membrane, Nuclear 

TNBC 8/11 (strong) Membrane, Nuclear 

 

Table 5.5.1 Summary of numbers of HER2+ and TNBC tissues producing staining 

with KLRG2 and their localisation. KLRG2 shows stronger immunoreactivity overall 

for TNBC from these results which is to be expected as KLRG2 was over expressed in 

TNBC from the bioinformatics data. 
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Figure 5.5.1 KLRG2 expression in HER2+ breast cancer tissues. Weak membrane 

and nuclear immunoreactivity can be seen in all three samples (A, B, C). KLRG2 

staining on TNBC (D, E, F) tissue samples showing strong clear membrane 

immunoreactivity accompanied by nuclear staining (Original magnification 40x). 

 

 

 

A 

C 

B 

E F 

D 

 200µm 

______ 

 200µm 

______ 

 200µm 

______ 

 200µm 

______ 

 200µm 

______ 

 200µm 

______ 



 

214 
 

5.5.2 KLRG2 expression in other cancer tissue 

Taking into account the results from staining melanoma and pancreatic cancer tissue 

with IGSF9 in Section 5.4.2 we analysed the immunoreactivity of KLRG2 in the same 

tissue sections. We found that there was negligible staining in the primary and 

metastatic melanoma sections (A and B) and very weak to negligible staining found in 

the pancreatic cancer tissue (D, C). This again reflects the observation found in staining 

HER2+ breast and TNBC tissue, that KLRG2 is potentially more selective than IGSF9, 

specifically selective to high expression in TNBC. 
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Figure 5.5.2 KLRG2 staining of metastatic (A) and primary melanoma (B) and 

pancreatic cancer sections (C, D). The melanoma section shows negligible 

immunoreactivity. Pancreatic cancers show all show weak nuclear immunoreactivity. 

(Original magnification 40x). 
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5.5.3 TMA IHC analysis of KLRG2 

As in Section 5.3.3 with IGSF9 we used the same TMA to investigate the 

immunoreactivity in a large cohort of breast cancer samples. These were obtained with 

ethical approval from St Vincents University Hospital the contents of which are 

summarised in the previous Table 5.4.2. 

IHC analysis of the TMA cores for KLRG2 expression resulted in strong membrane 

immunoreactivity together with moderate nuclear staining in some cases; this was in 

agreement with the preliminary IHC analysis. The KLRG2 stained TMA was divided 

into four subtypes scored according to the intensity of the immunoreactivity (+1 to +3 

from weak to strong) and for coverage of staining (% area of tissue core stained) and 

graphed as x y z plots (Figure 5.5.3 to 5.5.6) the HER2+ and TNBC group showed the 

highest relative number of tissue cores showing KLRG2 immunoreactivity. 
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Figure 5.5.3 HER2+ TMA tumor cores (n=18) stained for KLRG2 expression. 

Staining intensity was scored as weak (1), moderate (2) or high (3). Characteristic 

membrane staining was observed in all KLRG2 positive tissues. The observed relatively 

high number of negatively stained tissues (n=7) and the a low percentage of each tumor 

core exhibiting KLRG2 immunoreactivity suggests that KLRG2 expression may not 

strongly associated with the HER2+ breast cancer subtype. 

 

Figure 5.5.4 TNBC TMA tumor cores (n=16) stained for KLRG2 expression. 

Staining intensity was scored as weak (1), moderate (2) or high (3). Characteristic 

membrane staining was observed in all KLRG2 positive tissues. The observed relatively 

high number of negatively stained tissues (n=5) which showed KLRG2 

immunoreactivity together with a high percentage of stained cores showing, KLRG2 

expression suggests that KLRG2 expression is associated with the TNBC breast cancer 

subtype. 
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Figure 5.5.5 ER+ TMA tumor tissue (n=63) stained using KLRG2. Stain intensity 

was measured as weak (1), moderate (2) or high (3). Characteristic membrane staining 

was observed in all KLRG2 positive tissues. A relatively high number of negative 

stained tissues (n=26) and a wide range of percentage of each tumor stained, KLRG2 

expression may not strongly be associated with ER2+ breast cancer. 

 

Figure 5.5.6 PR+ TMA tumor cores (n=63) stained for KLRG2 expression. Staining 

intensity was scored as weak (1), moderate (2) or high (3). Characteristic membrane 

staining was observed in all KLRG2 positive tissues. The relatively high number of 

negative stained tissues (n=19) together with, for the most part, weak KLRG2 

immunoreactivity suggests that KLRG2 expression may not be associated strongly with 

the ER2+ breast cancer subtype. 
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5.5.4 Survival outcome 

To investigate any possible correlation between the expression of KLRG2 and patient 

outcome/survival we used BreastMark, an algorithm available online that pools multiple 

gene expression microarrays to calculate and correlate the survival rate associated with 

differential gene expression of a specific gene (Madden et al. 2013). 

The results indicate that there is a significant (p=0.72 x 10
-3

) association between high 

expression of KLRG2 in the basal breast cancer subtype and poor rate of survival 

(Figure 5.5.7). BreastMark has assigned a hazard ratio of 2.65 to the association 

between patients expressing low levels of KLRG2 and high levels of KLRG2. A hazard 

ratio of 2.65 equates to an over two fold increase in the risk of a poor outcome in 

patients expressing high levels of KLRG2 compared to those expressing low levels of 

KLRG2. Overall the graph indicates that patients presenting a basal type breast cancer 

tumor are 2.65 times more likely to have a poor outcome over a ten year period. 

 

Figure 5.5.7 Kaplan-Meier cumulative survival curve showing poor patient 

outcome associated with KLRG2 (3466689) over expression in basal type breast 

cancer. The data shows a significant difference (p=0.72 x 10
-3

)
 
in the poor prognosis of 

patients (n=96) with basal type breast cancer over expressing (blue) KLRG2 compared 

to those with low KLRG2 (red) expression. A hazard ratio of 2.65 indicates an over two 

fold likely hood of a poorer prognosis in these patients (Madden et al. 2013). 
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6.1 Effect of miR-7 on CHO cells introduction 

To date our laboratory has established miR-7 as having a significant effect on the 

phenotype of CHO cells in culture. It was first identified as part of a micro-RNA screen 

on temperature shifted CHO cells and was proposed as a molecular mechanism to 

induce a temperature shifted phenotype (Gammell et al. 2007). This phenotype of 

reduced cell proliferation without affecting cell viability, resulting in greater 

productivity due to this extended viability in culture, was confirmed by up regulation of 

miR-7 through transient transfection in CHO-K1 cells (Barron et al. 2011a). While this 

phenotypic affect of temperature shift is desirable for industrial applications, prolonging 

time in culture and increasing productivity over time, the financial feasibility of 

reducing the temperature of a typical large scale bioreactor with several thousands of 

litres in culture volume may not be desirable.  

Alternatively we proposed identifying targets that induce this temperature shift like 

phenotype of miR-7 over expressing CHO cells. Additionally, with little information 

publicly available on the molecular mechanisms of CHO cells, this study also revealed 

many as of yet unreported effects of miR-7 on the CHO cell proteome. This was met 

with several challenges including the acquisition of sample with miR-7 arresting cell 

growth, the acquisition and proofing of protein identifications from multiple species 

databases without a CHO protein database available and finally the annotation and 

curation of protein identifications using CHO databases acquired after the initial multi-

species database method. With extensive analysis, protein ID curation and validation of 

protein expression it was possible to identify a large number of proteins differentially 

expressed in response to miR-7 over expression compared to a miR scramble negative. 

Not only were we able to identify and validate differentially expressed proteins but we 

were also able to identify and validate the expression of predicted direct targets of miR-

7 in CHO-K1-SEAP cells, overlap differentially expressed proteins with previously 

reported differentially expressed genes in miR-7 over expressing CHO cells and also 

able to tie these associations into three types of pathway analysis using the differential 

expressed identifications generated.  

 

 

 



 

222 
 

6.1.1 Quantitative label-free LC-MS/MS 

Quantitative abel-free LC-MS/MS proteomic technology has been a new analysis within 

our lab in the last 5 years and a relatively new method of analysis within the omics 

sciences. The methodology in sample processing is relatively fast and high throughput.  

Working with Chinese hamster ovary material there are particular limitations with the 

availability of Chinese hamster protein databases and the annotation of available 

Chinese hamster protein databases. Initially we relied on the merger of output from 

closely related species output with far more sequence information in human, mouse and 

rat databases as Chinese hamster protein databases were not available. While this does 

produce IDs it introduces a limitation of certainty for the resulting IDs and if they are 

truly the same proteins that can be found in Chinese hamster proteome. It also 

introduces the possibility of not identifying unique Chinese hamster proteins or peptides 

that are not homologous to respective human, mouse or rat proteins or are simply not 

present in any of the three species. 

 

6.1.2 Species homology identifications 

Our initial published study relied on sequence homology between the CHO peptide 

sequence data with human mouse and rat sequence IDs. This technique has been used to 

similar effect in previous CHO sequencing studies where gene transcript databases 

specific to CHO were not available (Yee et al. 2008). Mouse and rat transcript data has 

been reported to have 92% homology to CHO transcript sequences (Ernst et al. 2006). 

Using Progenesis
TM

 QI (http://www.nonlinear.com/) it was possible to combine human, 

mouse and rat database IDs and remove duplicate IDs arising from species homology. 

This resulted in a sizable number of proteins identified as up or down-regulated 48 and 

96 hr after transient up regulation of miR-7 compared to a scramble control. 

As the IDs were obtained through sequence homology a panel of proteins were 

validated as differentially regulated by Western blot demonstrating that the use of 

different species databases was effective in identifying protein differential regulation. 

These findings remain the only reported ones on the effect of miR-7 on the CHO cell 

proteome profile and of any large scale mammalian proteome profile. While using 

different species databases to identify CHO proteins does introduce constraints in 

maximising IDs and validity of differential protein expression, multi-species analysis 
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also allows potential inferences to be made about the role of miR-7 in other mammalian 

systems with the high degree of sequence homology shown across species. 

 

6.1.3 Chinese hamster ovary identifications 

As described in the introduction we later gained access to two CHO specific protein 

databases the first being generated from the curated Bielfeld-BOKU-CHO (BBCHO) 

database (Becker et al. 2011) and the second being compiled from non redundant NCBI 

CHO IDs based on genomic data by Xu et al. (Xu et al. 2011). Both were used in 

parallel as in a previous study in our lab to maximise the number of IDs obtained 

(Meleady et al. 2012a). 

Using the CHO database resulted in many 1 peptide protein IDs. By overlapping the IDs 

from the multi-species database search of >1 peptide and the CHO database with 1 

peptide IDs included it was found that over half the IDs in the multi-species list were 

accounted for. We also verified using miRWalk that two predicted direct targets of miR-

7, stathmin and catalase were present in the multi-species list with greater than 1 peptide 

each list and were each identified as 1 peptide IDs in the CHO database. For this reason 

1 peptide IDs were included using the CHO database. It is possible that the overlapped 

IDs between the two search methods which included the two predicted direct targets of 

miR-7 had less sequence coverage for the peptide fragments identifying the proteins in 

the CHO database. Using a CHO specific database also means we could have greater 

certainty as to the validity of the IDs compared to the reliance on species homology. 

Furthermore for pathway analysis using the CHO database derived IDs each protein 

name required manual curation. This involved UniProt BLAST searching the peptides 

of each ID to verify the correct gene names. Consequentially each differential protein  

ID was manually verified from the CHO database output. 

 

6.1.4 Predicted direct targets of miR-7 

Using miRWalk, an online tool that aggregates several miR target prediction databases 

(Dweep et al. 2011), the two strongest predicted direct targets of miR-7 were catalase 

and stathmin in the down-regulated proteins of the multi-species list. As these databases 

do not contain alignment to Chinese hamster species we used the multi-species database 

differential IDs which contain human, mouse and rat species for the predicted target 



 

224 
 

search. Only the down-regulated list was used as microRNA negatively regulated 

protein expression. 

 It was later confirmed that catalase and stathmin were also down-regulated in the CHO 

database list. Catalase and stathmin were also confirmed to be down-regulated using 

Western blot analysis. A number of other potential targets of miR-7 were also predicted 

within the multi-species list. Discussed below are the predicted targets that were 

associated with cellular processes that were enriched in pathway analysis. 

 

6.1.4.1 Catalase 

Catalase is a well studied 60kDa antioxidant enzyme found in the peroxisome which 

converts toxic hydrogen peroxide and reactive oxygen species (ROS) through numerous 

reactions into harmless products and is expressed across many species (Zamocky, 

FurtmÃ¼ller and Obinger 2008) 

Catalase was found to be down-regulated at 48 and 96 hr after exogenous up regulation 

of miR-7 compared to scramble control. This was further verified by Western blot. The 

down regulation of catalase in response to increased miR-7, and being a predicted direct 

target of miR-7, is consistent with how microRNA negatively regulate protein 

expression. 

Catalase inhibition has been reported to reduce the cell proliferation of human 

immortalised myelogenous leukaemia cells (K562) (Takeuchi et al. 1995), human 

myeloid cells (U937), human melanoma cells (A375-C6), human B cells (Daudi) 

(Miyamoto et al. 1996) and in human promyelocytic cells (HP60) (Hachiya and Akashi 

2005). Being such a widely studied protein catalase has also been implicated in a wide 

variety of cellular dysfunctions with reduction in catalase and its associated antioxidant 

properties being noted in renal failure (Aziz et al. 2015), diabetes and heart failure 

(Hayden and Tyagi 2003).  

With respect to the over expression of miR-7 in CHO the resulting reduction in catalase 

expression would appear to correlate with reducing cell proliferation. As disease related 

studies suggest however catalase has a strong anti-oxidative effect. It was noted that 

Superoxide Dismutase 1 (SOD1) and Superoxide Dismutase 2 (SOD2) were both up-

regulated in miR-7 over expressing CHO cells. Both these proteins convert superoxide 

to hydrogen peroxide. The resulting Hydrogen peroxide can then be acted on by catalase 
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or the other members of the anti-oxidant proteins. This would suggest that there is a 

possible increase of hydrogen peroxide.  This highly suggests that other members of the 

ROS reducing family are compensating for the reduced catalase expression as the 

viability of CHO cells with increased miR-7 do not have reduced viability. Indeed 

looking for other ROS mitigating proteins in the differential protein lists we found 

several proteins related to glutathione synthesis and glutathione transferases that may 

play a role in compensating for the loss of catalase due to increased miR-7.  

 

6.1.4.2 Stathmin 

Stathmin is a 17kDa protein involved in preventing and promoting microtubule 

disassembly (Belmont and Mitchison 1996). Stathmin was found to be down-regulated 

at 96 hr after exogenous up regulation of miR-7 compared to a scramble control and 

was confirmed by Western blot analysis as down-regulated at 48 and 96 hr after miR-7 

over expression.  

Stathmin plays a key role in cell cycle progression by destabilising microtubules 

involving tubule to allow cell division. The inhibition of stathmin has been well 

documented to significantly reduce cell proliferation by halting the microtubule 

dynamics in a variety of cell types including liver cancer (Malz et al. 2009), melanoma 

(Chen et al. 2013) and leukaemia (Machado-Neto, Saad and Traina 2014). Due to its 

strong association with proliferation and cell cycle progression in cancer it is also 

known as Oncoprotein 18. It also interacts with other signalling pathways as part of cell 

cycle progression, being activated by phosphorylation from Cyclin Dependant Kinases 

(CDK) CDK1, CDK2 (Brattsand et al. 1994) and CDK5 (Beretta, Dobransky and Sobel 

1993). These CDK proteins are in turn negatively regulated by p27 (Berton et al. 2014). 

 

Increase in miR-7 in CHO cells resulting in decreased stathmin expression and arrested 

cell proliferation correlates with stathmin's reported functions in the literature. Looking 

at additional proteins in the list many are linked to structural changes in the cell and 

specifically at 96 hr are associated with structural molecule activity, specifically 

Tubulin alpha-1C chain (TPM4), Tubulin alpha-1C chain (TUBA1C), Tubulin beta 

(TUBB) and Tubulin beta-2C chain (TUBB2C) and Tubulin beta-4 chain (TUBB4) all 

down-regulated at 48 hr and Microtubule-associated protein 6 (MAP6) and 
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Microtubule-associated protein RP/EB family member 1 (MAPRE1) both down-

regulated at 96 hr.  

In a previous microarray study by Dr. Noelia Sanchez on the affect of miR-7 on CHO 

cells it was reported that p27 mediated cell cycle arrest with miR-7 directly interacting 

with S-Phase Kinase-Associated Protein 2 (SKP2) thereby increasing p27 (Sanchez et al. 

2013). This further points to the involvement of stathmin in cell cycle arrest considering 

the relationship between p27, CDKs and stathmin. It is possible that both events are not 

mutually exclusive with increased p27 inhibiting CDK halting G1 to S phase transition, 

as well as miR-7 over expression simultaneously and directly reducing stathmin 

expression, resulting in arrested microtubule dynamics and an accumulation of the 

aforementioned structural tubulin proteins. 

 

6.1.4.3 CCT3 

The protein Chaperonin containing TCP1, Subunit 3 gamma (CCT3) is a 60kDa protein 

part of the T-Complex 1 ring complex (TRiC). Through the TRiC this protein is 

involved in the folding of various proteins including actin and tubulins (Nadler-Holly et 

al. 2012). We found that CCT3 was down-regulated in miR-7 over-expressing CHO 

cells compared to the transfected negative control. 

 

CCT3 has been observed to have increased expression in hepatocellular carcinoma 

compared to adjacent normal tissue and was also confirmed to suppress cell 

proliferation in hepatocellular carcinoma cell lines (Cui et al. 2015). While CCT3 has 

also been identified as a potential biomarker in ovarian carcinoma (Peters et al. 2005) its 

specific functions are largely underreported with more focus on the overall function of 

TRiC which consists of all 8 of the CCT chaperonin proteins in a double stacked ring 

formation (Lopez, Dalton and Frydman 2015). It has been reported however that these 

chaperones are co-regulated with the translational apparatus (Albanèse et al. 2006) 

. 

As stathmin was a direct target of miR-7 and with its close association to tubulin CCT3 

may also be involved in the process of arresting tubulin processing. The down 

regulation of CCT3 in parallel with the observed reduction in proliferation in miR-7 

over expressing CHO cells also correlates with its reported affect on proliferation. 

Additionally its role in translational as part of TRiC may point to the arrest of further 
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processes in CHO cells with increased miR-7. CCT3 down regulation by miR-7 then 

may be contributing to cell cycle arrest by inhibition of protein translation and the 

processing of tubulins and actin. 

6.1.4.4 PA2G4 

Proliferation-Associated 2G4 (PA2G4) is a 38 kDa protein involved in growth 

regulation. PA2G4 was found down-regulated 48 and 96 hr after miR-7 over expression 

compared a negative control in CHO cells. Apart from its obvious reference to growth 

regulation and its down regulation correlating with reduced proliferation in miR-7 over 

expressing cells it also has a number of specific associations with other proteins. 

PA2G4, also known as ErbB3-Binding Protein 1 (EBP1), has been strongly associated 

with ribosomal inhibition in conjunction with transcription initiation factor 1 (TIFIA) 

and guanosine triphosphate in T-cells (Nguyen le et al. 2015). Transcription has also 

been reported to be repressed by EBP1 involving E2F1 transcription factor and histone 

deacetylases (Zhang et al. 2003). PA2G4/EBP1 has also been shown to interact with 

p53 tumour suppressor in glioblastoma with EBP1 over expression leading to p53 

degradation and subsequently promoting cancer growth (Kim et al. 2010). It also 

interacts with Bcl-2 mRNA leading to increased Bcl-2 mRNA stability and increased 

Bcl-2 expression leading to apoptosis resistance (Bose et al. 2006). 

Numerous transcription and RNA processing proteins were down-regulated 48 and 96 

hr after up regulation of miR-7 compared to negative control in CHO cells accompanied 

with simultaneous up regulation of anti-apoptotic proteins. Anti apoptotic proteins such 

as SOD1, SOD2 and GSTP1 are more strongly associated with catalase and anti-ROS 

activity. The up regulation of Eukaryotic Translation Initiation Factor 5A (EIF5A) and 

Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase is, however, associated with 

p53 up regulation (Li et al. 2004).  From previous findings in our lab p53 was  observed 

to be down-regulated in miR-7 over expressing CHO cells (Sanchez et al. 2013). 

Consistent with p53 down regulation a cell survival protein Activation Protein Zeta 

(YWHAZ) was up-regulated 96 hr after miR-7 up regulation and has been noted to 

increase cell survival by destabilising p53 in various breast cancers (Bergamaschi et al. 

2013). Our previous results from microarray analysis and Western blot combined with 

our reported down regulation of and prediction of PA2G4/EBP1 as a direct target of 

miR-7 would imply that p53 is simultaneously depleted but stabilised by the reduced 
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expression of PA2G4/EBP1. PA2G4/EBP1 also potentially playing a role in 

transcriptional regulation.  

 

6.1.4.5 RAN 

Ras-related nuclear protein (RAN) is a 24Da protein involved in GTP binding and the 

translocation of RNA and proteins via the nuclear pore complex (Stewart 2007). RAN 

was found to be down-regulated at 48 hr after miR-7 over expression compared to 

negative control in CHO cells. 

RAN is a member of the Ras oncogene superfamily and has been implicated in many 

processes involving cell cycle progression. This has been reported to be mediated by 

RAN-GTP, Regulator of chromosome condensation (RCC1) and Ran-binding protein 

1(RANBP1) activity in spindle formation (Ciciarello et al. 2010, Clarke and Zhang 

2008). As a transport protein it has been associated with increasing nuclear pore 

permeability with Importin-β (IMB1) (Lowe et al. 2015). 

Interestingly we found that RANBP1 was down-regulated at 48 and 96 hr and IMB1 

was down-regulated at 48 hr after exogenous miR-7 over expression. This may indicate 

that reduced RAN expression is functioning to both reduce spindle assembly and 

reorganisation with RANBP1 and is also reducing the translocation of proteins through 

the nuclear pore assembly with IMB1. 

 

6.1.4.6 EEF1A1 

Elongation factor 1-alpha 1 (EEF1A1) is 50kDa translational control protein that 

ezymatically delivers tRNAs to the ribosome. EEF1A1 was found to be down-regulated 

at 48 and 96 hr after miR-7 over expression compared to a negative control in CHO 

cells. This would suggest a reduction in translation. 

EEF1A1 has been implicated in many processes involved in cell survival and stability. 

It was found to reduce translation and proliferation in a several cancers (Lin and 

Souchelnytskyi 2011). It has also been specifically linked to being up-regulated by p53, 

initiating microtubule severing and initiation of cell death in erythroleukemic cells 

(Kato et al. 1997). EEF1A1 has been shown to increase the rate of apoptosis when up-
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regulated and decrease apoptosis rate when down-regulated in nutrient starved 

conditions (Duttaroy et al. 1998). 

These reported phenotypes correlate with the miR-7 over expression phenotype 

observed in CHO cells with reduced proliferation with no affect on viability. Further to 

this it has also been noted that EEF1A1 is necessary for the initiation of the heat shock 

response in heat shock conditions (Vera et al. 2014). This correlates with a number of 

heat shock proteins down and up-regulated in miR-7 over expressing CHO cells. 

EEF1A1 therefore may play a role in several processes contributing to the miR-7 over 

expression phenotype including reduction of translation, reduction of proliferation, 

passive microtubule preservation and anti-apoptotic processes that may include 

dysregulation of heat shock proteins 

 

6.1.4.7 RPL15 

The 60S ribosomal protein L15 (RPL15) is a 24kDa member of the large 60S ribosomal 

subunit. It was observed to be down-regulated along with a host of other ribosomal 

proteins 96 hr after miR-7 over expression  in CHO cells compared to a negative 

control.  

Ribosomal proteins, as well as having a role in translation as part of the ribosome, are 

increasingly emerging as having multiple cellular functions including ribosome 

independent regulators of translation (Xue and Barna 2012). RPS15 has been shown to 

be over expressed in gastric cancer tissue and cell lines and was confirmed to suppress 

growth in gastric cancer cell lines when knocked down (Wang et al. 2006). RPS15 was 

also noted to be over expressed in oesophageal cancer (Zhang et al. 2004). 

This reported reduction in proliferation associated with reduction of RPS15 may also be 

at play in miR-7 over expressing CHO cells. With so many other ribosomal proteins 

dysregulated in response to miR-7 over expression it may be that there are other 

effectors of translational machinery in operation.  
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6.1.5 Pathway analysis of differentially expressed proteins in miR-7 over 

expressing CHO cells 

While differentially expressed protein expression provides an insight into the affect of 

miR-7 on the CHO cell proteome it can be difficult to determine the larger functions 

and processes being affected. We used 3 types of pathway analysis to determine the 

molecular functions (MF), biological processes (BP) and cellular components (CC) 

associated with differential protein expression in miR-7 up-regulated CHO cells 

compared to a scramble control at 48 and 96 hr after transfection.  

Pathway analysis is often used as a proof of concept to confirm the effect of an 

experimental condition resulting in either MF, BP or CC only being used. Using MF, 

BP and CC together to assess the affect of miR-7 we have shown that all three are 

highly complementary to each other and reveal specific information on the global affect 

of miR-7 in CHO cells.  

Using three pathway analysis tools it was shown that each revealed unique MF, BP and 

CC terms which contribute to explaining the specific effects of miR-7 in CHO cells. A 

key example of this is Glutathione metabolism which was significantly associated with 

up-regulated proteins at 48 and 96 hr in KEGG and glutathione transferase activity 

which was a significant MF associated with up-regulated proteins at 96 hr using 

DAVID. Using PANTHER there were no significantly enriched terms directly 

associated with Glutathione.  

Additionally we used the differential IDs from the multi-species list and the CHO 

database to assess enriched BP and observed that similar terms were associated with 

each list. Terms such "cell redox homeostasis" and "cellular homeostasis" associated 

with protein up and down regulation respectively in miR-7 over expressing cells at 48 

hr compared to scramble control CHO cells were associated with both database lists. 

Moving forward, only the CHO database output was used for pathway analysis.  

 

6.1.5.1 Global effect of miR-7 on protein in CHO cells 

Overall we observed that there were a smaller number of significantly enriched terms 

associated with the up-regulated proteins and an overall greater number of dysregulated 

terms associated with the 96 hr after miR-7 over expression time point compared to 48 

hr. This shows the negative regulation affect of microRNA and shows that even after 48 
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hr after exogenous over expression of miR-7 there is little impact on MF and BP with 

respect to protein up regulation in particular.  

A general trend observed was a greater number of enriched activities associated with 

down regulation in both DAVID and PANTHER tools. This is also to be expected 

taking into account that the up regulation of miR-7 at 48 and 96 hr resulted in a larger 

number of proteins down-regulated than up-regulated, consistent with the negative 

regulation effect of microRNA.  

The one exception to this negative regulation bias in the pathway analysis is at 48 hr 

after miR-7 up regulation  DAVID pathway analysis results show only 2 BP associated 

with protein down regulation and 6 BP associated with up regulation potentially 

revealing the specific early 48 hr effect of miR-7 in CHO cells. Specifically these were 

translation and translational elongation. The down regulation of proteins within these 

pathways may explain the larger number of dysregulated proteins at 96 hr and 

potentially point to a cascade of dysregulation leading to the more numerous enriched 

BP and MF seen at 96 hr. 

It was also noted, looking at the output of each pathway analysis tool, that the large 

number of differentially regulated proteins that were identified as being associated with 

miR-7 over expression in CHO affect a wide variety of cellular activities. This is to be 

expected as microRNAs, initially thought to have highly specific effects, are now well 

understood to have multiple targets and effects including miR-7 which is thought to 

target multiple oncogenes (Liu et al. 2014).  

Generally, however, pathway analysis reveals 4 major groups of dysregulated cellular 

activities with repeated terms to translation, cellular structure, homeostasis, apoptosis 

and glutathione metabolism. It was also observed that the predicted direct targets of 

miR-7 CAT, STMN1, PA2G4, RAN, CCT3 and EEF1A1 all feature across these 

enriched pathways. 

 

6.1.5.2 miR-7 negatively regulates proteins associated with translation  

Among the terms associated with protein down regulation in miR-7 over expressing 

CHO cells were several BP associated with translation and RNA processing, MF 

associated with translational activity and CC associated with the ribosome. These BP 
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include many of the ribosomal proteins found in the down-regulated protein lists but 

also includes several elongation factors.  

Most notably it includes EEF1A1 one of the predicted direct targets of miR-7. Similarly 

enriched MF associated with down-regulated proteins shows RNA binding to be 

enriched which again includes 2 of the predicted miR-7 direct targets PA24G and 

RPS15. CC also confirms the large enrichment of ribosomal localised proteins with 

frequent reference to ribosomal gene ontology terms. 

As stated previously the inhibition of specific chaperones such as CCT3 or the direct 

inhibition of ribosomal proteins such as RPS15 by miR-7 over expression may play a 

role in translational repression. At the early time point of 48 hr after miR-7 over 

expression protein down regulation is associated with translation. This may imply that 

miR-7, at least initially, acts on translational regulation, directly or indirectly, involving 

predicted direct targets RPL15, EEF1A1 and PA2G4 which are all flagged by pathway 

analysis as being associated with these pathways. 

 

6.1.5.3 miR-7 negatively regulates proteins associated with cellular structure  

Pathway analysis indicates the enrichment of terms associated with structural events in 

miR-7 over expressing CHO cells. Down regulation of proteins is associated with late 

stage enrichment of macromolecule complex organization and assembly at 96 hr after 

miR-7 over expression. Enriched MF also shows structural molecule activity associated 

with down-regulated proteins at both 48 and 96 hr after miR-7 over expression. 

These enriched terms also contain the predicted direct targets of miR-7 CAT and 

STMN1. Interestingly, predicted direct target RPS15 only appears in structural 

molecule MF at 96 hr. 

Taking into account the predicted direct targets this suggests that microtubule 

disassembly is down-regulated, with stathmin playing a key role in tubulin degradation 

in order to trigger cell proliferation. This is further supported by the presence of TUBB4 

being implicated in the same enriched terms.  
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6.1.5.4 miR-7 positively regulates homeostasis and anti-apoptotic proteins 

As microRNAs directly inhibit mRNAs leading to negative regulation of protein 

expression it is worth noting that they can give rise to numerous positive regulation 

events as a result. Pathway analysis indicates that many anti-apoptotic and homeostasis 

BP and MF are associated with protein up regulation in miR-7 over expressing CHO 

cells compared to negative control. 

At 48 hr after miR-7 over expression BP terms such as cellular homeostasis, regulation 

of apoptosis and oxidoreductase activity as well as MF such as antioxidant activity and 

oxidoreductase activity suggest the promotion of cell survival related proteins. At 96 hr 

the same terms are enriched with additional specific references to anti-apoptosis and 

negative regulation of apoptosis and programmed cell death BP and similarly for MF 

the same terms are enriched with the addition of glutathione transferase activity. 

Homeostasis in this context is associated with antioxidant proteins such as thioredoxin 

and combined with the other enriched terms suggests that the cells are working to 

maintain pro antioxidant processes. 

All of these terms would support our observed miR-7 over expression phenotype in 

CHO cells with prolonged life in culture with no affect on viability. In the context of 

predicted direct targets it was observed that many antioxidant proteins are up-regulated 

such as SOD1, SOD2, GSTP1, TXN and TXNRD1. This points towards increased 

oxidative stress in miR-7 over expressing CHO cells compared to negative control 

transfected cells. This in part may be explained by the down regulation of predicted 

miR-7 target catalase as a key anti-oxidant protein leading to the over compensating 

antioxidant activity of other proteins. It has been reported that knockdown of 

Peroxiredoxin 1 and 2 leads to increased catalase expression in podocytes (Hsu et al. 

2011) showing that this type of antioxidant compensation does occur. 

 

6.1.5.5 miR-7 positively regulates proteins involved in glutathione metabolism 

As noted from the predicted target analysis of miR-7 we found that catalase was down-

regulated in miR-7 over expressing CHO cells. As a powerful antioxidant protein its 

reduced expression pointed toward the possibility of increased hydrogen peroxide in 

miR-7 over expressing cells. We noted that several proteins related to glutathione were 

also up-regulated in miR-7 over expressing cells compared to the negative control at 48 

and 96 hr. As members of the anti-ROS family of proteins both catalase and Glutathione 
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(GSH) neutralises hydrogen peroxide converting it to oxygen and water. GSH mediates 

this through the Glutathione peroxidase (GPX) (Dan Dunn et al. 2015). Although GPX 

itself wasn't found to be up-regulated in response to miR-7 up regulation using KEGG 

analysis it is possible to identify the specific reactions within the Glutathione 

metabolism pathway that are up-regulated.  

Proteins up-regulated in the Glutathione metabolism pathway in response to miR-7 over 

expression were Glutathione S-transferase Mu 1 (GSTM1), Glutathione synthetase 

(GSS), Glutamate cysteine ligase regulatory subunit (GCLM), Glutathione S-transferase 

P (GSTP1), Glutathione S-transferase A2 (GSTA2), Glutathione S-transferase A3 

(GSTA3) and Isocitrate dehydrogenase 1 (NADP+), soluble (IDH1).  

Looking at the location of these proteins in the pathway in KEGG the 4 proteins 

GSTM1, GSS, GCLM and GSTP1 were identified as up-regulated 48 hr after miR-7 

over expression. The up regulation of these 4 proteins would imply that GSH is being 

consumed by GSTM1 and GSTP1 to produce L-Glutamate. The up regulation of GSS 

shows that L-Glutamate is converted into L-γ-Glutamylcysteine which ultimately 

becomes GSH via the up regulation of GCLM. A GSH assay however would be 

required to determine the if it is being consumed within the cell. With catalase down-

regulated and numerous other antioxidant proteins up-regulated it could be that GSH is 

being recruited as an antioxidant. This occurs via the reduction of GSH to GS
●
 radical 

which when accumulated to harmful levels is in turn rendered inactive to Glutathione 

disulphide (GSSG) (Franco et al. 2007).  

At 96 hr after miR-7 up regulation in CHO cells GSTPM1, GSTP1 and GCLM as well 

as GSTA3 and GSTA2 were up-regulated in the same fashion as they were at 48 hr 

suggesting again that a feedback loop involving the production of L-Glutamate is being 

driven by the consumption of GSH. Additionally IDH1 was also shown to be up-

regulated in the GSH pathway which is shown by KEGG to convert NADP+ to 

NADPH. While NADPH can be implicated across many cellular processes it may 

indicate that it is being used in the GSH pathway to produce GSSG. This may be driven 

by the production of GS
●
 from GSH being produced and consumed as an antioxidant at 

48 and 96 hr. If GSH is indeed being used as an antioxidant then this may also indicate 

that GSSG is up-regulated to prevent GS
● 

radical damage. GSSG can then be fed back 

into the production of GSH to perpetuate the cycle. 
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The reduction of GSH to GS
● 

as an antioxidant makes sense from the other pathway 

analysis results. Anti-apoptotic and anti-oxidant BP and MF activities are up-regulated 

at 48 and 96 hr as well as GSH metabolism MF being up-regulated at 96 hr after miR-7 

over expression in CHO cells. KEGG illustrates that GSH production should be 

increased 48 and 96 hr in a self perpetuating.. By 96 hr the up regulation of IDH is also 

implicated in GSH metabolism and may point toward the mopping up of GS
●
. This 

GSSG could in turn feed back into GSH production. It is therefore proposed that with 

the loss of catalase, a predicted direct target of miR-7, the glutathione metabolism 

pathway acts as an anti-oxidant sink replacing the role of catalase to remove ROS 

species in the CHO cells over expressing miR-7. This also explains how CHO cells 

survive with reduced catalase and may also explain the increased longevity and 

productivity of miR-7 over expressing CHO cells as it has previously been reported that 

GSH is an up-regulated feature in high producer CHO cell lines (Orellana et al. 2015). 

Such a self perpetuating sink for oxidative damage fuelled by L-Glutamate  and GSH 

combined with reduced proliferation may explain miR-7 effect of increasing 

productivity over time in CHO cells. 

 

6.1.6 Transcriptomic and proteomic overlap of differentially expressed targets in 

miR-7 over expressing CHO cells 

Previously in our lab a study was carried out by Dr. Noelia Sanchez which identified 

potential miR-7 targets in CHO cells using micro array analysis (Sanchez et al. 2013). 

The targets from this analysis were overlapped with the differential protein IDs that 

were obtained in our data. We found that once again catalase which was previously 

discussed (Section 7.1.4.1) was a predicted direct target at 72 hr after miR-7 over 

expression compared to negative control in the microarray study further strengthening 

the evidence that catalase is a direct target of miR-7. 

One target in particular Histone deacetylase 1 (HDAC1) was of particular interest as it 

was previously noted by Western blot analysis that Histone acetylation was lower 48 

and 96 hr after miR-7 over expression in CHO cells compared to negative control. 

Therefore we decided to investigate the expression of HDAC1.  

 

6.1.6.1 HDAC1 

Histone Deacetylase 1 is a 55 kDa protein involved in histone deacetylation and many 
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other proteins in the BRAF-histone deacetylase complex (BHC) and the Nucleosome 

remodelling and deacetylating complex (NuRD). In a previous analysis by Dr. Noleia 

Sanchez in our lab it was shown that HDAC1 was down-regulated at the transcriptional 

level 72 hr after up regulation of miR-7 in CHO cells (Appendix xviii). We also 

confirmed by Western blot that HDAC1 protein was down-regulated 48 and 96 hr after 

miR-7 up regulation in CHO cells compared negative control. Contradicting we found 

that Acetyl-histone H3 and Acetyl-histone H4 were down-regulated in miR-7 over 

expressing CHO cells which would imply that HDAC1 would be up-regulated.  

Searching for potential binding partners of HDAC1 in the differentially expressed lists 

revealed no members of the BHC or NuRD complexes. As part of the these complexes, 

HDAC1 functions to deacetylate histones allowing Chromatin to unfold and allow DNA 

to be transcribed. Without histone acetylation translation is repressed (Zhang et al. 

1998). EBP1 was also reported to recruit HDAC2 but not HDAC1 and was proposed to 

partly be responsible for observed translational repression (Zhang et al. 2003) as it has 

also been reported that HDAC1 complexes can recruit HDAC2 (Humphrey et al. 2001). 

HDAC has also been reported to acetylate hundreds of proteins through acetylation of 

Lysine, including p53 (Choudhary et al. 2009). 

What is known about HDAC is that it has many functions outside of deacetylation of 

Histones. We also know that miR-7 over expressing CHO cells from pathway analysis 

results have highly reduced transcription, with up-regulated anti-apoptotic processes 

and from the previous microarray study in our lab, we also know that p53 is down-

regulated in miR-7 up-regulated cells potentially by directly targeting PSME3. The 

observed reduction of Acetyl-histones may be as a result of translational repression 

preventing Histone acetylation in part driven by HDAC1 being recruited by EBP1. 

EBP1 or PA24G is a predicted direct target of miR-7 and was also down-regulated in 

our quantitative label-free proteomic analysis.  

 

Taking a deeper look at the differential protein lists it was noticed that a key protein in 

the Citric Acid cycle (TCA) was down-regulated. Citrate Synthase (CS) catalyses 

condensation of Acetyl-CoA and oxaloacetate to CoA-SH and citrate which initiates the 

TCA cycle (Berg, Tymoczko and Stryer 2002). It was also observed in the previously 

discussed up-regulated Glutathione metabolism pathway (Section 6.1.5.5) that Acetyl-

CoA is also implicated in a terminal off branch which produces L-Glutamate and 

creating a possible feedback loop. This may suggest that Glutathione metabolism is 
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rapidly consuming Acetyl-CoA as it may not be becoming consumed in the TCA cycle. 

The absence of acetyl groups on Histone H3 and H4 in miR-7 over expressing cells also 

indicates that acetylation may be being redirected to other processes in the cell. The 

reduced acetylation of histones then may contribute to translational repression but also 

allows for acetylation to occur in other cellular process such as Glutathione metabolism. 

 

6.1.7 Proposed effect of miR-7 on CHO cell proteome 

Overall using a combination of label-free quantitative mass spectrometry, multiple 

pathway analysis and overlapping with proteomic data with transcriptomic data we 

found that miR-7 regulates several process that can largely be divided into translational 

repression, arrest of structural modifications and alteration of antioxidant production. 

As previously reported miR-7 directly targets SKP2 and PSME3 in CHO cells 72 hr 

after miR-7 over expression. With our proteomic findings we would propose multiple 

new targets which all at least contribute to the phenotype of reduced proliferation and 

increased longevity in culture.  

Translational repression is potentially mediated by a direct interaction of miR-7 with 

RPS15 and elongation factor EEF1A1, indirectly through the direct targeting of CCT3 

ribosomal protein chaperone and indirectly through redirection of acetylation events 

reducing histone acetylation.  

Inhibition of structural activity is implied by the confirmed down regulation of Stathmin 

as well as the down regulation of several tubulins in the differential expression data. 

RAN also a predicted target of miR-7 was noted to be down-regulated in the label-free 

data and is also involved in micro tubule assembly. 

Terms associated with antioxidant activity were associated with protein up-regulation as 

well as the Glutathione metabolism pathway which, considering the specific proteins 

that are up-regulated in the pathway, may lead to increased Glutathione and L-

Glutamate. Glutathione metabolism then is potentially acting as an sponge for reactive 

oxygen species following the reduced expression of catalase which was confirmed to be 

down-regulated in miR-7 over expressing CHO cells by label-free quantitative 

proteomics, Western blot analysis, transcriptional microarray and a predicted direct 

target of miR-7. These interactions are represented in Figure 6.1.1 below. 
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Figure 6.1.1 Proposed effect of miR-7 on the CHO cell proteome. Antioxidant up-

regulation may be occuring due to direct inhibition of antioxidant catalse by miR-7 

while negative regulation of stathmin and tubulins arrests cell cycle progression 

together with reduced transcription activity through ribosomal proteins. 
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6.2 Effect of temperature shift on CHO cells introduction 

As discussed in the introduction (Section 1.3) temperature shift is a technique used to 

prolong the life of cells in culture thereby increasing their productivity over time. We 

have already demonstrated this in previous studies in our lab providing us with 

differentially expressed microRNAs related to the temperature shift phenotype 

(Gammell et al. 2007). It was from this study which miR-7 was identified as a potential 

mechanism to induce a temperature shift like state, the affect of which is discussed in 

the previous section. 

 Previous to our current study Dr. Niraj Kumar in our lab had conducted a 2D-DIGE 

analysis of 31
 o

C temperature shifted CHO cells in which identified 23 differentially 

expressed proteins compared to CHO cells grown at 37
 o

C (Kumar et al. 2008) 7 of 

which were greater than two fold . For this study we used quantitative label-free LC-

MS/MS to identify differentially regulated proteins combined with subcellular 

fractionation to gain a deeper insight into temperature shifted CHO cells with an aim to 

identify new potential targets to manipulate the CHO cell phenotype. 

 

6.2.1 Subcellular fractionation of CHO-K1-SEAP cells undergoing temperature 

shift 

The fractionation methods used to investigate the effect of temperature shift on the 

CHO proteome were benchtop enrichment kits. These were used in an attempt to allow 

a greater number of IDs to be obtained and potentially greater sequence coverage of 

proteins by reducing the complexity of the sample and analysing each fraction. 

Using commercial kit based fractionation methods there are a number of limitations to 

be considered. While "fractionation" is a term that is frequently used for these methods 

strictly it is "enrichment" and the degree of enrichment required verification. Other 

CHO fractionation studies CHO studies have used more complex chromatographic and 

cell culture based protien labelling methods and produced a similar number of 

identifications with Orellana et al identifying 2000 proteins (Orellana et al. 2015). 

Larger studies have used far more complex but time consuming sample pre 

fractionation. Baycin-Hizal et al conducted 120 mass spectrometry analysis combining a 

large number of fractionations per sample such as glycoprotein enrichment, secretome 

analysis, 8 fraction strong cation exchange and 27 gel bands per sample (Baycin-Hizal 

et al. 2012). This resulted in the identification of 6164 CHO proteins. Considering that 



 

240 
 

the use of three commercially available subcellular fractionation kits produced over 

2298 CHO protein IDs with 12 mass spectrometry analyses (3 samples for 

unfractionated, nuclear, cytoplsmic and membrane, pooled and repeat IDs removed) it 

would appear that there may be dimishing returns in pre fractionation of sample. This of 

course could only be confirmed with a properly controlled study.  

 

6.2.1.1 Overlap between fractionated samples 

To assess enrichment of nuclear, cytoplasmic and membrane enriched CHO cell 

fractions we used pathway analysis of all the proteins identified in each fraction by LC-

MS compared to un-fractionated lysate. 

By overlapping the unique gene index (GI) identifier of each protein we were able to 

show that a greater number of proteins were associated with being only in one of the 

three fractionated samples than with the un-fractionated sample. That is to say there 

were specifically 241, 412 and 309 protein IDs that were uniquely associated with the 

nuclear, membrane and cytoplasmic samples respectively compared to 137 uniquely 

associated with the un-fractionated sample.  

This indicated that the large pool of proteins that were only accessible through 

fractionation were identified. Furthermore, pooling the total IDs between fractions and 

the un-fractionated sample 2298 unique IDs were obtained. 

 

6.2.1.2 Pathway analysis validation of enrichment  

To assess enrichment of nuclear, cytoplasmic and membrane enriched CHO cell 

fractions we used pathway analysis of the proteins identified in each fraction by LC-MS 

compared to un-fractionated lysate. Pathway analysis is often used to determine the 

degree of fractionation of fractionated samples (Orellana et al. 2015, Baycin-Hizal et al. 

2012).(Orellana et al. 2015) 

We showed that each fraction, as well as the un-fractionated sample, displayed a 

different profile of enrichment while each fraction showed a bias for its expected 

enriched subcellular terms. The top 10 cellular component terms showed that while the 

enrichment did not achieve perfect fractionation, there was a different subset of proteins 

in each fraction indicating that the method reduced sample complexity.  
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6.2.1.3 Western blot validation of enrichment  

Using proteins that are typically associated with nuclear, cytoplasmic and membrane 

localisations we showed that each corresponding subcellular fraction contained the 

highest amount of associated nuclear, cytoplasmic or membrane protein target.  

Namely these were PDIA3 which is known to be associated with the nucleus (Wu et al. 

2010b), HSP90 which is known to be associated with the cytoplasm (Langer, Rosmus 

and Fasold 2003) and IGF1Rβ which is known to be a membrane localised receptor 

(Guvakova and Surmacz 1997, Hellawell et al. 2002). The associated localisation of 

each protein was also confirmed with an online literature mining search tool called 

COMPARTMENTS (Binder et al. 2014). 

 

6.2.2 CHO database annotation 

As explained in the introduction and results section (Section 3.4.1) the CHO protein 

database used for this analysis was composed of BBCHO (Becker et al. 2011)(Meleady 

et al. 2012a), Meleady et al. 2012a) and NCBI (Xu et al. 2011) databases derived from 

transcript and gene data respectively. While these databases do hold certain advantages 

over using species homology they do have the disadvantage of not containing usable 

identifiers for pathways analysis. Furthermore the identifiers can also contain several 

names which make it difficult to assign a valid protein or gene name through automatic 

parsing. 

Essentially this required manual BLAST searching of peptide identifications to assign 

the correct gene name for pathway analysis purposes. Combining the differential protein 

identification output from the multiple lists from within the temperature shift analysis 

and from the miR-7 analysis (Chapter 3) we were able construct a reference list of 

1135 unique gene names and 746 unique protein names to the pooled differential IDs. 

Despite the recent use of the now publicly available CHO genome in several proteomic 

studies this issue has not been addressed fully despite many of these studies using 

pathway analysis tools in conjunction with these databases. The annotation step 

represents a significant amount of data mining and it may be useful for CHO proteomics 

in the future to streamline this process with the construction of correctly annotated 

databases. Currently the CHO genome collaboration is adding to this and may benefit 
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from submissions of this nature to their proteomic reference information (Kremkow et 

al. 2015). 

 

6.2.3 Quantitative Label-free LC-MS/MS analysis of temperature shifted sub 

cellular enriched CHO-K1-SEAP cells 

To investigate the affect of temperature shift on CHO cells two groups of CHO-K1-

SEAP cells were grown for 72 hr at 37
 o

C before one group was transferred to 31
 o

C 

temperature shift. Cells at both temperatures were taken down 8 and 24 hr after this 

temperature shift and an aliquot was taken for each membrane, cytoplasmic and nuclear 

fractionation.  

This allowed two separate comparisons to be made using Progenesis label free software. 

The first comparison was between 31
 o

C and 37
 o

C at each time point of 8 and 24 hr. 

This time point analysis essentially provides a snapshot of changes between CHO cells 

grown at different temperatures. The second analysis involved comparing the 8 hr vs 24 

hr time point for each temperature. This time course analysis identifies differential 

protein regulation over 16hr between 8 and 24 hr after temperature shift allowing 

changes over time at 31
 o

C and 37
 o

C to be observed separately and compared. This 

arguably highlights dynamic process in the cell than a time point analysis (Chong et al. 

2012, Parnell et al. 2011, Nambu et al. 2015). 

 

6.2.3.1 Differentially regulated proteins at 31
 o

C, 8 and 24 hr after temperature 

shift 

Comparing sub cellular fractions of CHO-K1-SEAP cells grown for 8 and 24 hr at 31
 o
C 

compared to 37
 o

C we observed several patterns with regard protein differential 

regulation in 31
 o
C temperature shifted cells.  

Graphing the total number of differentially regulated proteins in 31
 o

C temperature 

shifted CHO cells there was a clear bias toward down regulation at the early time point 

of 8 hr after temperature shift. This was particularly noticeable in the large number of 

proteins down-regulated in the nucleus (72) compared to the highest number of up-

regulated proteins in at 8 hr in the membrane (22). A relatively large number of proteins 

were also down-regulated at 8 hr in the membrane (40). This shifts drastically at 24 hr 
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where protein up regulation more than doubles and accompanied by a more than 5 fold 

increase in down-regulated proteins in the cytoplasm. 

This at least shows that temperature shift has a much more dramatic affect on protein 

down regulation rather than up regulation at 8 hr in CHO cells. It has been reported that 

CHO cells produce heat inducible proteins in response to low temperature (Kaufmann et 

al. 1999, Gammell et al. 2007) and the process of heat shock itself being well known to 

instigate the up regulation of heat shock proteins (Voellmy and Boellmann 2007). It 

may be that while early down regulation is seen more than up regulation the most 

significant effectors are in the up-regulated proteins that reduce transcription such as 

heat shock proteins. It has also been reported that lipid membrane triggers in the 

membrane may in fact trigger heat shock response (Saidi et al. 2009) which may also 

explain the large membrane response observed in CHO. 

There are also a number of similar proteins differentially regulated in a previous study 

in our lab using 2D-DIGE to identify differentially regulated proteins associated with 

temperature shift in CHO (Kumar et al. 2008). In this study 23 proteins were identified 

as differentially regulated 144 hr after reducing temperature. These proteins functionaly 

align with the results of pathway analysis from the label-free study with a reduction in 

translational initiation via eukaryotic initiation factors and mRNA binding proteins such 

as HNRPC. Also interesting is that despite temperature shift and miR-7 up-regulation 

being entirely different stimuli to promote a similar phenotype, these protein classes of 

initiation factor inhibition and RNA binding up-regulation can be seen in both studies. It 

may also not be that surprising considering miR-7 was differentially regulated in 

temperature shifted CHO cells and therefore may affect many proteins involved in 

temperature shift. A similar 2D-PAGE study by Baik et al identified 7 proteins that 

were over two fold increased in expression at 33 
o
C in recombinant EPO producing 

CHO one of which was PDIA3 (ERp57) (Baik et al. 2006).  

The proteomic mechanism behind cold shock response has been investigated in several 

other cell types. HeLa cells were found to respond to cold shock with differential 

regulation of many proteins but this response was not associated with some of the 

typical CHO cold response proteins such as vimentin and protein disulphide isomerase 

(Underhill and Smales 2007). More often though the same proteins are repeatedly 

identified with temperature shift ond other stress response phenotypes (Petrak et al. 

2008) hence the need for deeper proteome studies. For that reason targets not normally 

associated with tempersture shift or CHO, as well as being strongly associated with 
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influencing cell phenotypes, were selected for validation (Section 6.2.5). Namely these 

were ezrin, moesin, lamin A/C and cyclon. 

 

6.2.3.2 Pathway analysis of differentially regulated proteins at 31
 o

C, 8 and 24 hr 

after temperature shift 

Differentially regulated proteins at 8 and 24 hr in temperature shifted CHO-K1-SEAP 

cells were analysed for enriched bioprocesses (BP), molecular functions (MF), Cellular 

components (CC) and pathways using DAVID, PANTHER and KEGG.  

After 8 hr at 31
 o
C CHO cells were shown to have a large degree of down-regulated BP 

and MF these were largely related to protein localisation, translation and cytoskeleton. 

At 24 hr these down-regulated processes carry over with further emphasis on reduced 

structural activity and also included terms involving metabolic process and heat shock 

protein binding. Protein up regulation at 24 hr also shows that the TCA cycle BP and 

oxidoreductase activity MF are potentially up-regulated.  Dysregulation of these process 

in temperature shift CHO cells were previously inferred in our lab from a 2D DIGE 

(Kumar et al. 2008). Looking at pathway results in KEGG however we are able to add 

to this. 

KEGG shows that translation is down-regulated at 8 and 24 hr after temperature shift as 

well as an up regulation of DNA replication. The comparatively large amount of down 

regulation observed compared to up regulation in temperature shifted CHO cells was 

then likely driven by translational repression. It is interesting then that at 24 hr proteins 

in the DNA replication pathway are up-regulated. 

Looking at these proteins there are several DNA replication licensing factors (MCM3, 

MCM5 and MCM6), Proliferating cellular nuclear antigen 1 (PCNA) and Flap end 

nuclease 1 (FEN1). PCNA and FEN1 are known to interact with each other PCNA 

acting as an enhancer (Tom, Henricksen and Bambara 2000). FEN1 is involved in the 

removal of RNA primers from DNA and trimming Okazaki fragment over hangs (Wu et 

al. 1996). This repair process may point toward replication damage occurring in 

temperature shifted CHO cells as the down regulation of PCNA has been linked to 

multiple DNA replication defects in mice (Zheng et al. 2007). As translation is down-

regulated the role of PCNA/FEN1 may point to the fidelity of the DNA replication and 
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eventual translation being even increased in order to maintain the up-regulated cell 

process mentioned. 

The inclusion of 3 MCM family members however implies that DNA replication 

initiation may be increased in the cell. The MCM2-7 complex is responsible for the 

once per cell cycle DNA replication event in eukaryotes (Tye 1999). From the 

temperature shift phenotype we know that cell proliferation is reduced and that 

translation is also reduced. The synthesis of MCM proteins in the cell is associated with 

G1 phase in the cell (Sclafani and Holzen 2007). The resulting increase in MCM in 

temperature shifted CHO cells may indicate a cell cycle related characteristic 

specifically that temperature shifted CHO cells are arrested at G1 phase combined with 

translational repression compared to CHO cells at 37
 o
C. 

 

6.2.4 Differentially regulated proteins over 16hr at 31 and 37
 o
C 

For the time course analysis over 16hr we compared CHO-K1-SEAP cells grown at 31 

and 37
 o

C. Prior to this they were grown for 72 hr at 37
 o

C with the temperature shift 

group transferred to 31
 o

C. Sample taken 8 and 24 hr later at both temperatures were 

fractionated into membrane, cytoplasmic and nuclear fractions. 

The resulting differential IDs over this 16hr growth period revealed several differences 

between CHO cells grown over time at 31 and 37
 o

C. Graphing total IDs for each 

fraction there was a similar profile of up regulation between both temperatures in all 

three fractions. Down-regulated proteins however were shown to be over 50% more 

down-regulated in the cytoplasm at 31
 o

C compared to 37
 o

C over time and down 

regulation of nuclear proteins was seen to be over twice as down-regulated at 37
 o

C 

compared to 31
 o
C. 

This may lend itself to that fact that from the time course analysis there was a large 

amount of down regulation related to translation and to the ribosomal pathway 

suggesting that protein down regulation may also be occurring over time due to this 

translational repression.  

Looking further at overlaps between the IDs in each fraction at each temperature over 

the 16hr period it was also observed that each temperature had distinct differentially 

expressed proteins in each fraction. This may lead us to believe that, and considering the 
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dramatic temperature shift phenotype, there was completely different cellular process 

active over time between the two temperatures. 

 

6.2.4.1 Pathway analysis of differentially regulated proteins over 16hr at 31
 o

C 

and 37
 o
C 

From the small amount of overlap in differential proteins between  31 and 37
 o

C CHO 

cells over the 16hr culture period we expected that enriched bioprocess (BP), molecular 

functions (MF) and KEGG pathways would be dissimilar. This was only partly true. 

Pathway analysis showed that over time down regulation of protein expression at 31
 o
C 

in CHO cells was associated with translation and cell cycle progression BP and MF 

while up regulation was associated with cytoskeleton and cellular organisation BP and 

MF. CHO cells grow at 37
 o

C however only showed enriched MF over time related to 

actin binding. 

The absence of enriched BP and MF at 37
 o
C is somewhat misleading. Considering that 

the comparison spans differential regulation over 16hr it is possible that the spread of 

functionality over this time period resulted in both DAVID and PANTHER not flagging 

any BP as specifically enriched. 

KEGG pathway enrichment does not exhibit the same pattern and shows that down-

regulated proteins are associated with the ribosomal pathway while up-regulated 

proteins are associated with the ribosomal pathway and spilceosome. What is interesting 

is that these pathways show the enrichment of completely different proteins.  

At 31
 o
C there are a number of proteins of interest that are implicated in these pathways. 

RPL36a for example is known to promote proliferation acute myeloid leukaemia cells 

(Wu et al. 2010a) and hepatocellular carcinoma (Kim et al. 2004) and is down-regulated 

at 31
 o

C. It is well known however that translational repression occurs in temperature 

shifted CHO cells (Masterton et al. 2010). What is interesting in these findings is that 

there are also up-regulated ribosomal proteins. This may point to translation of specific 

proteins at 31
 o

C or to the increasing reports of ribosomal proteins having additional 

functions outside of translation (Lindstrom 2009) such as with RPL36a above. 

The up regulation of proteins in the spliceosome at 31
 o

C also points towards 

translational related control. Proteins specifically up-regulated in the spliceosome at 31
 

o
C include EIF4A3, HNRNPK, SNRPD2, RBMX, PUF60, HNRNPU and PRPF6. 
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EIF4A3 (Eukaryotic Translation Initiation Factor 4A3) depletion has been shown to 

increase pro-apoptotic splice variants of Bcl-x in HeLa cells (Michelle et al. 2012). 

HNRNP (Heterogenous nuclear ribonucleoprotein) family members are not all well 

understood but HNRNPK has been reported to be over expressed across various cancers 

(Barboro, Ferrari and Balbi 2014). SNRPD2, RBMX, PUF60 and PRPF6 are all poorly 

studied but PUF60 has been linked to apoptotic regulation (Ren et al. 2015). 

Taking all of this into consideration the pathway analysis showed that despite the 

completely dissimilar differential regulated protein IDs at each temperature over 16hr 

CHO-K1-SEAP cells had similar pathways dysregulated. From the individual BP and 

MF analysis there was a great difference between both temperature conditions but 

KEGG confirmed that the over arching dysregulated processes were different, also 

showing that the subset of proteins responsible for this at each temperature are different. 

Novel and poorly understood spliceosome proteins were identified as playing a potential 

role in this functionality in CHO cells grown at 31
 o

C over time compared to 37
 o
C. 

 

6.2.5 Selection of targets for functional validation 

We identified several proteins of interest that were highly dysregulated in temperature 

shifted CHO-K1-SEAP cells and novel in CHO functional studies. We selected 4 to 

assess their functional effect on the CHO cell phenotype. Knockdown of two of these 

proteins Cyclon and Moesin showed a significant affect on cell proliferation and cell 

size without affecting viability. 

 

6.2.5.1 Ezrin (EZR) and Moesin (MSN) 

Ezrin and Moesin are part of the Ezrin-Radixin-Moesin (ERM) group of proteins which 

are part of the lager ezrin/radixin/moesin (FERM) family (Moleirinho et al. 2013). Ezrin 

and Moesin while part of the same group of proteins have different expression levels 

across different tissues. Ezrin was found to be up-regulated 24 hr after temperature shift 

in CHO cells grown at 31
 o
C while Moesin was found to be down-regulated. 

Increasingly Ezrin has been shown to be linked to poor prognosis in a variety of cancers 

including cervical (Kong et al. 2013)(Kong et al. 2013), head and neck squamous 

carcinoma (Schlecht et al. 2012), the transformation of breast cancer from benign to 
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malignant (Gschwantler-Kaulich et al. 2013) and also the localisation of Ezrin to the 

cytoplasm also seems to correlate to its role in the development of cancer. It has also 

been reported that localisation of Ezrin and Moesin to the cytoplasm correlates with a 

number of genes related to proliferation and cell death processes in cancer cells 

(Schlecht et al. 2012), (Kong et al. 2013)(Kong et al. 2013)Kong et al. 2013). The ERM 

proteins are thought to also play a key role in actin and tubulin dynamics in oocyte 

development (Namgoong and Kim 2016), structural proteins that are well known to play 

a role in cell cycle arrest. 

No significant affect was observed with knockdown of Ezrin after 72 hr. Moesin 

knockdown produced a significant (p≤0.05) reduction in cell proliferation and cell 

perimeter with all three siRNA 72 hr after transfection. Cell number was also 

significantly decreased in 2 out of 3 of the siRNA used. Cell viability was unaffected. 

This established that Moesin plays a role in altering cell proliferation in CHO-K1-SEAP 

cells.  

The expression of Moesin was not confirmed to be knocked down using Western blot 

analysis. This may be the result of an antibody compatability issue using human 

humanised antibodies which can commonly occuring analysing CHO. The FERM 

family of proteins including the ERM like protein Merlin all contain a FERM domain 

which has been proven to exist in sorting nexus proteins also (Ghai et al. 2011). This 

may pose a problem for antibody specificity in particular considering possible CHO 

squence variations. Although the anti-Moesin siRNA were custom designed to known 

CHO sequences off target effects may resulted in the effect seen. What ever the cause it 

is likely to be a consistent cause accross samples therefore the differing oligo variations 

used for the Moesin may not be the likely cause of the observed effect. While Ezrin, 

Moesin and Radixin are struturally similar and usually coexpressed they have been 

reported in knockout mice to be functually distinct (Doi et al. 1999, Kikuchi et al. 

2002). This may further be support by Ezrin being increased and Moesin being 

decreased 24 hr after temperature shift. It would seem unlikely then that compensating 

expression of one of the other ERM family members potentially lead to Ezrins lack of 

effect and Moesins lack of observed knowdown. 
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6.2.5.2 Cyclon 

Cyclon (CCDC86) is 40kDa T-Cell response regulating protein (Hoshino and Fujii 

2007) but to date there are very few studies on its function to date. Cyclon was found to 

be down-regulated in temperature shifted CHO-K1-SEAP cells over 16hr but not at 37
 

o
C. This would suggest that Cyclon was potentially involved in the temperature shift 

phenotype over time. 

Although little is known about Cyclon a recent study does report it's over-expression 

being associated with poor outcome for lymphoma patients and that knockdown of 

Cyclon in Raji BL haematopoietic cells significantly reduced tumour size (Ren et al. 

2015). It has been mentioned as a potential novel marker for normal physological 

function such as hypocampus development (Shishkov et al. 2013a), as a potential 

disease marker and treatment predictor in schizophrenia (Chervenkov, Shishkov and 

Tonchev 2013) and up-regulation has been proposed as a marker for poor chemotherapy 

response in testicular cancer (Knapp 2013). In total there are only 10 papers listed on 

PubMed all of which surround varying topics. 

Using siRNA knockdown we showed that Cyclon in CHO-K1-SEAP cells significantly 

(p≤0.05) reduced cell number more than 2 fold and cell area and perimeter more than 

20% 72 hr after transfection in 2 out of 3 siRNA used. Viability was unaffected.  

This adds to the currently lacking functional information on Cyclon and identifies 

Cyclon as potential novel target for the manipulation of the CHO-K1-SEAP phenotype.  

 

6.2.5.3 Lamin A/C 

Lamin A/C (LMNA) is a very well studied 74kDa member of the Lamin family of 

proteins. It was found to be up-regulated in temperature shifted CHO-K1-SEAP cells at 

24 hr after temperature shift. 

Lamin A/C is known to be associated with many diseases (Politano et al. 2013). It has 

been identified as a potential deficiency marker in cervical cancer (Capo-Chichi et al. 

2015). The migration, proliferation and invasion of prostate cancer is also increased in 

prostate cancer with increased Lamin A/C (Kong et al. 2012). It has also been shown to 

contribute to telomerase homeostasis leading partly explaining its role in aging 

disorders like progeria (Das et al. 2013). As far as phenotypic roles are concerned it has 

been known to be reduced in expression in senescent in dermal fibroblasts and 
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keratinocyts (Dreesen et al. 2013). This indicates that knockdown would reduce 

proliferation. 

Using 3 siRNAs we found no significant affect of Lamin A/C on CHO-K1-SEAP cells 

after 72 hr. It may still have an affect on antioxidant process however as it is noted to 

alter ROS activity (Sieprath et al. 2015) although this would require further 

confirmation. 

6.2.6 Conclusion 

Fractionation allowed the identification of a large subset of proteins that were not 

identified in the unfractionated sample. It allowed patterns of expression to be seen in 

subcellular enriched fractions in CHO-K1-SEAP cells and identify the early effects of 

temperature shift. Label-free LC-MS/MS combined with pathway analysis built upon 

previous findings on the effect of temperature shift on CHO cells within our lab and 

identified a larger cohort of proteins associated with translational repression. The time 

course analysis also revealed differentially regulated proteins associated with the 

spliceosome in temperature shifted CHO cells. 

Finally two targets chosen from the analysis Moesin and Cyclon had a significant effect 

on cell size and proliferation without affecting viability and may potentially be used to 

activate a temperature shift like phenotype in CHO cells. 
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6.3 Breast Cancer target discovery  

As discussed in Section 1.7 breast cancer is a complex and heterogeneous disease 

which is currently defined by multiple levels of subtyping (Inic et al. 2014, Goldhirsch 

et al. 2007). While there are better clinical outcomes for some types of breast cancer 

such as chemo resistant HER2+ and the constant revision and further stratification of 

breast cancer subtypes means that even within these prognosticly favourable 

classifications there is a need for more effective treatment options. Still TNBC remains 

one of the subtypes with the poorest outcome and therefore has the greatest requirement 

for new therapeutic options. For this reason we were interested in assessing TNBC, 

HER2+, ER+ and LN+ breast cancer gene profiling datasets for novel potential 

therapeutic membrane protein targets for use as ADCs like T-DM1 used for HER2+ 

breast tumors. 

To achieve this, four publicly available transcriptomic datasets (one in-house) 

comparing breast cancer tissue to normal breast tissue were overlapped and searched for 

membrane localised proteins. By careful literature searching a follow-up list of 5 

proteins was chosen - SLAMF8, LRP8, TSPAN13, IGSF9, KLRG2 All of these 

proteins had not associated with breast cancer functional or protein validation studies in 

the literature. The novelty of these targets meant that commercially available antibodies 

for follow-up investigations were limited. Therefore, of those proteins shortlisted, only 

two could be clearly confirmed by Western blot analysis and preliminary IHC 

experiments. The analysis of a larger cohort of samples showed that both IGSF9 and 

KLRG2 preferentially stained the cell membrane of breast cancer tissue with very little 

immunoreactivity staining in normal breast and other normal tissues, that may represent 

a future validated molecular targetusing an ADC therapeutic approach. 

 

6.3.1 SLAMF8 

Signalling lymphocytic activation molecule family member 8 (SLAMF8) also known as 

B-lymphocyte activator macrophage expressed (BLAME) is a cell surface protein 285 

amino acids long with a molecular weight of 32 kDa. It also has a 176 amino acid 20 

kDa isoform that shares 100% homology with its longer form. SLAMF8 is part of the 

SLAM family of proteins which are part of the CD2 subset in the immuno globulin 

super family (IGSF) of proteins. It has been reported to be expressed across many 

lymphocytes and monocytes including T cells, B cells and NK cells as well as dendrite 
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cells. Tissues associated with these cell types such as spleen, thymus, lymph nodes and 

bone marrow all express high amounts (Kingsbury et al. 2001). Much more is known 

about the other members 1-7 of the SLAM family. What is known is that SLAMF8 

lacks a characteristic tyrosine containing motif in it’s cytoplasmic tail that binds SLAM 

associated protein (SAP) (Fraser et al. 2002). 

This motif is known to mediate the signalling response in 6 of the other SLAM family 

members 1,3,4,5,6 and7 family members. It has been shown that the presence of the 

SAP binding cytoplasmic motif in SLAM mediates CD4+ T cell binding with B cells 

allowing for presented antigen and T cell signals to stimulate B cell immune response 

(Ma and Deenick 2011). The role of SAP and SLAM family molecules in the humoral 

immune response, New York Academy of Sciences, 2010). In particular this relates to 

X-linked linked lymphoproliferative disease (XLP). XLP is linked to a mutation in the 

SAP gene leading to a non functional SAP protein. Consequently the SAP binding 

SLAM members do not become activated leading to sufferers of this disease to be 

highly susceptible to other diseases and present with immune system related conditions. 

As SLAMF8 does not contain the cytoplasmic domain to bind SAP, SLAMF8 function 

has not been a focus of research as XLP related SLAM members have been. Kingsbury 

et al observe that SLAMF8 transduced mice show increased levels of specific B cell 

lineages. It remained unclear what the mechanism was behind this. 

SLAMF8 IHC did not prduce staining and as a result it was not used for the larger 

sample cohorts. As this protein is involved in immune response it may be more useful to 

test for SLAMF8 on a large nuber of lymph node associated breast cancers. Using 

HER2+, TNBC and the very limited lymphnode (status known) breast cancer tissue 

samples we could not confirm SLAMF8 expression. 

 

6.3.2 LRP8 

Low density lipoprotein receptor protein 8 (LRP8) is a 106 kDa member of the low 

density lipoproteins (LDL). LRP8 binds to it's ligand called reelin, triggering numerous 

neuronal ehancers (Riddell et al. 1999). Tissue localisation occurs mostly around the 

brain but in has a broader envolvement in the nervous system. The presence of LRP8 in 

patients with congenital early onset coranary artery disease and mycardial infarction had 

significantly poorer outcome than those who did not express LRP8 (Shen et al. 2014). 

Being involved in brain function also means that LRP8 is associated with a number of  
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brain pathologies such as brain cholesterol homeostasis (Gosselet et al. 2009) and 

dementia (Jaeger and Pietrzik 2008). 

Initial Western blot analysis validation of LRP8 expression did not produce bands and 

could not be determined as expressed in breast cancer cell lysates. LRP8 is part of the 

low density lipoprotein family and structurally contains a high number of disulphide 

bridge bonds. As discussed by Bajari et al low density lipoprotein analysis can be 

achieved using various non-ionic detergents such as n-octyl-β-ᴅ-glucopyranoside to 

increase solubilisation of these proteinsfrom membrane enriched fractions (Bajari et al. 

2005). An alternative approach to quantify these proteins is a ligand binding assay. 

LRP8 has been reported to have several ligands including apolipoprotein E, F-spondin 

and reelinn (Divekar et al. 2014) which could be used for this type of quantification. 

The analysis of LRP8 in breast cancer may require further optimisation in sample 

preparation based on these studies. 

 

6.3.3 TSAN13 

Tetraspanin 13 (TSPAN13) is a 22 kDa protein from the transmembrane 4 superfamily. 

TSPAN13 contain s4 hydrophobic domains and mediates growth and motility. 

Literature availability is very limited with only 13 publications according to PubMed. 

Most of these publications are related to cancer, TSPAN13 being proposed as a cancer 

supressor in one of it's first publications (Huang et al. 2007). Subsequent publications 

however show that high TSPAN13 expression results in a poorer outcome in prostate 

cancer directly correlating with epithelial cell abnormality (prostatic intrapithelial 

neoplasia) (Arencibia et al. 2009). 

 The limited number of TSPAN13 studies use PCR to quantify expression (Iwai et al. 

2007). The role of TSPAN8 in cancer has been well studied in the carcinoma (Kanetaka 

et al. 2001) and melanoma  metastasis (Berthier-Vergnes et al. 2011). TSPAN12 has 

been implicated in breast cnacer development in xenogrpht mouse models (Knoblich et 

al. 2014). As these other tetraspanin family members have direct associations with 

cancer progression and have large functional studies associated with them TSPAN13 

remains a very interesting target for further study. 
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6.3.4 IGSF9  

Immuno globulin superfamily  member 9 (IGSF9) also known as dendrite arborisation 

and maturation 1 (DASM1) and originally known as Protein Turtle homolog is a 

relatively large transmembrane protein 1179 amino acids long with a mass of 127 kDa 

containing 5 extracellular immunoglobulin domains and 2 fibronectin type III repeats. 

Discovered in 2002 IGSF9 was found to be involved in nervous system development in 

mice (Doudney et al. 2002). More specifically it is involved in the development of 

neural dendrite outgrowth and synapse maturation. Previous to this an IGSF protein was 

found in Drosophila named Turtle protein (Bodily et al. 2001). It was later found that 

Turtle protein was a homolog of IGSF9 suggesting that it has an important role due to it 

being highly conserved across species. In a bioinformatics review on IGSF9 Hansen and 

Walmod show that it is conserved across several vertebrates and invertebrates with 

varying numbers of genetic repeats and isoforms between species (Hansen and Walmod 

2013). Furthermore a close homolog called IGSF9b has been reported to be coexpressed 

in the developing hippocampus (Mishra et al. 2008). IGSF9b is 1349 amino acids long 

with a mass of 147 kDa and has a 34% homology to IGSF9. Little or nothing is known 

about IGSF9b but it may have a role in substituting the function of  IGSF9a. 

 

A study involving in vitro siRNA knockdown has shown IGSF9 to be specifically 

involved in dendrite outgrowth (Shi et al. 2004)while axon outgrowth was unaffected. 

Mishra et al however report that IGSF9 is not specifically involved in dendrite 

outgrowth.  This study uses DASM1 null mice to show that dendrite arborisation is 

uninhibited. Furthermore they repeat siRNA mediated knockdown of DASM1 in 

hippocampus cells isolated from the DASM1 null mice and show that dendrite 

development is inhibited as was seen with Shi et al. Mishra et al conclude that results of 

initial work be Shi et al were due to off target effects caused by DASM1 siRNA but 

they also mention the possibility that IGSF9b might compensate for the knockdown of 

IGSF9a. The sequence against which the IGSF9 antibody used in our work is shown 

below in full. The antigen sequence of the antibody matches human IGSF9a 100% and 

matches human IGSF9b 50%. It may be worth noting that in all of the literature 

mentioned above IGSF9 has been implicated in the hippocampus and neural cell 

development especially in the foetal and pupal stages of development stages of 

development. The role of IGSF9 in tumorigenesis has not been a focus of study in the 

literature. The potential for IGSF9 to be involved in cell signalling related to 

invasiveness has been suggest by Al-Anzi and Wyman through their work on the turtle 
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gene in Drosophila (Al-Anzi and Wyman 2009). Turtle protein in Drosophila has 5 

different isoforms 2 of which are diffusible isoforms lacking the hydrophobic 

transmembrane region of membrane bound isoforms. In this study they conclude that 

the diffusible isoforms cause axonal invasion into regions not normally associated with 

axon branching. This characteristic of diffusible Turtle protein may suggest that the 

IGSF9 homolog in mammals could potentially be involved in similar signalling 

pathways. 

 

As can be seen from the findings the role of IGSF9 in vertebrates and its Turtle protein 

homolog in Drosophila contradict one another. It is clear that it is involved in neural 

development but to what extent is not certain. Using mouse models Shi et al have 

determined that it is involved, and necessary for the dendrite outgrowth but not axon 

outgrowth. Using mouse models and cells isolated from the same mouse models Mishra 

et al conclude that IGSF1/DASM1 is not necessary for dendrite outgrowth. Also 

conversely Al-Anzi and Wyam show that the IGSF9 homologue in Drosophila Turtle 

protein is a key attractant in axon branching. This is however a different in vivo model.  

 

6.3.4.1 IGSF9 expression in cell lines 

Initial confirmation of cell line expression was conducted using a panel of 

representative breast cancer subtypes. By preparing a membrane enriched sample of 

each cell line we wished to determine the degree to which IGSF9 was associated with 

the cell membrane. 

Based on the results IGSF9 was shown to be expressed in 5/10 of the unfractionated 

breast cancer cell lysates and 2/10 of the membrane protein enriched lysates. Namely 

these two cell lines showing membrane expression of IGSF9 were the luminal MDA-

BT474 (HER2+) and MDA-MB-157 (TNBC) cell lines. According to cell line 

characterisation by Chavez et al. and Neve et al. (Neve et al. 2006, Chavez, Garimella 

and Lipkowitz 2010) the BT474 cell line is ER+, PR+ and HER2+ while the MDA-MB-

157 is ER-, PR- and HER-. This would suggest, that despite IGSF9 over expression 

being associated with HER2+ gene array data for breast cancer tissue, IGSF9 expression 

is associated with markers other than ER, PR or HER2. IGSF9 is also not associated 

with proliferative cells which is an ADC target suitability requiremnet. 
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These results, while limited in their interpretation using well established subtypes, did 

confirm membrane expression in some cell lines. The membrane enrichment in itself 

may require further optimisation with specific cell lines as IGSF9 appears absent in 3 of 

the cell lines where there was expression in the whole un-enriched samples. In a 

comparison between 5 different membrane enrichment methods, the method used for 

this experiment, it was shown to provide the greatest degree of enrichment based on 

band resolution and yield (Bunger, Roblick and Habermann 2009). 

 

6.3.4.2 IGSF9 has low expression in normal tissue 

18 tissues normal tissue types were analysed for IGSF9 immunoreactivity. Namely 

these were normal breast, cervix, colon, gastric, lung, prostate. As with any potential 

target for therapeutic applications, immunoreactivity should ideally be as low as 

possible to reduce cytotoxicity. Results from this cohort of tissues show that IGSF9 has 

ideal characteristics for use as a therapeutic agent with regard to potential side effects 

 

6.3.4.3 IGSF9 expression is not specifically associated with HER2+ breast tumor 

tissue 

As IGSF9 was initially derived from a differential expression list of HER2+ breast 

tissue vs. normal breast tissue it was expected that IHC analysis of breast cancer tissue 

would confirm this specificity. We found that IGSF9 displayed moderate (+2) to strong 

(+3) immuno reactivity to 4/6 HER2+ breast tumors and 9/11 TNBC tumors. This does 

not show a clear bias toward HER2+ over TNBC. A larger cohort of samples in the 

form of two TMAs confirmed the lack of a trend related to HER2+ (n=19) and TNBC 

(n=16), with both subtypes displaying largely moderate (+2) staining. Stratification of 

this TMA based on ER+ or PR+ status showed a higher degree of negative 

immunoreactivity than in the HER2+ and TNBC groups. While this may indicate that 

ER+ and PR+ do not predict the expression of IGSF9, as shown in Section 1.8 the 

percentage of ER+ and PR+ can determine predictive outcome. This data in future 

TMAs may be useful in determining if IGSF9 is preferentially associated with these 

subtypes. 

 Using a HER2+ TMA it was possible to shed light on this observation. All samples in 

this cohort were HER2+ (n=69) however ER+ and LN+ varied. Results indicated that 
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combinations of HER2+/ER+, HER2+/ER-, HER+/LN+ and HER2+ LN- all displayed 

largely moderate staining in a similar pattern to that of the HER2+ total population . 

This may indicate that IGSF9 immunoreactivity is not directly associated with ER+/- or 

LN+/- in HER2+ breast cancer 

This taken together with its moderate to strong staining of TNBC tissue point toward it 

having high specificity for breast cancer but possibly to subtypes with the main 

subtypes of HER2+ and TNBC which was also mirrored in the cell line 

 

6.3.5 KLRG2 

KLRG2 (killer cell lectin-like receptor subfamily G, member 2) is a 42 kDa NK (natural 

killer cells) lectin-like receptor protein which is closely related to the C-type lectins 

(CLEC) classification of proteins. It also has a smaller annotated 32 kDa isoform. Not 

much is known about KLRG2. It has been linked to prostate cancer aggressiveness in a 

gene array study (Liu et al. 2011b) and expression in the brain (Lysenko et al. 2013) but 

otherwise there is limited literature for KLRG2. More information is available on the 

other family member KLRG1. Blast results show that there is 13% homology between 

the two proteins most of which occurs at the lectin binding domain. 

KLRG1 is the only KLRG family member which much is known about. KLRG1 is a 

195 kDa transmembrane protein preferentially expressed in NK and T-cells known to 

inhibit their cytotoxic function. It has been shown that KLRG1+ NK cells bind to E 

cadherin. Down regulation of E cadherin is known to be associated with cancer 

invasiveness and migration. KLRG1 then has a role analogous to that of the “missing 

self” mechanism of MHC-NK cell binding, potentially playing an important part in 

tumour surveillance. No such functional data is available on KLRG2. 

 

6.3.5.1 KLRG2 expression in cell lines 

Breast cancer cell line expression of KLRG2 was confirmed in a panel of 10/11 whole 

cell lysates and 6/9  membrane enriched fractions.  

KLRG2 was chosen from a panel of over expressed transcripts associated with TNBC 

tumor tissue compared to normal tissue. As such, the Basal category of cell lines were 

expected to be the most enriched in the panel of cell lines. This in part was observed for 
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the whole lysates where very clear strong staining can be observed in the Basal A and 

Basal B cell lines compared to comparatively weak expression overall in the luminal 

categorised cell lines. For the membrane enriched fractions however 3/4 luminal 

showed strong KLRG2 expression while 3/6 Basal category cell lines showed strong 

KLRG2 expression. 

While this may be explained as being due to further subtypes within these cell lines (as 

cell line categorisation can vary between publications) it may be as a result of the 

membrane fractionation. The fact that the whole cell lysates are stratified in terms of 

KLRG2 expression as we expected and the membrane enriched fractions are not may 

point toward further optimisation for particular cell lines with this method. As a proof of 

concept however the membrane enrichment does confirm that KLRG2 is enriched in 6/9 

different breast cancer cell lines. 

 

6.3.5.2 KLRG2 is lowly expressed in normal tissue  

Using a cohort of 36 normal tissues KLRG2 was shown to display low 

immunoreactivity in normal tissue. Normal breast, cervix, colon, gastric, lung and 

prostate tissue all displayed little or no immunoreactivity compared to breast cancer 

tissue and in proliferating tissue 

 In particular normal breast tissue showed the least immunoreactivity. The normal breast 

tissue shows that KLRG2 has an extremely high affinity for breast cancer tissue with far 

higher staining intensity compared to normal breast tissue than that observed with 

IGSF9, which also displayed a high level of breast cancer specific immunoreactivity. 

 

6.3.5.3 KLRG2 expression appears highest in TNBC tissue samples 

From the initial whole cell lysates and the bioinformatics profiling KLRG2 was 

expected to display higher immunoreactivity in TNBC tissue. The membrane enriched 

cell lysate samples alluded to KLRG2 not being specific for TNBC. Taking a cohort of 

9 HER2+ and 11 TNBC tissues it was confirmed that KLRG2 did have higher 

immunoreactivity in TNBC tissue. Moderate (+2) staining in 2/9 HER2+ tissues was 

observed while 8/11 TNBC tissues produced strong (+3) staining. This further points to 
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the possibility that the membrane fractionation technique requires further optimisation 

for each cell line. 

IHC analysis of a cohort of 102 patient samples using a TMA showed that a similar 

relative number of tumors produced negative immunoreactivity based on HER2+, 

TNBC, ER+ or PR+ status. PR+ and ER+ status was however shown to produce mostly 

weak (+1) staining while HER2+ and TNBC status displayed mostly moderate (+2) 

staining. Further stratification or re classification of this TMA may reveal more about 

the specificity for some ER+ and PR+ tumors over others and also why HER2+ and 

TNBC both display a similar trend in immunoreactivity. 

As with IGSF9 these results show that KLRG2 has a strong affinity for breast cancer 

displaying very clear membrane staining. As to what subtypes this strong affinity is 

associated with is not clear but it maybe be a subtype within the TNBC classification. 
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7.           CHAPTER 7 

         Conclusion 
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7.1 Effect of miR-7 on the CHO cell proteome 

Using quantitative label-free LC-MS/MS it was possible to identify a wide range of 

differentially regulated proteins making thorough pathway analysis. Two predicted  

direct targets to miR-7 were confirmed down-regulated after miR-7 up regulation - 

Catalase and Stathmin. Additionally, a previously unavailable reference list of CHO 

protein IDs were generated for future CHO proteomic studies. 

 

− CHO-K1-SEAP cells were transfected with pre-miR-7 and the effect of this 

transient over expression was investigated using a statistical cut of ANOVA 

≤0.05, fold change >1.2 and peptide identifications >1 peptide. 

 

− No CHO specific protein identification database was available at the time of 

the initial analysis therefore a multi species approach with combined rat, 

mouse and human database searching was used to acquire IDs. In total we 

found 275 proteins to be differentially regulated after pre-miR-7 transfection, 

134 proteins 48 hr after miR-7 up regulation and 141 proteins 96 hr after miR-

7 up regulation.  

 

− Over expression of miR-7 was validated by rtPCR and label free mass 

spectrometry differential expression of Histone H3, Histone H4, HSPA8, 14-

3-3 epsilon, GRP78 andPDIA6 was validated by Western blot analysis. 

 

− A reference list of 1135 unique manually annotated gene names and 746 

unique manually annotated protein names associated with an in house CHO 

database was generated for use with future CHO proteomic experiments. 

 

− Overlapping CHO database identifications with the multi-species search 

identifications the overlap between the two showed less peptides in the CHO 

output therefore the one peptide identifications were not filtered out for the 

CHO database and subsequently included in all further experiments using the 

CHO database. 142 proteins from the CHO database including 1 peptide 

matches were represented in the multi-species output (52%).  
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− In total we found 386 CHO proteins to be differentially regulated after pre-

miR-7 transfection, 186 proteins 48 hr after miR-7 up regulation and 200 

proteins 96 hr after miR-7 up regulation.  

 

− Pathway analysis indicated that proteins related to homeostasis and anti 

apoptotic process were up-regulated with down regulation linked to 

translation, RNA binding  while KEGG pathways of Glutathione metabolism 

were up-regulated and Ribosome pathway down-regulated which all point 

toward increased detoxification and reduced protein synthesis and also 

suggests Glutathione metabolism is functioning in a self perpetuating manner 

to produce antioxidant Glutathione. 

 

− Catalase and Stathmin were predicted targets of miR-7 and  were down-

regulated 4.15 and 3.11 fold at 48 and 96 hr and down-regulated 22.2 fold at 

96 hr respectively with validation by Western blot. 

 

− HDAC1 was confirmed to be down-regulated both at the proteomic level and 

the transcriptomic level in miR-7 over expressing CHO cells. Contrary to this 

the Acetylation of Histone H3 and H4 were decreased suggesting that the 

acetylation is redirected and preserved in response to miR-7 up regulation 

 

 Overall we were able to identify a larger number of proteins differentially 

regulated in CHO cells using a label free method, compiled a useful database 

of annotated proteins for downstream analysis. With this we identified 

potential direct targets of miR-7 in CHO cells and proposed a complex 

network of protein regulation associated with the reduced proliferation and 

increased productivity  in CHO with elevated mi-R7. These protein targets 

may potentially be used in the future to produce a CHO cell line with this 

industrially desirable phenotype. 
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7.2 Effect of temperature shift on CHO-K1-SEAP cells using sub cellular 

fractionation 

Using sub cellular fractionation kits we were able to reduce the sample complexity of 

the CHO proteome and identify proteins related to temperature shift that were uniquely 

identified through the fractionation, highly novel with respect to CHO and with follow 

up siRNA knockdown showing a significant reduction to cell proliferation, potentially 

providing a target to induce a temperature shift phenotype cell line for bioprocessing. 

 

− Simple benchtop fractionation kits were used to enrich for membrane, 

cytoplasmic and nuclear components. Enrichment was confirmed using 

pathway analysis and via Western blot for membrane, cytoplasmic and nuclear 

specific proteins IGF1Rβ, HSP90 and catalase respectively 

 

− Sub cellular enrichment was shown to produce 412, 309 and 241 unique to the 

membrane, cytoplasmic and nuclear enriched fractions when compared to the 

non enriched sample. 

 

− The differential protein IDs were used to compare the in house CHO database 

and the non redundant publically available NCBI CHO database showing that 

each had a small number of protein IDs unique to each database and that both 

databases have a similar trend in the frequency of peptide number IDs. 

 

− Differential analysis consisted of comparing 31 to 37
 o

C at each time point of 

8 and 24 hr and a time course analysis identifying differentially regulated 

proteins at the 24 hr time point compared to the 8 hr time point at each 

temperature of 31 and 37
 o

C. 

 

− Proteins identified as differentially regulated were shown to be mostly unique 

to each of the three enriched fractions with differentially regulated proteins 

being mostly unique to each temperature in the time course analysis. 

 

− Pathway analysis for the initial time point comparison showed that down 

regulation of translation and structural process occurred at 31
 o
C accompanied 

by an increase in metabolic processing and DNA replication. For the time 

course analysis differentially regulated proteins at 31
 o

C were associated with 
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associated with different molecular functions and biological process but 

interestingly 31
 o

C and 37
 o

C pathways of the ribosomal and the spliceosome 

were dysregulated in both only different proteins were involved at each 

temperature. 

 

− Four targets were chosen to follow up with transient knockdown. Ezrin, 

Moesin and Lamin A/C were chosen as highly down-regulated at 31
 o 

C in the 

time point analysis and Cyclon was highly differentially regulated at 31
 o

C 

over time but not at 37
 o
C and not in the time point analysis. 

 

− We found that siRNA knockdown in two out of three siRNAs significantly 

(p≤0.05) for Cyclon reduced viable cell number by an average of 50%  and 

knockdown of Moesin reduced viable cell number by 66% without impairing 

viability. Cell size (area and perimeter) were also significantly affected with 

both targets. 

 

 Cell size and morphology, as well as the typical metabolic and transcriptional 

regulation, can be seen to be involved in the temperature shift phenotype 

which can be seen in great detail using sub cellular fractionation. Using these 

deeper proteome identifications, cyclon protein was transiently knocked down 

and shown to significantly reduce cell proliferation and cell size and may be 

useful to induce a temperature shift phenotype in CHO cells to increase 

cellular productivity. 
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7.3 Identification of novel membrane targets in breast cancer 

With publicly available transcriptional data sets we were able to construct a list of 

potential membrane proteins over expressed in TNBC,  ER+, LN+ or HER2+ sub types 

compard to normal breast tissues. We identified a panel of proteins that had not 

previously been associated with  breast cancer functional studies and chose these for 

validation  experiments to  determine their potential suitability as ADC molecular 

targets. 

 

− The criteria used to choose final candidate protein targets (i.e. reducing the 

large panel of transcriptional targets down) novelty of the target (previously 

unexploited, no listed patents), no known  functional association at the protein 

level (in any breast cancer or other cancer types) and availability of antibodies 

for validation studies. 

 

− Five targets IGSF9, KLRG2, SLAMF8, LRP8 and TSPAN13 were chosen for 

initial follow up all of which had antibodies available against them, had no 

protein functional studies in breast cancer, were all implicated to have 

membrane expression in the literature and no patents in the area of breast 

cancer associated with them (commercially novel). 

 

− Initial Western blots analysis showed expression of four targets TSPAN13, 

SLAMF8, IGSF9 and KLRG2 across 9 different breast cancer cell lines with 

expression of IGSF9 and KLRG2 confirmed also  in membrane enriched 

fractions of theses cell lines. 

 

− IHC analysis showed strong expression of IGSF9 and KLRG2 in breast cancer 

tissue compared to normal breast tissue. IGSF9 was derived from the HER2+ 

target list and was found to produce strong cytoplasmic and membrane 

immunoreactivity 

 

 Overall IGSF9 and KLRG2 represent  novel proteins with no   publications 

relating to breast cancer. Both proteins are present in membrane enriched 

fractions of breast cancer cell lines. IGSF9 and KLRG2 display membrane 

immunoreactivity in breast cancer tissues, with moderate to strong 

immunoreactivity observed in both HER2 and TNBC subtypes.  
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 Limited expression of IGSF9 and KLRG2 was observed in normal and highly 

proliferating proliferative tissues compared to IGSF9/KLRG2  

immunoreactivity observed in breast cancer.  

 

 While the specific breast cancer subtype affiliation for these two targets is not 

totally clear,the results presented demonstate that both of these candidate 

targets show a high prevalence of expression across TNBC and HER2 positive 

breast cancers with limited normal tissue expression, suggesting that they may 

represent potential molecular targets that maybe ameanable to therapeutic 

targeting using MAbs/ ADCs.  
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Future work 

Effect of miR-7 on the CHO cell proteome  

 While catalase and stathmin were predicted to be direct targets of miR-7 and 

their abundance was confirmed as reduced in miR-7 transiently up-regulated CHO 

cells, these are indirect methods to determine their association with miR-7. A 

luciferase assay GFP method or biotin labelled methods are available to conduct this 

experiment. 

 Knockdown of catalase and stathmin using transient siRNA transfection would 

establish if they have a role in CHO cell phenotype. Following these results a stable 

CRISPR/Cas9 mediated catalase and stathmin knockout cell line could be gnerated 

or a double knockout may be required to achieve a miR-7 over-expressing penotype. 

 The glutathione metabolism pathway was found contain many up-regulated 

proteins in response to increased miR-7. A glutathione (GSH) assay could be used to 

establish if GSH production is also increasing. As this also indicated increased anti-

oxidant activity, a reactive oxygen species (ROS) kit could also be used to assess this 

activity in miR-7 up regulated cells. 

 A conflicting negative relationship between decreased histone deacetylase 1 

(HDAC1) and increased histone acetylation was observed. Acetylation events could 

be assessed from the MS raw data as well as further Western blot analysis on 

additional members of the histone acetylation pathway to determine the cause of this 

observed histone deacetylation. 

Effect of temperature shift on CHO-K1-SEAP cells using subcellular fractionation 

 As we found that using subcellular fractionation doubled the number of 

qualitative IDs it may be possible to further increase this number with further 

fractionation steps such as with cation exchange, 1D gel separation, 

phopho/glyco/ubiquitinated protein enrichment or size exclusion chromtography, all 

of which can quickly and easily be achieved with commercial kits. 

 The time course analysis as a comparison allowed a functionally validated target 

(cyclon) to be identified. While this analysis proved useful a true time course 

analysis has many more time points than two. Seeing as how a minimum amount of 
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time points in this proved useful, there may be further functional targets identified 

with a greater number of time points for this type of comparison. 

 Of the 4 targets chosen for functional validation 3 (Ezrin, Moesin and Lamin 

A/C) were not confirmed to be knocked down via Western blot analysis. Different 

antibodies could be used to assess knockdown in these samples as humanised 

antibodies sometimes produce unreliable results on CHO samples. Alternatively RT-

PCR could be used to assess knockdown. Moesin in particular should be reanalysed 

as a phenotypic response was observed with anti-Moesin siRNA transfection. 

 Cyclon was confirmed knocked down via Western blot analysis and 

significantly reduced cell proliferation and cell size with no affect on percentage 

viable cells. Other assays such as a SEAP assay would determine if cyclon has an 

effect on productivity and confirm if it truly does cause a temperature shift 

phenotype when down-regulated. 

 Stable gene edited clones could be generated with CRISPR/Cas9 and various 

knockout and insertion combination cell lines generated with Ezrin, Moesin, Lamin 

A/C and Cyclon with the overall objective to generate a stable cell line with a 

temperature shifted phenotype - resistance to apoptosis, reduced cell growth and 

increased productivity. As Cyclon was shown to reduce proliferation it could be 

more suitable to generate a stable clone with an inducible promoter so that high cell 

densities 

Identification of novel membrane protein targets in breast cancer 

 An extended panel of breast cancer cell lines representing various TNBC 

subtypes should be analysed for IGSF9 and KLRG2 expression. 

 As TMAs represent a high throughput method of analysis, more of these should 

be analysed with IGSF9 and KLRG2. In particular TMAs with complete 

clinicopathological information including patient outcome could be analysed to 

determine association of the targets with clinical outcome or tumour features. To 

address if these targets represent potential ADC targets, (i) internalisation studies 

should be carried out to demonstrate that these target antigens can be internalised on 

the cell surface of breast cancer cells. (ii) Microscopic cellular localisation studies  of 

cell surface staining of targets should be carried out to demonstrate cell surface 

localisation of the target antigens.   
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 Another desirable but not essential characteristic for an ADC target is that the 

target has a functional effect on cancer cells. Transient knockdown followed by any 

number of cancer functional assays such as migration, invasion, proliferation and 

anoikis assays should be carried out. 

 IGSF9 and KLRG2 represent highly novel targets with very little functional 

work available. Analysing there expression in a wider range of cancer tissue may 

produce more novel applications. 

 While the antibodies used in this study were suitable for IGSF9 and KLRG2 the 

antibodies used for TSPAN13, LRP8 and SLAMF8 were not suitable. Custom 

antibody design may solve some of these problems and allow the validation of other 

targets with few commercially available antibodies. 
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Temperature Shift tables time point analysis  
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i. Up-regulated proteins in CHO-K1 SEAP cells at 31
 o
C after 8  and 24 hr in 

membrane, cytoplasmic and nuclear fractions. 
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ii. Down-regulated proteins in CHO-K1 SEAP cells at 31
 o
C after 8 and 24 hr in 

membrane, cytoplasmic and nuclear fractions. 
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DAVID analysis timepoint comparison with fractionation and temperature shift  

 

 

iii. Biological processes differentially regulated in CHO cells grown at 31 
o
C 8 and 

24 hr after temperature shift using GO analysis through DAVID showing 

translational and protein localization dis regulation at 8 hr with translational 

dysregulation also occurring at 24 hr 
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iv. Molecular functions differentially regulated in CHO cells grown at 31
 o
C 8 and 

24 hr after temperature shift using GO analysis through DAVID showing 

structural dysregulation and RNA binding differential regulation at 8 hr and 

structural, RNA binding and heat shock protein binding regulation at 24 hr. 
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v. Cellular components associated with differentially regulated proteins in CHO 

cells grown at 31
 o
C 8 and 24 hr after temperature shift using GO analysis 

through DAVID showing an emphasis on ribosomal, organelle, mitochondial 

components at both timepoints. 
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Panther timepoint analysis with fractionation and temperature shift  

 

 

vi. Biological processes differentially regulated in CHO cells grown at 31
 o
C 8 and 

24 hr after temperature shift using PANTHER showing cell component 

organisation and mRNA differential regulation at 8 hr and RNA splicing, RNA 

processing, translation, metabolic processes and tricarboxylic acid cycle at 24 hr 
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vii. Molecular functions differentially regulated in CHO cells grown at 31
 o
C 8 and 

24 hr after temperature shift using PANTHER which show structural and RNA 

binding functions affected at 8 hr and a wider range of functions affected at 24 

hr including structural and RNA binding functions but also isomerase, helicase, 

translational initiation and catalytic activity. 
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viii. Cellular components associated with differentially regulated proteins in CHO 

cells grown at 31
 o
C 8 and 24 hr after temperature shift using PANTHER 

showing an emphasis on cytoskeletal, membrane, intracellular and 

ribonucleoprotien components enriched. 
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Time Course Temperature shift tables 
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ix. Down-regulated proteins in CHO-K1 SEAP cells at 24 hr compared to 8 hr time 

point at 31 and 37
 o
C in membrane, cytoplasmic and nuclear fractions 
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x. Up-regulated proteins in CHO-K1 SEAP cells at 24 hr compared to 8 hr time 

point at 31 and 37
 o
C in membrane, cytoplasmic and nuclear fractions 
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DAVID analysis 16hr time course at 31 and 37
 o

C with subcellular fractionation 

 

xi. Top five biological processes (Bonferonni p<0.05) differentially regulated in 

CHO cells grown at 31
 
and 37

 o
C over 16hr between time points of 8 and 24 hr 

after temperature shift using GO analysis through DAVID. Similar process can 

be seen to be enriched for at both temperatures with posttranscriptional 

regulation of gene expression, regulation of translation, translational initiation 

and cell cycle process being specifically associated with downregulated proteins 

at 31
 o
C. 
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xii. Top five molecular functions (Bonferonni p<0.05) differentially regulated in 

CHO cells grown at 31
 
and 37

 o
C over 16hr between time points of 8 and 24 hr 

after temperature shift using GO analysis through DAVID. Similar process can 

be seen to be enriched for at both temperatures with posttranscriptional 

regulation of gene expression, regulation of translation, translational initiation 

and cell cycle process being specifically associated with down-regulated 

proteins at 31
 o
C. 
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xiii. Cellular components associated with differentially regulated proteins in CHO 

cells grown over 16hr at 31
 o

C and 37
 o

C temperature shift using GO analysis 

through DAVID. 
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Panther analysis 16hr time course at 31 and 37
 o

C with subcellular fractionation 

 

xiv. Biological processes differentially regulated in CHO cells grown at 31
 o

C 8 and 

24 hr after temperature shift using PANTHER. Similar processes are seen 

differentially regulated with protein up regulation such as metabolic process, 

translation, RNA processing and protein processing. Down-regulated proteins 

show specific dysregulation of nuclear transport, meiosis and chromosome 

segregation at 31
 o
C compared to 37

 o
C.  
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xv. Molecular functions differentially regulated in CHO cells grown at 31
 o

C 8 and 

24 hr after temperature shift using PANTHER. Up-regulated proteins show 

specific dysregulation of oxidoreductase activity, structural constituent of the 

cytoskeleton and single stranded DNA binding at 31
 o

C compared to 37
 o

C. 

Similar processes are seen differentially regulated with protein down regulation 

such as binding, translational regulation and structural molecule activity. 



 

338 
 

 

xvi. Cellular components associated with differentially regulated proteins in CHO 

cells grown at 31
 o

C 8 and 24 hr after temperature shift using PANTHER. Up-

regulated proteins show specific dysregulation to many structural elements such 

as vesicle coat, organelle, intracellular, actin cytoskeleton and cytoskeleton 

terms at 31
 o

C compared to 37
 o

C. Down-regulated proteins show specific 

dysregulation to many structural elements such as vesicle ribonucleoprotein 

complex and the macromolecule complex terms at 31
 o
C compared to 37

 o
C. 
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Temperature shift target transfections 

 

xvii. Effect of siRNA mediated knockdown of Cyclon, Ezrin, Moesin or Lamin A in 

CHO K1-SEAP cells after 72 hr on total viable cell/ml, cell viability, cell 

average diameter, cell average area and cell average perimeter. Mean p-value 

and mean fold change are calculated against the siRNA negative control (n=3). 

Significant values were calculated using a two tailed, two sample unequal 

variance student's t-test and fold changes denoted with a minus sign represent a 

fold decrease compared to the negative control. 

Target Mean p-value 

(n=3)

Mean fold 

change (n=3)  

Mean p-value 

(n=3)

Mean fold 

change (n=3)  

Mean p-value 

(n=3)

Mean fold 

change (n=3)  

Total viable 

cells/ml

7.67E-02 -1.39 4.19E-02 -1.47 3.00E-02 -1.52

Cell viability 6.83E-01 -1.02 3.27E-01 -1.05 5.47E-01 -1.03

Cell average 

diameter

9.89E-01 1.00 1.75E-01 1.03 4.04E-01 1.01

Cell average area 5.52E-02 -1.27 3.16E-02 -1.30 8.34E-05 -1.43

Cell average 

perimeter

6.36E-02 -1.22 1.85E-02 -1.25 4.84E-04 -1.34

Target Mean p-value 

(n=3)

Mean fold 

change (n=3)  

Mean p-value 

(n=3)

Mean fold 

change (n=3)  

Mean p-value 

(n=3)

Mean fold 

change (n=3)  

Total viable 

cells/ml

7.73E-01 -1.10 9.42E-01 1.01 5.86E-02 -1.42

Cell viability 6.01E-01 1.02 4.19E-01 0.95 4.29E-01 -1.01

Cell average 

diameter

4.58E-02 -1.02 4.89E-01 1.00 1.35E-01 1.00

Cell average area 4.80E-01 -1.10 4.62E-01 -1.10 5.35E-02 -1.32

Cell average 

perimeter

5.80E-01 -1.06 4.72E-01 -1.08 5.52E-02 -1.25

Target Mean p-value 

(n=3)

Mean fold 

change (n=3)  

Mean p-value 

(n=3)

Mean fold 

change (n=3)  

Mean p-value 

(n=3)

Mean fold 

change (n=3)  

Total viable 

cells/ml

6.12E-02 -1.41 6.12E-02 -1.58 6.12E-02 -1.74

Cell viability 8.33E-01 1.01 8.33E-01 -1.04 8.33E-01 -1.04

Cell average 

diameter

6.25E-01 1.00 6.25E-01 -1.01 6.25E-01 -1.02

Cell average area 4.06E-02 -1.30 4.06E-02 -1.44 4.06E-02 -1.58

Cell average 

perimeter

4.32E-02 -1.24 4.32E-02 -1.33 4.32E-02 -1.44

Target Mean p-value 

(n=3)

Mean fold 

change (n=3)  

Mean p-value 

(n=3)

Mean fold 

change (n=3)  

Mean p-value 

(n=3)

Mean fold 

change (n=3)  

Total viable 

cells/ml

4.95E-02 -1.46 1.50E-01 -1.28 1.08E-01 -1.42

Cell viability 6.63E-01 -1.03 7.87E-01 1.01 9.08E-01 -1.01

Cell average 

diameter

4.80E-01 1.01 4.24E-01 1.01 7.26E-01 1.00

Cell average area 8.31E-03 -1.19 1.97E-01 -1.05 7.33E-02 -1.23

Cell average 

perimeter

5.15E-02 -1.14 1.78E-01 -1.04 8.60E-02 -1.17

siRNA2 siRNA3

Lamin A

siRNA1 siRNA2 siRNA3

Cyclon

Ezrin

siRNA1 siRNA2 siRNA3

Moesin

siRNA1

siRNA1 siRNA2 siRNA3
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xviii. Schematic of the proposed transcriptional effect of miR-7 on CHO cell 

growth. Potential direct interactions between miR-7  and targets SKP2 and 

PSME3 mediate cell cycle arrest and apoptosis resistance respectively. Source - 

(Sanchez et al. 2013) 

 

 


